1 /* Translation of CLAST (CLooG AST) to Gimple.
2 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-flow.h"
32 #include "tree-dump.h"
35 #include "tree-chrec.h"
36 #include "tree-data-ref.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-pass.h"
40 #include "value-prof.h"
41 #include "pointer-set.h"
43 #include "langhooks.h"
47 #include "cloog/cloog.h"
49 #include "graphite-ppl.h"
51 #include "graphite-poly.h"
52 #include "graphite-scop-detection.h"
53 #include "graphite-clast-to-gimple.h"
54 #include "graphite-dependences.h"
56 /* This flag is set when an error occurred during the translation of
58 static bool gloog_error
;
60 /* Verifies properties that GRAPHITE should maintain during translation. */
63 graphite_verify (void)
65 #ifdef ENABLE_CHECKING
66 verify_loop_structure ();
67 verify_dominators (CDI_DOMINATORS
);
68 verify_dominators (CDI_POST_DOMINATORS
);
69 verify_loop_closed_ssa (true);
73 /* Stores the INDEX in a vector for a given clast NAME. */
75 typedef struct clast_name_index
{
78 } *clast_name_index_p
;
80 /* Returns a pointer to a new element of type clast_name_index_p built
81 from NAME and INDEX. */
83 static inline clast_name_index_p
84 new_clast_name_index (const char *name
, int index
)
86 clast_name_index_p res
= XNEW (struct clast_name_index
);
93 /* For a given clast NAME, returns -1 if it does not correspond to any
94 parameter, or otherwise, returns the index in the PARAMS or
95 SCATTERING_DIMENSIONS vector. */
98 clast_name_to_index (const char *name
, htab_t index_table
)
100 struct clast_name_index tmp
;
104 slot
= htab_find_slot (index_table
, &tmp
, NO_INSERT
);
107 return ((struct clast_name_index
*) *slot
)->index
;
112 /* Records in INDEX_TABLE the INDEX for NAME. */
115 save_clast_name_index (htab_t index_table
, const char *name
, int index
)
117 struct clast_name_index tmp
;
121 slot
= htab_find_slot (index_table
, &tmp
, INSERT
);
128 *slot
= new_clast_name_index (name
, index
);
132 /* Print to stderr the element ELT. */
135 debug_clast_name_index (clast_name_index_p elt
)
137 fprintf (stderr
, "(index = %d, name = %s)\n", elt
->index
, elt
->name
);
140 /* Helper function for debug_rename_map. */
143 debug_clast_name_indexes_1 (void **slot
, void *s ATTRIBUTE_UNUSED
)
145 struct clast_name_index
*entry
= (struct clast_name_index
*) *slot
;
146 debug_clast_name_index (entry
);
150 /* Print to stderr all the elements of MAP. */
153 debug_clast_name_indexes (htab_t map
)
155 htab_traverse (map
, debug_clast_name_indexes_1
, NULL
);
158 /* Computes a hash function for database element ELT. */
160 static inline hashval_t
161 clast_name_index_elt_info (const void *elt
)
163 return htab_hash_pointer (((const struct clast_name_index
*) elt
)->name
);
166 /* Compares database elements E1 and E2. */
169 eq_clast_name_indexes (const void *e1
, const void *e2
)
171 const struct clast_name_index
*elt1
= (const struct clast_name_index
*) e1
;
172 const struct clast_name_index
*elt2
= (const struct clast_name_index
*) e2
;
174 return (elt1
->name
== elt2
->name
);
178 /* For a given loop DEPTH in the loop nest of the original black box
179 PBB, return the old induction variable associated to that loop. */
182 pbb_to_depth_to_oldiv (poly_bb_p pbb
, int depth
)
184 gimple_bb_p gbb
= PBB_BLACK_BOX (pbb
);
185 sese region
= SCOP_REGION (PBB_SCOP (pbb
));
186 loop_p loop
= gbb_loop_at_index (gbb
, region
, depth
);
188 return loop
->single_iv
;
191 /* For a given scattering dimension, return the new induction variable
195 newivs_to_depth_to_newiv (VEC (tree
, heap
) *newivs
, int depth
)
197 return VEC_index (tree
, newivs
, depth
);
202 /* Returns the tree variable from the name NAME that was given in
203 Cloog representation. */
206 clast_name_to_gcc (const char *name
, sese region
, VEC (tree
, heap
) *newivs
,
207 htab_t newivs_index
, htab_t params_index
)
210 VEC (tree
, heap
) *params
= SESE_PARAMS (region
);
212 if (params
&& params_index
)
214 index
= clast_name_to_index (name
, params_index
);
217 return VEC_index (tree
, params
, index
);
220 gcc_assert (newivs
&& newivs_index
);
221 index
= clast_name_to_index (name
, newivs_index
);
222 gcc_assert (index
>= 0);
224 return newivs_to_depth_to_newiv (newivs
, index
);
227 /* Returns the signed maximal precision type for expressions TYPE1 and TYPE2. */
230 max_signed_precision_type (tree type1
, tree type2
)
232 int p1
= TYPE_PRECISION (type1
);
233 int p2
= TYPE_PRECISION (type2
);
238 precision
= TYPE_UNSIGNED (type1
) ? p1
* 2 : p1
;
240 precision
= TYPE_UNSIGNED (type2
) ? p2
* 2 : p2
;
242 type
= lang_hooks
.types
.type_for_size (precision
, false);
247 return integer_type_node
;
252 /* Returns the maximal precision type for expressions TYPE1 and TYPE2. */
255 max_precision_type (tree type1
, tree type2
)
257 if (POINTER_TYPE_P (type1
))
260 if (POINTER_TYPE_P (type2
))
263 if (!TYPE_UNSIGNED (type1
)
264 || !TYPE_UNSIGNED (type2
))
265 return max_signed_precision_type (type1
, type2
);
267 return TYPE_PRECISION (type1
) > TYPE_PRECISION (type2
) ? type1
: type2
;
271 clast_to_gcc_expression (tree
, struct clast_expr
*, sese
, VEC (tree
, heap
) *,
274 /* Converts a Cloog reduction expression R with reduction operation OP
275 to a GCC expression tree of type TYPE. */
278 clast_to_gcc_expression_red (tree type
, enum tree_code op
,
279 struct clast_reduction
*r
,
280 sese region
, VEC (tree
, heap
) *newivs
,
281 htab_t newivs_index
, htab_t params_index
)
284 tree res
= clast_to_gcc_expression (type
, r
->elts
[0], region
, newivs
,
285 newivs_index
, params_index
);
286 tree operand_type
= (op
== POINTER_PLUS_EXPR
) ? sizetype
: type
;
288 for (i
= 1; i
< r
->n
; i
++)
290 tree t
= clast_to_gcc_expression (operand_type
, r
->elts
[i
], region
,
291 newivs
, newivs_index
, params_index
);
292 res
= fold_build2 (op
, type
, res
, t
);
298 /* Converts a Cloog AST expression E back to a GCC expression tree of
302 clast_to_gcc_expression (tree type
, struct clast_expr
*e
,
303 sese region
, VEC (tree
, heap
) *newivs
,
304 htab_t newivs_index
, htab_t params_index
)
310 struct clast_term
*t
= (struct clast_term
*) e
;
314 if (mpz_cmp_si (t
->val
, 1) == 0)
316 tree name
= clast_name_to_gcc (t
->var
, region
, newivs
,
317 newivs_index
, params_index
);
319 if (POINTER_TYPE_P (TREE_TYPE (name
)) != POINTER_TYPE_P (type
))
320 name
= fold_convert (sizetype
, name
);
322 name
= fold_convert (type
, name
);
326 else if (mpz_cmp_si (t
->val
, -1) == 0)
328 tree name
= clast_name_to_gcc (t
->var
, region
, newivs
,
329 newivs_index
, params_index
);
331 if (POINTER_TYPE_P (TREE_TYPE (name
)) != POINTER_TYPE_P (type
))
332 name
= fold_convert (sizetype
, name
);
334 name
= fold_convert (type
, name
);
336 return fold_build1 (NEGATE_EXPR
, type
, name
);
340 tree name
= clast_name_to_gcc (t
->var
, region
, newivs
,
341 newivs_index
, params_index
);
342 tree cst
= gmp_cst_to_tree (type
, t
->val
);
344 if (POINTER_TYPE_P (TREE_TYPE (name
)) != POINTER_TYPE_P (type
))
345 name
= fold_convert (sizetype
, name
);
347 name
= fold_convert (type
, name
);
349 if (!POINTER_TYPE_P (type
))
350 return fold_build2 (MULT_EXPR
, type
, cst
, name
);
357 return gmp_cst_to_tree (type
, t
->val
);
362 struct clast_reduction
*r
= (struct clast_reduction
*) e
;
367 return clast_to_gcc_expression_red
368 (type
, POINTER_TYPE_P (type
) ? POINTER_PLUS_EXPR
: PLUS_EXPR
,
369 r
, region
, newivs
, newivs_index
, params_index
);
372 return clast_to_gcc_expression_red (type
, MIN_EXPR
, r
, region
,
373 newivs
, newivs_index
,
377 return clast_to_gcc_expression_red (type
, MAX_EXPR
, r
, region
,
378 newivs
, newivs_index
,
389 struct clast_binary
*b
= (struct clast_binary
*) e
;
390 struct clast_expr
*lhs
= (struct clast_expr
*) b
->LHS
;
391 tree tl
= clast_to_gcc_expression (type
, lhs
, region
, newivs
,
392 newivs_index
, params_index
);
393 tree tr
= gmp_cst_to_tree (type
, b
->RHS
);
398 return fold_build2 (FLOOR_DIV_EXPR
, type
, tl
, tr
);
401 return fold_build2 (CEIL_DIV_EXPR
, type
, tl
, tr
);
404 return fold_build2 (EXACT_DIV_EXPR
, type
, tl
, tr
);
407 return fold_build2 (TRUNC_MOD_EXPR
, type
, tl
, tr
);
421 /* Return the precision needed to represent the value VAL. */
424 precision_for_value (mpz_t val
)
433 value_assign (y
, val
);
434 value_set_si (two
, 2);
440 while (value_gt (y
, x
))
442 value_multiply (x
, x
, two
);
453 /* Return the precision needed to represent the values between LOW and
457 precision_for_interval (mpz_t low
, mpz_t up
)
462 gcc_assert (value_le (low
, up
));
465 value_subtract (diff
, up
, low
);
466 precision
= precision_for_value (diff
);
472 /* Return a type that could represent the integer value VAL, or
473 otherwise return NULL_TREE. */
476 gcc_type_for_interval (mpz_t low
, mpz_t up
, tree old_type
)
478 bool unsigned_p
= true;
479 int precision
, prec_up
, prec_int
;
481 enum machine_mode mode
;
483 gcc_assert (value_le (low
, up
));
485 /* Preserve the signedness of the old IV. */
486 if ((old_type
&& !TYPE_UNSIGNED (old_type
))
487 || value_neg_p (low
))
490 prec_up
= precision_for_value (up
);
491 prec_int
= precision_for_interval (low
, up
);
492 precision
= prec_up
> prec_int
? prec_up
: prec_int
;
494 if (precision
> BITS_PER_WORD
)
497 return integer_type_node
;
500 mode
= smallest_mode_for_size (precision
, MODE_INT
);
501 precision
= GET_MODE_PRECISION (mode
);
502 type
= build_nonstandard_integer_type (precision
, unsigned_p
);
507 return integer_type_node
;
513 /* Return a type that could represent the integer value VAL, or
514 otherwise return NULL_TREE. */
517 gcc_type_for_value (mpz_t val
)
519 return gcc_type_for_interval (val
, val
, NULL_TREE
);
522 /* Return the type for the clast_term T used in STMT. */
525 gcc_type_for_clast_term (struct clast_term
*t
,
526 sese region
, VEC (tree
, heap
) *newivs
,
527 htab_t newivs_index
, htab_t params_index
)
529 gcc_assert (t
->expr
.type
== expr_term
);
532 return gcc_type_for_value (t
->val
);
534 return TREE_TYPE (clast_name_to_gcc (t
->var
, region
, newivs
,
535 newivs_index
, params_index
));
539 gcc_type_for_clast_expr (struct clast_expr
*, sese
,
540 VEC (tree
, heap
) *, htab_t
, htab_t
);
542 /* Return the type for the clast_reduction R used in STMT. */
545 gcc_type_for_clast_red (struct clast_reduction
*r
, sese region
,
546 VEC (tree
, heap
) *newivs
,
547 htab_t newivs_index
, htab_t params_index
)
550 tree type
= NULL_TREE
;
553 return gcc_type_for_clast_expr (r
->elts
[0], region
, newivs
,
554 newivs_index
, params_index
);
561 type
= gcc_type_for_clast_expr (r
->elts
[0], region
, newivs
,
562 newivs_index
, params_index
);
563 for (i
= 1; i
< r
->n
; i
++)
564 type
= max_precision_type (type
, gcc_type_for_clast_expr
565 (r
->elts
[i
], region
, newivs
,
566 newivs_index
, params_index
));
578 /* Return the type for the clast_binary B used in STMT. */
581 gcc_type_for_clast_bin (struct clast_binary
*b
,
582 sese region
, VEC (tree
, heap
) *newivs
,
583 htab_t newivs_index
, htab_t params_index
)
585 tree l
= gcc_type_for_clast_expr ((struct clast_expr
*) b
->LHS
, region
,
586 newivs
, newivs_index
, params_index
);
587 tree r
= gcc_type_for_value (b
->RHS
);
588 return max_signed_precision_type (l
, r
);
591 /* Returns the type for the CLAST expression E when used in statement
595 gcc_type_for_clast_expr (struct clast_expr
*e
,
596 sese region
, VEC (tree
, heap
) *newivs
,
597 htab_t newivs_index
, htab_t params_index
)
602 return gcc_type_for_clast_term ((struct clast_term
*) e
, region
,
603 newivs
, newivs_index
, params_index
);
606 return gcc_type_for_clast_red ((struct clast_reduction
*) e
, region
,
607 newivs
, newivs_index
, params_index
);
610 return gcc_type_for_clast_bin ((struct clast_binary
*) e
, region
,
611 newivs
, newivs_index
, params_index
);
620 /* Returns the type for the equation CLEQ. */
623 gcc_type_for_clast_eq (struct clast_equation
*cleq
,
624 sese region
, VEC (tree
, heap
) *newivs
,
625 htab_t newivs_index
, htab_t params_index
)
627 tree l
= gcc_type_for_clast_expr (cleq
->LHS
, region
, newivs
,
628 newivs_index
, params_index
);
629 tree r
= gcc_type_for_clast_expr (cleq
->RHS
, region
, newivs
,
630 newivs_index
, params_index
);
631 return max_precision_type (l
, r
);
634 /* Translates a clast equation CLEQ to a tree. */
637 graphite_translate_clast_equation (sese region
,
638 struct clast_equation
*cleq
,
639 VEC (tree
, heap
) *newivs
,
640 htab_t newivs_index
, htab_t params_index
)
643 tree type
= gcc_type_for_clast_eq (cleq
, region
, newivs
, newivs_index
,
645 tree lhs
= clast_to_gcc_expression (type
, cleq
->LHS
, region
, newivs
,
646 newivs_index
, params_index
);
647 tree rhs
= clast_to_gcc_expression (type
, cleq
->RHS
, region
, newivs
,
648 newivs_index
, params_index
);
653 else if (cleq
->sign
> 0)
659 return fold_build2 (comp
, boolean_type_node
, lhs
, rhs
);
662 /* Creates the test for the condition in STMT. */
665 graphite_create_guard_cond_expr (sese region
, struct clast_guard
*stmt
,
666 VEC (tree
, heap
) *newivs
,
667 htab_t newivs_index
, htab_t params_index
)
672 for (i
= 0; i
< stmt
->n
; i
++)
674 tree eq
= graphite_translate_clast_equation (region
, &stmt
->eq
[i
],
675 newivs
, newivs_index
,
679 cond
= fold_build2 (TRUTH_AND_EXPR
, TREE_TYPE (eq
), cond
, eq
);
687 /* Creates a new if region corresponding to Cloog's guard. */
690 graphite_create_new_guard (sese region
, edge entry_edge
,
691 struct clast_guard
*stmt
,
692 VEC (tree
, heap
) *newivs
,
693 htab_t newivs_index
, htab_t params_index
)
695 tree cond_expr
= graphite_create_guard_cond_expr (region
, stmt
, newivs
,
696 newivs_index
, params_index
);
697 edge exit_edge
= create_empty_if_region_on_edge (entry_edge
, cond_expr
);
701 /* Compute the lower bound LOW and upper bound UP for the induction
702 variable at LEVEL for the statement PBB, based on the transformed
703 scattering of PBB: T|I|G|Cst, with T the scattering transform, I
704 the iteration domain, and G the context parameters. */
707 compute_bounds_for_level (poly_bb_p pbb
, int level
, mpz_t low
, mpz_t up
)
709 ppl_Pointset_Powerset_C_Polyhedron_t ps
;
710 ppl_Linear_Expression_t le
;
712 combine_context_id_scat (&ps
, pbb
, false);
714 /* Prepare the linear expression corresponding to the level that we
715 want to maximize/minimize. */
717 ppl_dimension_type dim
= pbb_nb_scattering_transform (pbb
)
718 + pbb_dim_iter_domain (pbb
) + pbb_nb_params (pbb
);
720 ppl_new_Linear_Expression_with_dimension (&le
, dim
);
721 ppl_set_coef (le
, 2 * level
+ 1, 1);
724 ppl_max_for_le_pointset (ps
, le
, up
);
725 ppl_min_for_le_pointset (ps
, le
, low
);
728 /* Compute the type for the induction variable at LEVEL for the
729 statement PBB, based on the transformed schedule of PBB. OLD_TYPE
730 is the type of the old induction variable for that loop. */
733 compute_type_for_level_1 (poly_bb_p pbb
, int level
, tree old_type
)
741 compute_bounds_for_level (pbb
, level
, low
, up
);
742 type
= gcc_type_for_interval (low
, up
, old_type
);
749 /* Compute the type for the induction variable at LEVEL for the
750 statement PBB, based on the transformed schedule of PBB. */
753 compute_type_for_level (poly_bb_p pbb
, int level
)
755 tree oldiv
= pbb_to_depth_to_oldiv (pbb
, level
);
756 tree type
= TREE_TYPE (oldiv
);
758 if (type
&& POINTER_TYPE_P (type
))
760 #ifdef ENABLE_CHECKING
761 tree ctype
= compute_type_for_level_1 (pbb
, level
, type
);
763 /* In the case of a pointer type, check that after the loop
764 transform, the lower and the upper bounds of the type fit the
765 oldiv pointer type. */
766 gcc_assert (TYPE_PRECISION (type
) >= TYPE_PRECISION (ctype
)
767 && integer_zerop (lower_bound_in_type (ctype
, ctype
)));
772 return compute_type_for_level_1 (pbb
, level
, type
);
775 /* Walks a CLAST and returns the first statement in the body of a
778 static struct clast_user_stmt
*
779 clast_get_body_of_loop (struct clast_stmt
*stmt
)
782 || CLAST_STMT_IS_A (stmt
, stmt_user
))
783 return (struct clast_user_stmt
*) stmt
;
785 if (CLAST_STMT_IS_A (stmt
, stmt_for
))
786 return clast_get_body_of_loop (((struct clast_for
*) stmt
)->body
);
788 if (CLAST_STMT_IS_A (stmt
, stmt_guard
))
789 return clast_get_body_of_loop (((struct clast_guard
*) stmt
)->then
);
791 if (CLAST_STMT_IS_A (stmt
, stmt_block
))
792 return clast_get_body_of_loop (((struct clast_block
*) stmt
)->body
);
797 /* Returns the type for the induction variable for the loop translated
801 gcc_type_for_iv_of_clast_loop (struct clast_for
*stmt_for
, int level
,
802 tree lb_type
, tree ub_type
)
804 struct clast_stmt
*stmt
= (struct clast_stmt
*) stmt_for
;
805 struct clast_user_stmt
*body
= clast_get_body_of_loop (stmt
);
806 CloogStatement
*cs
= body
->statement
;
807 poly_bb_p pbb
= (poly_bb_p
) cloog_statement_usr (cs
);
809 return max_signed_precision_type (lb_type
, max_precision_type
810 (ub_type
, compute_type_for_level
814 /* Creates a new LOOP corresponding to Cloog's STMT. Inserts an
815 induction variable for the new LOOP. New LOOP is attached to CFG
816 starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
817 becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
818 CLooG's scattering name to the induction variable created for the
819 loop of STMT. The new induction variable is inserted in the NEWIVS
823 graphite_create_new_loop (sese region
, edge entry_edge
,
824 struct clast_for
*stmt
,
825 loop_p outer
, VEC (tree
, heap
) **newivs
,
826 htab_t newivs_index
, htab_t params_index
, int level
)
828 tree lb_type
= gcc_type_for_clast_expr (stmt
->LB
, region
, *newivs
,
829 newivs_index
, params_index
);
830 tree ub_type
= gcc_type_for_clast_expr (stmt
->UB
, region
, *newivs
,
831 newivs_index
, params_index
);
832 tree type
= gcc_type_for_iv_of_clast_loop (stmt
, level
, lb_type
, ub_type
);
833 tree lb
= clast_to_gcc_expression (type
, stmt
->LB
, region
, *newivs
,
834 newivs_index
, params_index
);
835 tree ub
= clast_to_gcc_expression (type
, stmt
->UB
, region
, *newivs
,
836 newivs_index
, params_index
);
837 tree stride
= gmp_cst_to_tree (type
, stmt
->stride
);
838 tree ivvar
= create_tmp_var (type
, "graphite_IV");
839 tree iv
, iv_after_increment
;
840 loop_p loop
= create_empty_loop_on_edge
841 (entry_edge
, lb
, stride
, ub
, ivvar
, &iv
, &iv_after_increment
,
842 outer
? outer
: entry_edge
->src
->loop_father
);
844 add_referenced_var (ivvar
);
846 save_clast_name_index (newivs_index
, stmt
->iterator
,
847 VEC_length (tree
, *newivs
));
848 VEC_safe_push (tree
, heap
, *newivs
, iv
);
852 /* Inserts in MAP a tuple (OLD_NAME, NEW_NAME) for the induction
853 variables of the loops around GBB in SESE. */
856 build_iv_mapping (htab_t map
, sese region
,
857 VEC (tree
, heap
) *newivs
, htab_t newivs_index
,
858 struct clast_user_stmt
*user_stmt
,
861 struct clast_stmt
*t
;
863 CloogStatement
*cs
= user_stmt
->statement
;
864 poly_bb_p pbb
= (poly_bb_p
) cloog_statement_usr (cs
);
866 for (t
= user_stmt
->substitutions
; t
; t
= t
->next
, index
++)
868 struct clast_expr
*expr
= (struct clast_expr
*)
869 ((struct clast_assignment
*)t
)->RHS
;
870 tree type
= gcc_type_for_clast_expr (expr
, region
, newivs
,
871 newivs_index
, params_index
);
872 tree old_name
= pbb_to_depth_to_oldiv (pbb
, index
);
873 tree e
= clast_to_gcc_expression (type
, expr
, region
, newivs
,
874 newivs_index
, params_index
);
875 set_rename (map
, old_name
, e
);
879 /* Helper function for htab_traverse. */
882 copy_renames (void **slot
, void *s
)
884 struct rename_map_elt_s
*entry
= (struct rename_map_elt_s
*) *slot
;
885 htab_t res
= (htab_t
) s
;
886 tree old_name
= entry
->old_name
;
887 tree expr
= entry
->expr
;
888 struct rename_map_elt_s tmp
;
891 tmp
.old_name
= old_name
;
892 x
= htab_find_slot (res
, &tmp
, INSERT
);
895 *x
= new_rename_map_elt (old_name
, expr
);
900 /* Construct bb_pbb_def with BB and PBB. */
903 new_bb_pbb_def (basic_block bb
, poly_bb_p pbb
)
905 bb_pbb_def
*bb_pbb_p
;
907 bb_pbb_p
= XNEW (bb_pbb_def
);
914 /* Mark BB with it's relevant PBB via hashing table BB_PBB_MAPPING. */
917 mark_bb_with_pbb (poly_bb_p pbb
, basic_block bb
, htab_t bb_pbb_mapping
)
923 x
= htab_find_slot (bb_pbb_mapping
, &tmp
, INSERT
);
926 *x
= new_bb_pbb_def (bb
, pbb
);
929 /* Find BB's related poly_bb_p in hash table BB_PBB_MAPPING. */
932 find_pbb_via_hash (htab_t bb_pbb_mapping
, basic_block bb
)
938 slot
= htab_find_slot (bb_pbb_mapping
, &tmp
, NO_INSERT
);
941 return ((bb_pbb_def
*) *slot
)->pbb
;
946 /* Check data dependency in LOOP at scattering level LEVEL.
947 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p
951 dependency_in_loop_p (loop_p loop
, htab_t bb_pbb_mapping
, int level
)
954 basic_block
*bbs
= get_loop_body_in_dom_order (loop
);
956 for (i
= 0; i
< loop
->num_nodes
; i
++)
958 poly_bb_p pbb1
= find_pbb_via_hash (bb_pbb_mapping
, bbs
[i
]);
963 for (j
= 0; j
< loop
->num_nodes
; j
++)
965 poly_bb_p pbb2
= find_pbb_via_hash (bb_pbb_mapping
, bbs
[j
]);
970 if (dependency_between_pbbs_p (pbb1
, pbb2
, level
))
984 translate_clast (sese
, loop_p
, struct clast_stmt
*, edge
, htab_t
,
985 VEC (tree
, heap
) **, htab_t
, htab_t
, int, htab_t
);
987 /* Translates a clast user statement STMT to gimple.
989 - REGION is the sese region we used to generate the scop.
990 - NEXT_E is the edge where new generated code should be attached.
991 - CONTEXT_LOOP is the loop in which the generated code will be placed
992 - RENAME_MAP contains a set of tuples of new names associated to
993 the original variables names.
994 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
995 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
998 translate_clast_user (sese region
, struct clast_user_stmt
*stmt
, edge next_e
,
999 htab_t rename_map
, VEC (tree
, heap
) **newivs
,
1000 htab_t newivs_index
, htab_t bb_pbb_mapping
,
1001 htab_t params_index
)
1005 poly_bb_p pbb
= (poly_bb_p
) cloog_statement_usr (stmt
->statement
);
1006 gbb
= PBB_BLACK_BOX (pbb
);
1008 if (GBB_BB (gbb
) == ENTRY_BLOCK_PTR
)
1011 build_iv_mapping (rename_map
, region
, *newivs
, newivs_index
, stmt
,
1013 next_e
= copy_bb_and_scalar_dependences (GBB_BB (gbb
), region
,
1014 next_e
, rename_map
);
1015 new_bb
= next_e
->src
;
1016 mark_bb_with_pbb (pbb
, new_bb
, bb_pbb_mapping
);
1017 update_ssa (TODO_update_ssa
);
1022 /* Creates a new if region protecting the loop to be executed, if the execution
1023 count is zero (lb > ub). */
1025 graphite_create_new_loop_guard (sese region
, edge entry_edge
,
1026 struct clast_for
*stmt
,
1027 VEC (tree
, heap
) *newivs
,
1028 htab_t newivs_index
, htab_t params_index
)
1032 tree lb_type
= gcc_type_for_clast_expr (stmt
->LB
, region
, newivs
,
1033 newivs_index
, params_index
);
1034 tree ub_type
= gcc_type_for_clast_expr (stmt
->UB
, region
, newivs
,
1035 newivs_index
, params_index
);
1036 tree type
= max_precision_type (lb_type
, ub_type
);
1037 tree lb
= clast_to_gcc_expression (type
, stmt
->LB
, region
, newivs
,
1038 newivs_index
, params_index
);
1039 tree ub
= clast_to_gcc_expression (type
, stmt
->UB
, region
, newivs
,
1040 newivs_index
, params_index
);
1043 /* Adding +1 and using LT_EXPR helps with loop latches that have a
1044 loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this becomes
1045 2^{32|64}, and the condition lb <= ub is true, even if we do not want this.
1046 However lb < ub + 1 is false, as expected. */
1051 mpz_set_si (gmp_one
, 1);
1052 one
= gmp_cst_to_tree (type
, gmp_one
);
1053 mpz_clear (gmp_one
);
1055 ub_one
= fold_build2 (POINTER_TYPE_P (type
) ? POINTER_PLUS_EXPR
: PLUS_EXPR
,
1058 /* When ub + 1 wraps around, use lb <= ub. */
1059 if (integer_zerop (ub_one
))
1060 cond_expr
= fold_build2 (LE_EXPR
, boolean_type_node
, lb
, ub
);
1062 cond_expr
= fold_build2 (LT_EXPR
, boolean_type_node
, lb
, ub_one
);
1064 exit_edge
= create_empty_if_region_on_edge (entry_edge
, cond_expr
);
1070 /* Create the loop for a clast for statement.
1072 - REGION is the sese region we used to generate the scop.
1073 - NEXT_E is the edge where new generated code should be attached.
1074 - RENAME_MAP contains a set of tuples of new names associated to
1075 the original variables names.
1076 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1077 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1080 translate_clast_for_loop (sese region
, loop_p context_loop
,
1081 struct clast_for
*stmt
, edge next_e
,
1082 htab_t rename_map
, VEC (tree
, heap
) **newivs
,
1083 htab_t newivs_index
, htab_t bb_pbb_mapping
,
1084 int level
, htab_t params_index
)
1086 struct loop
*loop
= graphite_create_new_loop (region
, next_e
, stmt
,
1087 context_loop
, newivs
,
1088 newivs_index
, params_index
,
1090 edge last_e
= single_exit (loop
);
1091 edge to_body
= single_succ_edge (loop
->header
);
1092 basic_block after
= to_body
->dest
;
1094 /* Create a basic block for loop close phi nodes. */
1095 last_e
= single_succ_edge (split_edge (last_e
));
1097 /* Translate the body of the loop. */
1098 next_e
= translate_clast (region
, loop
, stmt
->body
, to_body
, rename_map
,
1099 newivs
, newivs_index
, bb_pbb_mapping
, level
+ 1,
1101 redirect_edge_succ_nodup (next_e
, after
);
1102 set_immediate_dominator (CDI_DOMINATORS
, next_e
->dest
, next_e
->src
);
1104 /* Remove from rename_map all the tuples containing variables
1105 defined in loop's body. */
1106 insert_loop_close_phis (rename_map
, loop
);
1108 if (flag_loop_parallelize_all
1109 && !dependency_in_loop_p (loop
, bb_pbb_mapping
,
1110 get_scattering_level (level
)))
1111 loop
->can_be_parallel
= true;
1116 /* Translates a clast for statement STMT to gimple. First a guard is created
1117 protecting the loop, if it is executed zero times. In this guard we create
1118 the real loop structure.
1120 - REGION is the sese region we used to generate the scop.
1121 - NEXT_E is the edge where new generated code should be attached.
1122 - RENAME_MAP contains a set of tuples of new names associated to
1123 the original variables names.
1124 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1125 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1128 translate_clast_for (sese region
, loop_p context_loop
, struct clast_for
*stmt
,
1129 edge next_e
, htab_t rename_map
, VEC (tree
, heap
) **newivs
,
1130 htab_t newivs_index
, htab_t bb_pbb_mapping
, int level
,
1131 htab_t params_index
)
1133 edge last_e
= graphite_create_new_loop_guard (region
, next_e
, stmt
, *newivs
,
1134 newivs_index
, params_index
);
1136 edge true_e
= get_true_edge_from_guard_bb (next_e
->dest
);
1137 edge false_e
= get_false_edge_from_guard_bb (next_e
->dest
);
1138 edge exit_true_e
= single_succ_edge (true_e
->dest
);
1139 edge exit_false_e
= single_succ_edge (false_e
->dest
);
1141 htab_t before_guard
= htab_create (10, rename_map_elt_info
,
1142 eq_rename_map_elts
, free
);
1143 htab_traverse (rename_map
, copy_renames
, before_guard
);
1145 next_e
= translate_clast_for_loop (region
, context_loop
, stmt
, true_e
,
1147 newivs_index
, bb_pbb_mapping
, level
,
1150 insert_guard_phis (last_e
->src
, exit_true_e
, exit_false_e
,
1151 before_guard
, rename_map
);
1153 htab_delete (before_guard
);
1158 /* Translates a clast guard statement STMT to gimple.
1160 - REGION is the sese region we used to generate the scop.
1161 - NEXT_E is the edge where new generated code should be attached.
1162 - CONTEXT_LOOP is the loop in which the generated code will be placed
1163 - RENAME_MAP contains a set of tuples of new names associated to
1164 the original variables names.
1165 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping.
1166 - PARAMS_INDEX connects the cloog parameters with the gimple parameters in
1169 translate_clast_guard (sese region
, loop_p context_loop
,
1170 struct clast_guard
*stmt
, edge next_e
,
1171 htab_t rename_map
, VEC (tree
, heap
) **newivs
,
1172 htab_t newivs_index
, htab_t bb_pbb_mapping
, int level
,
1173 htab_t params_index
)
1175 edge last_e
= graphite_create_new_guard (region
, next_e
, stmt
, *newivs
,
1176 newivs_index
, params_index
);
1178 edge true_e
= get_true_edge_from_guard_bb (next_e
->dest
);
1179 edge false_e
= get_false_edge_from_guard_bb (next_e
->dest
);
1180 edge exit_true_e
= single_succ_edge (true_e
->dest
);
1181 edge exit_false_e
= single_succ_edge (false_e
->dest
);
1183 htab_t before_guard
= htab_create (10, rename_map_elt_info
,
1184 eq_rename_map_elts
, free
);
1185 htab_traverse (rename_map
, copy_renames
, before_guard
);
1187 next_e
= translate_clast (region
, context_loop
, stmt
->then
, true_e
,
1188 rename_map
, newivs
, newivs_index
, bb_pbb_mapping
,
1189 level
, params_index
);
1191 insert_guard_phis (last_e
->src
, exit_true_e
, exit_false_e
,
1192 before_guard
, rename_map
);
1194 htab_delete (before_guard
);
1199 /* Translates a CLAST statement STMT to GCC representation in the
1202 - NEXT_E is the edge where new generated code should be attached.
1203 - CONTEXT_LOOP is the loop in which the generated code will be placed
1204 - RENAME_MAP contains a set of tuples of new names associated to
1205 the original variables names.
1206 - BB_PBB_MAPPING is is a basic_block and it's related poly_bb_p mapping. */
1208 translate_clast (sese region
, loop_p context_loop
, struct clast_stmt
*stmt
,
1209 edge next_e
, htab_t rename_map
, VEC (tree
, heap
) **newivs
,
1210 htab_t newivs_index
, htab_t bb_pbb_mapping
, int level
,
1211 htab_t params_index
)
1216 if (CLAST_STMT_IS_A (stmt
, stmt_root
))
1219 else if (CLAST_STMT_IS_A (stmt
, stmt_user
))
1220 next_e
= translate_clast_user (region
, (struct clast_user_stmt
*) stmt
,
1221 next_e
, rename_map
, newivs
, newivs_index
,
1222 bb_pbb_mapping
, params_index
);
1224 else if (CLAST_STMT_IS_A (stmt
, stmt_for
))
1225 next_e
= translate_clast_for (region
, context_loop
,
1226 (struct clast_for
*) stmt
, next_e
,
1227 rename_map
, newivs
, newivs_index
,
1228 bb_pbb_mapping
, level
, params_index
);
1230 else if (CLAST_STMT_IS_A (stmt
, stmt_guard
))
1231 next_e
= translate_clast_guard (region
, context_loop
,
1232 (struct clast_guard
*) stmt
, next_e
,
1233 rename_map
, newivs
, newivs_index
,
1234 bb_pbb_mapping
, level
, params_index
);
1236 else if (CLAST_STMT_IS_A (stmt
, stmt_block
))
1237 next_e
= translate_clast (region
, context_loop
,
1238 ((struct clast_block
*) stmt
)->body
,
1239 next_e
, rename_map
, newivs
, newivs_index
,
1240 bb_pbb_mapping
, level
, params_index
);
1244 recompute_all_dominators ();
1247 return translate_clast (region
, context_loop
, stmt
->next
, next_e
,
1248 rename_map
, newivs
, newivs_index
,
1249 bb_pbb_mapping
, level
, params_index
);
1252 /* Free the SCATTERING domain list. */
1255 free_scattering (CloogDomainList
*scattering
)
1259 CloogDomain
*dom
= cloog_domain (scattering
);
1260 CloogDomainList
*next
= cloog_next_domain (scattering
);
1262 cloog_domain_free (dom
);
1268 /* Initialize Cloog's parameter names from the names used in GIMPLE.
1269 Initialize Cloog's iterator names, using 'graphite_iterator_%d'
1270 from 0 to scop_nb_loops (scop). */
1273 initialize_cloog_names (scop_p scop
, CloogProgram
*prog
)
1275 sese region
= SCOP_REGION (scop
);
1277 int nb_iterators
= scop_max_loop_depth (scop
);
1278 int nb_scattering
= cloog_program_nb_scattdims (prog
);
1279 int nb_parameters
= VEC_length (tree
, SESE_PARAMS (region
));
1280 char **iterators
= XNEWVEC (char *, nb_iterators
* 2);
1281 char **scattering
= XNEWVEC (char *, nb_scattering
);
1282 char **parameters
= XNEWVEC (char *, nb_parameters
);
1284 cloog_program_set_names (prog
, cloog_names_malloc ());
1286 for (i
= 0; i
< nb_parameters
; i
++)
1288 tree param
= VEC_index (tree
, SESE_PARAMS(region
), i
);
1289 const char *name
= get_name (param
);
1295 len
= strlen (name
);
1297 parameters
[i
] = XNEWVEC (char, len
+ 1);
1298 snprintf (parameters
[i
], len
, "%s_%d", name
, SSA_NAME_VERSION (param
));
1301 cloog_names_set_nb_parameters (cloog_program_names (prog
), nb_parameters
);
1302 cloog_names_set_parameters (cloog_program_names (prog
), parameters
);
1304 for (i
= 0; i
< nb_iterators
; i
++)
1307 iterators
[i
] = XNEWVEC (char, len
);
1308 snprintf (iterators
[i
], len
, "git_%d", i
);
1311 cloog_names_set_nb_iterators (cloog_program_names (prog
),
1313 cloog_names_set_iterators (cloog_program_names (prog
),
1316 for (i
= 0; i
< nb_scattering
; i
++)
1319 scattering
[i
] = XNEWVEC (char, len
);
1320 snprintf (scattering
[i
], len
, "scat_%d", i
);
1323 cloog_names_set_nb_scattering (cloog_program_names (prog
),
1325 cloog_names_set_scattering (cloog_program_names (prog
),
1329 /* Build cloog program for SCoP. */
1332 build_cloog_prog (scop_p scop
, CloogProgram
*prog
)
1335 int max_nb_loops
= scop_max_loop_depth (scop
);
1337 CloogLoop
*loop_list
= NULL
;
1338 CloogBlockList
*block_list
= NULL
;
1339 CloogDomainList
*scattering
= NULL
;
1340 int nbs
= 2 * max_nb_loops
+ 1;
1343 cloog_program_set_context
1344 (prog
, new_Cloog_Domain_from_ppl_Pointset_Powerset (SCOP_CONTEXT (scop
)));
1345 nbs
= unify_scattering_dimensions (scop
);
1346 scaldims
= (int *) xmalloc (nbs
* (sizeof (int)));
1347 cloog_program_set_nb_scattdims (prog
, nbs
);
1348 initialize_cloog_names (scop
, prog
);
1350 for (i
= 0; VEC_iterate (poly_bb_p
, SCOP_BBS (scop
), i
, pbb
); i
++)
1352 CloogStatement
*stmt
;
1355 /* Dead code elimination: when the domain of a PBB is empty,
1356 don't generate code for the PBB. */
1357 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (PBB_DOMAIN (pbb
)))
1360 /* Build the new statement and its block. */
1361 stmt
= cloog_statement_alloc (pbb_index (pbb
));
1362 block
= cloog_block_alloc (stmt
, 0, NULL
, pbb_dim_iter_domain (pbb
));
1363 cloog_statement_set_usr (stmt
, pbb
);
1365 /* Build loop list. */
1367 CloogLoop
*new_loop_list
= cloog_loop_malloc ();
1368 cloog_loop_set_next (new_loop_list
, loop_list
);
1369 cloog_loop_set_domain
1371 new_Cloog_Domain_from_ppl_Pointset_Powerset (PBB_DOMAIN (pbb
)));
1372 cloog_loop_set_block (new_loop_list
, block
);
1373 loop_list
= new_loop_list
;
1376 /* Build block list. */
1378 CloogBlockList
*new_block_list
= cloog_block_list_malloc ();
1380 cloog_block_list_set_next (new_block_list
, block_list
);
1381 cloog_block_list_set_block (new_block_list
, block
);
1382 block_list
= new_block_list
;
1385 /* Build scattering list. */
1387 /* XXX: Replace with cloog_domain_list_alloc(), when available. */
1388 CloogDomainList
*new_scattering
1389 = (CloogDomainList
*) xmalloc (sizeof (CloogDomainList
));
1390 ppl_Polyhedron_t scat
;
1393 scat
= PBB_TRANSFORMED_SCATTERING (pbb
);
1394 dom
= new_Cloog_Domain_from_ppl_Polyhedron (scat
);
1396 cloog_set_next_domain (new_scattering
, scattering
);
1397 cloog_set_domain (new_scattering
, dom
);
1398 scattering
= new_scattering
;
1402 cloog_program_set_loop (prog
, loop_list
);
1403 cloog_program_set_blocklist (prog
, block_list
);
1405 for (i
= 0; i
< nbs
; i
++)
1408 cloog_program_set_scaldims (prog
, scaldims
);
1410 /* Extract scalar dimensions to simplify the code generation problem. */
1411 cloog_program_extract_scalars (prog
, scattering
);
1413 /* Apply scattering. */
1414 cloog_program_scatter (prog
, scattering
);
1415 free_scattering (scattering
);
1417 /* Iterators corresponding to scalar dimensions have to be extracted. */
1418 cloog_names_scalarize (cloog_program_names (prog
), nbs
,
1419 cloog_program_scaldims (prog
));
1421 /* Free blocklist. */
1423 CloogBlockList
*next
= cloog_program_blocklist (prog
);
1427 CloogBlockList
*toDelete
= next
;
1428 next
= cloog_block_list_next (next
);
1429 cloog_block_list_set_next (toDelete
, NULL
);
1430 cloog_block_list_set_block (toDelete
, NULL
);
1431 cloog_block_list_free (toDelete
);
1433 cloog_program_set_blocklist (prog
, NULL
);
1437 /* Return the options that will be used in GLOOG. */
1439 static CloogOptions
*
1440 set_cloog_options (void)
1442 CloogOptions
*options
= cloog_options_malloc ();
1444 /* Change cloog output language to C. If we do use FORTRAN instead, cloog
1445 will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if
1446 we pass an incomplete program to cloog. */
1447 options
->language
= LANGUAGE_C
;
1449 /* Enable complex equality spreading: removes dummy statements
1450 (assignments) in the generated code which repeats the
1451 substitution equations for statements. This is useless for
1455 /* Enable C pretty-printing mode: normalizes the substitution
1456 equations for statements. */
1459 /* Allow cloog to build strides with a stride width different to one.
1460 This example has stride = 4:
1462 for (i = 0; i < 20; i += 4)
1464 options
->strides
= 1;
1466 /* Disable optimizations and make cloog generate source code closer to the
1467 input. This is useful for debugging, but later we want the optimized
1470 XXX: We can not disable optimizations, as loop blocking is not working
1475 options
->l
= INT_MAX
;
1481 /* Prints STMT to STDERR. */
1484 print_clast_stmt (FILE *file
, struct clast_stmt
*stmt
)
1486 CloogOptions
*options
= set_cloog_options ();
1488 pprint (file
, stmt
, 0, options
);
1489 cloog_options_free (options
);
1492 /* Prints STMT to STDERR. */
1495 debug_clast_stmt (struct clast_stmt
*stmt
)
1497 print_clast_stmt (stderr
, stmt
);
1500 /* Translate SCOP to a CLooG program and clast. These two
1501 representations should be freed together: a clast cannot be used
1502 without a program. */
1505 scop_to_clast (scop_p scop
)
1507 CloogOptions
*options
= set_cloog_options ();
1508 cloog_prog_clast pc
;
1510 /* Connect new cloog prog generation to graphite. */
1511 pc
.prog
= cloog_program_malloc ();
1512 build_cloog_prog (scop
, pc
.prog
);
1513 pc
.prog
= cloog_program_generate (pc
.prog
, options
);
1514 pc
.stmt
= cloog_clast_create (pc
.prog
, options
);
1516 cloog_options_free (options
);
1520 /* Prints to FILE the code generated by CLooG for SCOP. */
1523 print_generated_program (FILE *file
, scop_p scop
)
1525 CloogOptions
*options
= set_cloog_options ();
1526 cloog_prog_clast pc
= scop_to_clast (scop
);
1528 fprintf (file
, " (prog: \n");
1529 cloog_program_print (file
, pc
.prog
);
1530 fprintf (file
, " )\n");
1532 fprintf (file
, " (clast: \n");
1533 pprint (file
, pc
.stmt
, 0, options
);
1534 fprintf (file
, " )\n");
1536 cloog_options_free (options
);
1537 cloog_clast_free (pc
.stmt
);
1538 cloog_program_free (pc
.prog
);
1541 /* Prints to STDERR the code generated by CLooG for SCOP. */
1544 debug_generated_program (scop_p scop
)
1546 print_generated_program (stderr
, scop
);
1549 /* Add CLooG names to parameter index. The index is used to translate
1550 back from CLooG names to GCC trees. */
1553 create_params_index (htab_t index_table
, CloogProgram
*prog
) {
1554 CloogNames
* names
= cloog_program_names (prog
);
1555 int nb_parameters
= cloog_names_nb_parameters (names
);
1556 char **parameters
= cloog_names_parameters (names
);
1559 for (i
= 0; i
< nb_parameters
; i
++)
1560 save_clast_name_index (index_table
, parameters
[i
], i
);
1563 /* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for
1564 the given SCOP. Return true if code generation succeeded.
1565 BB_PBB_MAPPING is a basic_block and it's related poly_bb_p mapping.
1569 gloog (scop_p scop
, VEC (scop_p
, heap
) *scops
, htab_t bb_pbb_mapping
)
1571 VEC (tree
, heap
) *newivs
= VEC_alloc (tree
, heap
, 10);
1572 loop_p context_loop
;
1573 sese region
= SCOP_REGION (scop
);
1574 ifsese if_region
= NULL
;
1575 htab_t rename_map
, newivs_index
, params_index
;
1576 cloog_prog_clast pc
;
1579 timevar_push (TV_GRAPHITE_CODE_GEN
);
1580 gloog_error
= false;
1582 pc
= scop_to_clast (scop
);
1584 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1586 fprintf (dump_file
, "\nCLAST generated by CLooG: \n");
1587 print_clast_stmt (dump_file
, pc
.stmt
);
1588 fprintf (dump_file
, "\n");
1591 recompute_all_dominators ();
1594 if_region
= move_sese_in_condition (region
);
1595 sese_insert_phis_for_liveouts (region
,
1596 if_region
->region
->exit
->src
,
1597 if_region
->false_region
->exit
,
1598 if_region
->true_region
->exit
);
1599 recompute_all_dominators ();
1602 context_loop
= SESE_ENTRY (region
)->src
->loop_father
;
1603 rename_map
= htab_create (10, rename_map_elt_info
, eq_rename_map_elts
, free
);
1604 newivs_index
= htab_create (10, clast_name_index_elt_info
,
1605 eq_clast_name_indexes
, free
);
1606 params_index
= htab_create (10, clast_name_index_elt_info
,
1607 eq_clast_name_indexes
, free
);
1609 create_params_index (params_index
, pc
.prog
);
1611 translate_clast (region
, context_loop
, pc
.stmt
,
1612 if_region
->true_region
->entry
,
1613 rename_map
, &newivs
, newivs_index
,
1614 bb_pbb_mapping
, 1, params_index
);
1616 sese_adjust_liveout_phis (region
, rename_map
,
1617 if_region
->region
->exit
->src
,
1618 if_region
->false_region
->exit
,
1619 if_region
->true_region
->exit
);
1621 rename_nb_iterations (rename_map
);
1623 for (i
= 0; VEC_iterate (scop_p
, scops
, i
, scop
); i
++)
1624 rename_sese_parameters (rename_map
, SCOP_REGION (scop
));
1626 recompute_all_dominators ();
1630 set_ifsese_condition (if_region
, integer_zero_node
);
1632 free (if_region
->true_region
);
1633 free (if_region
->region
);
1636 htab_delete (rename_map
);
1637 htab_delete (newivs_index
);
1638 htab_delete (params_index
);
1639 VEC_free (tree
, heap
, newivs
);
1640 cloog_clast_free (pc
.stmt
);
1641 cloog_program_free (pc
.prog
);
1642 timevar_pop (TV_GRAPHITE_CODE_GEN
);
1644 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1648 int num_no_dependency
= 0;
1650 FOR_EACH_LOOP (li
, loop
, 0)
1651 if (loop
->can_be_parallel
)
1652 num_no_dependency
++;
1654 fprintf (dump_file
, "\n%d loops carried no dependency.\n",
1658 return !gloog_error
;