gcc/
[official-gcc.git] / gcc / ira.c
blobbd65d5471405cee33f6c035554eda0b80326c3e3
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
32 Major IRA notions are:
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
41 o *Cover class* is a register class belonging to a set of
42 non-intersecting register classes containing all of the
43 hard-registers available for register allocation. The set of
44 all cover classes for a target is defined in the corresponding
45 machine-description file according some criteria. Such notion
46 is needed because Chaitin-Briggs algorithm works on
47 non-intersected register classes.
49 o *Allocno* represents the live range of a pseudo-register in a
50 region. Besides the obvious attributes like the corresponding
51 pseudo-register number, cover class, conflicting allocnos and
52 conflicting hard-registers, there are a few allocno attributes
53 which are important for understanding the allocation algorithm:
55 - *Live ranges*. This is a list of ranges of *program
56 points* where the allocno lives. Program points represent
57 places where a pseudo can be born or become dead (there are
58 approximately two times more program points than the insns)
59 and they are represented by integers starting with 0. The
60 live ranges are used to find conflicts between allocnos of
61 different cover classes. They also play very important role
62 for the transformation of the IRA internal representation of
63 several regions into a one region representation. The later is
64 used during the reload pass work because each allocno
65 represents all of the corresponding pseudo-registers.
67 - *Hard-register costs*. This is a vector of size equal to the
68 number of available hard-registers of the allocno's cover
69 class. The cost of a callee-clobbered hard-register for an
70 allocno is increased by the cost of save/restore code around
71 the calls through the given allocno's life. If the allocno
72 is a move instruction operand and another operand is a
73 hard-register of the allocno's cover class, the cost of the
74 hard-register is decreased by the move cost.
76 When an allocno is assigned, the hard-register with minimal
77 full cost is used. Initially, a hard-register's full cost is
78 the corresponding value from the hard-register's cost vector.
79 If the allocno is connected by a *copy* (see below) to
80 another allocno which has just received a hard-register, the
81 cost of the hard-register is decreased. Before choosing a
82 hard-register for an allocno, the allocno's current costs of
83 the hard-registers are modified by the conflict hard-register
84 costs of all of the conflicting allocnos which are not
85 assigned yet.
87 - *Conflict hard-register costs*. This is a vector of the same
88 size as the hard-register costs vector. To permit an
89 unassigned allocno to get a better hard-register, IRA uses
90 this vector to calculate the final full cost of the
91 available hard-registers. Conflict hard-register costs of an
92 unassigned allocno are also changed with a change of the
93 hard-register cost of the allocno when a copy involving the
94 allocno is processed as described above. This is done to
95 show other unassigned allocnos that a given allocno prefers
96 some hard-registers in order to remove the move instruction
97 corresponding to the copy.
99 o *Cap*. If a pseudo-register does not live in a region but
100 lives in a nested region, IRA creates a special allocno called
101 a cap in the outer region. A region cap is also created for a
102 subregion cap.
104 o *Copy*. Allocnos can be connected by copies. Copies are used
105 to modify hard-register costs for allocnos during coloring.
106 Such modifications reflects a preference to use the same
107 hard-register for the allocnos connected by copies. Usually
108 copies are created for move insns (in this case it results in
109 register coalescing). But IRA also creates copies for operands
110 of an insn which should be assigned to the same hard-register
111 due to constraints in the machine description (it usually
112 results in removing a move generated in reload to satisfy
113 the constraints) and copies referring to the allocno which is
114 the output operand of an instruction and the allocno which is
115 an input operand dying in the instruction (creation of such
116 copies results in less register shuffling). IRA *does not*
117 create copies between the same register allocnos from different
118 regions because we use another technique for propagating
119 hard-register preference on the borders of regions.
121 Allocnos (including caps) for the upper region in the region tree
122 *accumulate* information important for coloring from allocnos with
123 the same pseudo-register from nested regions. This includes
124 hard-register and memory costs, conflicts with hard-registers,
125 allocno conflicts, allocno copies and more. *Thus, attributes for
126 allocnos in a region have the same values as if the region had no
127 subregions*. It means that attributes for allocnos in the
128 outermost region corresponding to the function have the same values
129 as though the allocation used only one region which is the entire
130 function. It also means that we can look at IRA work as if the
131 first IRA did allocation for all function then it improved the
132 allocation for loops then their subloops and so on.
134 IRA major passes are:
136 o Building IRA internal representation which consists of the
137 following subpasses:
139 * First, IRA builds regions and creates allocnos (file
140 ira-build.c) and initializes most of their attributes.
142 * Then IRA finds a cover class for each allocno and calculates
143 its initial (non-accumulated) cost of memory and each
144 hard-register of its cover class (file ira-cost.c).
146 * IRA creates live ranges of each allocno, calulates register
147 pressure for each cover class in each region, sets up
148 conflict hard registers for each allocno and info about calls
149 the allocno lives through (file ira-lives.c).
151 * IRA removes low register pressure loops from the regions
152 mostly to speed IRA up (file ira-build.c).
154 * IRA propagates accumulated allocno info from lower region
155 allocnos to corresponding upper region allocnos (file
156 ira-build.c).
158 * IRA creates all caps (file ira-build.c).
160 * Having live-ranges of allocnos and their cover classes, IRA
161 creates conflicting allocnos of the same cover class for each
162 allocno. Conflicting allocnos are stored as a bit vector or
163 array of pointers to the conflicting allocnos whatever is
164 more profitable (file ira-conflicts.c). At this point IRA
165 creates allocno copies.
167 o Coloring. Now IRA has all necessary info to start graph coloring
168 process. It is done in each region on top-down traverse of the
169 region tree (file ira-color.c). There are following subpasses:
171 * Optional aggressive coalescing of allocnos in the region.
173 * Putting allocnos onto the coloring stack. IRA uses Briggs
174 optimistic coloring which is a major improvement over
175 Chaitin's coloring. Therefore IRA does not spill allocnos at
176 this point. There is some freedom in the order of putting
177 allocnos on the stack which can affect the final result of
178 the allocation. IRA uses some heuristics to improve the order.
180 * Popping the allocnos from the stack and assigning them hard
181 registers. If IRA can not assign a hard register to an
182 allocno and the allocno is coalesced, IRA undoes the
183 coalescing and puts the uncoalesced allocnos onto the stack in
184 the hope that some such allocnos will get a hard register
185 separately. If IRA fails to assign hard register or memory
186 is more profitable for it, IRA spills the allocno. IRA
187 assigns the allocno the hard-register with minimal full
188 allocation cost which reflects the cost of usage of the
189 hard-register for the allocno and cost of usage of the
190 hard-register for allocnos conflicting with given allocno.
192 * After allono assigning in the region, IRA modifies the hard
193 register and memory costs for the corresponding allocnos in
194 the subregions to reflect the cost of possible loads, stores,
195 or moves on the border of the region and its subregions.
196 When default regional allocation algorithm is used
197 (-fira-algorithm=mixed), IRA just propagates the assignment
198 for allocnos if the register pressure in the region for the
199 corresponding cover class is less than number of available
200 hard registers for given cover class.
202 o Spill/restore code moving. When IRA performs an allocation
203 by traversing regions in top-down order, it does not know what
204 happens below in the region tree. Therefore, sometimes IRA
205 misses opportunities to perform a better allocation. A simple
206 optimization tries to improve allocation in a region having
207 subregions and containing in another region. If the
208 corresponding allocnos in the subregion are spilled, it spills
209 the region allocno if it is profitable. The optimization
210 implements a simple iterative algorithm performing profitable
211 transformations while they are still possible. It is fast in
212 practice, so there is no real need for a better time complexity
213 algorithm.
215 o Code change. After coloring, two allocnos representing the same
216 pseudo-register outside and inside a region respectively may be
217 assigned to different locations (hard-registers or memory). In
218 this case IRA creates and uses a new pseudo-register inside the
219 region and adds code to move allocno values on the region's
220 borders. This is done during top-down traversal of the regions
221 (file ira-emit.c). In some complicated cases IRA can create a
222 new allocno to move allocno values (e.g. when a swap of values
223 stored in two hard-registers is needed). At this stage, the
224 new allocno is marked as spilled. IRA still creates the
225 pseudo-register and the moves on the region borders even when
226 both allocnos were assigned to the same hard-register. If the
227 reload pass spills a pseudo-register for some reason, the
228 effect will be smaller because another allocno will still be in
229 the hard-register. In most cases, this is better then spilling
230 both allocnos. If reload does not change the allocation
231 for the two pseudo-registers, the trivial move will be removed
232 by post-reload optimizations. IRA does not generate moves for
233 allocnos assigned to the same hard register when the default
234 regional allocation algorithm is used and the register pressure
235 in the region for the corresponding allocno cover class is less
236 than number of available hard registers for given cover class.
237 IRA also does some optimizations to remove redundant stores and
238 to reduce code duplication on the region borders.
240 o Flattening internal representation. After changing code, IRA
241 transforms its internal representation for several regions into
242 one region representation (file ira-build.c). This process is
243 called IR flattening. Such process is more complicated than IR
244 rebuilding would be, but is much faster.
246 o After IR flattening, IRA tries to assign hard registers to all
247 spilled allocnos. This is impelemented by a simple and fast
248 priority coloring algorithm (see function
249 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
250 created during the code change pass can be assigned to hard
251 registers.
253 o At the end IRA calls the reload pass. The reload pass
254 communicates with IRA through several functions in file
255 ira-color.c to improve its decisions in
257 * sharing stack slots for the spilled pseudos based on IRA info
258 about pseudo-register conflicts.
260 * reassigning hard-registers to all spilled pseudos at the end
261 of each reload iteration.
263 * choosing a better hard-register to spill based on IRA info
264 about pseudo-register live ranges and the register pressure
265 in places where the pseudo-register lives.
267 IRA uses a lot of data representing the target processors. These
268 data are initilized in file ira.c.
270 If function has no loops (or the loops are ignored when
271 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
272 coloring (only instead of separate pass of coalescing, we use hard
273 register preferencing). In such case, IRA works much faster
274 because many things are not made (like IR flattening, the
275 spill/restore optimization, and the code change).
277 Literature is worth to read for better understanding the code:
279 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
280 Graph Coloring Register Allocation.
282 o David Callahan, Brian Koblenz. Register allocation via
283 hierarchical graph coloring.
285 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
286 Coloring Register Allocation: A Study of the Chaitin-Briggs and
287 Callahan-Koblenz Algorithms.
289 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
290 Register Allocation Based on Graph Fusion.
292 o Vladimir Makarov. The Integrated Register Allocator for GCC.
294 o Vladimir Makarov. The top-down register allocator for irregular
295 register file architectures.
300 #include "config.h"
301 #include "system.h"
302 #include "coretypes.h"
303 #include "tm.h"
304 #include "regs.h"
305 #include "rtl.h"
306 #include "tm_p.h"
307 #include "target.h"
308 #include "flags.h"
309 #include "obstack.h"
310 #include "bitmap.h"
311 #include "hard-reg-set.h"
312 #include "basic-block.h"
313 #include "df.h"
314 #include "expr.h"
315 #include "recog.h"
316 #include "params.h"
317 #include "timevar.h"
318 #include "tree-pass.h"
319 #include "output.h"
320 #include "except.h"
321 #include "reload.h"
322 #include "toplev.h"
323 #include "integrate.h"
324 #include "ggc.h"
325 #include "ira-int.h"
328 /* A modified value of flag `-fira-verbose' used internally. */
329 int internal_flag_ira_verbose;
331 /* Dump file of the allocator if it is not NULL. */
332 FILE *ira_dump_file;
334 /* Pools for allocnos, copies, allocno live ranges. */
335 alloc_pool allocno_pool, copy_pool, allocno_live_range_pool;
337 /* The number of elements in the following array. */
338 int ira_spilled_reg_stack_slots_num;
340 /* The following array contains info about spilled pseudo-registers
341 stack slots used in current function so far. */
342 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
344 /* Correspondingly overall cost of the allocation, cost of the
345 allocnos assigned to hard-registers, cost of the allocnos assigned
346 to memory, cost of loads, stores and register move insns generated
347 for pseudo-register live range splitting (see ira-emit.c). */
348 int ira_overall_cost;
349 int ira_reg_cost, ira_mem_cost;
350 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
351 int ira_move_loops_num, ira_additional_jumps_num;
353 /* All registers that can be eliminated. */
355 HARD_REG_SET eliminable_regset;
357 /* Map: hard regs X modes -> set of hard registers for storing value
358 of given mode starting with given hard register. */
359 HARD_REG_SET ira_reg_mode_hard_regset[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
361 /* Array analogous to target hook TARGET_MEMORY_MOVE_COST. */
362 short int ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
364 /* Array analogous to macro REGISTER_MOVE_COST. */
365 move_table *ira_register_move_cost[MAX_MACHINE_MODE];
367 /* Similar to may_move_in_cost but it is calculated in IRA instead of
368 regclass. Another difference is that we take only available hard
369 registers into account to figure out that one register class is a
370 subset of the another one. */
371 move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
373 /* Similar to may_move_out_cost but it is calculated in IRA instead of
374 regclass. Another difference is that we take only available hard
375 registers into account to figure out that one register class is a
376 subset of the another one. */
377 move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
379 /* Register class subset relation: TRUE if the first class is a subset
380 of the second one considering only hard registers available for the
381 allocation. */
382 int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
384 /* Temporary hard reg set used for a different calculation. */
385 static HARD_REG_SET temp_hard_regset;
389 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
390 static void
391 setup_reg_mode_hard_regset (void)
393 int i, m, hard_regno;
395 for (m = 0; m < NUM_MACHINE_MODES; m++)
396 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
398 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
399 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
400 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
401 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
402 hard_regno + i);
408 /* Hard registers that can not be used for the register allocator for
409 all functions of the current compilation unit. */
410 static HARD_REG_SET no_unit_alloc_regs;
412 /* Array of the number of hard registers of given class which are
413 available for allocation. The order is defined by the
414 allocation order. */
415 short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
417 /* Array of the number of hard registers of given class which are
418 available for allocation. The order is defined by the
419 the hard register numbers. */
420 short ira_non_ordered_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
422 /* The number of elements of the above array for given register
423 class. */
424 int ira_class_hard_regs_num[N_REG_CLASSES];
426 /* Index (in ira_class_hard_regs) for given register class and hard
427 register (in general case a hard register can belong to several
428 register classes). The index is negative for hard registers
429 unavailable for the allocation. */
430 short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
432 /* The function sets up the three arrays declared above. */
433 static void
434 setup_class_hard_regs (void)
436 int cl, i, hard_regno, n;
437 HARD_REG_SET processed_hard_reg_set;
439 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
440 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
442 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
443 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
444 CLEAR_HARD_REG_SET (processed_hard_reg_set);
445 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
447 ira_non_ordered_class_hard_regs[cl][0] = -1;
448 ira_class_hard_reg_index[cl][0] = -1;
450 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
452 #ifdef REG_ALLOC_ORDER
453 hard_regno = reg_alloc_order[i];
454 #else
455 hard_regno = i;
456 #endif
457 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
458 continue;
459 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
460 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
461 ira_class_hard_reg_index[cl][hard_regno] = -1;
462 else
464 ira_class_hard_reg_index[cl][hard_regno] = n;
465 ira_class_hard_regs[cl][n++] = hard_regno;
468 ira_class_hard_regs_num[cl] = n;
469 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
470 if (TEST_HARD_REG_BIT (temp_hard_regset, i))
471 ira_non_ordered_class_hard_regs[cl][n++] = i;
472 ira_assert (ira_class_hard_regs_num[cl] == n);
476 /* Number of given class hard registers available for the register
477 allocation for given classes. */
478 int ira_available_class_regs[N_REG_CLASSES];
480 /* Set up IRA_AVAILABLE_CLASS_REGS. */
481 static void
482 setup_available_class_regs (void)
484 int i, j;
486 memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
487 for (i = 0; i < N_REG_CLASSES; i++)
489 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
490 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
491 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
492 if (TEST_HARD_REG_BIT (temp_hard_regset, j))
493 ira_available_class_regs[i]++;
497 /* Set up global variables defining info about hard registers for the
498 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
499 that we can use the hard frame pointer for the allocation. */
500 static void
501 setup_alloc_regs (bool use_hard_frame_p)
503 #ifdef ADJUST_REG_ALLOC_ORDER
504 ADJUST_REG_ALLOC_ORDER;
505 #endif
506 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
507 if (! use_hard_frame_p)
508 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
509 setup_class_hard_regs ();
510 setup_available_class_regs ();
515 /* Set up IRA_MEMORY_MOVE_COST, IRA_REGISTER_MOVE_COST. */
516 static void
517 setup_class_subset_and_memory_move_costs (void)
519 int cl, cl2, mode;
520 HARD_REG_SET temp_hard_regset2;
522 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
523 ira_memory_move_cost[mode][NO_REGS][0]
524 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
525 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
527 if (cl != (int) NO_REGS)
528 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
530 ira_memory_move_cost[mode][cl][0] =
531 memory_move_cost ((enum machine_mode) mode,
532 (enum reg_class) cl, false);
533 ira_memory_move_cost[mode][cl][1] =
534 memory_move_cost ((enum machine_mode) mode,
535 (enum reg_class) cl, true);
536 /* Costs for NO_REGS are used in cost calculation on the
537 1st pass when the preferred register classes are not
538 known yet. In this case we take the best scenario. */
539 if (ira_memory_move_cost[mode][NO_REGS][0]
540 > ira_memory_move_cost[mode][cl][0])
541 ira_memory_move_cost[mode][NO_REGS][0]
542 = ira_memory_move_cost[mode][cl][0];
543 if (ira_memory_move_cost[mode][NO_REGS][1]
544 > ira_memory_move_cost[mode][cl][1])
545 ira_memory_move_cost[mode][NO_REGS][1]
546 = ira_memory_move_cost[mode][cl][1];
548 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
550 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
551 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
552 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
553 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
554 ira_class_subset_p[cl][cl2]
555 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
562 /* Define the following macro if allocation through malloc if
563 preferable. */
564 #define IRA_NO_OBSTACK
566 #ifndef IRA_NO_OBSTACK
567 /* Obstack used for storing all dynamic data (except bitmaps) of the
568 IRA. */
569 static struct obstack ira_obstack;
570 #endif
572 /* Obstack used for storing all bitmaps of the IRA. */
573 static struct bitmap_obstack ira_bitmap_obstack;
575 /* Allocate memory of size LEN for IRA data. */
576 void *
577 ira_allocate (size_t len)
579 void *res;
581 #ifndef IRA_NO_OBSTACK
582 res = obstack_alloc (&ira_obstack, len);
583 #else
584 res = xmalloc (len);
585 #endif
586 return res;
589 /* Reallocate memory PTR of size LEN for IRA data. */
590 void *
591 ira_reallocate (void *ptr, size_t len)
593 void *res;
595 #ifndef IRA_NO_OBSTACK
596 res = obstack_alloc (&ira_obstack, len);
597 #else
598 res = xrealloc (ptr, len);
599 #endif
600 return res;
603 /* Free memory ADDR allocated for IRA data. */
604 void
605 ira_free (void *addr ATTRIBUTE_UNUSED)
607 #ifndef IRA_NO_OBSTACK
608 /* do nothing */
609 #else
610 free (addr);
611 #endif
615 /* Allocate and returns bitmap for IRA. */
616 bitmap
617 ira_allocate_bitmap (void)
619 return BITMAP_ALLOC (&ira_bitmap_obstack);
622 /* Free bitmap B allocated for IRA. */
623 void
624 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
626 /* do nothing */
631 /* Output information about allocation of all allocnos (except for
632 caps) into file F. */
633 void
634 ira_print_disposition (FILE *f)
636 int i, n, max_regno;
637 ira_allocno_t a;
638 basic_block bb;
640 fprintf (f, "Disposition:");
641 max_regno = max_reg_num ();
642 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
643 for (a = ira_regno_allocno_map[i];
644 a != NULL;
645 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
647 if (n % 4 == 0)
648 fprintf (f, "\n");
649 n++;
650 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
651 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
652 fprintf (f, "b%-3d", bb->index);
653 else
654 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
655 if (ALLOCNO_HARD_REGNO (a) >= 0)
656 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
657 else
658 fprintf (f, " mem");
660 fprintf (f, "\n");
663 /* Outputs information about allocation of all allocnos into
664 stderr. */
665 void
666 ira_debug_disposition (void)
668 ira_print_disposition (stderr);
673 /* For each reg class, table listing all the classes contained in it
674 (excluding the class itself. Non-allocatable registers are
675 excluded from the consideration). */
676 static enum reg_class alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
678 /* Initialize the table of subclasses of each reg class. */
679 static void
680 setup_reg_subclasses (void)
682 int i, j;
683 HARD_REG_SET temp_hard_regset2;
685 for (i = 0; i < N_REG_CLASSES; i++)
686 for (j = 0; j < N_REG_CLASSES; j++)
687 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
689 for (i = 0; i < N_REG_CLASSES; i++)
691 if (i == (int) NO_REGS)
692 continue;
694 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
695 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
696 if (hard_reg_set_empty_p (temp_hard_regset))
697 continue;
698 for (j = 0; j < N_REG_CLASSES; j++)
699 if (i != j)
701 enum reg_class *p;
703 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
704 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
705 if (! hard_reg_set_subset_p (temp_hard_regset,
706 temp_hard_regset2))
707 continue;
708 p = &alloc_reg_class_subclasses[j][0];
709 while (*p != LIM_REG_CLASSES) p++;
710 *p = (enum reg_class) i;
717 /* Number of cover classes. Cover classes is non-intersected register
718 classes containing all hard-registers available for the
719 allocation. */
720 int ira_reg_class_cover_size;
722 /* The array containing cover classes (see also comments for macro
723 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
724 used for this. */
725 enum reg_class ira_reg_class_cover[N_REG_CLASSES];
727 /* The number of elements in the subsequent array. */
728 int ira_important_classes_num;
730 /* The array containing non-empty classes (including non-empty cover
731 classes) which are subclasses of cover classes. Such classes is
732 important for calculation of the hard register usage costs. */
733 enum reg_class ira_important_classes[N_REG_CLASSES];
735 /* The array containing indexes of important classes in the previous
736 array. The array elements are defined only for important
737 classes. */
738 int ira_important_class_nums[N_REG_CLASSES];
740 /* Set the four global variables defined above. */
741 static void
742 setup_cover_and_important_classes (void)
744 int i, j, n, cl;
745 bool set_p;
746 const enum reg_class *cover_classes;
747 HARD_REG_SET temp_hard_regset2;
748 static enum reg_class classes[LIM_REG_CLASSES + 1];
750 if (targetm.ira_cover_classes == NULL)
751 cover_classes = NULL;
752 else
753 cover_classes = targetm.ira_cover_classes ();
754 if (cover_classes == NULL)
755 ira_assert (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY);
756 else
758 for (i = 0; (cl = cover_classes[i]) != LIM_REG_CLASSES; i++)
759 classes[i] = (enum reg_class) cl;
760 classes[i] = LIM_REG_CLASSES;
763 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
765 n = 0;
766 for (i = 0; i <= LIM_REG_CLASSES; i++)
768 if (i == NO_REGS)
769 continue;
770 #ifdef CONSTRAINT_NUM_DEFINED_P
771 for (j = 0; j < CONSTRAINT__LIMIT; j++)
772 if ((int) REG_CLASS_FOR_CONSTRAINT ((enum constraint_num) j) == i)
773 break;
774 if (j < CONSTRAINT__LIMIT)
776 classes[n++] = (enum reg_class) i;
777 continue;
779 #endif
780 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
781 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
782 for (j = 0; j < LIM_REG_CLASSES; j++)
784 if (i == j)
785 continue;
786 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
787 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
788 no_unit_alloc_regs);
789 if (hard_reg_set_equal_p (temp_hard_regset,
790 temp_hard_regset2))
791 break;
793 if (j >= i)
794 classes[n++] = (enum reg_class) i;
796 classes[n] = LIM_REG_CLASSES;
799 ira_reg_class_cover_size = 0;
800 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
802 for (j = 0; j < i; j++)
803 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY
804 && reg_classes_intersect_p ((enum reg_class) cl, classes[j]))
805 gcc_unreachable ();
806 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
807 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
808 if (! hard_reg_set_empty_p (temp_hard_regset))
809 ira_reg_class_cover[ira_reg_class_cover_size++] = (enum reg_class) cl;
811 ira_important_classes_num = 0;
812 for (cl = 0; cl < N_REG_CLASSES; cl++)
814 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
815 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
816 if (! hard_reg_set_empty_p (temp_hard_regset))
818 set_p = false;
819 for (j = 0; j < ira_reg_class_cover_size; j++)
821 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
822 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
823 COPY_HARD_REG_SET (temp_hard_regset2,
824 reg_class_contents[ira_reg_class_cover[j]]);
825 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
826 if ((enum reg_class) cl == ira_reg_class_cover[j]
827 || hard_reg_set_equal_p (temp_hard_regset,
828 temp_hard_regset2))
829 break;
830 else if (hard_reg_set_subset_p (temp_hard_regset,
831 temp_hard_regset2))
832 set_p = true;
834 if (set_p && j >= ira_reg_class_cover_size)
835 ira_important_classes[ira_important_classes_num++]
836 = (enum reg_class) cl;
839 for (j = 0; j < ira_reg_class_cover_size; j++)
840 ira_important_classes[ira_important_classes_num++]
841 = ira_reg_class_cover[j];
844 /* Map of all register classes to corresponding cover class containing
845 the given class. If given class is not a subset of a cover class,
846 we translate it into the cheapest cover class. */
847 enum reg_class ira_class_translate[N_REG_CLASSES];
849 /* Set up array IRA_CLASS_TRANSLATE. */
850 static void
851 setup_class_translate (void)
853 int cl, mode;
854 enum reg_class cover_class, best_class, *cl_ptr;
855 int i, cost, min_cost, best_cost;
857 for (cl = 0; cl < N_REG_CLASSES; cl++)
858 ira_class_translate[cl] = NO_REGS;
860 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
861 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
863 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
864 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
865 for (i = 0; i < ira_reg_class_cover_size; i++)
867 HARD_REG_SET temp_hard_regset2;
869 cover_class = ira_reg_class_cover[i];
870 COPY_HARD_REG_SET (temp_hard_regset2,
871 reg_class_contents[cover_class]);
872 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
873 if (hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2))
874 ira_class_translate[cl] = cover_class;
877 for (i = 0; i < ira_reg_class_cover_size; i++)
879 cover_class = ira_reg_class_cover[i];
880 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY)
881 for (cl_ptr = &alloc_reg_class_subclasses[cover_class][0];
882 (cl = *cl_ptr) != LIM_REG_CLASSES;
883 cl_ptr++)
885 if (ira_class_translate[cl] == NO_REGS)
886 ira_class_translate[cl] = cover_class;
887 #ifdef ENABLE_IRA_CHECKING
888 else
890 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
891 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
892 if (! hard_reg_set_empty_p (temp_hard_regset))
893 gcc_unreachable ();
895 #endif
897 ira_class_translate[cover_class] = cover_class;
899 /* For classes which are not fully covered by a cover class (in
900 other words covered by more one cover class), use the cheapest
901 cover class. */
902 for (cl = 0; cl < N_REG_CLASSES; cl++)
904 if (cl == NO_REGS || ira_class_translate[cl] != NO_REGS)
905 continue;
906 best_class = NO_REGS;
907 best_cost = INT_MAX;
908 for (i = 0; i < ira_reg_class_cover_size; i++)
910 cover_class = ira_reg_class_cover[i];
911 COPY_HARD_REG_SET (temp_hard_regset,
912 reg_class_contents[cover_class]);
913 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
914 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
915 if (! hard_reg_set_empty_p (temp_hard_regset))
917 min_cost = INT_MAX;
918 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
920 cost = (ira_memory_move_cost[mode][cl][0]
921 + ira_memory_move_cost[mode][cl][1]);
922 if (min_cost > cost)
923 min_cost = cost;
925 if (best_class == NO_REGS || best_cost > min_cost)
927 best_class = cover_class;
928 best_cost = min_cost;
932 ira_class_translate[cl] = best_class;
936 /* Order numbers of cover classes in original target cover class
937 array, -1 for non-cover classes. */
938 static int cover_class_order[N_REG_CLASSES];
940 /* The function used to sort the important classes. */
941 static int
942 comp_reg_classes_func (const void *v1p, const void *v2p)
944 enum reg_class cl1 = *(const enum reg_class *) v1p;
945 enum reg_class cl2 = *(const enum reg_class *) v2p;
946 int diff;
948 cl1 = ira_class_translate[cl1];
949 cl2 = ira_class_translate[cl2];
950 if (cl1 != NO_REGS && cl2 != NO_REGS
951 && (diff = cover_class_order[cl1] - cover_class_order[cl2]) != 0)
952 return diff;
953 return (int) cl1 - (int) cl2;
956 /* Reorder important classes according to the order of their cover
957 classes. Set up array ira_important_class_nums too. */
958 static void
959 reorder_important_classes (void)
961 int i;
963 for (i = 0; i < N_REG_CLASSES; i++)
964 cover_class_order[i] = -1;
965 for (i = 0; i < ira_reg_class_cover_size; i++)
966 cover_class_order[ira_reg_class_cover[i]] = i;
967 qsort (ira_important_classes, ira_important_classes_num,
968 sizeof (enum reg_class), comp_reg_classes_func);
969 for (i = 0; i < ira_important_classes_num; i++)
970 ira_important_class_nums[ira_important_classes[i]] = i;
973 /* The biggest important reg_class inside of intersection of the two
974 reg_classes (that is calculated taking only hard registers
975 available for allocation into account). If the both reg_classes
976 contain no hard registers available for allocation, the value is
977 calculated by taking all hard-registers including fixed ones into
978 account. */
979 enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
981 /* True if the two classes (that is calculated taking only hard
982 registers available for allocation into account) are
983 intersected. */
984 bool ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
986 /* Important classes with end marker LIM_REG_CLASSES which are
987 supersets with given important class (the first index). That
988 includes given class itself. This is calculated taking only hard
989 registers available for allocation into account. */
990 enum reg_class ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
992 /* The biggest important reg_class inside of union of the two
993 reg_classes (that is calculated taking only hard registers
994 available for allocation into account). If the both reg_classes
995 contain no hard registers available for allocation, the value is
996 calculated by taking all hard-registers including fixed ones into
997 account. In other words, the value is the corresponding
998 reg_class_subunion value. */
999 enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
1001 /* Set up the above reg class relations. */
1002 static void
1003 setup_reg_class_relations (void)
1005 int i, cl1, cl2, cl3;
1006 HARD_REG_SET intersection_set, union_set, temp_set2;
1007 bool important_class_p[N_REG_CLASSES];
1009 memset (important_class_p, 0, sizeof (important_class_p));
1010 for (i = 0; i < ira_important_classes_num; i++)
1011 important_class_p[ira_important_classes[i]] = true;
1012 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1014 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
1015 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1017 ira_reg_classes_intersect_p[cl1][cl2] = false;
1018 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
1019 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
1020 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1021 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
1022 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1023 if (hard_reg_set_empty_p (temp_hard_regset)
1024 && hard_reg_set_empty_p (temp_set2))
1026 for (i = 0;; i++)
1028 cl3 = reg_class_subclasses[cl1][i];
1029 if (cl3 == LIM_REG_CLASSES)
1030 break;
1031 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
1032 (enum reg_class) cl3))
1033 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1035 ira_reg_class_union[cl1][cl2] = reg_class_subunion[cl1][cl2];
1036 continue;
1038 ira_reg_classes_intersect_p[cl1][cl2]
1039 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
1040 if (important_class_p[cl1] && important_class_p[cl2]
1041 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
1043 enum reg_class *p;
1045 p = &ira_reg_class_super_classes[cl1][0];
1046 while (*p != LIM_REG_CLASSES)
1047 p++;
1048 *p++ = (enum reg_class) cl2;
1049 *p = LIM_REG_CLASSES;
1051 ira_reg_class_union[cl1][cl2] = NO_REGS;
1052 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1053 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1054 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1055 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1056 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1057 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1058 for (i = 0; i < ira_important_classes_num; i++)
1060 cl3 = ira_important_classes[i];
1061 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1062 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1063 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1065 COPY_HARD_REG_SET
1066 (temp_set2,
1067 reg_class_contents[(int)
1068 ira_reg_class_intersect[cl1][cl2]]);
1069 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1070 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1071 /* Ignore unavailable hard registers and prefer
1072 smallest class for debugging purposes. */
1073 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1074 && hard_reg_set_subset_p
1075 (reg_class_contents[cl3],
1076 reg_class_contents
1077 [(int) ira_reg_class_intersect[cl1][cl2]])))
1078 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1080 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
1082 COPY_HARD_REG_SET
1083 (temp_set2,
1084 reg_class_contents[(int) ira_reg_class_union[cl1][cl2]]);
1085 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1086 if (ira_reg_class_union[cl1][cl2] == NO_REGS
1087 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1089 && (! hard_reg_set_equal_p (temp_set2,
1090 temp_hard_regset)
1091 /* Ignore unavailable hard registers and
1092 prefer smallest class for debugging
1093 purposes. */
1094 || hard_reg_set_subset_p
1095 (reg_class_contents[cl3],
1096 reg_class_contents
1097 [(int) ira_reg_class_union[cl1][cl2]]))))
1098 ira_reg_class_union[cl1][cl2] = (enum reg_class) cl3;
1105 /* Output all cover classes and the translation map into file F. */
1106 static void
1107 print_class_cover (FILE *f)
1109 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1110 int i;
1112 fprintf (f, "Class cover:\n");
1113 for (i = 0; i < ira_reg_class_cover_size; i++)
1114 fprintf (f, " %s", reg_class_names[ira_reg_class_cover[i]]);
1115 fprintf (f, "\nClass translation:\n");
1116 for (i = 0; i < N_REG_CLASSES; i++)
1117 fprintf (f, " %s -> %s\n", reg_class_names[i],
1118 reg_class_names[ira_class_translate[i]]);
1121 /* Output all cover classes and the translation map into
1122 stderr. */
1123 void
1124 ira_debug_class_cover (void)
1126 print_class_cover (stderr);
1129 /* Set up different arrays concerning class subsets, cover and
1130 important classes. */
1131 static void
1132 find_reg_class_closure (void)
1134 setup_reg_subclasses ();
1135 setup_cover_and_important_classes ();
1136 setup_class_translate ();
1137 reorder_important_classes ();
1138 setup_reg_class_relations ();
1143 /* Map: hard register number -> cover class it belongs to. If the
1144 corresponding class is NO_REGS, the hard register is not available
1145 for allocation. */
1146 enum reg_class ira_hard_regno_cover_class[FIRST_PSEUDO_REGISTER];
1148 /* Set up the array above. */
1149 static void
1150 setup_hard_regno_cover_class (void)
1152 int i, j;
1153 enum reg_class cl;
1155 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1157 ira_hard_regno_cover_class[i] = NO_REGS;
1158 for (j = 0; j < ira_reg_class_cover_size; j++)
1160 cl = ira_reg_class_cover[j];
1161 if (ira_class_hard_reg_index[cl][i] >= 0)
1163 ira_hard_regno_cover_class[i] = cl;
1164 break;
1173 /* Map: register class x machine mode -> number of hard registers of
1174 given class needed to store value of given mode. If the number is
1175 different, the size will be negative. */
1176 int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
1178 /* Maximal value of the previous array elements. */
1179 int ira_max_nregs;
1181 /* Form IRA_REG_CLASS_NREGS map. */
1182 static void
1183 setup_reg_class_nregs (void)
1185 int cl, m;
1187 ira_max_nregs = -1;
1188 for (cl = 0; cl < N_REG_CLASSES; cl++)
1189 for (m = 0; m < MAX_MACHINE_MODE; m++)
1191 ira_reg_class_nregs[cl][m] = CLASS_MAX_NREGS ((enum reg_class) cl,
1192 (enum machine_mode) m);
1193 if (ira_max_nregs < ira_reg_class_nregs[cl][m])
1194 ira_max_nregs = ira_reg_class_nregs[cl][m];
1200 /* Array whose values are hard regset of hard registers available for
1201 the allocation of given register class whose HARD_REGNO_MODE_OK
1202 values for given mode are zero. */
1203 HARD_REG_SET prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
1205 /* Set up PROHIBITED_CLASS_MODE_REGS. */
1206 static void
1207 setup_prohibited_class_mode_regs (void)
1209 int i, j, k, hard_regno;
1210 enum reg_class cl;
1212 for (i = 0; i < ira_reg_class_cover_size; i++)
1214 cl = ira_reg_class_cover[i];
1215 for (j = 0; j < NUM_MACHINE_MODES; j++)
1217 CLEAR_HARD_REG_SET (prohibited_class_mode_regs[cl][j]);
1218 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1220 hard_regno = ira_class_hard_regs[cl][k];
1221 if (! HARD_REGNO_MODE_OK (hard_regno, (enum machine_mode) j))
1222 SET_HARD_REG_BIT (prohibited_class_mode_regs[cl][j],
1223 hard_regno);
1231 /* Allocate and initialize IRA_REGISTER_MOVE_COST,
1232 IRA_MAY_MOVE_IN_COST, and IRA_MAY_MOVE_OUT_COST for MODE if it is
1233 not done yet. */
1234 void
1235 ira_init_register_move_cost (enum machine_mode mode)
1237 int cl1, cl2;
1239 ira_assert (ira_register_move_cost[mode] == NULL
1240 && ira_may_move_in_cost[mode] == NULL
1241 && ira_may_move_out_cost[mode] == NULL);
1242 if (move_cost[mode] == NULL)
1243 init_move_cost (mode);
1244 ira_register_move_cost[mode] = move_cost[mode];
1245 /* Don't use ira_allocate because the tables exist out of scope of a
1246 IRA call. */
1247 ira_may_move_in_cost[mode]
1248 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1249 memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1250 sizeof (move_table) * N_REG_CLASSES);
1251 ira_may_move_out_cost[mode]
1252 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1253 memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1254 sizeof (move_table) * N_REG_CLASSES);
1255 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1257 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1259 if (ira_class_subset_p[cl1][cl2])
1260 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1261 if (ira_class_subset_p[cl2][cl1])
1262 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1269 /* This is called once during compiler work. It sets up
1270 different arrays whose values don't depend on the compiled
1271 function. */
1272 void
1273 ira_init_once (void)
1275 int mode;
1277 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1279 ira_register_move_cost[mode] = NULL;
1280 ira_may_move_in_cost[mode] = NULL;
1281 ira_may_move_out_cost[mode] = NULL;
1283 ira_init_costs_once ();
1286 /* Free ira_register_move_cost, ira_may_move_in_cost, and
1287 ira_may_move_out_cost for each mode. */
1288 static void
1289 free_register_move_costs (void)
1291 int mode;
1293 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1295 if (ira_may_move_in_cost[mode] != NULL)
1296 free (ira_may_move_in_cost[mode]);
1297 if (ira_may_move_out_cost[mode] != NULL)
1298 free (ira_may_move_out_cost[mode]);
1299 ira_register_move_cost[mode] = NULL;
1300 ira_may_move_in_cost[mode] = NULL;
1301 ira_may_move_out_cost[mode] = NULL;
1305 /* This is called every time when register related information is
1306 changed. */
1307 void
1308 ira_init (void)
1310 free_register_move_costs ();
1311 setup_reg_mode_hard_regset ();
1312 setup_alloc_regs (flag_omit_frame_pointer != 0);
1313 setup_class_subset_and_memory_move_costs ();
1314 find_reg_class_closure ();
1315 setup_hard_regno_cover_class ();
1316 setup_reg_class_nregs ();
1317 setup_prohibited_class_mode_regs ();
1318 ira_init_costs ();
1321 /* Function called once at the end of compiler work. */
1322 void
1323 ira_finish_once (void)
1325 ira_finish_costs_once ();
1326 free_register_move_costs ();
1331 /* Array whose values are hard regset of hard registers for which
1332 move of the hard register in given mode into itself is
1333 prohibited. */
1334 HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
1336 /* Flag of that the above array has been initialized. */
1337 static bool ira_prohibited_mode_move_regs_initialized_p = false;
1339 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1340 static void
1341 setup_prohibited_mode_move_regs (void)
1343 int i, j;
1344 rtx test_reg1, test_reg2, move_pat, move_insn;
1346 if (ira_prohibited_mode_move_regs_initialized_p)
1347 return;
1348 ira_prohibited_mode_move_regs_initialized_p = true;
1349 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1350 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1351 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1352 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, move_pat, -1, 0);
1353 for (i = 0; i < NUM_MACHINE_MODES; i++)
1355 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1356 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1358 if (! HARD_REGNO_MODE_OK (j, (enum machine_mode) i))
1359 continue;
1360 SET_REGNO (test_reg1, j);
1361 PUT_MODE (test_reg1, (enum machine_mode) i);
1362 SET_REGNO (test_reg2, j);
1363 PUT_MODE (test_reg2, (enum machine_mode) i);
1364 INSN_CODE (move_insn) = -1;
1365 recog_memoized (move_insn);
1366 if (INSN_CODE (move_insn) < 0)
1367 continue;
1368 extract_insn (move_insn);
1369 if (! constrain_operands (1))
1370 continue;
1371 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1378 /* Return nonzero if REGNO is a particularly bad choice for reloading X. */
1379 static bool
1380 ira_bad_reload_regno_1 (int regno, rtx x)
1382 int x_regno;
1383 ira_allocno_t a;
1384 enum reg_class pref;
1386 /* We only deal with pseudo regs. */
1387 if (! x || GET_CODE (x) != REG)
1388 return false;
1390 x_regno = REGNO (x);
1391 if (x_regno < FIRST_PSEUDO_REGISTER)
1392 return false;
1394 /* If the pseudo prefers REGNO explicitly, then do not consider
1395 REGNO a bad spill choice. */
1396 pref = reg_preferred_class (x_regno);
1397 if (reg_class_size[pref] == 1)
1398 return !TEST_HARD_REG_BIT (reg_class_contents[pref], regno);
1400 /* If the pseudo conflicts with REGNO, then we consider REGNO a
1401 poor choice for a reload regno. */
1402 a = ira_regno_allocno_map[x_regno];
1403 if (TEST_HARD_REG_BIT (ALLOCNO_TOTAL_CONFLICT_HARD_REGS (a), regno))
1404 return true;
1406 return false;
1409 /* Return nonzero if REGNO is a particularly bad choice for reloading
1410 IN or OUT. */
1411 bool
1412 ira_bad_reload_regno (int regno, rtx in, rtx out)
1414 return (ira_bad_reload_regno_1 (regno, in)
1415 || ira_bad_reload_regno_1 (regno, out));
1418 /* Function specific hard registers that can not be used for the
1419 register allocation. */
1420 HARD_REG_SET ira_no_alloc_regs;
1422 /* Return TRUE if *LOC contains an asm. */
1423 static int
1424 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1426 if ( !*loc)
1427 return FALSE;
1428 if (GET_CODE (*loc) == ASM_OPERANDS)
1429 return TRUE;
1430 return FALSE;
1434 /* Return TRUE if INSN contains an ASM. */
1435 static bool
1436 insn_contains_asm (rtx insn)
1438 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1441 /* Add register clobbers from asm statements. */
1442 static void
1443 compute_regs_asm_clobbered (void)
1445 basic_block bb;
1447 FOR_EACH_BB (bb)
1449 rtx insn;
1450 FOR_BB_INSNS_REVERSE (bb, insn)
1452 df_ref *def_rec;
1454 if (insn_contains_asm (insn))
1455 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1457 df_ref def = *def_rec;
1458 unsigned int dregno = DF_REF_REGNO (def);
1459 if (dregno < FIRST_PSEUDO_REGISTER)
1461 unsigned int i;
1462 enum machine_mode mode = GET_MODE (DF_REF_REAL_REG (def));
1463 unsigned int end = dregno
1464 + hard_regno_nregs[dregno][mode] - 1;
1466 for (i = dregno; i <= end; ++i)
1467 SET_HARD_REG_BIT(crtl->asm_clobbers, i);
1475 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
1476 void
1477 ira_setup_eliminable_regset (void)
1479 #ifdef ELIMINABLE_REGS
1480 int i;
1481 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1482 #endif
1483 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1484 sp for alloca. So we can't eliminate the frame pointer in that
1485 case. At some point, we should improve this by emitting the
1486 sp-adjusting insns for this case. */
1487 int need_fp
1488 = (! flag_omit_frame_pointer
1489 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1490 /* We need the frame pointer to catch stack overflow exceptions
1491 if the stack pointer is moving. */
1492 || (flag_stack_check && STACK_CHECK_MOVING_SP)
1493 || crtl->accesses_prior_frames
1494 || crtl->stack_realign_needed
1495 || targetm.frame_pointer_required ());
1497 frame_pointer_needed = need_fp;
1499 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1500 CLEAR_HARD_REG_SET (eliminable_regset);
1502 compute_regs_asm_clobbered ();
1504 /* Build the regset of all eliminable registers and show we can't
1505 use those that we already know won't be eliminated. */
1506 #ifdef ELIMINABLE_REGS
1507 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1509 bool cannot_elim
1510 = (! targetm.can_eliminate (eliminables[i].from, eliminables[i].to)
1511 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1513 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, eliminables[i].from))
1515 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1517 if (cannot_elim)
1518 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1520 else if (cannot_elim)
1521 error ("%s cannot be used in asm here",
1522 reg_names[eliminables[i].from]);
1523 else
1524 df_set_regs_ever_live (eliminables[i].from, true);
1526 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1527 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1529 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1530 if (need_fp)
1531 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1533 else if (need_fp)
1534 error ("%s cannot be used in asm here",
1535 reg_names[HARD_FRAME_POINTER_REGNUM]);
1536 else
1537 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1538 #endif
1540 #else
1541 if (!TEST_HARD_REG_BIT (crtl->asm_clobbers, HARD_FRAME_POINTER_REGNUM))
1543 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1544 if (need_fp)
1545 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1547 else if (need_fp)
1548 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1549 else
1550 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1551 #endif
1556 /* The length of the following two arrays. */
1557 int ira_reg_equiv_len;
1559 /* The element value is TRUE if the corresponding regno value is
1560 invariant. */
1561 bool *ira_reg_equiv_invariant_p;
1563 /* The element value is equiv constant of given pseudo-register or
1564 NULL_RTX. */
1565 rtx *ira_reg_equiv_const;
1567 /* Set up the two arrays declared above. */
1568 static void
1569 find_reg_equiv_invariant_const (void)
1571 int i;
1572 bool invariant_p;
1573 rtx list, insn, note, constant, x;
1575 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1577 constant = NULL_RTX;
1578 invariant_p = false;
1579 for (list = reg_equiv_init[i]; list != NULL_RTX; list = XEXP (list, 1))
1581 insn = XEXP (list, 0);
1582 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1584 if (note == NULL_RTX)
1585 continue;
1587 x = XEXP (note, 0);
1589 if (! function_invariant_p (x)
1590 || ! flag_pic
1591 /* A function invariant is often CONSTANT_P but may
1592 include a register. We promise to only pass CONSTANT_P
1593 objects to LEGITIMATE_PIC_OPERAND_P. */
1594 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
1596 /* It can happen that a REG_EQUIV note contains a MEM
1597 that is not a legitimate memory operand. As later
1598 stages of the reload assume that all addresses found
1599 in the reg_equiv_* arrays were originally legitimate,
1600 we ignore such REG_EQUIV notes. */
1601 if (memory_operand (x, VOIDmode))
1602 invariant_p = MEM_READONLY_P (x);
1603 else if (function_invariant_p (x))
1605 if (GET_CODE (x) == PLUS
1606 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1607 invariant_p = true;
1608 else
1609 constant = x;
1613 ira_reg_equiv_invariant_p[i] = invariant_p;
1614 ira_reg_equiv_const[i] = constant;
1620 /* Vector of substitutions of register numbers,
1621 used to map pseudo regs into hardware regs.
1622 This is set up as a result of register allocation.
1623 Element N is the hard reg assigned to pseudo reg N,
1624 or is -1 if no hard reg was assigned.
1625 If N is a hard reg number, element N is N. */
1626 short *reg_renumber;
1628 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1629 the allocation found by IRA. */
1630 static void
1631 setup_reg_renumber (void)
1633 int regno, hard_regno;
1634 ira_allocno_t a;
1635 ira_allocno_iterator ai;
1637 caller_save_needed = 0;
1638 FOR_EACH_ALLOCNO (a, ai)
1640 /* There are no caps at this point. */
1641 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1642 if (! ALLOCNO_ASSIGNED_P (a))
1643 /* It can happen if A is not referenced but partially anticipated
1644 somewhere in a region. */
1645 ALLOCNO_ASSIGNED_P (a) = true;
1646 ira_free_allocno_updated_costs (a);
1647 hard_regno = ALLOCNO_HARD_REGNO (a);
1648 regno = (int) REGNO (ALLOCNO_REG (a));
1649 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1650 if (hard_regno >= 0 && ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1651 && ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1652 call_used_reg_set))
1654 ira_assert (!optimize || flag_caller_saves
1655 || regno >= ira_reg_equiv_len
1656 || ira_reg_equiv_const[regno]
1657 || ira_reg_equiv_invariant_p[regno]);
1658 caller_save_needed = 1;
1663 /* Set up allocno assignment flags for further allocation
1664 improvements. */
1665 static void
1666 setup_allocno_assignment_flags (void)
1668 int hard_regno;
1669 ira_allocno_t a;
1670 ira_allocno_iterator ai;
1672 FOR_EACH_ALLOCNO (a, ai)
1674 if (! ALLOCNO_ASSIGNED_P (a))
1675 /* It can happen if A is not referenced but partially anticipated
1676 somewhere in a region. */
1677 ira_free_allocno_updated_costs (a);
1678 hard_regno = ALLOCNO_HARD_REGNO (a);
1679 /* Don't assign hard registers to allocnos which are destination
1680 of removed store at the end of loop. It has no sense to keep
1681 the same value in different hard registers. It is also
1682 impossible to assign hard registers correctly to such
1683 allocnos because the cost info and info about intersected
1684 calls are incorrect for them. */
1685 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1686 || ALLOCNO_MEM_OPTIMIZED_DEST_P (a)
1687 || (ALLOCNO_MEMORY_COST (a)
1688 - ALLOCNO_COVER_CLASS_COST (a)) < 0);
1689 ira_assert (hard_regno < 0
1690 || ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1691 reg_class_contents
1692 [ALLOCNO_COVER_CLASS (a)]));
1696 /* Evaluate overall allocation cost and the costs for using hard
1697 registers and memory for allocnos. */
1698 static void
1699 calculate_allocation_cost (void)
1701 int hard_regno, cost;
1702 ira_allocno_t a;
1703 ira_allocno_iterator ai;
1705 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
1706 FOR_EACH_ALLOCNO (a, ai)
1708 hard_regno = ALLOCNO_HARD_REGNO (a);
1709 ira_assert (hard_regno < 0
1710 || ! ira_hard_reg_not_in_set_p
1711 (hard_regno, ALLOCNO_MODE (a),
1712 reg_class_contents[ALLOCNO_COVER_CLASS (a)]));
1713 if (hard_regno < 0)
1715 cost = ALLOCNO_MEMORY_COST (a);
1716 ira_mem_cost += cost;
1718 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1720 cost = (ALLOCNO_HARD_REG_COSTS (a)
1721 [ira_class_hard_reg_index
1722 [ALLOCNO_COVER_CLASS (a)][hard_regno]]);
1723 ira_reg_cost += cost;
1725 else
1727 cost = ALLOCNO_COVER_CLASS_COST (a);
1728 ira_reg_cost += cost;
1730 ira_overall_cost += cost;
1733 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
1735 fprintf (ira_dump_file,
1736 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
1737 ira_overall_cost, ira_reg_cost, ira_mem_cost,
1738 ira_load_cost, ira_store_cost, ira_shuffle_cost);
1739 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
1740 ira_move_loops_num, ira_additional_jumps_num);
1745 #ifdef ENABLE_IRA_CHECKING
1746 /* Check the correctness of the allocation. We do need this because
1747 of complicated code to transform more one region internal
1748 representation into one region representation. */
1749 static void
1750 check_allocation (void)
1752 ira_allocno_t a, conflict_a;
1753 int hard_regno, conflict_hard_regno, nregs, conflict_nregs;
1754 ira_allocno_conflict_iterator aci;
1755 ira_allocno_iterator ai;
1757 FOR_EACH_ALLOCNO (a, ai)
1759 if (ALLOCNO_CAP_MEMBER (a) != NULL
1760 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
1761 continue;
1762 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
1763 FOR_EACH_ALLOCNO_CONFLICT (a, conflict_a, aci)
1764 if ((conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a)) >= 0)
1766 conflict_nregs
1767 = (hard_regno_nregs
1768 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
1769 if ((conflict_hard_regno <= hard_regno
1770 && hard_regno < conflict_hard_regno + conflict_nregs)
1771 || (hard_regno <= conflict_hard_regno
1772 && conflict_hard_regno < hard_regno + nregs))
1774 fprintf (stderr, "bad allocation for %d and %d\n",
1775 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
1776 gcc_unreachable ();
1781 #endif
1783 /* Fix values of array REG_EQUIV_INIT after live range splitting done
1784 by IRA. */
1785 static void
1786 fix_reg_equiv_init (void)
1788 int max_regno = max_reg_num ();
1789 int i, new_regno;
1790 rtx x, prev, next, insn, set;
1792 if (reg_equiv_init_size < max_regno)
1794 reg_equiv_init = GGC_RESIZEVEC (rtx, reg_equiv_init, max_regno);
1795 while (reg_equiv_init_size < max_regno)
1796 reg_equiv_init[reg_equiv_init_size++] = NULL_RTX;
1797 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1798 for (prev = NULL_RTX, x = reg_equiv_init[i]; x != NULL_RTX; x = next)
1800 next = XEXP (x, 1);
1801 insn = XEXP (x, 0);
1802 set = single_set (insn);
1803 ira_assert (set != NULL_RTX
1804 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
1805 if (REG_P (SET_DEST (set))
1806 && ((int) REGNO (SET_DEST (set)) == i
1807 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
1808 new_regno = REGNO (SET_DEST (set));
1809 else if (REG_P (SET_SRC (set))
1810 && ((int) REGNO (SET_SRC (set)) == i
1811 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
1812 new_regno = REGNO (SET_SRC (set));
1813 else
1814 gcc_unreachable ();
1815 if (new_regno == i)
1816 prev = x;
1817 else
1819 if (prev == NULL_RTX)
1820 reg_equiv_init[i] = next;
1821 else
1822 XEXP (prev, 1) = next;
1823 XEXP (x, 1) = reg_equiv_init[new_regno];
1824 reg_equiv_init[new_regno] = x;
1830 #ifdef ENABLE_IRA_CHECKING
1831 /* Print redundant memory-memory copies. */
1832 static void
1833 print_redundant_copies (void)
1835 int hard_regno;
1836 ira_allocno_t a;
1837 ira_copy_t cp, next_cp;
1838 ira_allocno_iterator ai;
1840 FOR_EACH_ALLOCNO (a, ai)
1842 if (ALLOCNO_CAP_MEMBER (a) != NULL)
1843 /* It is a cap. */
1844 continue;
1845 hard_regno = ALLOCNO_HARD_REGNO (a);
1846 if (hard_regno >= 0)
1847 continue;
1848 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
1849 if (cp->first == a)
1850 next_cp = cp->next_first_allocno_copy;
1851 else
1853 next_cp = cp->next_second_allocno_copy;
1854 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
1855 && cp->insn != NULL_RTX
1856 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
1857 fprintf (ira_dump_file,
1858 " Redundant move from %d(freq %d):%d\n",
1859 INSN_UID (cp->insn), cp->freq, hard_regno);
1863 #endif
1865 /* Setup preferred and alternative classes for new pseudo-registers
1866 created by IRA starting with START. */
1867 static void
1868 setup_preferred_alternate_classes_for_new_pseudos (int start)
1870 int i, old_regno;
1871 int max_regno = max_reg_num ();
1873 for (i = start; i < max_regno; i++)
1875 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
1876 ira_assert (i != old_regno);
1877 setup_reg_classes (i, reg_preferred_class (old_regno),
1878 reg_alternate_class (old_regno),
1879 reg_cover_class (old_regno));
1880 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1881 fprintf (ira_dump_file,
1882 " New r%d: setting preferred %s, alternative %s\n",
1883 i, reg_class_names[reg_preferred_class (old_regno)],
1884 reg_class_names[reg_alternate_class (old_regno)]);
1890 /* Regional allocation can create new pseudo-registers. This function
1891 expands some arrays for pseudo-registers. */
1892 static void
1893 expand_reg_info (int old_size)
1895 int i;
1896 int size = max_reg_num ();
1898 resize_reg_info ();
1899 for (i = old_size; i < size; i++)
1900 setup_reg_classes (i, GENERAL_REGS, ALL_REGS, GENERAL_REGS);
1903 /* Return TRUE if there is too high register pressure in the function.
1904 It is used to decide when stack slot sharing is worth to do. */
1905 static bool
1906 too_high_register_pressure_p (void)
1908 int i;
1909 enum reg_class cover_class;
1911 for (i = 0; i < ira_reg_class_cover_size; i++)
1913 cover_class = ira_reg_class_cover[i];
1914 if (ira_loop_tree_root->reg_pressure[cover_class] > 10000)
1915 return true;
1917 return false;
1922 /* Indicate that hard register number FROM was eliminated and replaced with
1923 an offset from hard register number TO. The status of hard registers live
1924 at the start of a basic block is updated by replacing a use of FROM with
1925 a use of TO. */
1927 void
1928 mark_elimination (int from, int to)
1930 basic_block bb;
1932 FOR_EACH_BB (bb)
1934 /* We don't use LIVE info in IRA. */
1935 bitmap r = DF_LR_IN (bb);
1937 if (REGNO_REG_SET_P (r, from))
1939 CLEAR_REGNO_REG_SET (r, from);
1940 SET_REGNO_REG_SET (r, to);
1947 struct equivalence
1949 /* Set when a REG_EQUIV note is found or created. Use to
1950 keep track of what memory accesses might be created later,
1951 e.g. by reload. */
1952 rtx replacement;
1953 rtx *src_p;
1954 /* The list of each instruction which initializes this register. */
1955 rtx init_insns;
1956 /* Loop depth is used to recognize equivalences which appear
1957 to be present within the same loop (or in an inner loop). */
1958 int loop_depth;
1959 /* Nonzero if this had a preexisting REG_EQUIV note. */
1960 int is_arg_equivalence;
1961 /* Set when an attempt should be made to replace a register
1962 with the associated src_p entry. */
1963 char replace;
1966 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
1967 structure for that register. */
1968 static struct equivalence *reg_equiv;
1970 /* Used for communication between the following two functions: contains
1971 a MEM that we wish to ensure remains unchanged. */
1972 static rtx equiv_mem;
1974 /* Set nonzero if EQUIV_MEM is modified. */
1975 static int equiv_mem_modified;
1977 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
1978 Called via note_stores. */
1979 static void
1980 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
1981 void *data ATTRIBUTE_UNUSED)
1983 if ((REG_P (dest)
1984 && reg_overlap_mentioned_p (dest, equiv_mem))
1985 || (MEM_P (dest)
1986 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
1987 equiv_mem_modified = 1;
1990 /* Verify that no store between START and the death of REG invalidates
1991 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
1992 by storing into an overlapping memory location, or with a non-const
1993 CALL_INSN.
1995 Return 1 if MEMREF remains valid. */
1996 static int
1997 validate_equiv_mem (rtx start, rtx reg, rtx memref)
1999 rtx insn;
2000 rtx note;
2002 equiv_mem = memref;
2003 equiv_mem_modified = 0;
2005 /* If the memory reference has side effects or is volatile, it isn't a
2006 valid equivalence. */
2007 if (side_effects_p (memref))
2008 return 0;
2010 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
2012 if (! INSN_P (insn))
2013 continue;
2015 if (find_reg_note (insn, REG_DEAD, reg))
2016 return 1;
2018 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
2019 && ! RTL_CONST_OR_PURE_CALL_P (insn))
2020 return 0;
2022 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
2024 /* If a register mentioned in MEMREF is modified via an
2025 auto-increment, we lose the equivalence. Do the same if one
2026 dies; although we could extend the life, it doesn't seem worth
2027 the trouble. */
2029 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2030 if ((REG_NOTE_KIND (note) == REG_INC
2031 || REG_NOTE_KIND (note) == REG_DEAD)
2032 && REG_P (XEXP (note, 0))
2033 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
2034 return 0;
2037 return 0;
2040 /* Returns zero if X is known to be invariant. */
2041 static int
2042 equiv_init_varies_p (rtx x)
2044 RTX_CODE code = GET_CODE (x);
2045 int i;
2046 const char *fmt;
2048 switch (code)
2050 case MEM:
2051 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
2053 case CONST:
2054 case CONST_INT:
2055 case CONST_DOUBLE:
2056 case CONST_FIXED:
2057 case CONST_VECTOR:
2058 case SYMBOL_REF:
2059 case LABEL_REF:
2060 return 0;
2062 case REG:
2063 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
2065 case ASM_OPERANDS:
2066 if (MEM_VOLATILE_P (x))
2067 return 1;
2069 /* Fall through. */
2071 default:
2072 break;
2075 fmt = GET_RTX_FORMAT (code);
2076 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2077 if (fmt[i] == 'e')
2079 if (equiv_init_varies_p (XEXP (x, i)))
2080 return 1;
2082 else if (fmt[i] == 'E')
2084 int j;
2085 for (j = 0; j < XVECLEN (x, i); j++)
2086 if (equiv_init_varies_p (XVECEXP (x, i, j)))
2087 return 1;
2090 return 0;
2093 /* Returns nonzero if X (used to initialize register REGNO) is movable.
2094 X is only movable if the registers it uses have equivalent initializations
2095 which appear to be within the same loop (or in an inner loop) and movable
2096 or if they are not candidates for local_alloc and don't vary. */
2097 static int
2098 equiv_init_movable_p (rtx x, int regno)
2100 int i, j;
2101 const char *fmt;
2102 enum rtx_code code = GET_CODE (x);
2104 switch (code)
2106 case SET:
2107 return equiv_init_movable_p (SET_SRC (x), regno);
2109 case CC0:
2110 case CLOBBER:
2111 return 0;
2113 case PRE_INC:
2114 case PRE_DEC:
2115 case POST_INC:
2116 case POST_DEC:
2117 case PRE_MODIFY:
2118 case POST_MODIFY:
2119 return 0;
2121 case REG:
2122 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2123 && reg_equiv[REGNO (x)].replace)
2124 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0));
2126 case UNSPEC_VOLATILE:
2127 return 0;
2129 case ASM_OPERANDS:
2130 if (MEM_VOLATILE_P (x))
2131 return 0;
2133 /* Fall through. */
2135 default:
2136 break;
2139 fmt = GET_RTX_FORMAT (code);
2140 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2141 switch (fmt[i])
2143 case 'e':
2144 if (! equiv_init_movable_p (XEXP (x, i), regno))
2145 return 0;
2146 break;
2147 case 'E':
2148 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2149 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2150 return 0;
2151 break;
2154 return 1;
2157 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
2158 static int
2159 contains_replace_regs (rtx x)
2161 int i, j;
2162 const char *fmt;
2163 enum rtx_code code = GET_CODE (x);
2165 switch (code)
2167 case CONST_INT:
2168 case CONST:
2169 case LABEL_REF:
2170 case SYMBOL_REF:
2171 case CONST_DOUBLE:
2172 case CONST_FIXED:
2173 case CONST_VECTOR:
2174 case PC:
2175 case CC0:
2176 case HIGH:
2177 return 0;
2179 case REG:
2180 return reg_equiv[REGNO (x)].replace;
2182 default:
2183 break;
2186 fmt = GET_RTX_FORMAT (code);
2187 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2188 switch (fmt[i])
2190 case 'e':
2191 if (contains_replace_regs (XEXP (x, i)))
2192 return 1;
2193 break;
2194 case 'E':
2195 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2196 if (contains_replace_regs (XVECEXP (x, i, j)))
2197 return 1;
2198 break;
2201 return 0;
2204 /* TRUE if X references a memory location that would be affected by a store
2205 to MEMREF. */
2206 static int
2207 memref_referenced_p (rtx memref, rtx x)
2209 int i, j;
2210 const char *fmt;
2211 enum rtx_code code = GET_CODE (x);
2213 switch (code)
2215 case CONST_INT:
2216 case CONST:
2217 case LABEL_REF:
2218 case SYMBOL_REF:
2219 case CONST_DOUBLE:
2220 case CONST_FIXED:
2221 case CONST_VECTOR:
2222 case PC:
2223 case CC0:
2224 case HIGH:
2225 case LO_SUM:
2226 return 0;
2228 case REG:
2229 return (reg_equiv[REGNO (x)].replacement
2230 && memref_referenced_p (memref,
2231 reg_equiv[REGNO (x)].replacement));
2233 case MEM:
2234 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
2235 return 1;
2236 break;
2238 case SET:
2239 /* If we are setting a MEM, it doesn't count (its address does), but any
2240 other SET_DEST that has a MEM in it is referencing the MEM. */
2241 if (MEM_P (SET_DEST (x)))
2243 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2244 return 1;
2246 else if (memref_referenced_p (memref, SET_DEST (x)))
2247 return 1;
2249 return memref_referenced_p (memref, SET_SRC (x));
2251 default:
2252 break;
2255 fmt = GET_RTX_FORMAT (code);
2256 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2257 switch (fmt[i])
2259 case 'e':
2260 if (memref_referenced_p (memref, XEXP (x, i)))
2261 return 1;
2262 break;
2263 case 'E':
2264 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2265 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2266 return 1;
2267 break;
2270 return 0;
2273 /* TRUE if some insn in the range (START, END] references a memory location
2274 that would be affected by a store to MEMREF. */
2275 static int
2276 memref_used_between_p (rtx memref, rtx start, rtx end)
2278 rtx insn;
2280 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2281 insn = NEXT_INSN (insn))
2283 if (!NONDEBUG_INSN_P (insn))
2284 continue;
2286 if (memref_referenced_p (memref, PATTERN (insn)))
2287 return 1;
2289 /* Nonconst functions may access memory. */
2290 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2291 return 1;
2294 return 0;
2297 /* Mark REG as having no known equivalence.
2298 Some instructions might have been processed before and furnished
2299 with REG_EQUIV notes for this register; these notes will have to be
2300 removed.
2301 STORE is the piece of RTL that does the non-constant / conflicting
2302 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2303 but needs to be there because this function is called from note_stores. */
2304 static void
2305 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
2307 int regno;
2308 rtx list;
2310 if (!REG_P (reg))
2311 return;
2312 regno = REGNO (reg);
2313 list = reg_equiv[regno].init_insns;
2314 if (list == const0_rtx)
2315 return;
2316 reg_equiv[regno].init_insns = const0_rtx;
2317 reg_equiv[regno].replacement = NULL_RTX;
2318 /* This doesn't matter for equivalences made for argument registers, we
2319 should keep their initialization insns. */
2320 if (reg_equiv[regno].is_arg_equivalence)
2321 return;
2322 reg_equiv_init[regno] = NULL_RTX;
2323 for (; list; list = XEXP (list, 1))
2325 rtx insn = XEXP (list, 0);
2326 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2330 /* In DEBUG_INSN location adjust REGs from CLEARED_REGS bitmap to the
2331 equivalent replacement. */
2333 static rtx
2334 adjust_cleared_regs (rtx loc, const_rtx old_rtx ATTRIBUTE_UNUSED, void *data)
2336 if (REG_P (loc))
2338 bitmap cleared_regs = (bitmap) data;
2339 if (bitmap_bit_p (cleared_regs, REGNO (loc)))
2340 return simplify_replace_fn_rtx (*reg_equiv[REGNO (loc)].src_p,
2341 NULL_RTX, adjust_cleared_regs, data);
2343 return NULL_RTX;
2346 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
2347 static int recorded_label_ref;
2349 /* Find registers that are equivalent to a single value throughout the
2350 compilation (either because they can be referenced in memory or are set once
2351 from a single constant). Lower their priority for a register.
2353 If such a register is only referenced once, try substituting its value
2354 into the using insn. If it succeeds, we can eliminate the register
2355 completely.
2357 Initialize the REG_EQUIV_INIT array of initializing insns.
2359 Return non-zero if jump label rebuilding should be done. */
2360 static int
2361 update_equiv_regs (void)
2363 rtx insn;
2364 basic_block bb;
2365 int loop_depth;
2366 bitmap cleared_regs;
2368 /* We need to keep track of whether or not we recorded a LABEL_REF so
2369 that we know if the jump optimizer needs to be rerun. */
2370 recorded_label_ref = 0;
2372 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2373 reg_equiv_init = ggc_alloc_cleared_vec_rtx (max_regno);
2374 reg_equiv_init_size = max_regno;
2376 init_alias_analysis ();
2378 /* Scan the insns and find which registers have equivalences. Do this
2379 in a separate scan of the insns because (due to -fcse-follow-jumps)
2380 a register can be set below its use. */
2381 FOR_EACH_BB (bb)
2383 loop_depth = bb->loop_depth;
2385 for (insn = BB_HEAD (bb);
2386 insn != NEXT_INSN (BB_END (bb));
2387 insn = NEXT_INSN (insn))
2389 rtx note;
2390 rtx set;
2391 rtx dest, src;
2392 int regno;
2394 if (! INSN_P (insn))
2395 continue;
2397 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2398 if (REG_NOTE_KIND (note) == REG_INC)
2399 no_equiv (XEXP (note, 0), note, NULL);
2401 set = single_set (insn);
2403 /* If this insn contains more (or less) than a single SET,
2404 only mark all destinations as having no known equivalence. */
2405 if (set == 0)
2407 note_stores (PATTERN (insn), no_equiv, NULL);
2408 continue;
2410 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2412 int i;
2414 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2416 rtx part = XVECEXP (PATTERN (insn), 0, i);
2417 if (part != set)
2418 note_stores (part, no_equiv, NULL);
2422 dest = SET_DEST (set);
2423 src = SET_SRC (set);
2425 /* See if this is setting up the equivalence between an argument
2426 register and its stack slot. */
2427 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2428 if (note)
2430 gcc_assert (REG_P (dest));
2431 regno = REGNO (dest);
2433 /* Note that we don't want to clear reg_equiv_init even if there
2434 are multiple sets of this register. */
2435 reg_equiv[regno].is_arg_equivalence = 1;
2437 /* Record for reload that this is an equivalencing insn. */
2438 if (rtx_equal_p (src, XEXP (note, 0)))
2439 reg_equiv_init[regno]
2440 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2442 /* Continue normally in case this is a candidate for
2443 replacements. */
2446 if (!optimize)
2447 continue;
2449 /* We only handle the case of a pseudo register being set
2450 once, or always to the same value. */
2451 /* ??? The mn10200 port breaks if we add equivalences for
2452 values that need an ADDRESS_REGS register and set them equivalent
2453 to a MEM of a pseudo. The actual problem is in the over-conservative
2454 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2455 calculate_needs, but we traditionally work around this problem
2456 here by rejecting equivalences when the destination is in a register
2457 that's likely spilled. This is fragile, of course, since the
2458 preferred class of a pseudo depends on all instructions that set
2459 or use it. */
2461 if (!REG_P (dest)
2462 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
2463 || reg_equiv[regno].init_insns == const0_rtx
2464 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
2465 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2467 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2468 also set somewhere else to a constant. */
2469 note_stores (set, no_equiv, NULL);
2470 continue;
2473 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2475 /* cse sometimes generates function invariants, but doesn't put a
2476 REG_EQUAL note on the insn. Since this note would be redundant,
2477 there's no point creating it earlier than here. */
2478 if (! note && ! rtx_varies_p (src, 0))
2479 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2481 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2482 since it represents a function call */
2483 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2484 note = NULL_RTX;
2486 if (DF_REG_DEF_COUNT (regno) != 1
2487 && (! note
2488 || rtx_varies_p (XEXP (note, 0), 0)
2489 || (reg_equiv[regno].replacement
2490 && ! rtx_equal_p (XEXP (note, 0),
2491 reg_equiv[regno].replacement))))
2493 no_equiv (dest, set, NULL);
2494 continue;
2496 /* Record this insn as initializing this register. */
2497 reg_equiv[regno].init_insns
2498 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2500 /* If this register is known to be equal to a constant, record that
2501 it is always equivalent to the constant. */
2502 if (DF_REG_DEF_COUNT (regno) == 1
2503 && note && ! rtx_varies_p (XEXP (note, 0), 0))
2505 rtx note_value = XEXP (note, 0);
2506 remove_note (insn, note);
2507 set_unique_reg_note (insn, REG_EQUIV, note_value);
2510 /* If this insn introduces a "constant" register, decrease the priority
2511 of that register. Record this insn if the register is only used once
2512 more and the equivalence value is the same as our source.
2514 The latter condition is checked for two reasons: First, it is an
2515 indication that it may be more efficient to actually emit the insn
2516 as written (if no registers are available, reload will substitute
2517 the equivalence). Secondly, it avoids problems with any registers
2518 dying in this insn whose death notes would be missed.
2520 If we don't have a REG_EQUIV note, see if this insn is loading
2521 a register used only in one basic block from a MEM. If so, and the
2522 MEM remains unchanged for the life of the register, add a REG_EQUIV
2523 note. */
2525 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2527 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2528 && MEM_P (SET_SRC (set))
2529 && validate_equiv_mem (insn, dest, SET_SRC (set)))
2530 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2532 if (note)
2534 int regno = REGNO (dest);
2535 rtx x = XEXP (note, 0);
2537 /* If we haven't done so, record for reload that this is an
2538 equivalencing insn. */
2539 if (!reg_equiv[regno].is_arg_equivalence)
2540 reg_equiv_init[regno]
2541 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2543 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2544 We might end up substituting the LABEL_REF for uses of the
2545 pseudo here or later. That kind of transformation may turn an
2546 indirect jump into a direct jump, in which case we must rerun the
2547 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
2548 if (GET_CODE (x) == LABEL_REF
2549 || (GET_CODE (x) == CONST
2550 && GET_CODE (XEXP (x, 0)) == PLUS
2551 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2552 recorded_label_ref = 1;
2554 reg_equiv[regno].replacement = x;
2555 reg_equiv[regno].src_p = &SET_SRC (set);
2556 reg_equiv[regno].loop_depth = loop_depth;
2558 /* Don't mess with things live during setjmp. */
2559 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
2561 /* Note that the statement below does not affect the priority
2562 in local-alloc! */
2563 REG_LIVE_LENGTH (regno) *= 2;
2565 /* If the register is referenced exactly twice, meaning it is
2566 set once and used once, indicate that the reference may be
2567 replaced by the equivalence we computed above. Do this
2568 even if the register is only used in one block so that
2569 dependencies can be handled where the last register is
2570 used in a different block (i.e. HIGH / LO_SUM sequences)
2571 and to reduce the number of registers alive across
2572 calls. */
2574 if (REG_N_REFS (regno) == 2
2575 && (rtx_equal_p (x, src)
2576 || ! equiv_init_varies_p (src))
2577 && NONJUMP_INSN_P (insn)
2578 && equiv_init_movable_p (PATTERN (insn), regno))
2579 reg_equiv[regno].replace = 1;
2585 if (!optimize)
2586 goto out;
2588 /* A second pass, to gather additional equivalences with memory. This needs
2589 to be done after we know which registers we are going to replace. */
2591 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2593 rtx set, src, dest;
2594 unsigned regno;
2596 if (! INSN_P (insn))
2597 continue;
2599 set = single_set (insn);
2600 if (! set)
2601 continue;
2603 dest = SET_DEST (set);
2604 src = SET_SRC (set);
2606 /* If this sets a MEM to the contents of a REG that is only used
2607 in a single basic block, see if the register is always equivalent
2608 to that memory location and if moving the store from INSN to the
2609 insn that set REG is safe. If so, put a REG_EQUIV note on the
2610 initializing insn.
2612 Don't add a REG_EQUIV note if the insn already has one. The existing
2613 REG_EQUIV is likely more useful than the one we are adding.
2615 If one of the regs in the address has reg_equiv[REGNO].replace set,
2616 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
2617 optimization may move the set of this register immediately before
2618 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
2619 the mention in the REG_EQUIV note would be to an uninitialized
2620 pseudo. */
2622 if (MEM_P (dest) && REG_P (src)
2623 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
2624 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2625 && DF_REG_DEF_COUNT (regno) == 1
2626 && reg_equiv[regno].init_insns != 0
2627 && reg_equiv[regno].init_insns != const0_rtx
2628 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
2629 REG_EQUIV, NULL_RTX)
2630 && ! contains_replace_regs (XEXP (dest, 0)))
2632 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
2633 if (validate_equiv_mem (init_insn, src, dest)
2634 && ! memref_used_between_p (dest, init_insn, insn)
2635 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
2636 multiple sets. */
2637 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2639 /* This insn makes the equivalence, not the one initializing
2640 the register. */
2641 reg_equiv_init[regno]
2642 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
2643 df_notes_rescan (init_insn);
2648 cleared_regs = BITMAP_ALLOC (NULL);
2649 /* Now scan all regs killed in an insn to see if any of them are
2650 registers only used that once. If so, see if we can replace the
2651 reference with the equivalent form. If we can, delete the
2652 initializing reference and this register will go away. If we
2653 can't replace the reference, and the initializing reference is
2654 within the same loop (or in an inner loop), then move the register
2655 initialization just before the use, so that they are in the same
2656 basic block. */
2657 FOR_EACH_BB_REVERSE (bb)
2659 loop_depth = bb->loop_depth;
2660 for (insn = BB_END (bb);
2661 insn != PREV_INSN (BB_HEAD (bb));
2662 insn = PREV_INSN (insn))
2664 rtx link;
2666 if (! INSN_P (insn))
2667 continue;
2669 /* Don't substitute into a non-local goto, this confuses CFG. */
2670 if (JUMP_P (insn)
2671 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2672 continue;
2674 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2676 if (REG_NOTE_KIND (link) == REG_DEAD
2677 /* Make sure this insn still refers to the register. */
2678 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
2680 int regno = REGNO (XEXP (link, 0));
2681 rtx equiv_insn;
2683 if (! reg_equiv[regno].replace
2684 || reg_equiv[regno].loop_depth < loop_depth)
2685 continue;
2687 /* reg_equiv[REGNO].replace gets set only when
2688 REG_N_REFS[REGNO] is 2, i.e. the register is set
2689 once and used once. (If it were only set, but not used,
2690 flow would have deleted the setting insns.) Hence
2691 there can only be one insn in reg_equiv[REGNO].init_insns. */
2692 gcc_assert (reg_equiv[regno].init_insns
2693 && !XEXP (reg_equiv[regno].init_insns, 1));
2694 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
2696 /* We may not move instructions that can throw, since
2697 that changes basic block boundaries and we are not
2698 prepared to adjust the CFG to match. */
2699 if (can_throw_internal (equiv_insn))
2700 continue;
2702 if (asm_noperands (PATTERN (equiv_insn)) < 0
2703 && validate_replace_rtx (regno_reg_rtx[regno],
2704 *(reg_equiv[regno].src_p), insn))
2706 rtx equiv_link;
2707 rtx last_link;
2708 rtx note;
2710 /* Find the last note. */
2711 for (last_link = link; XEXP (last_link, 1);
2712 last_link = XEXP (last_link, 1))
2715 /* Append the REG_DEAD notes from equiv_insn. */
2716 equiv_link = REG_NOTES (equiv_insn);
2717 while (equiv_link)
2719 note = equiv_link;
2720 equiv_link = XEXP (equiv_link, 1);
2721 if (REG_NOTE_KIND (note) == REG_DEAD)
2723 remove_note (equiv_insn, note);
2724 XEXP (last_link, 1) = note;
2725 XEXP (note, 1) = NULL_RTX;
2726 last_link = note;
2730 remove_death (regno, insn);
2731 SET_REG_N_REFS (regno, 0);
2732 REG_FREQ (regno) = 0;
2733 delete_insn (equiv_insn);
2735 reg_equiv[regno].init_insns
2736 = XEXP (reg_equiv[regno].init_insns, 1);
2738 reg_equiv_init[regno] = NULL_RTX;
2739 bitmap_set_bit (cleared_regs, regno);
2741 /* Move the initialization of the register to just before
2742 INSN. Update the flow information. */
2743 else if (prev_nondebug_insn (insn) != equiv_insn)
2745 rtx new_insn;
2747 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
2748 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
2749 REG_NOTES (equiv_insn) = 0;
2750 /* Rescan it to process the notes. */
2751 df_insn_rescan (new_insn);
2753 /* Make sure this insn is recognized before
2754 reload begins, otherwise
2755 eliminate_regs_in_insn will die. */
2756 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
2758 delete_insn (equiv_insn);
2760 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
2762 REG_BASIC_BLOCK (regno) = bb->index;
2763 REG_N_CALLS_CROSSED (regno) = 0;
2764 REG_FREQ_CALLS_CROSSED (regno) = 0;
2765 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
2766 REG_LIVE_LENGTH (regno) = 2;
2768 if (insn == BB_HEAD (bb))
2769 BB_HEAD (bb) = PREV_INSN (insn);
2771 reg_equiv_init[regno]
2772 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
2773 bitmap_set_bit (cleared_regs, regno);
2780 if (!bitmap_empty_p (cleared_regs))
2782 FOR_EACH_BB (bb)
2784 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
2785 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
2786 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
2787 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
2790 /* Last pass - adjust debug insns referencing cleared regs. */
2791 if (MAY_HAVE_DEBUG_INSNS)
2792 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2793 if (DEBUG_INSN_P (insn))
2795 rtx old_loc = INSN_VAR_LOCATION_LOC (insn);
2796 INSN_VAR_LOCATION_LOC (insn)
2797 = simplify_replace_fn_rtx (old_loc, NULL_RTX,
2798 adjust_cleared_regs,
2799 (void *) cleared_regs);
2800 if (old_loc != INSN_VAR_LOCATION_LOC (insn))
2801 df_insn_rescan (insn);
2805 BITMAP_FREE (cleared_regs);
2807 out:
2808 /* Clean up. */
2810 end_alias_analysis ();
2811 free (reg_equiv);
2812 return recorded_label_ref;
2817 /* Print chain C to FILE. */
2818 static void
2819 print_insn_chain (FILE *file, struct insn_chain *c)
2821 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
2822 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
2823 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
2827 /* Print all reload_insn_chains to FILE. */
2828 static void
2829 print_insn_chains (FILE *file)
2831 struct insn_chain *c;
2832 for (c = reload_insn_chain; c ; c = c->next)
2833 print_insn_chain (file, c);
2836 /* Return true if pseudo REGNO should be added to set live_throughout
2837 or dead_or_set of the insn chains for reload consideration. */
2838 static bool
2839 pseudo_for_reload_consideration_p (int regno)
2841 /* Consider spilled pseudos too for IRA because they still have a
2842 chance to get hard-registers in the reload when IRA is used. */
2843 return (reg_renumber[regno] >= 0
2844 || (ira_conflicts_p && flag_ira_share_spill_slots));
2847 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
2848 REG to the number of nregs, and INIT_VALUE to get the
2849 initialization. ALLOCNUM need not be the regno of REG. */
2850 static void
2851 init_live_subregs (bool init_value, sbitmap *live_subregs,
2852 int *live_subregs_used, int allocnum, rtx reg)
2854 unsigned int regno = REGNO (SUBREG_REG (reg));
2855 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
2857 gcc_assert (size > 0);
2859 /* Been there, done that. */
2860 if (live_subregs_used[allocnum])
2861 return;
2863 /* Create a new one with zeros. */
2864 if (live_subregs[allocnum] == NULL)
2865 live_subregs[allocnum] = sbitmap_alloc (size);
2867 /* If the entire reg was live before blasting into subregs, we need
2868 to init all of the subregs to ones else init to 0. */
2869 if (init_value)
2870 sbitmap_ones (live_subregs[allocnum]);
2871 else
2872 sbitmap_zero (live_subregs[allocnum]);
2874 /* Set the number of bits that we really want. */
2875 live_subregs_used[allocnum] = size;
2878 /* Walk the insns of the current function and build reload_insn_chain,
2879 and record register life information. */
2880 static void
2881 build_insn_chain (void)
2883 unsigned int i;
2884 struct insn_chain **p = &reload_insn_chain;
2885 basic_block bb;
2886 struct insn_chain *c = NULL;
2887 struct insn_chain *next = NULL;
2888 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
2889 bitmap elim_regset = BITMAP_ALLOC (NULL);
2890 /* live_subregs is a vector used to keep accurate information about
2891 which hardregs are live in multiword pseudos. live_subregs and
2892 live_subregs_used are indexed by pseudo number. The live_subreg
2893 entry for a particular pseudo is only used if the corresponding
2894 element is non zero in live_subregs_used. The value in
2895 live_subregs_used is number of bytes that the pseudo can
2896 occupy. */
2897 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
2898 int *live_subregs_used = XNEWVEC (int, max_regno);
2900 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2901 if (TEST_HARD_REG_BIT (eliminable_regset, i))
2902 bitmap_set_bit (elim_regset, i);
2903 FOR_EACH_BB_REVERSE (bb)
2905 bitmap_iterator bi;
2906 rtx insn;
2908 CLEAR_REG_SET (live_relevant_regs);
2909 memset (live_subregs_used, 0, max_regno * sizeof (int));
2911 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb), 0, i, bi)
2913 if (i >= FIRST_PSEUDO_REGISTER)
2914 break;
2915 bitmap_set_bit (live_relevant_regs, i);
2918 EXECUTE_IF_SET_IN_BITMAP (DF_LR_OUT (bb),
2919 FIRST_PSEUDO_REGISTER, i, bi)
2921 if (pseudo_for_reload_consideration_p (i))
2922 bitmap_set_bit (live_relevant_regs, i);
2925 FOR_BB_INSNS_REVERSE (bb, insn)
2927 if (!NOTE_P (insn) && !BARRIER_P (insn))
2929 unsigned int uid = INSN_UID (insn);
2930 df_ref *def_rec;
2931 df_ref *use_rec;
2933 c = new_insn_chain ();
2934 c->next = next;
2935 next = c;
2936 *p = c;
2937 p = &c->prev;
2939 c->insn = insn;
2940 c->block = bb->index;
2942 if (INSN_P (insn))
2943 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
2945 df_ref def = *def_rec;
2946 unsigned int regno = DF_REF_REGNO (def);
2948 /* Ignore may clobbers because these are generated
2949 from calls. However, every other kind of def is
2950 added to dead_or_set. */
2951 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2953 if (regno < FIRST_PSEUDO_REGISTER)
2955 if (!fixed_regs[regno])
2956 bitmap_set_bit (&c->dead_or_set, regno);
2958 else if (pseudo_for_reload_consideration_p (regno))
2959 bitmap_set_bit (&c->dead_or_set, regno);
2962 if ((regno < FIRST_PSEUDO_REGISTER
2963 || reg_renumber[regno] >= 0
2964 || ira_conflicts_p)
2965 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
2967 rtx reg = DF_REF_REG (def);
2969 /* We can model subregs, but not if they are
2970 wrapped in ZERO_EXTRACTS. */
2971 if (GET_CODE (reg) == SUBREG
2972 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
2974 unsigned int start = SUBREG_BYTE (reg);
2975 unsigned int last = start
2976 + GET_MODE_SIZE (GET_MODE (reg));
2978 init_live_subregs
2979 (bitmap_bit_p (live_relevant_regs, regno),
2980 live_subregs, live_subregs_used, regno, reg);
2982 if (!DF_REF_FLAGS_IS_SET
2983 (def, DF_REF_STRICT_LOW_PART))
2985 /* Expand the range to cover entire words.
2986 Bytes added here are "don't care". */
2987 start
2988 = start / UNITS_PER_WORD * UNITS_PER_WORD;
2989 last = ((last + UNITS_PER_WORD - 1)
2990 / UNITS_PER_WORD * UNITS_PER_WORD);
2993 /* Ignore the paradoxical bits. */
2994 if ((int)last > live_subregs_used[regno])
2995 last = live_subregs_used[regno];
2997 while (start < last)
2999 RESET_BIT (live_subregs[regno], start);
3000 start++;
3003 if (sbitmap_empty_p (live_subregs[regno]))
3005 live_subregs_used[regno] = 0;
3006 bitmap_clear_bit (live_relevant_regs, regno);
3008 else
3009 /* Set live_relevant_regs here because
3010 that bit has to be true to get us to
3011 look at the live_subregs fields. */
3012 bitmap_set_bit (live_relevant_regs, regno);
3014 else
3016 /* DF_REF_PARTIAL is generated for
3017 subregs, STRICT_LOW_PART, and
3018 ZERO_EXTRACT. We handle the subreg
3019 case above so here we have to keep from
3020 modeling the def as a killing def. */
3021 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
3023 bitmap_clear_bit (live_relevant_regs, regno);
3024 live_subregs_used[regno] = 0;
3030 bitmap_and_compl_into (live_relevant_regs, elim_regset);
3031 bitmap_copy (&c->live_throughout, live_relevant_regs);
3033 if (INSN_P (insn))
3034 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
3036 df_ref use = *use_rec;
3037 unsigned int regno = DF_REF_REGNO (use);
3038 rtx reg = DF_REF_REG (use);
3040 /* DF_REF_READ_WRITE on a use means that this use
3041 is fabricated from a def that is a partial set
3042 to a multiword reg. Here, we only model the
3043 subreg case that is not wrapped in ZERO_EXTRACT
3044 precisely so we do not need to look at the
3045 fabricated use. */
3046 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
3047 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
3048 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
3049 continue;
3051 /* Add the last use of each var to dead_or_set. */
3052 if (!bitmap_bit_p (live_relevant_regs, regno))
3054 if (regno < FIRST_PSEUDO_REGISTER)
3056 if (!fixed_regs[regno])
3057 bitmap_set_bit (&c->dead_or_set, regno);
3059 else if (pseudo_for_reload_consideration_p (regno))
3060 bitmap_set_bit (&c->dead_or_set, regno);
3063 if (regno < FIRST_PSEUDO_REGISTER
3064 || pseudo_for_reload_consideration_p (regno))
3066 if (GET_CODE (reg) == SUBREG
3067 && !DF_REF_FLAGS_IS_SET (use,
3068 DF_REF_SIGN_EXTRACT
3069 | DF_REF_ZERO_EXTRACT))
3071 unsigned int start = SUBREG_BYTE (reg);
3072 unsigned int last = start
3073 + GET_MODE_SIZE (GET_MODE (reg));
3075 init_live_subregs
3076 (bitmap_bit_p (live_relevant_regs, regno),
3077 live_subregs, live_subregs_used, regno, reg);
3079 /* Ignore the paradoxical bits. */
3080 if ((int)last > live_subregs_used[regno])
3081 last = live_subregs_used[regno];
3083 while (start < last)
3085 SET_BIT (live_subregs[regno], start);
3086 start++;
3089 else
3090 /* Resetting the live_subregs_used is
3091 effectively saying do not use the subregs
3092 because we are reading the whole
3093 pseudo. */
3094 live_subregs_used[regno] = 0;
3095 bitmap_set_bit (live_relevant_regs, regno);
3101 /* FIXME!! The following code is a disaster. Reload needs to see the
3102 labels and jump tables that are just hanging out in between
3103 the basic blocks. See pr33676. */
3104 insn = BB_HEAD (bb);
3106 /* Skip over the barriers and cruft. */
3107 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
3108 || BLOCK_FOR_INSN (insn) == bb))
3109 insn = PREV_INSN (insn);
3111 /* While we add anything except barriers and notes, the focus is
3112 to get the labels and jump tables into the
3113 reload_insn_chain. */
3114 while (insn)
3116 if (!NOTE_P (insn) && !BARRIER_P (insn))
3118 if (BLOCK_FOR_INSN (insn))
3119 break;
3121 c = new_insn_chain ();
3122 c->next = next;
3123 next = c;
3124 *p = c;
3125 p = &c->prev;
3127 /* The block makes no sense here, but it is what the old
3128 code did. */
3129 c->block = bb->index;
3130 c->insn = insn;
3131 bitmap_copy (&c->live_throughout, live_relevant_regs);
3133 insn = PREV_INSN (insn);
3137 for (i = 0; i < (unsigned int) max_regno; i++)
3138 if (live_subregs[i])
3139 free (live_subregs[i]);
3141 reload_insn_chain = c;
3142 *p = NULL;
3144 free (live_subregs);
3145 free (live_subregs_used);
3146 BITMAP_FREE (live_relevant_regs);
3147 BITMAP_FREE (elim_regset);
3149 if (dump_file)
3150 print_insn_chains (dump_file);
3153 /* Allocate memory for reg_equiv_memory_loc. */
3154 static void
3155 init_reg_equiv_memory_loc (void)
3157 max_regno = max_reg_num ();
3159 /* And the reg_equiv_memory_loc array. */
3160 VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
3161 memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
3162 sizeof (rtx) * max_regno);
3163 reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
3166 /* All natural loops. */
3167 struct loops ira_loops;
3169 /* True if we have allocno conflicts. It is false for non-optimized
3170 mode or when the conflict table is too big. */
3171 bool ira_conflicts_p;
3173 /* This is the main entry of IRA. */
3174 static void
3175 ira (FILE *f)
3177 int overall_cost_before, allocated_reg_info_size;
3178 bool loops_p;
3179 int max_regno_before_ira, ira_max_point_before_emit;
3180 int rebuild_p;
3181 int saved_flag_ira_share_spill_slots;
3182 basic_block bb;
3184 timevar_push (TV_IRA);
3186 if (flag_caller_saves)
3187 init_caller_save ();
3189 if (flag_ira_verbose < 10)
3191 internal_flag_ira_verbose = flag_ira_verbose;
3192 ira_dump_file = f;
3194 else
3196 internal_flag_ira_verbose = flag_ira_verbose - 10;
3197 ira_dump_file = stderr;
3200 ira_conflicts_p = optimize > 0;
3201 setup_prohibited_mode_move_regs ();
3203 df_note_add_problem ();
3205 if (optimize == 1)
3207 df_live_add_problem ();
3208 df_live_set_all_dirty ();
3210 #ifdef ENABLE_CHECKING
3211 df->changeable_flags |= DF_VERIFY_SCHEDULED;
3212 #endif
3213 df_analyze ();
3214 df_clear_flags (DF_NO_INSN_RESCAN);
3215 regstat_init_n_sets_and_refs ();
3216 regstat_compute_ri ();
3218 /* If we are not optimizing, then this is the only place before
3219 register allocation where dataflow is done. And that is needed
3220 to generate these warnings. */
3221 if (warn_clobbered)
3222 generate_setjmp_warnings ();
3224 /* Determine if the current function is a leaf before running IRA
3225 since this can impact optimizations done by the prologue and
3226 epilogue thus changing register elimination offsets. */
3227 current_function_is_leaf = leaf_function_p ();
3229 if (resize_reg_info () && flag_ira_loop_pressure)
3230 ira_set_pseudo_classes (ira_dump_file);
3232 rebuild_p = update_equiv_regs ();
3234 #ifndef IRA_NO_OBSTACK
3235 gcc_obstack_init (&ira_obstack);
3236 #endif
3237 bitmap_obstack_initialize (&ira_bitmap_obstack);
3238 if (optimize)
3240 max_regno = max_reg_num ();
3241 ira_reg_equiv_len = max_regno;
3242 ira_reg_equiv_invariant_p
3243 = (bool *) ira_allocate (max_regno * sizeof (bool));
3244 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
3245 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
3246 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
3247 find_reg_equiv_invariant_const ();
3248 if (rebuild_p)
3250 timevar_push (TV_JUMP);
3251 rebuild_jump_labels (get_insns ());
3252 purge_all_dead_edges ();
3253 timevar_pop (TV_JUMP);
3257 max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
3258 ira_setup_eliminable_regset ();
3260 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
3261 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
3262 ira_move_loops_num = ira_additional_jumps_num = 0;
3264 ira_assert (current_loops == NULL);
3265 flow_loops_find (&ira_loops);
3266 record_loop_exits ();
3267 current_loops = &ira_loops;
3269 init_reg_equiv_memory_loc ();
3271 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3272 fprintf (ira_dump_file, "Building IRA IR\n");
3273 loops_p = ira_build (optimize
3274 && (flag_ira_region == IRA_REGION_ALL
3275 || flag_ira_region == IRA_REGION_MIXED));
3277 ira_assert (ira_conflicts_p || !loops_p);
3279 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
3280 if (too_high_register_pressure_p ())
3281 /* It is just wasting compiler's time to pack spilled pseudos into
3282 stack slots in this case -- prohibit it. */
3283 flag_ira_share_spill_slots = FALSE;
3285 ira_color ();
3287 ira_max_point_before_emit = ira_max_point;
3289 ira_emit (loops_p);
3291 if (ira_conflicts_p)
3293 max_regno = max_reg_num ();
3295 if (! loops_p)
3296 ira_initiate_assign ();
3297 else
3299 expand_reg_info (allocated_reg_info_size);
3300 setup_preferred_alternate_classes_for_new_pseudos
3301 (allocated_reg_info_size);
3302 allocated_reg_info_size = max_regno;
3304 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3305 fprintf (ira_dump_file, "Flattening IR\n");
3306 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
3307 /* New insns were generated: add notes and recalculate live
3308 info. */
3309 df_analyze ();
3311 flow_loops_find (&ira_loops);
3312 record_loop_exits ();
3313 current_loops = &ira_loops;
3315 setup_allocno_assignment_flags ();
3316 ira_initiate_assign ();
3317 ira_reassign_conflict_allocnos (max_regno);
3321 setup_reg_renumber ();
3323 calculate_allocation_cost ();
3325 #ifdef ENABLE_IRA_CHECKING
3326 if (ira_conflicts_p)
3327 check_allocation ();
3328 #endif
3330 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3332 init_reg_equiv_memory_loc ();
3334 if (max_regno != max_regno_before_ira)
3336 regstat_free_n_sets_and_refs ();
3337 regstat_free_ri ();
3338 regstat_init_n_sets_and_refs ();
3339 regstat_compute_ri ();
3342 allocate_initial_values (reg_equiv_memory_loc);
3344 overall_cost_before = ira_overall_cost;
3345 if (ira_conflicts_p)
3347 fix_reg_equiv_init ();
3349 #ifdef ENABLE_IRA_CHECKING
3350 print_redundant_copies ();
3351 #endif
3353 ira_spilled_reg_stack_slots_num = 0;
3354 ira_spilled_reg_stack_slots
3355 = ((struct ira_spilled_reg_stack_slot *)
3356 ira_allocate (max_regno
3357 * sizeof (struct ira_spilled_reg_stack_slot)));
3358 memset (ira_spilled_reg_stack_slots, 0,
3359 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
3362 timevar_pop (TV_IRA);
3364 timevar_push (TV_RELOAD);
3365 df_set_flags (DF_NO_INSN_RESCAN);
3366 build_insn_chain ();
3368 reload_completed = !reload (get_insns (), ira_conflicts_p);
3370 finish_subregs_of_mode ();
3372 timevar_pop (TV_RELOAD);
3374 timevar_push (TV_IRA);
3376 if (ira_conflicts_p)
3378 ira_free (ira_spilled_reg_stack_slots);
3380 ira_finish_assign ();
3383 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
3384 && overall_cost_before != ira_overall_cost)
3385 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
3386 ira_destroy ();
3388 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
3390 flow_loops_free (&ira_loops);
3391 free_dominance_info (CDI_DOMINATORS);
3392 FOR_ALL_BB (bb)
3393 bb->loop_father = NULL;
3394 current_loops = NULL;
3396 regstat_free_ri ();
3397 regstat_free_n_sets_and_refs ();
3399 if (optimize)
3401 cleanup_cfg (CLEANUP_EXPENSIVE);
3403 ira_free (ira_reg_equiv_invariant_p);
3404 ira_free (ira_reg_equiv_const);
3407 bitmap_obstack_release (&ira_bitmap_obstack);
3408 #ifndef IRA_NO_OBSTACK
3409 obstack_free (&ira_obstack, NULL);
3410 #endif
3412 /* The code after the reload has changed so much that at this point
3413 we might as well just rescan everything. Not that
3414 df_rescan_all_insns is not going to help here because it does not
3415 touch the artificial uses and defs. */
3416 df_finish_pass (true);
3417 if (optimize > 1)
3418 df_live_add_problem ();
3419 df_scan_alloc (NULL);
3420 df_scan_blocks ();
3422 if (optimize)
3423 df_analyze ();
3425 timevar_pop (TV_IRA);
3430 static bool
3431 gate_ira (void)
3433 return true;
3436 /* Run the integrated register allocator. */
3437 static unsigned int
3438 rest_of_handle_ira (void)
3440 ira (dump_file);
3441 return 0;
3444 struct rtl_opt_pass pass_ira =
3447 RTL_PASS,
3448 "ira", /* name */
3449 gate_ira, /* gate */
3450 rest_of_handle_ira, /* execute */
3451 NULL, /* sub */
3452 NULL, /* next */
3453 0, /* static_pass_number */
3454 TV_NONE, /* tv_id */
3455 0, /* properties_required */
3456 0, /* properties_provided */
3457 0, /* properties_destroyed */
3458 0, /* todo_flags_start */
3459 TODO_dump_func |
3460 TODO_ggc_collect /* todo_flags_finish */