1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
35 #include "diagnostic-core.h"
36 #include "rtx-vector-builder.h"
38 /* Include insn-config.h before expr.h so that HAVE_conditional_move
39 is properly defined. */
40 #include "stor-layout.h"
45 #include "optabs-tree.h"
48 static void prepare_float_lib_cmp (rtx
, rtx
, enum rtx_code
, rtx
*,
50 static rtx
expand_unop_direct (machine_mode
, optab
, rtx
, rtx
, int);
51 static void emit_libcall_block_1 (rtx_insn
*, rtx
, rtx
, rtx
, bool);
53 /* Debug facility for use in GDB. */
54 void debug_optab_libfuncs (void);
56 /* Add a REG_EQUAL note to the last insn in INSNS. TARGET is being set to
57 the result of operation CODE applied to OP0 (and OP1 if it is a binary
58 operation). OP0_MODE is OP0's mode.
60 If the last insn does not set TARGET, don't do anything, but return 1.
62 If the last insn or a previous insn sets TARGET and TARGET is one of OP0
63 or OP1, don't add the REG_EQUAL note but return 0. Our caller can then
64 try again, ensuring that TARGET is not one of the operands. */
67 add_equal_note (rtx_insn
*insns
, rtx target
, enum rtx_code code
, rtx op0
,
68 rtx op1
, machine_mode op0_mode
)
74 gcc_assert (insns
&& INSN_P (insns
) && NEXT_INSN (insns
));
76 if (GET_RTX_CLASS (code
) != RTX_COMM_ARITH
77 && GET_RTX_CLASS (code
) != RTX_BIN_ARITH
78 && GET_RTX_CLASS (code
) != RTX_COMM_COMPARE
79 && GET_RTX_CLASS (code
) != RTX_COMPARE
80 && GET_RTX_CLASS (code
) != RTX_UNARY
)
83 if (GET_CODE (target
) == ZERO_EXTRACT
)
86 for (last_insn
= insns
;
87 NEXT_INSN (last_insn
) != NULL_RTX
;
88 last_insn
= NEXT_INSN (last_insn
))
91 /* If TARGET is in OP0 or OP1, punt. We'd end up with a note referencing
92 a value changing in the insn, so the note would be invalid for CSE. */
93 if (reg_overlap_mentioned_p (target
, op0
)
94 || (op1
&& reg_overlap_mentioned_p (target
, op1
)))
97 && (rtx_equal_p (target
, op0
)
98 || (op1
&& rtx_equal_p (target
, op1
))))
100 /* For MEM target, with MEM = MEM op X, prefer no REG_EQUAL note
101 over expanding it as temp = MEM op X, MEM = temp. If the target
102 supports MEM = MEM op X instructions, it is sometimes too hard
103 to reconstruct that form later, especially if X is also a memory,
104 and due to multiple occurrences of addresses the address might
105 be forced into register unnecessarily.
106 Note that not emitting the REG_EQUIV note might inhibit
107 CSE in some cases. */
108 set
= single_set (last_insn
);
110 && GET_CODE (SET_SRC (set
)) == code
111 && MEM_P (SET_DEST (set
))
112 && (rtx_equal_p (SET_DEST (set
), XEXP (SET_SRC (set
), 0))
113 || (op1
&& rtx_equal_p (SET_DEST (set
),
114 XEXP (SET_SRC (set
), 1)))))
120 set
= set_for_reg_notes (last_insn
);
124 if (! rtx_equal_p (SET_DEST (set
), target
)
125 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside it. */
126 && (GET_CODE (SET_DEST (set
)) != STRICT_LOW_PART
127 || ! rtx_equal_p (XEXP (SET_DEST (set
), 0), target
)))
130 if (GET_RTX_CLASS (code
) == RTX_UNARY
)
140 if (op0_mode
!= VOIDmode
&& GET_MODE (target
) != op0_mode
)
142 note
= gen_rtx_fmt_e (code
, op0_mode
, copy_rtx (op0
));
143 if (GET_MODE_UNIT_SIZE (op0_mode
)
144 > GET_MODE_UNIT_SIZE (GET_MODE (target
)))
145 note
= simplify_gen_unary (TRUNCATE
, GET_MODE (target
),
148 note
= simplify_gen_unary (ZERO_EXTEND
, GET_MODE (target
),
154 note
= gen_rtx_fmt_e (code
, GET_MODE (target
), copy_rtx (op0
));
158 note
= gen_rtx_fmt_ee (code
, GET_MODE (target
), copy_rtx (op0
), copy_rtx (op1
));
160 set_unique_reg_note (last_insn
, REG_EQUAL
, note
);
165 /* Given two input operands, OP0 and OP1, determine what the correct from_mode
166 for a widening operation would be. In most cases this would be OP0, but if
167 that's a constant it'll be VOIDmode, which isn't useful. */
170 widened_mode (machine_mode to_mode
, rtx op0
, rtx op1
)
172 machine_mode m0
= GET_MODE (op0
);
173 machine_mode m1
= GET_MODE (op1
);
176 if (m0
== VOIDmode
&& m1
== VOIDmode
)
178 else if (m0
== VOIDmode
|| GET_MODE_UNIT_SIZE (m0
) < GET_MODE_UNIT_SIZE (m1
))
183 if (GET_MODE_UNIT_SIZE (result
) > GET_MODE_UNIT_SIZE (to_mode
))
189 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
190 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
191 not actually do a sign-extend or zero-extend, but can leave the
192 higher-order bits of the result rtx undefined, for example, in the case
193 of logical operations, but not right shifts. */
196 widen_operand (rtx op
, machine_mode mode
, machine_mode oldmode
,
197 int unsignedp
, int no_extend
)
200 scalar_int_mode int_mode
;
202 /* If we don't have to extend and this is a constant, return it. */
203 if (no_extend
&& GET_MODE (op
) == VOIDmode
)
206 /* If we must extend do so. If OP is a SUBREG for a promoted object, also
207 extend since it will be more efficient to do so unless the signedness of
208 a promoted object differs from our extension. */
210 || !is_a
<scalar_int_mode
> (mode
, &int_mode
)
211 || (GET_CODE (op
) == SUBREG
&& SUBREG_PROMOTED_VAR_P (op
)
212 && SUBREG_CHECK_PROMOTED_SIGN (op
, unsignedp
)))
213 return convert_modes (mode
, oldmode
, op
, unsignedp
);
215 /* If MODE is no wider than a single word, we return a lowpart or paradoxical
217 if (GET_MODE_SIZE (int_mode
) <= UNITS_PER_WORD
)
218 return gen_lowpart (int_mode
, force_reg (GET_MODE (op
), op
));
220 /* Otherwise, get an object of MODE, clobber it, and set the low-order
223 result
= gen_reg_rtx (int_mode
);
224 emit_clobber (result
);
225 emit_move_insn (gen_lowpart (GET_MODE (op
), result
), op
);
229 /* Expand vector widening operations.
231 There are two different classes of operations handled here:
232 1) Operations whose result is wider than all the arguments to the operation.
233 Examples: VEC_UNPACK_HI/LO_EXPR, VEC_WIDEN_MULT_HI/LO_EXPR
234 In this case OP0 and optionally OP1 would be initialized,
235 but WIDE_OP wouldn't (not relevant for this case).
236 2) Operations whose result is of the same size as the last argument to the
237 operation, but wider than all the other arguments to the operation.
238 Examples: WIDEN_SUM_EXPR, VEC_DOT_PROD_EXPR.
239 In the case WIDE_OP, OP0 and optionally OP1 would be initialized.
241 E.g, when called to expand the following operations, this is how
242 the arguments will be initialized:
244 widening-sum 2 oprnd0 - oprnd1
245 widening-dot-product 3 oprnd0 oprnd1 oprnd2
246 widening-mult 2 oprnd0 oprnd1 -
247 type-promotion (vec-unpack) 1 oprnd0 - - */
250 expand_widen_pattern_expr (sepops ops
, rtx op0
, rtx op1
, rtx wide_op
,
251 rtx target
, int unsignedp
)
253 struct expand_operand eops
[4];
254 tree oprnd0
, oprnd1
, oprnd2
;
255 machine_mode wmode
= VOIDmode
, tmode0
, tmode1
= VOIDmode
;
256 optab widen_pattern_optab
;
257 enum insn_code icode
;
258 int nops
= TREE_CODE_LENGTH (ops
->code
);
263 tmode0
= TYPE_MODE (TREE_TYPE (oprnd0
));
264 if (ops
->code
== VEC_UNPACK_FIX_TRUNC_HI_EXPR
265 || ops
->code
== VEC_UNPACK_FIX_TRUNC_LO_EXPR
)
266 /* The sign is from the result type rather than operand's type
269 = optab_for_tree_code (ops
->code
, ops
->type
, optab_default
);
270 else if ((ops
->code
== VEC_UNPACK_HI_EXPR
271 || ops
->code
== VEC_UNPACK_LO_EXPR
)
272 && VECTOR_BOOLEAN_TYPE_P (ops
->type
)
273 && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (oprnd0
))
274 && TYPE_MODE (ops
->type
) == TYPE_MODE (TREE_TYPE (oprnd0
))
275 && SCALAR_INT_MODE_P (TYPE_MODE (ops
->type
)))
277 /* For VEC_UNPACK_{LO,HI}_EXPR if the mode of op0 and result is
278 the same scalar mode for VECTOR_BOOLEAN_TYPE_P vectors, use
279 vec_unpacks_sbool_{lo,hi}_optab, so that we can pass in
280 the pattern number of elements in the wider vector. */
282 = (ops
->code
== VEC_UNPACK_HI_EXPR
283 ? vec_unpacks_sbool_hi_optab
: vec_unpacks_sbool_lo_optab
);
288 = optab_for_tree_code (ops
->code
, TREE_TYPE (oprnd0
), optab_default
);
289 if (ops
->code
== WIDEN_MULT_PLUS_EXPR
290 || ops
->code
== WIDEN_MULT_MINUS_EXPR
)
291 icode
= find_widening_optab_handler (widen_pattern_optab
,
292 TYPE_MODE (TREE_TYPE (ops
->op2
)),
295 icode
= optab_handler (widen_pattern_optab
, tmode0
);
296 gcc_assert (icode
!= CODE_FOR_nothing
);
301 tmode1
= TYPE_MODE (TREE_TYPE (oprnd1
));
306 op1
= GEN_INT (TYPE_VECTOR_SUBPARTS (TREE_TYPE (oprnd0
)).to_constant ());
310 /* The last operand is of a wider mode than the rest of the operands. */
315 gcc_assert (tmode1
== tmode0
);
318 wmode
= TYPE_MODE (TREE_TYPE (oprnd2
));
322 create_output_operand (&eops
[op
++], target
, TYPE_MODE (ops
->type
));
323 create_convert_operand_from (&eops
[op
++], op0
, tmode0
, unsignedp
);
325 create_convert_operand_from (&eops
[op
++], op1
, tmode1
, unsignedp
);
327 create_convert_operand_from (&eops
[op
++], wide_op
, wmode
, unsignedp
);
328 expand_insn (icode
, op
, eops
);
329 return eops
[0].value
;
332 /* Generate code to perform an operation specified by TERNARY_OPTAB
333 on operands OP0, OP1 and OP2, with result having machine-mode MODE.
335 UNSIGNEDP is for the case where we have to widen the operands
336 to perform the operation. It says to use zero-extension.
338 If TARGET is nonzero, the value
339 is generated there, if it is convenient to do so.
340 In all cases an rtx is returned for the locus of the value;
341 this may or may not be TARGET. */
344 expand_ternary_op (machine_mode mode
, optab ternary_optab
, rtx op0
,
345 rtx op1
, rtx op2
, rtx target
, int unsignedp
)
347 struct expand_operand ops
[4];
348 enum insn_code icode
= optab_handler (ternary_optab
, mode
);
350 gcc_assert (optab_handler (ternary_optab
, mode
) != CODE_FOR_nothing
);
352 create_output_operand (&ops
[0], target
, mode
);
353 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
354 create_convert_operand_from (&ops
[2], op1
, mode
, unsignedp
);
355 create_convert_operand_from (&ops
[3], op2
, mode
, unsignedp
);
356 expand_insn (icode
, 4, ops
);
361 /* Like expand_binop, but return a constant rtx if the result can be
362 calculated at compile time. The arguments and return value are
363 otherwise the same as for expand_binop. */
366 simplify_expand_binop (machine_mode mode
, optab binoptab
,
367 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
368 enum optab_methods methods
)
370 if (CONSTANT_P (op0
) && CONSTANT_P (op1
))
372 rtx x
= simplify_binary_operation (optab_to_code (binoptab
),
378 return expand_binop (mode
, binoptab
, op0
, op1
, target
, unsignedp
, methods
);
381 /* Like simplify_expand_binop, but always put the result in TARGET.
382 Return true if the expansion succeeded. */
385 force_expand_binop (machine_mode mode
, optab binoptab
,
386 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
387 enum optab_methods methods
)
389 rtx x
= simplify_expand_binop (mode
, binoptab
, op0
, op1
,
390 target
, unsignedp
, methods
);
394 emit_move_insn (target
, x
);
398 /* Create a new vector value in VMODE with all elements set to OP. The
399 mode of OP must be the element mode of VMODE. If OP is a constant,
400 then the return value will be a constant. */
403 expand_vector_broadcast (machine_mode vmode
, rtx op
)
408 gcc_checking_assert (VECTOR_MODE_P (vmode
));
410 if (valid_for_const_vector_p (vmode
, op
))
411 return gen_const_vec_duplicate (vmode
, op
);
413 insn_code icode
= optab_handler (vec_duplicate_optab
, vmode
);
414 if (icode
!= CODE_FOR_nothing
)
416 struct expand_operand ops
[2];
417 create_output_operand (&ops
[0], NULL_RTX
, vmode
);
418 create_input_operand (&ops
[1], op
, GET_MODE (op
));
419 expand_insn (icode
, 2, ops
);
423 if (!GET_MODE_NUNITS (vmode
).is_constant (&n
))
426 /* ??? If the target doesn't have a vec_init, then we have no easy way
427 of performing this operation. Most of this sort of generic support
428 is hidden away in the vector lowering support in gimple. */
429 icode
= convert_optab_handler (vec_init_optab
, vmode
,
430 GET_MODE_INNER (vmode
));
431 if (icode
== CODE_FOR_nothing
)
434 vec
= rtvec_alloc (n
);
435 for (int i
= 0; i
< n
; ++i
)
436 RTVEC_ELT (vec
, i
) = op
;
437 rtx ret
= gen_reg_rtx (vmode
);
438 emit_insn (GEN_FCN (icode
) (ret
, gen_rtx_PARALLEL (vmode
, vec
)));
443 /* This subroutine of expand_doubleword_shift handles the cases in which
444 the effective shift value is >= BITS_PER_WORD. The arguments and return
445 value are the same as for the parent routine, except that SUPERWORD_OP1
446 is the shift count to use when shifting OUTOF_INPUT into INTO_TARGET.
447 INTO_TARGET may be null if the caller has decided to calculate it. */
450 expand_superword_shift (optab binoptab
, rtx outof_input
, rtx superword_op1
,
451 rtx outof_target
, rtx into_target
,
452 int unsignedp
, enum optab_methods methods
)
454 if (into_target
!= 0)
455 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, superword_op1
,
456 into_target
, unsignedp
, methods
))
459 if (outof_target
!= 0)
461 /* For a signed right shift, we must fill OUTOF_TARGET with copies
462 of the sign bit, otherwise we must fill it with zeros. */
463 if (binoptab
!= ashr_optab
)
464 emit_move_insn (outof_target
, CONST0_RTX (word_mode
));
466 if (!force_expand_binop (word_mode
, binoptab
, outof_input
,
467 gen_int_shift_amount (word_mode
,
469 outof_target
, unsignedp
, methods
))
475 /* This subroutine of expand_doubleword_shift handles the cases in which
476 the effective shift value is < BITS_PER_WORD. The arguments and return
477 value are the same as for the parent routine. */
480 expand_subword_shift (scalar_int_mode op1_mode
, optab binoptab
,
481 rtx outof_input
, rtx into_input
, rtx op1
,
482 rtx outof_target
, rtx into_target
,
483 int unsignedp
, enum optab_methods methods
,
484 unsigned HOST_WIDE_INT shift_mask
)
486 optab reverse_unsigned_shift
, unsigned_shift
;
489 reverse_unsigned_shift
= (binoptab
== ashl_optab
? lshr_optab
: ashl_optab
);
490 unsigned_shift
= (binoptab
== ashl_optab
? ashl_optab
: lshr_optab
);
492 /* The low OP1 bits of INTO_TARGET come from the high bits of OUTOF_INPUT.
493 We therefore need to shift OUTOF_INPUT by (BITS_PER_WORD - OP1) bits in
494 the opposite direction to BINOPTAB. */
495 if (CONSTANT_P (op1
) || shift_mask
>= BITS_PER_WORD
)
497 carries
= outof_input
;
498 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
,
499 op1_mode
), op1_mode
);
500 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
505 /* We must avoid shifting by BITS_PER_WORD bits since that is either
506 the same as a zero shift (if shift_mask == BITS_PER_WORD - 1) or
507 has unknown behavior. Do a single shift first, then shift by the
508 remainder. It's OK to use ~OP1 as the remainder if shift counts
509 are truncated to the mode size. */
510 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
511 outof_input
, const1_rtx
, 0, unsignedp
, methods
);
512 if (shift_mask
== BITS_PER_WORD
- 1)
514 tmp
= immed_wide_int_const
515 (wi::minus_one (GET_MODE_PRECISION (op1_mode
)), op1_mode
);
516 tmp
= simplify_expand_binop (op1_mode
, xor_optab
, op1
, tmp
,
521 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
- 1,
522 op1_mode
), op1_mode
);
523 tmp
= simplify_expand_binop (op1_mode
, sub_optab
, tmp
, op1
,
527 if (tmp
== 0 || carries
== 0)
529 carries
= expand_binop (word_mode
, reverse_unsigned_shift
,
530 carries
, tmp
, 0, unsignedp
, methods
);
534 /* Shift INTO_INPUT logically by OP1. This is the last use of INTO_INPUT
535 so the result can go directly into INTO_TARGET if convenient. */
536 tmp
= expand_binop (word_mode
, unsigned_shift
, into_input
, op1
,
537 into_target
, unsignedp
, methods
);
541 /* Now OR in the bits carried over from OUTOF_INPUT. */
542 if (!force_expand_binop (word_mode
, ior_optab
, tmp
, carries
,
543 into_target
, unsignedp
, methods
))
546 /* Use a standard word_mode shift for the out-of half. */
547 if (outof_target
!= 0)
548 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
549 outof_target
, unsignedp
, methods
))
556 /* Try implementing expand_doubleword_shift using conditional moves.
557 The shift is by < BITS_PER_WORD if (CMP_CODE CMP1 CMP2) is true,
558 otherwise it is by >= BITS_PER_WORD. SUBWORD_OP1 and SUPERWORD_OP1
559 are the shift counts to use in the former and latter case. All other
560 arguments are the same as the parent routine. */
563 expand_doubleword_shift_condmove (scalar_int_mode op1_mode
, optab binoptab
,
564 enum rtx_code cmp_code
, rtx cmp1
, rtx cmp2
,
565 rtx outof_input
, rtx into_input
,
566 rtx subword_op1
, rtx superword_op1
,
567 rtx outof_target
, rtx into_target
,
568 int unsignedp
, enum optab_methods methods
,
569 unsigned HOST_WIDE_INT shift_mask
)
571 rtx outof_superword
, into_superword
;
573 /* Put the superword version of the output into OUTOF_SUPERWORD and
575 outof_superword
= outof_target
!= 0 ? gen_reg_rtx (word_mode
) : 0;
576 if (outof_target
!= 0 && subword_op1
== superword_op1
)
578 /* The value INTO_TARGET >> SUBWORD_OP1, which we later store in
579 OUTOF_TARGET, is the same as the value of INTO_SUPERWORD. */
580 into_superword
= outof_target
;
581 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
582 outof_superword
, 0, unsignedp
, methods
))
587 into_superword
= gen_reg_rtx (word_mode
);
588 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
589 outof_superword
, into_superword
,
594 /* Put the subword version directly in OUTOF_TARGET and INTO_TARGET. */
595 if (!expand_subword_shift (op1_mode
, binoptab
,
596 outof_input
, into_input
, subword_op1
,
597 outof_target
, into_target
,
598 unsignedp
, methods
, shift_mask
))
601 /* Select between them. Do the INTO half first because INTO_SUPERWORD
602 might be the current value of OUTOF_TARGET. */
603 if (!emit_conditional_move (into_target
, cmp_code
, cmp1
, cmp2
, op1_mode
,
604 into_target
, into_superword
, word_mode
, false))
607 if (outof_target
!= 0)
608 if (!emit_conditional_move (outof_target
, cmp_code
, cmp1
, cmp2
, op1_mode
,
609 outof_target
, outof_superword
,
616 /* Expand a doubleword shift (ashl, ashr or lshr) using word-mode shifts.
617 OUTOF_INPUT and INTO_INPUT are the two word-sized halves of the first
618 input operand; the shift moves bits in the direction OUTOF_INPUT->
619 INTO_TARGET. OUTOF_TARGET and INTO_TARGET are the equivalent words
620 of the target. OP1 is the shift count and OP1_MODE is its mode.
621 If OP1 is constant, it will have been truncated as appropriate
622 and is known to be nonzero.
624 If SHIFT_MASK is zero, the result of word shifts is undefined when the
625 shift count is outside the range [0, BITS_PER_WORD). This routine must
626 avoid generating such shifts for OP1s in the range [0, BITS_PER_WORD * 2).
628 If SHIFT_MASK is nonzero, all word-mode shift counts are effectively
629 masked by it and shifts in the range [BITS_PER_WORD, SHIFT_MASK) will
630 fill with zeros or sign bits as appropriate.
632 If SHIFT_MASK is BITS_PER_WORD - 1, this routine will synthesize
633 a doubleword shift whose equivalent mask is BITS_PER_WORD * 2 - 1.
634 Doing this preserves semantics required by SHIFT_COUNT_TRUNCATED.
635 In all other cases, shifts by values outside [0, BITS_PER_UNIT * 2)
638 BINOPTAB, UNSIGNEDP and METHODS are as for expand_binop. This function
639 may not use INTO_INPUT after modifying INTO_TARGET, and similarly for
640 OUTOF_INPUT and OUTOF_TARGET. OUTOF_TARGET can be null if the parent
641 function wants to calculate it itself.
643 Return true if the shift could be successfully synthesized. */
646 expand_doubleword_shift (scalar_int_mode op1_mode
, optab binoptab
,
647 rtx outof_input
, rtx into_input
, rtx op1
,
648 rtx outof_target
, rtx into_target
,
649 int unsignedp
, enum optab_methods methods
,
650 unsigned HOST_WIDE_INT shift_mask
)
652 rtx superword_op1
, tmp
, cmp1
, cmp2
;
653 enum rtx_code cmp_code
;
655 /* See if word-mode shifts by BITS_PER_WORD...BITS_PER_WORD * 2 - 1 will
656 fill the result with sign or zero bits as appropriate. If so, the value
657 of OUTOF_TARGET will always be (SHIFT OUTOF_INPUT OP1). Recursively call
658 this routine to calculate INTO_TARGET (which depends on both OUTOF_INPUT
659 and INTO_INPUT), then emit code to set up OUTOF_TARGET.
661 This isn't worthwhile for constant shifts since the optimizers will
662 cope better with in-range shift counts. */
663 if (shift_mask
>= BITS_PER_WORD
665 && !CONSTANT_P (op1
))
667 if (!expand_doubleword_shift (op1_mode
, binoptab
,
668 outof_input
, into_input
, op1
,
670 unsignedp
, methods
, shift_mask
))
672 if (!force_expand_binop (word_mode
, binoptab
, outof_input
, op1
,
673 outof_target
, unsignedp
, methods
))
678 /* Set CMP_CODE, CMP1 and CMP2 so that the rtx (CMP_CODE CMP1 CMP2)
679 is true when the effective shift value is less than BITS_PER_WORD.
680 Set SUPERWORD_OP1 to the shift count that should be used to shift
681 OUTOF_INPUT into INTO_TARGET when the condition is false. */
682 tmp
= immed_wide_int_const (wi::shwi (BITS_PER_WORD
, op1_mode
), op1_mode
);
683 if (!CONSTANT_P (op1
) && shift_mask
== BITS_PER_WORD
- 1)
685 /* Set CMP1 to OP1 & BITS_PER_WORD. The result is zero iff OP1
686 is a subword shift count. */
687 cmp1
= simplify_expand_binop (op1_mode
, and_optab
, op1
, tmp
,
689 cmp2
= CONST0_RTX (op1_mode
);
695 /* Set CMP1 to OP1 - BITS_PER_WORD. */
696 cmp1
= simplify_expand_binop (op1_mode
, sub_optab
, op1
, tmp
,
698 cmp2
= CONST0_RTX (op1_mode
);
700 superword_op1
= cmp1
;
705 /* If we can compute the condition at compile time, pick the
706 appropriate subroutine. */
707 tmp
= simplify_relational_operation (cmp_code
, SImode
, op1_mode
, cmp1
, cmp2
);
708 if (tmp
!= 0 && CONST_INT_P (tmp
))
710 if (tmp
== const0_rtx
)
711 return expand_superword_shift (binoptab
, outof_input
, superword_op1
,
712 outof_target
, into_target
,
715 return expand_subword_shift (op1_mode
, binoptab
,
716 outof_input
, into_input
, op1
,
717 outof_target
, into_target
,
718 unsignedp
, methods
, shift_mask
);
721 /* Try using conditional moves to generate straight-line code. */
722 if (HAVE_conditional_move
)
724 rtx_insn
*start
= get_last_insn ();
725 if (expand_doubleword_shift_condmove (op1_mode
, binoptab
,
726 cmp_code
, cmp1
, cmp2
,
727 outof_input
, into_input
,
729 outof_target
, into_target
,
730 unsignedp
, methods
, shift_mask
))
732 delete_insns_since (start
);
735 /* As a last resort, use branches to select the correct alternative. */
736 rtx_code_label
*subword_label
= gen_label_rtx ();
737 rtx_code_label
*done_label
= gen_label_rtx ();
740 do_compare_rtx_and_jump (cmp1
, cmp2
, cmp_code
, false, op1_mode
,
742 profile_probability::uninitialized ());
745 if (!expand_superword_shift (binoptab
, outof_input
, superword_op1
,
746 outof_target
, into_target
,
750 emit_jump_insn (targetm
.gen_jump (done_label
));
752 emit_label (subword_label
);
754 if (!expand_subword_shift (op1_mode
, binoptab
,
755 outof_input
, into_input
, op1
,
756 outof_target
, into_target
,
757 unsignedp
, methods
, shift_mask
))
760 emit_label (done_label
);
764 /* Subroutine of expand_binop. Perform a double word multiplication of
765 operands OP0 and OP1 both of mode MODE, which is exactly twice as wide
766 as the target's word_mode. This function return NULL_RTX if anything
767 goes wrong, in which case it may have already emitted instructions
768 which need to be deleted.
770 If we want to multiply two two-word values and have normal and widening
771 multiplies of single-word values, we can do this with three smaller
774 The multiplication proceeds as follows:
775 _______________________
776 [__op0_high_|__op0_low__]
777 _______________________
778 * [__op1_high_|__op1_low__]
779 _______________________________________________
780 _______________________
781 (1) [__op0_low__*__op1_low__]
782 _______________________
783 (2a) [__op0_low__*__op1_high_]
784 _______________________
785 (2b) [__op0_high_*__op1_low__]
786 _______________________
787 (3) [__op0_high_*__op1_high_]
790 This gives a 4-word result. Since we are only interested in the
791 lower 2 words, partial result (3) and the upper words of (2a) and
792 (2b) don't need to be calculated. Hence (2a) and (2b) can be
793 calculated using non-widening multiplication.
795 (1), however, needs to be calculated with an unsigned widening
796 multiplication. If this operation is not directly supported we
797 try using a signed widening multiplication and adjust the result.
798 This adjustment works as follows:
800 If both operands are positive then no adjustment is needed.
802 If the operands have different signs, for example op0_low < 0 and
803 op1_low >= 0, the instruction treats the most significant bit of
804 op0_low as a sign bit instead of a bit with significance
805 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
806 with 2**BITS_PER_WORD - op0_low, and two's complements the
807 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
810 Similarly, if both operands are negative, we need to add
811 (op0_low + op1_low) * 2**BITS_PER_WORD.
813 We use a trick to adjust quickly. We logically shift op0_low right
814 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
815 op0_high (op1_high) before it is used to calculate 2b (2a). If no
816 logical shift exists, we do an arithmetic right shift and subtract
820 expand_doubleword_mult (machine_mode mode
, rtx op0
, rtx op1
, rtx target
,
821 bool umulp
, enum optab_methods methods
)
823 int low
= (WORDS_BIG_ENDIAN
? 1 : 0);
824 int high
= (WORDS_BIG_ENDIAN
? 0 : 1);
825 rtx wordm1
= (umulp
? NULL_RTX
826 : gen_int_shift_amount (word_mode
, BITS_PER_WORD
- 1));
827 rtx product
, adjust
, product_high
, temp
;
829 rtx op0_high
= operand_subword_force (op0
, high
, mode
);
830 rtx op0_low
= operand_subword_force (op0
, low
, mode
);
831 rtx op1_high
= operand_subword_force (op1
, high
, mode
);
832 rtx op1_low
= operand_subword_force (op1
, low
, mode
);
834 /* If we're using an unsigned multiply to directly compute the product
835 of the low-order words of the operands and perform any required
836 adjustments of the operands, we begin by trying two more multiplications
837 and then computing the appropriate sum.
839 We have checked above that the required addition is provided.
840 Full-word addition will normally always succeed, especially if
841 it is provided at all, so we don't worry about its failure. The
842 multiplication may well fail, however, so we do handle that. */
846 /* ??? This could be done with emit_store_flag where available. */
847 temp
= expand_binop (word_mode
, lshr_optab
, op0_low
, wordm1
,
848 NULL_RTX
, 1, methods
);
850 op0_high
= expand_binop (word_mode
, add_optab
, op0_high
, temp
,
851 NULL_RTX
, 0, OPTAB_DIRECT
);
854 temp
= expand_binop (word_mode
, ashr_optab
, op0_low
, wordm1
,
855 NULL_RTX
, 0, methods
);
858 op0_high
= expand_binop (word_mode
, sub_optab
, op0_high
, temp
,
859 NULL_RTX
, 0, OPTAB_DIRECT
);
866 adjust
= expand_binop (word_mode
, smul_optab
, op0_high
, op1_low
,
867 NULL_RTX
, 0, OPTAB_DIRECT
);
871 /* OP0_HIGH should now be dead. */
875 /* ??? This could be done with emit_store_flag where available. */
876 temp
= expand_binop (word_mode
, lshr_optab
, op1_low
, wordm1
,
877 NULL_RTX
, 1, methods
);
879 op1_high
= expand_binop (word_mode
, add_optab
, op1_high
, temp
,
880 NULL_RTX
, 0, OPTAB_DIRECT
);
883 temp
= expand_binop (word_mode
, ashr_optab
, op1_low
, wordm1
,
884 NULL_RTX
, 0, methods
);
887 op1_high
= expand_binop (word_mode
, sub_optab
, op1_high
, temp
,
888 NULL_RTX
, 0, OPTAB_DIRECT
);
895 temp
= expand_binop (word_mode
, smul_optab
, op1_high
, op0_low
,
896 NULL_RTX
, 0, OPTAB_DIRECT
);
900 /* OP1_HIGH should now be dead. */
902 adjust
= expand_binop (word_mode
, add_optab
, adjust
, temp
,
903 NULL_RTX
, 0, OPTAB_DIRECT
);
905 if (target
&& !REG_P (target
))
908 /* *_widen_optab needs to determine operand mode, make sure at least
909 one operand has non-VOID mode. */
910 if (GET_MODE (op0_low
) == VOIDmode
&& GET_MODE (op1_low
) == VOIDmode
)
911 op0_low
= force_reg (word_mode
, op0_low
);
914 product
= expand_binop (mode
, umul_widen_optab
, op0_low
, op1_low
,
915 target
, 1, OPTAB_DIRECT
);
917 product
= expand_binop (mode
, smul_widen_optab
, op0_low
, op1_low
,
918 target
, 1, OPTAB_DIRECT
);
923 product_high
= operand_subword (product
, high
, 1, mode
);
924 adjust
= expand_binop (word_mode
, add_optab
, product_high
, adjust
,
925 NULL_RTX
, 0, OPTAB_DIRECT
);
926 emit_move_insn (product_high
, adjust
);
930 /* Wrapper around expand_binop which takes an rtx code to specify
931 the operation to perform, not an optab pointer. All other
932 arguments are the same. */
934 expand_simple_binop (machine_mode mode
, enum rtx_code code
, rtx op0
,
935 rtx op1
, rtx target
, int unsignedp
,
936 enum optab_methods methods
)
938 optab binop
= code_to_optab (code
);
941 return expand_binop (mode
, binop
, op0
, op1
, target
, unsignedp
, methods
);
944 /* Return whether OP0 and OP1 should be swapped when expanding a commutative
945 binop. Order them according to commutative_operand_precedence and, if
946 possible, try to put TARGET or a pseudo first. */
948 swap_commutative_operands_with_target (rtx target
, rtx op0
, rtx op1
)
950 int op0_prec
= commutative_operand_precedence (op0
);
951 int op1_prec
= commutative_operand_precedence (op1
);
953 if (op0_prec
< op1_prec
)
956 if (op0_prec
> op1_prec
)
959 /* With equal precedence, both orders are ok, but it is better if the
960 first operand is TARGET, or if both TARGET and OP0 are pseudos. */
961 if (target
== 0 || REG_P (target
))
962 return (REG_P (op1
) && !REG_P (op0
)) || target
== op1
;
964 return rtx_equal_p (op1
, target
);
967 /* Return true if BINOPTAB implements a shift operation. */
970 shift_optab_p (optab binoptab
)
972 switch (optab_to_code (binoptab
))
988 /* Return true if BINOPTAB implements a commutative binary operation. */
991 commutative_optab_p (optab binoptab
)
993 return (GET_RTX_CLASS (optab_to_code (binoptab
)) == RTX_COMM_ARITH
994 || binoptab
== smul_widen_optab
995 || binoptab
== umul_widen_optab
996 || binoptab
== smul_highpart_optab
997 || binoptab
== umul_highpart_optab
);
1000 /* X is to be used in mode MODE as operand OPN to BINOPTAB. If we're
1001 optimizing, and if the operand is a constant that costs more than
1002 1 instruction, force the constant into a register and return that
1003 register. Return X otherwise. UNSIGNEDP says whether X is unsigned. */
1006 avoid_expensive_constant (machine_mode mode
, optab binoptab
,
1007 int opn
, rtx x
, bool unsignedp
)
1009 bool speed
= optimize_insn_for_speed_p ();
1011 if (mode
!= VOIDmode
1014 && (rtx_cost (x
, mode
, optab_to_code (binoptab
), opn
, speed
)
1015 > set_src_cost (x
, mode
, speed
)))
1017 if (CONST_INT_P (x
))
1019 HOST_WIDE_INT intval
= trunc_int_for_mode (INTVAL (x
), mode
);
1020 if (intval
!= INTVAL (x
))
1021 x
= GEN_INT (intval
);
1024 x
= convert_modes (mode
, VOIDmode
, x
, unsignedp
);
1025 x
= force_reg (mode
, x
);
1030 /* Helper function for expand_binop: handle the case where there
1031 is an insn ICODE that directly implements the indicated operation.
1032 Returns null if this is not possible. */
1034 expand_binop_directly (enum insn_code icode
, machine_mode mode
, optab binoptab
,
1036 rtx target
, int unsignedp
, enum optab_methods methods
,
1039 machine_mode xmode0
= insn_data
[(int) icode
].operand
[1].mode
;
1040 machine_mode xmode1
= insn_data
[(int) icode
].operand
[2].mode
;
1041 machine_mode mode0
, mode1
, tmp_mode
;
1042 struct expand_operand ops
[3];
1045 rtx xop0
= op0
, xop1
= op1
;
1046 bool canonicalize_op1
= false;
1048 /* If it is a commutative operator and the modes would match
1049 if we would swap the operands, we can save the conversions. */
1050 commutative_p
= commutative_optab_p (binoptab
);
1052 && GET_MODE (xop0
) != xmode0
&& GET_MODE (xop1
) != xmode1
1053 && GET_MODE (xop0
) == xmode1
&& GET_MODE (xop1
) == xmode1
)
1054 std::swap (xop0
, xop1
);
1056 /* If we are optimizing, force expensive constants into a register. */
1057 xop0
= avoid_expensive_constant (xmode0
, binoptab
, 0, xop0
, unsignedp
);
1058 if (!shift_optab_p (binoptab
))
1059 xop1
= avoid_expensive_constant (xmode1
, binoptab
, 1, xop1
, unsignedp
);
1061 /* Shifts and rotates often use a different mode for op1 from op0;
1062 for VOIDmode constants we don't know the mode, so force it
1063 to be canonicalized using convert_modes. */
1064 canonicalize_op1
= true;
1066 /* In case the insn wants input operands in modes different from
1067 those of the actual operands, convert the operands. It would
1068 seem that we don't need to convert CONST_INTs, but we do, so
1069 that they're properly zero-extended, sign-extended or truncated
1072 mode0
= GET_MODE (xop0
) != VOIDmode
? GET_MODE (xop0
) : mode
;
1073 if (xmode0
!= VOIDmode
&& xmode0
!= mode0
)
1075 xop0
= convert_modes (xmode0
, mode0
, xop0
, unsignedp
);
1079 mode1
= ((GET_MODE (xop1
) != VOIDmode
|| canonicalize_op1
)
1080 ? GET_MODE (xop1
) : mode
);
1081 if (xmode1
!= VOIDmode
&& xmode1
!= mode1
)
1083 xop1
= convert_modes (xmode1
, mode1
, xop1
, unsignedp
);
1087 /* If operation is commutative,
1088 try to make the first operand a register.
1089 Even better, try to make it the same as the target.
1090 Also try to make the last operand a constant. */
1092 && swap_commutative_operands_with_target (target
, xop0
, xop1
))
1093 std::swap (xop0
, xop1
);
1095 /* Now, if insn's predicates don't allow our operands, put them into
1098 if (binoptab
== vec_pack_trunc_optab
1099 || binoptab
== vec_pack_usat_optab
1100 || binoptab
== vec_pack_ssat_optab
1101 || binoptab
== vec_pack_ufix_trunc_optab
1102 || binoptab
== vec_pack_sfix_trunc_optab
1103 || binoptab
== vec_packu_float_optab
1104 || binoptab
== vec_packs_float_optab
)
1106 /* The mode of the result is different then the mode of the
1108 tmp_mode
= insn_data
[(int) icode
].operand
[0].mode
;
1109 if (VECTOR_MODE_P (mode
)
1110 && maybe_ne (GET_MODE_NUNITS (tmp_mode
), 2 * GET_MODE_NUNITS (mode
)))
1112 delete_insns_since (last
);
1119 create_output_operand (&ops
[0], target
, tmp_mode
);
1120 create_input_operand (&ops
[1], xop0
, mode0
);
1121 create_input_operand (&ops
[2], xop1
, mode1
);
1122 pat
= maybe_gen_insn (icode
, 3, ops
);
1125 /* If PAT is composed of more than one insn, try to add an appropriate
1126 REG_EQUAL note to it. If we can't because TEMP conflicts with an
1127 operand, call expand_binop again, this time without a target. */
1128 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
1129 && ! add_equal_note (pat
, ops
[0].value
,
1130 optab_to_code (binoptab
),
1131 ops
[1].value
, ops
[2].value
, mode0
))
1133 delete_insns_since (last
);
1134 return expand_binop (mode
, binoptab
, op0
, op1
, NULL_RTX
,
1135 unsignedp
, methods
);
1139 return ops
[0].value
;
1141 delete_insns_since (last
);
1145 /* Generate code to perform an operation specified by BINOPTAB
1146 on operands OP0 and OP1, with result having machine-mode MODE.
1148 UNSIGNEDP is for the case where we have to widen the operands
1149 to perform the operation. It says to use zero-extension.
1151 If TARGET is nonzero, the value
1152 is generated there, if it is convenient to do so.
1153 In all cases an rtx is returned for the locus of the value;
1154 this may or may not be TARGET. */
1157 expand_binop (machine_mode mode
, optab binoptab
, rtx op0
, rtx op1
,
1158 rtx target
, int unsignedp
, enum optab_methods methods
)
1160 enum optab_methods next_methods
1161 = (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
1162 ? OPTAB_WIDEN
: methods
);
1163 enum mode_class mclass
;
1164 enum insn_code icode
;
1165 machine_mode wider_mode
;
1166 scalar_int_mode int_mode
;
1169 rtx_insn
*entry_last
= get_last_insn ();
1172 mclass
= GET_MODE_CLASS (mode
);
1174 /* If subtracting an integer constant, convert this into an addition of
1175 the negated constant. */
1177 if (binoptab
== sub_optab
&& CONST_INT_P (op1
))
1179 op1
= negate_rtx (mode
, op1
);
1180 binoptab
= add_optab
;
1182 /* For shifts, constant invalid op1 might be expanded from different
1183 mode than MODE. As those are invalid, force them to a register
1184 to avoid further problems during expansion. */
1185 else if (CONST_INT_P (op1
)
1186 && shift_optab_p (binoptab
)
1187 && UINTVAL (op1
) >= GET_MODE_BITSIZE (GET_MODE_INNER (mode
)))
1189 op1
= gen_int_mode (INTVAL (op1
), GET_MODE_INNER (mode
));
1190 op1
= force_reg (GET_MODE_INNER (mode
), op1
);
1193 /* Record where to delete back to if we backtrack. */
1194 last
= get_last_insn ();
1196 /* If we can do it with a three-operand insn, do so. */
1198 if (methods
!= OPTAB_MUST_WIDEN
)
1200 if (convert_optab_p (binoptab
))
1202 machine_mode from_mode
= widened_mode (mode
, op0
, op1
);
1203 icode
= find_widening_optab_handler (binoptab
, mode
, from_mode
);
1206 icode
= optab_handler (binoptab
, mode
);
1207 if (icode
!= CODE_FOR_nothing
)
1209 temp
= expand_binop_directly (icode
, mode
, binoptab
, op0
, op1
,
1210 target
, unsignedp
, methods
, last
);
1216 /* If we were trying to rotate, and that didn't work, try rotating
1217 the other direction before falling back to shifts and bitwise-or. */
1218 if (((binoptab
== rotl_optab
1219 && (icode
= optab_handler (rotr_optab
, mode
)) != CODE_FOR_nothing
)
1220 || (binoptab
== rotr_optab
1221 && (icode
= optab_handler (rotl_optab
, mode
)) != CODE_FOR_nothing
))
1222 && is_int_mode (mode
, &int_mode
))
1224 optab otheroptab
= (binoptab
== rotl_optab
? rotr_optab
: rotl_optab
);
1226 unsigned int bits
= GET_MODE_PRECISION (int_mode
);
1228 if (CONST_INT_P (op1
))
1229 newop1
= gen_int_shift_amount (int_mode
, bits
- INTVAL (op1
));
1230 else if (targetm
.shift_truncation_mask (int_mode
) == bits
- 1)
1231 newop1
= negate_rtx (GET_MODE (op1
), op1
);
1233 newop1
= expand_binop (GET_MODE (op1
), sub_optab
,
1234 gen_int_mode (bits
, GET_MODE (op1
)), op1
,
1235 NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1237 temp
= expand_binop_directly (icode
, int_mode
, otheroptab
, op0
, newop1
,
1238 target
, unsignedp
, methods
, last
);
1243 /* If this is a multiply, see if we can do a widening operation that
1244 takes operands of this mode and makes a wider mode. */
1246 if (binoptab
== smul_optab
1247 && GET_MODE_2XWIDER_MODE (mode
).exists (&wider_mode
)
1248 && (convert_optab_handler ((unsignedp
1250 : smul_widen_optab
),
1251 wider_mode
, mode
) != CODE_FOR_nothing
))
1253 /* *_widen_optab needs to determine operand mode, make sure at least
1254 one operand has non-VOID mode. */
1255 if (GET_MODE (op0
) == VOIDmode
&& GET_MODE (op1
) == VOIDmode
)
1256 op0
= force_reg (mode
, op0
);
1257 temp
= expand_binop (wider_mode
,
1258 unsignedp
? umul_widen_optab
: smul_widen_optab
,
1259 op0
, op1
, NULL_RTX
, unsignedp
, OPTAB_DIRECT
);
1263 if (GET_MODE_CLASS (mode
) == MODE_INT
1264 && TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (temp
)))
1265 return gen_lowpart (mode
, temp
);
1267 return convert_to_mode (mode
, temp
, unsignedp
);
1271 /* If this is a vector shift by a scalar, see if we can do a vector
1272 shift by a vector. If so, broadcast the scalar into a vector. */
1273 if (mclass
== MODE_VECTOR_INT
)
1275 optab otheroptab
= unknown_optab
;
1277 if (binoptab
== ashl_optab
)
1278 otheroptab
= vashl_optab
;
1279 else if (binoptab
== ashr_optab
)
1280 otheroptab
= vashr_optab
;
1281 else if (binoptab
== lshr_optab
)
1282 otheroptab
= vlshr_optab
;
1283 else if (binoptab
== rotl_optab
)
1284 otheroptab
= vrotl_optab
;
1285 else if (binoptab
== rotr_optab
)
1286 otheroptab
= vrotr_optab
;
1289 && (icode
= optab_handler (otheroptab
, mode
)) != CODE_FOR_nothing
)
1291 /* The scalar may have been extended to be too wide. Truncate
1292 it back to the proper size to fit in the broadcast vector. */
1293 scalar_mode inner_mode
= GET_MODE_INNER (mode
);
1294 if (!CONST_INT_P (op1
)
1295 && (GET_MODE_BITSIZE (as_a
<scalar_int_mode
> (GET_MODE (op1
)))
1296 > GET_MODE_BITSIZE (inner_mode
)))
1297 op1
= force_reg (inner_mode
,
1298 simplify_gen_unary (TRUNCATE
, inner_mode
, op1
,
1300 rtx vop1
= expand_vector_broadcast (mode
, op1
);
1303 temp
= expand_binop_directly (icode
, mode
, otheroptab
, op0
, vop1
,
1304 target
, unsignedp
, methods
, last
);
1311 /* Look for a wider mode of the same class for which we think we
1312 can open-code the operation. Check for a widening multiply at the
1313 wider mode as well. */
1315 if (CLASS_HAS_WIDER_MODES_P (mclass
)
1316 && methods
!= OPTAB_DIRECT
&& methods
!= OPTAB_LIB
)
1317 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
1319 machine_mode next_mode
;
1320 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
1321 || (binoptab
== smul_optab
1322 && GET_MODE_WIDER_MODE (wider_mode
).exists (&next_mode
)
1323 && (find_widening_optab_handler ((unsignedp
1325 : smul_widen_optab
),
1327 != CODE_FOR_nothing
)))
1329 rtx xop0
= op0
, xop1
= op1
;
1332 /* For certain integer operations, we need not actually extend
1333 the narrow operands, as long as we will truncate
1334 the results to the same narrowness. */
1336 if ((binoptab
== ior_optab
|| binoptab
== and_optab
1337 || binoptab
== xor_optab
1338 || binoptab
== add_optab
|| binoptab
== sub_optab
1339 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
1340 && mclass
== MODE_INT
)
1343 xop0
= avoid_expensive_constant (mode
, binoptab
, 0,
1345 if (binoptab
!= ashl_optab
)
1346 xop1
= avoid_expensive_constant (mode
, binoptab
, 1,
1350 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
, no_extend
);
1352 /* The second operand of a shift must always be extended. */
1353 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
1354 no_extend
&& binoptab
!= ashl_optab
);
1356 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
1357 unsignedp
, OPTAB_DIRECT
);
1360 if (mclass
!= MODE_INT
1361 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
1364 target
= gen_reg_rtx (mode
);
1365 convert_move (target
, temp
, 0);
1369 return gen_lowpart (mode
, temp
);
1372 delete_insns_since (last
);
1376 /* If operation is commutative,
1377 try to make the first operand a register.
1378 Even better, try to make it the same as the target.
1379 Also try to make the last operand a constant. */
1380 if (commutative_optab_p (binoptab
)
1381 && swap_commutative_operands_with_target (target
, op0
, op1
))
1382 std::swap (op0
, op1
);
1384 /* These can be done a word at a time. */
1385 if ((binoptab
== and_optab
|| binoptab
== ior_optab
|| binoptab
== xor_optab
)
1386 && is_int_mode (mode
, &int_mode
)
1387 && GET_MODE_SIZE (int_mode
) > UNITS_PER_WORD
1388 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1393 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1394 won't be accurate, so use a new target. */
1398 || !valid_multiword_target_p (target
))
1399 target
= gen_reg_rtx (int_mode
);
1403 /* Do the actual arithmetic. */
1404 machine_mode op0_mode
= GET_MODE (op0
);
1405 machine_mode op1_mode
= GET_MODE (op1
);
1406 if (op0_mode
== VOIDmode
)
1407 op0_mode
= int_mode
;
1408 if (op1_mode
== VOIDmode
)
1409 op1_mode
= int_mode
;
1410 for (i
= 0; i
< GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
; i
++)
1412 rtx target_piece
= operand_subword (target
, i
, 1, int_mode
);
1413 rtx x
= expand_binop (word_mode
, binoptab
,
1414 operand_subword_force (op0
, i
, op0_mode
),
1415 operand_subword_force (op1
, i
, op1_mode
),
1416 target_piece
, unsignedp
, next_methods
);
1421 if (target_piece
!= x
)
1422 emit_move_insn (target_piece
, x
);
1425 insns
= get_insns ();
1428 if (i
== GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
)
1435 /* Synthesize double word shifts from single word shifts. */
1436 if ((binoptab
== lshr_optab
|| binoptab
== ashl_optab
1437 || binoptab
== ashr_optab
)
1438 && is_int_mode (mode
, &int_mode
)
1439 && (CONST_INT_P (op1
) || optimize_insn_for_speed_p ())
1440 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
1441 && GET_MODE_PRECISION (int_mode
) == GET_MODE_BITSIZE (int_mode
)
1442 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
1443 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1444 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1446 unsigned HOST_WIDE_INT shift_mask
, double_shift_mask
;
1447 scalar_int_mode op1_mode
;
1449 double_shift_mask
= targetm
.shift_truncation_mask (int_mode
);
1450 shift_mask
= targetm
.shift_truncation_mask (word_mode
);
1451 op1_mode
= (GET_MODE (op1
) != VOIDmode
1452 ? as_a
<scalar_int_mode
> (GET_MODE (op1
))
1455 /* Apply the truncation to constant shifts. */
1456 if (double_shift_mask
> 0 && CONST_INT_P (op1
))
1457 op1
= gen_int_mode (INTVAL (op1
) & double_shift_mask
, op1_mode
);
1459 if (op1
== CONST0_RTX (op1_mode
))
1462 /* Make sure that this is a combination that expand_doubleword_shift
1463 can handle. See the comments there for details. */
1464 if (double_shift_mask
== 0
1465 || (shift_mask
== BITS_PER_WORD
- 1
1466 && double_shift_mask
== BITS_PER_WORD
* 2 - 1))
1469 rtx into_target
, outof_target
;
1470 rtx into_input
, outof_input
;
1471 int left_shift
, outof_word
;
1473 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1474 won't be accurate, so use a new target. */
1478 || !valid_multiword_target_p (target
))
1479 target
= gen_reg_rtx (int_mode
);
1483 /* OUTOF_* is the word we are shifting bits away from, and
1484 INTO_* is the word that we are shifting bits towards, thus
1485 they differ depending on the direction of the shift and
1486 WORDS_BIG_ENDIAN. */
1488 left_shift
= binoptab
== ashl_optab
;
1489 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1491 outof_target
= operand_subword (target
, outof_word
, 1, int_mode
);
1492 into_target
= operand_subword (target
, 1 - outof_word
, 1, int_mode
);
1494 outof_input
= operand_subword_force (op0
, outof_word
, int_mode
);
1495 into_input
= operand_subword_force (op0
, 1 - outof_word
, int_mode
);
1497 if (expand_doubleword_shift (op1_mode
, binoptab
,
1498 outof_input
, into_input
, op1
,
1499 outof_target
, into_target
,
1500 unsignedp
, next_methods
, shift_mask
))
1502 insns
= get_insns ();
1512 /* Synthesize double word rotates from single word shifts. */
1513 if ((binoptab
== rotl_optab
|| binoptab
== rotr_optab
)
1514 && is_int_mode (mode
, &int_mode
)
1515 && CONST_INT_P (op1
)
1516 && GET_MODE_PRECISION (int_mode
) == 2 * BITS_PER_WORD
1517 && optab_handler (ashl_optab
, word_mode
) != CODE_FOR_nothing
1518 && optab_handler (lshr_optab
, word_mode
) != CODE_FOR_nothing
)
1521 rtx into_target
, outof_target
;
1522 rtx into_input
, outof_input
;
1524 int shift_count
, left_shift
, outof_word
;
1526 /* If TARGET is the same as one of the operands, the REG_EQUAL note
1527 won't be accurate, so use a new target. Do this also if target is not
1528 a REG, first because having a register instead may open optimization
1529 opportunities, and second because if target and op0 happen to be MEMs
1530 designating the same location, we would risk clobbering it too early
1531 in the code sequence we generate below. */
1536 || !valid_multiword_target_p (target
))
1537 target
= gen_reg_rtx (int_mode
);
1541 shift_count
= INTVAL (op1
);
1543 /* OUTOF_* is the word we are shifting bits away from, and
1544 INTO_* is the word that we are shifting bits towards, thus
1545 they differ depending on the direction of the shift and
1546 WORDS_BIG_ENDIAN. */
1548 left_shift
= (binoptab
== rotl_optab
);
1549 outof_word
= left_shift
^ ! WORDS_BIG_ENDIAN
;
1551 outof_target
= operand_subword (target
, outof_word
, 1, int_mode
);
1552 into_target
= operand_subword (target
, 1 - outof_word
, 1, int_mode
);
1554 outof_input
= operand_subword_force (op0
, outof_word
, int_mode
);
1555 into_input
= operand_subword_force (op0
, 1 - outof_word
, int_mode
);
1557 if (shift_count
== BITS_PER_WORD
)
1559 /* This is just a word swap. */
1560 emit_move_insn (outof_target
, into_input
);
1561 emit_move_insn (into_target
, outof_input
);
1566 rtx into_temp1
, into_temp2
, outof_temp1
, outof_temp2
;
1567 HOST_WIDE_INT first_shift_count
, second_shift_count
;
1568 optab reverse_unsigned_shift
, unsigned_shift
;
1570 reverse_unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1571 ? lshr_optab
: ashl_optab
);
1573 unsigned_shift
= (left_shift
^ (shift_count
< BITS_PER_WORD
)
1574 ? ashl_optab
: lshr_optab
);
1576 if (shift_count
> BITS_PER_WORD
)
1578 first_shift_count
= shift_count
- BITS_PER_WORD
;
1579 second_shift_count
= 2 * BITS_PER_WORD
- shift_count
;
1583 first_shift_count
= BITS_PER_WORD
- shift_count
;
1584 second_shift_count
= shift_count
;
1586 rtx first_shift_count_rtx
1587 = gen_int_shift_amount (word_mode
, first_shift_count
);
1588 rtx second_shift_count_rtx
1589 = gen_int_shift_amount (word_mode
, second_shift_count
);
1591 into_temp1
= expand_binop (word_mode
, unsigned_shift
,
1592 outof_input
, first_shift_count_rtx
,
1593 NULL_RTX
, unsignedp
, next_methods
);
1594 into_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1595 into_input
, second_shift_count_rtx
,
1596 NULL_RTX
, unsignedp
, next_methods
);
1598 if (into_temp1
!= 0 && into_temp2
!= 0)
1599 inter
= expand_binop (word_mode
, ior_optab
, into_temp1
, into_temp2
,
1600 into_target
, unsignedp
, next_methods
);
1604 if (inter
!= 0 && inter
!= into_target
)
1605 emit_move_insn (into_target
, inter
);
1607 outof_temp1
= expand_binop (word_mode
, unsigned_shift
,
1608 into_input
, first_shift_count_rtx
,
1609 NULL_RTX
, unsignedp
, next_methods
);
1610 outof_temp2
= expand_binop (word_mode
, reverse_unsigned_shift
,
1611 outof_input
, second_shift_count_rtx
,
1612 NULL_RTX
, unsignedp
, next_methods
);
1614 if (inter
!= 0 && outof_temp1
!= 0 && outof_temp2
!= 0)
1615 inter
= expand_binop (word_mode
, ior_optab
,
1616 outof_temp1
, outof_temp2
,
1617 outof_target
, unsignedp
, next_methods
);
1619 if (inter
!= 0 && inter
!= outof_target
)
1620 emit_move_insn (outof_target
, inter
);
1623 insns
= get_insns ();
1633 /* These can be done a word at a time by propagating carries. */
1634 if ((binoptab
== add_optab
|| binoptab
== sub_optab
)
1635 && is_int_mode (mode
, &int_mode
)
1636 && GET_MODE_SIZE (int_mode
) >= 2 * UNITS_PER_WORD
1637 && optab_handler (binoptab
, word_mode
) != CODE_FOR_nothing
)
1640 optab otheroptab
= binoptab
== add_optab
? sub_optab
: add_optab
;
1641 const unsigned int nwords
= GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
;
1642 rtx carry_in
= NULL_RTX
, carry_out
= NULL_RTX
;
1643 rtx xop0
, xop1
, xtarget
;
1645 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
1646 value is one of those, use it. Otherwise, use 1 since it is the
1647 one easiest to get. */
1648 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
1649 int normalizep
= STORE_FLAG_VALUE
;
1654 /* Prepare the operands. */
1655 xop0
= force_reg (int_mode
, op0
);
1656 xop1
= force_reg (int_mode
, op1
);
1658 xtarget
= gen_reg_rtx (int_mode
);
1660 if (target
== 0 || !REG_P (target
) || !valid_multiword_target_p (target
))
1663 /* Indicate for flow that the entire target reg is being set. */
1665 emit_clobber (xtarget
);
1667 /* Do the actual arithmetic. */
1668 for (i
= 0; i
< nwords
; i
++)
1670 int index
= (WORDS_BIG_ENDIAN
? nwords
- i
- 1 : i
);
1671 rtx target_piece
= operand_subword (xtarget
, index
, 1, int_mode
);
1672 rtx op0_piece
= operand_subword_force (xop0
, index
, int_mode
);
1673 rtx op1_piece
= operand_subword_force (xop1
, index
, int_mode
);
1676 /* Main add/subtract of the input operands. */
1677 x
= expand_binop (word_mode
, binoptab
,
1678 op0_piece
, op1_piece
,
1679 target_piece
, unsignedp
, next_methods
);
1685 /* Store carry from main add/subtract. */
1686 carry_out
= gen_reg_rtx (word_mode
);
1687 carry_out
= emit_store_flag_force (carry_out
,
1688 (binoptab
== add_optab
1691 word_mode
, 1, normalizep
);
1698 /* Add/subtract previous carry to main result. */
1699 newx
= expand_binop (word_mode
,
1700 normalizep
== 1 ? binoptab
: otheroptab
,
1702 NULL_RTX
, 1, next_methods
);
1706 /* Get out carry from adding/subtracting carry in. */
1707 rtx carry_tmp
= gen_reg_rtx (word_mode
);
1708 carry_tmp
= emit_store_flag_force (carry_tmp
,
1709 (binoptab
== add_optab
1712 word_mode
, 1, normalizep
);
1714 /* Logical-ior the two poss. carry together. */
1715 carry_out
= expand_binop (word_mode
, ior_optab
,
1716 carry_out
, carry_tmp
,
1717 carry_out
, 0, next_methods
);
1721 emit_move_insn (target_piece
, newx
);
1725 if (x
!= target_piece
)
1726 emit_move_insn (target_piece
, x
);
1729 carry_in
= carry_out
;
1732 if (i
== GET_MODE_BITSIZE (int_mode
) / (unsigned) BITS_PER_WORD
)
1734 if (optab_handler (mov_optab
, int_mode
) != CODE_FOR_nothing
1735 || ! rtx_equal_p (target
, xtarget
))
1737 rtx_insn
*temp
= emit_move_insn (target
, xtarget
);
1739 set_dst_reg_note (temp
, REG_EQUAL
,
1740 gen_rtx_fmt_ee (optab_to_code (binoptab
),
1741 int_mode
, copy_rtx (xop0
),
1752 delete_insns_since (last
);
1755 /* Attempt to synthesize double word multiplies using a sequence of word
1756 mode multiplications. We first attempt to generate a sequence using a
1757 more efficient unsigned widening multiply, and if that fails we then
1758 try using a signed widening multiply. */
1760 if (binoptab
== smul_optab
1761 && is_int_mode (mode
, &int_mode
)
1762 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
1763 && optab_handler (smul_optab
, word_mode
) != CODE_FOR_nothing
1764 && optab_handler (add_optab
, word_mode
) != CODE_FOR_nothing
)
1766 rtx product
= NULL_RTX
;
1767 if (convert_optab_handler (umul_widen_optab
, int_mode
, word_mode
)
1768 != CODE_FOR_nothing
)
1770 product
= expand_doubleword_mult (int_mode
, op0
, op1
, target
,
1773 delete_insns_since (last
);
1776 if (product
== NULL_RTX
1777 && (convert_optab_handler (smul_widen_optab
, int_mode
, word_mode
)
1778 != CODE_FOR_nothing
))
1780 product
= expand_doubleword_mult (int_mode
, op0
, op1
, target
,
1783 delete_insns_since (last
);
1786 if (product
!= NULL_RTX
)
1788 if (optab_handler (mov_optab
, int_mode
) != CODE_FOR_nothing
)
1790 rtx_insn
*move
= emit_move_insn (target
? target
: product
,
1792 set_dst_reg_note (move
,
1794 gen_rtx_fmt_ee (MULT
, int_mode
,
1797 target
? target
: product
);
1803 /* It can't be open-coded in this mode.
1804 Use a library call if one is available and caller says that's ok. */
1806 libfunc
= optab_libfunc (binoptab
, mode
);
1808 && (methods
== OPTAB_LIB
|| methods
== OPTAB_LIB_WIDEN
))
1812 machine_mode op1_mode
= mode
;
1817 if (shift_optab_p (binoptab
))
1819 op1_mode
= targetm
.libgcc_shift_count_mode ();
1820 /* Specify unsigned here,
1821 since negative shift counts are meaningless. */
1822 op1x
= convert_to_mode (op1_mode
, op1
, 1);
1825 if (GET_MODE (op0
) != VOIDmode
1826 && GET_MODE (op0
) != mode
)
1827 op0
= convert_to_mode (mode
, op0
, unsignedp
);
1829 /* Pass 1 for NO_QUEUE so we don't lose any increments
1830 if the libcall is cse'd or moved. */
1831 value
= emit_library_call_value (libfunc
,
1832 NULL_RTX
, LCT_CONST
, mode
,
1833 op0
, mode
, op1x
, op1_mode
);
1835 insns
= get_insns ();
1838 bool trapv
= trapv_binoptab_p (binoptab
);
1839 target
= gen_reg_rtx (mode
);
1840 emit_libcall_block_1 (insns
, target
, value
,
1842 : gen_rtx_fmt_ee (optab_to_code (binoptab
),
1843 mode
, op0
, op1
), trapv
);
1848 delete_insns_since (last
);
1850 /* It can't be done in this mode. Can we do it in a wider mode? */
1852 if (! (methods
== OPTAB_WIDEN
|| methods
== OPTAB_LIB_WIDEN
1853 || methods
== OPTAB_MUST_WIDEN
))
1855 /* Caller says, don't even try. */
1856 delete_insns_since (entry_last
);
1860 /* Compute the value of METHODS to pass to recursive calls.
1861 Don't allow widening to be tried recursively. */
1863 methods
= (methods
== OPTAB_LIB_WIDEN
? OPTAB_LIB
: OPTAB_DIRECT
);
1865 /* Look for a wider mode of the same class for which it appears we can do
1868 if (CLASS_HAS_WIDER_MODES_P (mclass
))
1870 /* This code doesn't make sense for conversion optabs, since we
1871 wouldn't then want to extend the operands to be the same size
1873 gcc_assert (!convert_optab_p (binoptab
));
1874 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
1876 if (optab_handler (binoptab
, wider_mode
)
1877 || (methods
== OPTAB_LIB
1878 && optab_libfunc (binoptab
, wider_mode
)))
1880 rtx xop0
= op0
, xop1
= op1
;
1883 /* For certain integer operations, we need not actually extend
1884 the narrow operands, as long as we will truncate
1885 the results to the same narrowness. */
1887 if ((binoptab
== ior_optab
|| binoptab
== and_optab
1888 || binoptab
== xor_optab
1889 || binoptab
== add_optab
|| binoptab
== sub_optab
1890 || binoptab
== smul_optab
|| binoptab
== ashl_optab
)
1891 && mclass
== MODE_INT
)
1894 xop0
= widen_operand (xop0
, wider_mode
, mode
,
1895 unsignedp
, no_extend
);
1897 /* The second operand of a shift must always be extended. */
1898 xop1
= widen_operand (xop1
, wider_mode
, mode
, unsignedp
,
1899 no_extend
&& binoptab
!= ashl_optab
);
1901 temp
= expand_binop (wider_mode
, binoptab
, xop0
, xop1
, NULL_RTX
,
1902 unsignedp
, methods
);
1905 if (mclass
!= MODE_INT
1906 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
1909 target
= gen_reg_rtx (mode
);
1910 convert_move (target
, temp
, 0);
1914 return gen_lowpart (mode
, temp
);
1917 delete_insns_since (last
);
1922 delete_insns_since (entry_last
);
1926 /* Expand a binary operator which has both signed and unsigned forms.
1927 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1930 If we widen unsigned operands, we may use a signed wider operation instead
1931 of an unsigned wider operation, since the result would be the same. */
1934 sign_expand_binop (machine_mode mode
, optab uoptab
, optab soptab
,
1935 rtx op0
, rtx op1
, rtx target
, int unsignedp
,
1936 enum optab_methods methods
)
1939 optab direct_optab
= unsignedp
? uoptab
: soptab
;
1942 /* Do it without widening, if possible. */
1943 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
1944 unsignedp
, OPTAB_DIRECT
);
1945 if (temp
|| methods
== OPTAB_DIRECT
)
1948 /* Try widening to a signed int. Disable any direct use of any
1949 signed insn in the current mode. */
1950 save_enable
= swap_optab_enable (soptab
, mode
, false);
1952 temp
= expand_binop (mode
, soptab
, op0
, op1
, target
,
1953 unsignedp
, OPTAB_WIDEN
);
1955 /* For unsigned operands, try widening to an unsigned int. */
1956 if (!temp
&& unsignedp
)
1957 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
1958 unsignedp
, OPTAB_WIDEN
);
1959 if (temp
|| methods
== OPTAB_WIDEN
)
1962 /* Use the right width libcall if that exists. */
1963 temp
= expand_binop (mode
, direct_optab
, op0
, op1
, target
,
1964 unsignedp
, OPTAB_LIB
);
1965 if (temp
|| methods
== OPTAB_LIB
)
1968 /* Must widen and use a libcall, use either signed or unsigned. */
1969 temp
= expand_binop (mode
, soptab
, op0
, op1
, target
,
1970 unsignedp
, methods
);
1971 if (!temp
&& unsignedp
)
1972 temp
= expand_binop (mode
, uoptab
, op0
, op1
, target
,
1973 unsignedp
, methods
);
1976 /* Undo the fiddling above. */
1978 swap_optab_enable (soptab
, mode
, true);
1982 /* Generate code to perform an operation specified by UNOPPTAB
1983 on operand OP0, with two results to TARG0 and TARG1.
1984 We assume that the order of the operands for the instruction
1985 is TARG0, TARG1, OP0.
1987 Either TARG0 or TARG1 may be zero, but what that means is that
1988 the result is not actually wanted. We will generate it into
1989 a dummy pseudo-reg and discard it. They may not both be zero.
1991 Returns 1 if this operation can be performed; 0 if not. */
1994 expand_twoval_unop (optab unoptab
, rtx op0
, rtx targ0
, rtx targ1
,
1997 machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
1998 enum mode_class mclass
;
1999 machine_mode wider_mode
;
2000 rtx_insn
*entry_last
= get_last_insn ();
2003 mclass
= GET_MODE_CLASS (mode
);
2006 targ0
= gen_reg_rtx (mode
);
2008 targ1
= gen_reg_rtx (mode
);
2010 /* Record where to go back to if we fail. */
2011 last
= get_last_insn ();
2013 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
2015 struct expand_operand ops
[3];
2016 enum insn_code icode
= optab_handler (unoptab
, mode
);
2018 create_fixed_operand (&ops
[0], targ0
);
2019 create_fixed_operand (&ops
[1], targ1
);
2020 create_convert_operand_from (&ops
[2], op0
, mode
, unsignedp
);
2021 if (maybe_expand_insn (icode
, 3, ops
))
2025 /* It can't be done in this mode. Can we do it in a wider mode? */
2027 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2029 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2031 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2033 rtx t0
= gen_reg_rtx (wider_mode
);
2034 rtx t1
= gen_reg_rtx (wider_mode
);
2035 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2037 if (expand_twoval_unop (unoptab
, cop0
, t0
, t1
, unsignedp
))
2039 convert_move (targ0
, t0
, unsignedp
);
2040 convert_move (targ1
, t1
, unsignedp
);
2044 delete_insns_since (last
);
2049 delete_insns_since (entry_last
);
2053 /* Generate code to perform an operation specified by BINOPTAB
2054 on operands OP0 and OP1, with two results to TARG1 and TARG2.
2055 We assume that the order of the operands for the instruction
2056 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
2057 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
2059 Either TARG0 or TARG1 may be zero, but what that means is that
2060 the result is not actually wanted. We will generate it into
2061 a dummy pseudo-reg and discard it. They may not both be zero.
2063 Returns 1 if this operation can be performed; 0 if not. */
2066 expand_twoval_binop (optab binoptab
, rtx op0
, rtx op1
, rtx targ0
, rtx targ1
,
2069 machine_mode mode
= GET_MODE (targ0
? targ0
: targ1
);
2070 enum mode_class mclass
;
2071 machine_mode wider_mode
;
2072 rtx_insn
*entry_last
= get_last_insn ();
2075 mclass
= GET_MODE_CLASS (mode
);
2078 targ0
= gen_reg_rtx (mode
);
2080 targ1
= gen_reg_rtx (mode
);
2082 /* Record where to go back to if we fail. */
2083 last
= get_last_insn ();
2085 if (optab_handler (binoptab
, mode
) != CODE_FOR_nothing
)
2087 struct expand_operand ops
[4];
2088 enum insn_code icode
= optab_handler (binoptab
, mode
);
2089 machine_mode mode0
= insn_data
[icode
].operand
[1].mode
;
2090 machine_mode mode1
= insn_data
[icode
].operand
[2].mode
;
2091 rtx xop0
= op0
, xop1
= op1
;
2093 /* If we are optimizing, force expensive constants into a register. */
2094 xop0
= avoid_expensive_constant (mode0
, binoptab
, 0, xop0
, unsignedp
);
2095 xop1
= avoid_expensive_constant (mode1
, binoptab
, 1, xop1
, unsignedp
);
2097 create_fixed_operand (&ops
[0], targ0
);
2098 create_convert_operand_from (&ops
[1], xop0
, mode
, unsignedp
);
2099 create_convert_operand_from (&ops
[2], xop1
, mode
, unsignedp
);
2100 create_fixed_operand (&ops
[3], targ1
);
2101 if (maybe_expand_insn (icode
, 4, ops
))
2103 delete_insns_since (last
);
2106 /* It can't be done in this mode. Can we do it in a wider mode? */
2108 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2110 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2112 if (optab_handler (binoptab
, wider_mode
) != CODE_FOR_nothing
)
2114 rtx t0
= gen_reg_rtx (wider_mode
);
2115 rtx t1
= gen_reg_rtx (wider_mode
);
2116 rtx cop0
= convert_modes (wider_mode
, mode
, op0
, unsignedp
);
2117 rtx cop1
= convert_modes (wider_mode
, mode
, op1
, unsignedp
);
2119 if (expand_twoval_binop (binoptab
, cop0
, cop1
,
2122 convert_move (targ0
, t0
, unsignedp
);
2123 convert_move (targ1
, t1
, unsignedp
);
2127 delete_insns_since (last
);
2132 delete_insns_since (entry_last
);
2136 /* Expand the two-valued library call indicated by BINOPTAB, but
2137 preserve only one of the values. If TARG0 is non-NULL, the first
2138 value is placed into TARG0; otherwise the second value is placed
2139 into TARG1. Exactly one of TARG0 and TARG1 must be non-NULL. The
2140 value stored into TARG0 or TARG1 is equivalent to (CODE OP0 OP1).
2141 This routine assumes that the value returned by the library call is
2142 as if the return value was of an integral mode twice as wide as the
2143 mode of OP0. Returns 1 if the call was successful. */
2146 expand_twoval_binop_libfunc (optab binoptab
, rtx op0
, rtx op1
,
2147 rtx targ0
, rtx targ1
, enum rtx_code code
)
2150 machine_mode libval_mode
;
2155 /* Exactly one of TARG0 or TARG1 should be non-NULL. */
2156 gcc_assert (!targ0
!= !targ1
);
2158 mode
= GET_MODE (op0
);
2159 libfunc
= optab_libfunc (binoptab
, mode
);
2163 /* The value returned by the library function will have twice as
2164 many bits as the nominal MODE. */
2165 libval_mode
= smallest_int_mode_for_size (2 * GET_MODE_BITSIZE (mode
));
2167 libval
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
2171 /* Get the part of VAL containing the value that we want. */
2172 libval
= simplify_gen_subreg (mode
, libval
, libval_mode
,
2173 targ0
? 0 : GET_MODE_SIZE (mode
));
2174 insns
= get_insns ();
2176 /* Move the into the desired location. */
2177 emit_libcall_block (insns
, targ0
? targ0
: targ1
, libval
,
2178 gen_rtx_fmt_ee (code
, mode
, op0
, op1
));
2184 /* Wrapper around expand_unop which takes an rtx code to specify
2185 the operation to perform, not an optab pointer. All other
2186 arguments are the same. */
2188 expand_simple_unop (machine_mode mode
, enum rtx_code code
, rtx op0
,
2189 rtx target
, int unsignedp
)
2191 optab unop
= code_to_optab (code
);
2194 return expand_unop (mode
, unop
, op0
, target
, unsignedp
);
2200 (clz:wide (zero_extend:wide x)) - ((width wide) - (width narrow)).
2202 A similar operation can be used for clrsb. UNOPTAB says which operation
2203 we are trying to expand. */
2205 widen_leading (scalar_int_mode mode
, rtx op0
, rtx target
, optab unoptab
)
2207 opt_scalar_int_mode wider_mode_iter
;
2208 FOR_EACH_WIDER_MODE (wider_mode_iter
, mode
)
2210 scalar_int_mode wider_mode
= wider_mode_iter
.require ();
2211 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2216 last
= get_last_insn ();
2219 target
= gen_reg_rtx (mode
);
2220 xop0
= widen_operand (op0
, wider_mode
, mode
,
2221 unoptab
!= clrsb_optab
, false);
2222 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2223 unoptab
!= clrsb_optab
);
2226 (wider_mode
, sub_optab
, temp
,
2227 gen_int_mode (GET_MODE_PRECISION (wider_mode
)
2228 - GET_MODE_PRECISION (mode
),
2230 target
, true, OPTAB_DIRECT
);
2232 delete_insns_since (last
);
2240 /* Try calculating clz of a double-word quantity as two clz's of word-sized
2241 quantities, choosing which based on whether the high word is nonzero. */
2243 expand_doubleword_clz (scalar_int_mode mode
, rtx op0
, rtx target
)
2245 rtx xop0
= force_reg (mode
, op0
);
2246 rtx subhi
= gen_highpart (word_mode
, xop0
);
2247 rtx sublo
= gen_lowpart (word_mode
, xop0
);
2248 rtx_code_label
*hi0_label
= gen_label_rtx ();
2249 rtx_code_label
*after_label
= gen_label_rtx ();
2253 /* If we were not given a target, use a word_mode register, not a
2254 'mode' register. The result will fit, and nobody is expecting
2255 anything bigger (the return type of __builtin_clz* is int). */
2257 target
= gen_reg_rtx (word_mode
);
2259 /* In any case, write to a word_mode scratch in both branches of the
2260 conditional, so we can ensure there is a single move insn setting
2261 'target' to tag a REG_EQUAL note on. */
2262 result
= gen_reg_rtx (word_mode
);
2266 /* If the high word is not equal to zero,
2267 then clz of the full value is clz of the high word. */
2268 emit_cmp_and_jump_insns (subhi
, CONST0_RTX (word_mode
), EQ
, 0,
2269 word_mode
, true, hi0_label
);
2271 temp
= expand_unop_direct (word_mode
, clz_optab
, subhi
, result
, true);
2276 convert_move (result
, temp
, true);
2278 emit_jump_insn (targetm
.gen_jump (after_label
));
2281 /* Else clz of the full value is clz of the low word plus the number
2282 of bits in the high word. */
2283 emit_label (hi0_label
);
2285 temp
= expand_unop_direct (word_mode
, clz_optab
, sublo
, 0, true);
2288 temp
= expand_binop (word_mode
, add_optab
, temp
,
2289 gen_int_mode (GET_MODE_BITSIZE (word_mode
), word_mode
),
2290 result
, true, OPTAB_DIRECT
);
2294 convert_move (result
, temp
, true);
2296 emit_label (after_label
);
2297 convert_move (target
, result
, true);
2302 add_equal_note (seq
, target
, CLZ
, xop0
, NULL_RTX
, mode
);
2311 /* Try calculating popcount of a double-word quantity as two popcount's of
2312 word-sized quantities and summing up the results. */
2314 expand_doubleword_popcount (scalar_int_mode mode
, rtx op0
, rtx target
)
2321 t0
= expand_unop_direct (word_mode
, popcount_optab
,
2322 operand_subword_force (op0
, 0, mode
), NULL_RTX
,
2324 t1
= expand_unop_direct (word_mode
, popcount_optab
,
2325 operand_subword_force (op0
, 1, mode
), NULL_RTX
,
2333 /* If we were not given a target, use a word_mode register, not a
2334 'mode' register. The result will fit, and nobody is expecting
2335 anything bigger (the return type of __builtin_popcount* is int). */
2337 target
= gen_reg_rtx (word_mode
);
2339 t
= expand_binop (word_mode
, add_optab
, t0
, t1
, target
, 0, OPTAB_DIRECT
);
2344 add_equal_note (seq
, t
, POPCOUNT
, op0
, NULL_RTX
, mode
);
2352 (parity:narrow (low (x) ^ high (x))) */
2354 expand_doubleword_parity (scalar_int_mode mode
, rtx op0
, rtx target
)
2356 rtx t
= expand_binop (word_mode
, xor_optab
,
2357 operand_subword_force (op0
, 0, mode
),
2358 operand_subword_force (op0
, 1, mode
),
2359 NULL_RTX
, 0, OPTAB_DIRECT
);
2360 return expand_unop (word_mode
, parity_optab
, t
, target
, true);
2366 (lshiftrt:wide (bswap:wide x) ((width wide) - (width narrow))). */
2368 widen_bswap (scalar_int_mode mode
, rtx op0
, rtx target
)
2372 opt_scalar_int_mode wider_mode_iter
;
2374 FOR_EACH_WIDER_MODE (wider_mode_iter
, mode
)
2375 if (optab_handler (bswap_optab
, wider_mode_iter
.require ())
2376 != CODE_FOR_nothing
)
2379 if (!wider_mode_iter
.exists ())
2382 scalar_int_mode wider_mode
= wider_mode_iter
.require ();
2383 last
= get_last_insn ();
2385 x
= widen_operand (op0
, wider_mode
, mode
, true, true);
2386 x
= expand_unop (wider_mode
, bswap_optab
, x
, NULL_RTX
, true);
2388 gcc_assert (GET_MODE_PRECISION (wider_mode
) == GET_MODE_BITSIZE (wider_mode
)
2389 && GET_MODE_PRECISION (mode
) == GET_MODE_BITSIZE (mode
));
2391 x
= expand_shift (RSHIFT_EXPR
, wider_mode
, x
,
2392 GET_MODE_BITSIZE (wider_mode
)
2393 - GET_MODE_BITSIZE (mode
),
2399 target
= gen_reg_rtx (mode
);
2400 emit_move_insn (target
, gen_lowpart (mode
, x
));
2403 delete_insns_since (last
);
2408 /* Try calculating bswap as two bswaps of two word-sized operands. */
2411 expand_doubleword_bswap (machine_mode mode
, rtx op
, rtx target
)
2415 t1
= expand_unop (word_mode
, bswap_optab
,
2416 operand_subword_force (op
, 0, mode
), NULL_RTX
, true);
2417 t0
= expand_unop (word_mode
, bswap_optab
,
2418 operand_subword_force (op
, 1, mode
), NULL_RTX
, true);
2420 if (target
== 0 || !valid_multiword_target_p (target
))
2421 target
= gen_reg_rtx (mode
);
2423 emit_clobber (target
);
2424 emit_move_insn (operand_subword (target
, 0, 1, mode
), t0
);
2425 emit_move_insn (operand_subword (target
, 1, 1, mode
), t1
);
2430 /* Try calculating (parity x) as (and (popcount x) 1), where
2431 popcount can also be done in a wider mode. */
2433 expand_parity (scalar_int_mode mode
, rtx op0
, rtx target
)
2435 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2436 opt_scalar_int_mode wider_mode_iter
;
2437 FOR_EACH_MODE_FROM (wider_mode_iter
, mode
)
2439 scalar_int_mode wider_mode
= wider_mode_iter
.require ();
2440 if (optab_handler (popcount_optab
, wider_mode
) != CODE_FOR_nothing
)
2445 last
= get_last_insn ();
2447 if (target
== 0 || GET_MODE (target
) != wider_mode
)
2448 target
= gen_reg_rtx (wider_mode
);
2450 xop0
= widen_operand (op0
, wider_mode
, mode
, true, false);
2451 temp
= expand_unop (wider_mode
, popcount_optab
, xop0
, NULL_RTX
,
2454 temp
= expand_binop (wider_mode
, and_optab
, temp
, const1_rtx
,
2455 target
, true, OPTAB_DIRECT
);
2459 if (mclass
!= MODE_INT
2460 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
2461 return convert_to_mode (mode
, temp
, 0);
2463 return gen_lowpart (mode
, temp
);
2466 delete_insns_since (last
);
2472 /* Try calculating ctz(x) as K - clz(x & -x) ,
2473 where K is GET_MODE_PRECISION(mode) - 1.
2475 Both __builtin_ctz and __builtin_clz are undefined at zero, so we
2476 don't have to worry about what the hardware does in that case. (If
2477 the clz instruction produces the usual value at 0, which is K, the
2478 result of this code sequence will be -1; expand_ffs, below, relies
2479 on this. It might be nice to have it be K instead, for consistency
2480 with the (very few) processors that provide a ctz with a defined
2481 value, but that would take one more instruction, and it would be
2482 less convenient for expand_ffs anyway. */
2485 expand_ctz (scalar_int_mode mode
, rtx op0
, rtx target
)
2490 if (optab_handler (clz_optab
, mode
) == CODE_FOR_nothing
)
2495 temp
= expand_unop_direct (mode
, neg_optab
, op0
, NULL_RTX
, true);
2497 temp
= expand_binop (mode
, and_optab
, op0
, temp
, NULL_RTX
,
2498 true, OPTAB_DIRECT
);
2500 temp
= expand_unop_direct (mode
, clz_optab
, temp
, NULL_RTX
, true);
2502 temp
= expand_binop (mode
, sub_optab
,
2503 gen_int_mode (GET_MODE_PRECISION (mode
) - 1, mode
),
2505 true, OPTAB_DIRECT
);
2515 add_equal_note (seq
, temp
, CTZ
, op0
, NULL_RTX
, mode
);
2521 /* Try calculating ffs(x) using ctz(x) if we have that instruction, or
2522 else with the sequence used by expand_clz.
2524 The ffs builtin promises to return zero for a zero value and ctz/clz
2525 may have an undefined value in that case. If they do not give us a
2526 convenient value, we have to generate a test and branch. */
2528 expand_ffs (scalar_int_mode mode
, rtx op0
, rtx target
)
2530 HOST_WIDE_INT val
= 0;
2531 bool defined_at_zero
= false;
2535 if (optab_handler (ctz_optab
, mode
) != CODE_FOR_nothing
)
2539 temp
= expand_unop_direct (mode
, ctz_optab
, op0
, 0, true);
2543 defined_at_zero
= (CTZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2);
2545 else if (optab_handler (clz_optab
, mode
) != CODE_FOR_nothing
)
2548 temp
= expand_ctz (mode
, op0
, 0);
2552 if (CLZ_DEFINED_VALUE_AT_ZERO (mode
, val
) == 2)
2554 defined_at_zero
= true;
2555 val
= (GET_MODE_PRECISION (mode
) - 1) - val
;
2561 if (defined_at_zero
&& val
== -1)
2562 /* No correction needed at zero. */;
2565 /* We don't try to do anything clever with the situation found
2566 on some processors (eg Alpha) where ctz(0:mode) ==
2567 bitsize(mode). If someone can think of a way to send N to -1
2568 and leave alone all values in the range 0..N-1 (where N is a
2569 power of two), cheaper than this test-and-branch, please add it.
2571 The test-and-branch is done after the operation itself, in case
2572 the operation sets condition codes that can be recycled for this.
2573 (This is true on i386, for instance.) */
2575 rtx_code_label
*nonzero_label
= gen_label_rtx ();
2576 emit_cmp_and_jump_insns (op0
, CONST0_RTX (mode
), NE
, 0,
2577 mode
, true, nonzero_label
);
2579 convert_move (temp
, GEN_INT (-1), false);
2580 emit_label (nonzero_label
);
2583 /* temp now has a value in the range -1..bitsize-1. ffs is supposed
2584 to produce a value in the range 0..bitsize. */
2585 temp
= expand_binop (mode
, add_optab
, temp
, gen_int_mode (1, mode
),
2586 target
, false, OPTAB_DIRECT
);
2593 add_equal_note (seq
, temp
, FFS
, op0
, NULL_RTX
, mode
);
2602 /* Extract the OMODE lowpart from VAL, which has IMODE. Under certain
2603 conditions, VAL may already be a SUBREG against which we cannot generate
2604 a further SUBREG. In this case, we expect forcing the value into a
2605 register will work around the situation. */
2608 lowpart_subreg_maybe_copy (machine_mode omode
, rtx val
,
2612 ret
= lowpart_subreg (omode
, val
, imode
);
2615 val
= force_reg (imode
, val
);
2616 ret
= lowpart_subreg (omode
, val
, imode
);
2617 gcc_assert (ret
!= NULL
);
2622 /* Expand a floating point absolute value or negation operation via a
2623 logical operation on the sign bit. */
2626 expand_absneg_bit (enum rtx_code code
, scalar_float_mode mode
,
2627 rtx op0
, rtx target
)
2629 const struct real_format
*fmt
;
2630 int bitpos
, word
, nwords
, i
;
2631 scalar_int_mode imode
;
2635 /* The format has to have a simple sign bit. */
2636 fmt
= REAL_MODE_FORMAT (mode
);
2640 bitpos
= fmt
->signbit_rw
;
2644 /* Don't create negative zeros if the format doesn't support them. */
2645 if (code
== NEG
&& !fmt
->has_signed_zero
)
2648 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
2650 if (!int_mode_for_mode (mode
).exists (&imode
))
2659 if (FLOAT_WORDS_BIG_ENDIAN
)
2660 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
2662 word
= bitpos
/ BITS_PER_WORD
;
2663 bitpos
= bitpos
% BITS_PER_WORD
;
2664 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
2667 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
2673 || (nwords
> 1 && !valid_multiword_target_p (target
)))
2674 target
= gen_reg_rtx (mode
);
2680 for (i
= 0; i
< nwords
; ++i
)
2682 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
2683 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
2687 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
2689 immed_wide_int_const (mask
, imode
),
2690 targ_piece
, 1, OPTAB_LIB_WIDEN
);
2691 if (temp
!= targ_piece
)
2692 emit_move_insn (targ_piece
, temp
);
2695 emit_move_insn (targ_piece
, op0_piece
);
2698 insns
= get_insns ();
2705 temp
= expand_binop (imode
, code
== ABS
? and_optab
: xor_optab
,
2706 gen_lowpart (imode
, op0
),
2707 immed_wide_int_const (mask
, imode
),
2708 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
2709 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
2711 set_dst_reg_note (get_last_insn (), REG_EQUAL
,
2712 gen_rtx_fmt_e (code
, mode
, copy_rtx (op0
)),
2719 /* As expand_unop, but will fail rather than attempt the operation in a
2720 different mode or with a libcall. */
2722 expand_unop_direct (machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
2725 if (optab_handler (unoptab
, mode
) != CODE_FOR_nothing
)
2727 struct expand_operand ops
[2];
2728 enum insn_code icode
= optab_handler (unoptab
, mode
);
2729 rtx_insn
*last
= get_last_insn ();
2732 create_output_operand (&ops
[0], target
, mode
);
2733 create_convert_operand_from (&ops
[1], op0
, mode
, unsignedp
);
2734 pat
= maybe_gen_insn (icode
, 2, ops
);
2737 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
2738 && ! add_equal_note (pat
, ops
[0].value
,
2739 optab_to_code (unoptab
),
2740 ops
[1].value
, NULL_RTX
, mode
))
2742 delete_insns_since (last
);
2743 return expand_unop (mode
, unoptab
, op0
, NULL_RTX
, unsignedp
);
2748 return ops
[0].value
;
2754 /* Generate code to perform an operation specified by UNOPTAB
2755 on operand OP0, with result having machine-mode MODE.
2757 UNSIGNEDP is for the case where we have to widen the operands
2758 to perform the operation. It says to use zero-extension.
2760 If TARGET is nonzero, the value
2761 is generated there, if it is convenient to do so.
2762 In all cases an rtx is returned for the locus of the value;
2763 this may or may not be TARGET. */
2766 expand_unop (machine_mode mode
, optab unoptab
, rtx op0
, rtx target
,
2769 enum mode_class mclass
= GET_MODE_CLASS (mode
);
2770 machine_mode wider_mode
;
2771 scalar_int_mode int_mode
;
2772 scalar_float_mode float_mode
;
2776 temp
= expand_unop_direct (mode
, unoptab
, op0
, target
, unsignedp
);
2780 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2782 /* Widening (or narrowing) clz needs special treatment. */
2783 if (unoptab
== clz_optab
)
2785 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
2787 temp
= widen_leading (int_mode
, op0
, target
, unoptab
);
2791 if (GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
2792 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2794 temp
= expand_doubleword_clz (int_mode
, op0
, target
);
2803 if (unoptab
== clrsb_optab
)
2805 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
2807 temp
= widen_leading (int_mode
, op0
, target
, unoptab
);
2814 if (unoptab
== popcount_optab
2815 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
2816 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
2817 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
2818 && optimize_insn_for_speed_p ())
2820 temp
= expand_doubleword_popcount (int_mode
, op0
, target
);
2825 if (unoptab
== parity_optab
2826 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
2827 && GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
2828 && (optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
2829 || optab_handler (popcount_optab
, word_mode
) != CODE_FOR_nothing
)
2830 && optimize_insn_for_speed_p ())
2832 temp
= expand_doubleword_parity (int_mode
, op0
, target
);
2837 /* Widening (or narrowing) bswap needs special treatment. */
2838 if (unoptab
== bswap_optab
)
2840 /* HImode is special because in this mode BSWAP is equivalent to ROTATE
2841 or ROTATERT. First try these directly; if this fails, then try the
2842 obvious pair of shifts with allowed widening, as this will probably
2843 be always more efficient than the other fallback methods. */
2849 if (optab_handler (rotl_optab
, mode
) != CODE_FOR_nothing
)
2851 temp
= expand_binop (mode
, rotl_optab
, op0
,
2852 gen_int_shift_amount (mode
, 8),
2853 target
, unsignedp
, OPTAB_DIRECT
);
2858 if (optab_handler (rotr_optab
, mode
) != CODE_FOR_nothing
)
2860 temp
= expand_binop (mode
, rotr_optab
, op0
,
2861 gen_int_shift_amount (mode
, 8),
2862 target
, unsignedp
, OPTAB_DIRECT
);
2867 last
= get_last_insn ();
2869 temp1
= expand_binop (mode
, ashl_optab
, op0
,
2870 gen_int_shift_amount (mode
, 8), NULL_RTX
,
2871 unsignedp
, OPTAB_WIDEN
);
2872 temp2
= expand_binop (mode
, lshr_optab
, op0
,
2873 gen_int_shift_amount (mode
, 8), NULL_RTX
,
2874 unsignedp
, OPTAB_WIDEN
);
2877 temp
= expand_binop (mode
, ior_optab
, temp1
, temp2
, target
,
2878 unsignedp
, OPTAB_WIDEN
);
2883 delete_insns_since (last
);
2886 if (is_a
<scalar_int_mode
> (mode
, &int_mode
))
2888 temp
= widen_bswap (int_mode
, op0
, target
);
2892 if (GET_MODE_SIZE (int_mode
) == 2 * UNITS_PER_WORD
2893 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2895 temp
= expand_doubleword_bswap (mode
, op0
, target
);
2904 if (CLASS_HAS_WIDER_MODES_P (mclass
))
2905 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
2907 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
)
2910 rtx_insn
*last
= get_last_insn ();
2912 /* For certain operations, we need not actually extend
2913 the narrow operand, as long as we will truncate the
2914 results to the same narrowness. */
2916 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
2917 (unoptab
== neg_optab
2918 || unoptab
== one_cmpl_optab
)
2919 && mclass
== MODE_INT
);
2921 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
2926 if (mclass
!= MODE_INT
2927 || !TRULY_NOOP_TRUNCATION_MODES_P (mode
, wider_mode
))
2930 target
= gen_reg_rtx (mode
);
2931 convert_move (target
, temp
, 0);
2935 return gen_lowpart (mode
, temp
);
2938 delete_insns_since (last
);
2942 /* These can be done a word at a time. */
2943 if (unoptab
== one_cmpl_optab
2944 && is_int_mode (mode
, &int_mode
)
2945 && GET_MODE_SIZE (int_mode
) > UNITS_PER_WORD
2946 && optab_handler (unoptab
, word_mode
) != CODE_FOR_nothing
)
2951 if (target
== 0 || target
== op0
|| !valid_multiword_target_p (target
))
2952 target
= gen_reg_rtx (int_mode
);
2956 /* Do the actual arithmetic. */
2957 for (i
= 0; i
< GET_MODE_BITSIZE (int_mode
) / BITS_PER_WORD
; i
++)
2959 rtx target_piece
= operand_subword (target
, i
, 1, int_mode
);
2960 rtx x
= expand_unop (word_mode
, unoptab
,
2961 operand_subword_force (op0
, i
, int_mode
),
2962 target_piece
, unsignedp
);
2964 if (target_piece
!= x
)
2965 emit_move_insn (target_piece
, x
);
2968 insns
= get_insns ();
2975 if (optab_to_code (unoptab
) == NEG
)
2977 /* Try negating floating point values by flipping the sign bit. */
2978 if (is_a
<scalar_float_mode
> (mode
, &float_mode
))
2980 temp
= expand_absneg_bit (NEG
, float_mode
, op0
, target
);
2985 /* If there is no negation pattern, and we have no negative zero,
2986 try subtracting from zero. */
2987 if (!HONOR_SIGNED_ZEROS (mode
))
2989 temp
= expand_binop (mode
, (unoptab
== negv_optab
2990 ? subv_optab
: sub_optab
),
2991 CONST0_RTX (mode
), op0
, target
,
2992 unsignedp
, OPTAB_DIRECT
);
2998 /* Try calculating parity (x) as popcount (x) % 2. */
2999 if (unoptab
== parity_optab
&& is_a
<scalar_int_mode
> (mode
, &int_mode
))
3001 temp
= expand_parity (int_mode
, op0
, target
);
3006 /* Try implementing ffs (x) in terms of clz (x). */
3007 if (unoptab
== ffs_optab
&& is_a
<scalar_int_mode
> (mode
, &int_mode
))
3009 temp
= expand_ffs (int_mode
, op0
, target
);
3014 /* Try implementing ctz (x) in terms of clz (x). */
3015 if (unoptab
== ctz_optab
&& is_a
<scalar_int_mode
> (mode
, &int_mode
))
3017 temp
= expand_ctz (int_mode
, op0
, target
);
3023 /* Now try a library call in this mode. */
3024 libfunc
= optab_libfunc (unoptab
, mode
);
3030 machine_mode outmode
= mode
;
3032 /* All of these functions return small values. Thus we choose to
3033 have them return something that isn't a double-word. */
3034 if (unoptab
== ffs_optab
|| unoptab
== clz_optab
|| unoptab
== ctz_optab
3035 || unoptab
== clrsb_optab
|| unoptab
== popcount_optab
3036 || unoptab
== parity_optab
)
3038 = GET_MODE (hard_libcall_value (TYPE_MODE (integer_type_node
),
3039 optab_libfunc (unoptab
, mode
)));
3043 /* Pass 1 for NO_QUEUE so we don't lose any increments
3044 if the libcall is cse'd or moved. */
3045 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, outmode
,
3047 insns
= get_insns ();
3050 target
= gen_reg_rtx (outmode
);
3051 bool trapv
= trapv_unoptab_p (unoptab
);
3053 eq_value
= NULL_RTX
;
3056 eq_value
= gen_rtx_fmt_e (optab_to_code (unoptab
), mode
, op0
);
3057 if (GET_MODE_UNIT_SIZE (outmode
) < GET_MODE_UNIT_SIZE (mode
))
3058 eq_value
= simplify_gen_unary (TRUNCATE
, outmode
, eq_value
, mode
);
3059 else if (GET_MODE_UNIT_SIZE (outmode
) > GET_MODE_UNIT_SIZE (mode
))
3060 eq_value
= simplify_gen_unary (ZERO_EXTEND
,
3061 outmode
, eq_value
, mode
);
3063 emit_libcall_block_1 (insns
, target
, value
, eq_value
, trapv
);
3068 /* It can't be done in this mode. Can we do it in a wider mode? */
3070 if (CLASS_HAS_WIDER_MODES_P (mclass
))
3072 FOR_EACH_WIDER_MODE (wider_mode
, mode
)
3074 if (optab_handler (unoptab
, wider_mode
) != CODE_FOR_nothing
3075 || optab_libfunc (unoptab
, wider_mode
))
3078 rtx_insn
*last
= get_last_insn ();
3080 /* For certain operations, we need not actually extend
3081 the narrow operand, as long as we will truncate the
3082 results to the same narrowness. */
3083 xop0
= widen_operand (xop0
, wider_mode
, mode
, unsignedp
,
3084 (unoptab
== neg_optab
3085 || unoptab
== one_cmpl_optab
3086 || unoptab
== bswap_optab
)
3087 && mclass
== MODE_INT
);
3089 temp
= expand_unop (wider_mode
, unoptab
, xop0
, NULL_RTX
,
3092 /* If we are generating clz using wider mode, adjust the
3093 result. Similarly for clrsb. */
3094 if ((unoptab
== clz_optab
|| unoptab
== clrsb_optab
)
3097 scalar_int_mode wider_int_mode
3098 = as_a
<scalar_int_mode
> (wider_mode
);
3099 int_mode
= as_a
<scalar_int_mode
> (mode
);
3101 (wider_mode
, sub_optab
, temp
,
3102 gen_int_mode (GET_MODE_PRECISION (wider_int_mode
)
3103 - GET_MODE_PRECISION (int_mode
),
3105 target
, true, OPTAB_DIRECT
);
3108 /* Likewise for bswap. */
3109 if (unoptab
== bswap_optab
&& temp
!= 0)
3111 scalar_int_mode wider_int_mode
3112 = as_a
<scalar_int_mode
> (wider_mode
);
3113 int_mode
= as_a
<scalar_int_mode
> (mode
);
3114 gcc_assert (GET_MODE_PRECISION (wider_int_mode
)
3115 == GET_MODE_BITSIZE (wider_int_mode
)
3116 && GET_MODE_PRECISION (int_mode
)
3117 == GET_MODE_BITSIZE (int_mode
));
3119 temp
= expand_shift (RSHIFT_EXPR
, wider_int_mode
, temp
,
3120 GET_MODE_BITSIZE (wider_int_mode
)
3121 - GET_MODE_BITSIZE (int_mode
),
3127 if (mclass
!= MODE_INT
)
3130 target
= gen_reg_rtx (mode
);
3131 convert_move (target
, temp
, 0);
3135 return gen_lowpart (mode
, temp
);
3138 delete_insns_since (last
);
3143 /* One final attempt at implementing negation via subtraction,
3144 this time allowing widening of the operand. */
3145 if (optab_to_code (unoptab
) == NEG
&& !HONOR_SIGNED_ZEROS (mode
))
3148 temp
= expand_binop (mode
,
3149 unoptab
== negv_optab
? subv_optab
: sub_optab
,
3150 CONST0_RTX (mode
), op0
,
3151 target
, unsignedp
, OPTAB_LIB_WIDEN
);
3159 /* Emit code to compute the absolute value of OP0, with result to
3160 TARGET if convenient. (TARGET may be 0.) The return value says
3161 where the result actually is to be found.
3163 MODE is the mode of the operand; the mode of the result is
3164 different but can be deduced from MODE.
3169 expand_abs_nojump (machine_mode mode
, rtx op0
, rtx target
,
3170 int result_unsignedp
)
3174 if (GET_MODE_CLASS (mode
) != MODE_INT
3176 result_unsignedp
= 1;
3178 /* First try to do it with a special abs instruction. */
3179 temp
= expand_unop (mode
, result_unsignedp
? abs_optab
: absv_optab
,
3184 /* For floating point modes, try clearing the sign bit. */
3185 scalar_float_mode float_mode
;
3186 if (is_a
<scalar_float_mode
> (mode
, &float_mode
))
3188 temp
= expand_absneg_bit (ABS
, float_mode
, op0
, target
);
3193 /* If we have a MAX insn, we can do this as MAX (x, -x). */
3194 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
3195 && !HONOR_SIGNED_ZEROS (mode
))
3197 rtx_insn
*last
= get_last_insn ();
3199 temp
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3202 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3208 delete_insns_since (last
);
3211 /* If this machine has expensive jumps, we can do integer absolute
3212 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
3213 where W is the width of MODE. */
3215 scalar_int_mode int_mode
;
3216 if (is_int_mode (mode
, &int_mode
)
3217 && BRANCH_COST (optimize_insn_for_speed_p (),
3220 rtx extended
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
3221 GET_MODE_PRECISION (int_mode
) - 1,
3224 temp
= expand_binop (int_mode
, xor_optab
, extended
, op0
, target
, 0,
3227 temp
= expand_binop (int_mode
,
3228 result_unsignedp
? sub_optab
: subv_optab
,
3229 temp
, extended
, target
, 0, OPTAB_LIB_WIDEN
);
3239 expand_abs (machine_mode mode
, rtx op0
, rtx target
,
3240 int result_unsignedp
, int safe
)
3243 rtx_code_label
*op1
;
3245 if (GET_MODE_CLASS (mode
) != MODE_INT
3247 result_unsignedp
= 1;
3249 temp
= expand_abs_nojump (mode
, op0
, target
, result_unsignedp
);
3253 /* If that does not win, use conditional jump and negate. */
3255 /* It is safe to use the target if it is the same
3256 as the source if this is also a pseudo register */
3257 if (op0
== target
&& REG_P (op0
)
3258 && REGNO (op0
) >= FIRST_PSEUDO_REGISTER
)
3261 op1
= gen_label_rtx ();
3262 if (target
== 0 || ! safe
3263 || GET_MODE (target
) != mode
3264 || (MEM_P (target
) && MEM_VOLATILE_P (target
))
3266 && REGNO (target
) < FIRST_PSEUDO_REGISTER
))
3267 target
= gen_reg_rtx (mode
);
3269 emit_move_insn (target
, op0
);
3272 do_compare_rtx_and_jump (target
, CONST0_RTX (mode
), GE
, 0, mode
,
3273 NULL_RTX
, NULL
, op1
,
3274 profile_probability::uninitialized ());
3276 op0
= expand_unop (mode
, result_unsignedp
? neg_optab
: negv_optab
,
3279 emit_move_insn (target
, op0
);
3285 /* Emit code to compute the one's complement absolute value of OP0
3286 (if (OP0 < 0) OP0 = ~OP0), with result to TARGET if convenient.
3287 (TARGET may be NULL_RTX.) The return value says where the result
3288 actually is to be found.
3290 MODE is the mode of the operand; the mode of the result is
3291 different but can be deduced from MODE. */
3294 expand_one_cmpl_abs_nojump (machine_mode mode
, rtx op0
, rtx target
)
3298 /* Not applicable for floating point modes. */
3299 if (FLOAT_MODE_P (mode
))
3302 /* If we have a MAX insn, we can do this as MAX (x, ~x). */
3303 if (optab_handler (smax_optab
, mode
) != CODE_FOR_nothing
)
3305 rtx_insn
*last
= get_last_insn ();
3307 temp
= expand_unop (mode
, one_cmpl_optab
, op0
, NULL_RTX
, 0);
3309 temp
= expand_binop (mode
, smax_optab
, op0
, temp
, target
, 0,
3315 delete_insns_since (last
);
3318 /* If this machine has expensive jumps, we can do one's complement
3319 absolute value of X as (((signed) x >> (W-1)) ^ x). */
3321 scalar_int_mode int_mode
;
3322 if (is_int_mode (mode
, &int_mode
)
3323 && BRANCH_COST (optimize_insn_for_speed_p (),
3326 rtx extended
= expand_shift (RSHIFT_EXPR
, int_mode
, op0
,
3327 GET_MODE_PRECISION (int_mode
) - 1,
3330 temp
= expand_binop (int_mode
, xor_optab
, extended
, op0
, target
, 0,
3340 /* A subroutine of expand_copysign, perform the copysign operation using the
3341 abs and neg primitives advertised to exist on the target. The assumption
3342 is that we have a split register file, and leaving op0 in fp registers,
3343 and not playing with subregs so much, will help the register allocator. */
3346 expand_copysign_absneg (scalar_float_mode mode
, rtx op0
, rtx op1
, rtx target
,
3347 int bitpos
, bool op0_is_abs
)
3349 scalar_int_mode imode
;
3350 enum insn_code icode
;
3352 rtx_code_label
*label
;
3357 /* Check if the back end provides an insn that handles signbit for the
3359 icode
= optab_handler (signbit_optab
, mode
);
3360 if (icode
!= CODE_FOR_nothing
)
3362 imode
= as_a
<scalar_int_mode
> (insn_data
[(int) icode
].operand
[0].mode
);
3363 sign
= gen_reg_rtx (imode
);
3364 emit_unop_insn (icode
, sign
, op1
, UNKNOWN
);
3368 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3370 if (!int_mode_for_mode (mode
).exists (&imode
))
3372 op1
= gen_lowpart (imode
, op1
);
3379 if (FLOAT_WORDS_BIG_ENDIAN
)
3380 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3382 word
= bitpos
/ BITS_PER_WORD
;
3383 bitpos
= bitpos
% BITS_PER_WORD
;
3384 op1
= operand_subword_force (op1
, word
, mode
);
3387 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3388 sign
= expand_binop (imode
, and_optab
, op1
,
3389 immed_wide_int_const (mask
, imode
),
3390 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3395 op0
= expand_unop (mode
, abs_optab
, op0
, target
, 0);
3402 if (target
== NULL_RTX
)
3403 target
= copy_to_reg (op0
);
3405 emit_move_insn (target
, op0
);
3408 label
= gen_label_rtx ();
3409 emit_cmp_and_jump_insns (sign
, const0_rtx
, EQ
, NULL_RTX
, imode
, 1, label
);
3411 if (CONST_DOUBLE_AS_FLOAT_P (op0
))
3412 op0
= simplify_unary_operation (NEG
, mode
, op0
, mode
);
3414 op0
= expand_unop (mode
, neg_optab
, op0
, target
, 0);
3416 emit_move_insn (target
, op0
);
3424 /* A subroutine of expand_copysign, perform the entire copysign operation
3425 with integer bitmasks. BITPOS is the position of the sign bit; OP0_IS_ABS
3426 is true if op0 is known to have its sign bit clear. */
3429 expand_copysign_bit (scalar_float_mode mode
, rtx op0
, rtx op1
, rtx target
,
3430 int bitpos
, bool op0_is_abs
)
3432 scalar_int_mode imode
;
3433 int word
, nwords
, i
;
3437 if (GET_MODE_SIZE (mode
) <= UNITS_PER_WORD
)
3439 if (!int_mode_for_mode (mode
).exists (&imode
))
3448 if (FLOAT_WORDS_BIG_ENDIAN
)
3449 word
= (GET_MODE_BITSIZE (mode
) - bitpos
) / BITS_PER_WORD
;
3451 word
= bitpos
/ BITS_PER_WORD
;
3452 bitpos
= bitpos
% BITS_PER_WORD
;
3453 nwords
= (GET_MODE_BITSIZE (mode
) + BITS_PER_WORD
- 1) / BITS_PER_WORD
;
3456 wide_int mask
= wi::set_bit_in_zero (bitpos
, GET_MODE_PRECISION (imode
));
3461 || (nwords
> 1 && !valid_multiword_target_p (target
)))
3462 target
= gen_reg_rtx (mode
);
3468 for (i
= 0; i
< nwords
; ++i
)
3470 rtx targ_piece
= operand_subword (target
, i
, 1, mode
);
3471 rtx op0_piece
= operand_subword_force (op0
, i
, mode
);
3477 = expand_binop (imode
, and_optab
, op0_piece
,
3478 immed_wide_int_const (~mask
, imode
),
3479 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3480 op1
= expand_binop (imode
, and_optab
,
3481 operand_subword_force (op1
, i
, mode
),
3482 immed_wide_int_const (mask
, imode
),
3483 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3485 temp
= expand_binop (imode
, ior_optab
, op0_piece
, op1
,
3486 targ_piece
, 1, OPTAB_LIB_WIDEN
);
3487 if (temp
!= targ_piece
)
3488 emit_move_insn (targ_piece
, temp
);
3491 emit_move_insn (targ_piece
, op0_piece
);
3494 insns
= get_insns ();
3501 op1
= expand_binop (imode
, and_optab
, gen_lowpart (imode
, op1
),
3502 immed_wide_int_const (mask
, imode
),
3503 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3505 op0
= gen_lowpart (imode
, op0
);
3507 op0
= expand_binop (imode
, and_optab
, op0
,
3508 immed_wide_int_const (~mask
, imode
),
3509 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
3511 temp
= expand_binop (imode
, ior_optab
, op0
, op1
,
3512 gen_lowpart (imode
, target
), 1, OPTAB_LIB_WIDEN
);
3513 target
= lowpart_subreg_maybe_copy (mode
, temp
, imode
);
3519 /* Expand the C99 copysign operation. OP0 and OP1 must be the same
3520 scalar floating point mode. Return NULL if we do not know how to
3521 expand the operation inline. */
3524 expand_copysign (rtx op0
, rtx op1
, rtx target
)
3526 scalar_float_mode mode
;
3527 const struct real_format
*fmt
;
3531 mode
= as_a
<scalar_float_mode
> (GET_MODE (op0
));
3532 gcc_assert (GET_MODE (op1
) == mode
);
3534 /* First try to do it with a special instruction. */
3535 temp
= expand_binop (mode
, copysign_optab
, op0
, op1
,
3536 target
, 0, OPTAB_DIRECT
);
3540 fmt
= REAL_MODE_FORMAT (mode
);
3541 if (fmt
== NULL
|| !fmt
->has_signed_zero
)
3545 if (CONST_DOUBLE_AS_FLOAT_P (op0
))
3547 if (real_isneg (CONST_DOUBLE_REAL_VALUE (op0
)))
3548 op0
= simplify_unary_operation (ABS
, mode
, op0
, mode
);
3552 if (fmt
->signbit_ro
>= 0
3553 && (CONST_DOUBLE_AS_FLOAT_P (op0
)
3554 || (optab_handler (neg_optab
, mode
) != CODE_FOR_nothing
3555 && optab_handler (abs_optab
, mode
) != CODE_FOR_nothing
)))
3557 temp
= expand_copysign_absneg (mode
, op0
, op1
, target
,
3558 fmt
->signbit_ro
, op0_is_abs
);
3563 if (fmt
->signbit_rw
< 0)
3565 return expand_copysign_bit (mode
, op0
, op1
, target
,
3566 fmt
->signbit_rw
, op0_is_abs
);
3569 /* Generate an instruction whose insn-code is INSN_CODE,
3570 with two operands: an output TARGET and an input OP0.
3571 TARGET *must* be nonzero, and the output is always stored there.
3572 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3573 the value that is stored into TARGET.
3575 Return false if expansion failed. */
3578 maybe_emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
,
3581 struct expand_operand ops
[2];
3584 create_output_operand (&ops
[0], target
, GET_MODE (target
));
3585 create_input_operand (&ops
[1], op0
, GET_MODE (op0
));
3586 pat
= maybe_gen_insn (icode
, 2, ops
);
3590 if (INSN_P (pat
) && NEXT_INSN (pat
) != NULL_RTX
3592 add_equal_note (pat
, ops
[0].value
, code
, ops
[1].value
, NULL_RTX
,
3597 if (ops
[0].value
!= target
)
3598 emit_move_insn (target
, ops
[0].value
);
3601 /* Generate an instruction whose insn-code is INSN_CODE,
3602 with two operands: an output TARGET and an input OP0.
3603 TARGET *must* be nonzero, and the output is always stored there.
3604 CODE is an rtx code such that (CODE OP0) is an rtx that describes
3605 the value that is stored into TARGET. */
3608 emit_unop_insn (enum insn_code icode
, rtx target
, rtx op0
, enum rtx_code code
)
3610 bool ok
= maybe_emit_unop_insn (icode
, target
, op0
, code
);
3614 struct no_conflict_data
3617 rtx_insn
*first
, *insn
;
3621 /* Called via note_stores by emit_libcall_block. Set P->must_stay if
3622 the currently examined clobber / store has to stay in the list of
3623 insns that constitute the actual libcall block. */
3625 no_conflict_move_test (rtx dest
, const_rtx set
, void *p0
)
3627 struct no_conflict_data
*p
= (struct no_conflict_data
*) p0
;
3629 /* If this inns directly contributes to setting the target, it must stay. */
3630 if (reg_overlap_mentioned_p (p
->target
, dest
))
3631 p
->must_stay
= true;
3632 /* If we haven't committed to keeping any other insns in the list yet,
3633 there is nothing more to check. */
3634 else if (p
->insn
== p
->first
)
3636 /* If this insn sets / clobbers a register that feeds one of the insns
3637 already in the list, this insn has to stay too. */
3638 else if (reg_overlap_mentioned_p (dest
, PATTERN (p
->first
))
3639 || (CALL_P (p
->first
) && (find_reg_fusage (p
->first
, USE
, dest
)))
3640 || reg_used_between_p (dest
, p
->first
, p
->insn
)
3641 /* Likewise if this insn depends on a register set by a previous
3642 insn in the list, or if it sets a result (presumably a hard
3643 register) that is set or clobbered by a previous insn.
3644 N.B. the modified_*_p (SET_DEST...) tests applied to a MEM
3645 SET_DEST perform the former check on the address, and the latter
3646 check on the MEM. */
3647 || (GET_CODE (set
) == SET
3648 && (modified_in_p (SET_SRC (set
), p
->first
)
3649 || modified_in_p (SET_DEST (set
), p
->first
)
3650 || modified_between_p (SET_SRC (set
), p
->first
, p
->insn
)
3651 || modified_between_p (SET_DEST (set
), p
->first
, p
->insn
))))
3652 p
->must_stay
= true;
3656 /* Emit code to make a call to a constant function or a library call.
3658 INSNS is a list containing all insns emitted in the call.
3659 These insns leave the result in RESULT. Our block is to copy RESULT
3660 to TARGET, which is logically equivalent to EQUIV.
3662 We first emit any insns that set a pseudo on the assumption that these are
3663 loading constants into registers; doing so allows them to be safely cse'ed
3664 between blocks. Then we emit all the other insns in the block, followed by
3665 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
3666 note with an operand of EQUIV. */
3669 emit_libcall_block_1 (rtx_insn
*insns
, rtx target
, rtx result
, rtx equiv
,
3670 bool equiv_may_trap
)
3672 rtx final_dest
= target
;
3673 rtx_insn
*next
, *last
, *insn
;
3675 /* If this is a reg with REG_USERVAR_P set, then it could possibly turn
3676 into a MEM later. Protect the libcall block from this change. */
3677 if (! REG_P (target
) || REG_USERVAR_P (target
))
3678 target
= gen_reg_rtx (GET_MODE (target
));
3680 /* If we're using non-call exceptions, a libcall corresponding to an
3681 operation that may trap may also trap. */
3682 /* ??? See the comment in front of make_reg_eh_region_note. */
3683 if (cfun
->can_throw_non_call_exceptions
3684 && (equiv_may_trap
|| may_trap_p (equiv
)))
3686 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3689 rtx note
= find_reg_note (insn
, REG_EH_REGION
, NULL_RTX
);
3692 int lp_nr
= INTVAL (XEXP (note
, 0));
3693 if (lp_nr
== 0 || lp_nr
== INT_MIN
)
3694 remove_note (insn
, note
);
3700 /* Look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
3701 reg note to indicate that this call cannot throw or execute a nonlocal
3702 goto (unless there is already a REG_EH_REGION note, in which case
3704 for (insn
= insns
; insn
; insn
= NEXT_INSN (insn
))
3706 make_reg_eh_region_note_nothrow_nononlocal (insn
);
3709 /* First emit all insns that set pseudos. Remove them from the list as
3710 we go. Avoid insns that set pseudos which were referenced in previous
3711 insns. These can be generated by move_by_pieces, for example,
3712 to update an address. Similarly, avoid insns that reference things
3713 set in previous insns. */
3715 for (insn
= insns
; insn
; insn
= next
)
3717 rtx set
= single_set (insn
);
3719 next
= NEXT_INSN (insn
);
3721 if (set
!= 0 && REG_P (SET_DEST (set
))
3722 && REGNO (SET_DEST (set
)) >= FIRST_PSEUDO_REGISTER
)
3724 struct no_conflict_data data
;
3726 data
.target
= const0_rtx
;
3730 note_stores (PATTERN (insn
), no_conflict_move_test
, &data
);
3731 if (! data
.must_stay
)
3733 if (PREV_INSN (insn
))
3734 SET_NEXT_INSN (PREV_INSN (insn
)) = next
;
3739 SET_PREV_INSN (next
) = PREV_INSN (insn
);
3745 /* Some ports use a loop to copy large arguments onto the stack.
3746 Don't move anything outside such a loop. */
3751 /* Write the remaining insns followed by the final copy. */
3752 for (insn
= insns
; insn
; insn
= next
)
3754 next
= NEXT_INSN (insn
);
3759 last
= emit_move_insn (target
, result
);
3761 set_dst_reg_note (last
, REG_EQUAL
, copy_rtx (equiv
), target
);
3763 if (final_dest
!= target
)
3764 emit_move_insn (final_dest
, target
);
3768 emit_libcall_block (rtx_insn
*insns
, rtx target
, rtx result
, rtx equiv
)
3770 emit_libcall_block_1 (insns
, target
, result
, equiv
, false);
3773 /* Nonzero if we can perform a comparison of mode MODE straightforwardly.
3774 PURPOSE describes how this comparison will be used. CODE is the rtx
3775 comparison code we will be using.
3777 ??? Actually, CODE is slightly weaker than that. A target is still
3778 required to implement all of the normal bcc operations, but not
3779 required to implement all (or any) of the unordered bcc operations. */
3782 can_compare_p (enum rtx_code code
, machine_mode mode
,
3783 enum can_compare_purpose purpose
)
3786 test
= gen_rtx_fmt_ee (code
, mode
, const0_rtx
, const0_rtx
);
3789 enum insn_code icode
;
3791 if (purpose
== ccp_jump
3792 && (icode
= optab_handler (cbranch_optab
, mode
)) != CODE_FOR_nothing
3793 && insn_operand_matches (icode
, 0, test
))
3795 if (purpose
== ccp_store_flag
3796 && (icode
= optab_handler (cstore_optab
, mode
)) != CODE_FOR_nothing
3797 && insn_operand_matches (icode
, 1, test
))
3799 if (purpose
== ccp_cmov
3800 && optab_handler (cmov_optab
, mode
) != CODE_FOR_nothing
)
3803 mode
= GET_MODE_WIDER_MODE (mode
).else_void ();
3804 PUT_MODE (test
, mode
);
3806 while (mode
!= VOIDmode
);
3811 /* This function is called when we are going to emit a compare instruction that
3812 compares the values found in X and Y, using the rtl operator COMPARISON.
3814 If they have mode BLKmode, then SIZE specifies the size of both operands.
3816 UNSIGNEDP nonzero says that the operands are unsigned;
3817 this matters if they need to be widened (as given by METHODS).
3819 *PTEST is where the resulting comparison RTX is returned or NULL_RTX
3820 if we failed to produce one.
3822 *PMODE is the mode of the inputs (in case they are const_int).
3824 This function performs all the setup necessary so that the caller only has
3825 to emit a single comparison insn. This setup can involve doing a BLKmode
3826 comparison or emitting a library call to perform the comparison if no insn
3827 is available to handle it.
3828 The values which are passed in through pointers can be modified; the caller
3829 should perform the comparison on the modified values. Constant
3830 comparisons must have already been folded. */
3833 prepare_cmp_insn (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
3834 int unsignedp
, enum optab_methods methods
,
3835 rtx
*ptest
, machine_mode
*pmode
)
3837 machine_mode mode
= *pmode
;
3839 machine_mode cmp_mode
;
3840 enum mode_class mclass
;
3842 /* The other methods are not needed. */
3843 gcc_assert (methods
== OPTAB_DIRECT
|| methods
== OPTAB_WIDEN
3844 || methods
== OPTAB_LIB_WIDEN
);
3846 if (CONST_SCALAR_INT_P (y
))
3847 canonicalize_comparison (mode
, &comparison
, &y
);
3849 /* If we are optimizing, force expensive constants into a register. */
3850 if (CONSTANT_P (x
) && optimize
3851 && (rtx_cost (x
, mode
, COMPARE
, 0, optimize_insn_for_speed_p ())
3852 > COSTS_N_INSNS (1)))
3853 x
= force_reg (mode
, x
);
3855 if (CONSTANT_P (y
) && optimize
3856 && (rtx_cost (y
, mode
, COMPARE
, 1, optimize_insn_for_speed_p ())
3857 > COSTS_N_INSNS (1)))
3858 y
= force_reg (mode
, y
);
3861 /* Make sure if we have a canonical comparison. The RTL
3862 documentation states that canonical comparisons are required only
3863 for targets which have cc0. */
3864 gcc_assert (!CONSTANT_P (x
) || CONSTANT_P (y
));
3867 /* Don't let both operands fail to indicate the mode. */
3868 if (GET_MODE (x
) == VOIDmode
&& GET_MODE (y
) == VOIDmode
)
3869 x
= force_reg (mode
, x
);
3870 if (mode
== VOIDmode
)
3871 mode
= GET_MODE (x
) != VOIDmode
? GET_MODE (x
) : GET_MODE (y
);
3873 /* Handle all BLKmode compares. */
3875 if (mode
== BLKmode
)
3877 machine_mode result_mode
;
3878 enum insn_code cmp_code
;
3881 = GEN_INT (MIN (MEM_ALIGN (x
), MEM_ALIGN (y
)) / BITS_PER_UNIT
);
3885 /* Try to use a memory block compare insn - either cmpstr
3886 or cmpmem will do. */
3887 opt_scalar_int_mode cmp_mode_iter
;
3888 FOR_EACH_MODE_IN_CLASS (cmp_mode_iter
, MODE_INT
)
3890 scalar_int_mode cmp_mode
= cmp_mode_iter
.require ();
3891 cmp_code
= direct_optab_handler (cmpmem_optab
, cmp_mode
);
3892 if (cmp_code
== CODE_FOR_nothing
)
3893 cmp_code
= direct_optab_handler (cmpstr_optab
, cmp_mode
);
3894 if (cmp_code
== CODE_FOR_nothing
)
3895 cmp_code
= direct_optab_handler (cmpstrn_optab
, cmp_mode
);
3896 if (cmp_code
== CODE_FOR_nothing
)
3899 /* Must make sure the size fits the insn's mode. */
3900 if (CONST_INT_P (size
)
3901 ? UINTVAL (size
) > GET_MODE_MASK (cmp_mode
)
3902 : (GET_MODE_BITSIZE (as_a
<scalar_int_mode
> (GET_MODE (size
)))
3903 > GET_MODE_BITSIZE (cmp_mode
)))
3906 result_mode
= insn_data
[cmp_code
].operand
[0].mode
;
3907 result
= gen_reg_rtx (result_mode
);
3908 size
= convert_to_mode (cmp_mode
, size
, 1);
3909 emit_insn (GEN_FCN (cmp_code
) (result
, x
, y
, size
, opalign
));
3911 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, result
, const0_rtx
);
3912 *pmode
= result_mode
;
3916 if (methods
!= OPTAB_LIB
&& methods
!= OPTAB_LIB_WIDEN
)
3919 /* Otherwise call a library function. */
3920 result
= emit_block_comp_via_libcall (x
, y
, size
);
3924 mode
= TYPE_MODE (integer_type_node
);
3925 methods
= OPTAB_LIB_WIDEN
;
3929 /* Don't allow operands to the compare to trap, as that can put the
3930 compare and branch in different basic blocks. */
3931 if (cfun
->can_throw_non_call_exceptions
)
3934 x
= copy_to_reg (x
);
3936 y
= copy_to_reg (y
);
3939 if (GET_MODE_CLASS (mode
) == MODE_CC
)
3941 enum insn_code icode
= optab_handler (cbranch_optab
, CCmode
);
3942 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
3943 gcc_assert (icode
!= CODE_FOR_nothing
3944 && insn_operand_matches (icode
, 0, test
));
3949 mclass
= GET_MODE_CLASS (mode
);
3950 test
= gen_rtx_fmt_ee (comparison
, VOIDmode
, x
, y
);
3951 FOR_EACH_MODE_FROM (cmp_mode
, mode
)
3953 enum insn_code icode
;
3954 icode
= optab_handler (cbranch_optab
, cmp_mode
);
3955 if (icode
!= CODE_FOR_nothing
3956 && insn_operand_matches (icode
, 0, test
))
3958 rtx_insn
*last
= get_last_insn ();
3959 rtx op0
= prepare_operand (icode
, x
, 1, mode
, cmp_mode
, unsignedp
);
3960 rtx op1
= prepare_operand (icode
, y
, 2, mode
, cmp_mode
, unsignedp
);
3962 && insn_operand_matches (icode
, 1, op0
)
3963 && insn_operand_matches (icode
, 2, op1
))
3965 XEXP (test
, 0) = op0
;
3966 XEXP (test
, 1) = op1
;
3971 delete_insns_since (last
);
3974 if (methods
== OPTAB_DIRECT
|| !CLASS_HAS_WIDER_MODES_P (mclass
))
3978 if (methods
!= OPTAB_LIB_WIDEN
)
3981 if (SCALAR_FLOAT_MODE_P (mode
))
3983 /* Small trick if UNORDERED isn't implemented by the hardware. */
3984 if (comparison
== UNORDERED
&& rtx_equal_p (x
, y
))
3986 prepare_cmp_insn (x
, y
, UNLT
, NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
3992 prepare_float_lib_cmp (x
, y
, comparison
, ptest
, pmode
);
3997 machine_mode ret_mode
;
3999 /* Handle a libcall just for the mode we are using. */
4000 libfunc
= optab_libfunc (cmp_optab
, mode
);
4001 gcc_assert (libfunc
);
4003 /* If we want unsigned, and this mode has a distinct unsigned
4004 comparison routine, use that. */
4007 rtx ulibfunc
= optab_libfunc (ucmp_optab
, mode
);
4012 ret_mode
= targetm
.libgcc_cmp_return_mode ();
4013 result
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4014 ret_mode
, x
, mode
, y
, mode
);
4016 /* There are two kinds of comparison routines. Biased routines
4017 return 0/1/2, and unbiased routines return -1/0/1. Other parts
4018 of gcc expect that the comparison operation is equivalent
4019 to the modified comparison. For signed comparisons compare the
4020 result against 1 in the biased case, and zero in the unbiased
4021 case. For unsigned comparisons always compare against 1 after
4022 biasing the unbiased result by adding 1. This gives us a way to
4024 The comparisons in the fixed-point helper library are always
4029 if (!TARGET_LIB_INT_CMP_BIASED
&& !ALL_FIXED_POINT_MODE_P (mode
))
4032 x
= plus_constant (ret_mode
, result
, 1);
4038 prepare_cmp_insn (x
, y
, comparison
, NULL_RTX
, unsignedp
, methods
,
4048 /* Before emitting an insn with code ICODE, make sure that X, which is going
4049 to be used for operand OPNUM of the insn, is converted from mode MODE to
4050 WIDER_MODE (UNSIGNEDP determines whether it is an unsigned conversion), and
4051 that it is accepted by the operand predicate. Return the new value. */
4054 prepare_operand (enum insn_code icode
, rtx x
, int opnum
, machine_mode mode
,
4055 machine_mode wider_mode
, int unsignedp
)
4057 if (mode
!= wider_mode
)
4058 x
= convert_modes (wider_mode
, mode
, x
, unsignedp
);
4060 if (!insn_operand_matches (icode
, opnum
, x
))
4062 machine_mode op_mode
= insn_data
[(int) icode
].operand
[opnum
].mode
;
4063 if (reload_completed
)
4065 if (GET_MODE (x
) != op_mode
&& GET_MODE (x
) != VOIDmode
)
4067 x
= copy_to_mode_reg (op_mode
, x
);
4073 /* Subroutine of emit_cmp_and_jump_insns; this function is called when we know
4074 we can do the branch. */
4077 emit_cmp_and_jump_insn_1 (rtx test
, machine_mode mode
, rtx label
,
4078 profile_probability prob
)
4080 machine_mode optab_mode
;
4081 enum mode_class mclass
;
4082 enum insn_code icode
;
4085 mclass
= GET_MODE_CLASS (mode
);
4086 optab_mode
= (mclass
== MODE_CC
) ? CCmode
: mode
;
4087 icode
= optab_handler (cbranch_optab
, optab_mode
);
4089 gcc_assert (icode
!= CODE_FOR_nothing
);
4090 gcc_assert (insn_operand_matches (icode
, 0, test
));
4091 insn
= emit_jump_insn (GEN_FCN (icode
) (test
, XEXP (test
, 0),
4092 XEXP (test
, 1), label
));
4093 if (prob
.initialized_p ()
4094 && profile_status_for_fn (cfun
) != PROFILE_ABSENT
4097 && any_condjump_p (insn
)
4098 && !find_reg_note (insn
, REG_BR_PROB
, 0))
4099 add_reg_br_prob_note (insn
, prob
);
4102 /* Generate code to compare X with Y so that the condition codes are
4103 set and to jump to LABEL if the condition is true. If X is a
4104 constant and Y is not a constant, then the comparison is swapped to
4105 ensure that the comparison RTL has the canonical form.
4107 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
4108 need to be widened. UNSIGNEDP is also used to select the proper
4109 branch condition code.
4111 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y.
4113 MODE is the mode of the inputs (in case they are const_int).
4115 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
4116 It will be potentially converted into an unsigned variant based on
4117 UNSIGNEDP to select a proper jump instruction.
4119 PROB is the probability of jumping to LABEL. */
4122 emit_cmp_and_jump_insns (rtx x
, rtx y
, enum rtx_code comparison
, rtx size
,
4123 machine_mode mode
, int unsignedp
, rtx label
,
4124 profile_probability prob
)
4126 rtx op0
= x
, op1
= y
;
4129 /* Swap operands and condition to ensure canonical RTL. */
4130 if (swap_commutative_operands_p (x
, y
)
4131 && can_compare_p (swap_condition (comparison
), mode
, ccp_jump
))
4134 comparison
= swap_condition (comparison
);
4137 /* If OP0 is still a constant, then both X and Y must be constants
4138 or the opposite comparison is not supported. Force X into a register
4139 to create canonical RTL. */
4140 if (CONSTANT_P (op0
))
4141 op0
= force_reg (mode
, op0
);
4144 comparison
= unsigned_condition (comparison
);
4146 prepare_cmp_insn (op0
, op1
, comparison
, size
, unsignedp
, OPTAB_LIB_WIDEN
,
4148 emit_cmp_and_jump_insn_1 (test
, mode
, label
, prob
);
4152 /* Emit a library call comparison between floating point X and Y.
4153 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
4156 prepare_float_lib_cmp (rtx x
, rtx y
, enum rtx_code comparison
,
4157 rtx
*ptest
, machine_mode
*pmode
)
4159 enum rtx_code swapped
= swap_condition (comparison
);
4160 enum rtx_code reversed
= reverse_condition_maybe_unordered (comparison
);
4161 machine_mode orig_mode
= GET_MODE (x
);
4163 rtx true_rtx
, false_rtx
;
4164 rtx value
, target
, equiv
;
4167 bool reversed_p
= false;
4168 scalar_int_mode cmp_mode
= targetm
.libgcc_cmp_return_mode ();
4170 FOR_EACH_MODE_FROM (mode
, orig_mode
)
4172 if (code_to_optab (comparison
)
4173 && (libfunc
= optab_libfunc (code_to_optab (comparison
), mode
)))
4176 if (code_to_optab (swapped
)
4177 && (libfunc
= optab_libfunc (code_to_optab (swapped
), mode
)))
4180 comparison
= swapped
;
4184 if (code_to_optab (reversed
)
4185 && (libfunc
= optab_libfunc (code_to_optab (reversed
), mode
)))
4187 comparison
= reversed
;
4193 gcc_assert (mode
!= VOIDmode
);
4195 if (mode
!= orig_mode
)
4197 x
= convert_to_mode (mode
, x
, 0);
4198 y
= convert_to_mode (mode
, y
, 0);
4201 /* Attach a REG_EQUAL note describing the semantics of the libcall to
4202 the RTL. The allows the RTL optimizers to delete the libcall if the
4203 condition can be determined at compile-time. */
4204 if (comparison
== UNORDERED
4205 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4207 true_rtx
= const_true_rtx
;
4208 false_rtx
= const0_rtx
;
4215 true_rtx
= const0_rtx
;
4216 false_rtx
= const_true_rtx
;
4220 true_rtx
= const_true_rtx
;
4221 false_rtx
= const0_rtx
;
4225 true_rtx
= const1_rtx
;
4226 false_rtx
= const0_rtx
;
4230 true_rtx
= const0_rtx
;
4231 false_rtx
= constm1_rtx
;
4235 true_rtx
= constm1_rtx
;
4236 false_rtx
= const0_rtx
;
4240 true_rtx
= const0_rtx
;
4241 false_rtx
= const1_rtx
;
4249 if (comparison
== UNORDERED
)
4251 rtx temp
= simplify_gen_relational (NE
, cmp_mode
, mode
, x
, x
);
4252 equiv
= simplify_gen_relational (NE
, cmp_mode
, mode
, y
, y
);
4253 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4254 temp
, const_true_rtx
, equiv
);
4258 equiv
= simplify_gen_relational (comparison
, cmp_mode
, mode
, x
, y
);
4259 if (! FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
))
4260 equiv
= simplify_gen_ternary (IF_THEN_ELSE
, cmp_mode
, cmp_mode
,
4261 equiv
, true_rtx
, false_rtx
);
4265 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4266 cmp_mode
, x
, mode
, y
, mode
);
4267 insns
= get_insns ();
4270 target
= gen_reg_rtx (cmp_mode
);
4271 emit_libcall_block (insns
, target
, value
, equiv
);
4273 if (comparison
== UNORDERED
4274 || FLOAT_LIB_COMPARE_RETURNS_BOOL (mode
, comparison
)
4276 *ptest
= gen_rtx_fmt_ee (reversed_p
? EQ
: NE
, VOIDmode
, target
, false_rtx
);
4278 *ptest
= gen_rtx_fmt_ee (comparison
, VOIDmode
, target
, const0_rtx
);
4283 /* Generate code to indirectly jump to a location given in the rtx LOC. */
4286 emit_indirect_jump (rtx loc
)
4288 if (!targetm
.have_indirect_jump ())
4289 sorry ("indirect jumps are not available on this target");
4292 struct expand_operand ops
[1];
4293 create_address_operand (&ops
[0], loc
);
4294 expand_jump_insn (targetm
.code_for_indirect_jump
, 1, ops
);
4300 /* Emit a conditional move instruction if the machine supports one for that
4301 condition and machine mode.
4303 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4304 the mode to use should they be constants. If it is VOIDmode, they cannot
4307 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
4308 should be stored there. MODE is the mode to use should they be constants.
4309 If it is VOIDmode, they cannot both be constants.
4311 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4312 is not supported. */
4315 emit_conditional_move (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
4316 machine_mode cmode
, rtx op2
, rtx op3
,
4317 machine_mode mode
, int unsignedp
)
4321 enum insn_code icode
;
4322 enum rtx_code reversed
;
4324 /* If the two source operands are identical, that's just a move. */
4326 if (rtx_equal_p (op2
, op3
))
4329 target
= gen_reg_rtx (mode
);
4331 emit_move_insn (target
, op3
);
4335 /* If one operand is constant, make it the second one. Only do this
4336 if the other operand is not constant as well. */
4338 if (swap_commutative_operands_p (op0
, op1
))
4340 std::swap (op0
, op1
);
4341 code
= swap_condition (code
);
4344 /* get_condition will prefer to generate LT and GT even if the old
4345 comparison was against zero, so undo that canonicalization here since
4346 comparisons against zero are cheaper. */
4347 if (code
== LT
&& op1
== const1_rtx
)
4348 code
= LE
, op1
= const0_rtx
;
4349 else if (code
== GT
&& op1
== constm1_rtx
)
4350 code
= GE
, op1
= const0_rtx
;
4352 if (cmode
== VOIDmode
)
4353 cmode
= GET_MODE (op0
);
4355 enum rtx_code orig_code
= code
;
4356 bool swapped
= false;
4357 if (swap_commutative_operands_p (op2
, op3
)
4358 && ((reversed
= reversed_comparison_code_parts (code
, op0
, op1
, NULL
))
4361 std::swap (op2
, op3
);
4366 if (mode
== VOIDmode
)
4367 mode
= GET_MODE (op2
);
4369 icode
= direct_optab_handler (movcc_optab
, mode
);
4371 if (icode
== CODE_FOR_nothing
)
4375 target
= gen_reg_rtx (mode
);
4377 for (int pass
= 0; ; pass
++)
4379 code
= unsignedp
? unsigned_condition (code
) : code
;
4380 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
4382 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4383 punt and let the caller figure out how best to deal with this
4385 if (COMPARISON_P (comparison
))
4387 saved_pending_stack_adjust save
;
4388 save_pending_stack_adjust (&save
);
4389 last
= get_last_insn ();
4390 do_pending_stack_adjust ();
4391 machine_mode cmpmode
= cmode
;
4392 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4393 GET_CODE (comparison
), NULL_RTX
, unsignedp
,
4394 OPTAB_WIDEN
, &comparison
, &cmpmode
);
4397 struct expand_operand ops
[4];
4399 create_output_operand (&ops
[0], target
, mode
);
4400 create_fixed_operand (&ops
[1], comparison
);
4401 create_input_operand (&ops
[2], op2
, mode
);
4402 create_input_operand (&ops
[3], op3
, mode
);
4403 if (maybe_expand_insn (icode
, 4, ops
))
4405 if (ops
[0].value
!= target
)
4406 convert_move (target
, ops
[0].value
, false);
4410 delete_insns_since (last
);
4411 restore_pending_stack_adjust (&save
);
4417 /* If the preferred op2/op3 order is not usable, retry with other
4418 operand order, perhaps it will expand successfully. */
4421 else if ((reversed
= reversed_comparison_code_parts (orig_code
, op0
, op1
,
4427 std::swap (op2
, op3
);
4432 /* Emit a conditional negate or bitwise complement using the
4433 negcc or notcc optabs if available. Return NULL_RTX if such operations
4434 are not available. Otherwise return the RTX holding the result.
4435 TARGET is the desired destination of the result. COMP is the comparison
4436 on which to negate. If COND is true move into TARGET the negation
4437 or bitwise complement of OP1. Otherwise move OP2 into TARGET.
4438 CODE is either NEG or NOT. MODE is the machine mode in which the
4439 operation is performed. */
4442 emit_conditional_neg_or_complement (rtx target
, rtx_code code
,
4443 machine_mode mode
, rtx cond
, rtx op1
,
4446 optab op
= unknown_optab
;
4449 else if (code
== NOT
)
4454 insn_code icode
= direct_optab_handler (op
, mode
);
4456 if (icode
== CODE_FOR_nothing
)
4460 target
= gen_reg_rtx (mode
);
4462 rtx_insn
*last
= get_last_insn ();
4463 struct expand_operand ops
[4];
4465 create_output_operand (&ops
[0], target
, mode
);
4466 create_fixed_operand (&ops
[1], cond
);
4467 create_input_operand (&ops
[2], op1
, mode
);
4468 create_input_operand (&ops
[3], op2
, mode
);
4470 if (maybe_expand_insn (icode
, 4, ops
))
4472 if (ops
[0].value
!= target
)
4473 convert_move (target
, ops
[0].value
, false);
4477 delete_insns_since (last
);
4481 /* Emit a conditional addition instruction if the machine supports one for that
4482 condition and machine mode.
4484 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
4485 the mode to use should they be constants. If it is VOIDmode, they cannot
4488 OP2 should be stored in TARGET if the comparison is false, otherwise OP2+OP3
4489 should be stored there. MODE is the mode to use should they be constants.
4490 If it is VOIDmode, they cannot both be constants.
4492 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
4493 is not supported. */
4496 emit_conditional_add (rtx target
, enum rtx_code code
, rtx op0
, rtx op1
,
4497 machine_mode cmode
, rtx op2
, rtx op3
,
4498 machine_mode mode
, int unsignedp
)
4502 enum insn_code icode
;
4504 /* If one operand is constant, make it the second one. Only do this
4505 if the other operand is not constant as well. */
4507 if (swap_commutative_operands_p (op0
, op1
))
4509 std::swap (op0
, op1
);
4510 code
= swap_condition (code
);
4513 /* get_condition will prefer to generate LT and GT even if the old
4514 comparison was against zero, so undo that canonicalization here since
4515 comparisons against zero are cheaper. */
4516 if (code
== LT
&& op1
== const1_rtx
)
4517 code
= LE
, op1
= const0_rtx
;
4518 else if (code
== GT
&& op1
== constm1_rtx
)
4519 code
= GE
, op1
= const0_rtx
;
4521 if (cmode
== VOIDmode
)
4522 cmode
= GET_MODE (op0
);
4524 if (mode
== VOIDmode
)
4525 mode
= GET_MODE (op2
);
4527 icode
= optab_handler (addcc_optab
, mode
);
4529 if (icode
== CODE_FOR_nothing
)
4533 target
= gen_reg_rtx (mode
);
4535 code
= unsignedp
? unsigned_condition (code
) : code
;
4536 comparison
= simplify_gen_relational (code
, VOIDmode
, cmode
, op0
, op1
);
4538 /* We can get const0_rtx or const_true_rtx in some circumstances. Just
4539 return NULL and let the caller figure out how best to deal with this
4541 if (!COMPARISON_P (comparison
))
4544 do_pending_stack_adjust ();
4545 last
= get_last_insn ();
4546 prepare_cmp_insn (XEXP (comparison
, 0), XEXP (comparison
, 1),
4547 GET_CODE (comparison
), NULL_RTX
, unsignedp
, OPTAB_WIDEN
,
4548 &comparison
, &cmode
);
4551 struct expand_operand ops
[4];
4553 create_output_operand (&ops
[0], target
, mode
);
4554 create_fixed_operand (&ops
[1], comparison
);
4555 create_input_operand (&ops
[2], op2
, mode
);
4556 create_input_operand (&ops
[3], op3
, mode
);
4557 if (maybe_expand_insn (icode
, 4, ops
))
4559 if (ops
[0].value
!= target
)
4560 convert_move (target
, ops
[0].value
, false);
4564 delete_insns_since (last
);
4568 /* These functions attempt to generate an insn body, rather than
4569 emitting the insn, but if the gen function already emits them, we
4570 make no attempt to turn them back into naked patterns. */
4572 /* Generate and return an insn body to add Y to X. */
4575 gen_add2_insn (rtx x
, rtx y
)
4577 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (x
));
4579 gcc_assert (insn_operand_matches (icode
, 0, x
));
4580 gcc_assert (insn_operand_matches (icode
, 1, x
));
4581 gcc_assert (insn_operand_matches (icode
, 2, y
));
4583 return GEN_FCN (icode
) (x
, x
, y
);
4586 /* Generate and return an insn body to add r1 and c,
4587 storing the result in r0. */
4590 gen_add3_insn (rtx r0
, rtx r1
, rtx c
)
4592 enum insn_code icode
= optab_handler (add_optab
, GET_MODE (r0
));
4594 if (icode
== CODE_FOR_nothing
4595 || !insn_operand_matches (icode
, 0, r0
)
4596 || !insn_operand_matches (icode
, 1, r1
)
4597 || !insn_operand_matches (icode
, 2, c
))
4600 return GEN_FCN (icode
) (r0
, r1
, c
);
4604 have_add2_insn (rtx x
, rtx y
)
4606 enum insn_code icode
;
4608 gcc_assert (GET_MODE (x
) != VOIDmode
);
4610 icode
= optab_handler (add_optab
, GET_MODE (x
));
4612 if (icode
== CODE_FOR_nothing
)
4615 if (!insn_operand_matches (icode
, 0, x
)
4616 || !insn_operand_matches (icode
, 1, x
)
4617 || !insn_operand_matches (icode
, 2, y
))
4623 /* Generate and return an insn body to add Y to X. */
4626 gen_addptr3_insn (rtx x
, rtx y
, rtx z
)
4628 enum insn_code icode
= optab_handler (addptr3_optab
, GET_MODE (x
));
4630 gcc_assert (insn_operand_matches (icode
, 0, x
));
4631 gcc_assert (insn_operand_matches (icode
, 1, y
));
4632 gcc_assert (insn_operand_matches (icode
, 2, z
));
4634 return GEN_FCN (icode
) (x
, y
, z
);
4637 /* Return true if the target implements an addptr pattern and X, Y,
4638 and Z are valid for the pattern predicates. */
4641 have_addptr3_insn (rtx x
, rtx y
, rtx z
)
4643 enum insn_code icode
;
4645 gcc_assert (GET_MODE (x
) != VOIDmode
);
4647 icode
= optab_handler (addptr3_optab
, GET_MODE (x
));
4649 if (icode
== CODE_FOR_nothing
)
4652 if (!insn_operand_matches (icode
, 0, x
)
4653 || !insn_operand_matches (icode
, 1, y
)
4654 || !insn_operand_matches (icode
, 2, z
))
4660 /* Generate and return an insn body to subtract Y from X. */
4663 gen_sub2_insn (rtx x
, rtx y
)
4665 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (x
));
4667 gcc_assert (insn_operand_matches (icode
, 0, x
));
4668 gcc_assert (insn_operand_matches (icode
, 1, x
));
4669 gcc_assert (insn_operand_matches (icode
, 2, y
));
4671 return GEN_FCN (icode
) (x
, x
, y
);
4674 /* Generate and return an insn body to subtract r1 and c,
4675 storing the result in r0. */
4678 gen_sub3_insn (rtx r0
, rtx r1
, rtx c
)
4680 enum insn_code icode
= optab_handler (sub_optab
, GET_MODE (r0
));
4682 if (icode
== CODE_FOR_nothing
4683 || !insn_operand_matches (icode
, 0, r0
)
4684 || !insn_operand_matches (icode
, 1, r1
)
4685 || !insn_operand_matches (icode
, 2, c
))
4688 return GEN_FCN (icode
) (r0
, r1
, c
);
4692 have_sub2_insn (rtx x
, rtx y
)
4694 enum insn_code icode
;
4696 gcc_assert (GET_MODE (x
) != VOIDmode
);
4698 icode
= optab_handler (sub_optab
, GET_MODE (x
));
4700 if (icode
== CODE_FOR_nothing
)
4703 if (!insn_operand_matches (icode
, 0, x
)
4704 || !insn_operand_matches (icode
, 1, x
)
4705 || !insn_operand_matches (icode
, 2, y
))
4711 /* Generate the body of an insn to extend Y (with mode MFROM)
4712 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
4715 gen_extend_insn (rtx x
, rtx y
, machine_mode mto
,
4716 machine_mode mfrom
, int unsignedp
)
4718 enum insn_code icode
= can_extend_p (mto
, mfrom
, unsignedp
);
4719 return GEN_FCN (icode
) (x
, y
);
4722 /* Generate code to convert FROM to floating point
4723 and store in TO. FROM must be fixed point and not VOIDmode.
4724 UNSIGNEDP nonzero means regard FROM as unsigned.
4725 Normally this is done by correcting the final value
4726 if it is negative. */
4729 expand_float (rtx to
, rtx from
, int unsignedp
)
4731 enum insn_code icode
;
4733 scalar_mode from_mode
, to_mode
;
4734 machine_mode fmode
, imode
;
4735 bool can_do_signed
= false;
4737 /* Crash now, because we won't be able to decide which mode to use. */
4738 gcc_assert (GET_MODE (from
) != VOIDmode
);
4740 /* Look for an insn to do the conversion. Do it in the specified
4741 modes if possible; otherwise convert either input, output or both to
4742 wider mode. If the integer mode is wider than the mode of FROM,
4743 we can do the conversion signed even if the input is unsigned. */
4745 FOR_EACH_MODE_FROM (fmode
, GET_MODE (to
))
4746 FOR_EACH_MODE_FROM (imode
, GET_MODE (from
))
4748 int doing_unsigned
= unsignedp
;
4750 if (fmode
!= GET_MODE (to
)
4751 && (significand_size (fmode
)
4752 < GET_MODE_UNIT_PRECISION (GET_MODE (from
))))
4755 icode
= can_float_p (fmode
, imode
, unsignedp
);
4756 if (icode
== CODE_FOR_nothing
&& unsignedp
)
4758 enum insn_code scode
= can_float_p (fmode
, imode
, 0);
4759 if (scode
!= CODE_FOR_nothing
)
4760 can_do_signed
= true;
4761 if (imode
!= GET_MODE (from
))
4762 icode
= scode
, doing_unsigned
= 0;
4765 if (icode
!= CODE_FOR_nothing
)
4767 if (imode
!= GET_MODE (from
))
4768 from
= convert_to_mode (imode
, from
, unsignedp
);
4770 if (fmode
!= GET_MODE (to
))
4771 target
= gen_reg_rtx (fmode
);
4773 emit_unop_insn (icode
, target
, from
,
4774 doing_unsigned
? UNSIGNED_FLOAT
: FLOAT
);
4777 convert_move (to
, target
, 0);
4782 /* Unsigned integer, and no way to convert directly. Convert as signed,
4783 then unconditionally adjust the result. */
4786 && is_a
<scalar_mode
> (GET_MODE (to
), &to_mode
)
4787 && is_a
<scalar_mode
> (GET_MODE (from
), &from_mode
))
4789 opt_scalar_mode fmode_iter
;
4790 rtx_code_label
*label
= gen_label_rtx ();
4792 REAL_VALUE_TYPE offset
;
4794 /* Look for a usable floating mode FMODE wider than the source and at
4795 least as wide as the target. Using FMODE will avoid rounding woes
4796 with unsigned values greater than the signed maximum value. */
4798 FOR_EACH_MODE_FROM (fmode_iter
, to_mode
)
4800 scalar_mode fmode
= fmode_iter
.require ();
4801 if (GET_MODE_PRECISION (from_mode
) < GET_MODE_BITSIZE (fmode
)
4802 && can_float_p (fmode
, from_mode
, 0) != CODE_FOR_nothing
)
4806 if (!fmode_iter
.exists (&fmode
))
4808 /* There is no such mode. Pretend the target is wide enough. */
4811 /* Avoid double-rounding when TO is narrower than FROM. */
4812 if ((significand_size (fmode
) + 1)
4813 < GET_MODE_PRECISION (from_mode
))
4816 rtx_code_label
*neglabel
= gen_label_rtx ();
4818 /* Don't use TARGET if it isn't a register, is a hard register,
4819 or is the wrong mode. */
4821 || REGNO (target
) < FIRST_PSEUDO_REGISTER
4822 || GET_MODE (target
) != fmode
)
4823 target
= gen_reg_rtx (fmode
);
4826 do_pending_stack_adjust ();
4828 /* Test whether the sign bit is set. */
4829 emit_cmp_and_jump_insns (from
, const0_rtx
, LT
, NULL_RTX
, imode
,
4832 /* The sign bit is not set. Convert as signed. */
4833 expand_float (target
, from
, 0);
4834 emit_jump_insn (targetm
.gen_jump (label
));
4837 /* The sign bit is set.
4838 Convert to a usable (positive signed) value by shifting right
4839 one bit, while remembering if a nonzero bit was shifted
4840 out; i.e., compute (from & 1) | (from >> 1). */
4842 emit_label (neglabel
);
4843 temp
= expand_binop (imode
, and_optab
, from
, const1_rtx
,
4844 NULL_RTX
, 1, OPTAB_LIB_WIDEN
);
4845 temp1
= expand_shift (RSHIFT_EXPR
, imode
, from
, 1, NULL_RTX
, 1);
4846 temp
= expand_binop (imode
, ior_optab
, temp
, temp1
, temp
, 1,
4848 expand_float (target
, temp
, 0);
4850 /* Multiply by 2 to undo the shift above. */
4851 temp
= expand_binop (fmode
, add_optab
, target
, target
,
4852 target
, 0, OPTAB_LIB_WIDEN
);
4854 emit_move_insn (target
, temp
);
4856 do_pending_stack_adjust ();
4862 /* If we are about to do some arithmetic to correct for an
4863 unsigned operand, do it in a pseudo-register. */
4865 if (to_mode
!= fmode
4866 || !REG_P (to
) || REGNO (to
) < FIRST_PSEUDO_REGISTER
)
4867 target
= gen_reg_rtx (fmode
);
4869 /* Convert as signed integer to floating. */
4870 expand_float (target
, from
, 0);
4872 /* If FROM is negative (and therefore TO is negative),
4873 correct its value by 2**bitwidth. */
4875 do_pending_stack_adjust ();
4876 emit_cmp_and_jump_insns (from
, const0_rtx
, GE
, NULL_RTX
, from_mode
,
4880 real_2expN (&offset
, GET_MODE_PRECISION (from_mode
), fmode
);
4881 temp
= expand_binop (fmode
, add_optab
, target
,
4882 const_double_from_real_value (offset
, fmode
),
4883 target
, 0, OPTAB_LIB_WIDEN
);
4885 emit_move_insn (target
, temp
);
4887 do_pending_stack_adjust ();
4892 /* No hardware instruction available; call a library routine. */
4897 convert_optab tab
= unsignedp
? ufloat_optab
: sfloat_optab
;
4899 if (is_narrower_int_mode (GET_MODE (from
), SImode
))
4900 from
= convert_to_mode (SImode
, from
, unsignedp
);
4902 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
4903 gcc_assert (libfunc
);
4907 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
4908 GET_MODE (to
), from
, GET_MODE (from
));
4909 insns
= get_insns ();
4912 emit_libcall_block (insns
, target
, value
,
4913 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FLOAT
: FLOAT
,
4914 GET_MODE (to
), from
));
4919 /* Copy result to requested destination
4920 if we have been computing in a temp location. */
4924 if (GET_MODE (target
) == GET_MODE (to
))
4925 emit_move_insn (to
, target
);
4927 convert_move (to
, target
, 0);
4931 /* Generate code to convert FROM to fixed point and store in TO. FROM
4932 must be floating point. */
4935 expand_fix (rtx to
, rtx from
, int unsignedp
)
4937 enum insn_code icode
;
4939 machine_mode fmode
, imode
;
4940 opt_scalar_mode fmode_iter
;
4941 bool must_trunc
= false;
4943 /* We first try to find a pair of modes, one real and one integer, at
4944 least as wide as FROM and TO, respectively, in which we can open-code
4945 this conversion. If the integer mode is wider than the mode of TO,
4946 we can do the conversion either signed or unsigned. */
4948 FOR_EACH_MODE_FROM (fmode
, GET_MODE (from
))
4949 FOR_EACH_MODE_FROM (imode
, GET_MODE (to
))
4951 int doing_unsigned
= unsignedp
;
4953 icode
= can_fix_p (imode
, fmode
, unsignedp
, &must_trunc
);
4954 if (icode
== CODE_FOR_nothing
&& imode
!= GET_MODE (to
) && unsignedp
)
4955 icode
= can_fix_p (imode
, fmode
, 0, &must_trunc
), doing_unsigned
= 0;
4957 if (icode
!= CODE_FOR_nothing
)
4959 rtx_insn
*last
= get_last_insn ();
4960 if (fmode
!= GET_MODE (from
))
4961 from
= convert_to_mode (fmode
, from
, 0);
4965 rtx temp
= gen_reg_rtx (GET_MODE (from
));
4966 from
= expand_unop (GET_MODE (from
), ftrunc_optab
, from
,
4970 if (imode
!= GET_MODE (to
))
4971 target
= gen_reg_rtx (imode
);
4973 if (maybe_emit_unop_insn (icode
, target
, from
,
4974 doing_unsigned
? UNSIGNED_FIX
: FIX
))
4977 convert_move (to
, target
, unsignedp
);
4980 delete_insns_since (last
);
4984 /* For an unsigned conversion, there is one more way to do it.
4985 If we have a signed conversion, we generate code that compares
4986 the real value to the largest representable positive number. If if
4987 is smaller, the conversion is done normally. Otherwise, subtract
4988 one plus the highest signed number, convert, and add it back.
4990 We only need to check all real modes, since we know we didn't find
4991 anything with a wider integer mode.
4993 This code used to extend FP value into mode wider than the destination.
4994 This is needed for decimal float modes which cannot accurately
4995 represent one plus the highest signed number of the same size, but
4996 not for binary modes. Consider, for instance conversion from SFmode
4999 The hot path through the code is dealing with inputs smaller than 2^63
5000 and doing just the conversion, so there is no bits to lose.
5002 In the other path we know the value is positive in the range 2^63..2^64-1
5003 inclusive. (as for other input overflow happens and result is undefined)
5004 So we know that the most important bit set in mantissa corresponds to
5005 2^63. The subtraction of 2^63 should not generate any rounding as it
5006 simply clears out that bit. The rest is trivial. */
5008 scalar_int_mode to_mode
;
5010 && is_a
<scalar_int_mode
> (GET_MODE (to
), &to_mode
)
5011 && HWI_COMPUTABLE_MODE_P (to_mode
))
5012 FOR_EACH_MODE_FROM (fmode_iter
, as_a
<scalar_mode
> (GET_MODE (from
)))
5014 scalar_mode fmode
= fmode_iter
.require ();
5015 if (CODE_FOR_nothing
!= can_fix_p (to_mode
, fmode
,
5017 && (!DECIMAL_FLOAT_MODE_P (fmode
)
5018 || (GET_MODE_BITSIZE (fmode
) > GET_MODE_PRECISION (to_mode
))))
5021 REAL_VALUE_TYPE offset
;
5023 rtx_code_label
*lab1
, *lab2
;
5026 bitsize
= GET_MODE_PRECISION (to_mode
);
5027 real_2expN (&offset
, bitsize
- 1, fmode
);
5028 limit
= const_double_from_real_value (offset
, fmode
);
5029 lab1
= gen_label_rtx ();
5030 lab2
= gen_label_rtx ();
5032 if (fmode
!= GET_MODE (from
))
5033 from
= convert_to_mode (fmode
, from
, 0);
5035 /* See if we need to do the subtraction. */
5036 do_pending_stack_adjust ();
5037 emit_cmp_and_jump_insns (from
, limit
, GE
, NULL_RTX
,
5038 GET_MODE (from
), 0, lab1
);
5040 /* If not, do the signed "fix" and branch around fixup code. */
5041 expand_fix (to
, from
, 0);
5042 emit_jump_insn (targetm
.gen_jump (lab2
));
5045 /* Otherwise, subtract 2**(N-1), convert to signed number,
5046 then add 2**(N-1). Do the addition using XOR since this
5047 will often generate better code. */
5049 target
= expand_binop (GET_MODE (from
), sub_optab
, from
, limit
,
5050 NULL_RTX
, 0, OPTAB_LIB_WIDEN
);
5051 expand_fix (to
, target
, 0);
5052 target
= expand_binop (to_mode
, xor_optab
, to
,
5054 (HOST_WIDE_INT_1
<< (bitsize
- 1),
5056 to
, 1, OPTAB_LIB_WIDEN
);
5059 emit_move_insn (to
, target
);
5063 if (optab_handler (mov_optab
, to_mode
) != CODE_FOR_nothing
)
5065 /* Make a place for a REG_NOTE and add it. */
5066 insn
= emit_move_insn (to
, to
);
5067 set_dst_reg_note (insn
, REG_EQUAL
,
5068 gen_rtx_fmt_e (UNSIGNED_FIX
, to_mode
,
5077 /* We can't do it with an insn, so use a library call. But first ensure
5078 that the mode of TO is at least as wide as SImode, since those are the
5079 only library calls we know about. */
5081 if (is_narrower_int_mode (GET_MODE (to
), SImode
))
5083 target
= gen_reg_rtx (SImode
);
5085 expand_fix (target
, from
, unsignedp
);
5093 convert_optab tab
= unsignedp
? ufix_optab
: sfix_optab
;
5094 libfunc
= convert_optab_libfunc (tab
, GET_MODE (to
), GET_MODE (from
));
5095 gcc_assert (libfunc
);
5099 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
,
5100 GET_MODE (to
), from
, GET_MODE (from
));
5101 insns
= get_insns ();
5104 emit_libcall_block (insns
, target
, value
,
5105 gen_rtx_fmt_e (unsignedp
? UNSIGNED_FIX
: FIX
,
5106 GET_MODE (to
), from
));
5111 if (GET_MODE (to
) == GET_MODE (target
))
5112 emit_move_insn (to
, target
);
5114 convert_move (to
, target
, 0);
5119 /* Promote integer arguments for a libcall if necessary.
5120 emit_library_call_value cannot do the promotion because it does not
5121 know if it should do a signed or unsigned promotion. This is because
5122 there are no tree types defined for libcalls. */
5125 prepare_libcall_arg (rtx arg
, int uintp
)
5127 scalar_int_mode mode
;
5128 machine_mode arg_mode
;
5129 if (is_a
<scalar_int_mode
> (GET_MODE (arg
), &mode
))
5131 /* If we need to promote the integer function argument we need to do
5132 it here instead of inside emit_library_call_value because in
5133 emit_library_call_value we don't know if we should do a signed or
5134 unsigned promotion. */
5137 arg_mode
= promote_function_mode (NULL_TREE
, mode
,
5138 &unsigned_p
, NULL_TREE
, 0);
5139 if (arg_mode
!= mode
)
5140 return convert_to_mode (arg_mode
, arg
, uintp
);
5145 /* Generate code to convert FROM or TO a fixed-point.
5146 If UINTP is true, either TO or FROM is an unsigned integer.
5147 If SATP is true, we need to saturate the result. */
5150 expand_fixed_convert (rtx to
, rtx from
, int uintp
, int satp
)
5152 machine_mode to_mode
= GET_MODE (to
);
5153 machine_mode from_mode
= GET_MODE (from
);
5155 enum rtx_code this_code
;
5156 enum insn_code code
;
5161 if (to_mode
== from_mode
)
5163 emit_move_insn (to
, from
);
5169 tab
= satp
? satfractuns_optab
: fractuns_optab
;
5170 this_code
= satp
? UNSIGNED_SAT_FRACT
: UNSIGNED_FRACT_CONVERT
;
5174 tab
= satp
? satfract_optab
: fract_optab
;
5175 this_code
= satp
? SAT_FRACT
: FRACT_CONVERT
;
5177 code
= convert_optab_handler (tab
, to_mode
, from_mode
);
5178 if (code
!= CODE_FOR_nothing
)
5180 emit_unop_insn (code
, to
, from
, this_code
);
5184 libfunc
= convert_optab_libfunc (tab
, to_mode
, from_mode
);
5185 gcc_assert (libfunc
);
5187 from
= prepare_libcall_arg (from
, uintp
);
5188 from_mode
= GET_MODE (from
);
5191 value
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_CONST
, to_mode
,
5193 insns
= get_insns ();
5196 emit_libcall_block (insns
, to
, value
,
5197 gen_rtx_fmt_e (optab_to_code (tab
), to_mode
, from
));
5200 /* Generate code to convert FROM to fixed point and store in TO. FROM
5201 must be floating point, TO must be signed. Use the conversion optab
5202 TAB to do the conversion. */
5205 expand_sfix_optab (rtx to
, rtx from
, convert_optab tab
)
5207 enum insn_code icode
;
5209 machine_mode fmode
, imode
;
5211 /* We first try to find a pair of modes, one real and one integer, at
5212 least as wide as FROM and TO, respectively, in which we can open-code
5213 this conversion. If the integer mode is wider than the mode of TO,
5214 we can do the conversion either signed or unsigned. */
5216 FOR_EACH_MODE_FROM (fmode
, GET_MODE (from
))
5217 FOR_EACH_MODE_FROM (imode
, GET_MODE (to
))
5219 icode
= convert_optab_handler (tab
, imode
, fmode
);
5220 if (icode
!= CODE_FOR_nothing
)
5222 rtx_insn
*last
= get_last_insn ();
5223 if (fmode
!= GET_MODE (from
))
5224 from
= convert_to_mode (fmode
, from
, 0);
5226 if (imode
!= GET_MODE (to
))
5227 target
= gen_reg_rtx (imode
);
5229 if (!maybe_emit_unop_insn (icode
, target
, from
, UNKNOWN
))
5231 delete_insns_since (last
);
5235 convert_move (to
, target
, 0);
5243 /* Report whether we have an instruction to perform the operation
5244 specified by CODE on operands of mode MODE. */
5246 have_insn_for (enum rtx_code code
, machine_mode mode
)
5248 return (code_to_optab (code
)
5249 && (optab_handler (code_to_optab (code
), mode
)
5250 != CODE_FOR_nothing
));
5253 /* Print information about the current contents of the optabs on
5257 debug_optab_libfuncs (void)
5261 /* Dump the arithmetic optabs. */
5262 for (i
= FIRST_NORM_OPTAB
; i
<= LAST_NORMLIB_OPTAB
; ++i
)
5263 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
5265 rtx l
= optab_libfunc ((optab
) i
, (machine_mode
) j
);
5268 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
5269 fprintf (stderr
, "%s\t%s:\t%s\n",
5270 GET_RTX_NAME (optab_to_code ((optab
) i
)),
5276 /* Dump the conversion optabs. */
5277 for (i
= FIRST_CONV_OPTAB
; i
<= LAST_CONVLIB_OPTAB
; ++i
)
5278 for (j
= 0; j
< NUM_MACHINE_MODES
; ++j
)
5279 for (k
= 0; k
< NUM_MACHINE_MODES
; ++k
)
5281 rtx l
= convert_optab_libfunc ((optab
) i
, (machine_mode
) j
,
5285 gcc_assert (GET_CODE (l
) == SYMBOL_REF
);
5286 fprintf (stderr
, "%s\t%s\t%s:\t%s\n",
5287 GET_RTX_NAME (optab_to_code ((optab
) i
)),
5295 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
5296 CODE. Return 0 on failure. */
5299 gen_cond_trap (enum rtx_code code
, rtx op1
, rtx op2
, rtx tcode
)
5301 machine_mode mode
= GET_MODE (op1
);
5302 enum insn_code icode
;
5306 if (mode
== VOIDmode
)
5309 icode
= optab_handler (ctrap_optab
, mode
);
5310 if (icode
== CODE_FOR_nothing
)
5313 /* Some targets only accept a zero trap code. */
5314 if (!insn_operand_matches (icode
, 3, tcode
))
5317 do_pending_stack_adjust ();
5319 prepare_cmp_insn (op1
, op2
, code
, NULL_RTX
, false, OPTAB_DIRECT
,
5324 insn
= GEN_FCN (icode
) (trap_rtx
, XEXP (trap_rtx
, 0), XEXP (trap_rtx
, 1),
5327 /* If that failed, then give up. */
5335 insn
= get_insns ();
5340 /* Return rtx code for TCODE. Use UNSIGNEDP to select signed
5341 or unsigned operation code. */
5344 get_rtx_code (enum tree_code tcode
, bool unsignedp
)
5356 code
= unsignedp
? LTU
: LT
;
5359 code
= unsignedp
? LEU
: LE
;
5362 code
= unsignedp
? GTU
: GT
;
5365 code
= unsignedp
? GEU
: GE
;
5368 case UNORDERED_EXPR
:
5407 /* Return a comparison rtx of mode CMP_MODE for COND. Use UNSIGNEDP to
5408 select signed or unsigned operators. OPNO holds the index of the
5409 first comparison operand for insn ICODE. Do not generate the
5410 compare instruction itself. */
5413 vector_compare_rtx (machine_mode cmp_mode
, enum tree_code tcode
,
5414 tree t_op0
, tree t_op1
, bool unsignedp
,
5415 enum insn_code icode
, unsigned int opno
)
5417 struct expand_operand ops
[2];
5418 rtx rtx_op0
, rtx_op1
;
5419 machine_mode m0
, m1
;
5420 enum rtx_code rcode
= get_rtx_code (tcode
, unsignedp
);
5422 gcc_assert (TREE_CODE_CLASS (tcode
) == tcc_comparison
);
5424 /* Expand operands. For vector types with scalar modes, e.g. where int64x1_t
5425 has mode DImode, this can produce a constant RTX of mode VOIDmode; in such
5426 cases, use the original mode. */
5427 rtx_op0
= expand_expr (t_op0
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op0
)),
5429 m0
= GET_MODE (rtx_op0
);
5431 m0
= TYPE_MODE (TREE_TYPE (t_op0
));
5433 rtx_op1
= expand_expr (t_op1
, NULL_RTX
, TYPE_MODE (TREE_TYPE (t_op1
)),
5435 m1
= GET_MODE (rtx_op1
);
5437 m1
= TYPE_MODE (TREE_TYPE (t_op1
));
5439 create_input_operand (&ops
[0], rtx_op0
, m0
);
5440 create_input_operand (&ops
[1], rtx_op1
, m1
);
5441 if (!maybe_legitimize_operands (icode
, opno
, 2, ops
))
5443 return gen_rtx_fmt_ee (rcode
, cmp_mode
, ops
[0].value
, ops
[1].value
);
5446 /* Check if vec_perm mask SEL is a constant equivalent to a shift of
5447 the first vec_perm operand, assuming the second operand (for left shift
5448 first operand) is a constant vector of zeros. Return the shift distance
5449 in bits if so, or NULL_RTX if the vec_perm is not a shift. MODE is the
5450 mode of the value being shifted. SHIFT_OPTAB is vec_shr_optab for right
5451 shift or vec_shl_optab for left shift. */
5453 shift_amt_for_vec_perm_mask (machine_mode mode
, const vec_perm_indices
&sel
,
5456 unsigned int bitsize
= GET_MODE_UNIT_BITSIZE (mode
);
5457 poly_int64 first
= sel
[0];
5458 if (maybe_ge (sel
[0], GET_MODE_NUNITS (mode
)))
5461 if (shift_optab
== vec_shl_optab
)
5464 if (!GET_MODE_NUNITS (mode
).is_constant (&nelt
))
5466 unsigned firstidx
= 0;
5467 for (unsigned int i
= 0; i
< nelt
; i
++)
5469 if (known_eq (sel
[i
], nelt
))
5471 if (i
== 0 || firstidx
)
5476 ? maybe_ne (sel
[i
], nelt
+ i
- firstidx
)
5477 : maybe_ge (sel
[i
], nelt
))
5485 else if (!sel
.series_p (0, 1, first
, 1))
5488 if (!GET_MODE_NUNITS (mode
).is_constant (&nelt
))
5490 for (unsigned int i
= 1; i
< nelt
; i
++)
5492 poly_int64 expected
= i
+ first
;
5493 /* Indices into the second vector are all equivalent. */
5494 if (maybe_lt (sel
[i
], nelt
)
5495 ? maybe_ne (sel
[i
], expected
)
5496 : maybe_lt (expected
, nelt
))
5501 return gen_int_shift_amount (mode
, first
* bitsize
);
5504 /* A subroutine of expand_vec_perm_var for expanding one vec_perm insn. */
5507 expand_vec_perm_1 (enum insn_code icode
, rtx target
,
5508 rtx v0
, rtx v1
, rtx sel
)
5510 machine_mode tmode
= GET_MODE (target
);
5511 machine_mode smode
= GET_MODE (sel
);
5512 struct expand_operand ops
[4];
5514 gcc_assert (GET_MODE_CLASS (smode
) == MODE_VECTOR_INT
5515 || mode_for_int_vector (tmode
).require () == smode
);
5516 create_output_operand (&ops
[0], target
, tmode
);
5517 create_input_operand (&ops
[3], sel
, smode
);
5519 /* Make an effort to preserve v0 == v1. The target expander is able to
5520 rely on this to determine if we're permuting a single input operand. */
5521 if (rtx_equal_p (v0
, v1
))
5523 if (!insn_operand_matches (icode
, 1, v0
))
5524 v0
= force_reg (tmode
, v0
);
5525 gcc_checking_assert (insn_operand_matches (icode
, 1, v0
));
5526 gcc_checking_assert (insn_operand_matches (icode
, 2, v0
));
5528 create_fixed_operand (&ops
[1], v0
);
5529 create_fixed_operand (&ops
[2], v0
);
5533 create_input_operand (&ops
[1], v0
, tmode
);
5534 create_input_operand (&ops
[2], v1
, tmode
);
5537 if (maybe_expand_insn (icode
, 4, ops
))
5538 return ops
[0].value
;
5542 /* Implement a permutation of vectors v0 and v1 using the permutation
5543 vector in SEL and return the result. Use TARGET to hold the result
5544 if nonnull and convenient.
5546 MODE is the mode of the vectors being permuted (V0 and V1). SEL_MODE
5547 is the TYPE_MODE associated with SEL, or BLKmode if SEL isn't known
5548 to have a particular mode. */
5551 expand_vec_perm_const (machine_mode mode
, rtx v0
, rtx v1
,
5552 const vec_perm_builder
&sel
, machine_mode sel_mode
,
5555 if (!target
|| !register_operand (target
, mode
))
5556 target
= gen_reg_rtx (mode
);
5558 /* Set QIMODE to a different vector mode with byte elements.
5559 If no such mode, or if MODE already has byte elements, use VOIDmode. */
5560 machine_mode qimode
;
5561 if (!qimode_for_vec_perm (mode
).exists (&qimode
))
5564 rtx_insn
*last
= get_last_insn ();
5566 bool single_arg_p
= rtx_equal_p (v0
, v1
);
5567 /* Always specify two input vectors here and leave the target to handle
5568 cases in which the inputs are equal. Not all backends can cope with
5569 the single-input representation when testing for a double-input
5570 target instruction. */
5571 vec_perm_indices
indices (sel
, 2, GET_MODE_NUNITS (mode
));
5573 /* See if this can be handled with a vec_shr or vec_shl. We only do this
5574 if the second (for vec_shr) or first (for vec_shl) vector is all
5576 insn_code shift_code
= CODE_FOR_nothing
;
5577 insn_code shift_code_qi
= CODE_FOR_nothing
;
5578 optab shift_optab
= unknown_optab
;
5580 if (v1
== CONST0_RTX (GET_MODE (v1
)))
5581 shift_optab
= vec_shr_optab
;
5582 else if (v0
== CONST0_RTX (GET_MODE (v0
)))
5584 shift_optab
= vec_shl_optab
;
5587 if (shift_optab
!= unknown_optab
)
5589 shift_code
= optab_handler (shift_optab
, mode
);
5590 shift_code_qi
= ((qimode
!= VOIDmode
&& qimode
!= mode
)
5591 ? optab_handler (shift_optab
, qimode
)
5592 : CODE_FOR_nothing
);
5594 if (shift_code
!= CODE_FOR_nothing
|| shift_code_qi
!= CODE_FOR_nothing
)
5596 rtx shift_amt
= shift_amt_for_vec_perm_mask (mode
, indices
, shift_optab
);
5599 struct expand_operand ops
[3];
5600 if (shift_code
!= CODE_FOR_nothing
)
5602 create_output_operand (&ops
[0], target
, mode
);
5603 create_input_operand (&ops
[1], v2
, mode
);
5604 create_convert_operand_from_type (&ops
[2], shift_amt
, sizetype
);
5605 if (maybe_expand_insn (shift_code
, 3, ops
))
5606 return ops
[0].value
;
5608 if (shift_code_qi
!= CODE_FOR_nothing
)
5610 rtx tmp
= gen_reg_rtx (qimode
);
5611 create_output_operand (&ops
[0], tmp
, qimode
);
5612 create_input_operand (&ops
[1], gen_lowpart (qimode
, v2
), qimode
);
5613 create_convert_operand_from_type (&ops
[2], shift_amt
, sizetype
);
5614 if (maybe_expand_insn (shift_code_qi
, 3, ops
))
5615 return gen_lowpart (mode
, ops
[0].value
);
5620 if (targetm
.vectorize
.vec_perm_const
!= NULL
)
5622 v0
= force_reg (mode
, v0
);
5626 v1
= force_reg (mode
, v1
);
5628 if (targetm
.vectorize
.vec_perm_const (mode
, target
, v0
, v1
, indices
))
5632 /* Fall back to a constant byte-based permutation. */
5633 vec_perm_indices qimode_indices
;
5634 rtx target_qi
= NULL_RTX
, v0_qi
= NULL_RTX
, v1_qi
= NULL_RTX
;
5635 if (qimode
!= VOIDmode
)
5637 qimode_indices
.new_expanded_vector (indices
, GET_MODE_UNIT_SIZE (mode
));
5638 target_qi
= gen_reg_rtx (qimode
);
5639 v0_qi
= gen_lowpart (qimode
, v0
);
5640 v1_qi
= gen_lowpart (qimode
, v1
);
5641 if (targetm
.vectorize
.vec_perm_const
!= NULL
5642 && targetm
.vectorize
.vec_perm_const (qimode
, target_qi
, v0_qi
,
5643 v1_qi
, qimode_indices
))
5644 return gen_lowpart (mode
, target_qi
);
5647 /* Otherwise expand as a fully variable permuation. */
5649 /* The optabs are only defined for selectors with the same width
5650 as the values being permuted. */
5651 machine_mode required_sel_mode
;
5652 if (!mode_for_int_vector (mode
).exists (&required_sel_mode
)
5653 || !VECTOR_MODE_P (required_sel_mode
))
5655 delete_insns_since (last
);
5659 /* We know that it is semantically valid to treat SEL as having SEL_MODE.
5660 If that isn't the mode we want then we need to prove that using
5661 REQUIRED_SEL_MODE is OK. */
5662 if (sel_mode
!= required_sel_mode
)
5664 if (!selector_fits_mode_p (required_sel_mode
, indices
))
5666 delete_insns_since (last
);
5669 sel_mode
= required_sel_mode
;
5672 insn_code icode
= direct_optab_handler (vec_perm_optab
, mode
);
5673 if (icode
!= CODE_FOR_nothing
)
5675 rtx sel_rtx
= vec_perm_indices_to_rtx (sel_mode
, indices
);
5676 rtx tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel_rtx
);
5681 if (qimode
!= VOIDmode
5682 && selector_fits_mode_p (qimode
, qimode_indices
))
5684 icode
= direct_optab_handler (vec_perm_optab
, qimode
);
5685 if (icode
!= CODE_FOR_nothing
)
5687 rtx sel_qi
= vec_perm_indices_to_rtx (qimode
, qimode_indices
);
5688 rtx tmp
= expand_vec_perm_1 (icode
, target_qi
, v0_qi
, v1_qi
, sel_qi
);
5690 return gen_lowpart (mode
, tmp
);
5694 delete_insns_since (last
);
5698 /* Implement a permutation of vectors v0 and v1 using the permutation
5699 vector in SEL and return the result. Use TARGET to hold the result
5700 if nonnull and convenient.
5702 MODE is the mode of the vectors being permuted (V0 and V1).
5703 SEL must have the integer equivalent of MODE and is known to be
5704 unsuitable for permutes with a constant permutation vector. */
5707 expand_vec_perm_var (machine_mode mode
, rtx v0
, rtx v1
, rtx sel
, rtx target
)
5709 enum insn_code icode
;
5713 u
= GET_MODE_UNIT_SIZE (mode
);
5715 if (!target
|| GET_MODE (target
) != mode
)
5716 target
= gen_reg_rtx (mode
);
5718 icode
= direct_optab_handler (vec_perm_optab
, mode
);
5719 if (icode
!= CODE_FOR_nothing
)
5721 tmp
= expand_vec_perm_1 (icode
, target
, v0
, v1
, sel
);
5726 /* As a special case to aid several targets, lower the element-based
5727 permutation to a byte-based permutation and try again. */
5728 machine_mode qimode
;
5729 if (!qimode_for_vec_perm (mode
).exists (&qimode
)
5730 || maybe_gt (GET_MODE_NUNITS (qimode
), GET_MODE_MASK (QImode
) + 1))
5732 icode
= direct_optab_handler (vec_perm_optab
, qimode
);
5733 if (icode
== CODE_FOR_nothing
)
5736 /* Multiply each element by its byte size. */
5737 machine_mode selmode
= GET_MODE (sel
);
5739 sel
= expand_simple_binop (selmode
, PLUS
, sel
, sel
,
5740 NULL
, 0, OPTAB_DIRECT
);
5742 sel
= expand_simple_binop (selmode
, ASHIFT
, sel
,
5743 gen_int_shift_amount (selmode
, exact_log2 (u
)),
5744 NULL
, 0, OPTAB_DIRECT
);
5745 gcc_assert (sel
!= NULL
);
5747 /* Broadcast the low byte each element into each of its bytes.
5748 The encoding has U interleaved stepped patterns, one for each
5749 byte of an element. */
5750 vec_perm_builder
const_sel (GET_MODE_SIZE (mode
), u
, 3);
5751 unsigned int low_byte_in_u
= BYTES_BIG_ENDIAN
? u
- 1 : 0;
5752 for (i
= 0; i
< 3; ++i
)
5753 for (unsigned int j
= 0; j
< u
; ++j
)
5754 const_sel
.quick_push (i
* u
+ low_byte_in_u
);
5755 sel
= gen_lowpart (qimode
, sel
);
5756 sel
= expand_vec_perm_const (qimode
, sel
, sel
, const_sel
, qimode
, NULL
);
5757 gcc_assert (sel
!= NULL
);
5759 /* Add the byte offset to each byte element. */
5760 /* Note that the definition of the indicies here is memory ordering,
5761 so there should be no difference between big and little endian. */
5762 rtx_vector_builder
byte_indices (qimode
, u
, 1);
5763 for (i
= 0; i
< u
; ++i
)
5764 byte_indices
.quick_push (GEN_INT (i
));
5765 tmp
= byte_indices
.build ();
5766 sel_qi
= expand_simple_binop (qimode
, PLUS
, sel
, tmp
,
5767 sel
, 0, OPTAB_DIRECT
);
5768 gcc_assert (sel_qi
!= NULL
);
5770 tmp
= mode
!= qimode
? gen_reg_rtx (qimode
) : target
;
5771 tmp
= expand_vec_perm_1 (icode
, tmp
, gen_lowpart (qimode
, v0
),
5772 gen_lowpart (qimode
, v1
), sel_qi
);
5774 tmp
= gen_lowpart (mode
, tmp
);
5778 /* Generate insns for a VEC_COND_EXPR with mask, given its TYPE and its
5782 expand_vec_cond_mask_expr (tree vec_cond_type
, tree op0
, tree op1
, tree op2
,
5785 struct expand_operand ops
[4];
5786 machine_mode mode
= TYPE_MODE (vec_cond_type
);
5787 machine_mode mask_mode
= TYPE_MODE (TREE_TYPE (op0
));
5788 enum insn_code icode
= get_vcond_mask_icode (mode
, mask_mode
);
5789 rtx mask
, rtx_op1
, rtx_op2
;
5791 if (icode
== CODE_FOR_nothing
)
5794 mask
= expand_normal (op0
);
5795 rtx_op1
= expand_normal (op1
);
5796 rtx_op2
= expand_normal (op2
);
5798 mask
= force_reg (mask_mode
, mask
);
5799 rtx_op1
= force_reg (GET_MODE (rtx_op1
), rtx_op1
);
5801 create_output_operand (&ops
[0], target
, mode
);
5802 create_input_operand (&ops
[1], rtx_op1
, mode
);
5803 create_input_operand (&ops
[2], rtx_op2
, mode
);
5804 create_input_operand (&ops
[3], mask
, mask_mode
);
5805 expand_insn (icode
, 4, ops
);
5807 return ops
[0].value
;
5810 /* Generate insns for a VEC_COND_EXPR, given its TYPE and its
5814 expand_vec_cond_expr (tree vec_cond_type
, tree op0
, tree op1
, tree op2
,
5817 struct expand_operand ops
[6];
5818 enum insn_code icode
;
5819 rtx comparison
, rtx_op1
, rtx_op2
;
5820 machine_mode mode
= TYPE_MODE (vec_cond_type
);
5821 machine_mode cmp_op_mode
;
5824 enum tree_code tcode
;
5826 if (COMPARISON_CLASS_P (op0
))
5828 op0a
= TREE_OPERAND (op0
, 0);
5829 op0b
= TREE_OPERAND (op0
, 1);
5830 tcode
= TREE_CODE (op0
);
5834 gcc_assert (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (op0
)));
5835 if (get_vcond_mask_icode (mode
, TYPE_MODE (TREE_TYPE (op0
)))
5836 != CODE_FOR_nothing
)
5837 return expand_vec_cond_mask_expr (vec_cond_type
, op0
, op1
,
5842 gcc_assert (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (op0
)))
5843 == MODE_VECTOR_INT
);
5845 op0b
= build_zero_cst (TREE_TYPE (op0
));
5849 cmp_op_mode
= TYPE_MODE (TREE_TYPE (op0a
));
5850 unsignedp
= TYPE_UNSIGNED (TREE_TYPE (op0a
));
5853 gcc_assert (known_eq (GET_MODE_SIZE (mode
), GET_MODE_SIZE (cmp_op_mode
))
5854 && known_eq (GET_MODE_NUNITS (mode
),
5855 GET_MODE_NUNITS (cmp_op_mode
)));
5857 icode
= get_vcond_icode (mode
, cmp_op_mode
, unsignedp
);
5858 if (icode
== CODE_FOR_nothing
)
5860 if (tcode
== EQ_EXPR
|| tcode
== NE_EXPR
)
5861 icode
= get_vcond_eq_icode (mode
, cmp_op_mode
);
5862 if (icode
== CODE_FOR_nothing
)
5866 comparison
= vector_compare_rtx (VOIDmode
, tcode
, op0a
, op0b
, unsignedp
,
5868 rtx_op1
= expand_normal (op1
);
5869 rtx_op2
= expand_normal (op2
);
5871 create_output_operand (&ops
[0], target
, mode
);
5872 create_input_operand (&ops
[1], rtx_op1
, mode
);
5873 create_input_operand (&ops
[2], rtx_op2
, mode
);
5874 create_fixed_operand (&ops
[3], comparison
);
5875 create_fixed_operand (&ops
[4], XEXP (comparison
, 0));
5876 create_fixed_operand (&ops
[5], XEXP (comparison
, 1));
5877 expand_insn (icode
, 6, ops
);
5878 return ops
[0].value
;
5881 /* Generate VEC_SERIES_EXPR <OP0, OP1>, returning a value of mode VMODE.
5882 Use TARGET for the result if nonnull and convenient. */
5885 expand_vec_series_expr (machine_mode vmode
, rtx op0
, rtx op1
, rtx target
)
5887 struct expand_operand ops
[3];
5888 enum insn_code icode
;
5889 machine_mode emode
= GET_MODE_INNER (vmode
);
5891 icode
= direct_optab_handler (vec_series_optab
, vmode
);
5892 gcc_assert (icode
!= CODE_FOR_nothing
);
5894 create_output_operand (&ops
[0], target
, vmode
);
5895 create_input_operand (&ops
[1], op0
, emode
);
5896 create_input_operand (&ops
[2], op1
, emode
);
5898 expand_insn (icode
, 3, ops
);
5899 return ops
[0].value
;
5902 /* Generate insns for a vector comparison into a mask. */
5905 expand_vec_cmp_expr (tree type
, tree exp
, rtx target
)
5907 struct expand_operand ops
[4];
5908 enum insn_code icode
;
5910 machine_mode mask_mode
= TYPE_MODE (type
);
5914 enum tree_code tcode
;
5916 op0a
= TREE_OPERAND (exp
, 0);
5917 op0b
= TREE_OPERAND (exp
, 1);
5918 tcode
= TREE_CODE (exp
);
5920 unsignedp
= TYPE_UNSIGNED (TREE_TYPE (op0a
));
5921 vmode
= TYPE_MODE (TREE_TYPE (op0a
));
5923 icode
= get_vec_cmp_icode (vmode
, mask_mode
, unsignedp
);
5924 if (icode
== CODE_FOR_nothing
)
5926 if (tcode
== EQ_EXPR
|| tcode
== NE_EXPR
)
5927 icode
= get_vec_cmp_eq_icode (vmode
, mask_mode
);
5928 if (icode
== CODE_FOR_nothing
)
5932 comparison
= vector_compare_rtx (mask_mode
, tcode
, op0a
, op0b
,
5933 unsignedp
, icode
, 2);
5934 create_output_operand (&ops
[0], target
, mask_mode
);
5935 create_fixed_operand (&ops
[1], comparison
);
5936 create_fixed_operand (&ops
[2], XEXP (comparison
, 0));
5937 create_fixed_operand (&ops
[3], XEXP (comparison
, 1));
5938 expand_insn (icode
, 4, ops
);
5939 return ops
[0].value
;
5942 /* Expand a highpart multiply. */
5945 expand_mult_highpart (machine_mode mode
, rtx op0
, rtx op1
,
5946 rtx target
, bool uns_p
)
5948 struct expand_operand eops
[3];
5949 enum insn_code icode
;
5955 method
= can_mult_highpart_p (mode
, uns_p
);
5961 tab1
= uns_p
? umul_highpart_optab
: smul_highpart_optab
;
5962 return expand_binop (mode
, tab1
, op0
, op1
, target
, uns_p
,
5965 tab1
= uns_p
? vec_widen_umult_even_optab
: vec_widen_smult_even_optab
;
5966 tab2
= uns_p
? vec_widen_umult_odd_optab
: vec_widen_smult_odd_optab
;
5969 tab1
= uns_p
? vec_widen_umult_lo_optab
: vec_widen_smult_lo_optab
;
5970 tab2
= uns_p
? vec_widen_umult_hi_optab
: vec_widen_smult_hi_optab
;
5971 if (BYTES_BIG_ENDIAN
)
5972 std::swap (tab1
, tab2
);
5978 icode
= optab_handler (tab1
, mode
);
5979 wmode
= insn_data
[icode
].operand
[0].mode
;
5980 gcc_checking_assert (known_eq (2 * GET_MODE_NUNITS (wmode
),
5981 GET_MODE_NUNITS (mode
)));
5982 gcc_checking_assert (known_eq (GET_MODE_SIZE (wmode
), GET_MODE_SIZE (mode
)));
5984 create_output_operand (&eops
[0], gen_reg_rtx (wmode
), wmode
);
5985 create_input_operand (&eops
[1], op0
, mode
);
5986 create_input_operand (&eops
[2], op1
, mode
);
5987 expand_insn (icode
, 3, eops
);
5988 m1
= gen_lowpart (mode
, eops
[0].value
);
5990 create_output_operand (&eops
[0], gen_reg_rtx (wmode
), wmode
);
5991 create_input_operand (&eops
[1], op0
, mode
);
5992 create_input_operand (&eops
[2], op1
, mode
);
5993 expand_insn (optab_handler (tab2
, mode
), 3, eops
);
5994 m2
= gen_lowpart (mode
, eops
[0].value
);
5996 vec_perm_builder sel
;
5999 /* The encoding has 2 interleaved stepped patterns. */
6000 sel
.new_vector (GET_MODE_NUNITS (mode
), 2, 3);
6001 for (i
= 0; i
< 6; ++i
)
6002 sel
.quick_push (!BYTES_BIG_ENDIAN
+ (i
& ~1)
6003 + ((i
& 1) ? GET_MODE_NUNITS (mode
) : 0));
6007 /* The encoding has a single interleaved stepped pattern. */
6008 sel
.new_vector (GET_MODE_NUNITS (mode
), 1, 3);
6009 for (i
= 0; i
< 3; ++i
)
6010 sel
.quick_push (2 * i
+ (BYTES_BIG_ENDIAN
? 0 : 1));
6013 return expand_vec_perm_const (mode
, m1
, m2
, sel
, BLKmode
, target
);
6016 /* Helper function to find the MODE_CC set in a sync_compare_and_swap
6020 find_cc_set (rtx x
, const_rtx pat
, void *data
)
6022 if (REG_P (x
) && GET_MODE_CLASS (GET_MODE (x
)) == MODE_CC
6023 && GET_CODE (pat
) == SET
)
6025 rtx
*p_cc_reg
= (rtx
*) data
;
6026 gcc_assert (!*p_cc_reg
);
6031 /* This is a helper function for the other atomic operations. This function
6032 emits a loop that contains SEQ that iterates until a compare-and-swap
6033 operation at the end succeeds. MEM is the memory to be modified. SEQ is
6034 a set of instructions that takes a value from OLD_REG as an input and
6035 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
6036 set to the current contents of MEM. After SEQ, a compare-and-swap will
6037 attempt to update MEM with NEW_REG. The function returns true when the
6038 loop was generated successfully. */
6041 expand_compare_and_swap_loop (rtx mem
, rtx old_reg
, rtx new_reg
, rtx seq
)
6043 machine_mode mode
= GET_MODE (mem
);
6044 rtx_code_label
*label
;
6045 rtx cmp_reg
, success
, oldval
;
6047 /* The loop we want to generate looks like
6053 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
6057 Note that we only do the plain load from memory once. Subsequent
6058 iterations use the value loaded by the compare-and-swap pattern. */
6060 label
= gen_label_rtx ();
6061 cmp_reg
= gen_reg_rtx (mode
);
6063 emit_move_insn (cmp_reg
, mem
);
6065 emit_move_insn (old_reg
, cmp_reg
);
6071 if (!expand_atomic_compare_and_swap (&success
, &oldval
, mem
, old_reg
,
6072 new_reg
, false, MEMMODEL_SYNC_SEQ_CST
,
6076 if (oldval
!= cmp_reg
)
6077 emit_move_insn (cmp_reg
, oldval
);
6079 /* Mark this jump predicted not taken. */
6080 emit_cmp_and_jump_insns (success
, const0_rtx
, EQ
, const0_rtx
,
6081 GET_MODE (success
), 1, label
,
6082 profile_probability::guessed_never ());
6087 /* This function tries to emit an atomic_exchange intruction. VAL is written
6088 to *MEM using memory model MODEL. The previous contents of *MEM are returned,
6089 using TARGET if possible. */
6092 maybe_emit_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
6094 machine_mode mode
= GET_MODE (mem
);
6095 enum insn_code icode
;
6097 /* If the target supports the exchange directly, great. */
6098 icode
= direct_optab_handler (atomic_exchange_optab
, mode
);
6099 if (icode
!= CODE_FOR_nothing
)
6101 struct expand_operand ops
[4];
6103 create_output_operand (&ops
[0], target
, mode
);
6104 create_fixed_operand (&ops
[1], mem
);
6105 create_input_operand (&ops
[2], val
, mode
);
6106 create_integer_operand (&ops
[3], model
);
6107 if (maybe_expand_insn (icode
, 4, ops
))
6108 return ops
[0].value
;
6114 /* This function tries to implement an atomic exchange operation using
6115 __sync_lock_test_and_set. VAL is written to *MEM using memory model MODEL.
6116 The previous contents of *MEM are returned, using TARGET if possible.
6117 Since this instructionn is an acquire barrier only, stronger memory
6118 models may require additional barriers to be emitted. */
6121 maybe_emit_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
,
6122 enum memmodel model
)
6124 machine_mode mode
= GET_MODE (mem
);
6125 enum insn_code icode
;
6126 rtx_insn
*last_insn
= get_last_insn ();
6128 icode
= optab_handler (sync_lock_test_and_set_optab
, mode
);
6130 /* Legacy sync_lock_test_and_set is an acquire barrier. If the pattern
6131 exists, and the memory model is stronger than acquire, add a release
6132 barrier before the instruction. */
6134 if (is_mm_seq_cst (model
) || is_mm_release (model
) || is_mm_acq_rel (model
))
6135 expand_mem_thread_fence (model
);
6137 if (icode
!= CODE_FOR_nothing
)
6139 struct expand_operand ops
[3];
6140 create_output_operand (&ops
[0], target
, mode
);
6141 create_fixed_operand (&ops
[1], mem
);
6142 create_input_operand (&ops
[2], val
, mode
);
6143 if (maybe_expand_insn (icode
, 3, ops
))
6144 return ops
[0].value
;
6147 /* If an external test-and-set libcall is provided, use that instead of
6148 any external compare-and-swap that we might get from the compare-and-
6149 swap-loop expansion later. */
6150 if (!can_compare_and_swap_p (mode
, false))
6152 rtx libfunc
= optab_libfunc (sync_lock_test_and_set_optab
, mode
);
6153 if (libfunc
!= NULL
)
6157 addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
6158 return emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
6159 mode
, addr
, ptr_mode
,
6164 /* If the test_and_set can't be emitted, eliminate any barrier that might
6165 have been emitted. */
6166 delete_insns_since (last_insn
);
6170 /* This function tries to implement an atomic exchange operation using a
6171 compare_and_swap loop. VAL is written to *MEM. The previous contents of
6172 *MEM are returned, using TARGET if possible. No memory model is required
6173 since a compare_and_swap loop is seq-cst. */
6176 maybe_emit_compare_and_swap_exchange_loop (rtx target
, rtx mem
, rtx val
)
6178 machine_mode mode
= GET_MODE (mem
);
6180 if (can_compare_and_swap_p (mode
, true))
6182 if (!target
|| !register_operand (target
, mode
))
6183 target
= gen_reg_rtx (mode
);
6184 if (expand_compare_and_swap_loop (mem
, target
, val
, NULL_RTX
))
6191 /* This function tries to implement an atomic test-and-set operation
6192 using the atomic_test_and_set instruction pattern. A boolean value
6193 is returned from the operation, using TARGET if possible. */
6196 maybe_emit_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
6198 machine_mode pat_bool_mode
;
6199 struct expand_operand ops
[3];
6201 if (!targetm
.have_atomic_test_and_set ())
6204 /* While we always get QImode from __atomic_test_and_set, we get
6205 other memory modes from __sync_lock_test_and_set. Note that we
6206 use no endian adjustment here. This matches the 4.6 behavior
6207 in the Sparc backend. */
6208 enum insn_code icode
= targetm
.code_for_atomic_test_and_set
;
6209 gcc_checking_assert (insn_data
[icode
].operand
[1].mode
== QImode
);
6210 if (GET_MODE (mem
) != QImode
)
6211 mem
= adjust_address_nv (mem
, QImode
, 0);
6213 pat_bool_mode
= insn_data
[icode
].operand
[0].mode
;
6214 create_output_operand (&ops
[0], target
, pat_bool_mode
);
6215 create_fixed_operand (&ops
[1], mem
);
6216 create_integer_operand (&ops
[2], model
);
6218 if (maybe_expand_insn (icode
, 3, ops
))
6219 return ops
[0].value
;
6223 /* This function expands the legacy _sync_lock test_and_set operation which is
6224 generally an atomic exchange. Some limited targets only allow the
6225 constant 1 to be stored. This is an ACQUIRE operation.
6227 TARGET is an optional place to stick the return value.
6228 MEM is where VAL is stored. */
6231 expand_sync_lock_test_and_set (rtx target
, rtx mem
, rtx val
)
6235 /* Try an atomic_exchange first. */
6236 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, MEMMODEL_SYNC_ACQUIRE
);
6240 ret
= maybe_emit_sync_lock_test_and_set (target
, mem
, val
,
6241 MEMMODEL_SYNC_ACQUIRE
);
6245 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
6249 /* If there are no other options, try atomic_test_and_set if the value
6250 being stored is 1. */
6251 if (val
== const1_rtx
)
6252 ret
= maybe_emit_atomic_test_and_set (target
, mem
, MEMMODEL_SYNC_ACQUIRE
);
6257 /* This function expands the atomic test_and_set operation:
6258 atomically store a boolean TRUE into MEM and return the previous value.
6260 MEMMODEL is the memory model variant to use.
6261 TARGET is an optional place to stick the return value. */
6264 expand_atomic_test_and_set (rtx target
, rtx mem
, enum memmodel model
)
6266 machine_mode mode
= GET_MODE (mem
);
6267 rtx ret
, trueval
, subtarget
;
6269 ret
= maybe_emit_atomic_test_and_set (target
, mem
, model
);
6273 /* Be binary compatible with non-default settings of trueval, and different
6274 cpu revisions. E.g. one revision may have atomic-test-and-set, but
6275 another only has atomic-exchange. */
6276 if (targetm
.atomic_test_and_set_trueval
== 1)
6278 trueval
= const1_rtx
;
6279 subtarget
= target
? target
: gen_reg_rtx (mode
);
6283 trueval
= gen_int_mode (targetm
.atomic_test_and_set_trueval
, mode
);
6284 subtarget
= gen_reg_rtx (mode
);
6287 /* Try the atomic-exchange optab... */
6288 ret
= maybe_emit_atomic_exchange (subtarget
, mem
, trueval
, model
);
6290 /* ... then an atomic-compare-and-swap loop ... */
6292 ret
= maybe_emit_compare_and_swap_exchange_loop (subtarget
, mem
, trueval
);
6294 /* ... before trying the vaguely defined legacy lock_test_and_set. */
6296 ret
= maybe_emit_sync_lock_test_and_set (subtarget
, mem
, trueval
, model
);
6298 /* Recall that the legacy lock_test_and_set optab was allowed to do magic
6299 things with the value 1. Thus we try again without trueval. */
6300 if (!ret
&& targetm
.atomic_test_and_set_trueval
!= 1)
6301 ret
= maybe_emit_sync_lock_test_and_set (subtarget
, mem
, const1_rtx
, model
);
6303 /* Failing all else, assume a single threaded environment and simply
6304 perform the operation. */
6307 /* If the result is ignored skip the move to target. */
6308 if (subtarget
!= const0_rtx
)
6309 emit_move_insn (subtarget
, mem
);
6311 emit_move_insn (mem
, trueval
);
6315 /* Recall that have to return a boolean value; rectify if trueval
6316 is not exactly one. */
6317 if (targetm
.atomic_test_and_set_trueval
!= 1)
6318 ret
= emit_store_flag_force (target
, NE
, ret
, const0_rtx
, mode
, 0, 1);
6323 /* This function expands the atomic exchange operation:
6324 atomically store VAL in MEM and return the previous value in MEM.
6326 MEMMODEL is the memory model variant to use.
6327 TARGET is an optional place to stick the return value. */
6330 expand_atomic_exchange (rtx target
, rtx mem
, rtx val
, enum memmodel model
)
6332 machine_mode mode
= GET_MODE (mem
);
6335 /* If loads are not atomic for the required size and we are not called to
6336 provide a __sync builtin, do not do anything so that we stay consistent
6337 with atomic loads of the same size. */
6338 if (!can_atomic_load_p (mode
) && !is_mm_sync (model
))
6341 ret
= maybe_emit_atomic_exchange (target
, mem
, val
, model
);
6343 /* Next try a compare-and-swap loop for the exchange. */
6345 ret
= maybe_emit_compare_and_swap_exchange_loop (target
, mem
, val
);
6350 /* This function expands the atomic compare exchange operation:
6352 *PTARGET_BOOL is an optional place to store the boolean success/failure.
6353 *PTARGET_OVAL is an optional place to store the old value from memory.
6354 Both target parameters may be NULL or const0_rtx to indicate that we do
6355 not care about that return value. Both target parameters are updated on
6356 success to the actual location of the corresponding result.
6358 MEMMODEL is the memory model variant to use.
6360 The return value of the function is true for success. */
6363 expand_atomic_compare_and_swap (rtx
*ptarget_bool
, rtx
*ptarget_oval
,
6364 rtx mem
, rtx expected
, rtx desired
,
6365 bool is_weak
, enum memmodel succ_model
,
6366 enum memmodel fail_model
)
6368 machine_mode mode
= GET_MODE (mem
);
6369 struct expand_operand ops
[8];
6370 enum insn_code icode
;
6371 rtx target_oval
, target_bool
= NULL_RTX
;
6374 /* If loads are not atomic for the required size and we are not called to
6375 provide a __sync builtin, do not do anything so that we stay consistent
6376 with atomic loads of the same size. */
6377 if (!can_atomic_load_p (mode
) && !is_mm_sync (succ_model
))
6380 /* Load expected into a register for the compare and swap. */
6381 if (MEM_P (expected
))
6382 expected
= copy_to_reg (expected
);
6384 /* Make sure we always have some place to put the return oldval.
6385 Further, make sure that place is distinct from the input expected,
6386 just in case we need that path down below. */
6387 if (ptarget_oval
&& *ptarget_oval
== const0_rtx
)
6388 ptarget_oval
= NULL
;
6390 if (ptarget_oval
== NULL
6391 || (target_oval
= *ptarget_oval
) == NULL
6392 || reg_overlap_mentioned_p (expected
, target_oval
))
6393 target_oval
= gen_reg_rtx (mode
);
6395 icode
= direct_optab_handler (atomic_compare_and_swap_optab
, mode
);
6396 if (icode
!= CODE_FOR_nothing
)
6398 machine_mode bool_mode
= insn_data
[icode
].operand
[0].mode
;
6400 if (ptarget_bool
&& *ptarget_bool
== const0_rtx
)
6401 ptarget_bool
= NULL
;
6403 /* Make sure we always have a place for the bool operand. */
6404 if (ptarget_bool
== NULL
6405 || (target_bool
= *ptarget_bool
) == NULL
6406 || GET_MODE (target_bool
) != bool_mode
)
6407 target_bool
= gen_reg_rtx (bool_mode
);
6409 /* Emit the compare_and_swap. */
6410 create_output_operand (&ops
[0], target_bool
, bool_mode
);
6411 create_output_operand (&ops
[1], target_oval
, mode
);
6412 create_fixed_operand (&ops
[2], mem
);
6413 create_input_operand (&ops
[3], expected
, mode
);
6414 create_input_operand (&ops
[4], desired
, mode
);
6415 create_integer_operand (&ops
[5], is_weak
);
6416 create_integer_operand (&ops
[6], succ_model
);
6417 create_integer_operand (&ops
[7], fail_model
);
6418 if (maybe_expand_insn (icode
, 8, ops
))
6420 /* Return success/failure. */
6421 target_bool
= ops
[0].value
;
6422 target_oval
= ops
[1].value
;
6427 /* Otherwise fall back to the original __sync_val_compare_and_swap
6428 which is always seq-cst. */
6429 icode
= optab_handler (sync_compare_and_swap_optab
, mode
);
6430 if (icode
!= CODE_FOR_nothing
)
6434 create_output_operand (&ops
[0], target_oval
, mode
);
6435 create_fixed_operand (&ops
[1], mem
);
6436 create_input_operand (&ops
[2], expected
, mode
);
6437 create_input_operand (&ops
[3], desired
, mode
);
6438 if (!maybe_expand_insn (icode
, 4, ops
))
6441 target_oval
= ops
[0].value
;
6443 /* If the caller isn't interested in the boolean return value,
6444 skip the computation of it. */
6445 if (ptarget_bool
== NULL
)
6448 /* Otherwise, work out if the compare-and-swap succeeded. */
6450 if (have_insn_for (COMPARE
, CCmode
))
6451 note_stores (PATTERN (get_last_insn ()), find_cc_set
, &cc_reg
);
6454 target_bool
= emit_store_flag_force (target_bool
, EQ
, cc_reg
,
6455 const0_rtx
, VOIDmode
, 0, 1);
6458 goto success_bool_from_val
;
6461 /* Also check for library support for __sync_val_compare_and_swap. */
6462 libfunc
= optab_libfunc (sync_compare_and_swap_optab
, mode
);
6463 if (libfunc
!= NULL
)
6465 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
6466 rtx target
= emit_library_call_value (libfunc
, NULL_RTX
, LCT_NORMAL
,
6467 mode
, addr
, ptr_mode
,
6468 expected
, mode
, desired
, mode
);
6469 emit_move_insn (target_oval
, target
);
6471 /* Compute the boolean return value only if requested. */
6473 goto success_bool_from_val
;
6481 success_bool_from_val
:
6482 target_bool
= emit_store_flag_force (target_bool
, EQ
, target_oval
,
6483 expected
, VOIDmode
, 1, 1);
6485 /* Make sure that the oval output winds up where the caller asked. */
6487 *ptarget_oval
= target_oval
;
6489 *ptarget_bool
= target_bool
;
6493 /* Generate asm volatile("" : : : "memory") as the memory blockage. */
6496 expand_asm_memory_blockage (void)
6500 asm_op
= gen_rtx_ASM_OPERANDS (VOIDmode
, "", "", 0,
6501 rtvec_alloc (0), rtvec_alloc (0),
6502 rtvec_alloc (0), UNKNOWN_LOCATION
);
6503 MEM_VOLATILE_P (asm_op
) = 1;
6505 clob
= gen_rtx_SCRATCH (VOIDmode
);
6506 clob
= gen_rtx_MEM (BLKmode
, clob
);
6507 clob
= gen_rtx_CLOBBER (VOIDmode
, clob
);
6509 emit_insn (gen_rtx_PARALLEL (VOIDmode
, gen_rtvec (2, asm_op
, clob
)));
6512 /* Do not propagate memory accesses across this point. */
6515 expand_memory_blockage (void)
6517 if (targetm
.have_memory_blockage ())
6518 emit_insn (targetm
.gen_memory_blockage ());
6520 expand_asm_memory_blockage ();
6523 /* This routine will either emit the mem_thread_fence pattern or issue a
6524 sync_synchronize to generate a fence for memory model MEMMODEL. */
6527 expand_mem_thread_fence (enum memmodel model
)
6529 if (is_mm_relaxed (model
))
6531 if (targetm
.have_mem_thread_fence ())
6533 emit_insn (targetm
.gen_mem_thread_fence (GEN_INT (model
)));
6534 expand_memory_blockage ();
6536 else if (targetm
.have_memory_barrier ())
6537 emit_insn (targetm
.gen_memory_barrier ());
6538 else if (synchronize_libfunc
!= NULL_RTX
)
6539 emit_library_call (synchronize_libfunc
, LCT_NORMAL
, VOIDmode
);
6541 expand_memory_blockage ();
6544 /* Emit a signal fence with given memory model. */
6547 expand_mem_signal_fence (enum memmodel model
)
6549 /* No machine barrier is required to implement a signal fence, but
6550 a compiler memory barrier must be issued, except for relaxed MM. */
6551 if (!is_mm_relaxed (model
))
6552 expand_memory_blockage ();
6555 /* This function expands the atomic load operation:
6556 return the atomically loaded value in MEM.
6558 MEMMODEL is the memory model variant to use.
6559 TARGET is an option place to stick the return value. */
6562 expand_atomic_load (rtx target
, rtx mem
, enum memmodel model
)
6564 machine_mode mode
= GET_MODE (mem
);
6565 enum insn_code icode
;
6567 /* If the target supports the load directly, great. */
6568 icode
= direct_optab_handler (atomic_load_optab
, mode
);
6569 if (icode
!= CODE_FOR_nothing
)
6571 struct expand_operand ops
[3];
6572 rtx_insn
*last
= get_last_insn ();
6573 if (is_mm_seq_cst (model
))
6574 expand_memory_blockage ();
6576 create_output_operand (&ops
[0], target
, mode
);
6577 create_fixed_operand (&ops
[1], mem
);
6578 create_integer_operand (&ops
[2], model
);
6579 if (maybe_expand_insn (icode
, 3, ops
))
6581 if (!is_mm_relaxed (model
))
6582 expand_memory_blockage ();
6583 return ops
[0].value
;
6585 delete_insns_since (last
);
6588 /* If the size of the object is greater than word size on this target,
6589 then we assume that a load will not be atomic. We could try to
6590 emulate a load with a compare-and-swap operation, but the store that
6591 doing this could result in would be incorrect if this is a volatile
6592 atomic load or targetting read-only-mapped memory. */
6593 if (maybe_gt (GET_MODE_PRECISION (mode
), BITS_PER_WORD
))
6594 /* If there is no atomic load, leave the library call. */
6597 /* Otherwise assume loads are atomic, and emit the proper barriers. */
6598 if (!target
|| target
== const0_rtx
)
6599 target
= gen_reg_rtx (mode
);
6601 /* For SEQ_CST, emit a barrier before the load. */
6602 if (is_mm_seq_cst (model
))
6603 expand_mem_thread_fence (model
);
6605 emit_move_insn (target
, mem
);
6607 /* Emit the appropriate barrier after the load. */
6608 expand_mem_thread_fence (model
);
6613 /* This function expands the atomic store operation:
6614 Atomically store VAL in MEM.
6615 MEMMODEL is the memory model variant to use.
6616 USE_RELEASE is true if __sync_lock_release can be used as a fall back.
6617 function returns const0_rtx if a pattern was emitted. */
6620 expand_atomic_store (rtx mem
, rtx val
, enum memmodel model
, bool use_release
)
6622 machine_mode mode
= GET_MODE (mem
);
6623 enum insn_code icode
;
6624 struct expand_operand ops
[3];
6626 /* If the target supports the store directly, great. */
6627 icode
= direct_optab_handler (atomic_store_optab
, mode
);
6628 if (icode
!= CODE_FOR_nothing
)
6630 rtx_insn
*last
= get_last_insn ();
6631 if (!is_mm_relaxed (model
))
6632 expand_memory_blockage ();
6633 create_fixed_operand (&ops
[0], mem
);
6634 create_input_operand (&ops
[1], val
, mode
);
6635 create_integer_operand (&ops
[2], model
);
6636 if (maybe_expand_insn (icode
, 3, ops
))
6638 if (is_mm_seq_cst (model
))
6639 expand_memory_blockage ();
6642 delete_insns_since (last
);
6645 /* If using __sync_lock_release is a viable alternative, try it.
6646 Note that this will not be set to true if we are expanding a generic
6647 __atomic_store_n. */
6650 icode
= direct_optab_handler (sync_lock_release_optab
, mode
);
6651 if (icode
!= CODE_FOR_nothing
)
6653 create_fixed_operand (&ops
[0], mem
);
6654 create_input_operand (&ops
[1], const0_rtx
, mode
);
6655 if (maybe_expand_insn (icode
, 2, ops
))
6657 /* lock_release is only a release barrier. */
6658 if (is_mm_seq_cst (model
))
6659 expand_mem_thread_fence (model
);
6665 /* If the size of the object is greater than word size on this target,
6666 a default store will not be atomic. */
6667 if (maybe_gt (GET_MODE_PRECISION (mode
), BITS_PER_WORD
))
6669 /* If loads are atomic or we are called to provide a __sync builtin,
6670 we can try a atomic_exchange and throw away the result. Otherwise,
6671 don't do anything so that we do not create an inconsistency between
6672 loads and stores. */
6673 if (can_atomic_load_p (mode
) || is_mm_sync (model
))
6675 rtx target
= maybe_emit_atomic_exchange (NULL_RTX
, mem
, val
, model
);
6677 target
= maybe_emit_compare_and_swap_exchange_loop (NULL_RTX
, mem
,
6685 /* Otherwise assume stores are atomic, and emit the proper barriers. */
6686 expand_mem_thread_fence (model
);
6688 emit_move_insn (mem
, val
);
6690 /* For SEQ_CST, also emit a barrier after the store. */
6691 if (is_mm_seq_cst (model
))
6692 expand_mem_thread_fence (model
);
6698 /* Structure containing the pointers and values required to process the
6699 various forms of the atomic_fetch_op and atomic_op_fetch builtins. */
6701 struct atomic_op_functions
6703 direct_optab mem_fetch_before
;
6704 direct_optab mem_fetch_after
;
6705 direct_optab mem_no_result
;
6708 direct_optab no_result
;
6709 enum rtx_code reverse_code
;
6713 /* Fill in structure pointed to by OP with the various optab entries for an
6714 operation of type CODE. */
6717 get_atomic_op_for_code (struct atomic_op_functions
*op
, enum rtx_code code
)
6719 gcc_assert (op
!= NULL
);
6721 /* If SWITCHABLE_TARGET is defined, then subtargets can be switched
6722 in the source code during compilation, and the optab entries are not
6723 computable until runtime. Fill in the values at runtime. */
6727 op
->mem_fetch_before
= atomic_fetch_add_optab
;
6728 op
->mem_fetch_after
= atomic_add_fetch_optab
;
6729 op
->mem_no_result
= atomic_add_optab
;
6730 op
->fetch_before
= sync_old_add_optab
;
6731 op
->fetch_after
= sync_new_add_optab
;
6732 op
->no_result
= sync_add_optab
;
6733 op
->reverse_code
= MINUS
;
6736 op
->mem_fetch_before
= atomic_fetch_sub_optab
;
6737 op
->mem_fetch_after
= atomic_sub_fetch_optab
;
6738 op
->mem_no_result
= atomic_sub_optab
;
6739 op
->fetch_before
= sync_old_sub_optab
;
6740 op
->fetch_after
= sync_new_sub_optab
;
6741 op
->no_result
= sync_sub_optab
;
6742 op
->reverse_code
= PLUS
;
6745 op
->mem_fetch_before
= atomic_fetch_xor_optab
;
6746 op
->mem_fetch_after
= atomic_xor_fetch_optab
;
6747 op
->mem_no_result
= atomic_xor_optab
;
6748 op
->fetch_before
= sync_old_xor_optab
;
6749 op
->fetch_after
= sync_new_xor_optab
;
6750 op
->no_result
= sync_xor_optab
;
6751 op
->reverse_code
= XOR
;
6754 op
->mem_fetch_before
= atomic_fetch_and_optab
;
6755 op
->mem_fetch_after
= atomic_and_fetch_optab
;
6756 op
->mem_no_result
= atomic_and_optab
;
6757 op
->fetch_before
= sync_old_and_optab
;
6758 op
->fetch_after
= sync_new_and_optab
;
6759 op
->no_result
= sync_and_optab
;
6760 op
->reverse_code
= UNKNOWN
;
6763 op
->mem_fetch_before
= atomic_fetch_or_optab
;
6764 op
->mem_fetch_after
= atomic_or_fetch_optab
;
6765 op
->mem_no_result
= atomic_or_optab
;
6766 op
->fetch_before
= sync_old_ior_optab
;
6767 op
->fetch_after
= sync_new_ior_optab
;
6768 op
->no_result
= sync_ior_optab
;
6769 op
->reverse_code
= UNKNOWN
;
6772 op
->mem_fetch_before
= atomic_fetch_nand_optab
;
6773 op
->mem_fetch_after
= atomic_nand_fetch_optab
;
6774 op
->mem_no_result
= atomic_nand_optab
;
6775 op
->fetch_before
= sync_old_nand_optab
;
6776 op
->fetch_after
= sync_new_nand_optab
;
6777 op
->no_result
= sync_nand_optab
;
6778 op
->reverse_code
= UNKNOWN
;
6785 /* See if there is a more optimal way to implement the operation "*MEM CODE VAL"
6786 using memory order MODEL. If AFTER is true the operation needs to return
6787 the value of *MEM after the operation, otherwise the previous value.
6788 TARGET is an optional place to place the result. The result is unused if
6790 Return the result if there is a better sequence, otherwise NULL_RTX. */
6793 maybe_optimize_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
6794 enum memmodel model
, bool after
)
6796 /* If the value is prefetched, or not used, it may be possible to replace
6797 the sequence with a native exchange operation. */
6798 if (!after
|| target
== const0_rtx
)
6800 /* fetch_and (&x, 0, m) can be replaced with exchange (&x, 0, m). */
6801 if (code
== AND
&& val
== const0_rtx
)
6803 if (target
== const0_rtx
)
6804 target
= gen_reg_rtx (GET_MODE (mem
));
6805 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
6808 /* fetch_or (&x, -1, m) can be replaced with exchange (&x, -1, m). */
6809 if (code
== IOR
&& val
== constm1_rtx
)
6811 if (target
== const0_rtx
)
6812 target
= gen_reg_rtx (GET_MODE (mem
));
6813 return maybe_emit_atomic_exchange (target
, mem
, val
, model
);
6820 /* Try to emit an instruction for a specific operation varaition.
6821 OPTAB contains the OP functions.
6822 TARGET is an optional place to return the result. const0_rtx means unused.
6823 MEM is the memory location to operate on.
6824 VAL is the value to use in the operation.
6825 USE_MEMMODEL is TRUE if the variation with a memory model should be tried.
6826 MODEL is the memory model, if used.
6827 AFTER is true if the returned result is the value after the operation. */
6830 maybe_emit_op (const struct atomic_op_functions
*optab
, rtx target
, rtx mem
,
6831 rtx val
, bool use_memmodel
, enum memmodel model
, bool after
)
6833 machine_mode mode
= GET_MODE (mem
);
6834 struct expand_operand ops
[4];
6835 enum insn_code icode
;
6839 /* Check to see if there is a result returned. */
6840 if (target
== const0_rtx
)
6844 icode
= direct_optab_handler (optab
->mem_no_result
, mode
);
6845 create_integer_operand (&ops
[2], model
);
6850 icode
= direct_optab_handler (optab
->no_result
, mode
);
6854 /* Otherwise, we need to generate a result. */
6859 icode
= direct_optab_handler (after
? optab
->mem_fetch_after
6860 : optab
->mem_fetch_before
, mode
);
6861 create_integer_operand (&ops
[3], model
);
6866 icode
= optab_handler (after
? optab
->fetch_after
6867 : optab
->fetch_before
, mode
);
6870 create_output_operand (&ops
[op_counter
++], target
, mode
);
6872 if (icode
== CODE_FOR_nothing
)
6875 create_fixed_operand (&ops
[op_counter
++], mem
);
6876 /* VAL may have been promoted to a wider mode. Shrink it if so. */
6877 create_convert_operand_to (&ops
[op_counter
++], val
, mode
, true);
6879 if (maybe_expand_insn (icode
, num_ops
, ops
))
6880 return (target
== const0_rtx
? const0_rtx
: ops
[0].value
);
6886 /* This function expands an atomic fetch_OP or OP_fetch operation:
6887 TARGET is an option place to stick the return value. const0_rtx indicates
6888 the result is unused.
6889 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6890 CODE is the operation being performed (OP)
6891 MEMMODEL is the memory model variant to use.
6892 AFTER is true to return the result of the operation (OP_fetch).
6893 AFTER is false to return the value before the operation (fetch_OP).
6895 This function will *only* generate instructions if there is a direct
6896 optab. No compare and swap loops or libcalls will be generated. */
6899 expand_atomic_fetch_op_no_fallback (rtx target
, rtx mem
, rtx val
,
6900 enum rtx_code code
, enum memmodel model
,
6903 machine_mode mode
= GET_MODE (mem
);
6904 struct atomic_op_functions optab
;
6906 bool unused_result
= (target
== const0_rtx
);
6908 get_atomic_op_for_code (&optab
, code
);
6910 /* Check to see if there are any better instructions. */
6911 result
= maybe_optimize_fetch_op (target
, mem
, val
, code
, model
, after
);
6915 /* Check for the case where the result isn't used and try those patterns. */
6918 /* Try the memory model variant first. */
6919 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, true);
6923 /* Next try the old style withuot a memory model. */
6924 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, true);
6928 /* There is no no-result pattern, so try patterns with a result. */
6932 /* Try the __atomic version. */
6933 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, after
);
6937 /* Try the older __sync version. */
6938 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, after
);
6942 /* If the fetch value can be calculated from the other variation of fetch,
6943 try that operation. */
6944 if (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
)
6946 /* Try the __atomic version, then the older __sync version. */
6947 result
= maybe_emit_op (&optab
, target
, mem
, val
, true, model
, !after
);
6949 result
= maybe_emit_op (&optab
, target
, mem
, val
, false, model
, !after
);
6953 /* If the result isn't used, no need to do compensation code. */
6957 /* Issue compensation code. Fetch_after == fetch_before OP val.
6958 Fetch_before == after REVERSE_OP val. */
6960 code
= optab
.reverse_code
;
6963 result
= expand_simple_binop (mode
, AND
, result
, val
, NULL_RTX
,
6964 true, OPTAB_LIB_WIDEN
);
6965 result
= expand_simple_unop (mode
, NOT
, result
, target
, true);
6968 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
6969 true, OPTAB_LIB_WIDEN
);
6974 /* No direct opcode can be generated. */
6980 /* This function expands an atomic fetch_OP or OP_fetch operation:
6981 TARGET is an option place to stick the return value. const0_rtx indicates
6982 the result is unused.
6983 atomically fetch MEM, perform the operation with VAL and return it to MEM.
6984 CODE is the operation being performed (OP)
6985 MEMMODEL is the memory model variant to use.
6986 AFTER is true to return the result of the operation (OP_fetch).
6987 AFTER is false to return the value before the operation (fetch_OP). */
6989 expand_atomic_fetch_op (rtx target
, rtx mem
, rtx val
, enum rtx_code code
,
6990 enum memmodel model
, bool after
)
6992 machine_mode mode
= GET_MODE (mem
);
6994 bool unused_result
= (target
== const0_rtx
);
6996 /* If loads are not atomic for the required size and we are not called to
6997 provide a __sync builtin, do not do anything so that we stay consistent
6998 with atomic loads of the same size. */
6999 if (!can_atomic_load_p (mode
) && !is_mm_sync (model
))
7002 result
= expand_atomic_fetch_op_no_fallback (target
, mem
, val
, code
, model
,
7008 /* Add/sub can be implemented by doing the reverse operation with -(val). */
7009 if (code
== PLUS
|| code
== MINUS
)
7012 enum rtx_code reverse
= (code
== PLUS
? MINUS
: PLUS
);
7015 tmp
= expand_simple_unop (mode
, NEG
, val
, NULL_RTX
, true);
7016 result
= expand_atomic_fetch_op_no_fallback (target
, mem
, tmp
, reverse
,
7020 /* PLUS worked so emit the insns and return. */
7027 /* PLUS did not work, so throw away the negation code and continue. */
7031 /* Try the __sync libcalls only if we can't do compare-and-swap inline. */
7032 if (!can_compare_and_swap_p (mode
, false))
7036 enum rtx_code orig_code
= code
;
7037 struct atomic_op_functions optab
;
7039 get_atomic_op_for_code (&optab
, code
);
7040 libfunc
= optab_libfunc (after
? optab
.fetch_after
7041 : optab
.fetch_before
, mode
);
7043 && (after
|| unused_result
|| optab
.reverse_code
!= UNKNOWN
))
7047 code
= optab
.reverse_code
;
7048 libfunc
= optab_libfunc (after
? optab
.fetch_before
7049 : optab
.fetch_after
, mode
);
7051 if (libfunc
!= NULL
)
7053 rtx addr
= convert_memory_address (ptr_mode
, XEXP (mem
, 0));
7054 result
= emit_library_call_value (libfunc
, NULL
, LCT_NORMAL
, mode
,
7055 addr
, ptr_mode
, val
, mode
);
7057 if (!unused_result
&& fixup
)
7058 result
= expand_simple_binop (mode
, code
, result
, val
, target
,
7059 true, OPTAB_LIB_WIDEN
);
7063 /* We need the original code for any further attempts. */
7067 /* If nothing else has succeeded, default to a compare and swap loop. */
7068 if (can_compare_and_swap_p (mode
, true))
7071 rtx t0
= gen_reg_rtx (mode
), t1
;
7075 /* If the result is used, get a register for it. */
7078 if (!target
|| !register_operand (target
, mode
))
7079 target
= gen_reg_rtx (mode
);
7080 /* If fetch_before, copy the value now. */
7082 emit_move_insn (target
, t0
);
7085 target
= const0_rtx
;
7090 t1
= expand_simple_binop (mode
, AND
, t1
, val
, NULL_RTX
,
7091 true, OPTAB_LIB_WIDEN
);
7092 t1
= expand_simple_unop (mode
, code
, t1
, NULL_RTX
, true);
7095 t1
= expand_simple_binop (mode
, code
, t1
, val
, NULL_RTX
, true,
7098 /* For after, copy the value now. */
7099 if (!unused_result
&& after
)
7100 emit_move_insn (target
, t1
);
7101 insn
= get_insns ();
7104 if (t1
!= NULL
&& expand_compare_and_swap_loop (mem
, t0
, t1
, insn
))
7111 /* Return true if OPERAND is suitable for operand number OPNO of
7112 instruction ICODE. */
7115 insn_operand_matches (enum insn_code icode
, unsigned int opno
, rtx operand
)
7117 return (!insn_data
[(int) icode
].operand
[opno
].predicate
7118 || (insn_data
[(int) icode
].operand
[opno
].predicate
7119 (operand
, insn_data
[(int) icode
].operand
[opno
].mode
)));
7122 /* TARGET is a target of a multiword operation that we are going to
7123 implement as a series of word-mode operations. Return true if
7124 TARGET is suitable for this purpose. */
7127 valid_multiword_target_p (rtx target
)
7132 mode
= GET_MODE (target
);
7133 if (!GET_MODE_SIZE (mode
).is_constant (&size
))
7135 for (i
= 0; i
< size
; i
+= UNITS_PER_WORD
)
7136 if (!validate_subreg (word_mode
, mode
, target
, i
))
7141 /* Make OP describe an input operand that has value INTVAL and that has
7142 no inherent mode. This function should only be used for operands that
7143 are always expand-time constants. The backend may request that INTVAL
7144 be copied into a different kind of rtx, but it must specify the mode
7145 of that rtx if so. */
7148 create_integer_operand (struct expand_operand
*op
, poly_int64 intval
)
7150 create_expand_operand (op
, EXPAND_INTEGER
,
7151 gen_int_mode (intval
, MAX_MODE_INT
),
7152 VOIDmode
, false, intval
);
7155 /* Like maybe_legitimize_operand, but do not change the code of the
7156 current rtx value. */
7159 maybe_legitimize_operand_same_code (enum insn_code icode
, unsigned int opno
,
7160 struct expand_operand
*op
)
7162 /* See if the operand matches in its current form. */
7163 if (insn_operand_matches (icode
, opno
, op
->value
))
7166 /* If the operand is a memory whose address has no side effects,
7167 try forcing the address into a non-virtual pseudo register.
7168 The check for side effects is important because copy_to_mode_reg
7169 cannot handle things like auto-modified addresses. */
7170 if (insn_data
[(int) icode
].operand
[opno
].allows_mem
&& MEM_P (op
->value
))
7175 addr
= XEXP (mem
, 0);
7176 if (!(REG_P (addr
) && REGNO (addr
) > LAST_VIRTUAL_REGISTER
)
7177 && !side_effects_p (addr
))
7182 last
= get_last_insn ();
7183 mode
= get_address_mode (mem
);
7184 mem
= replace_equiv_address (mem
, copy_to_mode_reg (mode
, addr
));
7185 if (insn_operand_matches (icode
, opno
, mem
))
7190 delete_insns_since (last
);
7197 /* Try to make OP match operand OPNO of instruction ICODE. Return true
7198 on success, storing the new operand value back in OP. */
7201 maybe_legitimize_operand (enum insn_code icode
, unsigned int opno
,
7202 struct expand_operand
*op
)
7204 machine_mode mode
, imode
;
7205 bool old_volatile_ok
, result
;
7211 old_volatile_ok
= volatile_ok
;
7213 result
= maybe_legitimize_operand_same_code (icode
, opno
, op
);
7214 volatile_ok
= old_volatile_ok
;
7218 gcc_assert (mode
!= VOIDmode
);
7220 && op
->value
!= const0_rtx
7221 && GET_MODE (op
->value
) == mode
7222 && maybe_legitimize_operand_same_code (icode
, opno
, op
))
7225 op
->value
= gen_reg_rtx (mode
);
7231 gcc_assert (mode
!= VOIDmode
);
7232 gcc_assert (GET_MODE (op
->value
) == VOIDmode
7233 || GET_MODE (op
->value
) == mode
);
7234 if (maybe_legitimize_operand_same_code (icode
, opno
, op
))
7237 op
->value
= copy_to_mode_reg (mode
, op
->value
);
7240 case EXPAND_CONVERT_TO
:
7241 gcc_assert (mode
!= VOIDmode
);
7242 op
->value
= convert_to_mode (mode
, op
->value
, op
->unsigned_p
);
7245 case EXPAND_CONVERT_FROM
:
7246 if (GET_MODE (op
->value
) != VOIDmode
)
7247 mode
= GET_MODE (op
->value
);
7249 /* The caller must tell us what mode this value has. */
7250 gcc_assert (mode
!= VOIDmode
);
7252 imode
= insn_data
[(int) icode
].operand
[opno
].mode
;
7253 if (imode
!= VOIDmode
&& imode
!= mode
)
7255 op
->value
= convert_modes (imode
, mode
, op
->value
, op
->unsigned_p
);
7260 case EXPAND_ADDRESS
:
7261 op
->value
= convert_memory_address (as_a
<scalar_int_mode
> (mode
),
7265 case EXPAND_INTEGER
:
7266 mode
= insn_data
[(int) icode
].operand
[opno
].mode
;
7267 if (mode
!= VOIDmode
7268 && known_eq (trunc_int_for_mode (op
->int_value
, mode
),
7271 op
->value
= gen_int_mode (op
->int_value
, mode
);
7276 return insn_operand_matches (icode
, opno
, op
->value
);
7279 /* Make OP describe an input operand that should have the same value
7280 as VALUE, after any mode conversion that the target might request.
7281 TYPE is the type of VALUE. */
7284 create_convert_operand_from_type (struct expand_operand
*op
,
7285 rtx value
, tree type
)
7287 create_convert_operand_from (op
, value
, TYPE_MODE (type
),
7288 TYPE_UNSIGNED (type
));
7291 /* Return true if the requirements on operands OP1 and OP2 of instruction
7292 ICODE are similar enough for the result of legitimizing OP1 to be
7293 reusable for OP2. OPNO1 and OPNO2 are the operand numbers associated
7294 with OP1 and OP2 respectively. */
7297 can_reuse_operands_p (enum insn_code icode
,
7298 unsigned int opno1
, unsigned int opno2
,
7299 const struct expand_operand
*op1
,
7300 const struct expand_operand
*op2
)
7302 /* Check requirements that are common to all types. */
7303 if (op1
->type
!= op2
->type
7304 || op1
->mode
!= op2
->mode
7305 || (insn_data
[(int) icode
].operand
[opno1
].mode
7306 != insn_data
[(int) icode
].operand
[opno2
].mode
))
7309 /* Check the requirements for specific types. */
7313 /* Outputs must remain distinct. */
7318 case EXPAND_ADDRESS
:
7319 case EXPAND_INTEGER
:
7322 case EXPAND_CONVERT_TO
:
7323 case EXPAND_CONVERT_FROM
:
7324 return op1
->unsigned_p
== op2
->unsigned_p
;
7329 /* Try to make operands [OPS, OPS + NOPS) match operands [OPNO, OPNO + NOPS)
7330 of instruction ICODE. Return true on success, leaving the new operand
7331 values in the OPS themselves. Emit no code on failure. */
7334 maybe_legitimize_operands (enum insn_code icode
, unsigned int opno
,
7335 unsigned int nops
, struct expand_operand
*ops
)
7337 rtx_insn
*last
= get_last_insn ();
7338 rtx
*orig_values
= XALLOCAVEC (rtx
, nops
);
7339 for (unsigned int i
= 0; i
< nops
; i
++)
7341 orig_values
[i
] = ops
[i
].value
;
7343 /* First try reusing the result of an earlier legitimization.
7344 This avoids duplicate rtl and ensures that tied operands
7347 This search is linear, but NOPS is bounded at compile time
7348 to a small number (current a single digit). */
7351 if (can_reuse_operands_p (icode
, opno
+ j
, opno
+ i
, &ops
[j
], &ops
[i
])
7352 && rtx_equal_p (orig_values
[j
], orig_values
[i
])
7354 && insn_operand_matches (icode
, opno
+ i
, ops
[j
].value
))
7356 ops
[i
].value
= copy_rtx (ops
[j
].value
);
7360 /* Otherwise try legitimizing the operand on its own. */
7361 if (j
== i
&& !maybe_legitimize_operand (icode
, opno
+ i
, &ops
[i
]))
7363 delete_insns_since (last
);
7370 /* Try to generate instruction ICODE, using operands [OPS, OPS + NOPS)
7371 as its operands. Return the instruction pattern on success,
7372 and emit any necessary set-up code. Return null and emit no
7376 maybe_gen_insn (enum insn_code icode
, unsigned int nops
,
7377 struct expand_operand
*ops
)
7379 gcc_assert (nops
== (unsigned int) insn_data
[(int) icode
].n_generator_args
);
7380 if (!maybe_legitimize_operands (icode
, 0, nops
, ops
))
7386 return GEN_FCN (icode
) (ops
[0].value
);
7388 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
);
7390 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
);
7392 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7395 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7396 ops
[3].value
, ops
[4].value
);
7398 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7399 ops
[3].value
, ops
[4].value
, ops
[5].value
);
7401 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7402 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7405 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7406 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7407 ops
[6].value
, ops
[7].value
);
7409 return GEN_FCN (icode
) (ops
[0].value
, ops
[1].value
, ops
[2].value
,
7410 ops
[3].value
, ops
[4].value
, ops
[5].value
,
7411 ops
[6].value
, ops
[7].value
, ops
[8].value
);
7416 /* Try to emit instruction ICODE, using operands [OPS, OPS + NOPS)
7417 as its operands. Return true on success and emit no code on failure. */
7420 maybe_expand_insn (enum insn_code icode
, unsigned int nops
,
7421 struct expand_operand
*ops
)
7423 rtx_insn
*pat
= maybe_gen_insn (icode
, nops
, ops
);
7432 /* Like maybe_expand_insn, but for jumps. */
7435 maybe_expand_jump_insn (enum insn_code icode
, unsigned int nops
,
7436 struct expand_operand
*ops
)
7438 rtx_insn
*pat
= maybe_gen_insn (icode
, nops
, ops
);
7441 emit_jump_insn (pat
);
7447 /* Emit instruction ICODE, using operands [OPS, OPS + NOPS)
7451 expand_insn (enum insn_code icode
, unsigned int nops
,
7452 struct expand_operand
*ops
)
7454 if (!maybe_expand_insn (icode
, nops
, ops
))
7458 /* Like expand_insn, but for jumps. */
7461 expand_jump_insn (enum insn_code icode
, unsigned int nops
,
7462 struct expand_operand
*ops
)
7464 if (!maybe_expand_jump_insn (icode
, nops
, ops
))