1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with modified_between_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
80 #include "coretypes.h"
95 #include "stor-layout.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
104 #include "tree-pass.h"
105 #include "valtrack.h"
106 #include "rtl-iter.h"
107 #include "print-rtl.h"
109 /* Number of attempts to combine instructions in this function. */
111 static int combine_attempts
;
113 /* Number of attempts that got as far as substitution in this function. */
115 static int combine_merges
;
117 /* Number of instructions combined with added SETs in this function. */
119 static int combine_extras
;
121 /* Number of instructions combined in this function. */
123 static int combine_successes
;
125 /* Totals over entire compilation. */
127 static int total_attempts
, total_merges
, total_extras
, total_successes
;
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
136 static rtx_insn
*i2mod
;
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
140 static rtx i2mod_old_rhs
;
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
144 static rtx i2mod_new_rhs
;
146 struct reg_stat_type
{
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx_insn
*last_death
;
150 /* Record last point of modification of (hard or pseudo) register n. */
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
159 We use an approach similar to that used by cse, but change it in the
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
166 Therefore, we maintain the following fields:
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
182 (The next two parameters are out of date).
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
196 /* Record last value assigned to (hard or pseudo) register n. */
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
203 int last_set_table_tick
;
205 /* Record the value of label_tick when the value for register n is placed in
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
215 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
216 char last_set_sign_bit_copies
;
217 ENUM_BITFIELD(machine_mode
) last_set_mode
: 8;
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
223 char last_set_invalid
;
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
235 If an entry is zero, it means that we don't know anything special. */
237 unsigned char sign_bit_copies
;
239 unsigned HOST_WIDE_INT nonzero_bits
;
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
245 int truncation_label
;
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
252 ENUM_BITFIELD(machine_mode
) truncated_to_mode
: 8;
256 static vec
<reg_stat_type
> reg_stat
;
258 /* One plus the highest pseudo for which we track REG_N_SETS.
259 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
260 but during combine_split_insns new pseudos can be created. As we don't have
261 updated DF information in that case, it is hard to initialize the array
262 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
263 so instead of growing the arrays, just assume all newly created pseudos
264 during combine might be set multiple times. */
266 static unsigned int reg_n_sets_max
;
268 /* Record the luid of the last insn that invalidated memory
269 (anything that writes memory, and subroutine calls, but not pushes). */
271 static int mem_last_set
;
273 /* Record the luid of the last CALL_INSN
274 so we can tell whether a potential combination crosses any calls. */
276 static int last_call_luid
;
278 /* When `subst' is called, this is the insn that is being modified
279 (by combining in a previous insn). The PATTERN of this insn
280 is still the old pattern partially modified and it should not be
281 looked at, but this may be used to examine the successors of the insn
282 to judge whether a simplification is valid. */
284 static rtx_insn
*subst_insn
;
286 /* This is the lowest LUID that `subst' is currently dealing with.
287 get_last_value will not return a value if the register was set at or
288 after this LUID. If not for this mechanism, we could get confused if
289 I2 or I1 in try_combine were an insn that used the old value of a register
290 to obtain a new value. In that case, we might erroneously get the
291 new value of the register when we wanted the old one. */
293 static int subst_low_luid
;
295 /* This contains any hard registers that are used in newpat; reg_dead_at_p
296 must consider all these registers to be always live. */
298 static HARD_REG_SET newpat_used_regs
;
300 /* This is an insn to which a LOG_LINKS entry has been added. If this
301 insn is the earlier than I2 or I3, combine should rescan starting at
304 static rtx_insn
*added_links_insn
;
306 /* And similarly, for notes. */
308 static rtx_insn
*added_notes_insn
;
310 /* Basic block in which we are performing combines. */
311 static basic_block this_basic_block
;
312 static bool optimize_this_for_speed_p
;
315 /* Length of the currently allocated uid_insn_cost array. */
317 static int max_uid_known
;
319 /* The following array records the insn_cost for every insn
320 in the instruction stream. */
322 static int *uid_insn_cost
;
324 /* The following array records the LOG_LINKS for every insn in the
325 instruction stream as struct insn_link pointers. */
330 struct insn_link
*next
;
333 static struct insn_link
**uid_log_links
;
336 insn_uid_check (const_rtx insn
)
338 int uid
= INSN_UID (insn
);
339 gcc_checking_assert (uid
<= max_uid_known
);
343 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
344 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
346 #define FOR_EACH_LOG_LINK(L, INSN) \
347 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
349 /* Links for LOG_LINKS are allocated from this obstack. */
351 static struct obstack insn_link_obstack
;
353 /* Allocate a link. */
355 static inline struct insn_link
*
356 alloc_insn_link (rtx_insn
*insn
, unsigned int regno
, struct insn_link
*next
)
359 = (struct insn_link
*) obstack_alloc (&insn_link_obstack
,
360 sizeof (struct insn_link
));
367 /* Incremented for each basic block. */
369 static int label_tick
;
371 /* Reset to label_tick for each extended basic block in scanning order. */
373 static int label_tick_ebb_start
;
375 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
376 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
378 static scalar_int_mode nonzero_bits_mode
;
380 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
381 be safely used. It is zero while computing them and after combine has
382 completed. This former test prevents propagating values based on
383 previously set values, which can be incorrect if a variable is modified
386 static int nonzero_sign_valid
;
389 /* Record one modification to rtl structure
390 to be undone by storing old_contents into *where. */
392 enum undo_kind
{ UNDO_RTX
, UNDO_INT
, UNDO_MODE
, UNDO_LINKS
};
398 union { rtx r
; int i
; machine_mode m
; struct insn_link
*l
; } old_contents
;
399 union { rtx
*r
; int *i
; struct insn_link
**l
; } where
;
402 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
403 num_undo says how many are currently recorded.
405 other_insn is nonzero if we have modified some other insn in the process
406 of working on subst_insn. It must be verified too. */
412 rtx_insn
*other_insn
;
415 static struct undobuf undobuf
;
417 /* Number of times the pseudo being substituted for
418 was found and replaced. */
420 static int n_occurrences
;
422 static rtx
reg_nonzero_bits_for_combine (const_rtx
, scalar_int_mode
,
424 unsigned HOST_WIDE_INT
*);
425 static rtx
reg_num_sign_bit_copies_for_combine (const_rtx
, scalar_int_mode
,
428 static void do_SUBST (rtx
*, rtx
);
429 static void do_SUBST_INT (int *, int);
430 static void init_reg_last (void);
431 static void setup_incoming_promotions (rtx_insn
*);
432 static void set_nonzero_bits_and_sign_copies (rtx
, const_rtx
, void *);
433 static int cant_combine_insn_p (rtx_insn
*);
434 static int can_combine_p (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
435 rtx_insn
*, rtx_insn
*, rtx
*, rtx
*);
436 static int combinable_i3pat (rtx_insn
*, rtx
*, rtx
, rtx
, rtx
, int, int, rtx
*);
437 static int contains_muldiv (rtx
);
438 static rtx_insn
*try_combine (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
440 static void undo_all (void);
441 static void undo_commit (void);
442 static rtx
*find_split_point (rtx
*, rtx_insn
*, bool);
443 static rtx
subst (rtx
, rtx
, rtx
, int, int, int);
444 static rtx
combine_simplify_rtx (rtx
, machine_mode
, int, int);
445 static rtx
simplify_if_then_else (rtx
);
446 static rtx
simplify_set (rtx
);
447 static rtx
simplify_logical (rtx
);
448 static rtx
expand_compound_operation (rtx
);
449 static const_rtx
expand_field_assignment (const_rtx
);
450 static rtx
make_extraction (machine_mode
, rtx
, HOST_WIDE_INT
,
451 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
452 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
453 unsigned HOST_WIDE_INT
*);
454 static rtx
canon_reg_for_combine (rtx
, rtx
);
455 static rtx
force_int_to_mode (rtx
, scalar_int_mode
, scalar_int_mode
,
456 scalar_int_mode
, unsigned HOST_WIDE_INT
, int);
457 static rtx
force_to_mode (rtx
, machine_mode
,
458 unsigned HOST_WIDE_INT
, int);
459 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
460 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
461 static int rtx_equal_for_field_assignment_p (rtx
, rtx
, bool = false);
462 static rtx
make_field_assignment (rtx
);
463 static rtx
apply_distributive_law (rtx
);
464 static rtx
distribute_and_simplify_rtx (rtx
, int);
465 static rtx
simplify_and_const_int_1 (scalar_int_mode
, rtx
,
466 unsigned HOST_WIDE_INT
);
467 static rtx
simplify_and_const_int (rtx
, scalar_int_mode
, rtx
,
468 unsigned HOST_WIDE_INT
);
469 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
470 HOST_WIDE_INT
, machine_mode
, int *);
471 static rtx
simplify_shift_const_1 (enum rtx_code
, machine_mode
, rtx
, int);
472 static rtx
simplify_shift_const (rtx
, enum rtx_code
, machine_mode
, rtx
,
474 static int recog_for_combine (rtx
*, rtx_insn
*, rtx
*);
475 static rtx
gen_lowpart_for_combine (machine_mode
, rtx
);
476 static enum rtx_code
simplify_compare_const (enum rtx_code
, machine_mode
,
478 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
479 static void update_table_tick (rtx
);
480 static void record_value_for_reg (rtx
, rtx_insn
*, rtx
);
481 static void check_promoted_subreg (rtx_insn
*, rtx
);
482 static void record_dead_and_set_regs_1 (rtx
, const_rtx
, void *);
483 static void record_dead_and_set_regs (rtx_insn
*);
484 static int get_last_value_validate (rtx
*, rtx_insn
*, int, int);
485 static rtx
get_last_value (const_rtx
);
486 static void reg_dead_at_p_1 (rtx
, const_rtx
, void *);
487 static int reg_dead_at_p (rtx
, rtx_insn
*);
488 static void move_deaths (rtx
, rtx
, int, rtx_insn
*, rtx
*);
489 static int reg_bitfield_target_p (rtx
, rtx
);
490 static void distribute_notes (rtx
, rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx
, rtx
, rtx
);
491 static void distribute_links (struct insn_link
*);
492 static void mark_used_regs_combine (rtx
);
493 static void record_promoted_value (rtx_insn
*, rtx
);
494 static bool unmentioned_reg_p (rtx
, rtx
);
495 static void record_truncated_values (rtx
*, void *);
496 static bool reg_truncated_to_mode (machine_mode
, const_rtx
);
497 static rtx
gen_lowpart_or_truncate (machine_mode
, rtx
);
500 /* It is not safe to use ordinary gen_lowpart in combine.
501 See comments in gen_lowpart_for_combine. */
502 #undef RTL_HOOKS_GEN_LOWPART
503 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
505 /* Our implementation of gen_lowpart never emits a new pseudo. */
506 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
507 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
509 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
510 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
512 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
513 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
515 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
516 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
518 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
521 /* Convenience wrapper for the canonicalize_comparison target hook.
522 Target hooks cannot use enum rtx_code. */
524 target_canonicalize_comparison (enum rtx_code
*code
, rtx
*op0
, rtx
*op1
,
525 bool op0_preserve_value
)
527 int code_int
= (int)*code
;
528 targetm
.canonicalize_comparison (&code_int
, op0
, op1
, op0_preserve_value
);
529 *code
= (enum rtx_code
)code_int
;
532 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
533 PATTERN cannot be split. Otherwise, it returns an insn sequence.
534 This is a wrapper around split_insns which ensures that the
535 reg_stat vector is made larger if the splitter creates a new
539 combine_split_insns (rtx pattern
, rtx_insn
*insn
)
544 ret
= split_insns (pattern
, insn
);
545 nregs
= max_reg_num ();
546 if (nregs
> reg_stat
.length ())
547 reg_stat
.safe_grow_cleared (nregs
);
551 /* This is used by find_single_use to locate an rtx in LOC that
552 contains exactly one use of DEST, which is typically either a REG
553 or CC0. It returns a pointer to the innermost rtx expression
554 containing DEST. Appearances of DEST that are being used to
555 totally replace it are not counted. */
558 find_single_use_1 (rtx dest
, rtx
*loc
)
561 enum rtx_code code
= GET_CODE (x
);
578 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
579 of a REG that occupies all of the REG, the insn uses DEST if
580 it is mentioned in the destination or the source. Otherwise, we
581 need just check the source. */
582 if (GET_CODE (SET_DEST (x
)) != CC0
583 && GET_CODE (SET_DEST (x
)) != PC
584 && !REG_P (SET_DEST (x
))
585 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
586 && REG_P (SUBREG_REG (SET_DEST (x
)))
587 && !read_modify_subreg_p (SET_DEST (x
))))
590 return find_single_use_1 (dest
, &SET_SRC (x
));
594 return find_single_use_1 (dest
, &XEXP (x
, 0));
600 /* If it wasn't one of the common cases above, check each expression and
601 vector of this code. Look for a unique usage of DEST. */
603 fmt
= GET_RTX_FORMAT (code
);
604 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
608 if (dest
== XEXP (x
, i
)
609 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
610 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
613 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
616 result
= this_result
;
617 else if (this_result
)
618 /* Duplicate usage. */
621 else if (fmt
[i
] == 'E')
625 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
627 if (XVECEXP (x
, i
, j
) == dest
629 && REG_P (XVECEXP (x
, i
, j
))
630 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
633 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
636 result
= this_result
;
637 else if (this_result
)
647 /* See if DEST, produced in INSN, is used only a single time in the
648 sequel. If so, return a pointer to the innermost rtx expression in which
651 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
653 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
654 care about REG_DEAD notes or LOG_LINKS.
656 Otherwise, we find the single use by finding an insn that has a
657 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
658 only referenced once in that insn, we know that it must be the first
659 and last insn referencing DEST. */
662 find_single_use (rtx dest
, rtx_insn
*insn
, rtx_insn
**ploc
)
667 struct insn_link
*link
;
671 next
= NEXT_INSN (insn
);
673 || (!NONJUMP_INSN_P (next
) && !JUMP_P (next
)))
676 result
= find_single_use_1 (dest
, &PATTERN (next
));
685 bb
= BLOCK_FOR_INSN (insn
);
686 for (next
= NEXT_INSN (insn
);
687 next
&& BLOCK_FOR_INSN (next
) == bb
;
688 next
= NEXT_INSN (next
))
689 if (NONDEBUG_INSN_P (next
) && dead_or_set_p (next
, dest
))
691 FOR_EACH_LOG_LINK (link
, next
)
692 if (link
->insn
== insn
&& link
->regno
== REGNO (dest
))
697 result
= find_single_use_1 (dest
, &PATTERN (next
));
707 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
708 insn. The substitution can be undone by undo_all. If INTO is already
709 set to NEWVAL, do not record this change. Because computing NEWVAL might
710 also call SUBST, we have to compute it before we put anything into
714 do_SUBST (rtx
*into
, rtx newval
)
719 if (oldval
== newval
)
722 /* We'd like to catch as many invalid transformations here as
723 possible. Unfortunately, there are way too many mode changes
724 that are perfectly valid, so we'd waste too much effort for
725 little gain doing the checks here. Focus on catching invalid
726 transformations involving integer constants. */
727 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
728 && CONST_INT_P (newval
))
730 /* Sanity check that we're replacing oldval with a CONST_INT
731 that is a valid sign-extension for the original mode. */
732 gcc_assert (INTVAL (newval
)
733 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
735 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
736 CONST_INT is not valid, because after the replacement, the
737 original mode would be gone. Unfortunately, we can't tell
738 when do_SUBST is called to replace the operand thereof, so we
739 perform this test on oldval instead, checking whether an
740 invalid replacement took place before we got here. */
741 gcc_assert (!(GET_CODE (oldval
) == SUBREG
742 && CONST_INT_P (SUBREG_REG (oldval
))));
743 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
744 && CONST_INT_P (XEXP (oldval
, 0))));
748 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
750 buf
= XNEW (struct undo
);
752 buf
->kind
= UNDO_RTX
;
754 buf
->old_contents
.r
= oldval
;
757 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
760 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
762 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
763 for the value of a HOST_WIDE_INT value (including CONST_INT) is
767 do_SUBST_INT (int *into
, int newval
)
772 if (oldval
== newval
)
776 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
778 buf
= XNEW (struct undo
);
780 buf
->kind
= UNDO_INT
;
782 buf
->old_contents
.i
= oldval
;
785 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
788 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
790 /* Similar to SUBST, but just substitute the mode. This is used when
791 changing the mode of a pseudo-register, so that any other
792 references to the entry in the regno_reg_rtx array will change as
796 do_SUBST_MODE (rtx
*into
, machine_mode newval
)
799 machine_mode oldval
= GET_MODE (*into
);
801 if (oldval
== newval
)
805 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
807 buf
= XNEW (struct undo
);
809 buf
->kind
= UNDO_MODE
;
811 buf
->old_contents
.m
= oldval
;
812 adjust_reg_mode (*into
, newval
);
814 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
817 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
819 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
822 do_SUBST_LINK (struct insn_link
**into
, struct insn_link
*newval
)
825 struct insn_link
* oldval
= *into
;
827 if (oldval
== newval
)
831 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
833 buf
= XNEW (struct undo
);
835 buf
->kind
= UNDO_LINKS
;
837 buf
->old_contents
.l
= oldval
;
840 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
843 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
845 /* Subroutine of try_combine. Determine whether the replacement patterns
846 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
847 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
848 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
849 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
850 of all the instructions can be estimated and the replacements are more
851 expensive than the original sequence. */
854 combine_validate_cost (rtx_insn
*i0
, rtx_insn
*i1
, rtx_insn
*i2
, rtx_insn
*i3
,
855 rtx newpat
, rtx newi2pat
, rtx newotherpat
)
857 int i0_cost
, i1_cost
, i2_cost
, i3_cost
;
858 int new_i2_cost
, new_i3_cost
;
859 int old_cost
, new_cost
;
861 /* Lookup the original insn_costs. */
862 i2_cost
= INSN_COST (i2
);
863 i3_cost
= INSN_COST (i3
);
867 i1_cost
= INSN_COST (i1
);
870 i0_cost
= INSN_COST (i0
);
871 old_cost
= (i0_cost
> 0 && i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
872 ? i0_cost
+ i1_cost
+ i2_cost
+ i3_cost
: 0);
876 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
877 ? i1_cost
+ i2_cost
+ i3_cost
: 0);
883 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
884 i1_cost
= i0_cost
= 0;
887 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
889 if (old_cost
&& i1
&& INSN_UID (i1
) == INSN_UID (i2
))
893 /* Calculate the replacement insn_costs. */
894 rtx tmp
= PATTERN (i3
);
895 PATTERN (i3
) = newpat
;
896 int tmpi
= INSN_CODE (i3
);
898 new_i3_cost
= insn_cost (i3
, optimize_this_for_speed_p
);
900 INSN_CODE (i3
) = tmpi
;
904 PATTERN (i2
) = newi2pat
;
905 tmpi
= INSN_CODE (i2
);
907 new_i2_cost
= insn_cost (i2
, optimize_this_for_speed_p
);
909 INSN_CODE (i2
) = tmpi
;
910 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
911 ? new_i2_cost
+ new_i3_cost
: 0;
915 new_cost
= new_i3_cost
;
919 if (undobuf
.other_insn
)
921 int old_other_cost
, new_other_cost
;
923 old_other_cost
= INSN_COST (undobuf
.other_insn
);
924 tmp
= PATTERN (undobuf
.other_insn
);
925 PATTERN (undobuf
.other_insn
) = newotherpat
;
926 tmpi
= INSN_CODE (undobuf
.other_insn
);
927 INSN_CODE (undobuf
.other_insn
) = -1;
928 new_other_cost
= insn_cost (undobuf
.other_insn
,
929 optimize_this_for_speed_p
);
930 PATTERN (undobuf
.other_insn
) = tmp
;
931 INSN_CODE (undobuf
.other_insn
) = tmpi
;
932 if (old_other_cost
> 0 && new_other_cost
> 0)
934 old_cost
+= old_other_cost
;
935 new_cost
+= new_other_cost
;
941 /* Disallow this combination if both new_cost and old_cost are greater than
942 zero, and new_cost is greater than old cost. */
943 int reject
= old_cost
> 0 && new_cost
> old_cost
;
947 fprintf (dump_file
, "%s combination of insns ",
948 reject
? "rejecting" : "allowing");
950 fprintf (dump_file
, "%d, ", INSN_UID (i0
));
951 if (i1
&& INSN_UID (i1
) != INSN_UID (i2
))
952 fprintf (dump_file
, "%d, ", INSN_UID (i1
));
953 fprintf (dump_file
, "%d and %d\n", INSN_UID (i2
), INSN_UID (i3
));
955 fprintf (dump_file
, "original costs ");
957 fprintf (dump_file
, "%d + ", i0_cost
);
958 if (i1
&& INSN_UID (i1
) != INSN_UID (i2
))
959 fprintf (dump_file
, "%d + ", i1_cost
);
960 fprintf (dump_file
, "%d + %d = %d\n", i2_cost
, i3_cost
, old_cost
);
963 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
964 new_i2_cost
, new_i3_cost
, new_cost
);
966 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
972 /* Update the uid_insn_cost array with the replacement costs. */
973 INSN_COST (i2
) = new_i2_cost
;
974 INSN_COST (i3
) = new_i3_cost
;
986 /* Delete any insns that copy a register to itself.
987 Return true if the CFG was changed. */
990 delete_noop_moves (void)
992 rtx_insn
*insn
, *next
;
995 bool edges_deleted
= false;
997 FOR_EACH_BB_FN (bb
, cfun
)
999 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
1001 next
= NEXT_INSN (insn
);
1002 if (INSN_P (insn
) && noop_move_p (insn
))
1005 fprintf (dump_file
, "deleting noop move %d\n", INSN_UID (insn
));
1007 edges_deleted
|= delete_insn_and_edges (insn
);
1012 return edges_deleted
;
1016 /* Return false if we do not want to (or cannot) combine DEF. */
1018 can_combine_def_p (df_ref def
)
1020 /* Do not consider if it is pre/post modification in MEM. */
1021 if (DF_REF_FLAGS (def
) & DF_REF_PRE_POST_MODIFY
)
1024 unsigned int regno
= DF_REF_REGNO (def
);
1026 /* Do not combine frame pointer adjustments. */
1027 if ((regno
== FRAME_POINTER_REGNUM
1028 && (!reload_completed
|| frame_pointer_needed
))
1029 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1030 && regno
== HARD_FRAME_POINTER_REGNUM
1031 && (!reload_completed
|| frame_pointer_needed
))
1032 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
1033 && regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
]))
1039 /* Return false if we do not want to (or cannot) combine USE. */
1041 can_combine_use_p (df_ref use
)
1043 /* Do not consider the usage of the stack pointer by function call. */
1044 if (DF_REF_FLAGS (use
) & DF_REF_CALL_STACK_USAGE
)
1050 /* Fill in log links field for all insns. */
1053 create_log_links (void)
1056 rtx_insn
**next_use
;
1060 next_use
= XCNEWVEC (rtx_insn
*, max_reg_num ());
1062 /* Pass through each block from the end, recording the uses of each
1063 register and establishing log links when def is encountered.
1064 Note that we do not clear next_use array in order to save time,
1065 so we have to test whether the use is in the same basic block as def.
1067 There are a few cases below when we do not consider the definition or
1068 usage -- these are taken from original flow.c did. Don't ask me why it is
1069 done this way; I don't know and if it works, I don't want to know. */
1071 FOR_EACH_BB_FN (bb
, cfun
)
1073 FOR_BB_INSNS_REVERSE (bb
, insn
)
1075 if (!NONDEBUG_INSN_P (insn
))
1078 /* Log links are created only once. */
1079 gcc_assert (!LOG_LINKS (insn
));
1081 FOR_EACH_INSN_DEF (def
, insn
)
1083 unsigned int regno
= DF_REF_REGNO (def
);
1086 if (!next_use
[regno
])
1089 if (!can_combine_def_p (def
))
1092 use_insn
= next_use
[regno
];
1093 next_use
[regno
] = NULL
;
1095 if (BLOCK_FOR_INSN (use_insn
) != bb
)
1100 We don't build a LOG_LINK for hard registers contained
1101 in ASM_OPERANDs. If these registers get replaced,
1102 we might wind up changing the semantics of the insn,
1103 even if reload can make what appear to be valid
1104 assignments later. */
1105 if (regno
< FIRST_PSEUDO_REGISTER
1106 && asm_noperands (PATTERN (use_insn
)) >= 0)
1109 /* Don't add duplicate links between instructions. */
1110 struct insn_link
*links
;
1111 FOR_EACH_LOG_LINK (links
, use_insn
)
1112 if (insn
== links
->insn
&& regno
== links
->regno
)
1116 LOG_LINKS (use_insn
)
1117 = alloc_insn_link (insn
, regno
, LOG_LINKS (use_insn
));
1120 FOR_EACH_INSN_USE (use
, insn
)
1121 if (can_combine_use_p (use
))
1122 next_use
[DF_REF_REGNO (use
)] = insn
;
1129 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1130 true if we found a LOG_LINK that proves that A feeds B. This only works
1131 if there are no instructions between A and B which could have a link
1132 depending on A, since in that case we would not record a link for B.
1133 We also check the implicit dependency created by a cc0 setter/user
1137 insn_a_feeds_b (rtx_insn
*a
, rtx_insn
*b
)
1139 struct insn_link
*links
;
1140 FOR_EACH_LOG_LINK (links
, b
)
1141 if (links
->insn
== a
)
1143 if (HAVE_cc0
&& sets_cc0_p (a
))
1148 /* Main entry point for combiner. F is the first insn of the function.
1149 NREGS is the first unused pseudo-reg number.
1151 Return nonzero if the CFG was changed (e.g. if the combiner has
1152 turned an indirect jump instruction into a direct jump). */
1154 combine_instructions (rtx_insn
*f
, unsigned int nregs
)
1156 rtx_insn
*insn
, *next
;
1158 struct insn_link
*links
, *nextlinks
;
1160 basic_block last_bb
;
1162 int new_direct_jump_p
= 0;
1164 for (first
= f
; first
&& !NONDEBUG_INSN_P (first
); )
1165 first
= NEXT_INSN (first
);
1169 combine_attempts
= 0;
1172 combine_successes
= 0;
1174 rtl_hooks
= combine_rtl_hooks
;
1176 reg_stat
.safe_grow_cleared (nregs
);
1178 init_recog_no_volatile ();
1180 /* Allocate array for insn info. */
1181 max_uid_known
= get_max_uid ();
1182 uid_log_links
= XCNEWVEC (struct insn_link
*, max_uid_known
+ 1);
1183 uid_insn_cost
= XCNEWVEC (int, max_uid_known
+ 1);
1184 gcc_obstack_init (&insn_link_obstack
);
1186 nonzero_bits_mode
= int_mode_for_size (HOST_BITS_PER_WIDE_INT
, 0).require ();
1188 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1189 problems when, for example, we have j <<= 1 in a loop. */
1191 nonzero_sign_valid
= 0;
1192 label_tick
= label_tick_ebb_start
= 1;
1194 /* Scan all SETs and see if we can deduce anything about what
1195 bits are known to be zero for some registers and how many copies
1196 of the sign bit are known to exist for those registers.
1198 Also set any known values so that we can use it while searching
1199 for what bits are known to be set. */
1201 setup_incoming_promotions (first
);
1202 /* Allow the entry block and the first block to fall into the same EBB.
1203 Conceptually the incoming promotions are assigned to the entry block. */
1204 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1206 create_log_links ();
1207 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1209 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1214 if (!single_pred_p (this_basic_block
)
1215 || single_pred (this_basic_block
) != last_bb
)
1216 label_tick_ebb_start
= label_tick
;
1217 last_bb
= this_basic_block
;
1219 FOR_BB_INSNS (this_basic_block
, insn
)
1220 if (INSN_P (insn
) && BLOCK_FOR_INSN (insn
))
1224 subst_low_luid
= DF_INSN_LUID (insn
);
1227 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
1229 record_dead_and_set_regs (insn
);
1232 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
1233 if (REG_NOTE_KIND (links
) == REG_INC
)
1234 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
1237 /* Record the current insn_cost of this instruction. */
1238 if (NONJUMP_INSN_P (insn
))
1239 INSN_COST (insn
) = insn_cost (insn
, optimize_this_for_speed_p
);
1242 fprintf (dump_file
, "insn_cost %d for ", INSN_COST (insn
));
1243 dump_insn_slim (dump_file
, insn
);
1248 nonzero_sign_valid
= 1;
1250 /* Now scan all the insns in forward order. */
1251 label_tick
= label_tick_ebb_start
= 1;
1253 setup_incoming_promotions (first
);
1254 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1255 int max_combine
= PARAM_VALUE (PARAM_MAX_COMBINE_INSNS
);
1257 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1259 rtx_insn
*last_combined_insn
= NULL
;
1261 /* Ignore instruction combination in basic blocks that are going to
1262 be removed as unreachable anyway. See PR82386. */
1263 if (EDGE_COUNT (this_basic_block
->preds
) == 0)
1266 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1271 if (!single_pred_p (this_basic_block
)
1272 || single_pred (this_basic_block
) != last_bb
)
1273 label_tick_ebb_start
= label_tick
;
1274 last_bb
= this_basic_block
;
1276 rtl_profile_for_bb (this_basic_block
);
1277 for (insn
= BB_HEAD (this_basic_block
);
1278 insn
!= NEXT_INSN (BB_END (this_basic_block
));
1279 insn
= next
? next
: NEXT_INSN (insn
))
1282 if (!NONDEBUG_INSN_P (insn
))
1285 while (last_combined_insn
1286 && (!NONDEBUG_INSN_P (last_combined_insn
)
1287 || last_combined_insn
->deleted ()))
1288 last_combined_insn
= PREV_INSN (last_combined_insn
);
1289 if (last_combined_insn
== NULL_RTX
1290 || BLOCK_FOR_INSN (last_combined_insn
) != this_basic_block
1291 || DF_INSN_LUID (last_combined_insn
) <= DF_INSN_LUID (insn
))
1292 last_combined_insn
= insn
;
1294 /* See if we know about function return values before this
1295 insn based upon SUBREG flags. */
1296 check_promoted_subreg (insn
, PATTERN (insn
));
1298 /* See if we can find hardregs and subreg of pseudos in
1299 narrower modes. This could help turning TRUNCATEs
1301 note_uses (&PATTERN (insn
), record_truncated_values
, NULL
);
1303 /* Try this insn with each insn it links back to. */
1305 FOR_EACH_LOG_LINK (links
, insn
)
1306 if ((next
= try_combine (insn
, links
->insn
, NULL
,
1307 NULL
, &new_direct_jump_p
,
1308 last_combined_insn
)) != 0)
1310 statistics_counter_event (cfun
, "two-insn combine", 1);
1314 /* Try each sequence of three linked insns ending with this one. */
1316 if (max_combine
>= 3)
1317 FOR_EACH_LOG_LINK (links
, insn
)
1319 rtx_insn
*link
= links
->insn
;
1321 /* If the linked insn has been replaced by a note, then there
1322 is no point in pursuing this chain any further. */
1326 FOR_EACH_LOG_LINK (nextlinks
, link
)
1327 if ((next
= try_combine (insn
, link
, nextlinks
->insn
,
1328 NULL
, &new_direct_jump_p
,
1329 last_combined_insn
)) != 0)
1331 statistics_counter_event (cfun
, "three-insn combine", 1);
1336 /* Try to combine a jump insn that uses CC0
1337 with a preceding insn that sets CC0, and maybe with its
1338 logical predecessor as well.
1339 This is how we make decrement-and-branch insns.
1340 We need this special code because data flow connections
1341 via CC0 do not get entered in LOG_LINKS. */
1345 && (prev
= prev_nonnote_insn (insn
)) != 0
1346 && NONJUMP_INSN_P (prev
)
1347 && sets_cc0_p (PATTERN (prev
)))
1349 if ((next
= try_combine (insn
, prev
, NULL
, NULL
,
1351 last_combined_insn
)) != 0)
1354 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1355 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1356 NULL
, &new_direct_jump_p
,
1357 last_combined_insn
)) != 0)
1361 /* Do the same for an insn that explicitly references CC0. */
1362 if (HAVE_cc0
&& NONJUMP_INSN_P (insn
)
1363 && (prev
= prev_nonnote_insn (insn
)) != 0
1364 && NONJUMP_INSN_P (prev
)
1365 && sets_cc0_p (PATTERN (prev
))
1366 && GET_CODE (PATTERN (insn
)) == SET
1367 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
1369 if ((next
= try_combine (insn
, prev
, NULL
, NULL
,
1371 last_combined_insn
)) != 0)
1374 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1375 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1376 NULL
, &new_direct_jump_p
,
1377 last_combined_insn
)) != 0)
1381 /* Finally, see if any of the insns that this insn links to
1382 explicitly references CC0. If so, try this insn, that insn,
1383 and its predecessor if it sets CC0. */
1386 FOR_EACH_LOG_LINK (links
, insn
)
1387 if (NONJUMP_INSN_P (links
->insn
)
1388 && GET_CODE (PATTERN (links
->insn
)) == SET
1389 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (links
->insn
)))
1390 && (prev
= prev_nonnote_insn (links
->insn
)) != 0
1391 && NONJUMP_INSN_P (prev
)
1392 && sets_cc0_p (PATTERN (prev
))
1393 && (next
= try_combine (insn
, links
->insn
,
1394 prev
, NULL
, &new_direct_jump_p
,
1395 last_combined_insn
)) != 0)
1399 /* Try combining an insn with two different insns whose results it
1401 if (max_combine
>= 3)
1402 FOR_EACH_LOG_LINK (links
, insn
)
1403 for (nextlinks
= links
->next
; nextlinks
;
1404 nextlinks
= nextlinks
->next
)
1405 if ((next
= try_combine (insn
, links
->insn
,
1406 nextlinks
->insn
, NULL
,
1408 last_combined_insn
)) != 0)
1411 statistics_counter_event (cfun
, "three-insn combine", 1);
1415 /* Try four-instruction combinations. */
1416 if (max_combine
>= 4)
1417 FOR_EACH_LOG_LINK (links
, insn
)
1419 struct insn_link
*next1
;
1420 rtx_insn
*link
= links
->insn
;
1422 /* If the linked insn has been replaced by a note, then there
1423 is no point in pursuing this chain any further. */
1427 FOR_EACH_LOG_LINK (next1
, link
)
1429 rtx_insn
*link1
= next1
->insn
;
1432 /* I0 -> I1 -> I2 -> I3. */
1433 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1434 if ((next
= try_combine (insn
, link
, link1
,
1437 last_combined_insn
)) != 0)
1439 statistics_counter_event (cfun
, "four-insn combine", 1);
1442 /* I0, I1 -> I2, I2 -> I3. */
1443 for (nextlinks
= next1
->next
; nextlinks
;
1444 nextlinks
= nextlinks
->next
)
1445 if ((next
= try_combine (insn
, link
, link1
,
1448 last_combined_insn
)) != 0)
1450 statistics_counter_event (cfun
, "four-insn combine", 1);
1455 for (next1
= links
->next
; next1
; next1
= next1
->next
)
1457 rtx_insn
*link1
= next1
->insn
;
1460 /* I0 -> I2; I1, I2 -> I3. */
1461 FOR_EACH_LOG_LINK (nextlinks
, link
)
1462 if ((next
= try_combine (insn
, link
, link1
,
1465 last_combined_insn
)) != 0)
1467 statistics_counter_event (cfun
, "four-insn combine", 1);
1470 /* I0 -> I1; I1, I2 -> I3. */
1471 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1472 if ((next
= try_combine (insn
, link
, link1
,
1475 last_combined_insn
)) != 0)
1477 statistics_counter_event (cfun
, "four-insn combine", 1);
1483 /* Try this insn with each REG_EQUAL note it links back to. */
1484 FOR_EACH_LOG_LINK (links
, insn
)
1487 rtx_insn
*temp
= links
->insn
;
1488 if ((set
= single_set (temp
)) != 0
1489 && (note
= find_reg_equal_equiv_note (temp
)) != 0
1490 && (note
= XEXP (note
, 0), GET_CODE (note
)) != EXPR_LIST
1491 /* Avoid using a register that may already been marked
1492 dead by an earlier instruction. */
1493 && ! unmentioned_reg_p (note
, SET_SRC (set
))
1494 && (GET_MODE (note
) == VOIDmode
1495 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set
)))
1496 : (GET_MODE (SET_DEST (set
)) == GET_MODE (note
)
1497 && (GET_CODE (SET_DEST (set
)) != ZERO_EXTRACT
1498 || (GET_MODE (XEXP (SET_DEST (set
), 0))
1499 == GET_MODE (note
))))))
1501 /* Temporarily replace the set's source with the
1502 contents of the REG_EQUAL note. The insn will
1503 be deleted or recognized by try_combine. */
1504 rtx orig_src
= SET_SRC (set
);
1505 rtx orig_dest
= SET_DEST (set
);
1506 if (GET_CODE (SET_DEST (set
)) == ZERO_EXTRACT
)
1507 SET_DEST (set
) = XEXP (SET_DEST (set
), 0);
1508 SET_SRC (set
) = note
;
1510 i2mod_old_rhs
= copy_rtx (orig_src
);
1511 i2mod_new_rhs
= copy_rtx (note
);
1512 next
= try_combine (insn
, i2mod
, NULL
, NULL
,
1514 last_combined_insn
);
1518 statistics_counter_event (cfun
, "insn-with-note combine", 1);
1521 SET_SRC (set
) = orig_src
;
1522 SET_DEST (set
) = orig_dest
;
1527 record_dead_and_set_regs (insn
);
1534 default_rtl_profile ();
1536 new_direct_jump_p
|= purge_all_dead_edges ();
1537 new_direct_jump_p
|= delete_noop_moves ();
1540 obstack_free (&insn_link_obstack
, NULL
);
1541 free (uid_log_links
);
1542 free (uid_insn_cost
);
1543 reg_stat
.release ();
1546 struct undo
*undo
, *next
;
1547 for (undo
= undobuf
.frees
; undo
; undo
= next
)
1555 total_attempts
+= combine_attempts
;
1556 total_merges
+= combine_merges
;
1557 total_extras
+= combine_extras
;
1558 total_successes
+= combine_successes
;
1560 nonzero_sign_valid
= 0;
1561 rtl_hooks
= general_rtl_hooks
;
1563 /* Make recognizer allow volatile MEMs again. */
1566 return new_direct_jump_p
;
1569 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1572 init_reg_last (void)
1577 FOR_EACH_VEC_ELT (reg_stat
, i
, p
)
1578 memset (p
, 0, offsetof (reg_stat_type
, sign_bit_copies
));
1581 /* Set up any promoted values for incoming argument registers. */
1584 setup_incoming_promotions (rtx_insn
*first
)
1587 bool strictly_local
= false;
1589 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
1590 arg
= DECL_CHAIN (arg
))
1592 rtx x
, reg
= DECL_INCOMING_RTL (arg
);
1594 machine_mode mode1
, mode2
, mode3
, mode4
;
1596 /* Only continue if the incoming argument is in a register. */
1600 /* Determine, if possible, whether all call sites of the current
1601 function lie within the current compilation unit. (This does
1602 take into account the exporting of a function via taking its
1603 address, and so forth.) */
1604 strictly_local
= cgraph_node::local_info (current_function_decl
)->local
;
1606 /* The mode and signedness of the argument before any promotions happen
1607 (equal to the mode of the pseudo holding it at that stage). */
1608 mode1
= TYPE_MODE (TREE_TYPE (arg
));
1609 uns1
= TYPE_UNSIGNED (TREE_TYPE (arg
));
1611 /* The mode and signedness of the argument after any source language and
1612 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1613 mode2
= TYPE_MODE (DECL_ARG_TYPE (arg
));
1614 uns3
= TYPE_UNSIGNED (DECL_ARG_TYPE (arg
));
1616 /* The mode and signedness of the argument as it is actually passed,
1617 see assign_parm_setup_reg in function.c. */
1618 mode3
= promote_function_mode (TREE_TYPE (arg
), mode1
, &uns3
,
1619 TREE_TYPE (cfun
->decl
), 0);
1621 /* The mode of the register in which the argument is being passed. */
1622 mode4
= GET_MODE (reg
);
1624 /* Eliminate sign extensions in the callee when:
1625 (a) A mode promotion has occurred; */
1628 /* (b) The mode of the register is the same as the mode of
1629 the argument as it is passed; */
1632 /* (c) There's no language level extension; */
1635 /* (c.1) All callers are from the current compilation unit. If that's
1636 the case we don't have to rely on an ABI, we only have to know
1637 what we're generating right now, and we know that we will do the
1638 mode1 to mode2 promotion with the given sign. */
1639 else if (!strictly_local
)
1641 /* (c.2) The combination of the two promotions is useful. This is
1642 true when the signs match, or if the first promotion is unsigned.
1643 In the later case, (sign_extend (zero_extend x)) is the same as
1644 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1650 /* Record that the value was promoted from mode1 to mode3,
1651 so that any sign extension at the head of the current
1652 function may be eliminated. */
1653 x
= gen_rtx_CLOBBER (mode1
, const0_rtx
);
1654 x
= gen_rtx_fmt_e ((uns3
? ZERO_EXTEND
: SIGN_EXTEND
), mode3
, x
);
1655 record_value_for_reg (reg
, first
, x
);
1659 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1660 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1661 because some machines (maybe most) will actually do the sign-extension and
1662 this is the conservative approach.
1664 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1668 sign_extend_short_imm (rtx src
, machine_mode mode
, unsigned int prec
)
1670 scalar_int_mode int_mode
;
1671 if (CONST_INT_P (src
)
1672 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
1673 && GET_MODE_PRECISION (int_mode
) < prec
1675 && val_signbit_known_set_p (int_mode
, INTVAL (src
)))
1676 src
= GEN_INT (INTVAL (src
) | ~GET_MODE_MASK (int_mode
));
1681 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1685 update_rsp_from_reg_equal (reg_stat_type
*rsp
, rtx_insn
*insn
, const_rtx set
,
1688 rtx reg_equal_note
= insn
? find_reg_equal_equiv_note (insn
) : NULL_RTX
;
1689 unsigned HOST_WIDE_INT bits
= 0;
1690 rtx reg_equal
= NULL
, src
= SET_SRC (set
);
1691 unsigned int num
= 0;
1694 reg_equal
= XEXP (reg_equal_note
, 0);
1696 if (SHORT_IMMEDIATES_SIGN_EXTEND
)
1698 src
= sign_extend_short_imm (src
, GET_MODE (x
), BITS_PER_WORD
);
1700 reg_equal
= sign_extend_short_imm (reg_equal
, GET_MODE (x
), BITS_PER_WORD
);
1703 /* Don't call nonzero_bits if it cannot change anything. */
1704 if (rsp
->nonzero_bits
!= HOST_WIDE_INT_M1U
)
1706 machine_mode mode
= GET_MODE (x
);
1707 if (GET_MODE_CLASS (mode
) == MODE_INT
1708 && HWI_COMPUTABLE_MODE_P (mode
))
1709 mode
= nonzero_bits_mode
;
1710 bits
= nonzero_bits (src
, mode
);
1711 if (reg_equal
&& bits
)
1712 bits
&= nonzero_bits (reg_equal
, mode
);
1713 rsp
->nonzero_bits
|= bits
;
1716 /* Don't call num_sign_bit_copies if it cannot change anything. */
1717 if (rsp
->sign_bit_copies
!= 1)
1719 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1720 if (reg_equal
&& maybe_ne (num
, GET_MODE_PRECISION (GET_MODE (x
))))
1722 unsigned int numeq
= num_sign_bit_copies (reg_equal
, GET_MODE (x
));
1723 if (num
== 0 || numeq
> num
)
1726 if (rsp
->sign_bit_copies
== 0 || num
< rsp
->sign_bit_copies
)
1727 rsp
->sign_bit_copies
= num
;
1731 /* Called via note_stores. If X is a pseudo that is narrower than
1732 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1734 If we are setting only a portion of X and we can't figure out what
1735 portion, assume all bits will be used since we don't know what will
1738 Similarly, set how many bits of X are known to be copies of the sign bit
1739 at all locations in the function. This is the smallest number implied
1743 set_nonzero_bits_and_sign_copies (rtx x
, const_rtx set
, void *data
)
1745 rtx_insn
*insn
= (rtx_insn
*) data
;
1746 scalar_int_mode mode
;
1749 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
1750 /* If this register is undefined at the start of the file, we can't
1751 say what its contents were. */
1752 && ! REGNO_REG_SET_P
1753 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), REGNO (x
))
1754 && is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
)
1755 && HWI_COMPUTABLE_MODE_P (mode
))
1757 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
1759 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
1761 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1762 rsp
->sign_bit_copies
= 1;
1766 /* Should not happen as we only using pseduo registers. */
1767 gcc_assert (GET_CODE (set
) != CLOBBER_HIGH
);
1769 /* If this register is being initialized using itself, and the
1770 register is uninitialized in this basic block, and there are
1771 no LOG_LINKS which set the register, then part of the
1772 register is uninitialized. In that case we can't assume
1773 anything about the number of nonzero bits.
1775 ??? We could do better if we checked this in
1776 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1777 could avoid making assumptions about the insn which initially
1778 sets the register, while still using the information in other
1779 insns. We would have to be careful to check every insn
1780 involved in the combination. */
1783 && reg_referenced_p (x
, PATTERN (insn
))
1784 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn
)),
1787 struct insn_link
*link
;
1789 FOR_EACH_LOG_LINK (link
, insn
)
1790 if (dead_or_set_p (link
->insn
, x
))
1794 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1795 rsp
->sign_bit_copies
= 1;
1800 /* If this is a complex assignment, see if we can convert it into a
1801 simple assignment. */
1802 set
= expand_field_assignment (set
);
1804 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1805 set what we know about X. */
1807 if (SET_DEST (set
) == x
1808 || (paradoxical_subreg_p (SET_DEST (set
))
1809 && SUBREG_REG (SET_DEST (set
)) == x
))
1810 update_rsp_from_reg_equal (rsp
, insn
, set
, x
);
1813 rsp
->nonzero_bits
= GET_MODE_MASK (mode
);
1814 rsp
->sign_bit_copies
= 1;
1819 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1820 optionally insns that were previously combined into I3 or that will be
1821 combined into the merger of INSN and I3. The order is PRED, PRED2,
1822 INSN, SUCC, SUCC2, I3.
1824 Return 0 if the combination is not allowed for any reason.
1826 If the combination is allowed, *PDEST will be set to the single
1827 destination of INSN and *PSRC to the single source, and this function
1831 can_combine_p (rtx_insn
*insn
, rtx_insn
*i3
, rtx_insn
*pred ATTRIBUTE_UNUSED
,
1832 rtx_insn
*pred2 ATTRIBUTE_UNUSED
, rtx_insn
*succ
, rtx_insn
*succ2
,
1833 rtx
*pdest
, rtx
*psrc
)
1840 bool all_adjacent
= true;
1841 int (*is_volatile_p
) (const_rtx
);
1847 if (next_active_insn (succ2
) != i3
)
1848 all_adjacent
= false;
1849 if (next_active_insn (succ
) != succ2
)
1850 all_adjacent
= false;
1852 else if (next_active_insn (succ
) != i3
)
1853 all_adjacent
= false;
1854 if (next_active_insn (insn
) != succ
)
1855 all_adjacent
= false;
1857 else if (next_active_insn (insn
) != i3
)
1858 all_adjacent
= false;
1860 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1861 or a PARALLEL consisting of such a SET and CLOBBERs.
1863 If INSN has CLOBBER parallel parts, ignore them for our processing.
1864 By definition, these happen during the execution of the insn. When it
1865 is merged with another insn, all bets are off. If they are, in fact,
1866 needed and aren't also supplied in I3, they may be added by
1867 recog_for_combine. Otherwise, it won't match.
1869 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1872 Get the source and destination of INSN. If more than one, can't
1875 if (GET_CODE (PATTERN (insn
)) == SET
)
1876 set
= PATTERN (insn
);
1877 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1878 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1880 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1882 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1884 switch (GET_CODE (elt
))
1886 /* This is important to combine floating point insns
1887 for the SH4 port. */
1889 /* Combining an isolated USE doesn't make sense.
1890 We depend here on combinable_i3pat to reject them. */
1891 /* The code below this loop only verifies that the inputs of
1892 the SET in INSN do not change. We call reg_set_between_p
1893 to verify that the REG in the USE does not change between
1895 If the USE in INSN was for a pseudo register, the matching
1896 insn pattern will likely match any register; combining this
1897 with any other USE would only be safe if we knew that the
1898 used registers have identical values, or if there was
1899 something to tell them apart, e.g. different modes. For
1900 now, we forgo such complicated tests and simply disallow
1901 combining of USES of pseudo registers with any other USE. */
1902 if (REG_P (XEXP (elt
, 0))
1903 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1905 rtx i3pat
= PATTERN (i3
);
1906 int i
= XVECLEN (i3pat
, 0) - 1;
1907 unsigned int regno
= REGNO (XEXP (elt
, 0));
1911 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1913 if (GET_CODE (i3elt
) == USE
1914 && REG_P (XEXP (i3elt
, 0))
1915 && (REGNO (XEXP (i3elt
, 0)) == regno
1916 ? reg_set_between_p (XEXP (elt
, 0),
1917 PREV_INSN (insn
), i3
)
1918 : regno
>= FIRST_PSEUDO_REGISTER
))
1925 /* We can ignore CLOBBERs. */
1931 /* Ignore SETs whose result isn't used but not those that
1932 have side-effects. */
1933 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1934 && insn_nothrow_p (insn
)
1935 && !side_effects_p (elt
))
1938 /* If we have already found a SET, this is a second one and
1939 so we cannot combine with this insn. */
1947 /* Anything else means we can't combine. */
1953 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1954 so don't do anything with it. */
1955 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1964 /* The simplification in expand_field_assignment may call back to
1965 get_last_value, so set safe guard here. */
1966 subst_low_luid
= DF_INSN_LUID (insn
);
1968 set
= expand_field_assignment (set
);
1969 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1971 /* Do not eliminate user-specified register if it is in an
1972 asm input because we may break the register asm usage defined
1973 in GCC manual if allow to do so.
1974 Be aware that this may cover more cases than we expect but this
1975 should be harmless. */
1976 if (REG_P (dest
) && REG_USERVAR_P (dest
) && HARD_REGISTER_P (dest
)
1977 && extract_asm_operands (PATTERN (i3
)))
1980 /* Don't eliminate a store in the stack pointer. */
1981 if (dest
== stack_pointer_rtx
1982 /* Don't combine with an insn that sets a register to itself if it has
1983 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1984 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1985 /* Can't merge an ASM_OPERANDS. */
1986 || GET_CODE (src
) == ASM_OPERANDS
1987 /* Can't merge a function call. */
1988 || GET_CODE (src
) == CALL
1989 /* Don't eliminate a function call argument. */
1991 && (find_reg_fusage (i3
, USE
, dest
)
1993 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1994 && global_regs
[REGNO (dest
)])))
1995 /* Don't substitute into an incremented register. */
1996 || FIND_REG_INC_NOTE (i3
, dest
)
1997 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1998 || (succ2
&& FIND_REG_INC_NOTE (succ2
, dest
))
1999 /* Don't substitute into a non-local goto, this confuses CFG. */
2000 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
2001 /* Make sure that DEST is not used after INSN but before SUCC, or
2002 after SUCC and before SUCC2, or after SUCC2 but before I3. */
2005 && (reg_used_between_p (dest
, succ2
, i3
)
2006 || reg_used_between_p (dest
, succ
, succ2
)))
2007 || (!succ2
&& succ
&& reg_used_between_p (dest
, succ
, i3
))
2008 || (!succ2
&& !succ
&& reg_used_between_p (dest
, insn
, i3
))
2010 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
2011 that case SUCC is not in the insn stream, so use SUCC2
2012 instead for this test. */
2013 && reg_used_between_p (dest
, insn
,
2015 && INSN_UID (succ
) == INSN_UID (succ2
)
2017 /* Make sure that the value that is to be substituted for the register
2018 does not use any registers whose values alter in between. However,
2019 If the insns are adjacent, a use can't cross a set even though we
2020 think it might (this can happen for a sequence of insns each setting
2021 the same destination; last_set of that register might point to
2022 a NOTE). If INSN has a REG_EQUIV note, the register is always
2023 equivalent to the memory so the substitution is valid even if there
2024 are intervening stores. Also, don't move a volatile asm or
2025 UNSPEC_VOLATILE across any other insns. */
2028 || ! find_reg_note (insn
, REG_EQUIV
, src
))
2029 && modified_between_p (src
, insn
, i3
))
2030 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
2031 || GET_CODE (src
) == UNSPEC_VOLATILE
))
2032 /* Don't combine across a CALL_INSN, because that would possibly
2033 change whether the life span of some REGs crosses calls or not,
2034 and it is a pain to update that information.
2035 Exception: if source is a constant, moving it later can't hurt.
2036 Accept that as a special case. */
2037 || (DF_INSN_LUID (insn
) < last_call_luid
&& ! CONSTANT_P (src
)))
2040 /* DEST must either be a REG or CC0. */
2043 /* If register alignment is being enforced for multi-word items in all
2044 cases except for parameters, it is possible to have a register copy
2045 insn referencing a hard register that is not allowed to contain the
2046 mode being copied and which would not be valid as an operand of most
2047 insns. Eliminate this problem by not combining with such an insn.
2049 Also, on some machines we don't want to extend the life of a hard
2053 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
2054 && !targetm
.hard_regno_mode_ok (REGNO (dest
), GET_MODE (dest
)))
2055 /* Don't extend the life of a hard register unless it is
2056 user variable (if we have few registers) or it can't
2057 fit into the desired register (meaning something special
2059 Also avoid substituting a return register into I3, because
2060 reload can't handle a conflict with constraints of other
2062 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
2063 && !targetm
.hard_regno_mode_ok (REGNO (src
),
2067 else if (GET_CODE (dest
) != CC0
)
2071 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
2072 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
2073 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
2075 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
2077 /* If the clobber represents an earlyclobber operand, we must not
2078 substitute an expression containing the clobbered register.
2079 As we do not analyze the constraint strings here, we have to
2080 make the conservative assumption. However, if the register is
2081 a fixed hard reg, the clobber cannot represent any operand;
2082 we leave it up to the machine description to either accept or
2083 reject use-and-clobber patterns. */
2085 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
2086 || !fixed_regs
[REGNO (reg
)])
2087 if (reg_overlap_mentioned_p (reg
, src
))
2091 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2092 or not), reject, unless nothing volatile comes between it and I3 */
2094 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
2096 /* Make sure neither succ nor succ2 contains a volatile reference. */
2097 if (succ2
!= 0 && volatile_refs_p (PATTERN (succ2
)))
2099 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
2101 /* We'll check insns between INSN and I3 below. */
2104 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2105 to be an explicit register variable, and was chosen for a reason. */
2107 if (GET_CODE (src
) == ASM_OPERANDS
2108 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
2111 /* If INSN contains volatile references (specifically volatile MEMs),
2112 we cannot combine across any other volatile references.
2113 Even if INSN doesn't contain volatile references, any intervening
2114 volatile insn might affect machine state. */
2116 is_volatile_p
= volatile_refs_p (PATTERN (insn
))
2120 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
2121 if (INSN_P (p
) && p
!= succ
&& p
!= succ2
&& is_volatile_p (PATTERN (p
)))
2124 /* If INSN contains an autoincrement or autodecrement, make sure that
2125 register is not used between there and I3, and not already used in
2126 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2127 Also insist that I3 not be a jump; if it were one
2128 and the incremented register were spilled, we would lose. */
2131 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2132 if (REG_NOTE_KIND (link
) == REG_INC
2134 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
2135 || (pred
!= NULL_RTX
2136 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred
)))
2137 || (pred2
!= NULL_RTX
2138 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred2
)))
2139 || (succ
!= NULL_RTX
2140 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ
)))
2141 || (succ2
!= NULL_RTX
2142 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ2
)))
2143 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
2146 /* Don't combine an insn that follows a CC0-setting insn.
2147 An insn that uses CC0 must not be separated from the one that sets it.
2148 We do, however, allow I2 to follow a CC0-setting insn if that insn
2149 is passed as I1; in that case it will be deleted also.
2150 We also allow combining in this case if all the insns are adjacent
2151 because that would leave the two CC0 insns adjacent as well.
2152 It would be more logical to test whether CC0 occurs inside I1 or I2,
2153 but that would be much slower, and this ought to be equivalent. */
2157 p
= prev_nonnote_insn (insn
);
2158 if (p
&& p
!= pred
&& NONJUMP_INSN_P (p
) && sets_cc0_p (PATTERN (p
))
2163 /* If we get here, we have passed all the tests and the combination is
2172 /* LOC is the location within I3 that contains its pattern or the component
2173 of a PARALLEL of the pattern. We validate that it is valid for combining.
2175 One problem is if I3 modifies its output, as opposed to replacing it
2176 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2177 doing so would produce an insn that is not equivalent to the original insns.
2181 (set (reg:DI 101) (reg:DI 100))
2182 (set (subreg:SI (reg:DI 101) 0) <foo>)
2184 This is NOT equivalent to:
2186 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2187 (set (reg:DI 101) (reg:DI 100))])
2189 Not only does this modify 100 (in which case it might still be valid
2190 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2192 We can also run into a problem if I2 sets a register that I1
2193 uses and I1 gets directly substituted into I3 (not via I2). In that
2194 case, we would be getting the wrong value of I2DEST into I3, so we
2195 must reject the combination. This case occurs when I2 and I1 both
2196 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2197 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2198 of a SET must prevent combination from occurring. The same situation
2199 can occur for I0, in which case I0_NOT_IN_SRC is set.
2201 Before doing the above check, we first try to expand a field assignment
2202 into a set of logical operations.
2204 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2205 we place a register that is both set and used within I3. If more than one
2206 such register is detected, we fail.
2208 Return 1 if the combination is valid, zero otherwise. */
2211 combinable_i3pat (rtx_insn
*i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
, rtx i0dest
,
2212 int i1_not_in_src
, int i0_not_in_src
, rtx
*pi3dest_killed
)
2216 if (GET_CODE (x
) == SET
)
2219 rtx dest
= SET_DEST (set
);
2220 rtx src
= SET_SRC (set
);
2221 rtx inner_dest
= dest
;
2224 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
2225 || GET_CODE (inner_dest
) == SUBREG
2226 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
2227 inner_dest
= XEXP (inner_dest
, 0);
2229 /* Check for the case where I3 modifies its output, as discussed
2230 above. We don't want to prevent pseudos from being combined
2231 into the address of a MEM, so only prevent the combination if
2232 i1 or i2 set the same MEM. */
2233 if ((inner_dest
!= dest
&&
2234 (!MEM_P (inner_dest
)
2235 || rtx_equal_p (i2dest
, inner_dest
)
2236 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
))
2237 || (i0dest
&& rtx_equal_p (i0dest
, inner_dest
)))
2238 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
2239 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))
2240 || (i0dest
&& reg_overlap_mentioned_p (i0dest
, inner_dest
))))
2242 /* This is the same test done in can_combine_p except we can't test
2243 all_adjacent; we don't have to, since this instruction will stay
2244 in place, thus we are not considering increasing the lifetime of
2247 Also, if this insn sets a function argument, combining it with
2248 something that might need a spill could clobber a previous
2249 function argument; the all_adjacent test in can_combine_p also
2250 checks this; here, we do a more specific test for this case. */
2252 || (REG_P (inner_dest
)
2253 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
2254 && !targetm
.hard_regno_mode_ok (REGNO (inner_dest
),
2255 GET_MODE (inner_dest
)))
2256 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
))
2257 || (i0_not_in_src
&& reg_overlap_mentioned_p (i0dest
, src
)))
2260 /* If DEST is used in I3, it is being killed in this insn, so
2261 record that for later. We have to consider paradoxical
2262 subregs here, since they kill the whole register, but we
2263 ignore partial subregs, STRICT_LOW_PART, etc.
2264 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2265 STACK_POINTER_REGNUM, since these are always considered to be
2266 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2268 if (GET_CODE (subdest
) == SUBREG
&& !partial_subreg_p (subdest
))
2269 subdest
= SUBREG_REG (subdest
);
2272 && reg_referenced_p (subdest
, PATTERN (i3
))
2273 && REGNO (subdest
) != FRAME_POINTER_REGNUM
2274 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2275 || REGNO (subdest
) != HARD_FRAME_POINTER_REGNUM
)
2276 && (FRAME_POINTER_REGNUM
== ARG_POINTER_REGNUM
2277 || (REGNO (subdest
) != ARG_POINTER_REGNUM
2278 || ! fixed_regs
[REGNO (subdest
)]))
2279 && REGNO (subdest
) != STACK_POINTER_REGNUM
)
2281 if (*pi3dest_killed
)
2284 *pi3dest_killed
= subdest
;
2288 else if (GET_CODE (x
) == PARALLEL
)
2292 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
2293 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
, i0dest
,
2294 i1_not_in_src
, i0_not_in_src
, pi3dest_killed
))
2301 /* Return 1 if X is an arithmetic expression that contains a multiplication
2302 and division. We don't count multiplications by powers of two here. */
2305 contains_muldiv (rtx x
)
2307 switch (GET_CODE (x
))
2309 case MOD
: case DIV
: case UMOD
: case UDIV
:
2313 return ! (CONST_INT_P (XEXP (x
, 1))
2314 && pow2p_hwi (UINTVAL (XEXP (x
, 1))));
2317 return contains_muldiv (XEXP (x
, 0))
2318 || contains_muldiv (XEXP (x
, 1));
2321 return contains_muldiv (XEXP (x
, 0));
2327 /* Determine whether INSN can be used in a combination. Return nonzero if
2328 not. This is used in try_combine to detect early some cases where we
2329 can't perform combinations. */
2332 cant_combine_insn_p (rtx_insn
*insn
)
2337 /* If this isn't really an insn, we can't do anything.
2338 This can occur when flow deletes an insn that it has merged into an
2339 auto-increment address. */
2340 if (!NONDEBUG_INSN_P (insn
))
2343 /* Never combine loads and stores involving hard regs that are likely
2344 to be spilled. The register allocator can usually handle such
2345 reg-reg moves by tying. If we allow the combiner to make
2346 substitutions of likely-spilled regs, reload might die.
2347 As an exception, we allow combinations involving fixed regs; these are
2348 not available to the register allocator so there's no risk involved. */
2350 set
= single_set (insn
);
2353 src
= SET_SRC (set
);
2354 dest
= SET_DEST (set
);
2355 if (GET_CODE (src
) == SUBREG
)
2356 src
= SUBREG_REG (src
);
2357 if (GET_CODE (dest
) == SUBREG
)
2358 dest
= SUBREG_REG (dest
);
2359 if (REG_P (src
) && REG_P (dest
)
2360 && ((HARD_REGISTER_P (src
)
2361 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
))
2362 #ifdef LEAF_REGISTERS
2363 && ! LEAF_REGISTERS
[REGNO (src
)])
2367 || (HARD_REGISTER_P (dest
)
2368 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (dest
))
2369 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest
))))))
2375 struct likely_spilled_retval_info
2377 unsigned regno
, nregs
;
2381 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2382 hard registers that are known to be written to / clobbered in full. */
2384 likely_spilled_retval_1 (rtx x
, const_rtx set
, void *data
)
2386 struct likely_spilled_retval_info
*const info
=
2387 (struct likely_spilled_retval_info
*) data
;
2388 unsigned regno
, nregs
;
2391 if (!REG_P (XEXP (set
, 0)))
2394 if (regno
>= info
->regno
+ info
->nregs
)
2396 nregs
= REG_NREGS (x
);
2397 if (regno
+ nregs
<= info
->regno
)
2399 new_mask
= (2U << (nregs
- 1)) - 1;
2400 if (regno
< info
->regno
)
2401 new_mask
>>= info
->regno
- regno
;
2403 new_mask
<<= regno
- info
->regno
;
2404 info
->mask
&= ~new_mask
;
2407 /* Return nonzero iff part of the return value is live during INSN, and
2408 it is likely spilled. This can happen when more than one insn is needed
2409 to copy the return value, e.g. when we consider to combine into the
2410 second copy insn for a complex value. */
2413 likely_spilled_retval_p (rtx_insn
*insn
)
2415 rtx_insn
*use
= BB_END (this_basic_block
);
2418 unsigned regno
, nregs
;
2419 /* We assume here that no machine mode needs more than
2420 32 hard registers when the value overlaps with a register
2421 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2423 struct likely_spilled_retval_info info
;
2425 if (!NONJUMP_INSN_P (use
) || GET_CODE (PATTERN (use
)) != USE
|| insn
== use
)
2427 reg
= XEXP (PATTERN (use
), 0);
2428 if (!REG_P (reg
) || !targetm
.calls
.function_value_regno_p (REGNO (reg
)))
2430 regno
= REGNO (reg
);
2431 nregs
= REG_NREGS (reg
);
2434 mask
= (2U << (nregs
- 1)) - 1;
2436 /* Disregard parts of the return value that are set later. */
2440 for (p
= PREV_INSN (use
); info
.mask
&& p
!= insn
; p
= PREV_INSN (p
))
2442 note_stores (PATTERN (p
), likely_spilled_retval_1
, &info
);
2445 /* Check if any of the (probably) live return value registers is
2450 if ((mask
& 1 << nregs
)
2451 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (regno
+ nregs
)))
2457 /* Adjust INSN after we made a change to its destination.
2459 Changing the destination can invalidate notes that say something about
2460 the results of the insn and a LOG_LINK pointing to the insn. */
2463 adjust_for_new_dest (rtx_insn
*insn
)
2465 /* For notes, be conservative and simply remove them. */
2466 remove_reg_equal_equiv_notes (insn
);
2468 /* The new insn will have a destination that was previously the destination
2469 of an insn just above it. Call distribute_links to make a LOG_LINK from
2470 the next use of that destination. */
2472 rtx set
= single_set (insn
);
2475 rtx reg
= SET_DEST (set
);
2477 while (GET_CODE (reg
) == ZERO_EXTRACT
2478 || GET_CODE (reg
) == STRICT_LOW_PART
2479 || GET_CODE (reg
) == SUBREG
)
2480 reg
= XEXP (reg
, 0);
2481 gcc_assert (REG_P (reg
));
2483 distribute_links (alloc_insn_link (insn
, REGNO (reg
), NULL
));
2485 df_insn_rescan (insn
);
2488 /* Return TRUE if combine can reuse reg X in mode MODE.
2489 ADDED_SETS is nonzero if the original set is still required. */
2491 can_change_dest_mode (rtx x
, int added_sets
, machine_mode mode
)
2498 /* Don't change between modes with different underlying register sizes,
2499 since this could lead to invalid subregs. */
2500 if (maybe_ne (REGMODE_NATURAL_SIZE (mode
),
2501 REGMODE_NATURAL_SIZE (GET_MODE (x
))))
2505 /* Allow hard registers if the new mode is legal, and occupies no more
2506 registers than the old mode. */
2507 if (regno
< FIRST_PSEUDO_REGISTER
)
2508 return (targetm
.hard_regno_mode_ok (regno
, mode
)
2509 && REG_NREGS (x
) >= hard_regno_nregs (regno
, mode
));
2511 /* Or a pseudo that is only used once. */
2512 return (regno
< reg_n_sets_max
2513 && REG_N_SETS (regno
) == 1
2515 && !REG_USERVAR_P (x
));
2519 /* Check whether X, the destination of a set, refers to part of
2520 the register specified by REG. */
2523 reg_subword_p (rtx x
, rtx reg
)
2525 /* Check that reg is an integer mode register. */
2526 if (!REG_P (reg
) || GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
2529 if (GET_CODE (x
) == STRICT_LOW_PART
2530 || GET_CODE (x
) == ZERO_EXTRACT
)
2533 return GET_CODE (x
) == SUBREG
2534 && SUBREG_REG (x
) == reg
2535 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
;
2538 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2539 Note that the INSN should be deleted *after* removing dead edges, so
2540 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2541 but not for a (set (pc) (label_ref FOO)). */
2544 update_cfg_for_uncondjump (rtx_insn
*insn
)
2546 basic_block bb
= BLOCK_FOR_INSN (insn
);
2547 gcc_assert (BB_END (bb
) == insn
);
2549 purge_dead_edges (bb
);
2552 if (EDGE_COUNT (bb
->succs
) == 1)
2556 single_succ_edge (bb
)->flags
|= EDGE_FALLTHRU
;
2558 /* Remove barriers from the footer if there are any. */
2559 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
2560 if (BARRIER_P (insn
))
2562 if (PREV_INSN (insn
))
2563 SET_NEXT_INSN (PREV_INSN (insn
)) = NEXT_INSN (insn
);
2565 BB_FOOTER (bb
) = NEXT_INSN (insn
);
2566 if (NEXT_INSN (insn
))
2567 SET_PREV_INSN (NEXT_INSN (insn
)) = PREV_INSN (insn
);
2569 else if (LABEL_P (insn
))
2574 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2575 by an arbitrary number of CLOBBERs. */
2577 is_parallel_of_n_reg_sets (rtx pat
, int n
)
2579 if (GET_CODE (pat
) != PARALLEL
)
2582 int len
= XVECLEN (pat
, 0);
2587 for (i
= 0; i
< n
; i
++)
2588 if (GET_CODE (XVECEXP (pat
, 0, i
)) != SET
2589 || !REG_P (SET_DEST (XVECEXP (pat
, 0, i
))))
2591 for ( ; i
< len
; i
++)
2592 switch (GET_CODE (XVECEXP (pat
, 0, i
)))
2595 if (XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
2606 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2607 CLOBBERs), can be split into individual SETs in that order, without
2608 changing semantics. */
2610 can_split_parallel_of_n_reg_sets (rtx_insn
*insn
, int n
)
2612 if (!insn_nothrow_p (insn
))
2615 rtx pat
= PATTERN (insn
);
2618 for (i
= 0; i
< n
; i
++)
2620 if (side_effects_p (SET_SRC (XVECEXP (pat
, 0, i
))))
2623 rtx reg
= SET_DEST (XVECEXP (pat
, 0, i
));
2625 for (j
= i
+ 1; j
< n
; j
++)
2626 if (reg_referenced_p (reg
, XVECEXP (pat
, 0, j
)))
2633 /* Return whether X is just a single set, with the source
2634 a general_operand. */
2636 is_just_move (rtx x
)
2641 return (GET_CODE (x
) == SET
&& general_operand (SET_SRC (x
), VOIDmode
));
2644 /* Callback function to count autoincs. */
2647 count_auto_inc (rtx
, rtx
, rtx
, rtx
, rtx
, void *arg
)
2654 /* Try to combine the insns I0, I1 and I2 into I3.
2655 Here I0, I1 and I2 appear earlier than I3.
2656 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2659 If we are combining more than two insns and the resulting insn is not
2660 recognized, try splitting it into two insns. If that happens, I2 and I3
2661 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2662 Otherwise, I0, I1 and I2 are pseudo-deleted.
2664 Return 0 if the combination does not work. Then nothing is changed.
2665 If we did the combination, return the insn at which combine should
2668 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2669 new direct jump instruction.
2671 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2672 been I3 passed to an earlier try_combine within the same basic
2676 try_combine (rtx_insn
*i3
, rtx_insn
*i2
, rtx_insn
*i1
, rtx_insn
*i0
,
2677 int *new_direct_jump_p
, rtx_insn
*last_combined_insn
)
2679 /* New patterns for I3 and I2, respectively. */
2680 rtx newpat
, newi2pat
= 0;
2681 rtvec newpat_vec_with_clobbers
= 0;
2682 int substed_i2
= 0, substed_i1
= 0, substed_i0
= 0;
2683 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2685 int added_sets_0
, added_sets_1
, added_sets_2
;
2686 /* Total number of SETs to put into I3. */
2688 /* Nonzero if I2's or I1's body now appears in I3. */
2689 int i2_is_used
= 0, i1_is_used
= 0;
2690 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2691 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
2692 /* Contains I3 if the destination of I3 is used in its source, which means
2693 that the old life of I3 is being killed. If that usage is placed into
2694 I2 and not in I3, a REG_DEAD note must be made. */
2695 rtx i3dest_killed
= 0;
2696 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2697 rtx i2dest
= 0, i2src
= 0, i1dest
= 0, i1src
= 0, i0dest
= 0, i0src
= 0;
2698 /* Copy of SET_SRC of I1 and I0, if needed. */
2699 rtx i1src_copy
= 0, i0src_copy
= 0, i0src_copy2
= 0;
2700 /* Set if I2DEST was reused as a scratch register. */
2701 bool i2scratch
= false;
2702 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2703 rtx i0pat
= 0, i1pat
= 0, i2pat
= 0;
2704 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2705 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
2706 int i0dest_in_i0src
= 0, i1dest_in_i0src
= 0, i2dest_in_i0src
= 0;
2707 int i2dest_killed
= 0, i1dest_killed
= 0, i0dest_killed
= 0;
2708 int i1_feeds_i2_n
= 0, i0_feeds_i2_n
= 0, i0_feeds_i1_n
= 0;
2709 /* Notes that must be added to REG_NOTES in I3 and I2. */
2710 rtx new_i3_notes
, new_i2_notes
;
2711 /* Notes that we substituted I3 into I2 instead of the normal case. */
2712 int i3_subst_into_i2
= 0;
2713 /* Notes that I1, I2 or I3 is a MULT operation. */
2717 int changed_i3_dest
= 0;
2718 bool i2_was_move
= false, i3_was_move
= false;
2722 rtx_insn
*temp_insn
;
2724 struct insn_link
*link
;
2726 rtx new_other_notes
;
2728 scalar_int_mode dest_mode
, temp_mode
;
2730 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2732 if (i1
== i2
|| i0
== i2
|| (i0
&& i0
== i1
))
2735 /* Only try four-insn combinations when there's high likelihood of
2736 success. Look for simple insns, such as loads of constants or
2737 binary operations involving a constant. */
2745 if (!flag_expensive_optimizations
)
2748 for (i
= 0; i
< 4; i
++)
2750 rtx_insn
*insn
= i
== 0 ? i0
: i
== 1 ? i1
: i
== 2 ? i2
: i3
;
2751 rtx set
= single_set (insn
);
2755 src
= SET_SRC (set
);
2756 if (CONSTANT_P (src
))
2761 else if (BINARY_P (src
) && CONSTANT_P (XEXP (src
, 1)))
2763 else if (GET_CODE (src
) == ASHIFT
|| GET_CODE (src
) == ASHIFTRT
2764 || GET_CODE (src
) == LSHIFTRT
)
2768 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2769 are likely manipulating its value. Ideally we'll be able to combine
2770 all four insns into a bitfield insertion of some kind.
2772 Note the source in I0 might be inside a sign/zero extension and the
2773 memory modes in I0 and I3 might be different. So extract the address
2774 from the destination of I3 and search for it in the source of I0.
2776 In the event that there's a match but the source/dest do not actually
2777 refer to the same memory, the worst that happens is we try some
2778 combinations that we wouldn't have otherwise. */
2779 if ((set0
= single_set (i0
))
2780 /* Ensure the source of SET0 is a MEM, possibly buried inside
2782 && (GET_CODE (SET_SRC (set0
)) == MEM
2783 || ((GET_CODE (SET_SRC (set0
)) == ZERO_EXTEND
2784 || GET_CODE (SET_SRC (set0
)) == SIGN_EXTEND
)
2785 && GET_CODE (XEXP (SET_SRC (set0
), 0)) == MEM
))
2786 && (set3
= single_set (i3
))
2787 /* Ensure the destination of SET3 is a MEM. */
2788 && GET_CODE (SET_DEST (set3
)) == MEM
2789 /* Would it be better to extract the base address for the MEM
2790 in SET3 and look for that? I don't have cases where it matters
2791 but I could envision such cases. */
2792 && rtx_referenced_p (XEXP (SET_DEST (set3
), 0), SET_SRC (set0
)))
2795 if (ngood
< 2 && nshift
< 2)
2799 /* Exit early if one of the insns involved can't be used for
2802 || (i1
&& CALL_P (i1
))
2803 || (i0
&& CALL_P (i0
))
2804 || cant_combine_insn_p (i3
)
2805 || cant_combine_insn_p (i2
)
2806 || (i1
&& cant_combine_insn_p (i1
))
2807 || (i0
&& cant_combine_insn_p (i0
))
2808 || likely_spilled_retval_p (i3
))
2812 undobuf
.other_insn
= 0;
2814 /* Reset the hard register usage information. */
2815 CLEAR_HARD_REG_SET (newpat_used_regs
);
2817 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2820 fprintf (dump_file
, "\nTrying %d, %d, %d -> %d:\n",
2821 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2823 fprintf (dump_file
, "\nTrying %d, %d -> %d:\n",
2824 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2826 fprintf (dump_file
, "\nTrying %d -> %d:\n",
2827 INSN_UID (i2
), INSN_UID (i3
));
2830 dump_insn_slim (dump_file
, i0
);
2832 dump_insn_slim (dump_file
, i1
);
2833 dump_insn_slim (dump_file
, i2
);
2834 dump_insn_slim (dump_file
, i3
);
2837 /* If multiple insns feed into one of I2 or I3, they can be in any
2838 order. To simplify the code below, reorder them in sequence. */
2839 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i2
))
2841 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i1
))
2843 if (i1
&& DF_INSN_LUID (i1
) > DF_INSN_LUID (i2
))
2846 added_links_insn
= 0;
2847 added_notes_insn
= 0;
2849 /* First check for one important special case that the code below will
2850 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2851 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2852 we may be able to replace that destination with the destination of I3.
2853 This occurs in the common code where we compute both a quotient and
2854 remainder into a structure, in which case we want to do the computation
2855 directly into the structure to avoid register-register copies.
2857 Note that this case handles both multiple sets in I2 and also cases
2858 where I2 has a number of CLOBBERs inside the PARALLEL.
2860 We make very conservative checks below and only try to handle the
2861 most common cases of this. For example, we only handle the case
2862 where I2 and I3 are adjacent to avoid making difficult register
2865 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
2866 && REG_P (SET_SRC (PATTERN (i3
)))
2867 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
2868 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
2869 && GET_CODE (PATTERN (i2
)) == PARALLEL
2870 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
2871 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2872 below would need to check what is inside (and reg_overlap_mentioned_p
2873 doesn't support those codes anyway). Don't allow those destinations;
2874 the resulting insn isn't likely to be recognized anyway. */
2875 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
2876 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
2877 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
2878 SET_DEST (PATTERN (i3
)))
2879 && next_active_insn (i2
) == i3
)
2881 rtx p2
= PATTERN (i2
);
2883 /* Make sure that the destination of I3,
2884 which we are going to substitute into one output of I2,
2885 is not used within another output of I2. We must avoid making this:
2886 (parallel [(set (mem (reg 69)) ...)
2887 (set (reg 69) ...)])
2888 which is not well-defined as to order of actions.
2889 (Besides, reload can't handle output reloads for this.)
2891 The problem can also happen if the dest of I3 is a memory ref,
2892 if another dest in I2 is an indirect memory ref.
2894 Neither can this PARALLEL be an asm. We do not allow combining
2895 that usually (see can_combine_p), so do not here either. */
2897 for (i
= 0; ok
&& i
< XVECLEN (p2
, 0); i
++)
2899 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2900 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
2901 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER_HIGH
)
2902 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
2903 SET_DEST (XVECEXP (p2
, 0, i
))))
2905 else if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2906 && GET_CODE (SET_SRC (XVECEXP (p2
, 0, i
))) == ASM_OPERANDS
)
2911 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2912 if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2913 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
2918 subst_low_luid
= DF_INSN_LUID (i2
);
2920 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2921 i2src
= SET_SRC (XVECEXP (p2
, 0, i
));
2922 i2dest
= SET_DEST (XVECEXP (p2
, 0, i
));
2923 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2925 /* Replace the dest in I2 with our dest and make the resulting
2926 insn the new pattern for I3. Then skip to where we validate
2927 the pattern. Everything was set up above. */
2928 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)), SET_DEST (PATTERN (i3
)));
2930 i3_subst_into_i2
= 1;
2931 goto validate_replacement
;
2935 /* If I2 is setting a pseudo to a constant and I3 is setting some
2936 sub-part of it to another constant, merge them by making a new
2939 && (temp_expr
= single_set (i2
)) != 0
2940 && is_a
<scalar_int_mode
> (GET_MODE (SET_DEST (temp_expr
)), &temp_mode
)
2941 && CONST_SCALAR_INT_P (SET_SRC (temp_expr
))
2942 && GET_CODE (PATTERN (i3
)) == SET
2943 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3
)))
2944 && reg_subword_p (SET_DEST (PATTERN (i3
)), SET_DEST (temp_expr
)))
2946 rtx dest
= SET_DEST (PATTERN (i3
));
2947 rtx temp_dest
= SET_DEST (temp_expr
);
2951 if (GET_CODE (dest
) == ZERO_EXTRACT
)
2953 if (CONST_INT_P (XEXP (dest
, 1))
2954 && CONST_INT_P (XEXP (dest
, 2))
2955 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (dest
, 0)),
2958 width
= INTVAL (XEXP (dest
, 1));
2959 offset
= INTVAL (XEXP (dest
, 2));
2960 dest
= XEXP (dest
, 0);
2961 if (BITS_BIG_ENDIAN
)
2962 offset
= GET_MODE_PRECISION (dest_mode
) - width
- offset
;
2967 if (GET_CODE (dest
) == STRICT_LOW_PART
)
2968 dest
= XEXP (dest
, 0);
2969 if (is_a
<scalar_int_mode
> (GET_MODE (dest
), &dest_mode
))
2971 width
= GET_MODE_PRECISION (dest_mode
);
2978 /* If this is the low part, we're done. */
2979 if (subreg_lowpart_p (dest
))
2981 /* Handle the case where inner is twice the size of outer. */
2982 else if (GET_MODE_PRECISION (temp_mode
)
2983 == 2 * GET_MODE_PRECISION (dest_mode
))
2984 offset
+= GET_MODE_PRECISION (dest_mode
);
2985 /* Otherwise give up for now. */
2992 rtx inner
= SET_SRC (PATTERN (i3
));
2993 rtx outer
= SET_SRC (temp_expr
);
2995 wide_int o
= wi::insert (rtx_mode_t (outer
, temp_mode
),
2996 rtx_mode_t (inner
, dest_mode
),
3001 subst_low_luid
= DF_INSN_LUID (i2
);
3002 added_sets_2
= added_sets_1
= added_sets_0
= 0;
3004 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
3006 /* Replace the source in I2 with the new constant and make the
3007 resulting insn the new pattern for I3. Then skip to where we
3008 validate the pattern. Everything was set up above. */
3009 SUBST (SET_SRC (temp_expr
),
3010 immed_wide_int_const (o
, temp_mode
));
3012 newpat
= PATTERN (i2
);
3014 /* The dest of I3 has been replaced with the dest of I2. */
3015 changed_i3_dest
= 1;
3016 goto validate_replacement
;
3020 /* If we have no I1 and I2 looks like:
3021 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
3023 make up a dummy I1 that is
3026 (set (reg:CC X) (compare:CC Y (const_int 0)))
3028 (We can ignore any trailing CLOBBERs.)
3030 This undoes a previous combination and allows us to match a branch-and-
3033 if (!HAVE_cc0
&& i1
== 0
3034 && is_parallel_of_n_reg_sets (PATTERN (i2
), 2)
3035 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
3037 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
3038 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
3039 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
3040 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1)))
3041 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
3042 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
))
3044 /* We make I1 with the same INSN_UID as I2. This gives it
3045 the same DF_INSN_LUID for value tracking. Our fake I1 will
3046 never appear in the insn stream so giving it the same INSN_UID
3047 as I2 will not cause a problem. */
3049 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
3050 XVECEXP (PATTERN (i2
), 0, 1), INSN_LOCATION (i2
),
3052 INSN_UID (i1
) = INSN_UID (i2
);
3054 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
3055 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
3056 SET_DEST (PATTERN (i1
)));
3057 unsigned int regno
= REGNO (SET_DEST (PATTERN (i1
)));
3058 SUBST_LINK (LOG_LINKS (i2
),
3059 alloc_insn_link (i1
, regno
, LOG_LINKS (i2
)));
3062 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3063 make those two SETs separate I1 and I2 insns, and make an I0 that is
3065 if (!HAVE_cc0
&& i0
== 0
3066 && is_parallel_of_n_reg_sets (PATTERN (i2
), 2)
3067 && can_split_parallel_of_n_reg_sets (i2
, 2)
3068 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
3069 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
)
3070 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0)), i2
, i3
)
3071 && !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)), i2
, i3
))
3073 /* If there is no I1, there is no I0 either. */
3076 /* We make I1 with the same INSN_UID as I2. This gives it
3077 the same DF_INSN_LUID for value tracking. Our fake I1 will
3078 never appear in the insn stream so giving it the same INSN_UID
3079 as I2 will not cause a problem. */
3081 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
3082 XVECEXP (PATTERN (i2
), 0, 0), INSN_LOCATION (i2
),
3084 INSN_UID (i1
) = INSN_UID (i2
);
3086 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 1));
3089 /* Verify that I2 and maybe I1 and I0 can be combined into I3. */
3090 if (!can_combine_p (i2
, i3
, i0
, i1
, NULL
, NULL
, &i2dest
, &i2src
))
3092 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3093 fprintf (dump_file
, "Can't combine i2 into i3\n");
3097 if (i1
&& !can_combine_p (i1
, i3
, i0
, NULL
, i2
, NULL
, &i1dest
, &i1src
))
3099 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3100 fprintf (dump_file
, "Can't combine i1 into i3\n");
3104 if (i0
&& !can_combine_p (i0
, i3
, NULL
, NULL
, i1
, i2
, &i0dest
, &i0src
))
3106 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3107 fprintf (dump_file
, "Can't combine i0 into i3\n");
3112 /* Record whether i2 and i3 are trivial moves. */
3113 i2_was_move
= is_just_move (i2
);
3114 i3_was_move
= is_just_move (i3
);
3116 /* Record whether I2DEST is used in I2SRC and similarly for the other
3117 cases. Knowing this will help in register status updating below. */
3118 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
3119 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
3120 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
3121 i0dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i0dest
, i0src
);
3122 i1dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i1dest
, i0src
);
3123 i2dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i2dest
, i0src
);
3124 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
3125 i1dest_killed
= i1
&& dead_or_set_p (i1
, i1dest
);
3126 i0dest_killed
= i0
&& dead_or_set_p (i0
, i0dest
);
3128 /* For the earlier insns, determine which of the subsequent ones they
3130 i1_feeds_i2_n
= i1
&& insn_a_feeds_b (i1
, i2
);
3131 i0_feeds_i1_n
= i0
&& insn_a_feeds_b (i0
, i1
);
3132 i0_feeds_i2_n
= (i0
&& (!i0_feeds_i1_n
? insn_a_feeds_b (i0
, i2
)
3133 : (!reg_overlap_mentioned_p (i1dest
, i0dest
)
3134 && reg_overlap_mentioned_p (i0dest
, i2src
))));
3136 /* Ensure that I3's pattern can be the destination of combines. */
3137 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
, i0dest
,
3138 i1
&& i2dest_in_i1src
&& !i1_feeds_i2_n
,
3139 i0
&& ((i2dest_in_i0src
&& !i0_feeds_i2_n
)
3140 || (i1dest_in_i0src
&& !i0_feeds_i1_n
)),
3147 /* See if any of the insns is a MULT operation. Unless one is, we will
3148 reject a combination that is, since it must be slower. Be conservative
3150 if (GET_CODE (i2src
) == MULT
3151 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
3152 || (i0
!= 0 && GET_CODE (i0src
) == MULT
)
3153 || (GET_CODE (PATTERN (i3
)) == SET
3154 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
3157 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3158 We used to do this EXCEPT in one case: I3 has a post-inc in an
3159 output operand. However, that exception can give rise to insns like
3161 which is a famous insn on the PDP-11 where the value of r3 used as the
3162 source was model-dependent. Avoid this sort of thing. */
3165 if (!(GET_CODE (PATTERN (i3
)) == SET
3166 && REG_P (SET_SRC (PATTERN (i3
)))
3167 && MEM_P (SET_DEST (PATTERN (i3
)))
3168 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
3169 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
3170 /* It's not the exception. */
3175 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
3176 if (REG_NOTE_KIND (link
) == REG_INC
3177 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
3179 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
3186 /* See if the SETs in I1 or I2 need to be kept around in the merged
3187 instruction: whenever the value set there is still needed past I3.
3188 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3190 For the SET in I1, we have two cases: if I1 and I2 independently feed
3191 into I3, the set in I1 needs to be kept around unless I1DEST dies
3192 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3193 in I1 needs to be kept around unless I1DEST dies or is set in either
3194 I2 or I3. The same considerations apply to I0. */
3196 added_sets_2
= !dead_or_set_p (i3
, i2dest
);
3199 added_sets_1
= !(dead_or_set_p (i3
, i1dest
)
3200 || (i1_feeds_i2_n
&& dead_or_set_p (i2
, i1dest
)));
3205 added_sets_0
= !(dead_or_set_p (i3
, i0dest
)
3206 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
))
3207 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3208 && dead_or_set_p (i2
, i0dest
)));
3212 /* We are about to copy insns for the case where they need to be kept
3213 around. Check that they can be copied in the merged instruction. */
3215 if (targetm
.cannot_copy_insn_p
3216 && ((added_sets_2
&& targetm
.cannot_copy_insn_p (i2
))
3217 || (i1
&& added_sets_1
&& targetm
.cannot_copy_insn_p (i1
))
3218 || (i0
&& added_sets_0
&& targetm
.cannot_copy_insn_p (i0
))))
3224 /* Count how many auto_inc expressions there were in the original insns;
3225 we need to have the same number in the resulting patterns. */
3228 for_each_inc_dec (PATTERN (i0
), count_auto_inc
, &n_auto_inc
);
3230 for_each_inc_dec (PATTERN (i1
), count_auto_inc
, &n_auto_inc
);
3231 for_each_inc_dec (PATTERN (i2
), count_auto_inc
, &n_auto_inc
);
3232 for_each_inc_dec (PATTERN (i3
), count_auto_inc
, &n_auto_inc
);
3234 /* If the set in I2 needs to be kept around, we must make a copy of
3235 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3236 PATTERN (I2), we are only substituting for the original I1DEST, not into
3237 an already-substituted copy. This also prevents making self-referential
3238 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3243 if (GET_CODE (PATTERN (i2
)) == PARALLEL
)
3244 i2pat
= gen_rtx_SET (i2dest
, copy_rtx (i2src
));
3246 i2pat
= copy_rtx (PATTERN (i2
));
3251 if (GET_CODE (PATTERN (i1
)) == PARALLEL
)
3252 i1pat
= gen_rtx_SET (i1dest
, copy_rtx (i1src
));
3254 i1pat
= copy_rtx (PATTERN (i1
));
3259 if (GET_CODE (PATTERN (i0
)) == PARALLEL
)
3260 i0pat
= gen_rtx_SET (i0dest
, copy_rtx (i0src
));
3262 i0pat
= copy_rtx (PATTERN (i0
));
3267 /* Substitute in the latest insn for the regs set by the earlier ones. */
3269 maxreg
= max_reg_num ();
3273 /* Many machines that don't use CC0 have insns that can both perform an
3274 arithmetic operation and set the condition code. These operations will
3275 be represented as a PARALLEL with the first element of the vector
3276 being a COMPARE of an arithmetic operation with the constant zero.
3277 The second element of the vector will set some pseudo to the result
3278 of the same arithmetic operation. If we simplify the COMPARE, we won't
3279 match such a pattern and so will generate an extra insn. Here we test
3280 for this case, where both the comparison and the operation result are
3281 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3282 I2SRC. Later we will make the PARALLEL that contains I2. */
3284 if (!HAVE_cc0
&& i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
3285 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
3286 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3
)), 1))
3287 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
3290 rtx
*cc_use_loc
= NULL
;
3291 rtx_insn
*cc_use_insn
= NULL
;
3292 rtx op0
= i2src
, op1
= XEXP (SET_SRC (PATTERN (i3
)), 1);
3293 machine_mode compare_mode
, orig_compare_mode
;
3294 enum rtx_code compare_code
= UNKNOWN
, orig_compare_code
= UNKNOWN
;
3295 scalar_int_mode mode
;
3297 newpat
= PATTERN (i3
);
3298 newpat_dest
= SET_DEST (newpat
);
3299 compare_mode
= orig_compare_mode
= GET_MODE (newpat_dest
);
3301 if (undobuf
.other_insn
== 0
3302 && (cc_use_loc
= find_single_use (SET_DEST (newpat
), i3
,
3305 compare_code
= orig_compare_code
= GET_CODE (*cc_use_loc
);
3306 if (is_a
<scalar_int_mode
> (GET_MODE (i2dest
), &mode
))
3307 compare_code
= simplify_compare_const (compare_code
, mode
,
3309 target_canonicalize_comparison (&compare_code
, &op0
, &op1
, 1);
3312 /* Do the rest only if op1 is const0_rtx, which may be the
3313 result of simplification. */
3314 if (op1
== const0_rtx
)
3316 /* If a single use of the CC is found, prepare to modify it
3317 when SELECT_CC_MODE returns a new CC-class mode, or when
3318 the above simplify_compare_const() returned a new comparison
3319 operator. undobuf.other_insn is assigned the CC use insn
3320 when modifying it. */
3323 #ifdef SELECT_CC_MODE
3324 machine_mode new_mode
3325 = SELECT_CC_MODE (compare_code
, op0
, op1
);
3326 if (new_mode
!= orig_compare_mode
3327 && can_change_dest_mode (SET_DEST (newpat
),
3328 added_sets_2
, new_mode
))
3330 unsigned int regno
= REGNO (newpat_dest
);
3331 compare_mode
= new_mode
;
3332 if (regno
< FIRST_PSEUDO_REGISTER
)
3333 newpat_dest
= gen_rtx_REG (compare_mode
, regno
);
3336 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
3337 newpat_dest
= regno_reg_rtx
[regno
];
3341 /* Cases for modifying the CC-using comparison. */
3342 if (compare_code
!= orig_compare_code
3343 /* ??? Do we need to verify the zero rtx? */
3344 && XEXP (*cc_use_loc
, 1) == const0_rtx
)
3346 /* Replace cc_use_loc with entire new RTX. */
3348 gen_rtx_fmt_ee (compare_code
, GET_MODE (*cc_use_loc
),
3349 newpat_dest
, const0_rtx
));
3350 undobuf
.other_insn
= cc_use_insn
;
3352 else if (compare_mode
!= orig_compare_mode
)
3354 /* Just replace the CC reg with a new mode. */
3355 SUBST (XEXP (*cc_use_loc
, 0), newpat_dest
);
3356 undobuf
.other_insn
= cc_use_insn
;
3360 /* Now we modify the current newpat:
3361 First, SET_DEST(newpat) is updated if the CC mode has been
3362 altered. For targets without SELECT_CC_MODE, this should be
3364 if (compare_mode
!= orig_compare_mode
)
3365 SUBST (SET_DEST (newpat
), newpat_dest
);
3366 /* This is always done to propagate i2src into newpat. */
3367 SUBST (SET_SRC (newpat
),
3368 gen_rtx_COMPARE (compare_mode
, op0
, op1
));
3369 /* Create new version of i2pat if needed; the below PARALLEL
3370 creation needs this to work correctly. */
3371 if (! rtx_equal_p (i2src
, op0
))
3372 i2pat
= gen_rtx_SET (i2dest
, op0
);
3377 if (i2_is_used
== 0)
3379 /* It is possible that the source of I2 or I1 may be performing
3380 an unneeded operation, such as a ZERO_EXTEND of something
3381 that is known to have the high part zero. Handle that case
3382 by letting subst look at the inner insns.
3384 Another way to do this would be to have a function that tries
3385 to simplify a single insn instead of merging two or more
3386 insns. We don't do this because of the potential of infinite
3387 loops and because of the potential extra memory required.
3388 However, doing it the way we are is a bit of a kludge and
3389 doesn't catch all cases.
3391 But only do this if -fexpensive-optimizations since it slows
3392 things down and doesn't usually win.
3394 This is not done in the COMPARE case above because the
3395 unmodified I2PAT is used in the PARALLEL and so a pattern
3396 with a modified I2SRC would not match. */
3398 if (flag_expensive_optimizations
)
3400 /* Pass pc_rtx so no substitutions are done, just
3404 subst_low_luid
= DF_INSN_LUID (i1
);
3405 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3408 subst_low_luid
= DF_INSN_LUID (i2
);
3409 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3412 n_occurrences
= 0; /* `subst' counts here */
3413 subst_low_luid
= DF_INSN_LUID (i2
);
3415 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3416 copy of I2SRC each time we substitute it, in order to avoid creating
3417 self-referential RTL when we will be substituting I1SRC for I1DEST
3418 later. Likewise if I0 feeds into I2, either directly or indirectly
3419 through I1, and I0DEST is in I0SRC. */
3420 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0, 0,
3421 (i1_feeds_i2_n
&& i1dest_in_i1src
)
3422 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3423 && i0dest_in_i0src
));
3426 /* Record whether I2's body now appears within I3's body. */
3427 i2_is_used
= n_occurrences
;
3430 /* If we already got a failure, don't try to do more. Otherwise, try to
3431 substitute I1 if we have it. */
3433 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
3435 /* Before we can do this substitution, we must redo the test done
3436 above (see detailed comments there) that ensures I1DEST isn't
3437 mentioned in any SETs in NEWPAT that are field assignments. */
3438 if (!combinable_i3pat (NULL
, &newpat
, i1dest
, NULL_RTX
, NULL_RTX
,
3446 subst_low_luid
= DF_INSN_LUID (i1
);
3448 /* If the following substitution will modify I1SRC, make a copy of it
3449 for the case where it is substituted for I1DEST in I2PAT later. */
3450 if (added_sets_2
&& i1_feeds_i2_n
)
3451 i1src_copy
= copy_rtx (i1src
);
3453 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3454 copy of I1SRC each time we substitute it, in order to avoid creating
3455 self-referential RTL when we will be substituting I0SRC for I0DEST
3457 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0,
3458 i0_feeds_i1_n
&& i0dest_in_i0src
);
3461 /* Record whether I1's body now appears within I3's body. */
3462 i1_is_used
= n_occurrences
;
3465 /* Likewise for I0 if we have it. */
3467 if (i0
&& GET_CODE (newpat
) != CLOBBER
)
3469 if (!combinable_i3pat (NULL
, &newpat
, i0dest
, NULL_RTX
, NULL_RTX
,
3476 /* If the following substitution will modify I0SRC, make a copy of it
3477 for the case where it is substituted for I0DEST in I1PAT later. */
3478 if (added_sets_1
&& i0_feeds_i1_n
)
3479 i0src_copy
= copy_rtx (i0src
);
3480 /* And a copy for I0DEST in I2PAT substitution. */
3481 if (added_sets_2
&& ((i0_feeds_i1_n
&& i1_feeds_i2_n
)
3482 || (i0_feeds_i2_n
)))
3483 i0src_copy2
= copy_rtx (i0src
);
3486 subst_low_luid
= DF_INSN_LUID (i0
);
3487 newpat
= subst (newpat
, i0dest
, i0src
, 0, 0, 0);
3493 int new_n_auto_inc
= 0;
3494 for_each_inc_dec (newpat
, count_auto_inc
, &new_n_auto_inc
);
3496 if (n_auto_inc
!= new_n_auto_inc
)
3498 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
3499 fprintf (dump_file
, "Number of auto_inc expressions changed\n");
3505 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3506 to count all the ways that I2SRC and I1SRC can be used. */
3507 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
3508 && i2_is_used
+ added_sets_2
> 1)
3509 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3510 && (i1_is_used
+ added_sets_1
+ (added_sets_2
&& i1_feeds_i2_n
)
3512 || (i0
!= 0 && FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3513 && (n_occurrences
+ added_sets_0
3514 + (added_sets_1
&& i0_feeds_i1_n
)
3515 + (added_sets_2
&& i0_feeds_i2_n
)
3517 /* Fail if we tried to make a new register. */
3518 || max_reg_num () != maxreg
3519 /* Fail if we couldn't do something and have a CLOBBER. */
3520 || GET_CODE (newpat
) == CLOBBER
3521 /* Fail if this new pattern is a MULT and we didn't have one before
3522 at the outer level. */
3523 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
3530 /* If the actions of the earlier insns must be kept
3531 in addition to substituting them into the latest one,
3532 we must make a new PARALLEL for the latest insn
3533 to hold additional the SETs. */
3535 if (added_sets_0
|| added_sets_1
|| added_sets_2
)
3537 int extra_sets
= added_sets_0
+ added_sets_1
+ added_sets_2
;
3540 if (GET_CODE (newpat
) == PARALLEL
)
3542 rtvec old
= XVEC (newpat
, 0);
3543 total_sets
= XVECLEN (newpat
, 0) + extra_sets
;
3544 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3545 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
3546 sizeof (old
->elem
[0]) * old
->num_elem
);
3551 total_sets
= 1 + extra_sets
;
3552 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3553 XVECEXP (newpat
, 0, 0) = old
;
3557 XVECEXP (newpat
, 0, --total_sets
) = i0pat
;
3563 t
= subst (t
, i0dest
, i0src_copy
? i0src_copy
: i0src
, 0, 0, 0);
3565 XVECEXP (newpat
, 0, --total_sets
) = t
;
3571 t
= subst (t
, i1dest
, i1src_copy
? i1src_copy
: i1src
, 0, 0,
3572 i0_feeds_i1_n
&& i0dest_in_i0src
);
3573 if ((i0_feeds_i1_n
&& i1_feeds_i2_n
) || i0_feeds_i2_n
)
3574 t
= subst (t
, i0dest
, i0src_copy2
? i0src_copy2
: i0src
, 0, 0, 0);
3576 XVECEXP (newpat
, 0, --total_sets
) = t
;
3580 validate_replacement
:
3582 /* Note which hard regs this insn has as inputs. */
3583 mark_used_regs_combine (newpat
);
3585 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3586 consider splitting this pattern, we might need these clobbers. */
3587 if (i1
&& GET_CODE (newpat
) == PARALLEL
3588 && GET_CODE (XVECEXP (newpat
, 0, XVECLEN (newpat
, 0) - 1)) == CLOBBER
)
3590 int len
= XVECLEN (newpat
, 0);
3592 newpat_vec_with_clobbers
= rtvec_alloc (len
);
3593 for (i
= 0; i
< len
; i
++)
3594 RTVEC_ELT (newpat_vec_with_clobbers
, i
) = XVECEXP (newpat
, 0, i
);
3597 /* We have recognized nothing yet. */
3598 insn_code_number
= -1;
3600 /* See if this is a PARALLEL of two SETs where one SET's destination is
3601 a register that is unused and this isn't marked as an instruction that
3602 might trap in an EH region. In that case, we just need the other SET.
3603 We prefer this over the PARALLEL.
3605 This can occur when simplifying a divmod insn. We *must* test for this
3606 case here because the code below that splits two independent SETs doesn't
3607 handle this case correctly when it updates the register status.
3609 It's pointless doing this if we originally had two sets, one from
3610 i3, and one from i2. Combining then splitting the parallel results
3611 in the original i2 again plus an invalid insn (which we delete).
3612 The net effect is only to move instructions around, which makes
3613 debug info less accurate.
3615 If the remaining SET came from I2 its destination should not be used
3616 between I2 and I3. See PR82024. */
3618 if (!(added_sets_2
&& i1
== 0)
3619 && is_parallel_of_n_reg_sets (newpat
, 2)
3620 && asm_noperands (newpat
) < 0)
3622 rtx set0
= XVECEXP (newpat
, 0, 0);
3623 rtx set1
= XVECEXP (newpat
, 0, 1);
3624 rtx oldpat
= newpat
;
3626 if (((REG_P (SET_DEST (set1
))
3627 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
3628 || (GET_CODE (SET_DEST (set1
)) == SUBREG
3629 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
3630 && insn_nothrow_p (i3
)
3631 && !side_effects_p (SET_SRC (set1
)))
3634 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3637 else if (((REG_P (SET_DEST (set0
))
3638 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
3639 || (GET_CODE (SET_DEST (set0
)) == SUBREG
3640 && find_reg_note (i3
, REG_UNUSED
,
3641 SUBREG_REG (SET_DEST (set0
)))))
3642 && insn_nothrow_p (i3
)
3643 && !side_effects_p (SET_SRC (set0
)))
3645 rtx dest
= SET_DEST (set1
);
3646 if (GET_CODE (dest
) == SUBREG
)
3647 dest
= SUBREG_REG (dest
);
3648 if (!reg_used_between_p (dest
, i2
, i3
))
3651 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3653 if (insn_code_number
>= 0)
3654 changed_i3_dest
= 1;
3658 if (insn_code_number
< 0)
3662 /* Is the result of combination a valid instruction? */
3663 if (insn_code_number
< 0)
3664 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3666 /* If we were combining three insns and the result is a simple SET
3667 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3668 insns. There are two ways to do this. It can be split using a
3669 machine-specific method (like when you have an addition of a large
3670 constant) or by combine in the function find_split_point. */
3672 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
3673 && asm_noperands (newpat
) < 0)
3675 rtx parallel
, *split
;
3676 rtx_insn
*m_split_insn
;
3678 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3679 use I2DEST as a scratch register will help. In the latter case,
3680 convert I2DEST to the mode of the source of NEWPAT if we can. */
3682 m_split_insn
= combine_split_insns (newpat
, i3
);
3684 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3685 inputs of NEWPAT. */
3687 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3688 possible to try that as a scratch reg. This would require adding
3689 more code to make it work though. */
3691 if (m_split_insn
== 0 && ! reg_overlap_mentioned_p (i2dest
, newpat
))
3693 machine_mode new_mode
= GET_MODE (SET_DEST (newpat
));
3695 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3696 (temporarily, until we are committed to this instruction
3697 combination) does not work: for example, any call to nonzero_bits
3698 on the register (from a splitter in the MD file, for example)
3699 will get the old information, which is invalid.
3701 Since nowadays we can create registers during combine just fine,
3702 we should just create a new one here, not reuse i2dest. */
3704 /* First try to split using the original register as a
3705 scratch register. */
3706 parallel
= gen_rtx_PARALLEL (VOIDmode
,
3707 gen_rtvec (2, newpat
,
3708 gen_rtx_CLOBBER (VOIDmode
,
3710 m_split_insn
= combine_split_insns (parallel
, i3
);
3712 /* If that didn't work, try changing the mode of I2DEST if
3714 if (m_split_insn
== 0
3715 && new_mode
!= GET_MODE (i2dest
)
3716 && new_mode
!= VOIDmode
3717 && can_change_dest_mode (i2dest
, added_sets_2
, new_mode
))
3719 machine_mode old_mode
= GET_MODE (i2dest
);
3722 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3723 ni2dest
= gen_rtx_REG (new_mode
, REGNO (i2dest
));
3726 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], new_mode
);
3727 ni2dest
= regno_reg_rtx
[REGNO (i2dest
)];
3730 parallel
= (gen_rtx_PARALLEL
3732 gen_rtvec (2, newpat
,
3733 gen_rtx_CLOBBER (VOIDmode
,
3735 m_split_insn
= combine_split_insns (parallel
, i3
);
3737 if (m_split_insn
== 0
3738 && REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
3742 adjust_reg_mode (regno_reg_rtx
[REGNO (i2dest
)], old_mode
);
3743 buf
= undobuf
.undos
;
3744 undobuf
.undos
= buf
->next
;
3745 buf
->next
= undobuf
.frees
;
3746 undobuf
.frees
= buf
;
3750 i2scratch
= m_split_insn
!= 0;
3753 /* If recog_for_combine has discarded clobbers, try to use them
3754 again for the split. */
3755 if (m_split_insn
== 0 && newpat_vec_with_clobbers
)
3757 parallel
= gen_rtx_PARALLEL (VOIDmode
, newpat_vec_with_clobbers
);
3758 m_split_insn
= combine_split_insns (parallel
, i3
);
3761 if (m_split_insn
&& NEXT_INSN (m_split_insn
) == NULL_RTX
)
3763 rtx m_split_pat
= PATTERN (m_split_insn
);
3764 insn_code_number
= recog_for_combine (&m_split_pat
, i3
, &new_i3_notes
);
3765 if (insn_code_number
>= 0)
3766 newpat
= m_split_pat
;
3768 else if (m_split_insn
&& NEXT_INSN (NEXT_INSN (m_split_insn
)) == NULL_RTX
3769 && (next_nonnote_nondebug_insn (i2
) == i3
3770 || !modified_between_p (PATTERN (m_split_insn
), i2
, i3
)))
3773 rtx newi3pat
= PATTERN (NEXT_INSN (m_split_insn
));
3774 newi2pat
= PATTERN (m_split_insn
);
3776 i3set
= single_set (NEXT_INSN (m_split_insn
));
3777 i2set
= single_set (m_split_insn
);
3779 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3781 /* If I2 or I3 has multiple SETs, we won't know how to track
3782 register status, so don't use these insns. If I2's destination
3783 is used between I2 and I3, we also can't use these insns. */
3785 if (i2_code_number
>= 0 && i2set
&& i3set
3786 && (next_nonnote_nondebug_insn (i2
) == i3
3787 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
3788 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
3790 if (insn_code_number
>= 0)
3793 /* It is possible that both insns now set the destination of I3.
3794 If so, we must show an extra use of it. */
3796 if (insn_code_number
>= 0)
3798 rtx new_i3_dest
= SET_DEST (i3set
);
3799 rtx new_i2_dest
= SET_DEST (i2set
);
3801 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
3802 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
3803 || GET_CODE (new_i3_dest
) == SUBREG
)
3804 new_i3_dest
= XEXP (new_i3_dest
, 0);
3806 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
3807 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
3808 || GET_CODE (new_i2_dest
) == SUBREG
)
3809 new_i2_dest
= XEXP (new_i2_dest
, 0);
3811 if (REG_P (new_i3_dest
)
3812 && REG_P (new_i2_dest
)
3813 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
)
3814 && REGNO (new_i2_dest
) < reg_n_sets_max
)
3815 INC_REG_N_SETS (REGNO (new_i2_dest
), 1);
3819 /* If we can split it and use I2DEST, go ahead and see if that
3820 helps things be recognized. Verify that none of the registers
3821 are set between I2 and I3. */
3822 if (insn_code_number
< 0
3823 && (split
= find_split_point (&newpat
, i3
, false)) != 0
3824 && (!HAVE_cc0
|| REG_P (i2dest
))
3825 /* We need I2DEST in the proper mode. If it is a hard register
3826 or the only use of a pseudo, we can change its mode.
3827 Make sure we don't change a hard register to have a mode that
3828 isn't valid for it, or change the number of registers. */
3829 && (GET_MODE (*split
) == GET_MODE (i2dest
)
3830 || GET_MODE (*split
) == VOIDmode
3831 || can_change_dest_mode (i2dest
, added_sets_2
,
3833 && (next_nonnote_nondebug_insn (i2
) == i3
3834 || !modified_between_p (*split
, i2
, i3
))
3835 /* We can't overwrite I2DEST if its value is still used by
3837 && ! reg_referenced_p (i2dest
, newpat
))
3839 rtx newdest
= i2dest
;
3840 enum rtx_code split_code
= GET_CODE (*split
);
3841 machine_mode split_mode
= GET_MODE (*split
);
3842 bool subst_done
= false;
3843 newi2pat
= NULL_RTX
;
3847 /* *SPLIT may be part of I2SRC, so make sure we have the
3848 original expression around for later debug processing.
3849 We should not need I2SRC any more in other cases. */
3850 if (MAY_HAVE_DEBUG_BIND_INSNS
)
3851 i2src
= copy_rtx (i2src
);
3855 /* Get NEWDEST as a register in the proper mode. We have already
3856 validated that we can do this. */
3857 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
3859 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3860 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
3863 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], split_mode
);
3864 newdest
= regno_reg_rtx
[REGNO (i2dest
)];
3868 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3869 an ASHIFT. This can occur if it was inside a PLUS and hence
3870 appeared to be a memory address. This is a kludge. */
3871 if (split_code
== MULT
3872 && CONST_INT_P (XEXP (*split
, 1))
3873 && INTVAL (XEXP (*split
, 1)) > 0
3874 && (i
= exact_log2 (UINTVAL (XEXP (*split
, 1)))) >= 0)
3876 rtx i_rtx
= gen_int_shift_amount (split_mode
, i
);
3877 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
3878 XEXP (*split
, 0), i_rtx
));
3879 /* Update split_code because we may not have a multiply
3881 split_code
= GET_CODE (*split
);
3884 /* Similarly for (plus (mult FOO (const_int pow2))). */
3885 if (split_code
== PLUS
3886 && GET_CODE (XEXP (*split
, 0)) == MULT
3887 && CONST_INT_P (XEXP (XEXP (*split
, 0), 1))
3888 && INTVAL (XEXP (XEXP (*split
, 0), 1)) > 0
3889 && (i
= exact_log2 (UINTVAL (XEXP (XEXP (*split
, 0), 1)))) >= 0)
3891 rtx nsplit
= XEXP (*split
, 0);
3892 rtx i_rtx
= gen_int_shift_amount (GET_MODE (nsplit
), i
);
3893 SUBST (XEXP (*split
, 0), gen_rtx_ASHIFT (GET_MODE (nsplit
),
3896 /* Update split_code because we may not have a multiply
3898 split_code
= GET_CODE (*split
);
3901 #ifdef INSN_SCHEDULING
3902 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3903 be written as a ZERO_EXTEND. */
3904 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
3906 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3907 what it really is. */
3908 if (load_extend_op (GET_MODE (SUBREG_REG (*split
)))
3910 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
3911 SUBREG_REG (*split
)));
3913 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
3914 SUBREG_REG (*split
)));
3918 /* Attempt to split binary operators using arithmetic identities. */
3919 if (BINARY_P (SET_SRC (newpat
))
3920 && split_mode
== GET_MODE (SET_SRC (newpat
))
3921 && ! side_effects_p (SET_SRC (newpat
)))
3923 rtx setsrc
= SET_SRC (newpat
);
3924 machine_mode mode
= GET_MODE (setsrc
);
3925 enum rtx_code code
= GET_CODE (setsrc
);
3926 rtx src_op0
= XEXP (setsrc
, 0);
3927 rtx src_op1
= XEXP (setsrc
, 1);
3929 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3930 if (rtx_equal_p (src_op0
, src_op1
))
3932 newi2pat
= gen_rtx_SET (newdest
, src_op0
);
3933 SUBST (XEXP (setsrc
, 0), newdest
);
3934 SUBST (XEXP (setsrc
, 1), newdest
);
3937 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3938 else if ((code
== PLUS
|| code
== MULT
)
3939 && GET_CODE (src_op0
) == code
3940 && GET_CODE (XEXP (src_op0
, 0)) == code
3941 && (INTEGRAL_MODE_P (mode
)
3942 || (FLOAT_MODE_P (mode
)
3943 && flag_unsafe_math_optimizations
)))
3945 rtx p
= XEXP (XEXP (src_op0
, 0), 0);
3946 rtx q
= XEXP (XEXP (src_op0
, 0), 1);
3947 rtx r
= XEXP (src_op0
, 1);
3950 /* Split both "((X op Y) op X) op Y" and
3951 "((X op Y) op Y) op X" as "T op T" where T is
3953 if ((rtx_equal_p (p
,r
) && rtx_equal_p (q
,s
))
3954 || (rtx_equal_p (p
,s
) && rtx_equal_p (q
,r
)))
3956 newi2pat
= gen_rtx_SET (newdest
, XEXP (src_op0
, 0));
3957 SUBST (XEXP (setsrc
, 0), newdest
);
3958 SUBST (XEXP (setsrc
, 1), newdest
);
3961 /* Split "((X op X) op Y) op Y)" as "T op T" where
3963 else if (rtx_equal_p (p
,q
) && rtx_equal_p (r
,s
))
3965 rtx tmp
= simplify_gen_binary (code
, mode
, p
, r
);
3966 newi2pat
= gen_rtx_SET (newdest
, tmp
);
3967 SUBST (XEXP (setsrc
, 0), newdest
);
3968 SUBST (XEXP (setsrc
, 1), newdest
);
3976 newi2pat
= gen_rtx_SET (newdest
, *split
);
3977 SUBST (*split
, newdest
);
3980 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3982 /* recog_for_combine might have added CLOBBERs to newi2pat.
3983 Make sure NEWPAT does not depend on the clobbered regs. */
3984 if (GET_CODE (newi2pat
) == PARALLEL
)
3985 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3986 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3988 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3989 if (reg_overlap_mentioned_p (reg
, newpat
))
3996 /* If the split point was a MULT and we didn't have one before,
3997 don't use one now. */
3998 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
3999 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
4003 /* Check for a case where we loaded from memory in a narrow mode and
4004 then sign extended it, but we need both registers. In that case,
4005 we have a PARALLEL with both loads from the same memory location.
4006 We can split this into a load from memory followed by a register-register
4007 copy. This saves at least one insn, more if register allocation can
4010 We cannot do this if the destination of the first assignment is a
4011 condition code register or cc0. We eliminate this case by making sure
4012 the SET_DEST and SET_SRC have the same mode.
4014 We cannot do this if the destination of the second assignment is
4015 a register that we have already assumed is zero-extended. Similarly
4016 for a SUBREG of such a register. */
4018 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
4019 && GET_CODE (newpat
) == PARALLEL
4020 && XVECLEN (newpat
, 0) == 2
4021 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
4022 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
4023 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
4024 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
4025 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
4026 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
4027 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
4028 && !modified_between_p (SET_SRC (XVECEXP (newpat
, 0, 1)), i2
, i3
)
4029 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
4030 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
4031 && ! (temp_expr
= SET_DEST (XVECEXP (newpat
, 0, 1)),
4033 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
4034 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
4036 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
4038 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
4039 != GET_MODE_MASK (word_mode
))))
4040 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
4041 && (temp_expr
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
4043 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
4044 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
4046 && known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr
)),
4048 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
4049 != GET_MODE_MASK (word_mode
)))))
4050 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
4051 SET_SRC (XVECEXP (newpat
, 0, 1)))
4052 && ! find_reg_note (i3
, REG_UNUSED
,
4053 SET_DEST (XVECEXP (newpat
, 0, 0))))
4057 newi2pat
= XVECEXP (newpat
, 0, 0);
4058 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
4059 newpat
= XVECEXP (newpat
, 0, 1);
4060 SUBST (SET_SRC (newpat
),
4061 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
4062 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
4064 if (i2_code_number
>= 0)
4065 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
4067 if (insn_code_number
>= 0)
4071 /* Similarly, check for a case where we have a PARALLEL of two independent
4072 SETs but we started with three insns. In this case, we can do the sets
4073 as two separate insns. This case occurs when some SET allows two
4074 other insns to combine, but the destination of that SET is still live.
4076 Also do this if we started with two insns and (at least) one of the
4077 resulting sets is a noop; this noop will be deleted later.
4079 Also do this if we started with two insns neither of which was a simple
4082 else if (insn_code_number
< 0 && asm_noperands (newpat
) < 0
4083 && GET_CODE (newpat
) == PARALLEL
4084 && XVECLEN (newpat
, 0) == 2
4085 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
4086 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
4088 || set_noop_p (XVECEXP (newpat
, 0, 0))
4089 || set_noop_p (XVECEXP (newpat
, 0, 1))
4090 || (!i2_was_move
&& !i3_was_move
))
4091 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
4092 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
4093 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
4094 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
4095 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
4096 XVECEXP (newpat
, 0, 0))
4097 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
4098 XVECEXP (newpat
, 0, 1))
4099 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
4100 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
4102 rtx set0
= XVECEXP (newpat
, 0, 0);
4103 rtx set1
= XVECEXP (newpat
, 0, 1);
4105 /* Normally, it doesn't matter which of the two is done first,
4106 but the one that references cc0 can't be the second, and
4107 one which uses any regs/memory set in between i2 and i3 can't
4108 be first. The PARALLEL might also have been pre-existing in i3,
4109 so we need to make sure that we won't wrongly hoist a SET to i2
4110 that would conflict with a death note present in there, or would
4111 have its dest modified between i2 and i3. */
4112 if (!modified_between_p (SET_SRC (set1
), i2
, i3
)
4113 && !(REG_P (SET_DEST (set1
))
4114 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set1
)))
4115 && !(GET_CODE (SET_DEST (set1
)) == SUBREG
4116 && find_reg_note (i2
, REG_DEAD
,
4117 SUBREG_REG (SET_DEST (set1
))))
4118 && !modified_between_p (SET_DEST (set1
), i2
, i3
)
4119 && (!HAVE_cc0
|| !reg_referenced_p (cc0_rtx
, set0
))
4120 /* If I3 is a jump, ensure that set0 is a jump so that
4121 we do not create invalid RTL. */
4122 && (!JUMP_P (i3
) || SET_DEST (set0
) == pc_rtx
)
4128 else if (!modified_between_p (SET_SRC (set0
), i2
, i3
)
4129 && !(REG_P (SET_DEST (set0
))
4130 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set0
)))
4131 && !(GET_CODE (SET_DEST (set0
)) == SUBREG
4132 && find_reg_note (i2
, REG_DEAD
,
4133 SUBREG_REG (SET_DEST (set0
))))
4134 && !modified_between_p (SET_DEST (set0
), i2
, i3
)
4135 && (!HAVE_cc0
|| !reg_referenced_p (cc0_rtx
, set1
))
4136 /* If I3 is a jump, ensure that set1 is a jump so that
4137 we do not create invalid RTL. */
4138 && (!JUMP_P (i3
) || SET_DEST (set1
) == pc_rtx
)
4150 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
4152 if (i2_code_number
>= 0)
4154 /* recog_for_combine might have added CLOBBERs to newi2pat.
4155 Make sure NEWPAT does not depend on the clobbered regs. */
4156 if (GET_CODE (newi2pat
) == PARALLEL
)
4158 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
4159 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
4161 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
4162 if (reg_overlap_mentioned_p (reg
, newpat
))
4170 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
4172 if (insn_code_number
>= 0)
4177 /* If it still isn't recognized, fail and change things back the way they
4179 if ((insn_code_number
< 0
4180 /* Is the result a reasonable ASM_OPERANDS? */
4181 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
4187 /* If we had to change another insn, make sure it is valid also. */
4188 if (undobuf
.other_insn
)
4190 CLEAR_HARD_REG_SET (newpat_used_regs
);
4192 other_pat
= PATTERN (undobuf
.other_insn
);
4193 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
4196 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
4203 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4204 they are adjacent to each other or not. */
4207 rtx_insn
*p
= prev_nonnote_insn (i3
);
4208 if (p
&& p
!= i2
&& NONJUMP_INSN_P (p
) && newi2pat
4209 && sets_cc0_p (newi2pat
))
4216 /* Only allow this combination if insn_cost reports that the
4217 replacement instructions are cheaper than the originals. */
4218 if (!combine_validate_cost (i0
, i1
, i2
, i3
, newpat
, newi2pat
, other_pat
))
4224 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4228 for (undo
= undobuf
.undos
; undo
; undo
= undo
->next
)
4229 if (undo
->kind
== UNDO_MODE
)
4231 rtx reg
= *undo
->where
.r
;
4232 machine_mode new_mode
= GET_MODE (reg
);
4233 machine_mode old_mode
= undo
->old_contents
.m
;
4235 /* Temporarily revert mode back. */
4236 adjust_reg_mode (reg
, old_mode
);
4238 if (reg
== i2dest
&& i2scratch
)
4240 /* If we used i2dest as a scratch register with a
4241 different mode, substitute it for the original
4242 i2src while its original mode is temporarily
4243 restored, and then clear i2scratch so that we don't
4244 do it again later. */
4245 propagate_for_debug (i2
, last_combined_insn
, reg
, i2src
,
4248 /* Put back the new mode. */
4249 adjust_reg_mode (reg
, new_mode
);
4253 rtx tempreg
= gen_raw_REG (old_mode
, REGNO (reg
));
4254 rtx_insn
*first
, *last
;
4259 last
= last_combined_insn
;
4264 last
= undobuf
.other_insn
;
4266 if (DF_INSN_LUID (last
)
4267 < DF_INSN_LUID (last_combined_insn
))
4268 last
= last_combined_insn
;
4271 /* We're dealing with a reg that changed mode but not
4272 meaning, so we want to turn it into a subreg for
4273 the new mode. However, because of REG sharing and
4274 because its mode had already changed, we have to do
4275 it in two steps. First, replace any debug uses of
4276 reg, with its original mode temporarily restored,
4277 with this copy we have created; then, replace the
4278 copy with the SUBREG of the original shared reg,
4279 once again changed to the new mode. */
4280 propagate_for_debug (first
, last
, reg
, tempreg
,
4282 adjust_reg_mode (reg
, new_mode
);
4283 propagate_for_debug (first
, last
, tempreg
,
4284 lowpart_subreg (old_mode
, reg
, new_mode
),
4290 /* If we will be able to accept this, we have made a
4291 change to the destination of I3. This requires us to
4292 do a few adjustments. */
4294 if (changed_i3_dest
)
4296 PATTERN (i3
) = newpat
;
4297 adjust_for_new_dest (i3
);
4300 /* We now know that we can do this combination. Merge the insns and
4301 update the status of registers and LOG_LINKS. */
4303 if (undobuf
.other_insn
)
4307 PATTERN (undobuf
.other_insn
) = other_pat
;
4309 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4310 ensure that they are still valid. Then add any non-duplicate
4311 notes added by recog_for_combine. */
4312 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
4314 next
= XEXP (note
, 1);
4316 if ((REG_NOTE_KIND (note
) == REG_DEAD
4317 && !reg_referenced_p (XEXP (note
, 0),
4318 PATTERN (undobuf
.other_insn
)))
4319 ||(REG_NOTE_KIND (note
) == REG_UNUSED
4320 && !reg_set_p (XEXP (note
, 0),
4321 PATTERN (undobuf
.other_insn
)))
4322 /* Simply drop equal note since it may be no longer valid
4323 for other_insn. It may be possible to record that CC
4324 register is changed and only discard those notes, but
4325 in practice it's unnecessary complication and doesn't
4326 give any meaningful improvement.
4329 || REG_NOTE_KIND (note
) == REG_EQUAL
4330 || REG_NOTE_KIND (note
) == REG_EQUIV
)
4331 remove_note (undobuf
.other_insn
, note
);
4334 distribute_notes (new_other_notes
, undobuf
.other_insn
,
4335 undobuf
.other_insn
, NULL
, NULL_RTX
, NULL_RTX
,
4341 /* I3 now uses what used to be its destination and which is now
4342 I2's destination. This requires us to do a few adjustments. */
4343 PATTERN (i3
) = newpat
;
4344 adjust_for_new_dest (i3
);
4347 if (swap_i2i3
|| split_i2i3
)
4349 /* We might need a LOG_LINK from I3 to I2. But then we used to
4350 have one, so we still will.
4352 However, some later insn might be using I2's dest and have
4353 a LOG_LINK pointing at I3. We should change it to point at
4356 /* newi2pat is usually a SET here; however, recog_for_combine might
4357 have added some clobbers. */
4359 if (GET_CODE (x
) == PARALLEL
)
4360 x
= XVECEXP (newi2pat
, 0, 0);
4362 /* It can only be a SET of a REG or of a SUBREG of a REG. */
4363 unsigned int regno
= reg_or_subregno (SET_DEST (x
));
4366 for (rtx_insn
*insn
= NEXT_INSN (i3
);
4369 && NONDEBUG_INSN_P (insn
)
4370 && BLOCK_FOR_INSN (insn
) == this_basic_block
;
4371 insn
= NEXT_INSN (insn
))
4373 struct insn_link
*link
;
4374 FOR_EACH_LOG_LINK (link
, insn
)
4375 if (link
->insn
== i3
&& link
->regno
== regno
)
4385 rtx i3notes
, i2notes
, i1notes
= 0, i0notes
= 0;
4386 struct insn_link
*i3links
, *i2links
, *i1links
= 0, *i0links
= 0;
4389 /* Compute which registers we expect to eliminate. newi2pat may be setting
4390 either i3dest or i2dest, so we must check it. */
4391 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4392 || i2dest_in_i2src
|| i2dest_in_i1src
|| i2dest_in_i0src
4395 /* For i1, we need to compute both local elimination and global
4396 elimination information with respect to newi2pat because i1dest
4397 may be the same as i3dest, in which case newi2pat may be setting
4398 i1dest. Global information is used when distributing REG_DEAD
4399 note for i2 and i3, in which case it does matter if newi2pat sets
4402 Local information is used when distributing REG_DEAD note for i1,
4403 in which case it doesn't matter if newi2pat sets i1dest or not.
4404 See PR62151, if we have four insns combination:
4406 i1: r1 <- i1src (using r0)
4408 i2: r0 <- i2src (using r1)
4409 i3: r3 <- i3src (using r0)
4411 From i1's point of view, r0 is eliminated, no matter if it is set
4412 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4413 should be discarded.
4415 Note local information only affects cases in forms like "I1->I2->I3",
4416 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4417 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4419 rtx local_elim_i1
= (i1
== 0 || i1dest_in_i1src
|| i1dest_in_i0src
4422 rtx elim_i1
= (local_elim_i1
== 0
4423 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4425 /* Same case as i1. */
4426 rtx local_elim_i0
= (i0
== 0 || i0dest_in_i0src
|| !i0dest_killed
4428 rtx elim_i0
= (local_elim_i0
== 0
4429 || (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4432 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4434 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
4435 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
4437 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
4439 i0notes
= REG_NOTES (i0
), i0links
= LOG_LINKS (i0
);
4441 /* Ensure that we do not have something that should not be shared but
4442 occurs multiple times in the new insns. Check this by first
4443 resetting all the `used' flags and then copying anything is shared. */
4445 reset_used_flags (i3notes
);
4446 reset_used_flags (i2notes
);
4447 reset_used_flags (i1notes
);
4448 reset_used_flags (i0notes
);
4449 reset_used_flags (newpat
);
4450 reset_used_flags (newi2pat
);
4451 if (undobuf
.other_insn
)
4452 reset_used_flags (PATTERN (undobuf
.other_insn
));
4454 i3notes
= copy_rtx_if_shared (i3notes
);
4455 i2notes
= copy_rtx_if_shared (i2notes
);
4456 i1notes
= copy_rtx_if_shared (i1notes
);
4457 i0notes
= copy_rtx_if_shared (i0notes
);
4458 newpat
= copy_rtx_if_shared (newpat
);
4459 newi2pat
= copy_rtx_if_shared (newi2pat
);
4460 if (undobuf
.other_insn
)
4461 reset_used_flags (PATTERN (undobuf
.other_insn
));
4463 INSN_CODE (i3
) = insn_code_number
;
4464 PATTERN (i3
) = newpat
;
4466 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
4468 for (rtx link
= CALL_INSN_FUNCTION_USAGE (i3
); link
;
4469 link
= XEXP (link
, 1))
4473 /* I2SRC must still be meaningful at this point. Some
4474 splitting operations can invalidate I2SRC, but those
4475 operations do not apply to calls. */
4477 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4481 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4484 XEXP (link
, 0) = simplify_replace_rtx (XEXP (link
, 0),
4489 if (undobuf
.other_insn
)
4490 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
4492 /* We had one special case above where I2 had more than one set and
4493 we replaced a destination of one of those sets with the destination
4494 of I3. In that case, we have to update LOG_LINKS of insns later
4495 in this basic block. Note that this (expensive) case is rare.
4497 Also, in this case, we must pretend that all REG_NOTEs for I2
4498 actually came from I3, so that REG_UNUSED notes from I2 will be
4499 properly handled. */
4501 if (i3_subst_into_i2
)
4503 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
4504 if ((GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == SET
4505 || GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == CLOBBER
)
4506 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
4507 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
4508 && ! find_reg_note (i2
, REG_UNUSED
,
4509 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
4510 for (temp_insn
= NEXT_INSN (i2
);
4512 && (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
4513 || BB_HEAD (this_basic_block
) != temp_insn
);
4514 temp_insn
= NEXT_INSN (temp_insn
))
4515 if (temp_insn
!= i3
&& NONDEBUG_INSN_P (temp_insn
))
4516 FOR_EACH_LOG_LINK (link
, temp_insn
)
4517 if (link
->insn
== i2
)
4523 while (XEXP (link
, 1))
4524 link
= XEXP (link
, 1);
4525 XEXP (link
, 1) = i2notes
;
4532 LOG_LINKS (i3
) = NULL
;
4534 LOG_LINKS (i2
) = NULL
;
4539 if (MAY_HAVE_DEBUG_BIND_INSNS
&& i2scratch
)
4540 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4542 INSN_CODE (i2
) = i2_code_number
;
4543 PATTERN (i2
) = newi2pat
;
4547 if (MAY_HAVE_DEBUG_BIND_INSNS
&& i2src
)
4548 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4550 SET_INSN_DELETED (i2
);
4555 LOG_LINKS (i1
) = NULL
;
4557 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4558 propagate_for_debug (i1
, last_combined_insn
, i1dest
, i1src
,
4560 SET_INSN_DELETED (i1
);
4565 LOG_LINKS (i0
) = NULL
;
4567 if (MAY_HAVE_DEBUG_BIND_INSNS
)
4568 propagate_for_debug (i0
, last_combined_insn
, i0dest
, i0src
,
4570 SET_INSN_DELETED (i0
);
4573 /* Get death notes for everything that is now used in either I3 or
4574 I2 and used to die in a previous insn. If we built two new
4575 patterns, move from I1 to I2 then I2 to I3 so that we get the
4576 proper movement on registers that I2 modifies. */
4579 from_luid
= DF_INSN_LUID (i0
);
4581 from_luid
= DF_INSN_LUID (i1
);
4583 from_luid
= DF_INSN_LUID (i2
);
4585 move_deaths (newi2pat
, NULL_RTX
, from_luid
, i2
, &midnotes
);
4586 move_deaths (newpat
, newi2pat
, from_luid
, i3
, &midnotes
);
4588 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4590 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL
,
4591 elim_i2
, elim_i1
, elim_i0
);
4593 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL
,
4594 elim_i2
, elim_i1
, elim_i0
);
4596 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL
,
4597 elim_i2
, local_elim_i1
, local_elim_i0
);
4599 distribute_notes (i0notes
, i0
, i3
, newi2pat
? i2
: NULL
,
4600 elim_i2
, elim_i1
, local_elim_i0
);
4602 distribute_notes (midnotes
, NULL
, i3
, newi2pat
? i2
: NULL
,
4603 elim_i2
, elim_i1
, elim_i0
);
4605 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4606 know these are REG_UNUSED and want them to go to the desired insn,
4607 so we always pass it as i3. */
4609 if (newi2pat
&& new_i2_notes
)
4610 distribute_notes (new_i2_notes
, i2
, i2
, NULL
, NULL_RTX
, NULL_RTX
,
4614 distribute_notes (new_i3_notes
, i3
, i3
, NULL
, NULL_RTX
, NULL_RTX
,
4617 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4618 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4619 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4620 in that case, it might delete I2. Similarly for I2 and I1.
4621 Show an additional death due to the REG_DEAD note we make here. If
4622 we discard it in distribute_notes, we will decrement it again. */
4626 rtx new_note
= alloc_reg_note (REG_DEAD
, i3dest_killed
, NULL_RTX
);
4627 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
4628 distribute_notes (new_note
, NULL
, i2
, NULL
, elim_i2
,
4631 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4632 elim_i2
, elim_i1
, elim_i0
);
4635 if (i2dest_in_i2src
)
4637 rtx new_note
= alloc_reg_note (REG_DEAD
, i2dest
, NULL_RTX
);
4638 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4639 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4640 NULL_RTX
, NULL_RTX
);
4642 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4643 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4646 if (i1dest_in_i1src
)
4648 rtx new_note
= alloc_reg_note (REG_DEAD
, i1dest
, NULL_RTX
);
4649 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4650 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4651 NULL_RTX
, NULL_RTX
);
4653 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4654 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4657 if (i0dest_in_i0src
)
4659 rtx new_note
= alloc_reg_note (REG_DEAD
, i0dest
, NULL_RTX
);
4660 if (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4661 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4662 NULL_RTX
, NULL_RTX
);
4664 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4665 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4668 distribute_links (i3links
);
4669 distribute_links (i2links
);
4670 distribute_links (i1links
);
4671 distribute_links (i0links
);
4675 struct insn_link
*link
;
4676 rtx_insn
*i2_insn
= 0;
4677 rtx i2_val
= 0, set
;
4679 /* The insn that used to set this register doesn't exist, and
4680 this life of the register may not exist either. See if one of
4681 I3's links points to an insn that sets I2DEST. If it does,
4682 that is now the last known value for I2DEST. If we don't update
4683 this and I2 set the register to a value that depended on its old
4684 contents, we will get confused. If this insn is used, thing
4685 will be set correctly in combine_instructions. */
4686 FOR_EACH_LOG_LINK (link
, i3
)
4687 if ((set
= single_set (link
->insn
)) != 0
4688 && rtx_equal_p (i2dest
, SET_DEST (set
)))
4689 i2_insn
= link
->insn
, i2_val
= SET_SRC (set
);
4691 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
4693 /* If the reg formerly set in I2 died only once and that was in I3,
4694 zero its use count so it won't make `reload' do any work. */
4696 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
4697 && ! i2dest_in_i2src
4698 && REGNO (i2dest
) < reg_n_sets_max
)
4699 INC_REG_N_SETS (REGNO (i2dest
), -1);
4702 if (i1
&& REG_P (i1dest
))
4704 struct insn_link
*link
;
4705 rtx_insn
*i1_insn
= 0;
4706 rtx i1_val
= 0, set
;
4708 FOR_EACH_LOG_LINK (link
, i3
)
4709 if ((set
= single_set (link
->insn
)) != 0
4710 && rtx_equal_p (i1dest
, SET_DEST (set
)))
4711 i1_insn
= link
->insn
, i1_val
= SET_SRC (set
);
4713 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
4716 && ! i1dest_in_i1src
4717 && REGNO (i1dest
) < reg_n_sets_max
)
4718 INC_REG_N_SETS (REGNO (i1dest
), -1);
4721 if (i0
&& REG_P (i0dest
))
4723 struct insn_link
*link
;
4724 rtx_insn
*i0_insn
= 0;
4725 rtx i0_val
= 0, set
;
4727 FOR_EACH_LOG_LINK (link
, i3
)
4728 if ((set
= single_set (link
->insn
)) != 0
4729 && rtx_equal_p (i0dest
, SET_DEST (set
)))
4730 i0_insn
= link
->insn
, i0_val
= SET_SRC (set
);
4732 record_value_for_reg (i0dest
, i0_insn
, i0_val
);
4735 && ! i0dest_in_i0src
4736 && REGNO (i0dest
) < reg_n_sets_max
)
4737 INC_REG_N_SETS (REGNO (i0dest
), -1);
4740 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4741 been made to this insn. The order is important, because newi2pat
4742 can affect nonzero_bits of newpat. */
4744 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
4745 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
4748 if (undobuf
.other_insn
!= NULL_RTX
)
4752 fprintf (dump_file
, "modifying other_insn ");
4753 dump_insn_slim (dump_file
, undobuf
.other_insn
);
4755 df_insn_rescan (undobuf
.other_insn
);
4758 if (i0
&& !(NOTE_P (i0
) && (NOTE_KIND (i0
) == NOTE_INSN_DELETED
)))
4762 fprintf (dump_file
, "modifying insn i0 ");
4763 dump_insn_slim (dump_file
, i0
);
4765 df_insn_rescan (i0
);
4768 if (i1
&& !(NOTE_P (i1
) && (NOTE_KIND (i1
) == NOTE_INSN_DELETED
)))
4772 fprintf (dump_file
, "modifying insn i1 ");
4773 dump_insn_slim (dump_file
, i1
);
4775 df_insn_rescan (i1
);
4778 if (i2
&& !(NOTE_P (i2
) && (NOTE_KIND (i2
) == NOTE_INSN_DELETED
)))
4782 fprintf (dump_file
, "modifying insn i2 ");
4783 dump_insn_slim (dump_file
, i2
);
4785 df_insn_rescan (i2
);
4788 if (i3
&& !(NOTE_P (i3
) && (NOTE_KIND (i3
) == NOTE_INSN_DELETED
)))
4792 fprintf (dump_file
, "modifying insn i3 ");
4793 dump_insn_slim (dump_file
, i3
);
4795 df_insn_rescan (i3
);
4798 /* Set new_direct_jump_p if a new return or simple jump instruction
4799 has been created. Adjust the CFG accordingly. */
4800 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
4802 *new_direct_jump_p
= 1;
4803 mark_jump_label (PATTERN (i3
), i3
, 0);
4804 update_cfg_for_uncondjump (i3
);
4807 if (undobuf
.other_insn
!= NULL_RTX
4808 && (returnjump_p (undobuf
.other_insn
)
4809 || any_uncondjump_p (undobuf
.other_insn
)))
4811 *new_direct_jump_p
= 1;
4812 update_cfg_for_uncondjump (undobuf
.other_insn
);
4815 if (GET_CODE (PATTERN (i3
)) == TRAP_IF
4816 && XEXP (PATTERN (i3
), 0) == const1_rtx
)
4818 basic_block bb
= BLOCK_FOR_INSN (i3
);
4820 remove_edge (split_block (bb
, i3
));
4821 emit_barrier_after_bb (bb
);
4822 *new_direct_jump_p
= 1;
4825 if (undobuf
.other_insn
4826 && GET_CODE (PATTERN (undobuf
.other_insn
)) == TRAP_IF
4827 && XEXP (PATTERN (undobuf
.other_insn
), 0) == const1_rtx
)
4829 basic_block bb
= BLOCK_FOR_INSN (undobuf
.other_insn
);
4831 remove_edge (split_block (bb
, undobuf
.other_insn
));
4832 emit_barrier_after_bb (bb
);
4833 *new_direct_jump_p
= 1;
4836 /* A noop might also need cleaning up of CFG, if it comes from the
4837 simplification of a jump. */
4839 && GET_CODE (newpat
) == SET
4840 && SET_SRC (newpat
) == pc_rtx
4841 && SET_DEST (newpat
) == pc_rtx
)
4843 *new_direct_jump_p
= 1;
4844 update_cfg_for_uncondjump (i3
);
4847 if (undobuf
.other_insn
!= NULL_RTX
4848 && JUMP_P (undobuf
.other_insn
)
4849 && GET_CODE (PATTERN (undobuf
.other_insn
)) == SET
4850 && SET_SRC (PATTERN (undobuf
.other_insn
)) == pc_rtx
4851 && SET_DEST (PATTERN (undobuf
.other_insn
)) == pc_rtx
)
4853 *new_direct_jump_p
= 1;
4854 update_cfg_for_uncondjump (undobuf
.other_insn
);
4857 combine_successes
++;
4860 rtx_insn
*ret
= newi2pat
? i2
: i3
;
4861 if (added_links_insn
&& DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (ret
))
4862 ret
= added_links_insn
;
4863 if (added_notes_insn
&& DF_INSN_LUID (added_notes_insn
) < DF_INSN_LUID (ret
))
4864 ret
= added_notes_insn
;
4869 /* Get a marker for undoing to the current state. */
4872 get_undo_marker (void)
4874 return undobuf
.undos
;
4877 /* Undo the modifications up to the marker. */
4880 undo_to_marker (void *marker
)
4882 struct undo
*undo
, *next
;
4884 for (undo
= undobuf
.undos
; undo
!= marker
; undo
= next
)
4892 *undo
->where
.r
= undo
->old_contents
.r
;
4895 *undo
->where
.i
= undo
->old_contents
.i
;
4898 adjust_reg_mode (*undo
->where
.r
, undo
->old_contents
.m
);
4901 *undo
->where
.l
= undo
->old_contents
.l
;
4907 undo
->next
= undobuf
.frees
;
4908 undobuf
.frees
= undo
;
4911 undobuf
.undos
= (struct undo
*) marker
;
4914 /* Undo all the modifications recorded in undobuf. */
4922 /* We've committed to accepting the changes we made. Move all
4923 of the undos to the free list. */
4928 struct undo
*undo
, *next
;
4930 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4933 undo
->next
= undobuf
.frees
;
4934 undobuf
.frees
= undo
;
4939 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4940 where we have an arithmetic expression and return that point. LOC will
4943 try_combine will call this function to see if an insn can be split into
4947 find_split_point (rtx
*loc
, rtx_insn
*insn
, bool set_src
)
4950 enum rtx_code code
= GET_CODE (x
);
4952 unsigned HOST_WIDE_INT len
= 0;
4953 HOST_WIDE_INT pos
= 0;
4955 rtx inner
= NULL_RTX
;
4956 scalar_int_mode mode
, inner_mode
;
4958 /* First special-case some codes. */
4962 #ifdef INSN_SCHEDULING
4963 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4965 if (MEM_P (SUBREG_REG (x
)))
4968 return find_split_point (&SUBREG_REG (x
), insn
, false);
4971 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4972 using LO_SUM and HIGH. */
4973 if (HAVE_lo_sum
&& (GET_CODE (XEXP (x
, 0)) == CONST
4974 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
))
4976 machine_mode address_mode
= get_address_mode (x
);
4979 gen_rtx_LO_SUM (address_mode
,
4980 gen_rtx_HIGH (address_mode
, XEXP (x
, 0)),
4982 return &XEXP (XEXP (x
, 0), 0);
4985 /* If we have a PLUS whose second operand is a constant and the
4986 address is not valid, perhaps we can split it up using
4987 the machine-specific way to split large constants. We use
4988 the first pseudo-reg (one of the virtual regs) as a placeholder;
4989 it will not remain in the result. */
4990 if (GET_CODE (XEXP (x
, 0)) == PLUS
4991 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
4992 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4993 MEM_ADDR_SPACE (x
)))
4995 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
4996 rtx_insn
*seq
= combine_split_insns (gen_rtx_SET (reg
, XEXP (x
, 0)),
4999 /* This should have produced two insns, each of which sets our
5000 placeholder. If the source of the second is a valid address,
5001 we can put both sources together and make a split point
5005 && NEXT_INSN (seq
) != NULL_RTX
5006 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
5007 && NONJUMP_INSN_P (seq
)
5008 && GET_CODE (PATTERN (seq
)) == SET
5009 && SET_DEST (PATTERN (seq
)) == reg
5010 && ! reg_mentioned_p (reg
,
5011 SET_SRC (PATTERN (seq
)))
5012 && NONJUMP_INSN_P (NEXT_INSN (seq
))
5013 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
5014 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
5015 && memory_address_addr_space_p
5016 (GET_MODE (x
), SET_SRC (PATTERN (NEXT_INSN (seq
))),
5017 MEM_ADDR_SPACE (x
)))
5019 rtx src1
= SET_SRC (PATTERN (seq
));
5020 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
5022 /* Replace the placeholder in SRC2 with SRC1. If we can
5023 find where in SRC2 it was placed, that can become our
5024 split point and we can replace this address with SRC2.
5025 Just try two obvious places. */
5027 src2
= replace_rtx (src2
, reg
, src1
);
5029 if (XEXP (src2
, 0) == src1
)
5030 split
= &XEXP (src2
, 0);
5031 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
5032 && XEXP (XEXP (src2
, 0), 0) == src1
)
5033 split
= &XEXP (XEXP (src2
, 0), 0);
5037 SUBST (XEXP (x
, 0), src2
);
5042 /* If that didn't work and we have a nested plus, like:
5043 ((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
5044 is valid address, try to split (REG1 * CONST1). */
5045 if (GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
5046 && !OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 0))
5047 && OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5048 && ! (GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)) == SUBREG
5049 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x
, 0),
5052 rtx tem
= XEXP (XEXP (XEXP (x
, 0), 0), 0);
5053 XEXP (XEXP (XEXP (x
, 0), 0), 0) = reg
;
5054 if (memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
5055 MEM_ADDR_SPACE (x
)))
5057 XEXP (XEXP (XEXP (x
, 0), 0), 0) = tem
;
5058 return &XEXP (XEXP (XEXP (x
, 0), 0), 0);
5060 XEXP (XEXP (XEXP (x
, 0), 0), 0) = tem
;
5062 else if (GET_CODE (XEXP (XEXP (x
, 0), 0)) == PLUS
5063 && OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 0))
5064 && !OBJECT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5065 && ! (GET_CODE (XEXP (XEXP (XEXP (x
, 0), 0), 1)) == SUBREG
5066 && OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x
, 0),
5069 rtx tem
= XEXP (XEXP (XEXP (x
, 0), 0), 1);
5070 XEXP (XEXP (XEXP (x
, 0), 0), 1) = reg
;
5071 if (memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
5072 MEM_ADDR_SPACE (x
)))
5074 XEXP (XEXP (XEXP (x
, 0), 0), 1) = tem
;
5075 return &XEXP (XEXP (XEXP (x
, 0), 0), 1);
5077 XEXP (XEXP (XEXP (x
, 0), 0), 1) = tem
;
5080 /* If that didn't work, perhaps the first operand is complex and
5081 needs to be computed separately, so make a split point there.
5082 This will occur on machines that just support REG + CONST
5083 and have a constant moved through some previous computation. */
5084 if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
5085 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
5086 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
5087 return &XEXP (XEXP (x
, 0), 0);
5090 /* If we have a PLUS whose first operand is complex, try computing it
5091 separately by making a split there. */
5092 if (GET_CODE (XEXP (x
, 0)) == PLUS
5093 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
5095 && ! OBJECT_P (XEXP (XEXP (x
, 0), 0))
5096 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
5097 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
5098 return &XEXP (XEXP (x
, 0), 0);
5102 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
5103 ZERO_EXTRACT, the most likely reason why this doesn't match is that
5104 we need to put the operand into a register. So split at that
5107 if (SET_DEST (x
) == cc0_rtx
5108 && GET_CODE (SET_SRC (x
)) != COMPARE
5109 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
5110 && !OBJECT_P (SET_SRC (x
))
5111 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
5112 && OBJECT_P (SUBREG_REG (SET_SRC (x
)))))
5113 return &SET_SRC (x
);
5115 /* See if we can split SET_SRC as it stands. */
5116 split
= find_split_point (&SET_SRC (x
), insn
, true);
5117 if (split
&& split
!= &SET_SRC (x
))
5120 /* See if we can split SET_DEST as it stands. */
5121 split
= find_split_point (&SET_DEST (x
), insn
, false);
5122 if (split
&& split
!= &SET_DEST (x
))
5125 /* See if this is a bitfield assignment with everything constant. If
5126 so, this is an IOR of an AND, so split it into that. */
5127 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
5128 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (SET_DEST (x
), 0)),
5130 && HWI_COMPUTABLE_MODE_P (inner_mode
)
5131 && CONST_INT_P (XEXP (SET_DEST (x
), 1))
5132 && CONST_INT_P (XEXP (SET_DEST (x
), 2))
5133 && CONST_INT_P (SET_SRC (x
))
5134 && ((INTVAL (XEXP (SET_DEST (x
), 1))
5135 + INTVAL (XEXP (SET_DEST (x
), 2)))
5136 <= GET_MODE_PRECISION (inner_mode
))
5137 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
5139 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
5140 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
5141 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
5142 rtx dest
= XEXP (SET_DEST (x
), 0);
5143 unsigned HOST_WIDE_INT mask
5144 = (HOST_WIDE_INT_1U
<< len
) - 1;
5147 if (BITS_BIG_ENDIAN
)
5148 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
5150 or_mask
= gen_int_mode (src
<< pos
, inner_mode
);
5153 simplify_gen_binary (IOR
, inner_mode
, dest
, or_mask
));
5156 rtx negmask
= gen_int_mode (~(mask
<< pos
), inner_mode
);
5158 simplify_gen_binary (IOR
, inner_mode
,
5159 simplify_gen_binary (AND
, inner_mode
,
5164 SUBST (SET_DEST (x
), dest
);
5166 split
= find_split_point (&SET_SRC (x
), insn
, true);
5167 if (split
&& split
!= &SET_SRC (x
))
5171 /* Otherwise, see if this is an operation that we can split into two.
5172 If so, try to split that. */
5173 code
= GET_CODE (SET_SRC (x
));
5178 /* If we are AND'ing with a large constant that is only a single
5179 bit and the result is only being used in a context where we
5180 need to know if it is zero or nonzero, replace it with a bit
5181 extraction. This will avoid the large constant, which might
5182 have taken more than one insn to make. If the constant were
5183 not a valid argument to the AND but took only one insn to make,
5184 this is no worse, but if it took more than one insn, it will
5187 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
5188 && REG_P (XEXP (SET_SRC (x
), 0))
5189 && (pos
= exact_log2 (UINTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
5190 && REG_P (SET_DEST (x
))
5191 && (split
= find_single_use (SET_DEST (x
), insn
, NULL
)) != 0
5192 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
5193 && XEXP (*split
, 0) == SET_DEST (x
)
5194 && XEXP (*split
, 1) == const0_rtx
)
5196 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
5197 XEXP (SET_SRC (x
), 0),
5198 pos
, NULL_RTX
, 1, 1, 0, 0);
5199 if (extraction
!= 0)
5201 SUBST (SET_SRC (x
), extraction
);
5202 return find_split_point (loc
, insn
, false);
5208 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5209 is known to be on, this can be converted into a NEG of a shift. */
5210 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
5211 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
5212 && ((pos
= exact_log2 (nonzero_bits (XEXP (SET_SRC (x
), 0),
5213 GET_MODE (XEXP (SET_SRC (x
),
5216 machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
5217 rtx pos_rtx
= gen_int_shift_amount (mode
, pos
);
5220 gen_rtx_LSHIFTRT (mode
,
5221 XEXP (SET_SRC (x
), 0),
5224 split
= find_split_point (&SET_SRC (x
), insn
, true);
5225 if (split
&& split
!= &SET_SRC (x
))
5231 inner
= XEXP (SET_SRC (x
), 0);
5233 /* We can't optimize if either mode is a partial integer
5234 mode as we don't know how many bits are significant
5236 if (!is_int_mode (GET_MODE (inner
), &inner_mode
)
5237 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
5241 len
= GET_MODE_PRECISION (inner_mode
);
5247 if (is_a
<scalar_int_mode
> (GET_MODE (XEXP (SET_SRC (x
), 0)),
5249 && CONST_INT_P (XEXP (SET_SRC (x
), 1))
5250 && CONST_INT_P (XEXP (SET_SRC (x
), 2)))
5252 inner
= XEXP (SET_SRC (x
), 0);
5253 len
= INTVAL (XEXP (SET_SRC (x
), 1));
5254 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
5256 if (BITS_BIG_ENDIAN
)
5257 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
5258 unsignedp
= (code
== ZERO_EXTRACT
);
5267 && known_subrange_p (pos
, len
,
5268 0, GET_MODE_PRECISION (GET_MODE (inner
)))
5269 && is_a
<scalar_int_mode
> (GET_MODE (SET_SRC (x
)), &mode
))
5271 /* For unsigned, we have a choice of a shift followed by an
5272 AND or two shifts. Use two shifts for field sizes where the
5273 constant might be too large. We assume here that we can
5274 always at least get 8-bit constants in an AND insn, which is
5275 true for every current RISC. */
5277 if (unsignedp
&& len
<= 8)
5279 unsigned HOST_WIDE_INT mask
5280 = (HOST_WIDE_INT_1U
<< len
) - 1;
5281 rtx pos_rtx
= gen_int_shift_amount (mode
, pos
);
5285 (mode
, gen_lowpart (mode
, inner
), pos_rtx
),
5286 gen_int_mode (mask
, mode
)));
5288 split
= find_split_point (&SET_SRC (x
), insn
, true);
5289 if (split
&& split
!= &SET_SRC (x
))
5294 int left_bits
= GET_MODE_PRECISION (mode
) - len
- pos
;
5295 int right_bits
= GET_MODE_PRECISION (mode
) - len
;
5298 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
5299 gen_rtx_ASHIFT (mode
,
5300 gen_lowpart (mode
, inner
),
5301 gen_int_shift_amount (mode
, left_bits
)),
5302 gen_int_shift_amount (mode
, right_bits
)));
5304 split
= find_split_point (&SET_SRC (x
), insn
, true);
5305 if (split
&& split
!= &SET_SRC (x
))
5310 /* See if this is a simple operation with a constant as the second
5311 operand. It might be that this constant is out of range and hence
5312 could be used as a split point. */
5313 if (BINARY_P (SET_SRC (x
))
5314 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
5315 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
5316 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
5317 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
5318 return &XEXP (SET_SRC (x
), 1);
5320 /* Finally, see if this is a simple operation with its first operand
5321 not in a register. The operation might require this operand in a
5322 register, so return it as a split point. We can always do this
5323 because if the first operand were another operation, we would have
5324 already found it as a split point. */
5325 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
5326 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
5327 return &XEXP (SET_SRC (x
), 0);
5333 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5334 it is better to write this as (not (ior A B)) so we can split it.
5335 Similarly for IOR. */
5336 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
5339 gen_rtx_NOT (GET_MODE (x
),
5340 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
5342 XEXP (XEXP (x
, 0), 0),
5343 XEXP (XEXP (x
, 1), 0))));
5344 return find_split_point (loc
, insn
, set_src
);
5347 /* Many RISC machines have a large set of logical insns. If the
5348 second operand is a NOT, put it first so we will try to split the
5349 other operand first. */
5350 if (GET_CODE (XEXP (x
, 1)) == NOT
)
5352 rtx tem
= XEXP (x
, 0);
5353 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5354 SUBST (XEXP (x
, 1), tem
);
5360 /* Canonicalization can produce (minus A (mult B C)), where C is a
5361 constant. It may be better to try splitting (plus (mult B -C) A)
5362 instead if this isn't a multiply by a power of two. */
5363 if (set_src
&& code
== MINUS
&& GET_CODE (XEXP (x
, 1)) == MULT
5364 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
5365 && !pow2p_hwi (INTVAL (XEXP (XEXP (x
, 1), 1))))
5367 machine_mode mode
= GET_MODE (x
);
5368 unsigned HOST_WIDE_INT this_int
= INTVAL (XEXP (XEXP (x
, 1), 1));
5369 HOST_WIDE_INT other_int
= trunc_int_for_mode (-this_int
, mode
);
5370 SUBST (*loc
, gen_rtx_PLUS (mode
,
5372 XEXP (XEXP (x
, 1), 0),
5373 gen_int_mode (other_int
,
5376 return find_split_point (loc
, insn
, set_src
);
5379 /* Split at a multiply-accumulate instruction. However if this is
5380 the SET_SRC, we likely do not have such an instruction and it's
5381 worthless to try this split. */
5383 && (GET_CODE (XEXP (x
, 0)) == MULT
5384 || (GET_CODE (XEXP (x
, 0)) == ASHIFT
5385 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == CONST_INT
)))
5392 /* Otherwise, select our actions depending on our rtx class. */
5393 switch (GET_RTX_CLASS (code
))
5395 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5397 split
= find_split_point (&XEXP (x
, 2), insn
, false);
5402 case RTX_COMM_ARITH
:
5404 case RTX_COMM_COMPARE
:
5405 split
= find_split_point (&XEXP (x
, 1), insn
, false);
5410 /* Some machines have (and (shift ...) ...) insns. If X is not
5411 an AND, but XEXP (X, 0) is, use it as our split point. */
5412 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
5413 return &XEXP (x
, 0);
5415 split
= find_split_point (&XEXP (x
, 0), insn
, false);
5421 /* Otherwise, we don't have a split point. */
5426 /* Throughout X, replace FROM with TO, and return the result.
5427 The result is TO if X is FROM;
5428 otherwise the result is X, but its contents may have been modified.
5429 If they were modified, a record was made in undobuf so that
5430 undo_all will (among other things) return X to its original state.
5432 If the number of changes necessary is too much to record to undo,
5433 the excess changes are not made, so the result is invalid.
5434 The changes already made can still be undone.
5435 undobuf.num_undo is incremented for such changes, so by testing that
5436 the caller can tell whether the result is valid.
5438 `n_occurrences' is incremented each time FROM is replaced.
5440 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5442 IN_COND is nonzero if we are at the top level of a condition.
5444 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5445 by copying if `n_occurrences' is nonzero. */
5448 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int in_cond
, int unique_copy
)
5450 enum rtx_code code
= GET_CODE (x
);
5451 machine_mode op0_mode
= VOIDmode
;
5456 /* Two expressions are equal if they are identical copies of a shared
5457 RTX or if they are both registers with the same register number
5460 #define COMBINE_RTX_EQUAL_P(X,Y) \
5462 || (REG_P (X) && REG_P (Y) \
5463 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5465 /* Do not substitute into clobbers of regs -- this will never result in
5467 if (GET_CODE (x
) == CLOBBER
&& REG_P (XEXP (x
, 0)))
5470 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
5473 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
5476 /* If X and FROM are the same register but different modes, they
5477 will not have been seen as equal above. However, the log links code
5478 will make a LOG_LINKS entry for that case. If we do nothing, we
5479 will try to rerecognize our original insn and, when it succeeds,
5480 we will delete the feeding insn, which is incorrect.
5482 So force this insn not to match in this (rare) case. */
5483 if (! in_dest
&& code
== REG
&& REG_P (from
)
5484 && reg_overlap_mentioned_p (x
, from
))
5485 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
5487 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5488 of which may contain things that can be combined. */
5489 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
5492 /* It is possible to have a subexpression appear twice in the insn.
5493 Suppose that FROM is a register that appears within TO.
5494 Then, after that subexpression has been scanned once by `subst',
5495 the second time it is scanned, TO may be found. If we were
5496 to scan TO here, we would find FROM within it and create a
5497 self-referent rtl structure which is completely wrong. */
5498 if (COMBINE_RTX_EQUAL_P (x
, to
))
5501 /* Parallel asm_operands need special attention because all of the
5502 inputs are shared across the arms. Furthermore, unsharing the
5503 rtl results in recognition failures. Failure to handle this case
5504 specially can result in circular rtl.
5506 Solve this by doing a normal pass across the first entry of the
5507 parallel, and only processing the SET_DESTs of the subsequent
5510 if (code
== PARALLEL
5511 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
5512 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
5514 new_rtx
= subst (XVECEXP (x
, 0, 0), from
, to
, 0, 0, unique_copy
);
5516 /* If this substitution failed, this whole thing fails. */
5517 if (GET_CODE (new_rtx
) == CLOBBER
5518 && XEXP (new_rtx
, 0) == const0_rtx
)
5521 SUBST (XVECEXP (x
, 0, 0), new_rtx
);
5523 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
5525 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
5528 && GET_CODE (dest
) != CC0
5529 && GET_CODE (dest
) != PC
)
5531 new_rtx
= subst (dest
, from
, to
, 0, 0, unique_copy
);
5533 /* If this substitution failed, this whole thing fails. */
5534 if (GET_CODE (new_rtx
) == CLOBBER
5535 && XEXP (new_rtx
, 0) == const0_rtx
)
5538 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new_rtx
);
5544 len
= GET_RTX_LENGTH (code
);
5545 fmt
= GET_RTX_FORMAT (code
);
5547 /* We don't need to process a SET_DEST that is a register, CC0,
5548 or PC, so set up to skip this common case. All other cases
5549 where we want to suppress replacing something inside a
5550 SET_SRC are handled via the IN_DEST operand. */
5552 && (REG_P (SET_DEST (x
))
5553 || GET_CODE (SET_DEST (x
)) == CC0
5554 || GET_CODE (SET_DEST (x
)) == PC
))
5557 /* Trying to simplify the operands of a widening MULT is not likely
5558 to create RTL matching a machine insn. */
5560 && (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
5561 || GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
5562 && (GET_CODE (XEXP (x
, 1)) == ZERO_EXTEND
5563 || GET_CODE (XEXP (x
, 1)) == SIGN_EXTEND
)
5564 && REG_P (XEXP (XEXP (x
, 0), 0))
5565 && REG_P (XEXP (XEXP (x
, 1), 0))
5570 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5573 op0_mode
= GET_MODE (XEXP (x
, 0));
5575 for (i
= 0; i
< len
; i
++)
5580 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5582 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
5584 new_rtx
= (unique_copy
&& n_occurrences
5585 ? copy_rtx (to
) : to
);
5590 new_rtx
= subst (XVECEXP (x
, i
, j
), from
, to
, 0, 0,
5593 /* If this substitution failed, this whole thing
5595 if (GET_CODE (new_rtx
) == CLOBBER
5596 && XEXP (new_rtx
, 0) == const0_rtx
)
5600 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
5603 else if (fmt
[i
] == 'e')
5605 /* If this is a register being set, ignore it. */
5606 new_rtx
= XEXP (x
, i
);
5609 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
5611 || code
== STRICT_LOW_PART
))
5614 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
5616 /* In general, don't install a subreg involving two
5617 modes not tieable. It can worsen register
5618 allocation, and can even make invalid reload
5619 insns, since the reg inside may need to be copied
5620 from in the outside mode, and that may be invalid
5621 if it is an fp reg copied in integer mode.
5623 We allow two exceptions to this: It is valid if
5624 it is inside another SUBREG and the mode of that
5625 SUBREG and the mode of the inside of TO is
5626 tieable and it is valid if X is a SET that copies
5629 if (GET_CODE (to
) == SUBREG
5630 && !targetm
.modes_tieable_p (GET_MODE (to
),
5631 GET_MODE (SUBREG_REG (to
)))
5632 && ! (code
== SUBREG
5633 && (targetm
.modes_tieable_p
5634 (GET_MODE (x
), GET_MODE (SUBREG_REG (to
)))))
5638 && XEXP (x
, 0) == cc0_rtx
))))
5639 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5643 && REGNO (to
) < FIRST_PSEUDO_REGISTER
5644 && simplify_subreg_regno (REGNO (to
), GET_MODE (to
),
5647 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5649 new_rtx
= (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
5653 /* If we are in a SET_DEST, suppress most cases unless we
5654 have gone inside a MEM, in which case we want to
5655 simplify the address. We assume here that things that
5656 are actually part of the destination have their inner
5657 parts in the first expression. This is true for SUBREG,
5658 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5659 things aside from REG and MEM that should appear in a
5661 new_rtx
= subst (XEXP (x
, i
), from
, to
,
5663 && (code
== SUBREG
|| code
== STRICT_LOW_PART
5664 || code
== ZERO_EXTRACT
))
5667 code
== IF_THEN_ELSE
&& i
== 0,
5670 /* If we found that we will have to reject this combination,
5671 indicate that by returning the CLOBBER ourselves, rather than
5672 an expression containing it. This will speed things up as
5673 well as prevent accidents where two CLOBBERs are considered
5674 to be equal, thus producing an incorrect simplification. */
5676 if (GET_CODE (new_rtx
) == CLOBBER
&& XEXP (new_rtx
, 0) == const0_rtx
)
5679 if (GET_CODE (x
) == SUBREG
&& CONST_SCALAR_INT_P (new_rtx
))
5681 machine_mode mode
= GET_MODE (x
);
5683 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
5684 GET_MODE (SUBREG_REG (x
)),
5687 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
5689 else if (CONST_SCALAR_INT_P (new_rtx
)
5690 && (GET_CODE (x
) == ZERO_EXTEND
5691 || GET_CODE (x
) == FLOAT
5692 || GET_CODE (x
) == UNSIGNED_FLOAT
))
5694 x
= simplify_unary_operation (GET_CODE (x
), GET_MODE (x
),
5696 GET_MODE (XEXP (x
, 0)));
5698 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5701 SUBST (XEXP (x
, i
), new_rtx
);
5706 /* Check if we are loading something from the constant pool via float
5707 extension; in this case we would undo compress_float_constant
5708 optimization and degenerate constant load to an immediate value. */
5709 if (GET_CODE (x
) == FLOAT_EXTEND
5710 && MEM_P (XEXP (x
, 0))
5711 && MEM_READONLY_P (XEXP (x
, 0)))
5713 rtx tmp
= avoid_constant_pool_reference (x
);
5718 /* Try to simplify X. If the simplification changed the code, it is likely
5719 that further simplification will help, so loop, but limit the number
5720 of repetitions that will be performed. */
5722 for (i
= 0; i
< 4; i
++)
5724 /* If X is sufficiently simple, don't bother trying to do anything
5726 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
5727 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
, in_cond
);
5729 if (GET_CODE (x
) == code
)
5732 code
= GET_CODE (x
);
5734 /* We no longer know the original mode of operand 0 since we
5735 have changed the form of X) */
5736 op0_mode
= VOIDmode
;
5742 /* If X is a commutative operation whose operands are not in the canonical
5743 order, use substitutions to swap them. */
5746 maybe_swap_commutative_operands (rtx x
)
5748 if (COMMUTATIVE_ARITH_P (x
)
5749 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
5751 rtx temp
= XEXP (x
, 0);
5752 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5753 SUBST (XEXP (x
, 1), temp
);
5757 /* Simplify X, a piece of RTL. We just operate on the expression at the
5758 outer level; call `subst' to simplify recursively. Return the new
5761 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5762 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5766 combine_simplify_rtx (rtx x
, machine_mode op0_mode
, int in_dest
,
5769 enum rtx_code code
= GET_CODE (x
);
5770 machine_mode mode
= GET_MODE (x
);
5771 scalar_int_mode int_mode
;
5775 /* If this is a commutative operation, put a constant last and a complex
5776 expression first. We don't need to do this for comparisons here. */
5777 maybe_swap_commutative_operands (x
);
5779 /* Try to fold this expression in case we have constants that weren't
5782 switch (GET_RTX_CLASS (code
))
5785 if (op0_mode
== VOIDmode
)
5786 op0_mode
= GET_MODE (XEXP (x
, 0));
5787 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
5790 case RTX_COMM_COMPARE
:
5792 machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
5793 if (cmp_mode
== VOIDmode
)
5795 cmp_mode
= GET_MODE (XEXP (x
, 1));
5796 if (cmp_mode
== VOIDmode
)
5797 cmp_mode
= op0_mode
;
5799 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
5800 XEXP (x
, 0), XEXP (x
, 1));
5803 case RTX_COMM_ARITH
:
5805 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5807 case RTX_BITFIELD_OPS
:
5809 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
5810 XEXP (x
, 1), XEXP (x
, 2));
5819 code
= GET_CODE (temp
);
5820 op0_mode
= VOIDmode
;
5821 mode
= GET_MODE (temp
);
5824 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5825 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5826 things. Check for cases where both arms are testing the same
5829 Don't do anything if all operands are very simple. */
5832 && ((!OBJECT_P (XEXP (x
, 0))
5833 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5834 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
5835 || (!OBJECT_P (XEXP (x
, 1))
5836 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
5837 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
5839 && (!OBJECT_P (XEXP (x
, 0))
5840 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5841 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
5843 rtx cond
, true_rtx
, false_rtx
;
5845 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
5847 /* If everything is a comparison, what we have is highly unlikely
5848 to be simpler, so don't use it. */
5849 && ! (COMPARISON_P (x
)
5850 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
)))
5851 /* Similarly, if we end up with one of the expressions the same
5852 as the original, it is certainly not simpler. */
5853 && ! rtx_equal_p (x
, true_rtx
)
5854 && ! rtx_equal_p (x
, false_rtx
))
5856 rtx cop1
= const0_rtx
;
5857 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
5859 if (cond_code
== NE
&& COMPARISON_P (cond
))
5862 /* Simplify the alternative arms; this may collapse the true and
5863 false arms to store-flag values. Be careful to use copy_rtx
5864 here since true_rtx or false_rtx might share RTL with x as a
5865 result of the if_then_else_cond call above. */
5866 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5867 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5869 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5870 is unlikely to be simpler. */
5871 if (general_operand (true_rtx
, VOIDmode
)
5872 && general_operand (false_rtx
, VOIDmode
))
5874 enum rtx_code reversed
;
5876 /* Restarting if we generate a store-flag expression will cause
5877 us to loop. Just drop through in this case. */
5879 /* If the result values are STORE_FLAG_VALUE and zero, we can
5880 just make the comparison operation. */
5881 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5882 x
= simplify_gen_relational (cond_code
, mode
, VOIDmode
,
5884 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5885 && ((reversed
= reversed_comparison_code_parts
5886 (cond_code
, cond
, cop1
, NULL
))
5888 x
= simplify_gen_relational (reversed
, mode
, VOIDmode
,
5891 /* Likewise, we can make the negate of a comparison operation
5892 if the result values are - STORE_FLAG_VALUE and zero. */
5893 else if (CONST_INT_P (true_rtx
)
5894 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
5895 && false_rtx
== const0_rtx
)
5896 x
= simplify_gen_unary (NEG
, mode
,
5897 simplify_gen_relational (cond_code
,
5901 else if (CONST_INT_P (false_rtx
)
5902 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
5903 && true_rtx
== const0_rtx
5904 && ((reversed
= reversed_comparison_code_parts
5905 (cond_code
, cond
, cop1
, NULL
))
5907 x
= simplify_gen_unary (NEG
, mode
,
5908 simplify_gen_relational (reversed
,
5913 code
= GET_CODE (x
);
5914 op0_mode
= VOIDmode
;
5919 /* First see if we can apply the inverse distributive law. */
5920 if (code
== PLUS
|| code
== MINUS
5921 || code
== AND
|| code
== IOR
|| code
== XOR
)
5923 x
= apply_distributive_law (x
);
5924 code
= GET_CODE (x
);
5925 op0_mode
= VOIDmode
;
5928 /* If CODE is an associative operation not otherwise handled, see if we
5929 can associate some operands. This can win if they are constants or
5930 if they are logically related (i.e. (a & b) & a). */
5931 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
5932 || code
== AND
|| code
== IOR
|| code
== XOR
5933 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
5934 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
5935 || (flag_associative_math
&& FLOAT_MODE_P (mode
))))
5937 if (GET_CODE (XEXP (x
, 0)) == code
)
5939 rtx other
= XEXP (XEXP (x
, 0), 0);
5940 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
5941 rtx inner_op1
= XEXP (x
, 1);
5944 /* Make sure we pass the constant operand if any as the second
5945 one if this is a commutative operation. */
5946 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
5947 std::swap (inner_op0
, inner_op1
);
5948 inner
= simplify_binary_operation (code
== MINUS
? PLUS
5949 : code
== DIV
? MULT
5951 mode
, inner_op0
, inner_op1
);
5953 /* For commutative operations, try the other pair if that one
5955 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
5957 other
= XEXP (XEXP (x
, 0), 1);
5958 inner
= simplify_binary_operation (code
, mode
,
5959 XEXP (XEXP (x
, 0), 0),
5964 return simplify_gen_binary (code
, mode
, other
, inner
);
5968 /* A little bit of algebraic simplification here. */
5972 /* Ensure that our address has any ASHIFTs converted to MULT in case
5973 address-recognizing predicates are called later. */
5974 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
5975 SUBST (XEXP (x
, 0), temp
);
5979 if (op0_mode
== VOIDmode
)
5980 op0_mode
= GET_MODE (SUBREG_REG (x
));
5982 /* See if this can be moved to simplify_subreg. */
5983 if (CONSTANT_P (SUBREG_REG (x
))
5984 && known_eq (subreg_lowpart_offset (mode
, op0_mode
), SUBREG_BYTE (x
))
5985 /* Don't call gen_lowpart if the inner mode
5986 is VOIDmode and we cannot simplify it, as SUBREG without
5987 inner mode is invalid. */
5988 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
5989 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
5990 return gen_lowpart (mode
, SUBREG_REG (x
));
5992 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
5996 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
6001 /* If op is known to have all lower bits zero, the result is zero. */
6002 scalar_int_mode int_mode
, int_op0_mode
;
6004 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6005 && is_a
<scalar_int_mode
> (op0_mode
, &int_op0_mode
)
6006 && (GET_MODE_PRECISION (int_mode
)
6007 < GET_MODE_PRECISION (int_op0_mode
))
6008 && known_eq (subreg_lowpart_offset (int_mode
, int_op0_mode
),
6010 && HWI_COMPUTABLE_MODE_P (int_op0_mode
)
6011 && ((nonzero_bits (SUBREG_REG (x
), int_op0_mode
)
6012 & GET_MODE_MASK (int_mode
)) == 0)
6013 && !side_effects_p (SUBREG_REG (x
)))
6014 return CONST0_RTX (int_mode
);
6017 /* Don't change the mode of the MEM if that would change the meaning
6019 if (MEM_P (SUBREG_REG (x
))
6020 && (MEM_VOLATILE_P (SUBREG_REG (x
))
6021 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0),
6022 MEM_ADDR_SPACE (SUBREG_REG (x
)))))
6023 return gen_rtx_CLOBBER (mode
, const0_rtx
);
6025 /* Note that we cannot do any narrowing for non-constants since
6026 we might have been counting on using the fact that some bits were
6027 zero. We now do this in the SET. */
6032 temp
= expand_compound_operation (XEXP (x
, 0));
6034 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
6035 replaced by (lshiftrt X C). This will convert
6036 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
6038 if (GET_CODE (temp
) == ASHIFTRT
6039 && CONST_INT_P (XEXP (temp
, 1))
6040 && INTVAL (XEXP (temp
, 1)) == GET_MODE_UNIT_PRECISION (mode
) - 1)
6041 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (temp
, 0),
6042 INTVAL (XEXP (temp
, 1)));
6044 /* If X has only a single bit that might be nonzero, say, bit I, convert
6045 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
6046 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
6047 (sign_extract X 1 Y). But only do this if TEMP isn't a register
6048 or a SUBREG of one since we'd be making the expression more
6049 complex if it was just a register. */
6052 && ! (GET_CODE (temp
) == SUBREG
6053 && REG_P (SUBREG_REG (temp
)))
6054 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6055 && (i
= exact_log2 (nonzero_bits (temp
, int_mode
))) >= 0)
6057 rtx temp1
= simplify_shift_const
6058 (NULL_RTX
, ASHIFTRT
, int_mode
,
6059 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
, temp
,
6060 GET_MODE_PRECISION (int_mode
) - 1 - i
),
6061 GET_MODE_PRECISION (int_mode
) - 1 - i
);
6063 /* If all we did was surround TEMP with the two shifts, we
6064 haven't improved anything, so don't use it. Otherwise,
6065 we are better off with TEMP1. */
6066 if (GET_CODE (temp1
) != ASHIFTRT
6067 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
6068 || XEXP (XEXP (temp1
, 0), 0) != temp
)
6074 /* We can't handle truncation to a partial integer mode here
6075 because we don't know the real bitsize of the partial
6077 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
6080 if (HWI_COMPUTABLE_MODE_P (mode
))
6082 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
6083 GET_MODE_MASK (mode
), 0));
6085 /* We can truncate a constant value and return it. */
6088 if (poly_int_rtx_p (XEXP (x
, 0), &c
))
6089 return gen_int_mode (c
, mode
);
6092 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
6093 whose value is a comparison can be replaced with a subreg if
6094 STORE_FLAG_VALUE permits. */
6095 if (HWI_COMPUTABLE_MODE_P (mode
)
6096 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
6097 && (temp
= get_last_value (XEXP (x
, 0)))
6098 && COMPARISON_P (temp
))
6099 return gen_lowpart (mode
, XEXP (x
, 0));
6103 /* (const (const X)) can become (const X). Do it this way rather than
6104 returning the inner CONST since CONST can be shared with a
6106 if (GET_CODE (XEXP (x
, 0)) == CONST
)
6107 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
6111 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
6112 can add in an offset. find_split_point will split this address up
6113 again if it doesn't match. */
6114 if (HAVE_lo_sum
&& GET_CODE (XEXP (x
, 0)) == HIGH
6115 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
6120 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
6121 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
6122 bit-field and can be replaced by either a sign_extend or a
6123 sign_extract. The `and' may be a zero_extend and the two
6124 <c>, -<c> constants may be reversed. */
6125 if (GET_CODE (XEXP (x
, 0)) == XOR
6126 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6127 && CONST_INT_P (XEXP (x
, 1))
6128 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
6129 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
6130 && ((i
= exact_log2 (UINTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
6131 || (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
6132 && HWI_COMPUTABLE_MODE_P (int_mode
)
6133 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
6134 && CONST_INT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
6135 && (UINTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
6136 == (HOST_WIDE_INT_1U
<< (i
+ 1)) - 1))
6137 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
6138 && known_eq ((GET_MODE_PRECISION
6139 (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))),
6140 (unsigned int) i
+ 1))))
6141 return simplify_shift_const
6142 (NULL_RTX
, ASHIFTRT
, int_mode
,
6143 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6144 XEXP (XEXP (XEXP (x
, 0), 0), 0),
6145 GET_MODE_PRECISION (int_mode
) - (i
+ 1)),
6146 GET_MODE_PRECISION (int_mode
) - (i
+ 1));
6148 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6149 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6150 the bitsize of the mode - 1. This allows simplification of
6151 "a = (b & 8) == 0;" */
6152 if (XEXP (x
, 1) == constm1_rtx
6153 && !REG_P (XEXP (x
, 0))
6154 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
6155 && REG_P (SUBREG_REG (XEXP (x
, 0))))
6156 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6157 && nonzero_bits (XEXP (x
, 0), int_mode
) == 1)
6158 return simplify_shift_const
6159 (NULL_RTX
, ASHIFTRT
, int_mode
,
6160 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6161 gen_rtx_XOR (int_mode
, XEXP (x
, 0),
6163 GET_MODE_PRECISION (int_mode
) - 1),
6164 GET_MODE_PRECISION (int_mode
) - 1);
6166 /* If we are adding two things that have no bits in common, convert
6167 the addition into an IOR. This will often be further simplified,
6168 for example in cases like ((a & 1) + (a & 2)), which can
6171 if (HWI_COMPUTABLE_MODE_P (mode
)
6172 && (nonzero_bits (XEXP (x
, 0), mode
)
6173 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
6175 /* Try to simplify the expression further. */
6176 rtx tor
= simplify_gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
6177 temp
= combine_simplify_rtx (tor
, VOIDmode
, in_dest
, 0);
6179 /* If we could, great. If not, do not go ahead with the IOR
6180 replacement, since PLUS appears in many special purpose
6181 address arithmetic instructions. */
6182 if (GET_CODE (temp
) != CLOBBER
6183 && (GET_CODE (temp
) != IOR
6184 || ((XEXP (temp
, 0) != XEXP (x
, 0)
6185 || XEXP (temp
, 1) != XEXP (x
, 1))
6186 && (XEXP (temp
, 0) != XEXP (x
, 1)
6187 || XEXP (temp
, 1) != XEXP (x
, 0)))))
6191 /* Canonicalize x + x into x << 1. */
6192 if (GET_MODE_CLASS (mode
) == MODE_INT
6193 && rtx_equal_p (XEXP (x
, 0), XEXP (x
, 1))
6194 && !side_effects_p (XEXP (x
, 0)))
6195 return simplify_gen_binary (ASHIFT
, mode
, XEXP (x
, 0), const1_rtx
);
6200 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6201 (and <foo> (const_int pow2-1)) */
6202 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
6203 && GET_CODE (XEXP (x
, 1)) == AND
6204 && CONST_INT_P (XEXP (XEXP (x
, 1), 1))
6205 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x
, 1), 1)))
6206 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
6207 return simplify_and_const_int (NULL_RTX
, int_mode
, XEXP (x
, 0),
6208 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
6212 /* If we have (mult (plus A B) C), apply the distributive law and then
6213 the inverse distributive law to see if things simplify. This
6214 occurs mostly in addresses, often when unrolling loops. */
6216 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
6218 rtx result
= distribute_and_simplify_rtx (x
, 0);
6223 /* Try simplify a*(b/c) as (a*b)/c. */
6224 if (FLOAT_MODE_P (mode
) && flag_associative_math
6225 && GET_CODE (XEXP (x
, 0)) == DIV
)
6227 rtx tem
= simplify_binary_operation (MULT
, mode
,
6228 XEXP (XEXP (x
, 0), 0),
6231 return simplify_gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
6236 /* If this is a divide by a power of two, treat it as a shift if
6237 its first operand is a shift. */
6238 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
6239 && CONST_INT_P (XEXP (x
, 1))
6240 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
6241 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
6242 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
6243 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
6244 || GET_CODE (XEXP (x
, 0)) == ROTATE
6245 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
6246 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, int_mode
,
6251 case GT
: case GTU
: case GE
: case GEU
:
6252 case LT
: case LTU
: case LE
: case LEU
:
6253 case UNEQ
: case LTGT
:
6254 case UNGT
: case UNGE
:
6255 case UNLT
: case UNLE
:
6256 case UNORDERED
: case ORDERED
:
6257 /* If the first operand is a condition code, we can't do anything
6259 if (GET_CODE (XEXP (x
, 0)) == COMPARE
6260 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
6261 && ! CC0_P (XEXP (x
, 0))))
6263 rtx op0
= XEXP (x
, 0);
6264 rtx op1
= XEXP (x
, 1);
6265 enum rtx_code new_code
;
6267 if (GET_CODE (op0
) == COMPARE
)
6268 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
6270 /* Simplify our comparison, if possible. */
6271 new_code
= simplify_comparison (code
, &op0
, &op1
);
6273 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6274 if only the low-order bit is possibly nonzero in X (such as when
6275 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6276 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6277 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6280 Remove any ZERO_EXTRACT we made when thinking this was a
6281 comparison. It may now be simpler to use, e.g., an AND. If a
6282 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6283 the call to make_compound_operation in the SET case.
6285 Don't apply these optimizations if the caller would
6286 prefer a comparison rather than a value.
6287 E.g., for the condition in an IF_THEN_ELSE most targets need
6288 an explicit comparison. */
6293 else if (STORE_FLAG_VALUE
== 1
6295 && is_int_mode (mode
, &int_mode
)
6296 && op1
== const0_rtx
6297 && int_mode
== GET_MODE (op0
)
6298 && nonzero_bits (op0
, int_mode
) == 1)
6299 return gen_lowpart (int_mode
,
6300 expand_compound_operation (op0
));
6302 else if (STORE_FLAG_VALUE
== 1
6304 && is_int_mode (mode
, &int_mode
)
6305 && op1
== const0_rtx
6306 && int_mode
== GET_MODE (op0
)
6307 && (num_sign_bit_copies (op0
, int_mode
)
6308 == GET_MODE_PRECISION (int_mode
)))
6310 op0
= expand_compound_operation (op0
);
6311 return simplify_gen_unary (NEG
, int_mode
,
6312 gen_lowpart (int_mode
, op0
),
6316 else if (STORE_FLAG_VALUE
== 1
6318 && is_int_mode (mode
, &int_mode
)
6319 && op1
== const0_rtx
6320 && int_mode
== GET_MODE (op0
)
6321 && nonzero_bits (op0
, int_mode
) == 1)
6323 op0
= expand_compound_operation (op0
);
6324 return simplify_gen_binary (XOR
, int_mode
,
6325 gen_lowpart (int_mode
, op0
),
6329 else if (STORE_FLAG_VALUE
== 1
6331 && is_int_mode (mode
, &int_mode
)
6332 && op1
== const0_rtx
6333 && int_mode
== GET_MODE (op0
)
6334 && (num_sign_bit_copies (op0
, int_mode
)
6335 == GET_MODE_PRECISION (int_mode
)))
6337 op0
= expand_compound_operation (op0
);
6338 return plus_constant (int_mode
, gen_lowpart (int_mode
, op0
), 1);
6341 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6346 else if (STORE_FLAG_VALUE
== -1
6348 && is_int_mode (mode
, &int_mode
)
6349 && op1
== const0_rtx
6350 && int_mode
== GET_MODE (op0
)
6351 && (num_sign_bit_copies (op0
, int_mode
)
6352 == GET_MODE_PRECISION (int_mode
)))
6353 return gen_lowpart (int_mode
, expand_compound_operation (op0
));
6355 else if (STORE_FLAG_VALUE
== -1
6357 && is_int_mode (mode
, &int_mode
)
6358 && op1
== const0_rtx
6359 && int_mode
== GET_MODE (op0
)
6360 && nonzero_bits (op0
, int_mode
) == 1)
6362 op0
= expand_compound_operation (op0
);
6363 return simplify_gen_unary (NEG
, int_mode
,
6364 gen_lowpart (int_mode
, op0
),
6368 else if (STORE_FLAG_VALUE
== -1
6370 && is_int_mode (mode
, &int_mode
)
6371 && op1
== const0_rtx
6372 && int_mode
== GET_MODE (op0
)
6373 && (num_sign_bit_copies (op0
, int_mode
)
6374 == GET_MODE_PRECISION (int_mode
)))
6376 op0
= expand_compound_operation (op0
);
6377 return simplify_gen_unary (NOT
, int_mode
,
6378 gen_lowpart (int_mode
, op0
),
6382 /* If X is 0/1, (eq X 0) is X-1. */
6383 else if (STORE_FLAG_VALUE
== -1
6385 && is_int_mode (mode
, &int_mode
)
6386 && op1
== const0_rtx
6387 && int_mode
== GET_MODE (op0
)
6388 && nonzero_bits (op0
, int_mode
) == 1)
6390 op0
= expand_compound_operation (op0
);
6391 return plus_constant (int_mode
, gen_lowpart (int_mode
, op0
), -1);
6394 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6395 one bit that might be nonzero, we can convert (ne x 0) to
6396 (ashift x c) where C puts the bit in the sign bit. Remove any
6397 AND with STORE_FLAG_VALUE when we are done, since we are only
6398 going to test the sign bit. */
6400 && is_int_mode (mode
, &int_mode
)
6401 && HWI_COMPUTABLE_MODE_P (int_mode
)
6402 && val_signbit_p (int_mode
, STORE_FLAG_VALUE
)
6403 && op1
== const0_rtx
6404 && int_mode
== GET_MODE (op0
)
6405 && (i
= exact_log2 (nonzero_bits (op0
, int_mode
))) >= 0)
6407 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6408 expand_compound_operation (op0
),
6409 GET_MODE_PRECISION (int_mode
) - 1 - i
);
6410 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
6416 /* If the code changed, return a whole new comparison.
6417 We also need to avoid using SUBST in cases where
6418 simplify_comparison has widened a comparison with a CONST_INT,
6419 since in that case the wider CONST_INT may fail the sanity
6420 checks in do_SUBST. */
6421 if (new_code
!= code
6422 || (CONST_INT_P (op1
)
6423 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 0))
6424 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 1))))
6425 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
6427 /* Otherwise, keep this operation, but maybe change its operands.
6428 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6429 SUBST (XEXP (x
, 0), op0
);
6430 SUBST (XEXP (x
, 1), op1
);
6435 return simplify_if_then_else (x
);
6441 /* If we are processing SET_DEST, we are done. */
6445 return expand_compound_operation (x
);
6448 return simplify_set (x
);
6452 return simplify_logical (x
);
6459 /* If this is a shift by a constant amount, simplify it. */
6460 if (CONST_INT_P (XEXP (x
, 1)))
6461 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
6462 INTVAL (XEXP (x
, 1)));
6464 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
6466 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
6468 << exact_log2 (GET_MODE_UNIT_BITSIZE
6481 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6484 simplify_if_then_else (rtx x
)
6486 machine_mode mode
= GET_MODE (x
);
6487 rtx cond
= XEXP (x
, 0);
6488 rtx true_rtx
= XEXP (x
, 1);
6489 rtx false_rtx
= XEXP (x
, 2);
6490 enum rtx_code true_code
= GET_CODE (cond
);
6491 int comparison_p
= COMPARISON_P (cond
);
6494 enum rtx_code false_code
;
6496 scalar_int_mode int_mode
, inner_mode
;
6498 /* Simplify storing of the truth value. */
6499 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
6500 return simplify_gen_relational (true_code
, mode
, VOIDmode
,
6501 XEXP (cond
, 0), XEXP (cond
, 1));
6503 /* Also when the truth value has to be reversed. */
6505 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
6506 && (reversed
= reversed_comparison (cond
, mode
)))
6509 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6510 in it is being compared against certain values. Get the true and false
6511 comparisons and see if that says anything about the value of each arm. */
6514 && ((false_code
= reversed_comparison_code (cond
, NULL
))
6516 && REG_P (XEXP (cond
, 0)))
6519 rtx from
= XEXP (cond
, 0);
6520 rtx true_val
= XEXP (cond
, 1);
6521 rtx false_val
= true_val
;
6524 /* If FALSE_CODE is EQ, swap the codes and arms. */
6526 if (false_code
== EQ
)
6528 swapped
= 1, true_code
= EQ
, false_code
= NE
;
6529 std::swap (true_rtx
, false_rtx
);
6532 scalar_int_mode from_mode
;
6533 if (is_a
<scalar_int_mode
> (GET_MODE (from
), &from_mode
))
6535 /* If we are comparing against zero and the expression being
6536 tested has only a single bit that might be nonzero, that is
6537 its value when it is not equal to zero. Similarly if it is
6538 known to be -1 or 0. */
6540 && true_val
== const0_rtx
6541 && pow2p_hwi (nzb
= nonzero_bits (from
, from_mode
)))
6544 false_val
= gen_int_mode (nzb
, from_mode
);
6546 else if (true_code
== EQ
6547 && true_val
== const0_rtx
6548 && (num_sign_bit_copies (from
, from_mode
)
6549 == GET_MODE_PRECISION (from_mode
)))
6552 false_val
= constm1_rtx
;
6556 /* Now simplify an arm if we know the value of the register in the
6557 branch and it is used in the arm. Be careful due to the potential
6558 of locally-shared RTL. */
6560 if (reg_mentioned_p (from
, true_rtx
))
6561 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
6563 pc_rtx
, pc_rtx
, 0, 0, 0);
6564 if (reg_mentioned_p (from
, false_rtx
))
6565 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
6567 pc_rtx
, pc_rtx
, 0, 0, 0);
6569 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
6570 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
6572 true_rtx
= XEXP (x
, 1);
6573 false_rtx
= XEXP (x
, 2);
6574 true_code
= GET_CODE (cond
);
6577 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6578 reversed, do so to avoid needing two sets of patterns for
6579 subtract-and-branch insns. Similarly if we have a constant in the true
6580 arm, the false arm is the same as the first operand of the comparison, or
6581 the false arm is more complicated than the true arm. */
6584 && reversed_comparison_code (cond
, NULL
) != UNKNOWN
6585 && (true_rtx
== pc_rtx
6586 || (CONSTANT_P (true_rtx
)
6587 && !CONST_INT_P (false_rtx
) && false_rtx
!= pc_rtx
)
6588 || true_rtx
== const0_rtx
6589 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
6590 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
6591 && !OBJECT_P (false_rtx
))
6592 || reg_mentioned_p (true_rtx
, false_rtx
)
6593 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
6595 SUBST (XEXP (x
, 0), reversed_comparison (cond
, GET_MODE (cond
)));
6596 SUBST (XEXP (x
, 1), false_rtx
);
6597 SUBST (XEXP (x
, 2), true_rtx
);
6599 std::swap (true_rtx
, false_rtx
);
6602 /* It is possible that the conditional has been simplified out. */
6603 true_code
= GET_CODE (cond
);
6604 comparison_p
= COMPARISON_P (cond
);
6607 /* If the two arms are identical, we don't need the comparison. */
6609 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
6612 /* Convert a == b ? b : a to "a". */
6613 if (true_code
== EQ
&& ! side_effects_p (cond
)
6614 && !HONOR_NANS (mode
)
6615 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
6616 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
6618 else if (true_code
== NE
&& ! side_effects_p (cond
)
6619 && !HONOR_NANS (mode
)
6620 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6621 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
6624 /* Look for cases where we have (abs x) or (neg (abs X)). */
6626 if (GET_MODE_CLASS (mode
) == MODE_INT
6628 && XEXP (cond
, 1) == const0_rtx
6629 && GET_CODE (false_rtx
) == NEG
6630 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
6631 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
6632 && ! side_effects_p (true_rtx
))
6637 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
6641 simplify_gen_unary (NEG
, mode
,
6642 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
6648 /* Look for MIN or MAX. */
6650 if ((! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
6652 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6653 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
6654 && ! side_effects_p (cond
))
6659 return simplify_gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
6662 return simplify_gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
6665 return simplify_gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
6668 return simplify_gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
6673 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6674 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6675 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6676 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6677 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6678 neither 1 or -1, but it isn't worth checking for. */
6680 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
6682 && is_int_mode (mode
, &int_mode
)
6683 && ! side_effects_p (x
))
6685 rtx t
= make_compound_operation (true_rtx
, SET
);
6686 rtx f
= make_compound_operation (false_rtx
, SET
);
6687 rtx cond_op0
= XEXP (cond
, 0);
6688 rtx cond_op1
= XEXP (cond
, 1);
6689 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
6690 scalar_int_mode m
= int_mode
;
6691 rtx z
= 0, c1
= NULL_RTX
;
6693 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
6694 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
6695 || GET_CODE (t
) == ASHIFT
6696 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
6697 && rtx_equal_p (XEXP (t
, 0), f
))
6698 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
6700 /* If an identity-zero op is commutative, check whether there
6701 would be a match if we swapped the operands. */
6702 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
6703 || GET_CODE (t
) == XOR
)
6704 && rtx_equal_p (XEXP (t
, 1), f
))
6705 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
6706 else if (GET_CODE (t
) == SIGN_EXTEND
6707 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6708 && (GET_CODE (XEXP (t
, 0)) == PLUS
6709 || GET_CODE (XEXP (t
, 0)) == MINUS
6710 || GET_CODE (XEXP (t
, 0)) == IOR
6711 || GET_CODE (XEXP (t
, 0)) == XOR
6712 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6713 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6714 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6715 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6716 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6717 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6718 && (num_sign_bit_copies (f
, GET_MODE (f
))
6720 (GET_MODE_PRECISION (int_mode
)
6721 - GET_MODE_PRECISION (inner_mode
))))
6723 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6724 extend_op
= SIGN_EXTEND
;
6727 else if (GET_CODE (t
) == SIGN_EXTEND
6728 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6729 && (GET_CODE (XEXP (t
, 0)) == PLUS
6730 || GET_CODE (XEXP (t
, 0)) == IOR
6731 || GET_CODE (XEXP (t
, 0)) == XOR
)
6732 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6733 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6734 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6735 && (num_sign_bit_copies (f
, GET_MODE (f
))
6737 (GET_MODE_PRECISION (int_mode
)
6738 - GET_MODE_PRECISION (inner_mode
))))
6740 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6741 extend_op
= SIGN_EXTEND
;
6744 else if (GET_CODE (t
) == ZERO_EXTEND
6745 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6746 && (GET_CODE (XEXP (t
, 0)) == PLUS
6747 || GET_CODE (XEXP (t
, 0)) == MINUS
6748 || GET_CODE (XEXP (t
, 0)) == IOR
6749 || GET_CODE (XEXP (t
, 0)) == XOR
6750 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6751 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6752 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6753 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6754 && HWI_COMPUTABLE_MODE_P (int_mode
)
6755 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6756 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6757 && ((nonzero_bits (f
, GET_MODE (f
))
6758 & ~GET_MODE_MASK (inner_mode
))
6761 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6762 extend_op
= ZERO_EXTEND
;
6765 else if (GET_CODE (t
) == ZERO_EXTEND
6766 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (t
, 0)), &inner_mode
)
6767 && (GET_CODE (XEXP (t
, 0)) == PLUS
6768 || GET_CODE (XEXP (t
, 0)) == IOR
6769 || GET_CODE (XEXP (t
, 0)) == XOR
)
6770 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6771 && HWI_COMPUTABLE_MODE_P (int_mode
)
6772 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6773 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6774 && ((nonzero_bits (f
, GET_MODE (f
))
6775 & ~GET_MODE_MASK (inner_mode
))
6778 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6779 extend_op
= ZERO_EXTEND
;
6785 machine_mode cm
= m
;
6786 if ((op
== ASHIFT
|| op
== LSHIFTRT
|| op
== ASHIFTRT
)
6787 && GET_MODE (c1
) != VOIDmode
)
6789 temp
= subst (simplify_gen_relational (true_code
, cm
, VOIDmode
,
6790 cond_op0
, cond_op1
),
6791 pc_rtx
, pc_rtx
, 0, 0, 0);
6792 temp
= simplify_gen_binary (MULT
, cm
, temp
,
6793 simplify_gen_binary (MULT
, cm
, c1
,
6795 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0, 0);
6796 temp
= simplify_gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
6798 if (extend_op
!= UNKNOWN
)
6799 temp
= simplify_gen_unary (extend_op
, int_mode
, temp
, m
);
6805 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6806 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6807 negation of a single bit, we can convert this operation to a shift. We
6808 can actually do this more generally, but it doesn't seem worth it. */
6811 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6812 && XEXP (cond
, 1) == const0_rtx
6813 && false_rtx
== const0_rtx
6814 && CONST_INT_P (true_rtx
)
6815 && ((nonzero_bits (XEXP (cond
, 0), int_mode
) == 1
6816 && (i
= exact_log2 (UINTVAL (true_rtx
))) >= 0)
6817 || ((num_sign_bit_copies (XEXP (cond
, 0), int_mode
)
6818 == GET_MODE_PRECISION (int_mode
))
6819 && (i
= exact_log2 (-UINTVAL (true_rtx
))) >= 0)))
6821 simplify_shift_const (NULL_RTX
, ASHIFT
, int_mode
,
6822 gen_lowpart (int_mode
, XEXP (cond
, 0)), i
);
6824 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6825 non-zero bit in A is C1. */
6826 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6827 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6828 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
6829 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (cond
, 0)), &inner_mode
)
6830 && (UINTVAL (true_rtx
) & GET_MODE_MASK (int_mode
))
6831 == nonzero_bits (XEXP (cond
, 0), inner_mode
)
6832 && (i
= exact_log2 (UINTVAL (true_rtx
) & GET_MODE_MASK (int_mode
))) >= 0)
6834 rtx val
= XEXP (cond
, 0);
6835 if (inner_mode
== int_mode
)
6837 else if (GET_MODE_PRECISION (inner_mode
) < GET_MODE_PRECISION (int_mode
))
6838 return simplify_gen_unary (ZERO_EXTEND
, int_mode
, val
, inner_mode
);
6844 /* Simplify X, a SET expression. Return the new expression. */
6847 simplify_set (rtx x
)
6849 rtx src
= SET_SRC (x
);
6850 rtx dest
= SET_DEST (x
);
6852 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
6853 rtx_insn
*other_insn
;
6855 scalar_int_mode int_mode
;
6857 /* (set (pc) (return)) gets written as (return). */
6858 if (GET_CODE (dest
) == PC
&& ANY_RETURN_P (src
))
6861 /* Now that we know for sure which bits of SRC we are using, see if we can
6862 simplify the expression for the object knowing that we only need the
6865 if (GET_MODE_CLASS (mode
) == MODE_INT
&& HWI_COMPUTABLE_MODE_P (mode
))
6867 src
= force_to_mode (src
, mode
, HOST_WIDE_INT_M1U
, 0);
6868 SUBST (SET_SRC (x
), src
);
6871 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6872 the comparison result and try to simplify it unless we already have used
6873 undobuf.other_insn. */
6874 if ((GET_MODE_CLASS (mode
) == MODE_CC
6875 || GET_CODE (src
) == COMPARE
6877 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
6878 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
6879 && COMPARISON_P (*cc_use
)
6880 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
6882 enum rtx_code old_code
= GET_CODE (*cc_use
);
6883 enum rtx_code new_code
;
6885 int other_changed
= 0;
6886 rtx inner_compare
= NULL_RTX
;
6887 machine_mode compare_mode
= GET_MODE (dest
);
6889 if (GET_CODE (src
) == COMPARE
)
6891 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
6892 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
6894 inner_compare
= op0
;
6895 op0
= XEXP (inner_compare
, 0), op1
= XEXP (inner_compare
, 1);
6899 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
6901 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
6904 new_code
= old_code
;
6905 else if (!CONSTANT_P (tmp
))
6907 new_code
= GET_CODE (tmp
);
6908 op0
= XEXP (tmp
, 0);
6909 op1
= XEXP (tmp
, 1);
6913 rtx pat
= PATTERN (other_insn
);
6914 undobuf
.other_insn
= other_insn
;
6915 SUBST (*cc_use
, tmp
);
6917 /* Attempt to simplify CC user. */
6918 if (GET_CODE (pat
) == SET
)
6920 rtx new_rtx
= simplify_rtx (SET_SRC (pat
));
6921 if (new_rtx
!= NULL_RTX
)
6922 SUBST (SET_SRC (pat
), new_rtx
);
6925 /* Convert X into a no-op move. */
6926 SUBST (SET_DEST (x
), pc_rtx
);
6927 SUBST (SET_SRC (x
), pc_rtx
);
6931 /* Simplify our comparison, if possible. */
6932 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
6934 #ifdef SELECT_CC_MODE
6935 /* If this machine has CC modes other than CCmode, check to see if we
6936 need to use a different CC mode here. */
6937 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
6938 compare_mode
= GET_MODE (op0
);
6939 else if (inner_compare
6940 && GET_MODE_CLASS (GET_MODE (inner_compare
)) == MODE_CC
6941 && new_code
== old_code
6942 && op0
== XEXP (inner_compare
, 0)
6943 && op1
== XEXP (inner_compare
, 1))
6944 compare_mode
= GET_MODE (inner_compare
);
6946 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
6948 /* If the mode changed, we have to change SET_DEST, the mode in the
6949 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6950 a hard register, just build new versions with the proper mode. If it
6951 is a pseudo, we lose unless it is only time we set the pseudo, in
6952 which case we can safely change its mode. */
6953 if (!HAVE_cc0
&& compare_mode
!= GET_MODE (dest
))
6955 if (can_change_dest_mode (dest
, 0, compare_mode
))
6957 unsigned int regno
= REGNO (dest
);
6960 if (regno
< FIRST_PSEUDO_REGISTER
)
6961 new_dest
= gen_rtx_REG (compare_mode
, regno
);
6964 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
6965 new_dest
= regno_reg_rtx
[regno
];
6968 SUBST (SET_DEST (x
), new_dest
);
6969 SUBST (XEXP (*cc_use
, 0), new_dest
);
6975 #endif /* SELECT_CC_MODE */
6977 /* If the code changed, we have to build a new comparison in
6978 undobuf.other_insn. */
6979 if (new_code
!= old_code
)
6981 int other_changed_previously
= other_changed
;
6982 unsigned HOST_WIDE_INT mask
;
6983 rtx old_cc_use
= *cc_use
;
6985 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
6989 /* If the only change we made was to change an EQ into an NE or
6990 vice versa, OP0 has only one bit that might be nonzero, and OP1
6991 is zero, check if changing the user of the condition code will
6992 produce a valid insn. If it won't, we can keep the original code
6993 in that insn by surrounding our operation with an XOR. */
6995 if (((old_code
== NE
&& new_code
== EQ
)
6996 || (old_code
== EQ
&& new_code
== NE
))
6997 && ! other_changed_previously
&& op1
== const0_rtx
6998 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
6999 && pow2p_hwi (mask
= nonzero_bits (op0
, GET_MODE (op0
))))
7001 rtx pat
= PATTERN (other_insn
), note
= 0;
7003 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
7004 && ! check_asm_operands (pat
)))
7006 *cc_use
= old_cc_use
;
7009 op0
= simplify_gen_binary (XOR
, GET_MODE (op0
), op0
,
7017 undobuf
.other_insn
= other_insn
;
7019 /* Don't generate a compare of a CC with 0, just use that CC. */
7020 if (GET_MODE (op0
) == compare_mode
&& op1
== const0_rtx
)
7022 SUBST (SET_SRC (x
), op0
);
7025 /* Otherwise, if we didn't previously have the same COMPARE we
7026 want, create it from scratch. */
7027 else if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
7028 || XEXP (src
, 0) != op0
|| XEXP (src
, 1) != op1
)
7030 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
7036 /* Get SET_SRC in a form where we have placed back any
7037 compound expressions. Then do the checks below. */
7038 src
= make_compound_operation (src
, SET
);
7039 SUBST (SET_SRC (x
), src
);
7042 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
7043 and X being a REG or (subreg (reg)), we may be able to convert this to
7044 (set (subreg:m2 x) (op)).
7046 We can always do this if M1 is narrower than M2 because that means that
7047 we only care about the low bits of the result.
7049 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
7050 perform a narrower operation than requested since the high-order bits will
7051 be undefined. On machine where it is defined, this transformation is safe
7052 as long as M1 and M2 have the same number of words. */
7054 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
7055 && !OBJECT_P (SUBREG_REG (src
))
7056 && (known_equal_after_align_up
7057 (GET_MODE_SIZE (GET_MODE (src
)),
7058 GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))),
7060 && (WORD_REGISTER_OPERATIONS
|| !paradoxical_subreg_p (src
))
7061 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
7062 && !REG_CAN_CHANGE_MODE_P (REGNO (dest
),
7063 GET_MODE (SUBREG_REG (src
)),
7066 || (GET_CODE (dest
) == SUBREG
7067 && REG_P (SUBREG_REG (dest
)))))
7069 SUBST (SET_DEST (x
),
7070 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
7072 SUBST (SET_SRC (x
), SUBREG_REG (src
));
7074 src
= SET_SRC (x
), dest
= SET_DEST (x
);
7077 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
7080 && partial_subreg_p (src
)
7081 && subreg_lowpart_p (src
))
7083 rtx inner
= SUBREG_REG (src
);
7084 machine_mode inner_mode
= GET_MODE (inner
);
7086 /* Here we make sure that we don't have a sign bit on. */
7087 if (val_signbit_known_clear_p (GET_MODE (src
),
7088 nonzero_bits (inner
, inner_mode
)))
7090 SUBST (SET_SRC (x
), inner
);
7095 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
7096 would require a paradoxical subreg. Replace the subreg with a
7097 zero_extend to avoid the reload that would otherwise be required.
7098 Don't do this unless we have a scalar integer mode, otherwise the
7099 transformation is incorrect. */
7101 enum rtx_code extend_op
;
7102 if (paradoxical_subreg_p (src
)
7103 && MEM_P (SUBREG_REG (src
))
7104 && SCALAR_INT_MODE_P (GET_MODE (src
))
7105 && (extend_op
= load_extend_op (GET_MODE (SUBREG_REG (src
)))) != UNKNOWN
)
7108 gen_rtx_fmt_e (extend_op
, GET_MODE (src
), SUBREG_REG (src
)));
7113 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
7114 are comparing an item known to be 0 or -1 against 0, use a logical
7115 operation instead. Check for one of the arms being an IOR of the other
7116 arm with some value. We compute three terms to be IOR'ed together. In
7117 practice, at most two will be nonzero. Then we do the IOR's. */
7119 if (GET_CODE (dest
) != PC
7120 && GET_CODE (src
) == IF_THEN_ELSE
7121 && is_int_mode (GET_MODE (src
), &int_mode
)
7122 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
7123 && XEXP (XEXP (src
, 0), 1) == const0_rtx
7124 && int_mode
== GET_MODE (XEXP (XEXP (src
, 0), 0))
7125 && (!HAVE_conditional_move
7126 || ! can_conditionally_move_p (int_mode
))
7127 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0), int_mode
)
7128 == GET_MODE_PRECISION (int_mode
))
7129 && ! side_effects_p (src
))
7131 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
7132 ? XEXP (src
, 1) : XEXP (src
, 2));
7133 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
7134 ? XEXP (src
, 2) : XEXP (src
, 1));
7135 rtx term1
= const0_rtx
, term2
, term3
;
7137 if (GET_CODE (true_rtx
) == IOR
7138 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
7139 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
7140 else if (GET_CODE (true_rtx
) == IOR
7141 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
7142 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
7143 else if (GET_CODE (false_rtx
) == IOR
7144 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
7145 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
7146 else if (GET_CODE (false_rtx
) == IOR
7147 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
7148 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
7150 term2
= simplify_gen_binary (AND
, int_mode
,
7151 XEXP (XEXP (src
, 0), 0), true_rtx
);
7152 term3
= simplify_gen_binary (AND
, int_mode
,
7153 simplify_gen_unary (NOT
, int_mode
,
7154 XEXP (XEXP (src
, 0), 0),
7159 simplify_gen_binary (IOR
, int_mode
,
7160 simplify_gen_binary (IOR
, int_mode
,
7167 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7168 whole thing fail. */
7169 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
7171 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
7174 /* Convert this into a field assignment operation, if possible. */
7175 return make_field_assignment (x
);
7178 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7182 simplify_logical (rtx x
)
7184 rtx op0
= XEXP (x
, 0);
7185 rtx op1
= XEXP (x
, 1);
7186 scalar_int_mode mode
;
7188 switch (GET_CODE (x
))
7191 /* We can call simplify_and_const_int only if we don't lose
7192 any (sign) bits when converting INTVAL (op1) to
7193 "unsigned HOST_WIDE_INT". */
7194 if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
)
7195 && CONST_INT_P (op1
)
7196 && (HWI_COMPUTABLE_MODE_P (mode
)
7197 || INTVAL (op1
) > 0))
7199 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
7200 if (GET_CODE (x
) != AND
)
7207 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7208 apply the distributive law and then the inverse distributive
7209 law to see if things simplify. */
7210 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
7212 rtx result
= distribute_and_simplify_rtx (x
, 0);
7216 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
7218 rtx result
= distribute_and_simplify_rtx (x
, 1);
7225 /* If we have (ior (and A B) C), apply the distributive law and then
7226 the inverse distributive law to see if things simplify. */
7228 if (GET_CODE (op0
) == AND
)
7230 rtx result
= distribute_and_simplify_rtx (x
, 0);
7235 if (GET_CODE (op1
) == AND
)
7237 rtx result
= distribute_and_simplify_rtx (x
, 1);
7250 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7251 operations" because they can be replaced with two more basic operations.
7252 ZERO_EXTEND is also considered "compound" because it can be replaced with
7253 an AND operation, which is simpler, though only one operation.
7255 The function expand_compound_operation is called with an rtx expression
7256 and will convert it to the appropriate shifts and AND operations,
7257 simplifying at each stage.
7259 The function make_compound_operation is called to convert an expression
7260 consisting of shifts and ANDs into the equivalent compound expression.
7261 It is the inverse of this function, loosely speaking. */
7264 expand_compound_operation (rtx x
)
7266 unsigned HOST_WIDE_INT pos
= 0, len
;
7268 unsigned int modewidth
;
7270 scalar_int_mode inner_mode
;
7272 switch (GET_CODE (x
))
7278 /* We can't necessarily use a const_int for a multiword mode;
7279 it depends on implicitly extending the value.
7280 Since we don't know the right way to extend it,
7281 we can't tell whether the implicit way is right.
7283 Even for a mode that is no wider than a const_int,
7284 we can't win, because we need to sign extend one of its bits through
7285 the rest of it, and we don't know which bit. */
7286 if (CONST_INT_P (XEXP (x
, 0)))
7289 /* Reject modes that aren't scalar integers because turning vector
7290 or complex modes into shifts causes problems. */
7291 if (!is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
))
7294 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7295 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7296 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7297 reloaded. If not for that, MEM's would very rarely be safe.
7299 Reject modes bigger than a word, because we might not be able
7300 to reference a two-register group starting with an arbitrary register
7301 (and currently gen_lowpart might crash for a SUBREG). */
7303 if (GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
7306 len
= GET_MODE_PRECISION (inner_mode
);
7307 /* If the inner object has VOIDmode (the only way this can happen
7308 is if it is an ASM_OPERANDS), we can't do anything since we don't
7309 know how much masking to do. */
7321 /* If the operand is a CLOBBER, just return it. */
7322 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
7325 if (!CONST_INT_P (XEXP (x
, 1))
7326 || !CONST_INT_P (XEXP (x
, 2)))
7329 /* Reject modes that aren't scalar integers because turning vector
7330 or complex modes into shifts causes problems. */
7331 if (!is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
))
7334 len
= INTVAL (XEXP (x
, 1));
7335 pos
= INTVAL (XEXP (x
, 2));
7337 /* This should stay within the object being extracted, fail otherwise. */
7338 if (len
+ pos
> GET_MODE_PRECISION (inner_mode
))
7341 if (BITS_BIG_ENDIAN
)
7342 pos
= GET_MODE_PRECISION (inner_mode
) - len
- pos
;
7350 /* We've rejected non-scalar operations by now. */
7351 scalar_int_mode mode
= as_a
<scalar_int_mode
> (GET_MODE (x
));
7353 /* Convert sign extension to zero extension, if we know that the high
7354 bit is not set, as this is easier to optimize. It will be converted
7355 back to cheaper alternative in make_extraction. */
7356 if (GET_CODE (x
) == SIGN_EXTEND
7357 && HWI_COMPUTABLE_MODE_P (mode
)
7358 && ((nonzero_bits (XEXP (x
, 0), inner_mode
)
7359 & ~(((unsigned HOST_WIDE_INT
) GET_MODE_MASK (inner_mode
)) >> 1))
7362 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, XEXP (x
, 0));
7363 rtx temp2
= expand_compound_operation (temp
);
7365 /* Make sure this is a profitable operation. */
7366 if (set_src_cost (x
, mode
, optimize_this_for_speed_p
)
7367 > set_src_cost (temp2
, mode
, optimize_this_for_speed_p
))
7369 else if (set_src_cost (x
, mode
, optimize_this_for_speed_p
)
7370 > set_src_cost (temp
, mode
, optimize_this_for_speed_p
))
7376 /* We can optimize some special cases of ZERO_EXTEND. */
7377 if (GET_CODE (x
) == ZERO_EXTEND
)
7379 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7380 know that the last value didn't have any inappropriate bits
7382 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
7383 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
7384 && HWI_COMPUTABLE_MODE_P (mode
)
7385 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), mode
)
7386 & ~GET_MODE_MASK (inner_mode
)) == 0)
7387 return XEXP (XEXP (x
, 0), 0);
7389 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7390 if (GET_CODE (XEXP (x
, 0)) == SUBREG
7391 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == mode
7392 && subreg_lowpart_p (XEXP (x
, 0))
7393 && HWI_COMPUTABLE_MODE_P (mode
)
7394 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), mode
)
7395 & ~GET_MODE_MASK (inner_mode
)) == 0)
7396 return SUBREG_REG (XEXP (x
, 0));
7398 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7399 is a comparison and STORE_FLAG_VALUE permits. This is like
7400 the first case, but it works even when MODE is larger
7401 than HOST_WIDE_INT. */
7402 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
7403 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == mode
7404 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
7405 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
7406 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (inner_mode
)) == 0)
7407 return XEXP (XEXP (x
, 0), 0);
7409 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7410 if (GET_CODE (XEXP (x
, 0)) == SUBREG
7411 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == mode
7412 && subreg_lowpart_p (XEXP (x
, 0))
7413 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
7414 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
7415 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (inner_mode
)) == 0)
7416 return SUBREG_REG (XEXP (x
, 0));
7420 /* If we reach here, we want to return a pair of shifts. The inner
7421 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7422 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7423 logical depending on the value of UNSIGNEDP.
7425 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7426 converted into an AND of a shift.
7428 We must check for the case where the left shift would have a negative
7429 count. This can happen in a case like (x >> 31) & 255 on machines
7430 that can't shift by a constant. On those machines, we would first
7431 combine the shift with the AND to produce a variable-position
7432 extraction. Then the constant of 31 would be substituted in
7433 to produce such a position. */
7435 modewidth
= GET_MODE_PRECISION (mode
);
7436 if (modewidth
>= pos
+ len
)
7438 tem
= gen_lowpart (mode
, XEXP (x
, 0));
7439 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
7441 tem
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
7442 tem
, modewidth
- pos
- len
);
7443 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
7444 mode
, tem
, modewidth
- len
);
7446 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
7447 tem
= simplify_and_const_int (NULL_RTX
, mode
,
7448 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
7451 (HOST_WIDE_INT_1U
<< len
) - 1);
7453 /* Any other cases we can't handle. */
7456 /* If we couldn't do this for some reason, return the original
7458 if (GET_CODE (tem
) == CLOBBER
)
7464 /* X is a SET which contains an assignment of one object into
7465 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7466 or certain SUBREGS). If possible, convert it into a series of
7469 We half-heartedly support variable positions, but do not at all
7470 support variable lengths. */
7473 expand_field_assignment (const_rtx x
)
7476 rtx pos
; /* Always counts from low bit. */
7478 rtx mask
, cleared
, masked
;
7479 scalar_int_mode compute_mode
;
7481 /* Loop until we find something we can't simplify. */
7484 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
7485 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
7487 rtx x0
= XEXP (SET_DEST (x
), 0);
7488 if (!GET_MODE_PRECISION (GET_MODE (x0
)).is_constant (&len
))
7490 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
7491 pos
= gen_int_mode (subreg_lsb (XEXP (SET_DEST (x
), 0)),
7494 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
7495 && CONST_INT_P (XEXP (SET_DEST (x
), 1)))
7497 inner
= XEXP (SET_DEST (x
), 0);
7498 if (!GET_MODE_PRECISION (GET_MODE (inner
)).is_constant (&inner_len
))
7501 len
= INTVAL (XEXP (SET_DEST (x
), 1));
7502 pos
= XEXP (SET_DEST (x
), 2);
7504 /* A constant position should stay within the width of INNER. */
7505 if (CONST_INT_P (pos
) && INTVAL (pos
) + len
> inner_len
)
7508 if (BITS_BIG_ENDIAN
)
7510 if (CONST_INT_P (pos
))
7511 pos
= GEN_INT (inner_len
- len
- INTVAL (pos
));
7512 else if (GET_CODE (pos
) == MINUS
7513 && CONST_INT_P (XEXP (pos
, 1))
7514 && INTVAL (XEXP (pos
, 1)) == inner_len
- len
)
7515 /* If position is ADJUST - X, new position is X. */
7516 pos
= XEXP (pos
, 0);
7518 pos
= simplify_gen_binary (MINUS
, GET_MODE (pos
),
7519 gen_int_mode (inner_len
- len
,
7525 /* If the destination is a subreg that overwrites the whole of the inner
7526 register, we can move the subreg to the source. */
7527 else if (GET_CODE (SET_DEST (x
)) == SUBREG
7528 /* We need SUBREGs to compute nonzero_bits properly. */
7529 && nonzero_sign_valid
7530 && !read_modify_subreg_p (SET_DEST (x
)))
7532 x
= gen_rtx_SET (SUBREG_REG (SET_DEST (x
)),
7534 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
7541 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7542 inner
= SUBREG_REG (inner
);
7544 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7545 if (!is_a
<scalar_int_mode
> (GET_MODE (inner
), &compute_mode
))
7547 /* Don't do anything for vector or complex integral types. */
7548 if (! FLOAT_MODE_P (GET_MODE (inner
)))
7551 /* Try to find an integral mode to pun with. */
7552 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner
)), 0)
7553 .exists (&compute_mode
))
7556 inner
= gen_lowpart (compute_mode
, inner
);
7559 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7560 if (len
>= HOST_BITS_PER_WIDE_INT
)
7563 /* Don't try to compute in too wide unsupported modes. */
7564 if (!targetm
.scalar_mode_supported_p (compute_mode
))
7567 /* Now compute the equivalent expression. Make a copy of INNER
7568 for the SET_DEST in case it is a MEM into which we will substitute;
7569 we don't want shared RTL in that case. */
7570 mask
= gen_int_mode ((HOST_WIDE_INT_1U
<< len
) - 1,
7572 cleared
= simplify_gen_binary (AND
, compute_mode
,
7573 simplify_gen_unary (NOT
, compute_mode
,
7574 simplify_gen_binary (ASHIFT
,
7579 masked
= simplify_gen_binary (ASHIFT
, compute_mode
,
7580 simplify_gen_binary (
7582 gen_lowpart (compute_mode
, SET_SRC (x
)),
7586 x
= gen_rtx_SET (copy_rtx (inner
),
7587 simplify_gen_binary (IOR
, compute_mode
,
7594 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7595 it is an RTX that represents the (variable) starting position; otherwise,
7596 POS is the (constant) starting bit position. Both are counted from the LSB.
7598 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7600 IN_DEST is nonzero if this is a reference in the destination of a SET.
7601 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7602 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7605 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7606 ZERO_EXTRACT should be built even for bits starting at bit 0.
7608 MODE is the desired mode of the result (if IN_DEST == 0).
7610 The result is an RTX for the extraction or NULL_RTX if the target
7614 make_extraction (machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
7615 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
7616 int in_dest
, int in_compare
)
7618 /* This mode describes the size of the storage area
7619 to fetch the overall value from. Within that, we
7620 ignore the POS lowest bits, etc. */
7621 machine_mode is_mode
= GET_MODE (inner
);
7622 machine_mode inner_mode
;
7623 scalar_int_mode wanted_inner_mode
;
7624 scalar_int_mode wanted_inner_reg_mode
= word_mode
;
7625 scalar_int_mode pos_mode
= word_mode
;
7626 machine_mode extraction_mode
= word_mode
;
7628 rtx orig_pos_rtx
= pos_rtx
;
7629 HOST_WIDE_INT orig_pos
;
7631 if (pos_rtx
&& CONST_INT_P (pos_rtx
))
7632 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
7634 if (GET_CODE (inner
) == SUBREG
7635 && subreg_lowpart_p (inner
)
7636 && (paradoxical_subreg_p (inner
)
7637 /* If trying or potentionally trying to extract
7638 bits outside of is_mode, don't look through
7639 non-paradoxical SUBREGs. See PR82192. */
7640 || (pos_rtx
== NULL_RTX
7641 && known_le (pos
+ len
, GET_MODE_PRECISION (is_mode
)))))
7643 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7644 consider just the QI as the memory to extract from.
7645 The subreg adds or removes high bits; its mode is
7646 irrelevant to the meaning of this extraction,
7647 since POS and LEN count from the lsb. */
7648 if (MEM_P (SUBREG_REG (inner
)))
7649 is_mode
= GET_MODE (SUBREG_REG (inner
));
7650 inner
= SUBREG_REG (inner
);
7652 else if (GET_CODE (inner
) == ASHIFT
7653 && CONST_INT_P (XEXP (inner
, 1))
7654 && pos_rtx
== 0 && pos
== 0
7655 && len
> UINTVAL (XEXP (inner
, 1)))
7657 /* We're extracting the least significant bits of an rtx
7658 (ashift X (const_int C)), where LEN > C. Extract the
7659 least significant (LEN - C) bits of X, giving an rtx
7660 whose mode is MODE, then shift it left C times. */
7661 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7662 0, 0, len
- INTVAL (XEXP (inner
, 1)),
7663 unsignedp
, in_dest
, in_compare
);
7665 return gen_rtx_ASHIFT (mode
, new_rtx
, XEXP (inner
, 1));
7667 else if (GET_CODE (inner
) == TRUNCATE
7668 /* If trying or potentionally trying to extract
7669 bits outside of is_mode, don't look through
7670 TRUNCATE. See PR82192. */
7671 && pos_rtx
== NULL_RTX
7672 && known_le (pos
+ len
, GET_MODE_PRECISION (is_mode
)))
7673 inner
= XEXP (inner
, 0);
7675 inner_mode
= GET_MODE (inner
);
7677 /* See if this can be done without an extraction. We never can if the
7678 width of the field is not the same as that of some integer mode. For
7679 registers, we can only avoid the extraction if the position is at the
7680 low-order bit and this is either not in the destination or we have the
7681 appropriate STRICT_LOW_PART operation available.
7683 For MEM, we can avoid an extract if the field starts on an appropriate
7684 boundary and we can change the mode of the memory reference. */
7686 scalar_int_mode tmode
;
7687 if (int_mode_for_size (len
, 1).exists (&tmode
)
7688 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
7690 && (pos
== 0 || REG_P (inner
))
7691 && (inner_mode
== tmode
7693 || TRULY_NOOP_TRUNCATION_MODES_P (tmode
, inner_mode
)
7694 || reg_truncated_to_mode (tmode
, inner
))
7697 && have_insn_for (STRICT_LOW_PART
, tmode
))))
7698 || (MEM_P (inner
) && pos_rtx
== 0
7700 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
7701 : BITS_PER_UNIT
)) == 0
7702 /* We can't do this if we are widening INNER_MODE (it
7703 may not be aligned, for one thing). */
7704 && !paradoxical_subreg_p (tmode
, inner_mode
)
7705 && known_le (pos
+ len
, GET_MODE_PRECISION (is_mode
))
7706 && (inner_mode
== tmode
7707 || (! mode_dependent_address_p (XEXP (inner
, 0),
7708 MEM_ADDR_SPACE (inner
))
7709 && ! MEM_VOLATILE_P (inner
))))))
7711 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7712 field. If the original and current mode are the same, we need not
7713 adjust the offset. Otherwise, we do if bytes big endian.
7715 If INNER is not a MEM, get a piece consisting of just the field
7716 of interest (in this case POS % BITS_PER_WORD must be 0). */
7722 /* POS counts from lsb, but make OFFSET count in memory order. */
7723 if (BYTES_BIG_ENDIAN
)
7724 offset
= bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode
)
7727 offset
= pos
/ BITS_PER_UNIT
;
7729 new_rtx
= adjust_address_nv (inner
, tmode
, offset
);
7731 else if (REG_P (inner
))
7733 if (tmode
!= inner_mode
)
7735 /* We can't call gen_lowpart in a DEST since we
7736 always want a SUBREG (see below) and it would sometimes
7737 return a new hard register. */
7741 = subreg_offset_from_lsb (tmode
, inner_mode
, pos
);
7743 /* Avoid creating invalid subregs, for example when
7744 simplifying (x>>32)&255. */
7745 if (!validate_subreg (tmode
, inner_mode
, inner
, offset
))
7748 new_rtx
= gen_rtx_SUBREG (tmode
, inner
, offset
);
7751 new_rtx
= gen_lowpart (tmode
, inner
);
7757 new_rtx
= force_to_mode (inner
, tmode
,
7758 len
>= HOST_BITS_PER_WIDE_INT
7760 : (HOST_WIDE_INT_1U
<< len
) - 1, 0);
7762 /* If this extraction is going into the destination of a SET,
7763 make a STRICT_LOW_PART unless we made a MEM. */
7766 return (MEM_P (new_rtx
) ? new_rtx
7767 : (GET_CODE (new_rtx
) != SUBREG
7768 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
7769 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new_rtx
)));
7774 if (CONST_SCALAR_INT_P (new_rtx
))
7775 return simplify_unary_operation (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7776 mode
, new_rtx
, tmode
);
7778 /* If we know that no extraneous bits are set, and that the high
7779 bit is not set, convert the extraction to the cheaper of
7780 sign and zero extension, that are equivalent in these cases. */
7781 if (flag_expensive_optimizations
7782 && (HWI_COMPUTABLE_MODE_P (tmode
)
7783 && ((nonzero_bits (new_rtx
, tmode
)
7784 & ~(((unsigned HOST_WIDE_INT
)GET_MODE_MASK (tmode
)) >> 1))
7787 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new_rtx
);
7788 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new_rtx
);
7790 /* Prefer ZERO_EXTENSION, since it gives more information to
7792 if (set_src_cost (temp
, mode
, optimize_this_for_speed_p
)
7793 <= set_src_cost (temp1
, mode
, optimize_this_for_speed_p
))
7798 /* Otherwise, sign- or zero-extend unless we already are in the
7801 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7805 /* Unless this is a COMPARE or we have a funny memory reference,
7806 don't do anything with zero-extending field extracts starting at
7807 the low-order bit since they are simple AND operations. */
7808 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
7809 && ! in_compare
&& unsignedp
)
7812 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7813 if the position is not a constant and the length is not 1. In all
7814 other cases, we would only be going outside our object in cases when
7815 an original shift would have been undefined. */
7817 && ((pos_rtx
== 0 && maybe_gt (pos
+ len
, GET_MODE_PRECISION (is_mode
)))
7818 || (pos_rtx
!= 0 && len
!= 1)))
7821 enum extraction_pattern pattern
= (in_dest
? EP_insv
7822 : unsignedp
? EP_extzv
: EP_extv
);
7824 /* If INNER is not from memory, we want it to have the mode of a register
7825 extraction pattern's structure operand, or word_mode if there is no
7826 such pattern. The same applies to extraction_mode and pos_mode
7827 and their respective operands.
7829 For memory, assume that the desired extraction_mode and pos_mode
7830 are the same as for a register operation, since at present we don't
7831 have named patterns for aligned memory structures. */
7832 struct extraction_insn insn
;
7833 unsigned int inner_size
;
7834 if (GET_MODE_BITSIZE (inner_mode
).is_constant (&inner_size
)
7835 && get_best_reg_extraction_insn (&insn
, pattern
, inner_size
, mode
))
7837 wanted_inner_reg_mode
= insn
.struct_mode
.require ();
7838 pos_mode
= insn
.pos_mode
;
7839 extraction_mode
= insn
.field_mode
;
7842 /* Never narrow an object, since that might not be safe. */
7844 if (mode
!= VOIDmode
7845 && partial_subreg_p (extraction_mode
, mode
))
7846 extraction_mode
= mode
;
7848 /* Punt if len is too large for extraction_mode. */
7849 if (maybe_gt (len
, GET_MODE_PRECISION (extraction_mode
)))
7853 wanted_inner_mode
= wanted_inner_reg_mode
;
7856 /* Be careful not to go beyond the extracted object and maintain the
7857 natural alignment of the memory. */
7858 wanted_inner_mode
= smallest_int_mode_for_size (len
);
7859 while (pos
% GET_MODE_BITSIZE (wanted_inner_mode
) + len
7860 > GET_MODE_BITSIZE (wanted_inner_mode
))
7861 wanted_inner_mode
= GET_MODE_WIDER_MODE (wanted_inner_mode
).require ();
7866 if (BITS_BIG_ENDIAN
)
7868 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7869 BITS_BIG_ENDIAN style. If position is constant, compute new
7870 position. Otherwise, build subtraction.
7871 Note that POS is relative to the mode of the original argument.
7872 If it's a MEM we need to recompute POS relative to that.
7873 However, if we're extracting from (or inserting into) a register,
7874 we want to recompute POS relative to wanted_inner_mode. */
7877 width
= GET_MODE_BITSIZE (wanted_inner_mode
);
7878 else if (!GET_MODE_BITSIZE (is_mode
).is_constant (&width
))
7882 pos
= width
- len
- pos
;
7885 = gen_rtx_MINUS (GET_MODE (pos_rtx
),
7886 gen_int_mode (width
- len
, GET_MODE (pos_rtx
)),
7888 /* POS may be less than 0 now, but we check for that below.
7889 Note that it can only be less than 0 if !MEM_P (inner). */
7892 /* If INNER has a wider mode, and this is a constant extraction, try to
7893 make it smaller and adjust the byte to point to the byte containing
7895 if (wanted_inner_mode
!= VOIDmode
7896 && inner_mode
!= wanted_inner_mode
7898 && partial_subreg_p (wanted_inner_mode
, is_mode
)
7900 && ! mode_dependent_address_p (XEXP (inner
, 0), MEM_ADDR_SPACE (inner
))
7901 && ! MEM_VOLATILE_P (inner
))
7903 poly_int64 offset
= 0;
7905 /* The computations below will be correct if the machine is big
7906 endian in both bits and bytes or little endian in bits and bytes.
7907 If it is mixed, we must adjust. */
7909 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7910 adjust OFFSET to compensate. */
7911 if (BYTES_BIG_ENDIAN
7912 && paradoxical_subreg_p (is_mode
, inner_mode
))
7913 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
7915 /* We can now move to the desired byte. */
7916 offset
+= (pos
/ GET_MODE_BITSIZE (wanted_inner_mode
))
7917 * GET_MODE_SIZE (wanted_inner_mode
);
7918 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
7920 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
7921 && is_mode
!= wanted_inner_mode
)
7922 offset
= (GET_MODE_SIZE (is_mode
)
7923 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
7925 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
7928 /* If INNER is not memory, get it into the proper mode. If we are changing
7929 its mode, POS must be a constant and smaller than the size of the new
7931 else if (!MEM_P (inner
))
7933 /* On the LHS, don't create paradoxical subregs implicitely truncating
7934 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7936 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner
),
7940 if (GET_MODE (inner
) != wanted_inner_mode
7942 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
7948 inner
= force_to_mode (inner
, wanted_inner_mode
,
7950 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
7952 : (((HOST_WIDE_INT_1U
<< len
) - 1)
7957 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7958 have to zero extend. Otherwise, we can just use a SUBREG.
7960 We dealt with constant rtxes earlier, so pos_rtx cannot
7961 have VOIDmode at this point. */
7963 && (GET_MODE_SIZE (pos_mode
)
7964 > GET_MODE_SIZE (as_a
<scalar_int_mode
> (GET_MODE (pos_rtx
)))))
7966 rtx temp
= simplify_gen_unary (ZERO_EXTEND
, pos_mode
, pos_rtx
,
7967 GET_MODE (pos_rtx
));
7969 /* If we know that no extraneous bits are set, and that the high
7970 bit is not set, convert extraction to cheaper one - either
7971 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7973 if (flag_expensive_optimizations
7974 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx
))
7975 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
7976 & ~(((unsigned HOST_WIDE_INT
)
7977 GET_MODE_MASK (GET_MODE (pos_rtx
)))
7981 rtx temp1
= simplify_gen_unary (SIGN_EXTEND
, pos_mode
, pos_rtx
,
7982 GET_MODE (pos_rtx
));
7984 /* Prefer ZERO_EXTENSION, since it gives more information to
7986 if (set_src_cost (temp1
, pos_mode
, optimize_this_for_speed_p
)
7987 < set_src_cost (temp
, pos_mode
, optimize_this_for_speed_p
))
7993 /* Make POS_RTX unless we already have it and it is correct. If we don't
7994 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7996 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
7997 pos_rtx
= orig_pos_rtx
;
7999 else if (pos_rtx
== 0)
8000 pos_rtx
= GEN_INT (pos
);
8002 /* Make the required operation. See if we can use existing rtx. */
8003 new_rtx
= gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
8004 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
8006 new_rtx
= gen_lowpart (mode
, new_rtx
);
8011 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
8012 can be commuted with any other operations in X. Return X without
8013 that shift if so. */
8016 extract_left_shift (scalar_int_mode mode
, rtx x
, int count
)
8018 enum rtx_code code
= GET_CODE (x
);
8024 /* This is the shift itself. If it is wide enough, we will return
8025 either the value being shifted if the shift count is equal to
8026 COUNT or a shift for the difference. */
8027 if (CONST_INT_P (XEXP (x
, 1))
8028 && INTVAL (XEXP (x
, 1)) >= count
)
8029 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
8030 INTVAL (XEXP (x
, 1)) - count
);
8034 if ((tem
= extract_left_shift (mode
, XEXP (x
, 0), count
)) != 0)
8035 return simplify_gen_unary (code
, mode
, tem
, mode
);
8039 case PLUS
: case IOR
: case XOR
: case AND
:
8040 /* If we can safely shift this constant and we find the inner shift,
8041 make a new operation. */
8042 if (CONST_INT_P (XEXP (x
, 1))
8043 && (UINTVAL (XEXP (x
, 1))
8044 & (((HOST_WIDE_INT_1U
<< count
)) - 1)) == 0
8045 && (tem
= extract_left_shift (mode
, XEXP (x
, 0), count
)) != 0)
8047 HOST_WIDE_INT val
= INTVAL (XEXP (x
, 1)) >> count
;
8048 return simplify_gen_binary (code
, mode
, tem
,
8049 gen_int_mode (val
, mode
));
8060 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
8061 level of the expression and MODE is its mode. IN_CODE is as for
8062 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
8063 that should be used when recursing on operands of *X_PTR.
8065 There are two possible actions:
8067 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
8068 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
8070 - Return a new rtx, which the caller returns directly. */
8073 make_compound_operation_int (scalar_int_mode mode
, rtx
*x_ptr
,
8074 enum rtx_code in_code
,
8075 enum rtx_code
*next_code_ptr
)
8078 enum rtx_code next_code
= *next_code_ptr
;
8079 enum rtx_code code
= GET_CODE (x
);
8080 int mode_width
= GET_MODE_PRECISION (mode
);
8085 scalar_int_mode inner_mode
;
8086 bool equality_comparison
= false;
8090 equality_comparison
= true;
8094 /* Process depending on the code of this operation. If NEW is set
8095 nonzero, it will be returned. */
8100 /* Convert shifts by constants into multiplications if inside
8102 if (in_code
== MEM
&& CONST_INT_P (XEXP (x
, 1))
8103 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
8104 && INTVAL (XEXP (x
, 1)) >= 0)
8106 HOST_WIDE_INT count
= INTVAL (XEXP (x
, 1));
8107 HOST_WIDE_INT multval
= HOST_WIDE_INT_1
<< count
;
8109 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8110 if (GET_CODE (new_rtx
) == NEG
)
8112 new_rtx
= XEXP (new_rtx
, 0);
8115 multval
= trunc_int_for_mode (multval
, mode
);
8116 new_rtx
= gen_rtx_MULT (mode
, new_rtx
, gen_int_mode (multval
, mode
));
8123 lhs
= make_compound_operation (lhs
, next_code
);
8124 rhs
= make_compound_operation (rhs
, next_code
);
8125 if (GET_CODE (lhs
) == MULT
&& GET_CODE (XEXP (lhs
, 0)) == NEG
)
8127 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (lhs
, 0), 0),
8129 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
8131 else if (GET_CODE (lhs
) == MULT
8132 && (CONST_INT_P (XEXP (lhs
, 1)) && INTVAL (XEXP (lhs
, 1)) < 0))
8134 tem
= simplify_gen_binary (MULT
, mode
, XEXP (lhs
, 0),
8135 simplify_gen_unary (NEG
, mode
,
8138 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
8142 SUBST (XEXP (x
, 0), lhs
);
8143 SUBST (XEXP (x
, 1), rhs
);
8145 maybe_swap_commutative_operands (x
);
8151 lhs
= make_compound_operation (lhs
, next_code
);
8152 rhs
= make_compound_operation (rhs
, next_code
);
8153 if (GET_CODE (rhs
) == MULT
&& GET_CODE (XEXP (rhs
, 0)) == NEG
)
8155 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (rhs
, 0), 0),
8157 return simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
8159 else if (GET_CODE (rhs
) == MULT
8160 && (CONST_INT_P (XEXP (rhs
, 1)) && INTVAL (XEXP (rhs
, 1)) < 0))
8162 tem
= simplify_gen_binary (MULT
, mode
, XEXP (rhs
, 0),
8163 simplify_gen_unary (NEG
, mode
,
8166 return simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
8170 SUBST (XEXP (x
, 0), lhs
);
8171 SUBST (XEXP (x
, 1), rhs
);
8176 /* If the second operand is not a constant, we can't do anything
8178 if (!CONST_INT_P (XEXP (x
, 1)))
8181 /* If the constant is a power of two minus one and the first operand
8182 is a logical right shift, make an extraction. */
8183 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8184 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8186 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
8187 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (XEXP (x
, 0), 1),
8188 i
, 1, 0, in_code
== COMPARE
);
8191 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8192 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
8193 && subreg_lowpart_p (XEXP (x
, 0))
8194 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (XEXP (x
, 0))),
8196 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
8197 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8199 rtx inner_x0
= SUBREG_REG (XEXP (x
, 0));
8200 new_rtx
= make_compound_operation (XEXP (inner_x0
, 0), next_code
);
8201 new_rtx
= make_extraction (inner_mode
, new_rtx
, 0,
8203 i
, 1, 0, in_code
== COMPARE
);
8205 /* If we narrowed the mode when dropping the subreg, then we lose. */
8206 if (GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (mode
))
8209 /* If that didn't give anything, see if the AND simplifies on
8211 if (!new_rtx
&& i
>= 0)
8213 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8214 new_rtx
= make_extraction (mode
, new_rtx
, 0, NULL_RTX
, i
, 1,
8215 0, in_code
== COMPARE
);
8218 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8219 else if ((GET_CODE (XEXP (x
, 0)) == XOR
8220 || GET_CODE (XEXP (x
, 0)) == IOR
)
8221 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
8222 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
8223 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8225 /* Apply the distributive law, and then try to make extractions. */
8226 new_rtx
= gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
8227 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
8229 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
8231 new_rtx
= make_compound_operation (new_rtx
, in_code
);
8234 /* If we are have (and (rotate X C) M) and C is larger than the number
8235 of bits in M, this is an extraction. */
8237 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
8238 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8239 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0
8240 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
8242 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
8243 new_rtx
= make_extraction (mode
, new_rtx
,
8244 (GET_MODE_PRECISION (mode
)
8245 - INTVAL (XEXP (XEXP (x
, 0), 1))),
8246 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
8249 /* On machines without logical shifts, if the operand of the AND is
8250 a logical shift and our mask turns off all the propagated sign
8251 bits, we can replace the logical shift with an arithmetic shift. */
8252 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8253 && !have_insn_for (LSHIFTRT
, mode
)
8254 && have_insn_for (ASHIFTRT
, mode
)
8255 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8256 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8257 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8258 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
8260 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
8262 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
8263 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
8265 gen_rtx_ASHIFTRT (mode
,
8266 make_compound_operation (XEXP (XEXP (x
,
8270 XEXP (XEXP (x
, 0), 1)));
8273 /* If the constant is one less than a power of two, this might be
8274 representable by an extraction even if no shift is present.
8275 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8276 we are in a COMPARE. */
8277 else if ((i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
8278 new_rtx
= make_extraction (mode
,
8279 make_compound_operation (XEXP (x
, 0),
8281 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
8283 /* If we are in a comparison and this is an AND with a power of two,
8284 convert this into the appropriate bit extract. */
8285 else if (in_code
== COMPARE
8286 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
8287 && (equality_comparison
|| i
< GET_MODE_PRECISION (mode
) - 1))
8288 new_rtx
= make_extraction (mode
,
8289 make_compound_operation (XEXP (x
, 0),
8291 i
, NULL_RTX
, 1, 1, 0, 1);
8293 /* If the one operand is a paradoxical subreg of a register or memory and
8294 the constant (limited to the smaller mode) has only zero bits where
8295 the sub expression has known zero bits, this can be expressed as
8297 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
)
8301 sub
= XEXP (XEXP (x
, 0), 0);
8302 machine_mode sub_mode
= GET_MODE (sub
);
8304 if ((REG_P (sub
) || MEM_P (sub
))
8305 && GET_MODE_PRECISION (sub_mode
).is_constant (&sub_width
)
8306 && sub_width
< mode_width
)
8308 unsigned HOST_WIDE_INT mode_mask
= GET_MODE_MASK (sub_mode
);
8309 unsigned HOST_WIDE_INT mask
;
8311 /* original AND constant with all the known zero bits set */
8312 mask
= UINTVAL (XEXP (x
, 1)) | (~nonzero_bits (sub
, sub_mode
));
8313 if ((mask
& mode_mask
) == mode_mask
)
8315 new_rtx
= make_compound_operation (sub
, next_code
);
8316 new_rtx
= make_extraction (mode
, new_rtx
, 0, 0, sub_width
,
8317 1, 0, in_code
== COMPARE
);
8325 /* If the sign bit is known to be zero, replace this with an
8326 arithmetic shift. */
8327 if (have_insn_for (ASHIFTRT
, mode
)
8328 && ! have_insn_for (LSHIFTRT
, mode
)
8329 && mode_width
<= HOST_BITS_PER_WIDE_INT
8330 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
8332 new_rtx
= gen_rtx_ASHIFTRT (mode
,
8333 make_compound_operation (XEXP (x
, 0),
8345 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8346 this is a SIGN_EXTRACT. */
8347 if (CONST_INT_P (rhs
)
8348 && GET_CODE (lhs
) == ASHIFT
8349 && CONST_INT_P (XEXP (lhs
, 1))
8350 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1))
8351 && INTVAL (XEXP (lhs
, 1)) >= 0
8352 && INTVAL (rhs
) < mode_width
)
8354 new_rtx
= make_compound_operation (XEXP (lhs
, 0), next_code
);
8355 new_rtx
= make_extraction (mode
, new_rtx
,
8356 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
8357 NULL_RTX
, mode_width
- INTVAL (rhs
),
8358 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
8362 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8363 If so, try to merge the shifts into a SIGN_EXTEND. We could
8364 also do this for some cases of SIGN_EXTRACT, but it doesn't
8365 seem worth the effort; the case checked for occurs on Alpha. */
8368 && ! (GET_CODE (lhs
) == SUBREG
8369 && (OBJECT_P (SUBREG_REG (lhs
))))
8370 && CONST_INT_P (rhs
)
8371 && INTVAL (rhs
) >= 0
8372 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
8373 && INTVAL (rhs
) < mode_width
8374 && (new_rtx
= extract_left_shift (mode
, lhs
, INTVAL (rhs
))) != 0)
8375 new_rtx
= make_extraction (mode
, make_compound_operation (new_rtx
,
8377 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
8378 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
8383 /* Call ourselves recursively on the inner expression. If we are
8384 narrowing the object and it has a different RTL code from
8385 what it originally did, do this SUBREG as a force_to_mode. */
8387 rtx inner
= SUBREG_REG (x
), simplified
;
8388 enum rtx_code subreg_code
= in_code
;
8390 /* If the SUBREG is masking of a logical right shift,
8391 make an extraction. */
8392 if (GET_CODE (inner
) == LSHIFTRT
8393 && is_a
<scalar_int_mode
> (GET_MODE (inner
), &inner_mode
)
8394 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (inner_mode
)
8395 && CONST_INT_P (XEXP (inner
, 1))
8396 && UINTVAL (XEXP (inner
, 1)) < GET_MODE_PRECISION (inner_mode
)
8397 && subreg_lowpart_p (x
))
8399 new_rtx
= make_compound_operation (XEXP (inner
, 0), next_code
);
8400 int width
= GET_MODE_PRECISION (inner_mode
)
8401 - INTVAL (XEXP (inner
, 1));
8402 if (width
> mode_width
)
8404 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (inner
, 1),
8405 width
, 1, 0, in_code
== COMPARE
);
8409 /* If in_code is COMPARE, it isn't always safe to pass it through
8410 to the recursive make_compound_operation call. */
8411 if (subreg_code
== COMPARE
8412 && (!subreg_lowpart_p (x
)
8413 || GET_CODE (inner
) == SUBREG
8414 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8415 is (const_int 0), rather than
8416 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8417 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8418 for non-equality comparisons against 0 is not equivalent
8419 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8420 || (GET_CODE (inner
) == AND
8421 && CONST_INT_P (XEXP (inner
, 1))
8422 && partial_subreg_p (x
)
8423 && exact_log2 (UINTVAL (XEXP (inner
, 1)))
8424 >= GET_MODE_BITSIZE (mode
) - 1)))
8427 tem
= make_compound_operation (inner
, subreg_code
);
8430 = simplify_subreg (mode
, tem
, GET_MODE (inner
), SUBREG_BYTE (x
));
8434 if (GET_CODE (tem
) != GET_CODE (inner
)
8435 && partial_subreg_p (x
)
8436 && subreg_lowpart_p (x
))
8439 = force_to_mode (tem
, mode
, HOST_WIDE_INT_M1U
, 0);
8441 /* If we have something other than a SUBREG, we might have
8442 done an expansion, so rerun ourselves. */
8443 if (GET_CODE (newer
) != SUBREG
)
8444 newer
= make_compound_operation (newer
, in_code
);
8446 /* force_to_mode can expand compounds. If it just re-expanded
8447 the compound, use gen_lowpart to convert to the desired
8449 if (rtx_equal_p (newer
, x
)
8450 /* Likewise if it re-expanded the compound only partially.
8451 This happens for SUBREG of ZERO_EXTRACT if they extract
8452 the same number of bits. */
8453 || (GET_CODE (newer
) == SUBREG
8454 && (GET_CODE (SUBREG_REG (newer
)) == LSHIFTRT
8455 || GET_CODE (SUBREG_REG (newer
)) == ASHIFTRT
)
8456 && GET_CODE (inner
) == AND
8457 && rtx_equal_p (SUBREG_REG (newer
), XEXP (inner
, 0))))
8458 return gen_lowpart (GET_MODE (x
), tem
);
8473 *x_ptr
= gen_lowpart (mode
, new_rtx
);
8474 *next_code_ptr
= next_code
;
8478 /* Look at the expression rooted at X. Look for expressions
8479 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8480 Form these expressions.
8482 Return the new rtx, usually just X.
8484 Also, for machines like the VAX that don't have logical shift insns,
8485 try to convert logical to arithmetic shift operations in cases where
8486 they are equivalent. This undoes the canonicalizations to logical
8487 shifts done elsewhere.
8489 We try, as much as possible, to re-use rtl expressions to save memory.
8491 IN_CODE says what kind of expression we are processing. Normally, it is
8492 SET. In a memory address it is MEM. When processing the arguments of
8493 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8494 precisely it is an equality comparison against zero. */
8497 make_compound_operation (rtx x
, enum rtx_code in_code
)
8499 enum rtx_code code
= GET_CODE (x
);
8502 enum rtx_code next_code
;
8505 /* Select the code to be used in recursive calls. Once we are inside an
8506 address, we stay there. If we have a comparison, set to COMPARE,
8507 but once inside, go back to our default of SET. */
8509 next_code
= (code
== MEM
? MEM
8510 : ((code
== COMPARE
|| COMPARISON_P (x
))
8511 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
8512 : in_code
== COMPARE
|| in_code
== EQ
? SET
: in_code
);
8514 scalar_int_mode mode
;
8515 if (is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
8517 rtx new_rtx
= make_compound_operation_int (mode
, &x
, in_code
,
8521 code
= GET_CODE (x
);
8524 /* Now recursively process each operand of this operation. We need to
8525 handle ZERO_EXTEND specially so that we don't lose track of the
8527 if (code
== ZERO_EXTEND
)
8529 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
8530 tem
= simplify_const_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
8531 new_rtx
, GET_MODE (XEXP (x
, 0)));
8534 SUBST (XEXP (x
, 0), new_rtx
);
8538 fmt
= GET_RTX_FORMAT (code
);
8539 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
8542 new_rtx
= make_compound_operation (XEXP (x
, i
), next_code
);
8543 SUBST (XEXP (x
, i
), new_rtx
);
8545 else if (fmt
[i
] == 'E')
8546 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8548 new_rtx
= make_compound_operation (XVECEXP (x
, i
, j
), next_code
);
8549 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
8552 maybe_swap_commutative_operands (x
);
8556 /* Given M see if it is a value that would select a field of bits
8557 within an item, but not the entire word. Return -1 if not.
8558 Otherwise, return the starting position of the field, where 0 is the
8561 *PLEN is set to the length of the field. */
8564 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
8566 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8567 int pos
= m
? ctz_hwi (m
) : -1;
8571 /* Now shift off the low-order zero bits and see if we have a
8572 power of two minus 1. */
8573 len
= exact_log2 ((m
>> pos
) + 1);
8582 /* If X refers to a register that equals REG in value, replace these
8583 references with REG. */
8585 canon_reg_for_combine (rtx x
, rtx reg
)
8592 enum rtx_code code
= GET_CODE (x
);
8593 switch (GET_RTX_CLASS (code
))
8596 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8597 if (op0
!= XEXP (x
, 0))
8598 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
), op0
,
8603 case RTX_COMM_ARITH
:
8604 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8605 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8606 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8607 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
8611 case RTX_COMM_COMPARE
:
8612 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8613 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8614 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8615 return simplify_gen_relational (GET_CODE (x
), GET_MODE (x
),
8616 GET_MODE (op0
), op0
, op1
);
8620 case RTX_BITFIELD_OPS
:
8621 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
8622 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
8623 op2
= canon_reg_for_combine (XEXP (x
, 2), reg
);
8624 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1) || op2
!= XEXP (x
, 2))
8625 return simplify_gen_ternary (GET_CODE (x
), GET_MODE (x
),
8626 GET_MODE (op0
), op0
, op1
, op2
);
8632 if (rtx_equal_p (get_last_value (reg
), x
)
8633 || rtx_equal_p (reg
, get_last_value (x
)))
8642 fmt
= GET_RTX_FORMAT (code
);
8644 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8647 rtx op
= canon_reg_for_combine (XEXP (x
, i
), reg
);
8648 if (op
!= XEXP (x
, i
))
8658 else if (fmt
[i
] == 'E')
8661 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8663 rtx op
= canon_reg_for_combine (XVECEXP (x
, i
, j
), reg
);
8664 if (op
!= XVECEXP (x
, i
, j
))
8671 XVECEXP (x
, i
, j
) = op
;
8682 /* Return X converted to MODE. If the value is already truncated to
8683 MODE we can just return a subreg even though in the general case we
8684 would need an explicit truncation. */
8687 gen_lowpart_or_truncate (machine_mode mode
, rtx x
)
8689 if (!CONST_INT_P (x
)
8690 && partial_subreg_p (mode
, GET_MODE (x
))
8691 && !TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
))
8692 && !(REG_P (x
) && reg_truncated_to_mode (mode
, x
)))
8694 /* Bit-cast X into an integer mode. */
8695 if (!SCALAR_INT_MODE_P (GET_MODE (x
)))
8696 x
= gen_lowpart (int_mode_for_mode (GET_MODE (x
)).require (), x
);
8697 x
= simplify_gen_unary (TRUNCATE
, int_mode_for_mode (mode
).require (),
8701 return gen_lowpart (mode
, x
);
8704 /* See if X can be simplified knowing that we will only refer to it in
8705 MODE and will only refer to those bits that are nonzero in MASK.
8706 If other bits are being computed or if masking operations are done
8707 that select a superset of the bits in MASK, they can sometimes be
8710 Return a possibly simplified expression, but always convert X to
8711 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8713 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8714 are all off in X. This is used when X will be complemented, by either
8715 NOT, NEG, or XOR. */
8718 force_to_mode (rtx x
, machine_mode mode
, unsigned HOST_WIDE_INT mask
,
8721 enum rtx_code code
= GET_CODE (x
);
8722 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8723 machine_mode op_mode
;
8724 unsigned HOST_WIDE_INT nonzero
;
8726 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8727 code below will do the wrong thing since the mode of such an
8728 expression is VOIDmode.
8730 Also do nothing if X is a CLOBBER; this can happen if X was
8731 the return value from a call to gen_lowpart. */
8732 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
8735 /* We want to perform the operation in its present mode unless we know
8736 that the operation is valid in MODE, in which case we do the operation
8738 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
8739 && have_insn_for (code
, mode
))
8740 ? mode
: GET_MODE (x
));
8742 /* It is not valid to do a right-shift in a narrower mode
8743 than the one it came in with. */
8744 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
8745 && partial_subreg_p (mode
, GET_MODE (x
)))
8746 op_mode
= GET_MODE (x
);
8748 /* Truncate MASK to fit OP_MODE. */
8750 mask
&= GET_MODE_MASK (op_mode
);
8752 /* Determine what bits of X are guaranteed to be (non)zero. */
8753 nonzero
= nonzero_bits (x
, mode
);
8755 /* If none of the bits in X are needed, return a zero. */
8756 if (!just_select
&& (nonzero
& mask
) == 0 && !side_effects_p (x
))
8759 /* If X is a CONST_INT, return a new one. Do this here since the
8760 test below will fail. */
8761 if (CONST_INT_P (x
))
8763 if (SCALAR_INT_MODE_P (mode
))
8764 return gen_int_mode (INTVAL (x
) & mask
, mode
);
8767 x
= GEN_INT (INTVAL (x
) & mask
);
8768 return gen_lowpart_common (mode
, x
);
8772 /* If X is narrower than MODE and we want all the bits in X's mode, just
8773 get X in the proper mode. */
8774 if (paradoxical_subreg_p (mode
, GET_MODE (x
))
8775 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
8776 return gen_lowpart (mode
, x
);
8778 /* We can ignore the effect of a SUBREG if it narrows the mode or
8779 if the constant masks to zero all the bits the mode doesn't have. */
8780 if (GET_CODE (x
) == SUBREG
8781 && subreg_lowpart_p (x
)
8782 && (partial_subreg_p (x
)
8784 & GET_MODE_MASK (GET_MODE (x
))
8785 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))) == 0))
8786 return force_to_mode (SUBREG_REG (x
), mode
, mask
, next_select
);
8788 scalar_int_mode int_mode
, xmode
;
8789 if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
8790 && is_a
<scalar_int_mode
> (GET_MODE (x
), &xmode
))
8791 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8793 return force_int_to_mode (x
, int_mode
, xmode
,
8794 as_a
<scalar_int_mode
> (op_mode
),
8797 return gen_lowpart_or_truncate (mode
, x
);
8800 /* Subroutine of force_to_mode that handles cases in which both X and
8801 the result are scalar integers. MODE is the mode of the result,
8802 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8803 is preferred for simplified versions of X. The other arguments
8804 are as for force_to_mode. */
8807 force_int_to_mode (rtx x
, scalar_int_mode mode
, scalar_int_mode xmode
,
8808 scalar_int_mode op_mode
, unsigned HOST_WIDE_INT mask
,
8811 enum rtx_code code
= GET_CODE (x
);
8812 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8813 unsigned HOST_WIDE_INT fuller_mask
;
8815 poly_int64 const_op0
;
8817 /* When we have an arithmetic operation, or a shift whose count we
8818 do not know, we need to assume that all bits up to the highest-order
8819 bit in MASK will be needed. This is how we form such a mask. */
8820 if (mask
& (HOST_WIDE_INT_1U
<< (HOST_BITS_PER_WIDE_INT
- 1)))
8821 fuller_mask
= HOST_WIDE_INT_M1U
;
8823 fuller_mask
= ((HOST_WIDE_INT_1U
<< (floor_log2 (mask
) + 1))
8829 /* If X is a (clobber (const_int)), return it since we know we are
8830 generating something that won't match. */
8837 x
= expand_compound_operation (x
);
8838 if (GET_CODE (x
) != code
)
8839 return force_to_mode (x
, mode
, mask
, next_select
);
8843 /* Similarly for a truncate. */
8844 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8847 /* If this is an AND with a constant, convert it into an AND
8848 whose constant is the AND of that constant with MASK. If it
8849 remains an AND of MASK, delete it since it is redundant. */
8851 if (CONST_INT_P (XEXP (x
, 1)))
8853 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
8854 mask
& INTVAL (XEXP (x
, 1)));
8857 /* If X is still an AND, see if it is an AND with a mask that
8858 is just some low-order bits. If so, and it is MASK, we don't
8861 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8862 && (INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (xmode
)) == mask
)
8865 /* If it remains an AND, try making another AND with the bits
8866 in the mode mask that aren't in MASK turned on. If the
8867 constant in the AND is wide enough, this might make a
8868 cheaper constant. */
8870 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8871 && GET_MODE_MASK (xmode
) != mask
8872 && HWI_COMPUTABLE_MODE_P (xmode
))
8874 unsigned HOST_WIDE_INT cval
8875 = UINTVAL (XEXP (x
, 1)) | (GET_MODE_MASK (xmode
) & ~mask
);
8878 y
= simplify_gen_binary (AND
, xmode
, XEXP (x
, 0),
8879 gen_int_mode (cval
, xmode
));
8880 if (set_src_cost (y
, xmode
, optimize_this_for_speed_p
)
8881 < set_src_cost (x
, xmode
, optimize_this_for_speed_p
))
8891 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8892 low-order bits (as in an alignment operation) and FOO is already
8893 aligned to that boundary, mask C1 to that boundary as well.
8894 This may eliminate that PLUS and, later, the AND. */
8897 unsigned int width
= GET_MODE_PRECISION (mode
);
8898 unsigned HOST_WIDE_INT smask
= mask
;
8900 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8901 number, sign extend it. */
8903 if (width
< HOST_BITS_PER_WIDE_INT
8904 && (smask
& (HOST_WIDE_INT_1U
<< (width
- 1))) != 0)
8905 smask
|= HOST_WIDE_INT_M1U
<< width
;
8907 if (CONST_INT_P (XEXP (x
, 1))
8908 && pow2p_hwi (- smask
)
8909 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
8910 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
8911 return force_to_mode (plus_constant (xmode
, XEXP (x
, 0),
8912 (INTVAL (XEXP (x
, 1)) & smask
)),
8913 mode
, smask
, next_select
);
8919 /* Substituting into the operands of a widening MULT is not likely to
8920 create RTL matching a machine insn. */
8922 && (GET_CODE (XEXP (x
, 0)) == ZERO_EXTEND
8923 || GET_CODE (XEXP (x
, 0)) == SIGN_EXTEND
)
8924 && (GET_CODE (XEXP (x
, 1)) == ZERO_EXTEND
8925 || GET_CODE (XEXP (x
, 1)) == SIGN_EXTEND
)
8926 && REG_P (XEXP (XEXP (x
, 0), 0))
8927 && REG_P (XEXP (XEXP (x
, 1), 0)))
8928 return gen_lowpart_or_truncate (mode
, x
);
8930 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8931 most significant bit in MASK since carries from those bits will
8932 affect the bits we are interested in. */
8937 /* If X is (minus C Y) where C's least set bit is larger than any bit
8938 in the mask, then we may replace with (neg Y). */
8939 if (poly_int_rtx_p (XEXP (x
, 0), &const_op0
)
8940 && known_alignment (poly_uint64 (const_op0
)) > mask
)
8942 x
= simplify_gen_unary (NEG
, xmode
, XEXP (x
, 1), xmode
);
8943 return force_to_mode (x
, mode
, mask
, next_select
);
8946 /* Similarly, if C contains every bit in the fuller_mask, then we may
8947 replace with (not Y). */
8948 if (CONST_INT_P (XEXP (x
, 0))
8949 && ((UINTVAL (XEXP (x
, 0)) | fuller_mask
) == UINTVAL (XEXP (x
, 0))))
8951 x
= simplify_gen_unary (NOT
, xmode
, XEXP (x
, 1), xmode
);
8952 return force_to_mode (x
, mode
, mask
, next_select
);
8960 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8961 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8962 operation which may be a bitfield extraction. Ensure that the
8963 constant we form is not wider than the mode of X. */
8965 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8966 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8967 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8968 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8969 && CONST_INT_P (XEXP (x
, 1))
8970 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
8971 + floor_log2 (INTVAL (XEXP (x
, 1))))
8972 < GET_MODE_PRECISION (xmode
))
8973 && (UINTVAL (XEXP (x
, 1))
8974 & ~nonzero_bits (XEXP (x
, 0), xmode
)) == 0)
8976 temp
= gen_int_mode ((INTVAL (XEXP (x
, 1)) & mask
)
8977 << INTVAL (XEXP (XEXP (x
, 0), 1)),
8979 temp
= simplify_gen_binary (GET_CODE (x
), xmode
,
8980 XEXP (XEXP (x
, 0), 0), temp
);
8981 x
= simplify_gen_binary (LSHIFTRT
, xmode
, temp
,
8982 XEXP (XEXP (x
, 0), 1));
8983 return force_to_mode (x
, mode
, mask
, next_select
);
8987 /* For most binary operations, just propagate into the operation and
8988 change the mode if we have an operation of that mode. */
8990 op0
= force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8991 op1
= force_to_mode (XEXP (x
, 1), mode
, mask
, next_select
);
8993 /* If we ended up truncating both operands, truncate the result of the
8994 operation instead. */
8995 if (GET_CODE (op0
) == TRUNCATE
8996 && GET_CODE (op1
) == TRUNCATE
)
8998 op0
= XEXP (op0
, 0);
8999 op1
= XEXP (op1
, 0);
9002 op0
= gen_lowpart_or_truncate (op_mode
, op0
);
9003 op1
= gen_lowpart_or_truncate (op_mode
, op1
);
9005 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
9007 x
= simplify_gen_binary (code
, op_mode
, op0
, op1
);
9013 /* For left shifts, do the same, but just for the first operand.
9014 However, we cannot do anything with shifts where we cannot
9015 guarantee that the counts are smaller than the size of the mode
9016 because such a count will have a different meaning in a
9019 if (! (CONST_INT_P (XEXP (x
, 1))
9020 && INTVAL (XEXP (x
, 1)) >= 0
9021 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (mode
))
9022 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
9023 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
9024 < (unsigned HOST_WIDE_INT
) GET_MODE_PRECISION (mode
))))
9027 /* If the shift count is a constant and we can do arithmetic in
9028 the mode of the shift, refine which bits we need. Otherwise, use the
9029 conservative form of the mask. */
9030 if (CONST_INT_P (XEXP (x
, 1))
9031 && INTVAL (XEXP (x
, 1)) >= 0
9032 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (op_mode
)
9033 && HWI_COMPUTABLE_MODE_P (op_mode
))
9034 mask
>>= INTVAL (XEXP (x
, 1));
9038 op0
= gen_lowpart_or_truncate (op_mode
,
9039 force_to_mode (XEXP (x
, 0), mode
,
9040 mask
, next_select
));
9042 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0))
9044 x
= simplify_gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
9050 /* Here we can only do something if the shift count is a constant,
9051 this shift constant is valid for the host, and we can do arithmetic
9054 if (CONST_INT_P (XEXP (x
, 1))
9055 && INTVAL (XEXP (x
, 1)) >= 0
9056 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
9057 && HWI_COMPUTABLE_MODE_P (op_mode
))
9059 rtx inner
= XEXP (x
, 0);
9060 unsigned HOST_WIDE_INT inner_mask
;
9062 /* Select the mask of the bits we need for the shift operand. */
9063 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
9065 /* We can only change the mode of the shift if we can do arithmetic
9066 in the mode of the shift and INNER_MASK is no wider than the
9067 width of X's mode. */
9068 if ((inner_mask
& ~GET_MODE_MASK (xmode
)) != 0)
9071 inner
= force_to_mode (inner
, op_mode
, inner_mask
, next_select
);
9073 if (xmode
!= op_mode
|| inner
!= XEXP (x
, 0))
9075 x
= simplify_gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
9080 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
9081 shift and AND produces only copies of the sign bit (C2 is one less
9082 than a power of two), we can do this with just a shift. */
9084 if (GET_CODE (x
) == LSHIFTRT
9085 && CONST_INT_P (XEXP (x
, 1))
9086 /* The shift puts one of the sign bit copies in the least significant
9088 && ((INTVAL (XEXP (x
, 1))
9089 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
9090 >= GET_MODE_PRECISION (xmode
))
9091 && pow2p_hwi (mask
+ 1)
9092 /* Number of bits left after the shift must be more than the mask
9094 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
9095 <= GET_MODE_PRECISION (xmode
))
9096 /* Must be more sign bit copies than the mask needs. */
9097 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
9098 >= exact_log2 (mask
+ 1)))
9100 int nbits
= GET_MODE_PRECISION (xmode
) - exact_log2 (mask
+ 1);
9101 x
= simplify_gen_binary (LSHIFTRT
, xmode
, XEXP (x
, 0),
9102 gen_int_shift_amount (xmode
, nbits
));
9107 /* If we are just looking for the sign bit, we don't need this shift at
9108 all, even if it has a variable count. */
9109 if (val_signbit_p (xmode
, mask
))
9110 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
9112 /* If this is a shift by a constant, get a mask that contains those bits
9113 that are not copies of the sign bit. We then have two cases: If
9114 MASK only includes those bits, this can be a logical shift, which may
9115 allow simplifications. If MASK is a single-bit field not within
9116 those bits, we are requesting a copy of the sign bit and hence can
9117 shift the sign bit to the appropriate location. */
9119 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0
9120 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
9122 unsigned HOST_WIDE_INT nonzero
;
9125 /* If the considered data is wider than HOST_WIDE_INT, we can't
9126 represent a mask for all its bits in a single scalar.
9127 But we only care about the lower bits, so calculate these. */
9129 if (GET_MODE_PRECISION (xmode
) > HOST_BITS_PER_WIDE_INT
)
9131 nonzero
= HOST_WIDE_INT_M1U
;
9133 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
9134 is the number of bits a full-width mask would have set.
9135 We need only shift if these are fewer than nonzero can
9136 hold. If not, we must keep all bits set in nonzero. */
9138 if (GET_MODE_PRECISION (xmode
) - INTVAL (XEXP (x
, 1))
9139 < HOST_BITS_PER_WIDE_INT
)
9140 nonzero
>>= INTVAL (XEXP (x
, 1))
9141 + HOST_BITS_PER_WIDE_INT
9142 - GET_MODE_PRECISION (xmode
);
9146 nonzero
= GET_MODE_MASK (xmode
);
9147 nonzero
>>= INTVAL (XEXP (x
, 1));
9150 if ((mask
& ~nonzero
) == 0)
9152 x
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, xmode
,
9153 XEXP (x
, 0), INTVAL (XEXP (x
, 1)));
9154 if (GET_CODE (x
) != ASHIFTRT
)
9155 return force_to_mode (x
, mode
, mask
, next_select
);
9158 else if ((i
= exact_log2 (mask
)) >= 0)
9160 x
= simplify_shift_const
9161 (NULL_RTX
, LSHIFTRT
, xmode
, XEXP (x
, 0),
9162 GET_MODE_PRECISION (xmode
) - 1 - i
);
9164 if (GET_CODE (x
) != ASHIFTRT
)
9165 return force_to_mode (x
, mode
, mask
, next_select
);
9169 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9170 even if the shift count isn't a constant. */
9172 x
= simplify_gen_binary (LSHIFTRT
, xmode
, XEXP (x
, 0), XEXP (x
, 1));
9176 /* If this is a zero- or sign-extension operation that just affects bits
9177 we don't care about, remove it. Be sure the call above returned
9178 something that is still a shift. */
9180 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
9181 && CONST_INT_P (XEXP (x
, 1))
9182 && INTVAL (XEXP (x
, 1)) >= 0
9183 && (INTVAL (XEXP (x
, 1))
9184 <= GET_MODE_PRECISION (xmode
) - (floor_log2 (mask
) + 1))
9185 && GET_CODE (XEXP (x
, 0)) == ASHIFT
9186 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
9187 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
9194 /* If the shift count is constant and we can do computations
9195 in the mode of X, compute where the bits we care about are.
9196 Otherwise, we can't do anything. Don't change the mode of
9197 the shift or propagate MODE into the shift, though. */
9198 if (CONST_INT_P (XEXP (x
, 1))
9199 && INTVAL (XEXP (x
, 1)) >= 0)
9201 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
9202 xmode
, gen_int_mode (mask
, xmode
),
9204 if (temp
&& CONST_INT_P (temp
))
9205 x
= simplify_gen_binary (code
, xmode
,
9206 force_to_mode (XEXP (x
, 0), xmode
,
9207 INTVAL (temp
), next_select
),
9213 /* If we just want the low-order bit, the NEG isn't needed since it
9214 won't change the low-order bit. */
9216 return force_to_mode (XEXP (x
, 0), mode
, mask
, just_select
);
9218 /* We need any bits less significant than the most significant bit in
9219 MASK since carries from those bits will affect the bits we are
9225 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9226 same as the XOR case above. Ensure that the constant we form is not
9227 wider than the mode of X. */
9229 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
9230 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
9231 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
9232 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
9233 < GET_MODE_PRECISION (xmode
))
9234 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
9236 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)), xmode
);
9237 temp
= simplify_gen_binary (XOR
, xmode
, XEXP (XEXP (x
, 0), 0), temp
);
9238 x
= simplify_gen_binary (LSHIFTRT
, xmode
,
9239 temp
, XEXP (XEXP (x
, 0), 1));
9241 return force_to_mode (x
, mode
, mask
, next_select
);
9244 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9245 use the full mask inside the NOT. */
9249 op0
= gen_lowpart_or_truncate (op_mode
,
9250 force_to_mode (XEXP (x
, 0), mode
, mask
,
9252 if (op_mode
!= xmode
|| op0
!= XEXP (x
, 0))
9254 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
9260 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9261 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9262 which is equal to STORE_FLAG_VALUE. */
9263 if ((mask
& ~STORE_FLAG_VALUE
) == 0
9264 && XEXP (x
, 1) == const0_rtx
9265 && GET_MODE (XEXP (x
, 0)) == mode
9266 && pow2p_hwi (nonzero_bits (XEXP (x
, 0), mode
))
9267 && (nonzero_bits (XEXP (x
, 0), mode
)
9268 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
9269 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
9274 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9275 written in a narrower mode. We play it safe and do not do so. */
9277 op0
= gen_lowpart_or_truncate (xmode
,
9278 force_to_mode (XEXP (x
, 1), mode
,
9279 mask
, next_select
));
9280 op1
= gen_lowpart_or_truncate (xmode
,
9281 force_to_mode (XEXP (x
, 2), mode
,
9282 mask
, next_select
));
9283 if (op0
!= XEXP (x
, 1) || op1
!= XEXP (x
, 2))
9284 x
= simplify_gen_ternary (IF_THEN_ELSE
, xmode
,
9285 GET_MODE (XEXP (x
, 0)), XEXP (x
, 0),
9293 /* Ensure we return a value of the proper mode. */
9294 return gen_lowpart_or_truncate (mode
, x
);
9297 /* Return nonzero if X is an expression that has one of two values depending on
9298 whether some other value is zero or nonzero. In that case, we return the
9299 value that is being tested, *PTRUE is set to the value if the rtx being
9300 returned has a nonzero value, and *PFALSE is set to the other alternative.
9302 If we return zero, we set *PTRUE and *PFALSE to X. */
9305 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
9307 machine_mode mode
= GET_MODE (x
);
9308 enum rtx_code code
= GET_CODE (x
);
9309 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
9310 unsigned HOST_WIDE_INT nz
;
9311 scalar_int_mode int_mode
;
9313 /* If we are comparing a value against zero, we are done. */
9314 if ((code
== NE
|| code
== EQ
)
9315 && XEXP (x
, 1) == const0_rtx
)
9317 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
9318 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
9322 /* If this is a unary operation whose operand has one of two values, apply
9323 our opcode to compute those values. */
9324 else if (UNARY_P (x
)
9325 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
9327 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
9328 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
9329 GET_MODE (XEXP (x
, 0)));
9333 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9334 make can't possibly match and would suppress other optimizations. */
9335 else if (code
== COMPARE
)
9338 /* If this is a binary operation, see if either side has only one of two
9339 values. If either one does or if both do and they are conditional on
9340 the same value, compute the new true and false values. */
9341 else if (BINARY_P (x
))
9343 rtx op0
= XEXP (x
, 0);
9344 rtx op1
= XEXP (x
, 1);
9345 cond0
= if_then_else_cond (op0
, &true0
, &false0
);
9346 cond1
= if_then_else_cond (op1
, &true1
, &false1
);
9348 if ((cond0
!= 0 && cond1
!= 0 && !rtx_equal_p (cond0
, cond1
))
9349 && (REG_P (op0
) || REG_P (op1
)))
9351 /* Try to enable a simplification by undoing work done by
9352 if_then_else_cond if it converted a REG into something more
9357 true0
= false0
= op0
;
9362 true1
= false1
= op1
;
9366 if ((cond0
!= 0 || cond1
!= 0)
9367 && ! (cond0
!= 0 && cond1
!= 0 && !rtx_equal_p (cond0
, cond1
)))
9369 /* If if_then_else_cond returned zero, then true/false are the
9370 same rtl. We must copy one of them to prevent invalid rtl
9373 true0
= copy_rtx (true0
);
9374 else if (cond1
== 0)
9375 true1
= copy_rtx (true1
);
9377 if (COMPARISON_P (x
))
9379 *ptrue
= simplify_gen_relational (code
, mode
, VOIDmode
,
9381 *pfalse
= simplify_gen_relational (code
, mode
, VOIDmode
,
9386 *ptrue
= simplify_gen_binary (code
, mode
, true0
, true1
);
9387 *pfalse
= simplify_gen_binary (code
, mode
, false0
, false1
);
9390 return cond0
? cond0
: cond1
;
9393 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9394 operands is zero when the other is nonzero, and vice-versa,
9395 and STORE_FLAG_VALUE is 1 or -1. */
9397 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9398 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
9400 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
9402 rtx op0
= XEXP (XEXP (x
, 0), 1);
9403 rtx op1
= XEXP (XEXP (x
, 1), 1);
9405 cond0
= XEXP (XEXP (x
, 0), 0);
9406 cond1
= XEXP (XEXP (x
, 1), 0);
9408 if (COMPARISON_P (cond0
)
9409 && COMPARISON_P (cond1
)
9410 && SCALAR_INT_MODE_P (mode
)
9411 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
9412 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
9413 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
9414 || ((swap_condition (GET_CODE (cond0
))
9415 == reversed_comparison_code (cond1
, NULL
))
9416 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
9417 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
9418 && ! side_effects_p (x
))
9420 *ptrue
= simplify_gen_binary (MULT
, mode
, op0
, const_true_rtx
);
9421 *pfalse
= simplify_gen_binary (MULT
, mode
,
9423 ? simplify_gen_unary (NEG
, mode
,
9431 /* Similarly for MULT, AND and UMIN, except that for these the result
9433 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
9434 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
9435 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
9437 cond0
= XEXP (XEXP (x
, 0), 0);
9438 cond1
= XEXP (XEXP (x
, 1), 0);
9440 if (COMPARISON_P (cond0
)
9441 && COMPARISON_P (cond1
)
9442 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
9443 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
9444 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
9445 || ((swap_condition (GET_CODE (cond0
))
9446 == reversed_comparison_code (cond1
, NULL
))
9447 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
9448 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
9449 && ! side_effects_p (x
))
9451 *ptrue
= *pfalse
= const0_rtx
;
9457 else if (code
== IF_THEN_ELSE
)
9459 /* If we have IF_THEN_ELSE already, extract the condition and
9460 canonicalize it if it is NE or EQ. */
9461 cond0
= XEXP (x
, 0);
9462 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
9463 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
9464 return XEXP (cond0
, 0);
9465 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
9467 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
9468 return XEXP (cond0
, 0);
9474 /* If X is a SUBREG, we can narrow both the true and false values
9475 if the inner expression, if there is a condition. */
9476 else if (code
== SUBREG
9477 && (cond0
= if_then_else_cond (SUBREG_REG (x
), &true0
,
9480 true0
= simplify_gen_subreg (mode
, true0
,
9481 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
9482 false0
= simplify_gen_subreg (mode
, false0
,
9483 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
9484 if (true0
&& false0
)
9492 /* If X is a constant, this isn't special and will cause confusions
9493 if we treat it as such. Likewise if it is equivalent to a constant. */
9494 else if (CONSTANT_P (x
)
9495 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
9498 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9499 will be least confusing to the rest of the compiler. */
9500 else if (mode
== BImode
)
9502 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
9506 /* If X is known to be either 0 or -1, those are the true and
9507 false values when testing X. */
9508 else if (x
== constm1_rtx
|| x
== const0_rtx
9509 || (is_a
<scalar_int_mode
> (mode
, &int_mode
)
9510 && (num_sign_bit_copies (x
, int_mode
)
9511 == GET_MODE_PRECISION (int_mode
))))
9513 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
9517 /* Likewise for 0 or a single bit. */
9518 else if (HWI_COMPUTABLE_MODE_P (mode
)
9519 && pow2p_hwi (nz
= nonzero_bits (x
, mode
)))
9521 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
9525 /* Otherwise fail; show no condition with true and false values the same. */
9526 *ptrue
= *pfalse
= x
;
9530 /* Return the value of expression X given the fact that condition COND
9531 is known to be true when applied to REG as its first operand and VAL
9532 as its second. X is known to not be shared and so can be modified in
9535 We only handle the simplest cases, and specifically those cases that
9536 arise with IF_THEN_ELSE expressions. */
9539 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
9541 enum rtx_code code
= GET_CODE (x
);
9545 if (side_effects_p (x
))
9548 /* If either operand of the condition is a floating point value,
9549 then we have to avoid collapsing an EQ comparison. */
9551 && rtx_equal_p (x
, reg
)
9552 && ! FLOAT_MODE_P (GET_MODE (x
))
9553 && ! FLOAT_MODE_P (GET_MODE (val
)))
9556 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
9559 /* If X is (abs REG) and we know something about REG's relationship
9560 with zero, we may be able to simplify this. */
9562 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
9565 case GE
: case GT
: case EQ
:
9568 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
9570 GET_MODE (XEXP (x
, 0)));
9575 /* The only other cases we handle are MIN, MAX, and comparisons if the
9576 operands are the same as REG and VAL. */
9578 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
9580 if (rtx_equal_p (XEXP (x
, 0), val
))
9582 std::swap (val
, reg
);
9583 cond
= swap_condition (cond
);
9586 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
9588 if (COMPARISON_P (x
))
9590 if (comparison_dominates_p (cond
, code
))
9591 return VECTOR_MODE_P (GET_MODE (x
)) ? x
: const_true_rtx
;
9593 code
= reversed_comparison_code (x
, NULL
);
9595 && comparison_dominates_p (cond
, code
))
9596 return CONST0_RTX (GET_MODE (x
));
9600 else if (code
== SMAX
|| code
== SMIN
9601 || code
== UMIN
|| code
== UMAX
)
9603 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
9605 /* Do not reverse the condition when it is NE or EQ.
9606 This is because we cannot conclude anything about
9607 the value of 'SMAX (x, y)' when x is not equal to y,
9608 but we can when x equals y. */
9609 if ((code
== SMAX
|| code
== UMAX
)
9610 && ! (cond
== EQ
|| cond
== NE
))
9611 cond
= reverse_condition (cond
);
9616 return unsignedp
? x
: XEXP (x
, 1);
9618 return unsignedp
? x
: XEXP (x
, 0);
9620 return unsignedp
? XEXP (x
, 1) : x
;
9622 return unsignedp
? XEXP (x
, 0) : x
;
9629 else if (code
== SUBREG
)
9631 machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
9632 rtx new_rtx
, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
9634 if (SUBREG_REG (x
) != r
)
9636 /* We must simplify subreg here, before we lose track of the
9637 original inner_mode. */
9638 new_rtx
= simplify_subreg (GET_MODE (x
), r
,
9639 inner_mode
, SUBREG_BYTE (x
));
9643 SUBST (SUBREG_REG (x
), r
);
9648 /* We don't have to handle SIGN_EXTEND here, because even in the
9649 case of replacing something with a modeless CONST_INT, a
9650 CONST_INT is already (supposed to be) a valid sign extension for
9651 its narrower mode, which implies it's already properly
9652 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9653 story is different. */
9654 else if (code
== ZERO_EXTEND
)
9656 machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
9657 rtx new_rtx
, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
9659 if (XEXP (x
, 0) != r
)
9661 /* We must simplify the zero_extend here, before we lose
9662 track of the original inner_mode. */
9663 new_rtx
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
9668 SUBST (XEXP (x
, 0), r
);
9674 fmt
= GET_RTX_FORMAT (code
);
9675 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
9678 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
9679 else if (fmt
[i
] == 'E')
9680 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
9681 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
9688 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9689 assignment as a field assignment. */
9692 rtx_equal_for_field_assignment_p (rtx x
, rtx y
, bool widen_x
)
9694 if (widen_x
&& GET_MODE (x
) != GET_MODE (y
))
9696 if (paradoxical_subreg_p (GET_MODE (x
), GET_MODE (y
)))
9698 if (BYTES_BIG_ENDIAN
!= WORDS_BIG_ENDIAN
)
9700 x
= adjust_address_nv (x
, GET_MODE (y
),
9701 byte_lowpart_offset (GET_MODE (y
),
9705 if (x
== y
|| rtx_equal_p (x
, y
))
9708 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
9711 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9712 Note that all SUBREGs of MEM are paradoxical; otherwise they
9713 would have been rewritten. */
9714 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
9715 && MEM_P (SUBREG_REG (y
))
9716 && rtx_equal_p (SUBREG_REG (y
),
9717 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
9720 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
9721 && MEM_P (SUBREG_REG (x
))
9722 && rtx_equal_p (SUBREG_REG (x
),
9723 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
9726 /* We used to see if get_last_value of X and Y were the same but that's
9727 not correct. In one direction, we'll cause the assignment to have
9728 the wrong destination and in the case, we'll import a register into this
9729 insn that might have already have been dead. So fail if none of the
9730 above cases are true. */
9734 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9735 Return that assignment if so.
9737 We only handle the most common cases. */
9740 make_field_assignment (rtx x
)
9742 rtx dest
= SET_DEST (x
);
9743 rtx src
= SET_SRC (x
);
9748 unsigned HOST_WIDE_INT len
;
9751 /* All the rules in this function are specific to scalar integers. */
9752 scalar_int_mode mode
;
9753 if (!is_a
<scalar_int_mode
> (GET_MODE (dest
), &mode
))
9756 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9757 a clear of a one-bit field. We will have changed it to
9758 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9761 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
9762 && CONST_INT_P (XEXP (XEXP (src
, 0), 0))
9763 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
9764 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9766 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9769 return gen_rtx_SET (assign
, const0_rtx
);
9773 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
9774 && subreg_lowpart_p (XEXP (src
, 0))
9775 && partial_subreg_p (XEXP (src
, 0))
9776 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
9777 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src
, 0)), 0))
9778 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
9779 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9781 assign
= make_extraction (VOIDmode
, dest
, 0,
9782 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
9785 return gen_rtx_SET (assign
, const0_rtx
);
9789 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9791 if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
9792 && XEXP (XEXP (src
, 0), 0) == const1_rtx
9793 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9795 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9798 return gen_rtx_SET (assign
, const1_rtx
);
9802 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9803 SRC is an AND with all bits of that field set, then we can discard
9805 if (GET_CODE (dest
) == ZERO_EXTRACT
9806 && CONST_INT_P (XEXP (dest
, 1))
9807 && GET_CODE (src
) == AND
9808 && CONST_INT_P (XEXP (src
, 1)))
9810 HOST_WIDE_INT width
= INTVAL (XEXP (dest
, 1));
9811 unsigned HOST_WIDE_INT and_mask
= INTVAL (XEXP (src
, 1));
9812 unsigned HOST_WIDE_INT ze_mask
;
9814 if (width
>= HOST_BITS_PER_WIDE_INT
)
9817 ze_mask
= ((unsigned HOST_WIDE_INT
)1 << width
) - 1;
9819 /* Complete overlap. We can remove the source AND. */
9820 if ((and_mask
& ze_mask
) == ze_mask
)
9821 return gen_rtx_SET (dest
, XEXP (src
, 0));
9823 /* Partial overlap. We can reduce the source AND. */
9824 if ((and_mask
& ze_mask
) != and_mask
)
9826 src
= gen_rtx_AND (mode
, XEXP (src
, 0),
9827 gen_int_mode (and_mask
& ze_mask
, mode
));
9828 return gen_rtx_SET (dest
, src
);
9832 /* The other case we handle is assignments into a constant-position
9833 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9834 a mask that has all one bits except for a group of zero bits and
9835 OTHER is known to have zeros where C1 has ones, this is such an
9836 assignment. Compute the position and length from C1. Shift OTHER
9837 to the appropriate position, force it to the required mode, and
9838 make the extraction. Check for the AND in both operands. */
9840 /* One or more SUBREGs might obscure the constant-position field
9841 assignment. The first one we are likely to encounter is an outer
9842 narrowing SUBREG, which we can just strip for the purposes of
9843 identifying the constant-field assignment. */
9844 scalar_int_mode src_mode
= mode
;
9845 if (GET_CODE (src
) == SUBREG
9846 && subreg_lowpart_p (src
)
9847 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (src
)), &src_mode
))
9848 src
= SUBREG_REG (src
);
9850 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
9853 rhs
= expand_compound_operation (XEXP (src
, 0));
9854 lhs
= expand_compound_operation (XEXP (src
, 1));
9856 if (GET_CODE (rhs
) == AND
9857 && CONST_INT_P (XEXP (rhs
, 1))
9858 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
9859 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9860 /* The second SUBREG that might get in the way is a paradoxical
9861 SUBREG around the first operand of the AND. We want to
9862 pretend the operand is as wide as the destination here. We
9863 do this by adjusting the MEM to wider mode for the sole
9864 purpose of the call to rtx_equal_for_field_assignment_p. Also
9865 note this trick only works for MEMs. */
9866 else if (GET_CODE (rhs
) == AND
9867 && paradoxical_subreg_p (XEXP (rhs
, 0))
9868 && MEM_P (SUBREG_REG (XEXP (rhs
, 0)))
9869 && CONST_INT_P (XEXP (rhs
, 1))
9870 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs
, 0)),
9872 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9873 else if (GET_CODE (lhs
) == AND
9874 && CONST_INT_P (XEXP (lhs
, 1))
9875 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
9876 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9877 /* The second SUBREG that might get in the way is a paradoxical
9878 SUBREG around the first operand of the AND. We want to
9879 pretend the operand is as wide as the destination here. We
9880 do this by adjusting the MEM to wider mode for the sole
9881 purpose of the call to rtx_equal_for_field_assignment_p. Also
9882 note this trick only works for MEMs. */
9883 else if (GET_CODE (lhs
) == AND
9884 && paradoxical_subreg_p (XEXP (lhs
, 0))
9885 && MEM_P (SUBREG_REG (XEXP (lhs
, 0)))
9886 && CONST_INT_P (XEXP (lhs
, 1))
9887 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs
, 0)),
9889 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9893 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (mode
), &len
);
9895 || pos
+ len
> GET_MODE_PRECISION (mode
)
9896 || GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
9897 || (c1
& nonzero_bits (other
, mode
)) != 0)
9900 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
9904 /* The mode to use for the source is the mode of the assignment, or of
9905 what is inside a possible STRICT_LOW_PART. */
9906 machine_mode new_mode
= (GET_CODE (assign
) == STRICT_LOW_PART
9907 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
9909 /* Shift OTHER right POS places and make it the source, restricting it
9910 to the proper length and mode. */
9912 src
= canon_reg_for_combine (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
9913 src_mode
, other
, pos
),
9915 src
= force_to_mode (src
, new_mode
,
9916 len
>= HOST_BITS_PER_WIDE_INT
9918 : (HOST_WIDE_INT_1U
<< len
) - 1,
9921 /* If SRC is masked by an AND that does not make a difference in
9922 the value being stored, strip it. */
9923 if (GET_CODE (assign
) == ZERO_EXTRACT
9924 && CONST_INT_P (XEXP (assign
, 1))
9925 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
9926 && GET_CODE (src
) == AND
9927 && CONST_INT_P (XEXP (src
, 1))
9928 && UINTVAL (XEXP (src
, 1))
9929 == (HOST_WIDE_INT_1U
<< INTVAL (XEXP (assign
, 1))) - 1)
9930 src
= XEXP (src
, 0);
9932 return gen_rtx_SET (assign
, src
);
9935 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9939 apply_distributive_law (rtx x
)
9941 enum rtx_code code
= GET_CODE (x
);
9942 enum rtx_code inner_code
;
9943 rtx lhs
, rhs
, other
;
9946 /* Distributivity is not true for floating point as it can change the
9947 value. So we don't do it unless -funsafe-math-optimizations. */
9948 if (FLOAT_MODE_P (GET_MODE (x
))
9949 && ! flag_unsafe_math_optimizations
)
9952 /* The outer operation can only be one of the following: */
9953 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
9954 && code
!= PLUS
&& code
!= MINUS
)
9960 /* If either operand is a primitive we can't do anything, so get out
9962 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
9965 lhs
= expand_compound_operation (lhs
);
9966 rhs
= expand_compound_operation (rhs
);
9967 inner_code
= GET_CODE (lhs
);
9968 if (inner_code
!= GET_CODE (rhs
))
9971 /* See if the inner and outer operations distribute. */
9978 /* These all distribute except over PLUS. */
9979 if (code
== PLUS
|| code
== MINUS
)
9984 if (code
!= PLUS
&& code
!= MINUS
)
9989 /* This is also a multiply, so it distributes over everything. */
9992 /* This used to handle SUBREG, but this turned out to be counter-
9993 productive, since (subreg (op ...)) usually is not handled by
9994 insn patterns, and this "optimization" therefore transformed
9995 recognizable patterns into unrecognizable ones. Therefore the
9996 SUBREG case was removed from here.
9998 It is possible that distributing SUBREG over arithmetic operations
9999 leads to an intermediate result than can then be optimized further,
10000 e.g. by moving the outer SUBREG to the other side of a SET as done
10001 in simplify_set. This seems to have been the original intent of
10002 handling SUBREGs here.
10004 However, with current GCC this does not appear to actually happen,
10005 at least on major platforms. If some case is found where removing
10006 the SUBREG case here prevents follow-on optimizations, distributing
10007 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
10013 /* Set LHS and RHS to the inner operands (A and B in the example
10014 above) and set OTHER to the common operand (C in the example).
10015 There is only one way to do this unless the inner operation is
10017 if (COMMUTATIVE_ARITH_P (lhs
)
10018 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
10019 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
10020 else if (COMMUTATIVE_ARITH_P (lhs
)
10021 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
10022 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
10023 else if (COMMUTATIVE_ARITH_P (lhs
)
10024 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
10025 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
10026 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
10027 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
10031 /* Form the new inner operation, seeing if it simplifies first. */
10032 tem
= simplify_gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
10034 /* There is one exception to the general way of distributing:
10035 (a | c) ^ (b | c) -> (a ^ b) & ~c */
10036 if (code
== XOR
&& inner_code
== IOR
)
10039 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
10042 /* We may be able to continuing distributing the result, so call
10043 ourselves recursively on the inner operation before forming the
10044 outer operation, which we return. */
10045 return simplify_gen_binary (inner_code
, GET_MODE (x
),
10046 apply_distributive_law (tem
), other
);
10049 /* See if X is of the form (* (+ A B) C), and if so convert to
10050 (+ (* A C) (* B C)) and try to simplify.
10052 Most of the time, this results in no change. However, if some of
10053 the operands are the same or inverses of each other, simplifications
10056 For example, (and (ior A B) (not B)) can occur as the result of
10057 expanding a bit field assignment. When we apply the distributive
10058 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
10059 which then simplifies to (and (A (not B))).
10061 Note that no checks happen on the validity of applying the inverse
10062 distributive law. This is pointless since we can do it in the
10063 few places where this routine is called.
10065 N is the index of the term that is decomposed (the arithmetic operation,
10066 i.e. (+ A B) in the first example above). !N is the index of the term that
10067 is distributed, i.e. of C in the first example above. */
10069 distribute_and_simplify_rtx (rtx x
, int n
)
10072 enum rtx_code outer_code
, inner_code
;
10073 rtx decomposed
, distributed
, inner_op0
, inner_op1
, new_op0
, new_op1
, tmp
;
10075 /* Distributivity is not true for floating point as it can change the
10076 value. So we don't do it unless -funsafe-math-optimizations. */
10077 if (FLOAT_MODE_P (GET_MODE (x
))
10078 && ! flag_unsafe_math_optimizations
)
10081 decomposed
= XEXP (x
, n
);
10082 if (!ARITHMETIC_P (decomposed
))
10085 mode
= GET_MODE (x
);
10086 outer_code
= GET_CODE (x
);
10087 distributed
= XEXP (x
, !n
);
10089 inner_code
= GET_CODE (decomposed
);
10090 inner_op0
= XEXP (decomposed
, 0);
10091 inner_op1
= XEXP (decomposed
, 1);
10093 /* Special case (and (xor B C) (not A)), which is equivalent to
10094 (xor (ior A B) (ior A C)) */
10095 if (outer_code
== AND
&& inner_code
== XOR
&& GET_CODE (distributed
) == NOT
)
10097 distributed
= XEXP (distributed
, 0);
10103 /* Distribute the second term. */
10104 new_op0
= simplify_gen_binary (outer_code
, mode
, inner_op0
, distributed
);
10105 new_op1
= simplify_gen_binary (outer_code
, mode
, inner_op1
, distributed
);
10109 /* Distribute the first term. */
10110 new_op0
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op0
);
10111 new_op1
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op1
);
10114 tmp
= apply_distributive_law (simplify_gen_binary (inner_code
, mode
,
10115 new_op0
, new_op1
));
10116 if (GET_CODE (tmp
) != outer_code
10117 && (set_src_cost (tmp
, mode
, optimize_this_for_speed_p
)
10118 < set_src_cost (x
, mode
, optimize_this_for_speed_p
)))
10124 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
10125 in MODE. Return an equivalent form, if different from (and VAROP
10126 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
10129 simplify_and_const_int_1 (scalar_int_mode mode
, rtx varop
,
10130 unsigned HOST_WIDE_INT constop
)
10132 unsigned HOST_WIDE_INT nonzero
;
10133 unsigned HOST_WIDE_INT orig_constop
;
10137 orig_varop
= varop
;
10138 orig_constop
= constop
;
10139 if (GET_CODE (varop
) == CLOBBER
)
10142 /* Simplify VAROP knowing that we will be only looking at some of the
10145 Note by passing in CONSTOP, we guarantee that the bits not set in
10146 CONSTOP are not significant and will never be examined. We must
10147 ensure that is the case by explicitly masking out those bits
10148 before returning. */
10149 varop
= force_to_mode (varop
, mode
, constop
, 0);
10151 /* If VAROP is a CLOBBER, we will fail so return it. */
10152 if (GET_CODE (varop
) == CLOBBER
)
10155 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
10156 to VAROP and return the new constant. */
10157 if (CONST_INT_P (varop
))
10158 return gen_int_mode (INTVAL (varop
) & constop
, mode
);
10160 /* See what bits may be nonzero in VAROP. Unlike the general case of
10161 a call to nonzero_bits, here we don't care about bits outside
10164 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
10166 /* Turn off all bits in the constant that are known to already be zero.
10167 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10168 which is tested below. */
10170 constop
&= nonzero
;
10172 /* If we don't have any bits left, return zero. */
10176 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10177 a power of two, we can replace this with an ASHIFT. */
10178 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
10179 && (i
= exact_log2 (constop
)) >= 0)
10180 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
10182 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10183 or XOR, then try to apply the distributive law. This may eliminate
10184 operations if either branch can be simplified because of the AND.
10185 It may also make some cases more complex, but those cases probably
10186 won't match a pattern either with or without this. */
10188 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
10190 scalar_int_mode varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10194 apply_distributive_law
10195 (simplify_gen_binary (GET_CODE (varop
), varop_mode
,
10196 simplify_and_const_int (NULL_RTX
, varop_mode
,
10199 simplify_and_const_int (NULL_RTX
, varop_mode
,
10204 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10205 the AND and see if one of the operands simplifies to zero. If so, we
10206 may eliminate it. */
10208 if (GET_CODE (varop
) == PLUS
10209 && pow2p_hwi (constop
+ 1))
10213 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
10214 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
10215 if (o0
== const0_rtx
)
10217 if (o1
== const0_rtx
)
10221 /* Make a SUBREG if necessary. If we can't make it, fail. */
10222 varop
= gen_lowpart (mode
, varop
);
10223 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
10226 /* If we are only masking insignificant bits, return VAROP. */
10227 if (constop
== nonzero
)
10230 if (varop
== orig_varop
&& constop
== orig_constop
)
10233 /* Otherwise, return an AND. */
10234 return simplify_gen_binary (AND
, mode
, varop
, gen_int_mode (constop
, mode
));
10238 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10241 Return an equivalent form, if different from X. Otherwise, return X. If
10242 X is zero, we are to always construct the equivalent form. */
10245 simplify_and_const_int (rtx x
, scalar_int_mode mode
, rtx varop
,
10246 unsigned HOST_WIDE_INT constop
)
10248 rtx tem
= simplify_and_const_int_1 (mode
, varop
, constop
);
10253 x
= simplify_gen_binary (AND
, GET_MODE (varop
), varop
,
10254 gen_int_mode (constop
, mode
));
10255 if (GET_MODE (x
) != mode
)
10256 x
= gen_lowpart (mode
, x
);
10260 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10261 We don't care about bits outside of those defined in MODE.
10262 We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
10264 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10265 a shift, AND, or zero_extract, we can do better. */
10268 reg_nonzero_bits_for_combine (const_rtx x
, scalar_int_mode xmode
,
10269 scalar_int_mode mode
,
10270 unsigned HOST_WIDE_INT
*nonzero
)
10273 reg_stat_type
*rsp
;
10275 /* If X is a register whose nonzero bits value is current, use it.
10276 Otherwise, if X is a register whose value we can find, use that
10277 value. Otherwise, use the previously-computed global nonzero bits
10278 for this register. */
10280 rsp
= ®_stat
[REGNO (x
)];
10281 if (rsp
->last_set_value
!= 0
10282 && (rsp
->last_set_mode
== mode
10283 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10284 && GET_MODE_CLASS (rsp
->last_set_mode
) == MODE_INT
10285 && GET_MODE_CLASS (mode
) == MODE_INT
))
10286 && ((rsp
->last_set_label
>= label_tick_ebb_start
10287 && rsp
->last_set_label
< label_tick
)
10288 || (rsp
->last_set_label
== label_tick
10289 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
10290 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10291 && REGNO (x
) < reg_n_sets_max
10292 && REG_N_SETS (REGNO (x
)) == 1
10293 && !REGNO_REG_SET_P
10294 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
10297 /* Note that, even if the precision of last_set_mode is lower than that
10298 of mode, record_value_for_reg invoked nonzero_bits on the register
10299 with nonzero_bits_mode (because last_set_mode is necessarily integral
10300 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10301 are all valid, hence in mode too since nonzero_bits_mode is defined
10302 to the largest HWI_COMPUTABLE_MODE_P mode. */
10303 *nonzero
&= rsp
->last_set_nonzero_bits
;
10307 tem
= get_last_value (x
);
10310 if (SHORT_IMMEDIATES_SIGN_EXTEND
)
10311 tem
= sign_extend_short_imm (tem
, xmode
, GET_MODE_PRECISION (mode
));
10316 if (nonzero_sign_valid
&& rsp
->nonzero_bits
)
10318 unsigned HOST_WIDE_INT mask
= rsp
->nonzero_bits
;
10320 if (GET_MODE_PRECISION (xmode
) < GET_MODE_PRECISION (mode
))
10321 /* We don't know anything about the upper bits. */
10322 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (xmode
);
10330 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10331 end of X that are known to be equal to the sign bit. X will be used
10332 in mode MODE; the returned value will always be between 1 and the
10333 number of bits in MODE. */
10336 reg_num_sign_bit_copies_for_combine (const_rtx x
, scalar_int_mode xmode
,
10337 scalar_int_mode mode
,
10338 unsigned int *result
)
10341 reg_stat_type
*rsp
;
10343 rsp
= ®_stat
[REGNO (x
)];
10344 if (rsp
->last_set_value
!= 0
10345 && rsp
->last_set_mode
== mode
10346 && ((rsp
->last_set_label
>= label_tick_ebb_start
10347 && rsp
->last_set_label
< label_tick
)
10348 || (rsp
->last_set_label
== label_tick
10349 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
10350 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
10351 && REGNO (x
) < reg_n_sets_max
10352 && REG_N_SETS (REGNO (x
)) == 1
10353 && !REGNO_REG_SET_P
10354 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
10357 *result
= rsp
->last_set_sign_bit_copies
;
10361 tem
= get_last_value (x
);
10365 if (nonzero_sign_valid
&& rsp
->sign_bit_copies
!= 0
10366 && GET_MODE_PRECISION (xmode
) == GET_MODE_PRECISION (mode
))
10367 *result
= rsp
->sign_bit_copies
;
10372 /* Return the number of "extended" bits there are in X, when interpreted
10373 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10374 unsigned quantities, this is the number of high-order zero bits.
10375 For signed quantities, this is the number of copies of the sign bit
10376 minus 1. In both case, this function returns the number of "spare"
10377 bits. For example, if two quantities for which this function returns
10378 at least 1 are added, the addition is known not to overflow.
10380 This function will always return 0 unless called during combine, which
10381 implies that it must be called from a define_split. */
10384 extended_count (const_rtx x
, machine_mode mode
, int unsignedp
)
10386 if (nonzero_sign_valid
== 0)
10389 scalar_int_mode int_mode
;
10391 ? (is_a
<scalar_int_mode
> (mode
, &int_mode
)
10392 && HWI_COMPUTABLE_MODE_P (int_mode
)
10393 ? (unsigned int) (GET_MODE_PRECISION (int_mode
) - 1
10394 - floor_log2 (nonzero_bits (x
, int_mode
)))
10396 : num_sign_bit_copies (x
, mode
) - 1);
10399 /* This function is called from `simplify_shift_const' to merge two
10400 outer operations. Specifically, we have already found that we need
10401 to perform operation *POP0 with constant *PCONST0 at the outermost
10402 position. We would now like to also perform OP1 with constant CONST1
10403 (with *POP0 being done last).
10405 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10406 the resulting operation. *PCOMP_P is set to 1 if we would need to
10407 complement the innermost operand, otherwise it is unchanged.
10409 MODE is the mode in which the operation will be done. No bits outside
10410 the width of this mode matter. It is assumed that the width of this mode
10411 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10413 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10414 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10415 result is simply *PCONST0.
10417 If the resulting operation cannot be expressed as one operation, we
10418 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10421 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, machine_mode mode
, int *pcomp_p
)
10423 enum rtx_code op0
= *pop0
;
10424 HOST_WIDE_INT const0
= *pconst0
;
10426 const0
&= GET_MODE_MASK (mode
);
10427 const1
&= GET_MODE_MASK (mode
);
10429 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10433 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10436 if (op1
== UNKNOWN
|| op0
== SET
)
10439 else if (op0
== UNKNOWN
)
10440 op0
= op1
, const0
= const1
;
10442 else if (op0
== op1
)
10466 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10467 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
10470 /* If the two constants aren't the same, we can't do anything. The
10471 remaining six cases can all be done. */
10472 else if (const0
!= const1
)
10480 /* (a & b) | b == b */
10482 else /* op1 == XOR */
10483 /* (a ^ b) | b == a | b */
10489 /* (a & b) ^ b == (~a) & b */
10490 op0
= AND
, *pcomp_p
= 1;
10491 else /* op1 == IOR */
10492 /* (a | b) ^ b == a & ~b */
10493 op0
= AND
, const0
= ~const0
;
10498 /* (a | b) & b == b */
10500 else /* op1 == XOR */
10501 /* (a ^ b) & b) == (~a) & b */
10508 /* Check for NO-OP cases. */
10509 const0
&= GET_MODE_MASK (mode
);
10511 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
10513 else if (const0
== 0 && op0
== AND
)
10515 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
10521 /* ??? Slightly redundant with the above mask, but not entirely.
10522 Moving this above means we'd have to sign-extend the mode mask
10523 for the final test. */
10524 if (op0
!= UNKNOWN
&& op0
!= NEG
)
10525 *pconst0
= trunc_int_for_mode (const0
, mode
);
10530 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10531 the shift in. The original shift operation CODE is performed on OP in
10532 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10533 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10534 result of the shift is subject to operation OUTER_CODE with operand
10537 static scalar_int_mode
10538 try_widen_shift_mode (enum rtx_code code
, rtx op
, int count
,
10539 scalar_int_mode orig_mode
, scalar_int_mode mode
,
10540 enum rtx_code outer_code
, HOST_WIDE_INT outer_const
)
10542 gcc_assert (GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (orig_mode
));
10544 /* In general we can't perform in wider mode for right shift and rotate. */
10548 /* We can still widen if the bits brought in from the left are identical
10549 to the sign bit of ORIG_MODE. */
10550 if (num_sign_bit_copies (op
, mode
)
10551 > (unsigned) (GET_MODE_PRECISION (mode
)
10552 - GET_MODE_PRECISION (orig_mode
)))
10557 /* Similarly here but with zero bits. */
10558 if (HWI_COMPUTABLE_MODE_P (mode
)
10559 && (nonzero_bits (op
, mode
) & ~GET_MODE_MASK (orig_mode
)) == 0)
10562 /* We can also widen if the bits brought in will be masked off. This
10563 operation is performed in ORIG_MODE. */
10564 if (outer_code
== AND
)
10566 int care_bits
= low_bitmask_len (orig_mode
, outer_const
);
10569 && GET_MODE_PRECISION (orig_mode
) - care_bits
>= count
)
10578 gcc_unreachable ();
10585 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10586 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10587 if we cannot simplify it. Otherwise, return a simplified value.
10589 The shift is normally computed in the widest mode we find in VAROP, as
10590 long as it isn't a different number of words than RESULT_MODE. Exceptions
10591 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10594 simplify_shift_const_1 (enum rtx_code code
, machine_mode result_mode
,
10595 rtx varop
, int orig_count
)
10597 enum rtx_code orig_code
= code
;
10598 rtx orig_varop
= varop
;
10600 machine_mode mode
= result_mode
;
10601 machine_mode shift_mode
;
10602 scalar_int_mode tmode
, inner_mode
, int_mode
, int_varop_mode
, int_result_mode
;
10603 /* We form (outer_op (code varop count) (outer_const)). */
10604 enum rtx_code outer_op
= UNKNOWN
;
10605 HOST_WIDE_INT outer_const
= 0;
10606 int complement_p
= 0;
10609 /* Make sure and truncate the "natural" shift on the way in. We don't
10610 want to do this inside the loop as it makes it more difficult to
10612 if (SHIFT_COUNT_TRUNCATED
)
10613 orig_count
&= GET_MODE_UNIT_BITSIZE (mode
) - 1;
10615 /* If we were given an invalid count, don't do anything except exactly
10616 what was requested. */
10618 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_UNIT_PRECISION (mode
))
10621 count
= orig_count
;
10623 /* Unless one of the branches of the `if' in this loop does a `continue',
10624 we will `break' the loop after the `if'. */
10628 /* If we have an operand of (clobber (const_int 0)), fail. */
10629 if (GET_CODE (varop
) == CLOBBER
)
10632 /* Convert ROTATERT to ROTATE. */
10633 if (code
== ROTATERT
)
10635 unsigned int bitsize
= GET_MODE_UNIT_PRECISION (result_mode
);
10637 count
= bitsize
- count
;
10640 shift_mode
= result_mode
;
10641 if (shift_mode
!= mode
)
10643 /* We only change the modes of scalar shifts. */
10644 int_mode
= as_a
<scalar_int_mode
> (mode
);
10645 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10646 shift_mode
= try_widen_shift_mode (code
, varop
, count
,
10647 int_result_mode
, int_mode
,
10648 outer_op
, outer_const
);
10651 scalar_int_mode shift_unit_mode
10652 = as_a
<scalar_int_mode
> (GET_MODE_INNER (shift_mode
));
10654 /* Handle cases where the count is greater than the size of the mode
10655 minus 1. For ASHIFT, use the size minus one as the count (this can
10656 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10657 take the count modulo the size. For other shifts, the result is
10660 Since these shifts are being produced by the compiler by combining
10661 multiple operations, each of which are defined, we know what the
10662 result is supposed to be. */
10664 if (count
> (GET_MODE_PRECISION (shift_unit_mode
) - 1))
10666 if (code
== ASHIFTRT
)
10667 count
= GET_MODE_PRECISION (shift_unit_mode
) - 1;
10668 else if (code
== ROTATE
|| code
== ROTATERT
)
10669 count
%= GET_MODE_PRECISION (shift_unit_mode
);
10672 /* We can't simply return zero because there may be an
10674 varop
= const0_rtx
;
10680 /* If we discovered we had to complement VAROP, leave. Making a NOT
10681 here would cause an infinite loop. */
10685 if (shift_mode
== shift_unit_mode
)
10687 /* An arithmetic right shift of a quantity known to be -1 or 0
10689 if (code
== ASHIFTRT
10690 && (num_sign_bit_copies (varop
, shift_unit_mode
)
10691 == GET_MODE_PRECISION (shift_unit_mode
)))
10697 /* If we are doing an arithmetic right shift and discarding all but
10698 the sign bit copies, this is equivalent to doing a shift by the
10699 bitsize minus one. Convert it into that shift because it will
10700 often allow other simplifications. */
10702 if (code
== ASHIFTRT
10703 && (count
+ num_sign_bit_copies (varop
, shift_unit_mode
)
10704 >= GET_MODE_PRECISION (shift_unit_mode
)))
10705 count
= GET_MODE_PRECISION (shift_unit_mode
) - 1;
10707 /* We simplify the tests below and elsewhere by converting
10708 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10709 `make_compound_operation' will convert it to an ASHIFTRT for
10710 those machines (such as VAX) that don't have an LSHIFTRT. */
10711 if (code
== ASHIFTRT
10712 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10713 && val_signbit_known_clear_p (shift_unit_mode
,
10714 nonzero_bits (varop
,
10718 if (((code
== LSHIFTRT
10719 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10720 && !(nonzero_bits (varop
, shift_unit_mode
) >> count
))
10722 && HWI_COMPUTABLE_MODE_P (shift_unit_mode
)
10723 && !((nonzero_bits (varop
, shift_unit_mode
) << count
)
10724 & GET_MODE_MASK (shift_unit_mode
))))
10725 && !side_effects_p (varop
))
10726 varop
= const0_rtx
;
10729 switch (GET_CODE (varop
))
10735 new_rtx
= expand_compound_operation (varop
);
10736 if (new_rtx
!= varop
)
10744 /* The following rules apply only to scalars. */
10745 if (shift_mode
!= shift_unit_mode
)
10747 int_mode
= as_a
<scalar_int_mode
> (mode
);
10749 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10750 minus the width of a smaller mode, we can do this with a
10751 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10752 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10753 && ! mode_dependent_address_p (XEXP (varop
, 0),
10754 MEM_ADDR_SPACE (varop
))
10755 && ! MEM_VOLATILE_P (varop
)
10756 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode
) - count
, 1)
10759 new_rtx
= adjust_address_nv (varop
, tmode
,
10760 BYTES_BIG_ENDIAN
? 0
10761 : count
/ BITS_PER_UNIT
);
10763 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
10764 : ZERO_EXTEND
, int_mode
, new_rtx
);
10771 /* The following rules apply only to scalars. */
10772 if (shift_mode
!= shift_unit_mode
)
10774 int_mode
= as_a
<scalar_int_mode
> (mode
);
10775 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10777 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10778 the same number of words as what we've seen so far. Then store
10779 the widest mode in MODE. */
10780 if (subreg_lowpart_p (varop
)
10781 && is_int_mode (GET_MODE (SUBREG_REG (varop
)), &inner_mode
)
10782 && GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (int_varop_mode
)
10783 && (CEIL (GET_MODE_SIZE (inner_mode
), UNITS_PER_WORD
)
10784 == CEIL (GET_MODE_SIZE (int_mode
), UNITS_PER_WORD
))
10785 && GET_MODE_CLASS (int_varop_mode
) == MODE_INT
)
10787 varop
= SUBREG_REG (varop
);
10788 if (GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (int_mode
))
10795 /* Some machines use MULT instead of ASHIFT because MULT
10796 is cheaper. But it is still better on those machines to
10797 merge two shifts into one. */
10798 if (CONST_INT_P (XEXP (varop
, 1))
10799 && (log2
= exact_log2 (UINTVAL (XEXP (varop
, 1)))) >= 0)
10801 rtx log2_rtx
= gen_int_shift_amount (GET_MODE (varop
), log2
);
10802 varop
= simplify_gen_binary (ASHIFT
, GET_MODE (varop
),
10803 XEXP (varop
, 0), log2_rtx
);
10809 /* Similar, for when divides are cheaper. */
10810 if (CONST_INT_P (XEXP (varop
, 1))
10811 && (log2
= exact_log2 (UINTVAL (XEXP (varop
, 1)))) >= 0)
10813 rtx log2_rtx
= gen_int_shift_amount (GET_MODE (varop
), log2
);
10814 varop
= simplify_gen_binary (LSHIFTRT
, GET_MODE (varop
),
10815 XEXP (varop
, 0), log2_rtx
);
10821 /* If we are extracting just the sign bit of an arithmetic
10822 right shift, that shift is not needed. However, the sign
10823 bit of a wider mode may be different from what would be
10824 interpreted as the sign bit in a narrower mode, so, if
10825 the result is narrower, don't discard the shift. */
10826 if (code
== LSHIFTRT
10827 && count
== (GET_MODE_UNIT_BITSIZE (result_mode
) - 1)
10828 && (GET_MODE_UNIT_BITSIZE (result_mode
)
10829 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop
))))
10831 varop
= XEXP (varop
, 0);
10840 /* The following rules apply only to scalars. */
10841 if (shift_mode
!= shift_unit_mode
)
10843 int_mode
= as_a
<scalar_int_mode
> (mode
);
10844 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
10845 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
10847 /* Here we have two nested shifts. The result is usually the
10848 AND of a new shift with a mask. We compute the result below. */
10849 if (CONST_INT_P (XEXP (varop
, 1))
10850 && INTVAL (XEXP (varop
, 1)) >= 0
10851 && INTVAL (XEXP (varop
, 1)) < GET_MODE_PRECISION (int_varop_mode
)
10852 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
10853 && HWI_COMPUTABLE_MODE_P (int_mode
))
10855 enum rtx_code first_code
= GET_CODE (varop
);
10856 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
10857 unsigned HOST_WIDE_INT mask
;
10860 /* We have one common special case. We can't do any merging if
10861 the inner code is an ASHIFTRT of a smaller mode. However, if
10862 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10863 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10864 we can convert it to
10865 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10866 This simplifies certain SIGN_EXTEND operations. */
10867 if (code
== ASHIFT
&& first_code
== ASHIFTRT
10868 && count
== (GET_MODE_PRECISION (int_result_mode
)
10869 - GET_MODE_PRECISION (int_varop_mode
)))
10871 /* C3 has the low-order C1 bits zero. */
10873 mask
= GET_MODE_MASK (int_mode
)
10874 & ~((HOST_WIDE_INT_1U
<< first_count
) - 1);
10876 varop
= simplify_and_const_int (NULL_RTX
, int_result_mode
,
10877 XEXP (varop
, 0), mask
);
10878 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
,
10879 int_result_mode
, varop
, count
);
10880 count
= first_count
;
10885 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10886 than C1 high-order bits equal to the sign bit, we can convert
10887 this to either an ASHIFT or an ASHIFTRT depending on the
10890 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10892 if (code
== ASHIFTRT
&& first_code
== ASHIFT
10893 && int_varop_mode
== shift_unit_mode
10894 && (num_sign_bit_copies (XEXP (varop
, 0), shift_unit_mode
)
10897 varop
= XEXP (varop
, 0);
10898 count
-= first_count
;
10908 /* There are some cases we can't do. If CODE is ASHIFTRT,
10909 we can only do this if FIRST_CODE is also ASHIFTRT.
10911 We can't do the case when CODE is ROTATE and FIRST_CODE is
10914 If the mode of this shift is not the mode of the outer shift,
10915 we can't do this if either shift is a right shift or ROTATE.
10917 Finally, we can't do any of these if the mode is too wide
10918 unless the codes are the same.
10920 Handle the case where the shift codes are the same
10923 if (code
== first_code
)
10925 if (int_varop_mode
!= int_result_mode
10926 && (code
== ASHIFTRT
|| code
== LSHIFTRT
10927 || code
== ROTATE
))
10930 count
+= first_count
;
10931 varop
= XEXP (varop
, 0);
10935 if (code
== ASHIFTRT
10936 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
10937 || GET_MODE_PRECISION (int_mode
) > HOST_BITS_PER_WIDE_INT
10938 || (int_varop_mode
!= int_result_mode
10939 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
10940 || first_code
== ROTATE
10941 || code
== ROTATE
)))
10944 /* To compute the mask to apply after the shift, shift the
10945 nonzero bits of the inner shift the same way the
10946 outer shift will. */
10948 mask_rtx
= gen_int_mode (nonzero_bits (varop
, int_varop_mode
),
10950 rtx count_rtx
= gen_int_shift_amount (int_result_mode
, count
);
10952 = simplify_const_binary_operation (code
, int_result_mode
,
10953 mask_rtx
, count_rtx
);
10955 /* Give up if we can't compute an outer operation to use. */
10957 || !CONST_INT_P (mask_rtx
)
10958 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
10960 int_result_mode
, &complement_p
))
10963 /* If the shifts are in the same direction, we add the
10964 counts. Otherwise, we subtract them. */
10965 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10966 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
10967 count
+= first_count
;
10969 count
-= first_count
;
10971 /* If COUNT is positive, the new shift is usually CODE,
10972 except for the two exceptions below, in which case it is
10973 FIRST_CODE. If the count is negative, FIRST_CODE should
10976 && ((first_code
== ROTATE
&& code
== ASHIFT
)
10977 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
10979 else if (count
< 0)
10980 code
= first_code
, count
= -count
;
10982 varop
= XEXP (varop
, 0);
10986 /* If we have (A << B << C) for any shift, we can convert this to
10987 (A << C << B). This wins if A is a constant. Only try this if
10988 B is not a constant. */
10990 else if (GET_CODE (varop
) == code
10991 && CONST_INT_P (XEXP (varop
, 0))
10992 && !CONST_INT_P (XEXP (varop
, 1)))
10994 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10995 sure the result will be masked. See PR70222. */
10996 if (code
== LSHIFTRT
10997 && int_mode
!= int_result_mode
10998 && !merge_outer_ops (&outer_op
, &outer_const
, AND
,
10999 GET_MODE_MASK (int_result_mode
)
11000 >> orig_count
, int_result_mode
,
11003 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
11004 up outer sign extension (often left and right shift) is
11005 hardly more efficient than the original. See PR70429. */
11006 if (code
== ASHIFTRT
&& int_mode
!= int_result_mode
)
11009 rtx count_rtx
= gen_int_shift_amount (int_result_mode
, count
);
11010 rtx new_rtx
= simplify_const_binary_operation (code
, int_mode
,
11013 varop
= gen_rtx_fmt_ee (code
, int_mode
, new_rtx
, XEXP (varop
, 1));
11020 /* The following rules apply only to scalars. */
11021 if (shift_mode
!= shift_unit_mode
)
11024 /* Make this fit the case below. */
11025 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0), constm1_rtx
);
11031 /* The following rules apply only to scalars. */
11032 if (shift_mode
!= shift_unit_mode
)
11034 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
11035 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11037 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
11038 with C the size of VAROP - 1 and the shift is logical if
11039 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11040 we have an (le X 0) operation. If we have an arithmetic shift
11041 and STORE_FLAG_VALUE is 1 or we have a logical shift with
11042 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
11044 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
11045 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
11046 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
11047 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
11048 && count
== (GET_MODE_PRECISION (int_varop_mode
) - 1)
11049 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
11052 varop
= gen_rtx_LE (int_varop_mode
, XEXP (varop
, 1),
11055 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
11056 varop
= gen_rtx_NEG (int_varop_mode
, varop
);
11061 /* If we have (shift (logical)), move the logical to the outside
11062 to allow it to possibly combine with another logical and the
11063 shift to combine with another shift. This also canonicalizes to
11064 what a ZERO_EXTRACT looks like. Also, some machines have
11065 (and (shift)) insns. */
11067 if (CONST_INT_P (XEXP (varop
, 1))
11068 /* We can't do this if we have (ashiftrt (xor)) and the
11069 constant has its sign bit set in shift_unit_mode with
11070 shift_unit_mode wider than result_mode. */
11071 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
11072 && int_result_mode
!= shift_unit_mode
11073 && trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
11074 shift_unit_mode
) < 0)
11075 && (new_rtx
= simplify_const_binary_operation
11076 (code
, int_result_mode
,
11077 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
11078 gen_int_shift_amount (int_result_mode
, count
))) != 0
11079 && CONST_INT_P (new_rtx
)
11080 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
11081 INTVAL (new_rtx
), int_result_mode
,
11084 varop
= XEXP (varop
, 0);
11088 /* If we can't do that, try to simplify the shift in each arm of the
11089 logical expression, make a new logical expression, and apply
11090 the inverse distributive law. This also can't be done for
11091 (ashiftrt (xor)) where we've widened the shift and the constant
11092 changes the sign bit. */
11093 if (CONST_INT_P (XEXP (varop
, 1))
11094 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
11095 && int_result_mode
!= shift_unit_mode
11096 && trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
11097 shift_unit_mode
) < 0))
11099 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_unit_mode
,
11100 XEXP (varop
, 0), count
);
11101 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_unit_mode
,
11102 XEXP (varop
, 1), count
);
11104 varop
= simplify_gen_binary (GET_CODE (varop
), shift_unit_mode
,
11106 varop
= apply_distributive_law (varop
);
11114 /* The following rules apply only to scalars. */
11115 if (shift_mode
!= shift_unit_mode
)
11117 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11119 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
11120 says that the sign bit can be tested, FOO has mode MODE, C is
11121 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
11122 that may be nonzero. */
11123 if (code
== LSHIFTRT
11124 && XEXP (varop
, 1) == const0_rtx
11125 && GET_MODE (XEXP (varop
, 0)) == int_result_mode
11126 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
11127 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
11128 && STORE_FLAG_VALUE
== -1
11129 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1
11130 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1,
11131 int_result_mode
, &complement_p
))
11133 varop
= XEXP (varop
, 0);
11140 /* The following rules apply only to scalars. */
11141 if (shift_mode
!= shift_unit_mode
)
11143 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11145 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
11146 than the number of bits in the mode is equivalent to A. */
11147 if (code
== LSHIFTRT
11148 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
11149 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1)
11151 varop
= XEXP (varop
, 0);
11156 /* NEG commutes with ASHIFT since it is multiplication. Move the
11157 NEG outside to allow shifts to combine. */
11159 && merge_outer_ops (&outer_op
, &outer_const
, NEG
, 0,
11160 int_result_mode
, &complement_p
))
11162 varop
= XEXP (varop
, 0);
11168 /* The following rules apply only to scalars. */
11169 if (shift_mode
!= shift_unit_mode
)
11171 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11173 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11174 is one less than the number of bits in the mode is
11175 equivalent to (xor A 1). */
11176 if (code
== LSHIFTRT
11177 && count
== (GET_MODE_PRECISION (int_result_mode
) - 1)
11178 && XEXP (varop
, 1) == constm1_rtx
11179 && nonzero_bits (XEXP (varop
, 0), int_result_mode
) == 1
11180 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1,
11181 int_result_mode
, &complement_p
))
11184 varop
= XEXP (varop
, 0);
11188 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11189 that might be nonzero in BAR are those being shifted out and those
11190 bits are known zero in FOO, we can replace the PLUS with FOO.
11191 Similarly in the other operand order. This code occurs when
11192 we are computing the size of a variable-size array. */
11194 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
11195 && count
< HOST_BITS_PER_WIDE_INT
11196 && nonzero_bits (XEXP (varop
, 1), int_result_mode
) >> count
== 0
11197 && (nonzero_bits (XEXP (varop
, 1), int_result_mode
)
11198 & nonzero_bits (XEXP (varop
, 0), int_result_mode
)) == 0)
11200 varop
= XEXP (varop
, 0);
11203 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
11204 && count
< HOST_BITS_PER_WIDE_INT
11205 && HWI_COMPUTABLE_MODE_P (int_result_mode
)
11206 && (nonzero_bits (XEXP (varop
, 0), int_result_mode
)
11208 && (nonzero_bits (XEXP (varop
, 0), int_result_mode
)
11209 & nonzero_bits (XEXP (varop
, 1), int_result_mode
)) == 0)
11211 varop
= XEXP (varop
, 1);
11215 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11217 && CONST_INT_P (XEXP (varop
, 1))
11218 && (new_rtx
= simplify_const_binary_operation
11219 (ASHIFT
, int_result_mode
,
11220 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
11221 gen_int_shift_amount (int_result_mode
, count
))) != 0
11222 && CONST_INT_P (new_rtx
)
11223 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
11224 INTVAL (new_rtx
), int_result_mode
,
11227 varop
= XEXP (varop
, 0);
11231 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11232 signbit', and attempt to change the PLUS to an XOR and move it to
11233 the outer operation as is done above in the AND/IOR/XOR case
11234 leg for shift(logical). See details in logical handling above
11235 for reasoning in doing so. */
11236 if (code
== LSHIFTRT
11237 && CONST_INT_P (XEXP (varop
, 1))
11238 && mode_signbit_p (int_result_mode
, XEXP (varop
, 1))
11239 && (new_rtx
= simplify_const_binary_operation
11240 (code
, int_result_mode
,
11241 gen_int_mode (INTVAL (XEXP (varop
, 1)), int_result_mode
),
11242 gen_int_shift_amount (int_result_mode
, count
))) != 0
11243 && CONST_INT_P (new_rtx
)
11244 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
11245 INTVAL (new_rtx
), int_result_mode
,
11248 varop
= XEXP (varop
, 0);
11255 /* The following rules apply only to scalars. */
11256 if (shift_mode
!= shift_unit_mode
)
11258 int_varop_mode
= as_a
<scalar_int_mode
> (GET_MODE (varop
));
11260 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11261 with C the size of VAROP - 1 and the shift is logical if
11262 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11263 we have a (gt X 0) operation. If the shift is arithmetic with
11264 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11265 we have a (neg (gt X 0)) operation. */
11267 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
11268 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
11269 && count
== (GET_MODE_PRECISION (int_varop_mode
) - 1)
11270 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
11271 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
11272 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
11273 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
11276 varop
= gen_rtx_GT (int_varop_mode
, XEXP (varop
, 1),
11279 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
11280 varop
= gen_rtx_NEG (int_varop_mode
, varop
);
11287 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11288 if the truncate does not affect the value. */
11289 if (code
== LSHIFTRT
11290 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
11291 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
11292 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
11293 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop
, 0)))
11294 - GET_MODE_UNIT_PRECISION (GET_MODE (varop
)))))
11296 rtx varop_inner
= XEXP (varop
, 0);
11297 int new_count
= count
+ INTVAL (XEXP (varop_inner
, 1));
11298 rtx new_count_rtx
= gen_int_shift_amount (GET_MODE (varop_inner
),
11300 varop_inner
= gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
11301 XEXP (varop_inner
, 0),
11303 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
11316 shift_mode
= result_mode
;
11317 if (shift_mode
!= mode
)
11319 /* We only change the modes of scalar shifts. */
11320 int_mode
= as_a
<scalar_int_mode
> (mode
);
11321 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11322 shift_mode
= try_widen_shift_mode (code
, varop
, count
, int_result_mode
,
11323 int_mode
, outer_op
, outer_const
);
11326 /* We have now finished analyzing the shift. The result should be
11327 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11328 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11329 to the result of the shift. OUTER_CONST is the relevant constant,
11330 but we must turn off all bits turned off in the shift. */
11332 if (outer_op
== UNKNOWN
11333 && orig_code
== code
&& orig_count
== count
11334 && varop
== orig_varop
11335 && shift_mode
== GET_MODE (varop
))
11338 /* Make a SUBREG if necessary. If we can't make it, fail. */
11339 varop
= gen_lowpart (shift_mode
, varop
);
11340 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
11343 /* If we have an outer operation and we just made a shift, it is
11344 possible that we could have simplified the shift were it not
11345 for the outer operation. So try to do the simplification
11348 if (outer_op
!= UNKNOWN
)
11349 x
= simplify_shift_const_1 (code
, shift_mode
, varop
, count
);
11354 x
= simplify_gen_binary (code
, shift_mode
, varop
,
11355 gen_int_shift_amount (shift_mode
, count
));
11357 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11358 turn off all the bits that the shift would have turned off. */
11359 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
11360 /* We only change the modes of scalar shifts. */
11361 x
= simplify_and_const_int (NULL_RTX
, as_a
<scalar_int_mode
> (shift_mode
),
11362 x
, GET_MODE_MASK (result_mode
) >> orig_count
);
11364 /* Do the remainder of the processing in RESULT_MODE. */
11365 x
= gen_lowpart_or_truncate (result_mode
, x
);
11367 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11370 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
11372 if (outer_op
!= UNKNOWN
)
11374 int_result_mode
= as_a
<scalar_int_mode
> (result_mode
);
11376 if (GET_RTX_CLASS (outer_op
) != RTX_UNARY
11377 && GET_MODE_PRECISION (int_result_mode
) < HOST_BITS_PER_WIDE_INT
)
11378 outer_const
= trunc_int_for_mode (outer_const
, int_result_mode
);
11380 if (outer_op
== AND
)
11381 x
= simplify_and_const_int (NULL_RTX
, int_result_mode
, x
, outer_const
);
11382 else if (outer_op
== SET
)
11384 /* This means that we have determined that the result is
11385 equivalent to a constant. This should be rare. */
11386 if (!side_effects_p (x
))
11387 x
= GEN_INT (outer_const
);
11389 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
11390 x
= simplify_gen_unary (outer_op
, int_result_mode
, x
, int_result_mode
);
11392 x
= simplify_gen_binary (outer_op
, int_result_mode
, x
,
11393 GEN_INT (outer_const
));
11399 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11400 The result of the shift is RESULT_MODE. If we cannot simplify it,
11401 return X or, if it is NULL, synthesize the expression with
11402 simplify_gen_binary. Otherwise, return a simplified value.
11404 The shift is normally computed in the widest mode we find in VAROP, as
11405 long as it isn't a different number of words than RESULT_MODE. Exceptions
11406 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11409 simplify_shift_const (rtx x
, enum rtx_code code
, machine_mode result_mode
,
11410 rtx varop
, int count
)
11412 rtx tem
= simplify_shift_const_1 (code
, result_mode
, varop
, count
);
11417 x
= simplify_gen_binary (code
, GET_MODE (varop
), varop
,
11418 gen_int_shift_amount (GET_MODE (varop
), count
));
11419 if (GET_MODE (x
) != result_mode
)
11420 x
= gen_lowpart (result_mode
, x
);
11425 /* A subroutine of recog_for_combine. See there for arguments and
11429 recog_for_combine_1 (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
11431 rtx pat
= *pnewpat
;
11432 rtx pat_without_clobbers
;
11433 int insn_code_number
;
11434 int num_clobbers_to_add
= 0;
11436 rtx notes
= NULL_RTX
;
11437 rtx old_notes
, old_pat
;
11440 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11441 we use to indicate that something didn't match. If we find such a
11442 thing, force rejection. */
11443 if (GET_CODE (pat
) == PARALLEL
)
11444 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
11445 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
11446 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
11449 old_pat
= PATTERN (insn
);
11450 old_notes
= REG_NOTES (insn
);
11451 PATTERN (insn
) = pat
;
11452 REG_NOTES (insn
) = NULL_RTX
;
11454 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
11455 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11457 if (insn_code_number
< 0)
11458 fputs ("Failed to match this instruction:\n", dump_file
);
11460 fputs ("Successfully matched this instruction:\n", dump_file
);
11461 print_rtl_single (dump_file
, pat
);
11464 /* If it isn't, there is the possibility that we previously had an insn
11465 that clobbered some register as a side effect, but the combined
11466 insn doesn't need to do that. So try once more without the clobbers
11467 unless this represents an ASM insn. */
11469 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
11470 && GET_CODE (pat
) == PARALLEL
)
11474 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
11475 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
11478 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
11482 SUBST_INT (XVECLEN (pat
, 0), pos
);
11485 pat
= XVECEXP (pat
, 0, 0);
11487 PATTERN (insn
) = pat
;
11488 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
11489 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11491 if (insn_code_number
< 0)
11492 fputs ("Failed to match this instruction:\n", dump_file
);
11494 fputs ("Successfully matched this instruction:\n", dump_file
);
11495 print_rtl_single (dump_file
, pat
);
11499 pat_without_clobbers
= pat
;
11501 PATTERN (insn
) = old_pat
;
11502 REG_NOTES (insn
) = old_notes
;
11504 /* Recognize all noop sets, these will be killed by followup pass. */
11505 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
11506 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
11508 /* If we had any clobbers to add, make a new pattern than contains
11509 them. Then check to make sure that all of them are dead. */
11510 if (num_clobbers_to_add
)
11512 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
11513 rtvec_alloc (GET_CODE (pat
) == PARALLEL
11514 ? (XVECLEN (pat
, 0)
11515 + num_clobbers_to_add
)
11516 : num_clobbers_to_add
+ 1));
11518 if (GET_CODE (pat
) == PARALLEL
)
11519 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
11520 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
11522 XVECEXP (newpat
, 0, 0) = pat
;
11524 add_clobbers (newpat
, insn_code_number
);
11526 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
11527 i
< XVECLEN (newpat
, 0); i
++)
11529 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
11530 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
11532 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) != SCRATCH
)
11534 gcc_assert (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0)));
11535 notes
= alloc_reg_note (REG_UNUSED
,
11536 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
11542 if (insn_code_number
>= 0
11543 && insn_code_number
!= NOOP_MOVE_INSN_CODE
)
11545 old_pat
= PATTERN (insn
);
11546 old_notes
= REG_NOTES (insn
);
11547 old_icode
= INSN_CODE (insn
);
11548 PATTERN (insn
) = pat
;
11549 REG_NOTES (insn
) = notes
;
11550 INSN_CODE (insn
) = insn_code_number
;
11552 /* Allow targets to reject combined insn. */
11553 if (!targetm
.legitimate_combined_insn (insn
))
11555 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
11556 fputs ("Instruction not appropriate for target.",
11559 /* Callers expect recog_for_combine to strip
11560 clobbers from the pattern on failure. */
11561 pat
= pat_without_clobbers
;
11564 insn_code_number
= -1;
11567 PATTERN (insn
) = old_pat
;
11568 REG_NOTES (insn
) = old_notes
;
11569 INSN_CODE (insn
) = old_icode
;
11575 return insn_code_number
;
11578 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11579 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11580 Return whether anything was so changed. */
11583 change_zero_ext (rtx pat
)
11585 bool changed
= false;
11586 rtx
*src
= &SET_SRC (pat
);
11588 subrtx_ptr_iterator::array_type array
;
11589 FOR_EACH_SUBRTX_PTR (iter
, array
, src
, NONCONST
)
11592 scalar_int_mode mode
, inner_mode
;
11593 if (!is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
11597 if (GET_CODE (x
) == ZERO_EXTRACT
11598 && CONST_INT_P (XEXP (x
, 1))
11599 && CONST_INT_P (XEXP (x
, 2))
11600 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)), &inner_mode
)
11601 && GET_MODE_PRECISION (inner_mode
) <= GET_MODE_PRECISION (mode
))
11603 size
= INTVAL (XEXP (x
, 1));
11605 int start
= INTVAL (XEXP (x
, 2));
11606 if (BITS_BIG_ENDIAN
)
11607 start
= GET_MODE_PRECISION (inner_mode
) - size
- start
;
11610 x
= gen_rtx_LSHIFTRT (inner_mode
, XEXP (x
, 0),
11611 gen_int_shift_amount (inner_mode
, start
));
11615 if (mode
!= inner_mode
)
11617 if (REG_P (x
) && HARD_REGISTER_P (x
)
11618 && !can_change_dest_mode (x
, 0, mode
))
11621 x
= gen_lowpart_SUBREG (mode
, x
);
11624 else if (GET_CODE (x
) == ZERO_EXTEND
11625 && GET_CODE (XEXP (x
, 0)) == SUBREG
11626 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x
, 0))))
11627 && !paradoxical_subreg_p (XEXP (x
, 0))
11628 && subreg_lowpart_p (XEXP (x
, 0)))
11630 inner_mode
= as_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)));
11631 size
= GET_MODE_PRECISION (inner_mode
);
11632 x
= SUBREG_REG (XEXP (x
, 0));
11633 if (GET_MODE (x
) != mode
)
11635 if (REG_P (x
) && HARD_REGISTER_P (x
)
11636 && !can_change_dest_mode (x
, 0, mode
))
11639 x
= gen_lowpart_SUBREG (mode
, x
);
11642 else if (GET_CODE (x
) == ZERO_EXTEND
11643 && REG_P (XEXP (x
, 0))
11644 && HARD_REGISTER_P (XEXP (x
, 0))
11645 && can_change_dest_mode (XEXP (x
, 0), 0, mode
))
11647 inner_mode
= as_a
<scalar_int_mode
> (GET_MODE (XEXP (x
, 0)));
11648 size
= GET_MODE_PRECISION (inner_mode
);
11649 x
= gen_rtx_REG (mode
, REGNO (XEXP (x
, 0)));
11654 if (!(GET_CODE (x
) == LSHIFTRT
11655 && CONST_INT_P (XEXP (x
, 1))
11656 && size
+ INTVAL (XEXP (x
, 1)) == GET_MODE_PRECISION (mode
)))
11658 wide_int mask
= wi::mask (size
, false, GET_MODE_PRECISION (mode
));
11659 x
= gen_rtx_AND (mode
, x
, immed_wide_int_const (mask
, mode
));
11667 FOR_EACH_SUBRTX_PTR (iter
, array
, src
, NONCONST
)
11668 maybe_swap_commutative_operands (**iter
);
11670 rtx
*dst
= &SET_DEST (pat
);
11671 scalar_int_mode mode
;
11672 if (GET_CODE (*dst
) == ZERO_EXTRACT
11673 && REG_P (XEXP (*dst
, 0))
11674 && is_a
<scalar_int_mode
> (GET_MODE (XEXP (*dst
, 0)), &mode
)
11675 && CONST_INT_P (XEXP (*dst
, 1))
11676 && CONST_INT_P (XEXP (*dst
, 2)))
11678 rtx reg
= XEXP (*dst
, 0);
11679 int width
= INTVAL (XEXP (*dst
, 1));
11680 int offset
= INTVAL (XEXP (*dst
, 2));
11681 int reg_width
= GET_MODE_PRECISION (mode
);
11682 if (BITS_BIG_ENDIAN
)
11683 offset
= reg_width
- width
- offset
;
11686 wide_int mask
= wi::shifted_mask (offset
, width
, true, reg_width
);
11687 wide_int mask2
= wi::shifted_mask (offset
, width
, false, reg_width
);
11688 x
= gen_rtx_AND (mode
, reg
, immed_wide_int_const (mask
, mode
));
11690 y
= gen_rtx_ASHIFT (mode
, SET_SRC (pat
), GEN_INT (offset
));
11693 z
= gen_rtx_AND (mode
, y
, immed_wide_int_const (mask2
, mode
));
11694 w
= gen_rtx_IOR (mode
, x
, z
);
11695 SUBST (SET_DEST (pat
), reg
);
11696 SUBST (SET_SRC (pat
), w
);
11704 /* Like recog, but we receive the address of a pointer to a new pattern.
11705 We try to match the rtx that the pointer points to.
11706 If that fails, we may try to modify or replace the pattern,
11707 storing the replacement into the same pointer object.
11709 Modifications include deletion or addition of CLOBBERs. If the
11710 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11711 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11712 (and undo if that fails).
11714 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11715 the CLOBBERs are placed.
11717 The value is the final insn code from the pattern ultimately matched,
11721 recog_for_combine (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
11723 rtx pat
= *pnewpat
;
11724 int insn_code_number
= recog_for_combine_1 (pnewpat
, insn
, pnotes
);
11725 if (insn_code_number
>= 0 || check_asm_operands (pat
))
11726 return insn_code_number
;
11728 void *marker
= get_undo_marker ();
11729 bool changed
= false;
11731 if (GET_CODE (pat
) == SET
)
11732 changed
= change_zero_ext (pat
);
11733 else if (GET_CODE (pat
) == PARALLEL
)
11736 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
11738 rtx set
= XVECEXP (pat
, 0, i
);
11739 if (GET_CODE (set
) == SET
)
11740 changed
|= change_zero_ext (set
);
11746 insn_code_number
= recog_for_combine_1 (pnewpat
, insn
, pnotes
);
11748 if (insn_code_number
< 0)
11749 undo_to_marker (marker
);
11752 return insn_code_number
;
11755 /* Like gen_lowpart_general but for use by combine. In combine it
11756 is not possible to create any new pseudoregs. However, it is
11757 safe to create invalid memory addresses, because combine will
11758 try to recognize them and all they will do is make the combine
11761 If for some reason this cannot do its job, an rtx
11762 (clobber (const_int 0)) is returned.
11763 An insn containing that will not be recognized. */
11766 gen_lowpart_for_combine (machine_mode omode
, rtx x
)
11768 machine_mode imode
= GET_MODE (x
);
11771 if (omode
== imode
)
11774 /* We can only support MODE being wider than a word if X is a
11775 constant integer or has a mode the same size. */
11776 if (maybe_gt (GET_MODE_SIZE (omode
), UNITS_PER_WORD
)
11777 && ! (CONST_SCALAR_INT_P (x
)
11778 || known_eq (GET_MODE_SIZE (imode
), GET_MODE_SIZE (omode
))))
11781 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11782 won't know what to do. So we will strip off the SUBREG here and
11783 process normally. */
11784 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
11786 x
= SUBREG_REG (x
);
11788 /* For use in case we fall down into the address adjustments
11789 further below, we need to adjust the known mode and size of
11790 x; imode and isize, since we just adjusted x. */
11791 imode
= GET_MODE (x
);
11793 if (imode
== omode
)
11797 result
= gen_lowpart_common (omode
, x
);
11804 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11806 if (MEM_VOLATILE_P (x
)
11807 || mode_dependent_address_p (XEXP (x
, 0), MEM_ADDR_SPACE (x
)))
11810 /* If we want to refer to something bigger than the original memref,
11811 generate a paradoxical subreg instead. That will force a reload
11812 of the original memref X. */
11813 if (paradoxical_subreg_p (omode
, imode
))
11814 return gen_rtx_SUBREG (omode
, x
, 0);
11816 poly_int64 offset
= byte_lowpart_offset (omode
, imode
);
11817 return adjust_address_nv (x
, omode
, offset
);
11820 /* If X is a comparison operator, rewrite it in a new mode. This
11821 probably won't match, but may allow further simplifications. */
11822 else if (COMPARISON_P (x
))
11823 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
11825 /* If we couldn't simplify X any other way, just enclose it in a
11826 SUBREG. Normally, this SUBREG won't match, but some patterns may
11827 include an explicit SUBREG or we may simplify it further in combine. */
11832 if (imode
== VOIDmode
)
11834 imode
= int_mode_for_mode (omode
).require ();
11835 x
= gen_lowpart_common (imode
, x
);
11839 res
= lowpart_subreg (omode
, x
, imode
);
11845 return gen_rtx_CLOBBER (omode
, const0_rtx
);
11848 /* Try to simplify a comparison between OP0 and a constant OP1,
11849 where CODE is the comparison code that will be tested, into a
11850 (CODE OP0 const0_rtx) form.
11852 The result is a possibly different comparison code to use.
11853 *POP1 may be updated. */
11855 static enum rtx_code
11856 simplify_compare_const (enum rtx_code code
, machine_mode mode
,
11857 rtx op0
, rtx
*pop1
)
11859 scalar_int_mode int_mode
;
11860 HOST_WIDE_INT const_op
= INTVAL (*pop1
);
11862 /* Get the constant we are comparing against and turn off all bits
11863 not on in our mode. */
11864 if (mode
!= VOIDmode
)
11865 const_op
= trunc_int_for_mode (const_op
, mode
);
11867 /* If we are comparing against a constant power of two and the value
11868 being compared can only have that single bit nonzero (e.g., it was
11869 `and'ed with that bit), we can replace this with a comparison
11872 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
11873 || code
== LT
|| code
== LTU
)
11874 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11875 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11876 && pow2p_hwi (const_op
& GET_MODE_MASK (int_mode
))
11877 && (nonzero_bits (op0
, int_mode
)
11878 == (unsigned HOST_WIDE_INT
) (const_op
& GET_MODE_MASK (int_mode
))))
11880 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
11884 /* Similarly, if we are comparing a value known to be either -1 or
11885 0 with -1, change it to the opposite comparison against zero. */
11887 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
11888 || code
== GEU
|| code
== LTU
)
11889 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11890 && num_sign_bit_copies (op0
, int_mode
) == GET_MODE_PRECISION (int_mode
))
11892 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
11896 /* Do some canonicalizations based on the comparison code. We prefer
11897 comparisons against zero and then prefer equality comparisons.
11898 If we can reduce the size of a constant, we will do that too. */
11902 /* < C is equivalent to <= (C - 1) */
11907 /* ... fall through to LE case below. */
11908 gcc_fallthrough ();
11914 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11921 /* If we are doing a <= 0 comparison on a value known to have
11922 a zero sign bit, we can replace this with == 0. */
11923 else if (const_op
== 0
11924 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11925 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11926 && (nonzero_bits (op0
, int_mode
)
11927 & (HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11933 /* >= C is equivalent to > (C - 1). */
11938 /* ... fall through to GT below. */
11939 gcc_fallthrough ();
11945 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11952 /* If we are doing a > 0 comparison on a value known to have
11953 a zero sign bit, we can replace this with != 0. */
11954 else if (const_op
== 0
11955 && is_a
<scalar_int_mode
> (mode
, &int_mode
)
11956 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11957 && (nonzero_bits (op0
, int_mode
)
11958 & (HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11964 /* < C is equivalent to <= (C - 1). */
11969 /* ... fall through ... */
11970 gcc_fallthrough ();
11972 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11973 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11974 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11975 && ((unsigned HOST_WIDE_INT
) const_op
11976 == HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
11986 /* unsigned <= 0 is equivalent to == 0 */
11989 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11990 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
11991 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
11992 && ((unsigned HOST_WIDE_INT
) const_op
11993 == ((HOST_WIDE_INT_1U
11994 << (GET_MODE_PRECISION (int_mode
) - 1)) - 1)))
12002 /* >= C is equivalent to > (C - 1). */
12007 /* ... fall through ... */
12008 gcc_fallthrough ();
12011 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
12012 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
12013 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
12014 && ((unsigned HOST_WIDE_INT
) const_op
12015 == HOST_WIDE_INT_1U
<< (GET_MODE_PRECISION (int_mode
) - 1)))
12025 /* unsigned > 0 is equivalent to != 0 */
12028 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
12029 else if (is_a
<scalar_int_mode
> (mode
, &int_mode
)
12030 && GET_MODE_PRECISION (int_mode
) - 1 < HOST_BITS_PER_WIDE_INT
12031 && ((unsigned HOST_WIDE_INT
) const_op
12032 == (HOST_WIDE_INT_1U
12033 << (GET_MODE_PRECISION (int_mode
) - 1)) - 1))
12044 *pop1
= GEN_INT (const_op
);
12048 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
12049 comparison code that will be tested.
12051 The result is a possibly different comparison code to use. *POP0 and
12052 *POP1 may be updated.
12054 It is possible that we might detect that a comparison is either always
12055 true or always false. However, we do not perform general constant
12056 folding in combine, so this knowledge isn't useful. Such tautologies
12057 should have been detected earlier. Hence we ignore all such cases. */
12059 static enum rtx_code
12060 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
12066 scalar_int_mode mode
, inner_mode
, tmode
;
12067 opt_scalar_int_mode tmode_iter
;
12069 /* Try a few ways of applying the same transformation to both operands. */
12072 /* The test below this one won't handle SIGN_EXTENDs on these machines,
12073 so check specially. */
12074 if (!WORD_REGISTER_OPERATIONS
12075 && code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
12076 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
12077 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12078 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
12079 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
12080 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
12081 && is_a
<scalar_int_mode
> (GET_MODE (op0
), &mode
)
12082 && (is_a
<scalar_int_mode
>
12083 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))), &inner_mode
))
12084 && inner_mode
== GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0)))
12085 && CONST_INT_P (XEXP (op0
, 1))
12086 && XEXP (op0
, 1) == XEXP (op1
, 1)
12087 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
12088 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
12089 && (INTVAL (XEXP (op0
, 1))
12090 == (GET_MODE_PRECISION (mode
)
12091 - GET_MODE_PRECISION (inner_mode
))))
12093 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
12094 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
12097 /* If both operands are the same constant shift, see if we can ignore the
12098 shift. We can if the shift is a rotate or if the bits shifted out of
12099 this shift are known to be zero for both inputs and if the type of
12100 comparison is compatible with the shift. */
12101 if (GET_CODE (op0
) == GET_CODE (op1
)
12102 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
12103 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
12104 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
12105 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
12106 || (GET_CODE (op0
) == ASHIFTRT
12107 && (code
!= GTU
&& code
!= LTU
12108 && code
!= GEU
&& code
!= LEU
)))
12109 && CONST_INT_P (XEXP (op0
, 1))
12110 && INTVAL (XEXP (op0
, 1)) >= 0
12111 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
12112 && XEXP (op0
, 1) == XEXP (op1
, 1))
12114 machine_mode mode
= GET_MODE (op0
);
12115 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
12116 int shift_count
= INTVAL (XEXP (op0
, 1));
12118 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
12119 mask
&= (mask
>> shift_count
) << shift_count
;
12120 else if (GET_CODE (op0
) == ASHIFT
)
12121 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
12123 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
12124 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
12125 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
12130 /* If both operands are AND's of a paradoxical SUBREG by constant, the
12131 SUBREGs are of the same mode, and, in both cases, the AND would
12132 be redundant if the comparison was done in the narrower mode,
12133 do the comparison in the narrower mode (e.g., we are AND'ing with 1
12134 and the operand's possibly nonzero bits are 0xffffff01; in that case
12135 if we only care about QImode, we don't need the AND). This case
12136 occurs if the output mode of an scc insn is not SImode and
12137 STORE_FLAG_VALUE == 1 (e.g., the 386).
12139 Similarly, check for a case where the AND's are ZERO_EXTEND
12140 operations from some narrower mode even though a SUBREG is not
12143 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
12144 && CONST_INT_P (XEXP (op0
, 1))
12145 && CONST_INT_P (XEXP (op1
, 1)))
12147 rtx inner_op0
= XEXP (op0
, 0);
12148 rtx inner_op1
= XEXP (op1
, 0);
12149 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
12150 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
12153 if (paradoxical_subreg_p (inner_op0
)
12154 && GET_CODE (inner_op1
) == SUBREG
12155 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0
)))
12156 && (GET_MODE (SUBREG_REG (inner_op0
))
12157 == GET_MODE (SUBREG_REG (inner_op1
)))
12158 && ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
12159 GET_MODE (SUBREG_REG (inner_op0
)))) == 0
12160 && ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
12161 GET_MODE (SUBREG_REG (inner_op1
)))) == 0)
12163 op0
= SUBREG_REG (inner_op0
);
12164 op1
= SUBREG_REG (inner_op1
);
12166 /* The resulting comparison is always unsigned since we masked
12167 off the original sign bit. */
12168 code
= unsigned_condition (code
);
12174 FOR_EACH_MODE_UNTIL (tmode
,
12175 as_a
<scalar_int_mode
> (GET_MODE (op0
)))
12176 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
12178 op0
= gen_lowpart_or_truncate (tmode
, inner_op0
);
12179 op1
= gen_lowpart_or_truncate (tmode
, inner_op1
);
12180 code
= unsigned_condition (code
);
12189 /* If both operands are NOT, we can strip off the outer operation
12190 and adjust the comparison code for swapped operands; similarly for
12191 NEG, except that this must be an equality comparison. */
12192 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
12193 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
12194 && (code
== EQ
|| code
== NE
)))
12195 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
12201 /* If the first operand is a constant, swap the operands and adjust the
12202 comparison code appropriately, but don't do this if the second operand
12203 is already a constant integer. */
12204 if (swap_commutative_operands_p (op0
, op1
))
12206 std::swap (op0
, op1
);
12207 code
= swap_condition (code
);
12210 /* We now enter a loop during which we will try to simplify the comparison.
12211 For the most part, we only are concerned with comparisons with zero,
12212 but some things may really be comparisons with zero but not start
12213 out looking that way. */
12215 while (CONST_INT_P (op1
))
12217 machine_mode raw_mode
= GET_MODE (op0
);
12218 scalar_int_mode int_mode
;
12219 int equality_comparison_p
;
12220 int sign_bit_comparison_p
;
12221 int unsigned_comparison_p
;
12222 HOST_WIDE_INT const_op
;
12224 /* We only want to handle integral modes. This catches VOIDmode,
12225 CCmode, and the floating-point modes. An exception is that we
12226 can handle VOIDmode if OP0 is a COMPARE or a comparison
12229 if (GET_MODE_CLASS (raw_mode
) != MODE_INT
12230 && ! (raw_mode
== VOIDmode
12231 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
12234 /* Try to simplify the compare to constant, possibly changing the
12235 comparison op, and/or changing op1 to zero. */
12236 code
= simplify_compare_const (code
, raw_mode
, op0
, &op1
);
12237 const_op
= INTVAL (op1
);
12239 /* Compute some predicates to simplify code below. */
12241 equality_comparison_p
= (code
== EQ
|| code
== NE
);
12242 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
12243 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
12246 /* If this is a sign bit comparison and we can do arithmetic in
12247 MODE, say that we will only be needing the sign bit of OP0. */
12248 if (sign_bit_comparison_p
12249 && is_a
<scalar_int_mode
> (raw_mode
, &int_mode
)
12250 && HWI_COMPUTABLE_MODE_P (int_mode
))
12251 op0
= force_to_mode (op0
, int_mode
,
12253 << (GET_MODE_PRECISION (int_mode
) - 1),
12256 if (COMPARISON_P (op0
))
12258 /* We can't do anything if OP0 is a condition code value, rather
12259 than an actual data value. */
12261 || CC0_P (XEXP (op0
, 0))
12262 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
12265 /* Get the two operands being compared. */
12266 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
12267 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
12269 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
12271 /* Check for the cases where we simply want the result of the
12272 earlier test or the opposite of that result. */
12273 if (code
== NE
|| code
== EQ
12274 || (val_signbit_known_set_p (raw_mode
, STORE_FLAG_VALUE
)
12275 && (code
== LT
|| code
== GE
)))
12277 enum rtx_code new_code
;
12278 if (code
== LT
|| code
== NE
)
12279 new_code
= GET_CODE (op0
);
12281 new_code
= reversed_comparison_code (op0
, NULL
);
12283 if (new_code
!= UNKNOWN
)
12294 if (raw_mode
== VOIDmode
)
12296 scalar_int_mode mode
= as_a
<scalar_int_mode
> (raw_mode
);
12298 /* Now try cases based on the opcode of OP0. If none of the cases
12299 does a "continue", we exit this loop immediately after the
12302 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
12303 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
12304 switch (GET_CODE (op0
))
12307 /* If we are extracting a single bit from a variable position in
12308 a constant that has only a single bit set and are comparing it
12309 with zero, we can convert this into an equality comparison
12310 between the position and the location of the single bit. */
12311 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12312 have already reduced the shift count modulo the word size. */
12313 if (!SHIFT_COUNT_TRUNCATED
12314 && CONST_INT_P (XEXP (op0
, 0))
12315 && XEXP (op0
, 1) == const1_rtx
12316 && equality_comparison_p
&& const_op
== 0
12317 && (i
= exact_log2 (UINTVAL (XEXP (op0
, 0)))) >= 0)
12319 if (BITS_BIG_ENDIAN
)
12320 i
= BITS_PER_WORD
- 1 - i
;
12322 op0
= XEXP (op0
, 2);
12326 /* Result is nonzero iff shift count is equal to I. */
12327 code
= reverse_condition (code
);
12334 tem
= expand_compound_operation (op0
);
12343 /* If testing for equality, we can take the NOT of the constant. */
12344 if (equality_comparison_p
12345 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
12347 op0
= XEXP (op0
, 0);
12352 /* If just looking at the sign bit, reverse the sense of the
12354 if (sign_bit_comparison_p
)
12356 op0
= XEXP (op0
, 0);
12357 code
= (code
== GE
? LT
: GE
);
12363 /* If testing for equality, we can take the NEG of the constant. */
12364 if (equality_comparison_p
12365 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
12367 op0
= XEXP (op0
, 0);
12372 /* The remaining cases only apply to comparisons with zero. */
12376 /* When X is ABS or is known positive,
12377 (neg X) is < 0 if and only if X != 0. */
12379 if (sign_bit_comparison_p
12380 && (GET_CODE (XEXP (op0
, 0)) == ABS
12381 || (mode_width
<= HOST_BITS_PER_WIDE_INT
12382 && (nonzero_bits (XEXP (op0
, 0), mode
)
12383 & (HOST_WIDE_INT_1U
<< (mode_width
- 1)))
12386 op0
= XEXP (op0
, 0);
12387 code
= (code
== LT
? NE
: EQ
);
12391 /* If we have NEG of something whose two high-order bits are the
12392 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12393 if (num_sign_bit_copies (op0
, mode
) >= 2)
12395 op0
= XEXP (op0
, 0);
12396 code
= swap_condition (code
);
12402 /* If we are testing equality and our count is a constant, we
12403 can perform the inverse operation on our RHS. */
12404 if (equality_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
12405 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
12406 op1
, XEXP (op0
, 1))) != 0)
12408 op0
= XEXP (op0
, 0);
12413 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12414 a particular bit. Convert it to an AND of a constant of that
12415 bit. This will be converted into a ZERO_EXTRACT. */
12416 if (const_op
== 0 && sign_bit_comparison_p
12417 && CONST_INT_P (XEXP (op0
, 1))
12418 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
12420 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
12423 - INTVAL (XEXP (op0
, 1)))));
12424 code
= (code
== LT
? NE
: EQ
);
12428 /* Fall through. */
12431 /* ABS is ignorable inside an equality comparison with zero. */
12432 if (const_op
== 0 && equality_comparison_p
)
12434 op0
= XEXP (op0
, 0);
12440 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12441 (compare FOO CONST) if CONST fits in FOO's mode and we
12442 are either testing inequality or have an unsigned
12443 comparison with ZERO_EXTEND or a signed comparison with
12444 SIGN_EXTEND. But don't do it if we don't have a compare
12445 insn of the given mode, since we'd have to revert it
12446 later on, and then we wouldn't know whether to sign- or
12448 if (is_int_mode (GET_MODE (XEXP (op0
, 0)), &mode
)
12449 && ! unsigned_comparison_p
12450 && HWI_COMPUTABLE_MODE_P (mode
)
12451 && trunc_int_for_mode (const_op
, mode
) == const_op
12452 && have_insn_for (COMPARE
, mode
))
12454 op0
= XEXP (op0
, 0);
12460 /* Check for the case where we are comparing A - C1 with C2, that is
12462 (subreg:MODE (plus (A) (-C1))) op (C2)
12464 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12465 comparison in the wider mode. One of the following two conditions
12466 must be true in order for this to be valid:
12468 1. The mode extension results in the same bit pattern being added
12469 on both sides and the comparison is equality or unsigned. As
12470 C2 has been truncated to fit in MODE, the pattern can only be
12473 2. The mode extension results in the sign bit being copied on
12476 The difficulty here is that we have predicates for A but not for
12477 (A - C1) so we need to check that C1 is within proper bounds so
12478 as to perturbate A as little as possible. */
12480 if (mode_width
<= HOST_BITS_PER_WIDE_INT
12481 && subreg_lowpart_p (op0
)
12482 && is_a
<scalar_int_mode
> (GET_MODE (SUBREG_REG (op0
)),
12484 && GET_MODE_PRECISION (inner_mode
) > mode_width
12485 && GET_CODE (SUBREG_REG (op0
)) == PLUS
12486 && CONST_INT_P (XEXP (SUBREG_REG (op0
), 1)))
12488 rtx a
= XEXP (SUBREG_REG (op0
), 0);
12489 HOST_WIDE_INT c1
= -INTVAL (XEXP (SUBREG_REG (op0
), 1));
12492 && (unsigned HOST_WIDE_INT
) c1
12493 < HOST_WIDE_INT_1U
<< (mode_width
- 1)
12494 && (equality_comparison_p
|| unsigned_comparison_p
)
12495 /* (A - C1) zero-extends if it is positive and sign-extends
12496 if it is negative, C2 both zero- and sign-extends. */
12497 && (((nonzero_bits (a
, inner_mode
)
12498 & ~GET_MODE_MASK (mode
)) == 0
12500 /* (A - C1) sign-extends if it is positive and 1-extends
12501 if it is negative, C2 both sign- and 1-extends. */
12502 || (num_sign_bit_copies (a
, inner_mode
)
12503 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
12506 || ((unsigned HOST_WIDE_INT
) c1
12507 < HOST_WIDE_INT_1U
<< (mode_width
- 2)
12508 /* (A - C1) always sign-extends, like C2. */
12509 && num_sign_bit_copies (a
, inner_mode
)
12510 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
12511 - (mode_width
- 1))))
12513 op0
= SUBREG_REG (op0
);
12518 /* If the inner mode is narrower and we are extracting the low part,
12519 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12520 if (paradoxical_subreg_p (op0
))
12522 else if (subreg_lowpart_p (op0
)
12523 && GET_MODE_CLASS (mode
) == MODE_INT
12524 && is_int_mode (GET_MODE (SUBREG_REG (op0
)), &inner_mode
)
12525 && (code
== NE
|| code
== EQ
)
12526 && GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
12527 && !paradoxical_subreg_p (op0
)
12528 && (nonzero_bits (SUBREG_REG (op0
), inner_mode
)
12529 & ~GET_MODE_MASK (mode
)) == 0)
12531 /* Remove outer subregs that don't do anything. */
12532 tem
= gen_lowpart (inner_mode
, op1
);
12534 if ((nonzero_bits (tem
, inner_mode
)
12535 & ~GET_MODE_MASK (mode
)) == 0)
12537 op0
= SUBREG_REG (op0
);
12549 if (is_int_mode (GET_MODE (XEXP (op0
, 0)), &mode
)
12550 && (unsigned_comparison_p
|| equality_comparison_p
)
12551 && HWI_COMPUTABLE_MODE_P (mode
)
12552 && (unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (mode
)
12554 && have_insn_for (COMPARE
, mode
))
12556 op0
= XEXP (op0
, 0);
12562 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12563 this for equality comparisons due to pathological cases involving
12565 if (equality_comparison_p
12566 && (tem
= simplify_binary_operation (MINUS
, mode
,
12567 op1
, XEXP (op0
, 1))) != 0)
12569 op0
= XEXP (op0
, 0);
12574 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12575 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
12576 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
12578 op0
= XEXP (XEXP (op0
, 0), 0);
12579 code
= (code
== LT
? EQ
: NE
);
12585 /* We used to optimize signed comparisons against zero, but that
12586 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12587 arrive here as equality comparisons, or (GEU, LTU) are
12588 optimized away. No need to special-case them. */
12590 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12591 (eq B (minus A C)), whichever simplifies. We can only do
12592 this for equality comparisons due to pathological cases involving
12594 if (equality_comparison_p
12595 && (tem
= simplify_binary_operation (PLUS
, mode
,
12596 XEXP (op0
, 1), op1
)) != 0)
12598 op0
= XEXP (op0
, 0);
12603 if (equality_comparison_p
12604 && (tem
= simplify_binary_operation (MINUS
, mode
,
12605 XEXP (op0
, 0), op1
)) != 0)
12607 op0
= XEXP (op0
, 1);
12612 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12613 of bits in X minus 1, is one iff X > 0. */
12614 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
12615 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12616 && UINTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
12617 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
12619 op0
= XEXP (op0
, 1);
12620 code
= (code
== GE
? LE
: GT
);
12626 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12627 if C is zero or B is a constant. */
12628 if (equality_comparison_p
12629 && (tem
= simplify_binary_operation (XOR
, mode
,
12630 XEXP (op0
, 1), op1
)) != 0)
12632 op0
= XEXP (op0
, 0);
12640 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12642 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
12643 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
12644 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
12646 op0
= XEXP (op0
, 1);
12647 code
= (code
== GE
? GT
: LE
);
12653 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12654 will be converted to a ZERO_EXTRACT later. */
12655 if (const_op
== 0 && equality_comparison_p
12656 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12657 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
12659 op0
= gen_rtx_LSHIFTRT (mode
, XEXP (op0
, 1),
12660 XEXP (XEXP (op0
, 0), 1));
12661 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
12665 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12666 zero and X is a comparison and C1 and C2 describe only bits set
12667 in STORE_FLAG_VALUE, we can compare with X. */
12668 if (const_op
== 0 && equality_comparison_p
12669 && mode_width
<= HOST_BITS_PER_WIDE_INT
12670 && CONST_INT_P (XEXP (op0
, 1))
12671 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
12672 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12673 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
12674 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
12676 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
12677 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
12678 if ((~STORE_FLAG_VALUE
& mask
) == 0
12679 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
12680 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
12681 && COMPARISON_P (tem
))))
12683 op0
= XEXP (XEXP (op0
, 0), 0);
12688 /* If we are doing an equality comparison of an AND of a bit equal
12689 to the sign bit, replace this with a LT or GE comparison of
12690 the underlying value. */
12691 if (equality_comparison_p
12693 && CONST_INT_P (XEXP (op0
, 1))
12694 && mode_width
<= HOST_BITS_PER_WIDE_INT
12695 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
12696 == HOST_WIDE_INT_1U
<< (mode_width
- 1)))
12698 op0
= XEXP (op0
, 0);
12699 code
= (code
== EQ
? GE
: LT
);
12703 /* If this AND operation is really a ZERO_EXTEND from a narrower
12704 mode, the constant fits within that mode, and this is either an
12705 equality or unsigned comparison, try to do this comparison in
12710 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12711 -> (ne:DI (reg:SI 4) (const_int 0))
12713 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12714 known to hold a value of the required mode the
12715 transformation is invalid. */
12716 if ((equality_comparison_p
|| unsigned_comparison_p
)
12717 && CONST_INT_P (XEXP (op0
, 1))
12718 && (i
= exact_log2 ((UINTVAL (XEXP (op0
, 1))
12719 & GET_MODE_MASK (mode
))
12721 && const_op
>> i
== 0
12722 && int_mode_for_size (i
, 1).exists (&tmode
))
12724 op0
= gen_lowpart_or_truncate (tmode
, XEXP (op0
, 0));
12728 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12729 fits in both M1 and M2 and the SUBREG is either paradoxical
12730 or represents the low part, permute the SUBREG and the AND
12732 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
12733 && CONST_INT_P (XEXP (op0
, 1)))
12735 unsigned HOST_WIDE_INT c1
= INTVAL (XEXP (op0
, 1));
12736 /* Require an integral mode, to avoid creating something like
12738 if ((is_a
<scalar_int_mode
>
12739 (GET_MODE (SUBREG_REG (XEXP (op0
, 0))), &tmode
))
12740 /* It is unsafe to commute the AND into the SUBREG if the
12741 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12742 not defined. As originally written the upper bits
12743 have a defined value due to the AND operation.
12744 However, if we commute the AND inside the SUBREG then
12745 they no longer have defined values and the meaning of
12746 the code has been changed.
12747 Also C1 should not change value in the smaller mode,
12748 see PR67028 (a positive C1 can become negative in the
12749 smaller mode, so that the AND does no longer mask the
12751 && ((WORD_REGISTER_OPERATIONS
12752 && mode_width
> GET_MODE_PRECISION (tmode
)
12753 && mode_width
<= BITS_PER_WORD
12754 && trunc_int_for_mode (c1
, tmode
) == (HOST_WIDE_INT
) c1
)
12755 || (mode_width
<= GET_MODE_PRECISION (tmode
)
12756 && subreg_lowpart_p (XEXP (op0
, 0))))
12757 && mode_width
<= HOST_BITS_PER_WIDE_INT
12758 && HWI_COMPUTABLE_MODE_P (tmode
)
12759 && (c1
& ~mask
) == 0
12760 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
12762 && c1
!= GET_MODE_MASK (tmode
))
12764 op0
= simplify_gen_binary (AND
, tmode
,
12765 SUBREG_REG (XEXP (op0
, 0)),
12766 gen_int_mode (c1
, tmode
));
12767 op0
= gen_lowpart (mode
, op0
);
12772 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12773 if (const_op
== 0 && equality_comparison_p
12774 && XEXP (op0
, 1) == const1_rtx
12775 && GET_CODE (XEXP (op0
, 0)) == NOT
)
12777 op0
= simplify_and_const_int (NULL_RTX
, mode
,
12778 XEXP (XEXP (op0
, 0), 0), 1);
12779 code
= (code
== NE
? EQ
: NE
);
12783 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12784 (eq (and (lshiftrt X) 1) 0).
12785 Also handle the case where (not X) is expressed using xor. */
12786 if (const_op
== 0 && equality_comparison_p
12787 && XEXP (op0
, 1) == const1_rtx
12788 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
12790 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
12791 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
12793 if (GET_CODE (shift_op
) == NOT
12794 || (GET_CODE (shift_op
) == XOR
12795 && CONST_INT_P (XEXP (shift_op
, 1))
12796 && CONST_INT_P (shift_count
)
12797 && HWI_COMPUTABLE_MODE_P (mode
)
12798 && (UINTVAL (XEXP (shift_op
, 1))
12799 == HOST_WIDE_INT_1U
12800 << INTVAL (shift_count
))))
12803 = gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
);
12804 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
12805 code
= (code
== NE
? EQ
: NE
);
12812 /* If we have (compare (ashift FOO N) (const_int C)) and
12813 the high order N bits of FOO (N+1 if an inequality comparison)
12814 are known to be zero, we can do this by comparing FOO with C
12815 shifted right N bits so long as the low-order N bits of C are
12817 if (CONST_INT_P (XEXP (op0
, 1))
12818 && INTVAL (XEXP (op0
, 1)) >= 0
12819 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
12820 < HOST_BITS_PER_WIDE_INT
)
12821 && (((unsigned HOST_WIDE_INT
) const_op
12822 & ((HOST_WIDE_INT_1U
<< INTVAL (XEXP (op0
, 1)))
12824 && mode_width
<= HOST_BITS_PER_WIDE_INT
12825 && (nonzero_bits (XEXP (op0
, 0), mode
)
12826 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
12827 + ! equality_comparison_p
))) == 0)
12829 /* We must perform a logical shift, not an arithmetic one,
12830 as we want the top N bits of C to be zero. */
12831 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
12833 temp
>>= INTVAL (XEXP (op0
, 1));
12834 op1
= gen_int_mode (temp
, mode
);
12835 op0
= XEXP (op0
, 0);
12839 /* If we are doing a sign bit comparison, it means we are testing
12840 a particular bit. Convert it to the appropriate AND. */
12841 if (sign_bit_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
12842 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
12844 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
12847 - INTVAL (XEXP (op0
, 1)))));
12848 code
= (code
== LT
? NE
: EQ
);
12852 /* If this an equality comparison with zero and we are shifting
12853 the low bit to the sign bit, we can convert this to an AND of the
12855 if (const_op
== 0 && equality_comparison_p
12856 && CONST_INT_P (XEXP (op0
, 1))
12857 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
12859 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0), 1);
12865 /* If this is an equality comparison with zero, we can do this
12866 as a logical shift, which might be much simpler. */
12867 if (equality_comparison_p
&& const_op
== 0
12868 && CONST_INT_P (XEXP (op0
, 1)))
12870 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
12872 INTVAL (XEXP (op0
, 1)));
12876 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12877 do the comparison in a narrower mode. */
12878 if (! unsigned_comparison_p
12879 && CONST_INT_P (XEXP (op0
, 1))
12880 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
12881 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
12882 && (int_mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)), 1)
12884 && (((unsigned HOST_WIDE_INT
) const_op
12885 + (GET_MODE_MASK (tmode
) >> 1) + 1)
12886 <= GET_MODE_MASK (tmode
)))
12888 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
12892 /* Likewise if OP0 is a PLUS of a sign extension with a
12893 constant, which is usually represented with the PLUS
12894 between the shifts. */
12895 if (! unsigned_comparison_p
12896 && CONST_INT_P (XEXP (op0
, 1))
12897 && GET_CODE (XEXP (op0
, 0)) == PLUS
12898 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
12899 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
12900 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
12901 && (int_mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)), 1)
12903 && (((unsigned HOST_WIDE_INT
) const_op
12904 + (GET_MODE_MASK (tmode
) >> 1) + 1)
12905 <= GET_MODE_MASK (tmode
)))
12907 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
12908 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
12909 rtx new_const
= simplify_gen_binary (ASHIFTRT
, mode
,
12910 add_const
, XEXP (op0
, 1));
12912 op0
= simplify_gen_binary (PLUS
, tmode
,
12913 gen_lowpart (tmode
, inner
),
12920 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12921 the low order N bits of FOO are known to be zero, we can do this
12922 by comparing FOO with C shifted left N bits so long as no
12923 overflow occurs. Even if the low order N bits of FOO aren't known
12924 to be zero, if the comparison is >= or < we can use the same
12925 optimization and for > or <= by setting all the low
12926 order N bits in the comparison constant. */
12927 if (CONST_INT_P (XEXP (op0
, 1))
12928 && INTVAL (XEXP (op0
, 1)) > 0
12929 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
12930 && mode_width
<= HOST_BITS_PER_WIDE_INT
12931 && (((unsigned HOST_WIDE_INT
) const_op
12932 + (GET_CODE (op0
) != LSHIFTRT
12933 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
12936 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
12938 unsigned HOST_WIDE_INT low_bits
12939 = (nonzero_bits (XEXP (op0
, 0), mode
)
12940 & ((HOST_WIDE_INT_1U
12941 << INTVAL (XEXP (op0
, 1))) - 1));
12942 if (low_bits
== 0 || !equality_comparison_p
)
12944 /* If the shift was logical, then we must make the condition
12946 if (GET_CODE (op0
) == LSHIFTRT
)
12947 code
= unsigned_condition (code
);
12949 const_op
= (unsigned HOST_WIDE_INT
) const_op
12950 << INTVAL (XEXP (op0
, 1));
12952 && (code
== GT
|| code
== GTU
12953 || code
== LE
|| code
== LEU
))
12955 |= ((HOST_WIDE_INT_1
<< INTVAL (XEXP (op0
, 1))) - 1);
12956 op1
= GEN_INT (const_op
);
12957 op0
= XEXP (op0
, 0);
12962 /* If we are using this shift to extract just the sign bit, we
12963 can replace this with an LT or GE comparison. */
12965 && (equality_comparison_p
|| sign_bit_comparison_p
)
12966 && CONST_INT_P (XEXP (op0
, 1))
12967 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
12969 op0
= XEXP (op0
, 0);
12970 code
= (code
== NE
|| code
== GT
? LT
: GE
);
12982 /* Now make any compound operations involved in this comparison. Then,
12983 check for an outmost SUBREG on OP0 that is not doing anything or is
12984 paradoxical. The latter transformation must only be performed when
12985 it is known that the "extra" bits will be the same in op0 and op1 or
12986 that they don't matter. There are three cases to consider:
12988 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12989 care bits and we can assume they have any convenient value. So
12990 making the transformation is safe.
12992 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12993 In this case the upper bits of op0 are undefined. We should not make
12994 the simplification in that case as we do not know the contents of
12997 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12998 In that case we know those bits are zeros or ones. We must also be
12999 sure that they are the same as the upper bits of op1.
13001 We can never remove a SUBREG for a non-equality comparison because
13002 the sign bit is in a different place in the underlying object. */
13004 rtx_code op0_mco_code
= SET
;
13005 if (op1
== const0_rtx
)
13006 op0_mco_code
= code
== NE
|| code
== EQ
? EQ
: COMPARE
;
13008 op0
= make_compound_operation (op0
, op0_mco_code
);
13009 op1
= make_compound_operation (op1
, SET
);
13011 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
13012 && is_int_mode (GET_MODE (op0
), &mode
)
13013 && is_int_mode (GET_MODE (SUBREG_REG (op0
)), &inner_mode
)
13014 && (code
== NE
|| code
== EQ
))
13016 if (paradoxical_subreg_p (op0
))
13018 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
13020 if (REG_P (SUBREG_REG (op0
)))
13022 op0
= SUBREG_REG (op0
);
13023 op1
= gen_lowpart (inner_mode
, op1
);
13026 else if (GET_MODE_PRECISION (inner_mode
) <= HOST_BITS_PER_WIDE_INT
13027 && (nonzero_bits (SUBREG_REG (op0
), inner_mode
)
13028 & ~GET_MODE_MASK (mode
)) == 0)
13030 tem
= gen_lowpart (inner_mode
, op1
);
13032 if ((nonzero_bits (tem
, inner_mode
) & ~GET_MODE_MASK (mode
)) == 0)
13033 op0
= SUBREG_REG (op0
), op1
= tem
;
13037 /* We now do the opposite procedure: Some machines don't have compare
13038 insns in all modes. If OP0's mode is an integer mode smaller than a
13039 word and we can't do a compare in that mode, see if there is a larger
13040 mode for which we can do the compare. There are a number of cases in
13041 which we can use the wider mode. */
13043 if (is_int_mode (GET_MODE (op0
), &mode
)
13044 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
13045 && ! have_insn_for (COMPARE
, mode
))
13046 FOR_EACH_WIDER_MODE (tmode_iter
, mode
)
13048 tmode
= tmode_iter
.require ();
13049 if (!HWI_COMPUTABLE_MODE_P (tmode
))
13051 if (have_insn_for (COMPARE
, tmode
))
13055 /* If this is a test for negative, we can make an explicit
13056 test of the sign bit. Test this first so we can use
13057 a paradoxical subreg to extend OP0. */
13059 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
13060 && HWI_COMPUTABLE_MODE_P (mode
))
13062 unsigned HOST_WIDE_INT sign
13063 = HOST_WIDE_INT_1U
<< (GET_MODE_BITSIZE (mode
) - 1);
13064 op0
= simplify_gen_binary (AND
, tmode
,
13065 gen_lowpart (tmode
, op0
),
13066 gen_int_mode (sign
, tmode
));
13067 code
= (code
== LT
) ? NE
: EQ
;
13071 /* If the only nonzero bits in OP0 and OP1 are those in the
13072 narrower mode and this is an equality or unsigned comparison,
13073 we can use the wider mode. Similarly for sign-extended
13074 values, in which case it is true for all comparisons. */
13075 zero_extended
= ((code
== EQ
|| code
== NE
13076 || code
== GEU
|| code
== GTU
13077 || code
== LEU
|| code
== LTU
)
13078 && (nonzero_bits (op0
, tmode
)
13079 & ~GET_MODE_MASK (mode
)) == 0
13080 && ((CONST_INT_P (op1
)
13081 || (nonzero_bits (op1
, tmode
)
13082 & ~GET_MODE_MASK (mode
)) == 0)));
13085 || ((num_sign_bit_copies (op0
, tmode
)
13086 > (unsigned int) (GET_MODE_PRECISION (tmode
)
13087 - GET_MODE_PRECISION (mode
)))
13088 && (num_sign_bit_copies (op1
, tmode
)
13089 > (unsigned int) (GET_MODE_PRECISION (tmode
)
13090 - GET_MODE_PRECISION (mode
)))))
13092 /* If OP0 is an AND and we don't have an AND in MODE either,
13093 make a new AND in the proper mode. */
13094 if (GET_CODE (op0
) == AND
13095 && !have_insn_for (AND
, mode
))
13096 op0
= simplify_gen_binary (AND
, tmode
,
13097 gen_lowpart (tmode
,
13099 gen_lowpart (tmode
,
13105 op0
= simplify_gen_unary (ZERO_EXTEND
, tmode
,
13107 op1
= simplify_gen_unary (ZERO_EXTEND
, tmode
,
13112 op0
= simplify_gen_unary (SIGN_EXTEND
, tmode
,
13114 op1
= simplify_gen_unary (SIGN_EXTEND
, tmode
,
13123 /* We may have changed the comparison operands. Re-canonicalize. */
13124 if (swap_commutative_operands_p (op0
, op1
))
13126 std::swap (op0
, op1
);
13127 code
= swap_condition (code
);
13130 /* If this machine only supports a subset of valid comparisons, see if we
13131 can convert an unsupported one into a supported one. */
13132 target_canonicalize_comparison (&code
, &op0
, &op1
, 0);
13140 /* Utility function for record_value_for_reg. Count number of
13145 enum rtx_code code
= GET_CODE (x
);
13149 if (GET_RTX_CLASS (code
) == RTX_BIN_ARITH
13150 || GET_RTX_CLASS (code
) == RTX_COMM_ARITH
)
13152 rtx x0
= XEXP (x
, 0);
13153 rtx x1
= XEXP (x
, 1);
13156 return 1 + 2 * count_rtxs (x0
);
13158 if ((GET_RTX_CLASS (GET_CODE (x1
)) == RTX_BIN_ARITH
13159 || GET_RTX_CLASS (GET_CODE (x1
)) == RTX_COMM_ARITH
)
13160 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13161 return 2 + 2 * count_rtxs (x0
)
13162 + count_rtxs (x
== XEXP (x1
, 0)
13163 ? XEXP (x1
, 1) : XEXP (x1
, 0));
13165 if ((GET_RTX_CLASS (GET_CODE (x0
)) == RTX_BIN_ARITH
13166 || GET_RTX_CLASS (GET_CODE (x0
)) == RTX_COMM_ARITH
)
13167 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13168 return 2 + 2 * count_rtxs (x1
)
13169 + count_rtxs (x
== XEXP (x0
, 0)
13170 ? XEXP (x0
, 1) : XEXP (x0
, 0));
13173 fmt
= GET_RTX_FORMAT (code
);
13174 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13176 ret
+= count_rtxs (XEXP (x
, i
));
13177 else if (fmt
[i
] == 'E')
13178 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13179 ret
+= count_rtxs (XVECEXP (x
, i
, j
));
13184 /* Utility function for following routine. Called when X is part of a value
13185 being stored into last_set_value. Sets last_set_table_tick
13186 for each register mentioned. Similar to mention_regs in cse.c */
13189 update_table_tick (rtx x
)
13191 enum rtx_code code
= GET_CODE (x
);
13192 const char *fmt
= GET_RTX_FORMAT (code
);
13197 unsigned int regno
= REGNO (x
);
13198 unsigned int endregno
= END_REGNO (x
);
13201 for (r
= regno
; r
< endregno
; r
++)
13203 reg_stat_type
*rsp
= ®_stat
[r
];
13204 rsp
->last_set_table_tick
= label_tick
;
13210 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
13213 /* Check for identical subexpressions. If x contains
13214 identical subexpression we only have to traverse one of
13216 if (i
== 0 && ARITHMETIC_P (x
))
13218 /* Note that at this point x1 has already been
13220 rtx x0
= XEXP (x
, 0);
13221 rtx x1
= XEXP (x
, 1);
13223 /* If x0 and x1 are identical then there is no need to
13228 /* If x0 is identical to a subexpression of x1 then while
13229 processing x1, x0 has already been processed. Thus we
13230 are done with x. */
13231 if (ARITHMETIC_P (x1
)
13232 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13235 /* If x1 is identical to a subexpression of x0 then we
13236 still have to process the rest of x0. */
13237 if (ARITHMETIC_P (x0
)
13238 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13240 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
13245 update_table_tick (XEXP (x
, i
));
13247 else if (fmt
[i
] == 'E')
13248 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13249 update_table_tick (XVECEXP (x
, i
, j
));
13252 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13253 are saying that the register is clobbered and we no longer know its
13254 value. If INSN is zero, don't update reg_stat[].last_set; this is
13255 only permitted with VALUE also zero and is used to invalidate the
13259 record_value_for_reg (rtx reg
, rtx_insn
*insn
, rtx value
)
13261 unsigned int regno
= REGNO (reg
);
13262 unsigned int endregno
= END_REGNO (reg
);
13264 reg_stat_type
*rsp
;
13266 /* If VALUE contains REG and we have a previous value for REG, substitute
13267 the previous value. */
13268 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
13272 /* Set things up so get_last_value is allowed to see anything set up to
13274 subst_low_luid
= DF_INSN_LUID (insn
);
13275 tem
= get_last_value (reg
);
13277 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13278 it isn't going to be useful and will take a lot of time to process,
13279 so just use the CLOBBER. */
13283 if (ARITHMETIC_P (tem
)
13284 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
13285 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
13286 tem
= XEXP (tem
, 0);
13287 else if (count_occurrences (value
, reg
, 1) >= 2)
13289 /* If there are two or more occurrences of REG in VALUE,
13290 prevent the value from growing too much. */
13291 if (count_rtxs (tem
) > MAX_LAST_VALUE_RTL
)
13292 tem
= gen_rtx_CLOBBER (GET_MODE (tem
), const0_rtx
);
13295 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
13299 /* For each register modified, show we don't know its value, that
13300 we don't know about its bitwise content, that its value has been
13301 updated, and that we don't know the location of the death of the
13303 for (i
= regno
; i
< endregno
; i
++)
13305 rsp
= ®_stat
[i
];
13308 rsp
->last_set
= insn
;
13310 rsp
->last_set_value
= 0;
13311 rsp
->last_set_mode
= VOIDmode
;
13312 rsp
->last_set_nonzero_bits
= 0;
13313 rsp
->last_set_sign_bit_copies
= 0;
13314 rsp
->last_death
= 0;
13315 rsp
->truncated_to_mode
= VOIDmode
;
13318 /* Mark registers that are being referenced in this value. */
13320 update_table_tick (value
);
13322 /* Now update the status of each register being set.
13323 If someone is using this register in this block, set this register
13324 to invalid since we will get confused between the two lives in this
13325 basic block. This makes using this register always invalid. In cse, we
13326 scan the table to invalidate all entries using this register, but this
13327 is too much work for us. */
13329 for (i
= regno
; i
< endregno
; i
++)
13331 rsp
= ®_stat
[i
];
13332 rsp
->last_set_label
= label_tick
;
13334 || (value
&& rsp
->last_set_table_tick
>= label_tick_ebb_start
))
13335 rsp
->last_set_invalid
= 1;
13337 rsp
->last_set_invalid
= 0;
13340 /* The value being assigned might refer to X (like in "x++;"). In that
13341 case, we must replace it with (clobber (const_int 0)) to prevent
13343 rsp
= ®_stat
[regno
];
13344 if (value
&& !get_last_value_validate (&value
, insn
, label_tick
, 0))
13346 value
= copy_rtx (value
);
13347 if (!get_last_value_validate (&value
, insn
, label_tick
, 1))
13351 /* For the main register being modified, update the value, the mode, the
13352 nonzero bits, and the number of sign bit copies. */
13354 rsp
->last_set_value
= value
;
13358 machine_mode mode
= GET_MODE (reg
);
13359 subst_low_luid
= DF_INSN_LUID (insn
);
13360 rsp
->last_set_mode
= mode
;
13361 if (GET_MODE_CLASS (mode
) == MODE_INT
13362 && HWI_COMPUTABLE_MODE_P (mode
))
13363 mode
= nonzero_bits_mode
;
13364 rsp
->last_set_nonzero_bits
= nonzero_bits (value
, mode
);
13365 rsp
->last_set_sign_bit_copies
13366 = num_sign_bit_copies (value
, GET_MODE (reg
));
13370 /* Called via note_stores from record_dead_and_set_regs to handle one
13371 SET or CLOBBER in an insn. DATA is the instruction in which the
13372 set is occurring. */
13375 record_dead_and_set_regs_1 (rtx dest
, const_rtx setter
, void *data
)
13377 rtx_insn
*record_dead_insn
= (rtx_insn
*) data
;
13379 if (GET_CODE (dest
) == SUBREG
)
13380 dest
= SUBREG_REG (dest
);
13382 if (!record_dead_insn
)
13385 record_value_for_reg (dest
, NULL
, NULL_RTX
);
13391 /* If we are setting the whole register, we know its value. Otherwise
13392 show that we don't know the value. We can handle a SUBREG if it's
13393 the low part, but we must be careful with paradoxical SUBREGs on
13394 RISC architectures because we cannot strip e.g. an extension around
13395 a load and record the naked load since the RTL middle-end considers
13396 that the upper bits are defined according to LOAD_EXTEND_OP. */
13397 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
13398 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
13399 else if (GET_CODE (setter
) == SET
13400 && GET_CODE (SET_DEST (setter
)) == SUBREG
13401 && SUBREG_REG (SET_DEST (setter
)) == dest
13402 && known_le (GET_MODE_PRECISION (GET_MODE (dest
)),
13404 && subreg_lowpart_p (SET_DEST (setter
)))
13405 record_value_for_reg (dest
, record_dead_insn
,
13406 WORD_REGISTER_OPERATIONS
13407 && word_register_operation_p (SET_SRC (setter
))
13408 && paradoxical_subreg_p (SET_DEST (setter
))
13410 : gen_lowpart (GET_MODE (dest
),
13411 SET_SRC (setter
)));
13412 else if (GET_CODE (setter
) == CLOBBER_HIGH
)
13414 reg_stat_type
*rsp
= ®_stat
[REGNO (dest
)];
13415 if (rsp
->last_set_value
13416 && reg_is_clobbered_by_clobber_high
13417 (REGNO (dest
), GET_MODE (rsp
->last_set_value
),
13419 record_value_for_reg (dest
, NULL
, NULL_RTX
);
13422 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
13424 else if (MEM_P (dest
)
13425 /* Ignore pushes, they clobber nothing. */
13426 && ! push_operand (dest
, GET_MODE (dest
)))
13427 mem_last_set
= DF_INSN_LUID (record_dead_insn
);
13430 /* Update the records of when each REG was most recently set or killed
13431 for the things done by INSN. This is the last thing done in processing
13432 INSN in the combiner loop.
13434 We update reg_stat[], in particular fields last_set, last_set_value,
13435 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13436 last_death, and also the similar information mem_last_set (which insn
13437 most recently modified memory) and last_call_luid (which insn was the
13438 most recent subroutine call). */
13441 record_dead_and_set_regs (rtx_insn
*insn
)
13446 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
13448 if (REG_NOTE_KIND (link
) == REG_DEAD
13449 && REG_P (XEXP (link
, 0)))
13451 unsigned int regno
= REGNO (XEXP (link
, 0));
13452 unsigned int endregno
= END_REGNO (XEXP (link
, 0));
13454 for (i
= regno
; i
< endregno
; i
++)
13456 reg_stat_type
*rsp
;
13458 rsp
= ®_stat
[i
];
13459 rsp
->last_death
= insn
;
13462 else if (REG_NOTE_KIND (link
) == REG_INC
)
13463 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
13468 hard_reg_set_iterator hrsi
;
13469 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
, 0, i
, hrsi
)
13471 reg_stat_type
*rsp
;
13473 rsp
= ®_stat
[i
];
13474 rsp
->last_set_invalid
= 1;
13475 rsp
->last_set
= insn
;
13476 rsp
->last_set_value
= 0;
13477 rsp
->last_set_mode
= VOIDmode
;
13478 rsp
->last_set_nonzero_bits
= 0;
13479 rsp
->last_set_sign_bit_copies
= 0;
13480 rsp
->last_death
= 0;
13481 rsp
->truncated_to_mode
= VOIDmode
;
13484 last_call_luid
= mem_last_set
= DF_INSN_LUID (insn
);
13486 /* We can't combine into a call pattern. Remember, though, that
13487 the return value register is set at this LUID. We could
13488 still replace a register with the return value from the
13489 wrong subroutine call! */
13490 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, NULL_RTX
);
13493 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
13496 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13497 register present in the SUBREG, so for each such SUBREG go back and
13498 adjust nonzero and sign bit information of the registers that are
13499 known to have some zero/sign bits set.
13501 This is needed because when combine blows the SUBREGs away, the
13502 information on zero/sign bits is lost and further combines can be
13503 missed because of that. */
13506 record_promoted_value (rtx_insn
*insn
, rtx subreg
)
13508 struct insn_link
*links
;
13510 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
13511 machine_mode mode
= GET_MODE (subreg
);
13513 if (!HWI_COMPUTABLE_MODE_P (mode
))
13516 for (links
= LOG_LINKS (insn
); links
;)
13518 reg_stat_type
*rsp
;
13520 insn
= links
->insn
;
13521 set
= single_set (insn
);
13523 if (! set
|| !REG_P (SET_DEST (set
))
13524 || REGNO (SET_DEST (set
)) != regno
13525 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
13527 links
= links
->next
;
13531 rsp
= ®_stat
[regno
];
13532 if (rsp
->last_set
== insn
)
13534 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
))
13535 rsp
->last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
13538 if (REG_P (SET_SRC (set
)))
13540 regno
= REGNO (SET_SRC (set
));
13541 links
= LOG_LINKS (insn
);
13548 /* Check if X, a register, is known to contain a value already
13549 truncated to MODE. In this case we can use a subreg to refer to
13550 the truncated value even though in the generic case we would need
13551 an explicit truncation. */
13554 reg_truncated_to_mode (machine_mode mode
, const_rtx x
)
13556 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
13557 machine_mode truncated
= rsp
->truncated_to_mode
;
13560 || rsp
->truncation_label
< label_tick_ebb_start
)
13562 if (!partial_subreg_p (mode
, truncated
))
13564 if (TRULY_NOOP_TRUNCATION_MODES_P (mode
, truncated
))
13569 /* If X is a hard reg or a subreg record the mode that the register is
13570 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13571 able to turn a truncate into a subreg using this information. Return true
13572 if traversing X is complete. */
13575 record_truncated_value (rtx x
)
13577 machine_mode truncated_mode
;
13578 reg_stat_type
*rsp
;
13580 if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
)))
13582 machine_mode original_mode
= GET_MODE (SUBREG_REG (x
));
13583 truncated_mode
= GET_MODE (x
);
13585 if (!partial_subreg_p (truncated_mode
, original_mode
))
13588 truncated_mode
= GET_MODE (x
);
13589 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode
, original_mode
))
13592 x
= SUBREG_REG (x
);
13594 /* ??? For hard-regs we now record everything. We might be able to
13595 optimize this using last_set_mode. */
13596 else if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
13597 truncated_mode
= GET_MODE (x
);
13601 rsp
= ®_stat
[REGNO (x
)];
13602 if (rsp
->truncated_to_mode
== 0
13603 || rsp
->truncation_label
< label_tick_ebb_start
13604 || partial_subreg_p (truncated_mode
, rsp
->truncated_to_mode
))
13606 rsp
->truncated_to_mode
= truncated_mode
;
13607 rsp
->truncation_label
= label_tick
;
13613 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13614 the modes they are used in. This can help truning TRUNCATEs into
13618 record_truncated_values (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
13620 subrtx_var_iterator::array_type array
;
13621 FOR_EACH_SUBRTX_VAR (iter
, array
, *loc
, NONCONST
)
13622 if (record_truncated_value (*iter
))
13623 iter
.skip_subrtxes ();
13626 /* Scan X for promoted SUBREGs. For each one found,
13627 note what it implies to the registers used in it. */
13630 check_promoted_subreg (rtx_insn
*insn
, rtx x
)
13632 if (GET_CODE (x
) == SUBREG
13633 && SUBREG_PROMOTED_VAR_P (x
)
13634 && REG_P (SUBREG_REG (x
)))
13635 record_promoted_value (insn
, x
);
13638 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
13641 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
13645 check_promoted_subreg (insn
, XEXP (x
, i
));
13649 if (XVEC (x
, i
) != 0)
13650 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13651 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
13657 /* Verify that all the registers and memory references mentioned in *LOC are
13658 still valid. *LOC was part of a value set in INSN when label_tick was
13659 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13660 the invalid references with (clobber (const_int 0)) and return 1. This
13661 replacement is useful because we often can get useful information about
13662 the form of a value (e.g., if it was produced by a shift that always
13663 produces -1 or 0) even though we don't know exactly what registers it
13664 was produced from. */
13667 get_last_value_validate (rtx
*loc
, rtx_insn
*insn
, int tick
, int replace
)
13670 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
13671 int len
= GET_RTX_LENGTH (GET_CODE (x
));
13676 unsigned int regno
= REGNO (x
);
13677 unsigned int endregno
= END_REGNO (x
);
13680 for (j
= regno
; j
< endregno
; j
++)
13682 reg_stat_type
*rsp
= ®_stat
[j
];
13683 if (rsp
->last_set_invalid
13684 /* If this is a pseudo-register that was only set once and not
13685 live at the beginning of the function, it is always valid. */
13686 || (! (regno
>= FIRST_PSEUDO_REGISTER
13687 && regno
< reg_n_sets_max
13688 && REG_N_SETS (regno
) == 1
13689 && (!REGNO_REG_SET_P
13690 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
13692 && rsp
->last_set_label
> tick
))
13695 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
13702 /* If this is a memory reference, make sure that there were no stores after
13703 it that might have clobbered the value. We don't have alias info, so we
13704 assume any store invalidates it. Moreover, we only have local UIDs, so
13705 we also assume that there were stores in the intervening basic blocks. */
13706 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
13707 && (tick
!= label_tick
|| DF_INSN_LUID (insn
) <= mem_last_set
))
13710 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
13714 for (i
= 0; i
< len
; i
++)
13718 /* Check for identical subexpressions. If x contains
13719 identical subexpression we only have to traverse one of
13721 if (i
== 1 && ARITHMETIC_P (x
))
13723 /* Note that at this point x0 has already been checked
13724 and found valid. */
13725 rtx x0
= XEXP (x
, 0);
13726 rtx x1
= XEXP (x
, 1);
13728 /* If x0 and x1 are identical then x is also valid. */
13732 /* If x1 is identical to a subexpression of x0 then
13733 while checking x0, x1 has already been checked. Thus
13734 it is valid and so as x. */
13735 if (ARITHMETIC_P (x0
)
13736 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
13739 /* If x0 is identical to a subexpression of x1 then x is
13740 valid iff the rest of x1 is valid. */
13741 if (ARITHMETIC_P (x1
)
13742 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
13744 get_last_value_validate (&XEXP (x1
,
13745 x0
== XEXP (x1
, 0) ? 1 : 0),
13746 insn
, tick
, replace
);
13749 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
13753 else if (fmt
[i
] == 'E')
13754 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13755 if (get_last_value_validate (&XVECEXP (x
, i
, j
),
13756 insn
, tick
, replace
) == 0)
13760 /* If we haven't found a reason for it to be invalid, it is valid. */
13764 /* Get the last value assigned to X, if known. Some registers
13765 in the value may be replaced with (clobber (const_int 0)) if their value
13766 is known longer known reliably. */
13769 get_last_value (const_rtx x
)
13771 unsigned int regno
;
13773 reg_stat_type
*rsp
;
13775 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13776 then convert it to the desired mode. If this is a paradoxical SUBREG,
13777 we cannot predict what values the "extra" bits might have. */
13778 if (GET_CODE (x
) == SUBREG
13779 && subreg_lowpart_p (x
)
13780 && !paradoxical_subreg_p (x
)
13781 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
13782 return gen_lowpart (GET_MODE (x
), value
);
13788 rsp
= ®_stat
[regno
];
13789 value
= rsp
->last_set_value
;
13791 /* If we don't have a value, or if it isn't for this basic block and
13792 it's either a hard register, set more than once, or it's a live
13793 at the beginning of the function, return 0.
13795 Because if it's not live at the beginning of the function then the reg
13796 is always set before being used (is never used without being set).
13797 And, if it's set only once, and it's always set before use, then all
13798 uses must have the same last value, even if it's not from this basic
13802 || (rsp
->last_set_label
< label_tick_ebb_start
13803 && (regno
< FIRST_PSEUDO_REGISTER
13804 || regno
>= reg_n_sets_max
13805 || REG_N_SETS (regno
) != 1
13807 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), regno
))))
13810 /* If the value was set in a later insn than the ones we are processing,
13811 we can't use it even if the register was only set once. */
13812 if (rsp
->last_set_label
== label_tick
13813 && DF_INSN_LUID (rsp
->last_set
) >= subst_low_luid
)
13816 /* If fewer bits were set than what we are asked for now, we cannot use
13818 if (maybe_lt (GET_MODE_PRECISION (rsp
->last_set_mode
),
13819 GET_MODE_PRECISION (GET_MODE (x
))))
13822 /* If the value has all its registers valid, return it. */
13823 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 0))
13826 /* Otherwise, make a copy and replace any invalid register with
13827 (clobber (const_int 0)). If that fails for some reason, return 0. */
13829 value
= copy_rtx (value
);
13830 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 1))
13836 /* Define three variables used for communication between the following
13839 static unsigned int reg_dead_regno
, reg_dead_endregno
;
13840 static int reg_dead_flag
;
13843 /* Function called via note_stores from reg_dead_at_p.
13845 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13846 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13849 reg_dead_at_p_1 (rtx dest
, const_rtx x
, void *data ATTRIBUTE_UNUSED
)
13851 unsigned int regno
, endregno
;
13856 if (GET_CODE (x
) == CLOBBER_HIGH
13857 && !reg_is_clobbered_by_clobber_high (reg_dead_reg
, XEXP (x
, 0)))
13860 regno
= REGNO (dest
);
13861 endregno
= END_REGNO (dest
);
13862 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
13863 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
13866 /* Return nonzero if REG is known to be dead at INSN.
13868 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13869 referencing REG, it is dead. If we hit a SET referencing REG, it is
13870 live. Otherwise, see if it is live or dead at the start of the basic
13871 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13872 must be assumed to be always live. */
13875 reg_dead_at_p (rtx reg
, rtx_insn
*insn
)
13880 /* Set variables for reg_dead_at_p_1. */
13881 reg_dead_regno
= REGNO (reg
);
13882 reg_dead_endregno
= END_REGNO (reg
);
13883 reg_dead_reg
= reg
;
13887 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13888 we allow the machine description to decide whether use-and-clobber
13889 patterns are OK. */
13890 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
13892 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
13893 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
13897 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13898 beginning of basic block. */
13899 block
= BLOCK_FOR_INSN (insn
);
13904 if (find_regno_note (insn
, REG_UNUSED
, reg_dead_regno
))
13907 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
13909 return reg_dead_flag
== 1 ? 1 : 0;
13911 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
13915 if (insn
== BB_HEAD (block
))
13918 insn
= PREV_INSN (insn
);
13921 /* Look at live-in sets for the basic block that we were in. */
13922 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
13923 if (REGNO_REG_SET_P (df_get_live_in (block
), i
))
13929 /* Note hard registers in X that are used. */
13932 mark_used_regs_combine (rtx x
)
13934 RTX_CODE code
= GET_CODE (x
);
13935 unsigned int regno
;
13946 case ADDR_DIFF_VEC
:
13948 /* CC0 must die in the insn after it is set, so we don't need to take
13949 special note of it here. */
13954 /* If we are clobbering a MEM, mark any hard registers inside the
13955 address as used. */
13956 if (MEM_P (XEXP (x
, 0)))
13957 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
13962 /* A hard reg in a wide mode may really be multiple registers.
13963 If so, mark all of them just like the first. */
13964 if (regno
< FIRST_PSEUDO_REGISTER
)
13966 /* None of this applies to the stack, frame or arg pointers. */
13967 if (regno
== STACK_POINTER_REGNUM
13968 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13969 && regno
== HARD_FRAME_POINTER_REGNUM
)
13970 || (FRAME_POINTER_REGNUM
!= ARG_POINTER_REGNUM
13971 && regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
13972 || regno
== FRAME_POINTER_REGNUM
)
13975 add_to_hard_reg_set (&newpat_used_regs
, GET_MODE (x
), regno
);
13981 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13983 rtx testreg
= SET_DEST (x
);
13985 while (GET_CODE (testreg
) == SUBREG
13986 || GET_CODE (testreg
) == ZERO_EXTRACT
13987 || GET_CODE (testreg
) == STRICT_LOW_PART
)
13988 testreg
= XEXP (testreg
, 0);
13990 if (MEM_P (testreg
))
13991 mark_used_regs_combine (XEXP (testreg
, 0));
13993 mark_used_regs_combine (SET_SRC (x
));
14001 /* Recursively scan the operands of this expression. */
14004 const char *fmt
= GET_RTX_FORMAT (code
);
14006 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
14009 mark_used_regs_combine (XEXP (x
, i
));
14010 else if (fmt
[i
] == 'E')
14014 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
14015 mark_used_regs_combine (XVECEXP (x
, i
, j
));
14021 /* Remove register number REGNO from the dead registers list of INSN.
14023 Return the note used to record the death, if there was one. */
14026 remove_death (unsigned int regno
, rtx_insn
*insn
)
14028 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
14031 remove_note (insn
, note
);
14036 /* For each register (hardware or pseudo) used within expression X, if its
14037 death is in an instruction with luid between FROM_LUID (inclusive) and
14038 TO_INSN (exclusive), put a REG_DEAD note for that register in the
14039 list headed by PNOTES.
14041 That said, don't move registers killed by maybe_kill_insn.
14043 This is done when X is being merged by combination into TO_INSN. These
14044 notes will then be distributed as needed. */
14047 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_luid
, rtx_insn
*to_insn
,
14052 enum rtx_code code
= GET_CODE (x
);
14056 unsigned int regno
= REGNO (x
);
14057 rtx_insn
*where_dead
= reg_stat
[regno
].last_death
;
14059 /* If we do not know where the register died, it may still die between
14060 FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
14061 if (!where_dead
|| DF_INSN_LUID (where_dead
) >= DF_INSN_LUID (to_insn
))
14063 rtx_insn
*insn
= prev_real_nondebug_insn (to_insn
);
14065 && BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (to_insn
)
14066 && DF_INSN_LUID (insn
) >= from_luid
)
14068 if (dead_or_set_regno_p (insn
, regno
))
14070 if (find_regno_note (insn
, REG_DEAD
, regno
))
14075 insn
= prev_real_nondebug_insn (insn
);
14079 /* Don't move the register if it gets killed in between from and to. */
14080 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
14081 && ! reg_referenced_p (x
, maybe_kill_insn
))
14085 && BLOCK_FOR_INSN (where_dead
) == BLOCK_FOR_INSN (to_insn
)
14086 && DF_INSN_LUID (where_dead
) >= from_luid
14087 && DF_INSN_LUID (where_dead
) < DF_INSN_LUID (to_insn
))
14089 rtx note
= remove_death (regno
, where_dead
);
14091 /* It is possible for the call above to return 0. This can occur
14092 when last_death points to I2 or I1 that we combined with.
14093 In that case make a new note.
14095 We must also check for the case where X is a hard register
14096 and NOTE is a death note for a range of hard registers
14097 including X. In that case, we must put REG_DEAD notes for
14098 the remaining registers in place of NOTE. */
14100 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
14101 && partial_subreg_p (GET_MODE (x
), GET_MODE (XEXP (note
, 0))))
14103 unsigned int deadregno
= REGNO (XEXP (note
, 0));
14104 unsigned int deadend
= END_REGNO (XEXP (note
, 0));
14105 unsigned int ourend
= END_REGNO (x
);
14108 for (i
= deadregno
; i
< deadend
; i
++)
14109 if (i
< regno
|| i
>= ourend
)
14110 add_reg_note (where_dead
, REG_DEAD
, regno_reg_rtx
[i
]);
14113 /* If we didn't find any note, or if we found a REG_DEAD note that
14114 covers only part of the given reg, and we have a multi-reg hard
14115 register, then to be safe we must check for REG_DEAD notes
14116 for each register other than the first. They could have
14117 their own REG_DEAD notes lying around. */
14118 else if ((note
== 0
14120 && partial_subreg_p (GET_MODE (XEXP (note
, 0)),
14122 && regno
< FIRST_PSEUDO_REGISTER
14123 && REG_NREGS (x
) > 1)
14125 unsigned int ourend
= END_REGNO (x
);
14126 unsigned int i
, offset
;
14130 offset
= hard_regno_nregs (regno
, GET_MODE (XEXP (note
, 0)));
14134 for (i
= regno
+ offset
; i
< ourend
; i
++)
14135 move_deaths (regno_reg_rtx
[i
],
14136 maybe_kill_insn
, from_luid
, to_insn
, &oldnotes
);
14139 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
14141 XEXP (note
, 1) = *pnotes
;
14145 *pnotes
= alloc_reg_note (REG_DEAD
, x
, *pnotes
);
14151 else if (GET_CODE (x
) == SET
)
14153 rtx dest
= SET_DEST (x
);
14155 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14157 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14158 that accesses one word of a multi-word item, some
14159 piece of everything register in the expression is used by
14160 this insn, so remove any old death. */
14161 /* ??? So why do we test for equality of the sizes? */
14163 if (GET_CODE (dest
) == ZERO_EXTRACT
14164 || GET_CODE (dest
) == STRICT_LOW_PART
14165 || (GET_CODE (dest
) == SUBREG
14166 && !read_modify_subreg_p (dest
)))
14168 move_deaths (dest
, maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14172 /* If this is some other SUBREG, we know it replaces the entire
14173 value, so use that as the destination. */
14174 if (GET_CODE (dest
) == SUBREG
)
14175 dest
= SUBREG_REG (dest
);
14177 /* If this is a MEM, adjust deaths of anything used in the address.
14178 For a REG (the only other possibility), the entire value is
14179 being replaced so the old value is not used in this insn. */
14182 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_luid
,
14187 else if (GET_CODE (x
) == CLOBBER
)
14190 len
= GET_RTX_LENGTH (code
);
14191 fmt
= GET_RTX_FORMAT (code
);
14193 for (i
= 0; i
< len
; i
++)
14198 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
14199 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_luid
,
14202 else if (fmt
[i
] == 'e')
14203 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
14207 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14208 pattern of an insn. X must be a REG. */
14211 reg_bitfield_target_p (rtx x
, rtx body
)
14215 if (GET_CODE (body
) == SET
)
14217 rtx dest
= SET_DEST (body
);
14219 unsigned int regno
, tregno
, endregno
, endtregno
;
14221 if (GET_CODE (dest
) == ZERO_EXTRACT
)
14222 target
= XEXP (dest
, 0);
14223 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
14224 target
= SUBREG_REG (XEXP (dest
, 0));
14228 if (GET_CODE (target
) == SUBREG
)
14229 target
= SUBREG_REG (target
);
14231 if (!REG_P (target
))
14234 tregno
= REGNO (target
), regno
= REGNO (x
);
14235 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
14236 return target
== x
;
14238 endtregno
= end_hard_regno (GET_MODE (target
), tregno
);
14239 endregno
= end_hard_regno (GET_MODE (x
), regno
);
14241 return endregno
> tregno
&& regno
< endtregno
;
14244 else if (GET_CODE (body
) == PARALLEL
)
14245 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
14246 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
14252 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14253 as appropriate. I3 and I2 are the insns resulting from the combination
14254 insns including FROM (I2 may be zero).
14256 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14257 not need REG_DEAD notes because they are being substituted for. This
14258 saves searching in the most common cases.
14260 Each note in the list is either ignored or placed on some insns, depending
14261 on the type of note. */
14264 distribute_notes (rtx notes
, rtx_insn
*from_insn
, rtx_insn
*i3
, rtx_insn
*i2
,
14265 rtx elim_i2
, rtx elim_i1
, rtx elim_i0
)
14267 rtx note
, next_note
;
14269 rtx_insn
*tem_insn
;
14271 for (note
= notes
; note
; note
= next_note
)
14273 rtx_insn
*place
= 0, *place2
= 0;
14275 next_note
= XEXP (note
, 1);
14276 switch (REG_NOTE_KIND (note
))
14280 /* Doesn't matter much where we put this, as long as it's somewhere.
14281 It is preferable to keep these notes on branches, which is most
14282 likely to be i3. */
14286 case REG_NON_LOCAL_GOTO
:
14291 gcc_assert (i2
&& JUMP_P (i2
));
14296 case REG_EH_REGION
:
14297 /* These notes must remain with the call or trapping instruction. */
14300 else if (i2
&& CALL_P (i2
))
14304 gcc_assert (cfun
->can_throw_non_call_exceptions
);
14305 if (may_trap_p (i3
))
14307 else if (i2
&& may_trap_p (i2
))
14309 /* ??? Otherwise assume we've combined things such that we
14310 can now prove that the instructions can't trap. Drop the
14311 note in this case. */
14315 case REG_ARGS_SIZE
:
14316 /* ??? How to distribute between i3-i1. Assume i3 contains the
14317 entire adjustment. Assert i3 contains at least some adjust. */
14318 if (!noop_move_p (i3
))
14320 poly_int64 old_size
, args_size
= get_args_size (note
);
14321 /* fixup_args_size_notes looks at REG_NORETURN note,
14322 so ensure the note is placed there first. */
14326 for (np
= &next_note
; *np
; np
= &XEXP (*np
, 1))
14327 if (REG_NOTE_KIND (*np
) == REG_NORETURN
)
14331 XEXP (n
, 1) = REG_NOTES (i3
);
14332 REG_NOTES (i3
) = n
;
14336 old_size
= fixup_args_size_notes (PREV_INSN (i3
), i3
, args_size
);
14337 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14338 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14339 gcc_assert (maybe_ne (old_size
, args_size
)
14341 && !ACCUMULATE_OUTGOING_ARGS
14342 && find_reg_note (i3
, REG_NORETURN
, NULL_RTX
)));
14349 case REG_CALL_DECL
:
14350 case REG_CALL_NOCF_CHECK
:
14351 /* These notes must remain with the call. It should not be
14352 possible for both I2 and I3 to be a call. */
14357 gcc_assert (i2
&& CALL_P (i2
));
14363 /* Any clobbers for i3 may still exist, and so we must process
14364 REG_UNUSED notes from that insn.
14366 Any clobbers from i2 or i1 can only exist if they were added by
14367 recog_for_combine. In that case, recog_for_combine created the
14368 necessary REG_UNUSED notes. Trying to keep any original
14369 REG_UNUSED notes from these insns can cause incorrect output
14370 if it is for the same register as the original i3 dest.
14371 In that case, we will notice that the register is set in i3,
14372 and then add a REG_UNUSED note for the destination of i3, which
14373 is wrong. However, it is possible to have REG_UNUSED notes from
14374 i2 or i1 for register which were both used and clobbered, so
14375 we keep notes from i2 or i1 if they will turn into REG_DEAD
14378 /* If this register is set or clobbered in I3, put the note there
14379 unless there is one already. */
14380 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
14382 if (from_insn
!= i3
)
14385 if (! (REG_P (XEXP (note
, 0))
14386 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
14387 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
14390 /* Otherwise, if this register is used by I3, then this register
14391 now dies here, so we must put a REG_DEAD note here unless there
14393 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
14394 && ! (REG_P (XEXP (note
, 0))
14395 ? find_regno_note (i3
, REG_DEAD
,
14396 REGNO (XEXP (note
, 0)))
14397 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
14399 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
14403 /* A SET or CLOBBER of the REG_UNUSED reg has been removed,
14404 but we can't tell which at this point. We must reset any
14405 expectations we had about the value that was previously
14406 stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
14407 and, if appropriate, restore its previous value, but we
14408 don't have enough information for that at this point. */
14411 record_value_for_reg (XEXP (note
, 0), NULL
, NULL_RTX
);
14413 /* Otherwise, if this register is now referenced in i2
14414 then the register used to be modified in one of the
14415 original insns. If it was i3 (say, in an unused
14416 parallel), it's now completely gone, so the note can
14417 be discarded. But if it was modified in i2, i1 or i0
14418 and we still reference it in i2, then we're
14419 referencing the previous value, and since the
14420 register was modified and REG_UNUSED, we know that
14421 the previous value is now dead. So, if we only
14422 reference the register in i2, we change the note to
14423 REG_DEAD, to reflect the previous value. However, if
14424 we're also setting or clobbering the register as
14425 scratch, we know (because the register was not
14426 referenced in i3) that it's unused, just as it was
14427 unused before, and we place the note in i2. */
14428 if (from_insn
!= i3
&& i2
&& INSN_P (i2
)
14429 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14431 if (!reg_set_p (XEXP (note
, 0), PATTERN (i2
)))
14432 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
14433 if (! (REG_P (XEXP (note
, 0))
14434 ? find_regno_note (i2
, REG_NOTE_KIND (note
),
14435 REGNO (XEXP (note
, 0)))
14436 : find_reg_note (i2
, REG_NOTE_KIND (note
),
14447 /* These notes say something about results of an insn. We can
14448 only support them if they used to be on I3 in which case they
14449 remain on I3. Otherwise they are ignored.
14451 If the note refers to an expression that is not a constant, we
14452 must also ignore the note since we cannot tell whether the
14453 equivalence is still true. It might be possible to do
14454 slightly better than this (we only have a problem if I2DEST
14455 or I1DEST is present in the expression), but it doesn't
14456 seem worth the trouble. */
14458 if (from_insn
== i3
14459 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
14464 /* These notes say something about how a register is used. They must
14465 be present on any use of the register in I2 or I3. */
14466 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
14469 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
14478 case REG_LABEL_TARGET
:
14479 case REG_LABEL_OPERAND
:
14480 /* This can show up in several ways -- either directly in the
14481 pattern, or hidden off in the constant pool with (or without?)
14482 a REG_EQUAL note. */
14483 /* ??? Ignore the without-reg_equal-note problem for now. */
14484 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
14485 || ((tem_note
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
14486 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
14487 && label_ref_label (XEXP (tem_note
, 0)) == XEXP (note
, 0)))
14491 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
14492 || ((tem_note
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
14493 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
14494 && label_ref_label (XEXP (tem_note
, 0)) == XEXP (note
, 0))))
14502 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14503 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14505 if (place
&& JUMP_P (place
)
14506 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
14507 && (JUMP_LABEL (place
) == NULL
14508 || JUMP_LABEL (place
) == XEXP (note
, 0)))
14510 rtx label
= JUMP_LABEL (place
);
14513 JUMP_LABEL (place
) = XEXP (note
, 0);
14514 else if (LABEL_P (label
))
14515 LABEL_NUSES (label
)--;
14518 if (place2
&& JUMP_P (place2
)
14519 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
14520 && (JUMP_LABEL (place2
) == NULL
14521 || JUMP_LABEL (place2
) == XEXP (note
, 0)))
14523 rtx label
= JUMP_LABEL (place2
);
14526 JUMP_LABEL (place2
) = XEXP (note
, 0);
14527 else if (LABEL_P (label
))
14528 LABEL_NUSES (label
)--;
14534 /* This note says something about the value of a register prior
14535 to the execution of an insn. It is too much trouble to see
14536 if the note is still correct in all situations. It is better
14537 to simply delete it. */
14541 /* If we replaced the right hand side of FROM_INSN with a
14542 REG_EQUAL note, the original use of the dying register
14543 will not have been combined into I3 and I2. In such cases,
14544 FROM_INSN is guaranteed to be the first of the combined
14545 instructions, so we simply need to search back before
14546 FROM_INSN for the previous use or set of this register,
14547 then alter the notes there appropriately.
14549 If the register is used as an input in I3, it dies there.
14550 Similarly for I2, if it is nonzero and adjacent to I3.
14552 If the register is not used as an input in either I3 or I2
14553 and it is not one of the registers we were supposed to eliminate,
14554 there are two possibilities. We might have a non-adjacent I2
14555 or we might have somehow eliminated an additional register
14556 from a computation. For example, we might have had A & B where
14557 we discover that B will always be zero. In this case we will
14558 eliminate the reference to A.
14560 In both cases, we must search to see if we can find a previous
14561 use of A and put the death note there. */
14564 && from_insn
== i2mod
14565 && !reg_overlap_mentioned_p (XEXP (note
, 0), i2mod_new_rhs
))
14566 tem_insn
= from_insn
;
14570 && CALL_P (from_insn
)
14571 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
14573 else if (i2
&& reg_set_p (XEXP (note
, 0), PATTERN (i2
)))
14575 /* If the new I2 sets the same register that is marked
14576 dead in the note, we do not in general know where to
14577 put the note. One important case we _can_ handle is
14578 when the note comes from I3. */
14579 if (from_insn
== i3
)
14584 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
14586 else if (i2
!= 0 && next_nonnote_nondebug_insn (i2
) == i3
14587 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14589 else if ((rtx_equal_p (XEXP (note
, 0), elim_i2
)
14591 && reg_overlap_mentioned_p (XEXP (note
, 0),
14593 || rtx_equal_p (XEXP (note
, 0), elim_i1
)
14594 || rtx_equal_p (XEXP (note
, 0), elim_i0
))
14601 basic_block bb
= this_basic_block
;
14603 for (tem_insn
= PREV_INSN (tem_insn
); place
== 0; tem_insn
= PREV_INSN (tem_insn
))
14605 if (!NONDEBUG_INSN_P (tem_insn
))
14607 if (tem_insn
== BB_HEAD (bb
))
14612 /* If the register is being set at TEM_INSN, see if that is all
14613 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14614 into a REG_UNUSED note instead. Don't delete sets to
14615 global register vars. */
14616 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
14617 || !global_regs
[REGNO (XEXP (note
, 0))])
14618 && reg_set_p (XEXP (note
, 0), PATTERN (tem_insn
)))
14620 rtx set
= single_set (tem_insn
);
14621 rtx inner_dest
= 0;
14622 rtx_insn
*cc0_setter
= NULL
;
14625 for (inner_dest
= SET_DEST (set
);
14626 (GET_CODE (inner_dest
) == STRICT_LOW_PART
14627 || GET_CODE (inner_dest
) == SUBREG
14628 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
14629 inner_dest
= XEXP (inner_dest
, 0))
14632 /* Verify that it was the set, and not a clobber that
14633 modified the register.
14635 CC0 targets must be careful to maintain setter/user
14636 pairs. If we cannot delete the setter due to side
14637 effects, mark the user with an UNUSED note instead
14640 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
14641 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
14643 || (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
14644 || ((cc0_setter
= prev_cc0_setter (tem_insn
)) != NULL
14645 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))))
14647 /* Move the notes and links of TEM_INSN elsewhere.
14648 This might delete other dead insns recursively.
14649 First set the pattern to something that won't use
14651 rtx old_notes
= REG_NOTES (tem_insn
);
14653 PATTERN (tem_insn
) = pc_rtx
;
14654 REG_NOTES (tem_insn
) = NULL
;
14656 distribute_notes (old_notes
, tem_insn
, tem_insn
, NULL
,
14657 NULL_RTX
, NULL_RTX
, NULL_RTX
);
14658 distribute_links (LOG_LINKS (tem_insn
));
14660 unsigned int regno
= REGNO (XEXP (note
, 0));
14661 reg_stat_type
*rsp
= ®_stat
[regno
];
14662 if (rsp
->last_set
== tem_insn
)
14663 record_value_for_reg (XEXP (note
, 0), NULL
, NULL_RTX
);
14665 SET_INSN_DELETED (tem_insn
);
14666 if (tem_insn
== i2
)
14669 /* Delete the setter too. */
14672 PATTERN (cc0_setter
) = pc_rtx
;
14673 old_notes
= REG_NOTES (cc0_setter
);
14674 REG_NOTES (cc0_setter
) = NULL
;
14676 distribute_notes (old_notes
, cc0_setter
,
14678 NULL_RTX
, NULL_RTX
, NULL_RTX
);
14679 distribute_links (LOG_LINKS (cc0_setter
));
14681 SET_INSN_DELETED (cc0_setter
);
14682 if (cc0_setter
== i2
)
14688 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
14690 /* If there isn't already a REG_UNUSED note, put one
14691 here. Do not place a REG_DEAD note, even if
14692 the register is also used here; that would not
14693 match the algorithm used in lifetime analysis
14694 and can cause the consistency check in the
14695 scheduler to fail. */
14696 if (! find_regno_note (tem_insn
, REG_UNUSED
,
14697 REGNO (XEXP (note
, 0))))
14702 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem_insn
))
14703 || (CALL_P (tem_insn
)
14704 && find_reg_fusage (tem_insn
, USE
, XEXP (note
, 0))))
14708 /* If we are doing a 3->2 combination, and we have a
14709 register which formerly died in i3 and was not used
14710 by i2, which now no longer dies in i3 and is used in
14711 i2 but does not die in i2, and place is between i2
14712 and i3, then we may need to move a link from place to
14714 if (i2
&& DF_INSN_LUID (place
) > DF_INSN_LUID (i2
)
14716 && DF_INSN_LUID (from_insn
) > DF_INSN_LUID (i2
)
14717 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
14719 struct insn_link
*links
= LOG_LINKS (place
);
14720 LOG_LINKS (place
) = NULL
;
14721 distribute_links (links
);
14726 if (tem_insn
== BB_HEAD (bb
))
14732 /* If the register is set or already dead at PLACE, we needn't do
14733 anything with this note if it is still a REG_DEAD note.
14734 We check here if it is set at all, not if is it totally replaced,
14735 which is what `dead_or_set_p' checks, so also check for it being
14738 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
14740 unsigned int regno
= REGNO (XEXP (note
, 0));
14741 reg_stat_type
*rsp
= ®_stat
[regno
];
14743 if (dead_or_set_p (place
, XEXP (note
, 0))
14744 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
14746 /* Unless the register previously died in PLACE, clear
14747 last_death. [I no longer understand why this is
14749 if (rsp
->last_death
!= place
)
14750 rsp
->last_death
= 0;
14754 rsp
->last_death
= place
;
14756 /* If this is a death note for a hard reg that is occupying
14757 multiple registers, ensure that we are still using all
14758 parts of the object. If we find a piece of the object
14759 that is unused, we must arrange for an appropriate REG_DEAD
14760 note to be added for it. However, we can't just emit a USE
14761 and tag the note to it, since the register might actually
14762 be dead; so we recourse, and the recursive call then finds
14763 the previous insn that used this register. */
14765 if (place
&& REG_NREGS (XEXP (note
, 0)) > 1)
14767 unsigned int endregno
= END_REGNO (XEXP (note
, 0));
14768 bool all_used
= true;
14771 for (i
= regno
; i
< endregno
; i
++)
14772 if ((! refers_to_regno_p (i
, PATTERN (place
))
14773 && ! find_regno_fusage (place
, USE
, i
))
14774 || dead_or_set_regno_p (place
, i
))
14782 /* Put only REG_DEAD notes for pieces that are
14783 not already dead or set. */
14785 for (i
= regno
; i
< endregno
;
14786 i
+= hard_regno_nregs (i
, reg_raw_mode
[i
]))
14788 rtx piece
= regno_reg_rtx
[i
];
14789 basic_block bb
= this_basic_block
;
14791 if (! dead_or_set_p (place
, piece
)
14792 && ! reg_bitfield_target_p (piece
,
14795 rtx new_note
= alloc_reg_note (REG_DEAD
, piece
,
14798 distribute_notes (new_note
, place
, place
,
14799 NULL
, NULL_RTX
, NULL_RTX
,
14802 else if (! refers_to_regno_p (i
, PATTERN (place
))
14803 && ! find_regno_fusage (place
, USE
, i
))
14804 for (tem_insn
= PREV_INSN (place
); ;
14805 tem_insn
= PREV_INSN (tem_insn
))
14807 if (!NONDEBUG_INSN_P (tem_insn
))
14809 if (tem_insn
== BB_HEAD (bb
))
14813 if (dead_or_set_p (tem_insn
, piece
)
14814 || reg_bitfield_target_p (piece
,
14815 PATTERN (tem_insn
)))
14817 add_reg_note (tem_insn
, REG_UNUSED
, piece
);
14830 /* Any other notes should not be present at this point in the
14832 gcc_unreachable ();
14837 XEXP (note
, 1) = REG_NOTES (place
);
14838 REG_NOTES (place
) = note
;
14840 /* Set added_notes_insn to the earliest insn we added a note to. */
14841 if (added_notes_insn
== 0
14842 || DF_INSN_LUID (added_notes_insn
) > DF_INSN_LUID (place
))
14843 added_notes_insn
= place
;
14848 add_shallow_copy_of_reg_note (place2
, note
);
14850 /* Set added_notes_insn to the earliest insn we added a note to. */
14851 if (added_notes_insn
== 0
14852 || DF_INSN_LUID (added_notes_insn
) > DF_INSN_LUID (place2
))
14853 added_notes_insn
= place2
;
14858 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14859 I3, I2, and I1 to new locations. This is also called to add a link
14860 pointing at I3 when I3's destination is changed. */
14863 distribute_links (struct insn_link
*links
)
14865 struct insn_link
*link
, *next_link
;
14867 for (link
= links
; link
; link
= next_link
)
14869 rtx_insn
*place
= 0;
14873 next_link
= link
->next
;
14875 /* If the insn that this link points to is a NOTE, ignore it. */
14876 if (NOTE_P (link
->insn
))
14880 rtx pat
= PATTERN (link
->insn
);
14881 if (GET_CODE (pat
) == SET
)
14883 else if (GET_CODE (pat
) == PARALLEL
)
14886 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
14888 set
= XVECEXP (pat
, 0, i
);
14889 if (GET_CODE (set
) != SET
)
14892 reg
= SET_DEST (set
);
14893 while (GET_CODE (reg
) == ZERO_EXTRACT
14894 || GET_CODE (reg
) == STRICT_LOW_PART
14895 || GET_CODE (reg
) == SUBREG
)
14896 reg
= XEXP (reg
, 0);
14901 if (REGNO (reg
) == link
->regno
)
14904 if (i
== XVECLEN (pat
, 0))
14910 reg
= SET_DEST (set
);
14912 while (GET_CODE (reg
) == ZERO_EXTRACT
14913 || GET_CODE (reg
) == STRICT_LOW_PART
14914 || GET_CODE (reg
) == SUBREG
)
14915 reg
= XEXP (reg
, 0);
14920 /* A LOG_LINK is defined as being placed on the first insn that uses
14921 a register and points to the insn that sets the register. Start
14922 searching at the next insn after the target of the link and stop
14923 when we reach a set of the register or the end of the basic block.
14925 Note that this correctly handles the link that used to point from
14926 I3 to I2. Also note that not much searching is typically done here
14927 since most links don't point very far away. */
14929 for (insn
= NEXT_INSN (link
->insn
);
14930 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
14931 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
14932 insn
= NEXT_INSN (insn
))
14933 if (DEBUG_INSN_P (insn
))
14935 else if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
14937 if (reg_referenced_p (reg
, PATTERN (insn
)))
14941 else if (CALL_P (insn
)
14942 && find_reg_fusage (insn
, USE
, reg
))
14947 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
14950 /* If we found a place to put the link, place it there unless there
14951 is already a link to the same insn as LINK at that point. */
14955 struct insn_link
*link2
;
14957 FOR_EACH_LOG_LINK (link2
, place
)
14958 if (link2
->insn
== link
->insn
&& link2
->regno
== link
->regno
)
14963 link
->next
= LOG_LINKS (place
);
14964 LOG_LINKS (place
) = link
;
14966 /* Set added_links_insn to the earliest insn we added a
14968 if (added_links_insn
== 0
14969 || DF_INSN_LUID (added_links_insn
) > DF_INSN_LUID (place
))
14970 added_links_insn
= place
;
14976 /* Check for any register or memory mentioned in EQUIV that is not
14977 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14978 of EXPR where some registers may have been replaced by constants. */
14981 unmentioned_reg_p (rtx equiv
, rtx expr
)
14983 subrtx_iterator::array_type array
;
14984 FOR_EACH_SUBRTX (iter
, array
, equiv
, NONCONST
)
14986 const_rtx x
= *iter
;
14987 if ((REG_P (x
) || MEM_P (x
))
14988 && !reg_mentioned_p (x
, expr
))
14994 DEBUG_FUNCTION
void
14995 dump_combine_stats (FILE *file
)
14999 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
15000 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
15004 dump_combine_total_stats (FILE *file
)
15008 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
15009 total_attempts
, total_merges
, total_extras
, total_successes
);
15012 /* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
15013 the reg-to-reg copy can usefully combine with later instructions, but we
15014 do not want to combine the hard reg into later instructions, for that
15015 restricts register allocation. */
15017 make_more_copies (void)
15021 FOR_EACH_BB_FN (bb
, cfun
)
15025 FOR_BB_INSNS (bb
, insn
)
15027 if (!NONDEBUG_INSN_P (insn
))
15030 rtx set
= single_set (insn
);
15034 rtx dest
= SET_DEST (set
);
15035 if (!(REG_P (dest
) && !HARD_REGISTER_P (dest
)))
15038 rtx src
= SET_SRC (set
);
15039 if (!(REG_P (src
) && HARD_REGISTER_P (src
)))
15041 if (TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
)))
15044 rtx new_reg
= gen_reg_rtx (GET_MODE (dest
));
15045 rtx_insn
*new_insn
= gen_move_insn (new_reg
, src
);
15046 SET_SRC (set
) = new_reg
;
15047 emit_insn_before (new_insn
, insn
);
15048 df_insn_rescan (insn
);
15053 /* Try combining insns through substitution. */
15054 static unsigned int
15055 rest_of_handle_combine (void)
15057 make_more_copies ();
15059 df_set_flags (DF_LR_RUN_DCE
+ DF_DEFER_INSN_RESCAN
);
15060 df_note_add_problem ();
15063 regstat_init_n_sets_and_refs ();
15064 reg_n_sets_max
= max_reg_num ();
15066 int rebuild_jump_labels_after_combine
15067 = combine_instructions (get_insns (), max_reg_num ());
15069 /* Combining insns may have turned an indirect jump into a
15070 direct jump. Rebuild the JUMP_LABEL fields of jumping
15072 if (rebuild_jump_labels_after_combine
)
15074 if (dom_info_available_p (CDI_DOMINATORS
))
15075 free_dominance_info (CDI_DOMINATORS
);
15076 timevar_push (TV_JUMP
);
15077 rebuild_jump_labels (get_insns ());
15079 timevar_pop (TV_JUMP
);
15082 regstat_free_n_sets_and_refs ();
15088 const pass_data pass_data_combine
=
15090 RTL_PASS
, /* type */
15091 "combine", /* name */
15092 OPTGROUP_NONE
, /* optinfo_flags */
15093 TV_COMBINE
, /* tv_id */
15094 PROP_cfglayout
, /* properties_required */
15095 0, /* properties_provided */
15096 0, /* properties_destroyed */
15097 0, /* todo_flags_start */
15098 TODO_df_finish
, /* todo_flags_finish */
15101 class pass_combine
: public rtl_opt_pass
15104 pass_combine (gcc::context
*ctxt
)
15105 : rtl_opt_pass (pass_data_combine
, ctxt
)
15108 /* opt_pass methods: */
15109 virtual bool gate (function
*) { return (optimize
> 0); }
15110 virtual unsigned int execute (function
*)
15112 return rest_of_handle_combine ();
15115 }; // class pass_combine
15117 } // anon namespace
15120 make_pass_combine (gcc::context
*ctxt
)
15122 return new pass_combine (ctxt
);