gcc/
[official-gcc.git] / gcc / expr.c
blob6b2feb685a47250f9e7f801a7a7088fed736af38
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
57 /* Decide whether a function's arguments should be processed
58 from first to last or from last to first.
60 They should if the stack and args grow in opposite directions, but
61 only if we have push insns. */
63 #ifdef PUSH_ROUNDING
65 #ifndef PUSH_ARGS_REVERSED
66 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67 #define PUSH_ARGS_REVERSED /* If it's last to first. */
68 #endif
69 #endif
71 #endif
73 #ifndef STACK_PUSH_CODE
74 #ifdef STACK_GROWS_DOWNWARD
75 #define STACK_PUSH_CODE PRE_DEC
76 #else
77 #define STACK_PUSH_CODE PRE_INC
78 #endif
79 #endif
82 /* If this is nonzero, we do not bother generating VOLATILE
83 around volatile memory references, and we are willing to
84 output indirect addresses. If cse is to follow, we reject
85 indirect addresses so a useful potential cse is generated;
86 if it is used only once, instruction combination will produce
87 the same indirect address eventually. */
88 int cse_not_expected;
90 /* This structure is used by move_by_pieces to describe the move to
91 be performed. */
92 struct move_by_pieces_d
94 rtx to;
95 rtx to_addr;
96 int autinc_to;
97 int explicit_inc_to;
98 rtx from;
99 rtx from_addr;
100 int autinc_from;
101 int explicit_inc_from;
102 unsigned HOST_WIDE_INT len;
103 HOST_WIDE_INT offset;
104 int reverse;
107 /* This structure is used by store_by_pieces to describe the clear to
108 be performed. */
110 struct store_by_pieces_d
112 rtx to;
113 rtx to_addr;
114 int autinc_to;
115 int explicit_inc_to;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
119 void *constfundata;
120 int reverse;
123 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
124 unsigned int,
125 unsigned int);
126 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
127 struct move_by_pieces_d *);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
130 static tree emit_block_move_libcall_fn (int);
131 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
132 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
133 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
134 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
135 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
136 struct store_by_pieces_d *);
137 static tree clear_storage_libcall_fn (int);
138 static rtx compress_float_constant (rtx, rtx);
139 static rtx get_subtarget (rtx);
140 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
141 HOST_WIDE_INT, enum machine_mode,
142 tree, tree, int, alias_set_type);
143 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
144 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
145 tree, tree, alias_set_type, bool);
147 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
149 static int is_aligning_offset (const_tree, const_tree);
150 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
151 enum expand_modifier);
152 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
153 static rtx do_store_flag (sepops, rtx, enum machine_mode);
154 #ifdef PUSH_ROUNDING
155 static void emit_single_push_insn (enum machine_mode, rtx, tree);
156 #endif
157 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
158 static rtx const_vector_from_tree (tree);
159 static void write_complex_part (rtx, rtx, bool);
161 /* Record for each mode whether we can move a register directly to or
162 from an object of that mode in memory. If we can't, we won't try
163 to use that mode directly when accessing a field of that mode. */
165 static char direct_load[NUM_MACHINE_MODES];
166 static char direct_store[NUM_MACHINE_MODES];
168 /* Record for each mode whether we can float-extend from memory. */
170 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
172 /* This macro is used to determine whether move_by_pieces should be called
173 to perform a structure copy. */
174 #ifndef MOVE_BY_PIECES_P
175 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
176 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
177 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
178 #endif
180 /* This macro is used to determine whether clear_by_pieces should be
181 called to clear storage. */
182 #ifndef CLEAR_BY_PIECES_P
183 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
184 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
185 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
186 #endif
188 /* This macro is used to determine whether store_by_pieces should be
189 called to "memset" storage with byte values other than zero. */
190 #ifndef SET_BY_PIECES_P
191 #define SET_BY_PIECES_P(SIZE, ALIGN) \
192 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
193 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
194 #endif
196 /* This macro is used to determine whether store_by_pieces should be
197 called to "memcpy" storage when the source is a constant string. */
198 #ifndef STORE_BY_PIECES_P
199 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
200 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
201 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
202 #endif
204 /* This array records the insn_code of insns to perform block moves. */
205 enum insn_code movmem_optab[NUM_MACHINE_MODES];
207 /* This array records the insn_code of insns to perform block sets. */
208 enum insn_code setmem_optab[NUM_MACHINE_MODES];
210 /* These arrays record the insn_code of three different kinds of insns
211 to perform block compares. */
212 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
213 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
214 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
216 /* Synchronization primitives. */
217 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
218 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
231 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
232 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
233 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
234 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
235 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
236 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
237 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
239 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
241 #ifndef SLOW_UNALIGNED_ACCESS
242 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
243 #endif
245 /* This is run to set up which modes can be used
246 directly in memory and to initialize the block move optab. It is run
247 at the beginning of compilation and when the target is reinitialized. */
249 void
250 init_expr_target (void)
252 rtx insn, pat;
253 enum machine_mode mode;
254 int num_clobbers;
255 rtx mem, mem1;
256 rtx reg;
258 /* Try indexing by frame ptr and try by stack ptr.
259 It is known that on the Convex the stack ptr isn't a valid index.
260 With luck, one or the other is valid on any machine. */
261 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
262 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
264 /* A scratch register we can modify in-place below to avoid
265 useless RTL allocations. */
266 reg = gen_rtx_REG (VOIDmode, -1);
268 insn = rtx_alloc (INSN);
269 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
270 PATTERN (insn) = pat;
272 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
273 mode = (enum machine_mode) ((int) mode + 1))
275 int regno;
277 direct_load[(int) mode] = direct_store[(int) mode] = 0;
278 PUT_MODE (mem, mode);
279 PUT_MODE (mem1, mode);
280 PUT_MODE (reg, mode);
282 /* See if there is some register that can be used in this mode and
283 directly loaded or stored from memory. */
285 if (mode != VOIDmode && mode != BLKmode)
286 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
287 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
288 regno++)
290 if (! HARD_REGNO_MODE_OK (regno, mode))
291 continue;
293 SET_REGNO (reg, regno);
295 SET_SRC (pat) = mem;
296 SET_DEST (pat) = reg;
297 if (recog (pat, insn, &num_clobbers) >= 0)
298 direct_load[(int) mode] = 1;
300 SET_SRC (pat) = mem1;
301 SET_DEST (pat) = reg;
302 if (recog (pat, insn, &num_clobbers) >= 0)
303 direct_load[(int) mode] = 1;
305 SET_SRC (pat) = reg;
306 SET_DEST (pat) = mem;
307 if (recog (pat, insn, &num_clobbers) >= 0)
308 direct_store[(int) mode] = 1;
310 SET_SRC (pat) = reg;
311 SET_DEST (pat) = mem1;
312 if (recog (pat, insn, &num_clobbers) >= 0)
313 direct_store[(int) mode] = 1;
317 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
319 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
320 mode = GET_MODE_WIDER_MODE (mode))
322 enum machine_mode srcmode;
323 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
324 srcmode = GET_MODE_WIDER_MODE (srcmode))
326 enum insn_code ic;
328 ic = can_extend_p (mode, srcmode, 0);
329 if (ic == CODE_FOR_nothing)
330 continue;
332 PUT_MODE (mem, srcmode);
334 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
335 float_extend_from_mem[mode][srcmode] = true;
340 /* This is run at the start of compiling a function. */
342 void
343 init_expr (void)
345 memset (&crtl->expr, 0, sizeof (crtl->expr));
348 /* Copy data from FROM to TO, where the machine modes are not the same.
349 Both modes may be integer, or both may be floating, or both may be
350 fixed-point.
351 UNSIGNEDP should be nonzero if FROM is an unsigned type.
352 This causes zero-extension instead of sign-extension. */
354 void
355 convert_move (rtx to, rtx from, int unsignedp)
357 enum machine_mode to_mode = GET_MODE (to);
358 enum machine_mode from_mode = GET_MODE (from);
359 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
360 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
361 enum insn_code code;
362 rtx libcall;
364 /* rtx code for making an equivalent value. */
365 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
366 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
369 gcc_assert (to_real == from_real);
370 gcc_assert (to_mode != BLKmode);
371 gcc_assert (from_mode != BLKmode);
373 /* If the source and destination are already the same, then there's
374 nothing to do. */
375 if (to == from)
376 return;
378 /* If FROM is a SUBREG that indicates that we have already done at least
379 the required extension, strip it. We don't handle such SUBREGs as
380 TO here. */
382 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
383 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
384 >= GET_MODE_SIZE (to_mode))
385 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
386 from = gen_lowpart (to_mode, from), from_mode = to_mode;
388 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
390 if (to_mode == from_mode
391 || (from_mode == VOIDmode && CONSTANT_P (from)))
393 emit_move_insn (to, from);
394 return;
397 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
399 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
401 if (VECTOR_MODE_P (to_mode))
402 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
403 else
404 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
406 emit_move_insn (to, from);
407 return;
410 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
412 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
413 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
414 return;
417 if (to_real)
419 rtx value, insns;
420 convert_optab tab;
422 gcc_assert ((GET_MODE_PRECISION (from_mode)
423 != GET_MODE_PRECISION (to_mode))
424 || (DECIMAL_FLOAT_MODE_P (from_mode)
425 != DECIMAL_FLOAT_MODE_P (to_mode)));
427 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
428 /* Conversion between decimal float and binary float, same size. */
429 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
430 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
431 tab = sext_optab;
432 else
433 tab = trunc_optab;
435 /* Try converting directly if the insn is supported. */
437 code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
438 if (code != CODE_FOR_nothing)
440 emit_unop_insn (code, to, from,
441 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
442 return;
445 /* Otherwise use a libcall. */
446 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
448 /* Is this conversion implemented yet? */
449 gcc_assert (libcall);
451 start_sequence ();
452 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
453 1, from, from_mode);
454 insns = get_insns ();
455 end_sequence ();
456 emit_libcall_block (insns, to, value,
457 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
458 from)
459 : gen_rtx_FLOAT_EXTEND (to_mode, from));
460 return;
463 /* Handle pointer conversion. */ /* SPEE 900220. */
464 /* Targets are expected to provide conversion insns between PxImode and
465 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
466 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
468 enum machine_mode full_mode
469 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
471 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
472 != CODE_FOR_nothing);
474 if (full_mode != from_mode)
475 from = convert_to_mode (full_mode, from, unsignedp);
476 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
477 to, from, UNKNOWN);
478 return;
480 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
482 rtx new_from;
483 enum machine_mode full_mode
484 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
486 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
487 != CODE_FOR_nothing);
489 if (to_mode == full_mode)
491 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
492 to, from, UNKNOWN);
493 return;
496 new_from = gen_reg_rtx (full_mode);
497 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
498 new_from, from, UNKNOWN);
500 /* else proceed to integer conversions below. */
501 from_mode = full_mode;
502 from = new_from;
505 /* Make sure both are fixed-point modes or both are not. */
506 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
507 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
508 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
510 /* If we widen from_mode to to_mode and they are in the same class,
511 we won't saturate the result.
512 Otherwise, always saturate the result to play safe. */
513 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
514 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
515 expand_fixed_convert (to, from, 0, 0);
516 else
517 expand_fixed_convert (to, from, 0, 1);
518 return;
521 /* Now both modes are integers. */
523 /* Handle expanding beyond a word. */
524 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
525 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
527 rtx insns;
528 rtx lowpart;
529 rtx fill_value;
530 rtx lowfrom;
531 int i;
532 enum machine_mode lowpart_mode;
533 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
535 /* Try converting directly if the insn is supported. */
536 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
537 != CODE_FOR_nothing)
539 /* If FROM is a SUBREG, put it into a register. Do this
540 so that we always generate the same set of insns for
541 better cse'ing; if an intermediate assignment occurred,
542 we won't be doing the operation directly on the SUBREG. */
543 if (optimize > 0 && GET_CODE (from) == SUBREG)
544 from = force_reg (from_mode, from);
545 emit_unop_insn (code, to, from, equiv_code);
546 return;
548 /* Next, try converting via full word. */
549 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
550 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
551 != CODE_FOR_nothing))
553 rtx word_to = gen_reg_rtx (word_mode);
554 if (REG_P (to))
556 if (reg_overlap_mentioned_p (to, from))
557 from = force_reg (from_mode, from);
558 emit_clobber (to);
560 convert_move (word_to, from, unsignedp);
561 emit_unop_insn (code, to, word_to, equiv_code);
562 return;
565 /* No special multiword conversion insn; do it by hand. */
566 start_sequence ();
568 /* Since we will turn this into a no conflict block, we must ensure
569 that the source does not overlap the target. */
571 if (reg_overlap_mentioned_p (to, from))
572 from = force_reg (from_mode, from);
574 /* Get a copy of FROM widened to a word, if necessary. */
575 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
576 lowpart_mode = word_mode;
577 else
578 lowpart_mode = from_mode;
580 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
582 lowpart = gen_lowpart (lowpart_mode, to);
583 emit_move_insn (lowpart, lowfrom);
585 /* Compute the value to put in each remaining word. */
586 if (unsignedp)
587 fill_value = const0_rtx;
588 else
589 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
590 LT, lowfrom, const0_rtx,
591 VOIDmode, 0, -1);
593 /* Fill the remaining words. */
594 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
596 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
597 rtx subword = operand_subword (to, index, 1, to_mode);
599 gcc_assert (subword);
601 if (fill_value != subword)
602 emit_move_insn (subword, fill_value);
605 insns = get_insns ();
606 end_sequence ();
608 emit_insn (insns);
609 return;
612 /* Truncating multi-word to a word or less. */
613 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
614 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
616 if (!((MEM_P (from)
617 && ! MEM_VOLATILE_P (from)
618 && direct_load[(int) to_mode]
619 && ! mode_dependent_address_p (XEXP (from, 0)))
620 || REG_P (from)
621 || GET_CODE (from) == SUBREG))
622 from = force_reg (from_mode, from);
623 convert_move (to, gen_lowpart (word_mode, from), 0);
624 return;
627 /* Now follow all the conversions between integers
628 no more than a word long. */
630 /* For truncation, usually we can just refer to FROM in a narrower mode. */
631 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
632 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
633 GET_MODE_BITSIZE (from_mode)))
635 if (!((MEM_P (from)
636 && ! MEM_VOLATILE_P (from)
637 && direct_load[(int) to_mode]
638 && ! mode_dependent_address_p (XEXP (from, 0)))
639 || REG_P (from)
640 || GET_CODE (from) == SUBREG))
641 from = force_reg (from_mode, from);
642 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
643 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
644 from = copy_to_reg (from);
645 emit_move_insn (to, gen_lowpart (to_mode, from));
646 return;
649 /* Handle extension. */
650 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
652 /* Convert directly if that works. */
653 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
654 != CODE_FOR_nothing)
656 emit_unop_insn (code, to, from, equiv_code);
657 return;
659 else
661 enum machine_mode intermediate;
662 rtx tmp;
663 tree shift_amount;
665 /* Search for a mode to convert via. */
666 for (intermediate = from_mode; intermediate != VOIDmode;
667 intermediate = GET_MODE_WIDER_MODE (intermediate))
668 if (((can_extend_p (to_mode, intermediate, unsignedp)
669 != CODE_FOR_nothing)
670 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
671 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
672 GET_MODE_BITSIZE (intermediate))))
673 && (can_extend_p (intermediate, from_mode, unsignedp)
674 != CODE_FOR_nothing))
676 convert_move (to, convert_to_mode (intermediate, from,
677 unsignedp), unsignedp);
678 return;
681 /* No suitable intermediate mode.
682 Generate what we need with shifts. */
683 shift_amount = build_int_cst (NULL_TREE,
684 GET_MODE_BITSIZE (to_mode)
685 - GET_MODE_BITSIZE (from_mode));
686 from = gen_lowpart (to_mode, force_reg (from_mode, from));
687 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
688 to, unsignedp);
689 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
690 to, unsignedp);
691 if (tmp != to)
692 emit_move_insn (to, tmp);
693 return;
697 /* Support special truncate insns for certain modes. */
698 if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
700 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
701 to, from, UNKNOWN);
702 return;
705 /* Handle truncation of volatile memrefs, and so on;
706 the things that couldn't be truncated directly,
707 and for which there was no special instruction.
709 ??? Code above formerly short-circuited this, for most integer
710 mode pairs, with a force_reg in from_mode followed by a recursive
711 call to this routine. Appears always to have been wrong. */
712 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
714 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
715 emit_move_insn (to, temp);
716 return;
719 /* Mode combination is not recognized. */
720 gcc_unreachable ();
723 /* Return an rtx for a value that would result
724 from converting X to mode MODE.
725 Both X and MODE may be floating, or both integer.
726 UNSIGNEDP is nonzero if X is an unsigned value.
727 This can be done by referring to a part of X in place
728 or by copying to a new temporary with conversion. */
731 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
733 return convert_modes (mode, VOIDmode, x, unsignedp);
736 /* Return an rtx for a value that would result
737 from converting X from mode OLDMODE to mode MODE.
738 Both modes may be floating, or both integer.
739 UNSIGNEDP is nonzero if X is an unsigned value.
741 This can be done by referring to a part of X in place
742 or by copying to a new temporary with conversion.
744 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
747 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
749 rtx temp;
751 /* If FROM is a SUBREG that indicates that we have already done at least
752 the required extension, strip it. */
754 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
755 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
756 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
757 x = gen_lowpart (mode, x);
759 if (GET_MODE (x) != VOIDmode)
760 oldmode = GET_MODE (x);
762 if (mode == oldmode)
763 return x;
765 /* There is one case that we must handle specially: If we are converting
766 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
767 we are to interpret the constant as unsigned, gen_lowpart will do
768 the wrong if the constant appears negative. What we want to do is
769 make the high-order word of the constant zero, not all ones. */
771 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
772 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
773 && CONST_INT_P (x) && INTVAL (x) < 0)
775 double_int val = uhwi_to_double_int (INTVAL (x));
777 /* We need to zero extend VAL. */
778 if (oldmode != VOIDmode)
779 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
781 return immed_double_int_const (val, mode);
784 /* We can do this with a gen_lowpart if both desired and current modes
785 are integer, and this is either a constant integer, a register, or a
786 non-volatile MEM. Except for the constant case where MODE is no
787 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
789 if ((CONST_INT_P (x)
790 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
791 || (GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_CLASS (oldmode) == MODE_INT
793 && (GET_CODE (x) == CONST_DOUBLE
794 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
795 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
796 && direct_load[(int) mode])
797 || (REG_P (x)
798 && (! HARD_REGISTER_P (x)
799 || HARD_REGNO_MODE_OK (REGNO (x), mode))
800 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
801 GET_MODE_BITSIZE (GET_MODE (x)))))))))
803 /* ?? If we don't know OLDMODE, we have to assume here that
804 X does not need sign- or zero-extension. This may not be
805 the case, but it's the best we can do. */
806 if (CONST_INT_P (x) && oldmode != VOIDmode
807 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
809 HOST_WIDE_INT val = INTVAL (x);
810 int width = GET_MODE_BITSIZE (oldmode);
812 /* We must sign or zero-extend in this case. Start by
813 zero-extending, then sign extend if we need to. */
814 val &= ((HOST_WIDE_INT) 1 << width) - 1;
815 if (! unsignedp
816 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
817 val |= (HOST_WIDE_INT) (-1) << width;
819 return gen_int_mode (val, mode);
822 return gen_lowpart (mode, x);
825 /* Converting from integer constant into mode is always equivalent to an
826 subreg operation. */
827 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
829 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
830 return simplify_gen_subreg (mode, x, oldmode, 0);
833 temp = gen_reg_rtx (mode);
834 convert_move (temp, x, unsignedp);
835 return temp;
838 /* STORE_MAX_PIECES is the number of bytes at a time that we can
839 store efficiently. Due to internal GCC limitations, this is
840 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
841 for an immediate constant. */
843 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
845 /* Determine whether the LEN bytes can be moved by using several move
846 instructions. Return nonzero if a call to move_by_pieces should
847 succeed. */
850 can_move_by_pieces (unsigned HOST_WIDE_INT len,
851 unsigned int align ATTRIBUTE_UNUSED)
853 return MOVE_BY_PIECES_P (len, align);
856 /* Generate several move instructions to copy LEN bytes from block FROM to
857 block TO. (These are MEM rtx's with BLKmode).
859 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
860 used to push FROM to the stack.
862 ALIGN is maximum stack alignment we can assume.
864 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
865 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
866 stpcpy. */
869 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
870 unsigned int align, int endp)
872 struct move_by_pieces_d data;
873 enum machine_mode to_addr_mode, from_addr_mode
874 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
875 rtx to_addr, from_addr = XEXP (from, 0);
876 unsigned int max_size = MOVE_MAX_PIECES + 1;
877 enum machine_mode mode = VOIDmode, tmode;
878 enum insn_code icode;
880 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
882 data.offset = 0;
883 data.from_addr = from_addr;
884 if (to)
886 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
887 to_addr = XEXP (to, 0);
888 data.to = to;
889 data.autinc_to
890 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
891 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
892 data.reverse
893 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
895 else
897 to_addr_mode = VOIDmode;
898 to_addr = NULL_RTX;
899 data.to = NULL_RTX;
900 data.autinc_to = 1;
901 #ifdef STACK_GROWS_DOWNWARD
902 data.reverse = 1;
903 #else
904 data.reverse = 0;
905 #endif
907 data.to_addr = to_addr;
908 data.from = from;
909 data.autinc_from
910 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
911 || GET_CODE (from_addr) == POST_INC
912 || GET_CODE (from_addr) == POST_DEC);
914 data.explicit_inc_from = 0;
915 data.explicit_inc_to = 0;
916 if (data.reverse) data.offset = len;
917 data.len = len;
919 /* If copying requires more than two move insns,
920 copy addresses to registers (to make displacements shorter)
921 and use post-increment if available. */
922 if (!(data.autinc_from && data.autinc_to)
923 && move_by_pieces_ninsns (len, align, max_size) > 2)
925 /* Find the mode of the largest move... */
926 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
927 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
928 if (GET_MODE_SIZE (tmode) < max_size)
929 mode = tmode;
931 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
933 data.from_addr = copy_to_mode_reg (from_addr_mode,
934 plus_constant (from_addr, len));
935 data.autinc_from = 1;
936 data.explicit_inc_from = -1;
938 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
940 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
941 data.autinc_from = 1;
942 data.explicit_inc_from = 1;
944 if (!data.autinc_from && CONSTANT_P (from_addr))
945 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
946 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
948 data.to_addr = copy_to_mode_reg (to_addr_mode,
949 plus_constant (to_addr, len));
950 data.autinc_to = 1;
951 data.explicit_inc_to = -1;
953 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
955 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
956 data.autinc_to = 1;
957 data.explicit_inc_to = 1;
959 if (!data.autinc_to && CONSTANT_P (to_addr))
960 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
963 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
964 if (align >= GET_MODE_ALIGNMENT (tmode))
965 align = GET_MODE_ALIGNMENT (tmode);
966 else
968 enum machine_mode xmode;
970 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
971 tmode != VOIDmode;
972 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
973 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
974 || SLOW_UNALIGNED_ACCESS (tmode, align))
975 break;
977 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
980 /* First move what we can in the largest integer mode, then go to
981 successively smaller modes. */
983 while (max_size > 1)
985 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
986 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
987 if (GET_MODE_SIZE (tmode) < max_size)
988 mode = tmode;
990 if (mode == VOIDmode)
991 break;
993 icode = optab_handler (mov_optab, mode)->insn_code;
994 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
995 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
997 max_size = GET_MODE_SIZE (mode);
1000 /* The code above should have handled everything. */
1001 gcc_assert (!data.len);
1003 if (endp)
1005 rtx to1;
1007 gcc_assert (!data.reverse);
1008 if (data.autinc_to)
1010 if (endp == 2)
1012 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1013 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1014 else
1015 data.to_addr = copy_to_mode_reg (to_addr_mode,
1016 plus_constant (data.to_addr,
1017 -1));
1019 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1020 data.offset);
1022 else
1024 if (endp == 2)
1025 --data.offset;
1026 to1 = adjust_address (data.to, QImode, data.offset);
1028 return to1;
1030 else
1031 return data.to;
1034 /* Return number of insns required to move L bytes by pieces.
1035 ALIGN (in bits) is maximum alignment we can assume. */
1037 static unsigned HOST_WIDE_INT
1038 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1039 unsigned int max_size)
1041 unsigned HOST_WIDE_INT n_insns = 0;
1042 enum machine_mode tmode;
1044 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1045 if (align >= GET_MODE_ALIGNMENT (tmode))
1046 align = GET_MODE_ALIGNMENT (tmode);
1047 else
1049 enum machine_mode tmode, xmode;
1051 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1052 tmode != VOIDmode;
1053 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1054 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1055 || SLOW_UNALIGNED_ACCESS (tmode, align))
1056 break;
1058 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1061 while (max_size > 1)
1063 enum machine_mode mode = VOIDmode;
1064 enum insn_code icode;
1066 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1067 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1068 if (GET_MODE_SIZE (tmode) < max_size)
1069 mode = tmode;
1071 if (mode == VOIDmode)
1072 break;
1074 icode = optab_handler (mov_optab, mode)->insn_code;
1075 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1076 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1078 max_size = GET_MODE_SIZE (mode);
1081 gcc_assert (!l);
1082 return n_insns;
1085 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1086 with move instructions for mode MODE. GENFUN is the gen_... function
1087 to make a move insn for that mode. DATA has all the other info. */
1089 static void
1090 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1091 struct move_by_pieces_d *data)
1093 unsigned int size = GET_MODE_SIZE (mode);
1094 rtx to1 = NULL_RTX, from1;
1096 while (data->len >= size)
1098 if (data->reverse)
1099 data->offset -= size;
1101 if (data->to)
1103 if (data->autinc_to)
1104 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1105 data->offset);
1106 else
1107 to1 = adjust_address (data->to, mode, data->offset);
1110 if (data->autinc_from)
1111 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1112 data->offset);
1113 else
1114 from1 = adjust_address (data->from, mode, data->offset);
1116 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1117 emit_insn (gen_add2_insn (data->to_addr,
1118 GEN_INT (-(HOST_WIDE_INT)size)));
1119 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1120 emit_insn (gen_add2_insn (data->from_addr,
1121 GEN_INT (-(HOST_WIDE_INT)size)));
1123 if (data->to)
1124 emit_insn ((*genfun) (to1, from1));
1125 else
1127 #ifdef PUSH_ROUNDING
1128 emit_single_push_insn (mode, from1, NULL);
1129 #else
1130 gcc_unreachable ();
1131 #endif
1134 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1135 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1136 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1137 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1139 if (! data->reverse)
1140 data->offset += size;
1142 data->len -= size;
1146 /* Emit code to move a block Y to a block X. This may be done with
1147 string-move instructions, with multiple scalar move instructions,
1148 or with a library call.
1150 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1151 SIZE is an rtx that says how long they are.
1152 ALIGN is the maximum alignment we can assume they have.
1153 METHOD describes what kind of copy this is, and what mechanisms may be used.
1155 Return the address of the new block, if memcpy is called and returns it,
1156 0 otherwise. */
1159 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1160 unsigned int expected_align, HOST_WIDE_INT expected_size)
1162 bool may_use_call;
1163 rtx retval = 0;
1164 unsigned int align;
1166 switch (method)
1168 case BLOCK_OP_NORMAL:
1169 case BLOCK_OP_TAILCALL:
1170 may_use_call = true;
1171 break;
1173 case BLOCK_OP_CALL_PARM:
1174 may_use_call = block_move_libcall_safe_for_call_parm ();
1176 /* Make inhibit_defer_pop nonzero around the library call
1177 to force it to pop the arguments right away. */
1178 NO_DEFER_POP;
1179 break;
1181 case BLOCK_OP_NO_LIBCALL:
1182 may_use_call = false;
1183 break;
1185 default:
1186 gcc_unreachable ();
1189 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1190 gcc_assert (align >= BITS_PER_UNIT);
1192 gcc_assert (MEM_P (x));
1193 gcc_assert (MEM_P (y));
1194 gcc_assert (size);
1196 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1197 block copy is more efficient for other large modes, e.g. DCmode. */
1198 x = adjust_address (x, BLKmode, 0);
1199 y = adjust_address (y, BLKmode, 0);
1201 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1202 can be incorrect is coming from __builtin_memcpy. */
1203 if (CONST_INT_P (size))
1205 if (INTVAL (size) == 0)
1206 return 0;
1208 x = shallow_copy_rtx (x);
1209 y = shallow_copy_rtx (y);
1210 set_mem_size (x, size);
1211 set_mem_size (y, size);
1214 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1215 move_by_pieces (x, y, INTVAL (size), align, 0);
1216 else if (emit_block_move_via_movmem (x, y, size, align,
1217 expected_align, expected_size))
1219 else if (may_use_call
1220 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1221 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1222 retval = emit_block_move_via_libcall (x, y, size,
1223 method == BLOCK_OP_TAILCALL);
1224 else
1225 emit_block_move_via_loop (x, y, size, align);
1227 if (method == BLOCK_OP_CALL_PARM)
1228 OK_DEFER_POP;
1230 return retval;
1234 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1236 return emit_block_move_hints (x, y, size, method, 0, -1);
1239 /* A subroutine of emit_block_move. Returns true if calling the
1240 block move libcall will not clobber any parameters which may have
1241 already been placed on the stack. */
1243 static bool
1244 block_move_libcall_safe_for_call_parm (void)
1246 #if defined (REG_PARM_STACK_SPACE)
1247 tree fn;
1248 #endif
1250 /* If arguments are pushed on the stack, then they're safe. */
1251 if (PUSH_ARGS)
1252 return true;
1254 /* If registers go on the stack anyway, any argument is sure to clobber
1255 an outgoing argument. */
1256 #if defined (REG_PARM_STACK_SPACE)
1257 fn = emit_block_move_libcall_fn (false);
1258 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1259 depend on its argument. */
1260 (void) fn;
1261 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1262 && REG_PARM_STACK_SPACE (fn) != 0)
1263 return false;
1264 #endif
1266 /* If any argument goes in memory, then it might clobber an outgoing
1267 argument. */
1269 CUMULATIVE_ARGS args_so_far;
1270 tree fn, arg;
1272 fn = emit_block_move_libcall_fn (false);
1273 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1275 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1276 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1278 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1279 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1280 if (!tmp || !REG_P (tmp))
1281 return false;
1282 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1283 return false;
1284 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1287 return true;
1290 /* A subroutine of emit_block_move. Expand a movmem pattern;
1291 return true if successful. */
1293 static bool
1294 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1295 unsigned int expected_align, HOST_WIDE_INT expected_size)
1297 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1298 int save_volatile_ok = volatile_ok;
1299 enum machine_mode mode;
1301 if (expected_align < align)
1302 expected_align = align;
1304 /* Since this is a move insn, we don't care about volatility. */
1305 volatile_ok = 1;
1307 /* Try the most limited insn first, because there's no point
1308 including more than one in the machine description unless
1309 the more limited one has some advantage. */
1311 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1312 mode = GET_MODE_WIDER_MODE (mode))
1314 enum insn_code code = movmem_optab[(int) mode];
1315 insn_operand_predicate_fn pred;
1317 if (code != CODE_FOR_nothing
1318 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1319 here because if SIZE is less than the mode mask, as it is
1320 returned by the macro, it will definitely be less than the
1321 actual mode mask. */
1322 && ((CONST_INT_P (size)
1323 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1324 <= (GET_MODE_MASK (mode) >> 1)))
1325 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1326 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1327 || (*pred) (x, BLKmode))
1328 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1329 || (*pred) (y, BLKmode))
1330 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1331 || (*pred) (opalign, VOIDmode)))
1333 rtx op2;
1334 rtx last = get_last_insn ();
1335 rtx pat;
1337 op2 = convert_to_mode (mode, size, 1);
1338 pred = insn_data[(int) code].operand[2].predicate;
1339 if (pred != 0 && ! (*pred) (op2, mode))
1340 op2 = copy_to_mode_reg (mode, op2);
1342 /* ??? When called via emit_block_move_for_call, it'd be
1343 nice if there were some way to inform the backend, so
1344 that it doesn't fail the expansion because it thinks
1345 emitting the libcall would be more efficient. */
1347 if (insn_data[(int) code].n_operands == 4)
1348 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1349 else
1350 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1351 GEN_INT (expected_align
1352 / BITS_PER_UNIT),
1353 GEN_INT (expected_size));
1354 if (pat)
1356 emit_insn (pat);
1357 volatile_ok = save_volatile_ok;
1358 return true;
1360 else
1361 delete_insns_since (last);
1365 volatile_ok = save_volatile_ok;
1366 return false;
1369 /* A subroutine of emit_block_move. Expand a call to memcpy.
1370 Return the return value from memcpy, 0 otherwise. */
1373 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1375 rtx dst_addr, src_addr;
1376 tree call_expr, fn, src_tree, dst_tree, size_tree;
1377 enum machine_mode size_mode;
1378 rtx retval;
1380 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1381 pseudos. We can then place those new pseudos into a VAR_DECL and
1382 use them later. */
1384 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1385 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1387 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1388 src_addr = convert_memory_address (ptr_mode, src_addr);
1390 dst_tree = make_tree (ptr_type_node, dst_addr);
1391 src_tree = make_tree (ptr_type_node, src_addr);
1393 size_mode = TYPE_MODE (sizetype);
1395 size = convert_to_mode (size_mode, size, 1);
1396 size = copy_to_mode_reg (size_mode, size);
1398 /* It is incorrect to use the libcall calling conventions to call
1399 memcpy in this context. This could be a user call to memcpy and
1400 the user may wish to examine the return value from memcpy. For
1401 targets where libcalls and normal calls have different conventions
1402 for returning pointers, we could end up generating incorrect code. */
1404 size_tree = make_tree (sizetype, size);
1406 fn = emit_block_move_libcall_fn (true);
1407 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1408 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1410 retval = expand_normal (call_expr);
1412 return retval;
1415 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1416 for the function we use for block copies. The first time FOR_CALL
1417 is true, we call assemble_external. */
1419 static GTY(()) tree block_move_fn;
1421 void
1422 init_block_move_fn (const char *asmspec)
1424 if (!block_move_fn)
1426 tree args, fn;
1428 fn = get_identifier ("memcpy");
1429 args = build_function_type_list (ptr_type_node, ptr_type_node,
1430 const_ptr_type_node, sizetype,
1431 NULL_TREE);
1433 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1434 DECL_EXTERNAL (fn) = 1;
1435 TREE_PUBLIC (fn) = 1;
1436 DECL_ARTIFICIAL (fn) = 1;
1437 TREE_NOTHROW (fn) = 1;
1438 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1439 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1441 block_move_fn = fn;
1444 if (asmspec)
1445 set_user_assembler_name (block_move_fn, asmspec);
1448 static tree
1449 emit_block_move_libcall_fn (int for_call)
1451 static bool emitted_extern;
1453 if (!block_move_fn)
1454 init_block_move_fn (NULL);
1456 if (for_call && !emitted_extern)
1458 emitted_extern = true;
1459 make_decl_rtl (block_move_fn);
1460 assemble_external (block_move_fn);
1463 return block_move_fn;
1466 /* A subroutine of emit_block_move. Copy the data via an explicit
1467 loop. This is used only when libcalls are forbidden. */
1468 /* ??? It'd be nice to copy in hunks larger than QImode. */
1470 static void
1471 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1472 unsigned int align ATTRIBUTE_UNUSED)
1474 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1475 enum machine_mode x_addr_mode
1476 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1477 enum machine_mode y_addr_mode
1478 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1479 enum machine_mode iter_mode;
1481 iter_mode = GET_MODE (size);
1482 if (iter_mode == VOIDmode)
1483 iter_mode = word_mode;
1485 top_label = gen_label_rtx ();
1486 cmp_label = gen_label_rtx ();
1487 iter = gen_reg_rtx (iter_mode);
1489 emit_move_insn (iter, const0_rtx);
1491 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1492 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1493 do_pending_stack_adjust ();
1495 emit_jump (cmp_label);
1496 emit_label (top_label);
1498 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1499 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1501 if (x_addr_mode != y_addr_mode)
1502 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1503 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1505 x = change_address (x, QImode, x_addr);
1506 y = change_address (y, QImode, y_addr);
1508 emit_move_insn (x, y);
1510 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1511 true, OPTAB_LIB_WIDEN);
1512 if (tmp != iter)
1513 emit_move_insn (iter, tmp);
1515 emit_label (cmp_label);
1517 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1518 true, top_label);
1521 /* Copy all or part of a value X into registers starting at REGNO.
1522 The number of registers to be filled is NREGS. */
1524 void
1525 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1527 int i;
1528 #ifdef HAVE_load_multiple
1529 rtx pat;
1530 rtx last;
1531 #endif
1533 if (nregs == 0)
1534 return;
1536 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1537 x = validize_mem (force_const_mem (mode, x));
1539 /* See if the machine can do this with a load multiple insn. */
1540 #ifdef HAVE_load_multiple
1541 if (HAVE_load_multiple)
1543 last = get_last_insn ();
1544 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1545 GEN_INT (nregs));
1546 if (pat)
1548 emit_insn (pat);
1549 return;
1551 else
1552 delete_insns_since (last);
1554 #endif
1556 for (i = 0; i < nregs; i++)
1557 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1558 operand_subword_force (x, i, mode));
1561 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1562 The number of registers to be filled is NREGS. */
1564 void
1565 move_block_from_reg (int regno, rtx x, int nregs)
1567 int i;
1569 if (nregs == 0)
1570 return;
1572 /* See if the machine can do this with a store multiple insn. */
1573 #ifdef HAVE_store_multiple
1574 if (HAVE_store_multiple)
1576 rtx last = get_last_insn ();
1577 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1578 GEN_INT (nregs));
1579 if (pat)
1581 emit_insn (pat);
1582 return;
1584 else
1585 delete_insns_since (last);
1587 #endif
1589 for (i = 0; i < nregs; i++)
1591 rtx tem = operand_subword (x, i, 1, BLKmode);
1593 gcc_assert (tem);
1595 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1599 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1600 ORIG, where ORIG is a non-consecutive group of registers represented by
1601 a PARALLEL. The clone is identical to the original except in that the
1602 original set of registers is replaced by a new set of pseudo registers.
1603 The new set has the same modes as the original set. */
1606 gen_group_rtx (rtx orig)
1608 int i, length;
1609 rtx *tmps;
1611 gcc_assert (GET_CODE (orig) == PARALLEL);
1613 length = XVECLEN (orig, 0);
1614 tmps = XALLOCAVEC (rtx, length);
1616 /* Skip a NULL entry in first slot. */
1617 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1619 if (i)
1620 tmps[0] = 0;
1622 for (; i < length; i++)
1624 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1625 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1627 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1630 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1633 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1634 except that values are placed in TMPS[i], and must later be moved
1635 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1637 static void
1638 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1640 rtx src;
1641 int start, i;
1642 enum machine_mode m = GET_MODE (orig_src);
1644 gcc_assert (GET_CODE (dst) == PARALLEL);
1646 if (m != VOIDmode
1647 && !SCALAR_INT_MODE_P (m)
1648 && !MEM_P (orig_src)
1649 && GET_CODE (orig_src) != CONCAT)
1651 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1652 if (imode == BLKmode)
1653 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1654 else
1655 src = gen_reg_rtx (imode);
1656 if (imode != BLKmode)
1657 src = gen_lowpart (GET_MODE (orig_src), src);
1658 emit_move_insn (src, orig_src);
1659 /* ...and back again. */
1660 if (imode != BLKmode)
1661 src = gen_lowpart (imode, src);
1662 emit_group_load_1 (tmps, dst, src, type, ssize);
1663 return;
1666 /* Check for a NULL entry, used to indicate that the parameter goes
1667 both on the stack and in registers. */
1668 if (XEXP (XVECEXP (dst, 0, 0), 0))
1669 start = 0;
1670 else
1671 start = 1;
1673 /* Process the pieces. */
1674 for (i = start; i < XVECLEN (dst, 0); i++)
1676 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1677 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1678 unsigned int bytelen = GET_MODE_SIZE (mode);
1679 int shift = 0;
1681 /* Handle trailing fragments that run over the size of the struct. */
1682 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1684 /* Arrange to shift the fragment to where it belongs.
1685 extract_bit_field loads to the lsb of the reg. */
1686 if (
1687 #ifdef BLOCK_REG_PADDING
1688 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1689 == (BYTES_BIG_ENDIAN ? upward : downward)
1690 #else
1691 BYTES_BIG_ENDIAN
1692 #endif
1694 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1695 bytelen = ssize - bytepos;
1696 gcc_assert (bytelen > 0);
1699 /* If we won't be loading directly from memory, protect the real source
1700 from strange tricks we might play; but make sure that the source can
1701 be loaded directly into the destination. */
1702 src = orig_src;
1703 if (!MEM_P (orig_src)
1704 && (!CONSTANT_P (orig_src)
1705 || (GET_MODE (orig_src) != mode
1706 && GET_MODE (orig_src) != VOIDmode)))
1708 if (GET_MODE (orig_src) == VOIDmode)
1709 src = gen_reg_rtx (mode);
1710 else
1711 src = gen_reg_rtx (GET_MODE (orig_src));
1713 emit_move_insn (src, orig_src);
1716 /* Optimize the access just a bit. */
1717 if (MEM_P (src)
1718 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1719 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1720 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1721 && bytelen == GET_MODE_SIZE (mode))
1723 tmps[i] = gen_reg_rtx (mode);
1724 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1726 else if (COMPLEX_MODE_P (mode)
1727 && GET_MODE (src) == mode
1728 && bytelen == GET_MODE_SIZE (mode))
1729 /* Let emit_move_complex do the bulk of the work. */
1730 tmps[i] = src;
1731 else if (GET_CODE (src) == CONCAT)
1733 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1734 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1736 if ((bytepos == 0 && bytelen == slen0)
1737 || (bytepos != 0 && bytepos + bytelen <= slen))
1739 /* The following assumes that the concatenated objects all
1740 have the same size. In this case, a simple calculation
1741 can be used to determine the object and the bit field
1742 to be extracted. */
1743 tmps[i] = XEXP (src, bytepos / slen0);
1744 if (! CONSTANT_P (tmps[i])
1745 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1746 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1747 (bytepos % slen0) * BITS_PER_UNIT,
1748 1, NULL_RTX, mode, mode);
1750 else
1752 rtx mem;
1754 gcc_assert (!bytepos);
1755 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1756 emit_move_insn (mem, src);
1757 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1758 0, 1, NULL_RTX, mode, mode);
1761 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1762 SIMD register, which is currently broken. While we get GCC
1763 to emit proper RTL for these cases, let's dump to memory. */
1764 else if (VECTOR_MODE_P (GET_MODE (dst))
1765 && REG_P (src))
1767 int slen = GET_MODE_SIZE (GET_MODE (src));
1768 rtx mem;
1770 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1771 emit_move_insn (mem, src);
1772 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1774 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1775 && XVECLEN (dst, 0) > 1)
1776 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1777 else if (CONSTANT_P (src))
1779 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1781 if (len == ssize)
1782 tmps[i] = src;
1783 else
1785 rtx first, second;
1787 gcc_assert (2 * len == ssize);
1788 split_double (src, &first, &second);
1789 if (i)
1790 tmps[i] = second;
1791 else
1792 tmps[i] = first;
1795 else if (REG_P (src) && GET_MODE (src) == mode)
1796 tmps[i] = src;
1797 else
1798 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1799 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1800 mode, mode);
1802 if (shift)
1803 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1804 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1808 /* Emit code to move a block SRC of type TYPE to a block DST,
1809 where DST is non-consecutive registers represented by a PARALLEL.
1810 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1811 if not known. */
1813 void
1814 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1816 rtx *tmps;
1817 int i;
1819 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1820 emit_group_load_1 (tmps, dst, src, type, ssize);
1822 /* Copy the extracted pieces into the proper (probable) hard regs. */
1823 for (i = 0; i < XVECLEN (dst, 0); i++)
1825 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1826 if (d == NULL)
1827 continue;
1828 emit_move_insn (d, tmps[i]);
1832 /* Similar, but load SRC into new pseudos in a format that looks like
1833 PARALLEL. This can later be fed to emit_group_move to get things
1834 in the right place. */
1837 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1839 rtvec vec;
1840 int i;
1842 vec = rtvec_alloc (XVECLEN (parallel, 0));
1843 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1845 /* Convert the vector to look just like the original PARALLEL, except
1846 with the computed values. */
1847 for (i = 0; i < XVECLEN (parallel, 0); i++)
1849 rtx e = XVECEXP (parallel, 0, i);
1850 rtx d = XEXP (e, 0);
1852 if (d)
1854 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1855 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1857 RTVEC_ELT (vec, i) = e;
1860 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1863 /* Emit code to move a block SRC to block DST, where SRC and DST are
1864 non-consecutive groups of registers, each represented by a PARALLEL. */
1866 void
1867 emit_group_move (rtx dst, rtx src)
1869 int i;
1871 gcc_assert (GET_CODE (src) == PARALLEL
1872 && GET_CODE (dst) == PARALLEL
1873 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1875 /* Skip first entry if NULL. */
1876 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1877 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1878 XEXP (XVECEXP (src, 0, i), 0));
1881 /* Move a group of registers represented by a PARALLEL into pseudos. */
1884 emit_group_move_into_temps (rtx src)
1886 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1887 int i;
1889 for (i = 0; i < XVECLEN (src, 0); i++)
1891 rtx e = XVECEXP (src, 0, i);
1892 rtx d = XEXP (e, 0);
1894 if (d)
1895 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1896 RTVEC_ELT (vec, i) = e;
1899 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1902 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1903 where SRC is non-consecutive registers represented by a PARALLEL.
1904 SSIZE represents the total size of block ORIG_DST, or -1 if not
1905 known. */
1907 void
1908 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1910 rtx *tmps, dst;
1911 int start, finish, i;
1912 enum machine_mode m = GET_MODE (orig_dst);
1914 gcc_assert (GET_CODE (src) == PARALLEL);
1916 if (!SCALAR_INT_MODE_P (m)
1917 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1919 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1920 if (imode == BLKmode)
1921 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1922 else
1923 dst = gen_reg_rtx (imode);
1924 emit_group_store (dst, src, type, ssize);
1925 if (imode != BLKmode)
1926 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1927 emit_move_insn (orig_dst, dst);
1928 return;
1931 /* Check for a NULL entry, used to indicate that the parameter goes
1932 both on the stack and in registers. */
1933 if (XEXP (XVECEXP (src, 0, 0), 0))
1934 start = 0;
1935 else
1936 start = 1;
1937 finish = XVECLEN (src, 0);
1939 tmps = XALLOCAVEC (rtx, finish);
1941 /* Copy the (probable) hard regs into pseudos. */
1942 for (i = start; i < finish; i++)
1944 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1945 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1947 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1948 emit_move_insn (tmps[i], reg);
1950 else
1951 tmps[i] = reg;
1954 /* If we won't be storing directly into memory, protect the real destination
1955 from strange tricks we might play. */
1956 dst = orig_dst;
1957 if (GET_CODE (dst) == PARALLEL)
1959 rtx temp;
1961 /* We can get a PARALLEL dst if there is a conditional expression in
1962 a return statement. In that case, the dst and src are the same,
1963 so no action is necessary. */
1964 if (rtx_equal_p (dst, src))
1965 return;
1967 /* It is unclear if we can ever reach here, but we may as well handle
1968 it. Allocate a temporary, and split this into a store/load to/from
1969 the temporary. */
1971 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1972 emit_group_store (temp, src, type, ssize);
1973 emit_group_load (dst, temp, type, ssize);
1974 return;
1976 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1978 enum machine_mode outer = GET_MODE (dst);
1979 enum machine_mode inner;
1980 HOST_WIDE_INT bytepos;
1981 bool done = false;
1982 rtx temp;
1984 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1985 dst = gen_reg_rtx (outer);
1987 /* Make life a bit easier for combine. */
1988 /* If the first element of the vector is the low part
1989 of the destination mode, use a paradoxical subreg to
1990 initialize the destination. */
1991 if (start < finish)
1993 inner = GET_MODE (tmps[start]);
1994 bytepos = subreg_lowpart_offset (inner, outer);
1995 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1997 temp = simplify_gen_subreg (outer, tmps[start],
1998 inner, 0);
1999 if (temp)
2001 emit_move_insn (dst, temp);
2002 done = true;
2003 start++;
2008 /* If the first element wasn't the low part, try the last. */
2009 if (!done
2010 && start < finish - 1)
2012 inner = GET_MODE (tmps[finish - 1]);
2013 bytepos = subreg_lowpart_offset (inner, outer);
2014 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2016 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2017 inner, 0);
2018 if (temp)
2020 emit_move_insn (dst, temp);
2021 done = true;
2022 finish--;
2027 /* Otherwise, simply initialize the result to zero. */
2028 if (!done)
2029 emit_move_insn (dst, CONST0_RTX (outer));
2032 /* Process the pieces. */
2033 for (i = start; i < finish; i++)
2035 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2036 enum machine_mode mode = GET_MODE (tmps[i]);
2037 unsigned int bytelen = GET_MODE_SIZE (mode);
2038 unsigned int adj_bytelen = bytelen;
2039 rtx dest = dst;
2041 /* Handle trailing fragments that run over the size of the struct. */
2042 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2043 adj_bytelen = ssize - bytepos;
2045 if (GET_CODE (dst) == CONCAT)
2047 if (bytepos + adj_bytelen
2048 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2049 dest = XEXP (dst, 0);
2050 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2052 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2053 dest = XEXP (dst, 1);
2055 else
2057 enum machine_mode dest_mode = GET_MODE (dest);
2058 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2060 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2062 if (GET_MODE_ALIGNMENT (dest_mode)
2063 >= GET_MODE_ALIGNMENT (tmp_mode))
2065 dest = assign_stack_temp (dest_mode,
2066 GET_MODE_SIZE (dest_mode),
2068 emit_move_insn (adjust_address (dest,
2069 tmp_mode,
2070 bytepos),
2071 tmps[i]);
2072 dst = dest;
2074 else
2076 dest = assign_stack_temp (tmp_mode,
2077 GET_MODE_SIZE (tmp_mode),
2079 emit_move_insn (dest, tmps[i]);
2080 dst = adjust_address (dest, dest_mode, bytepos);
2082 break;
2086 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2088 /* store_bit_field always takes its value from the lsb.
2089 Move the fragment to the lsb if it's not already there. */
2090 if (
2091 #ifdef BLOCK_REG_PADDING
2092 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2093 == (BYTES_BIG_ENDIAN ? upward : downward)
2094 #else
2095 BYTES_BIG_ENDIAN
2096 #endif
2099 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2100 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2101 build_int_cst (NULL_TREE, shift),
2102 tmps[i], 0);
2104 bytelen = adj_bytelen;
2107 /* Optimize the access just a bit. */
2108 if (MEM_P (dest)
2109 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2110 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2111 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2112 && bytelen == GET_MODE_SIZE (mode))
2113 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2114 else
2115 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2116 mode, tmps[i]);
2119 /* Copy from the pseudo into the (probable) hard reg. */
2120 if (orig_dst != dst)
2121 emit_move_insn (orig_dst, dst);
2124 /* Generate code to copy a BLKmode object of TYPE out of a
2125 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2126 is null, a stack temporary is created. TGTBLK is returned.
2128 The purpose of this routine is to handle functions that return
2129 BLKmode structures in registers. Some machines (the PA for example)
2130 want to return all small structures in registers regardless of the
2131 structure's alignment. */
2134 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2136 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2137 rtx src = NULL, dst = NULL;
2138 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2139 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2140 enum machine_mode copy_mode;
2142 if (tgtblk == 0)
2144 tgtblk = assign_temp (build_qualified_type (type,
2145 (TYPE_QUALS (type)
2146 | TYPE_QUAL_CONST)),
2147 0, 1, 1);
2148 preserve_temp_slots (tgtblk);
2151 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2152 into a new pseudo which is a full word. */
2154 if (GET_MODE (srcreg) != BLKmode
2155 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2156 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2158 /* If the structure doesn't take up a whole number of words, see whether
2159 SRCREG is padded on the left or on the right. If it's on the left,
2160 set PADDING_CORRECTION to the number of bits to skip.
2162 In most ABIs, the structure will be returned at the least end of
2163 the register, which translates to right padding on little-endian
2164 targets and left padding on big-endian targets. The opposite
2165 holds if the structure is returned at the most significant
2166 end of the register. */
2167 if (bytes % UNITS_PER_WORD != 0
2168 && (targetm.calls.return_in_msb (type)
2169 ? !BYTES_BIG_ENDIAN
2170 : BYTES_BIG_ENDIAN))
2171 padding_correction
2172 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2174 /* Copy the structure BITSIZE bits at a time. If the target lives in
2175 memory, take care of not reading/writing past its end by selecting
2176 a copy mode suited to BITSIZE. This should always be possible given
2177 how it is computed.
2179 We could probably emit more efficient code for machines which do not use
2180 strict alignment, but it doesn't seem worth the effort at the current
2181 time. */
2183 copy_mode = word_mode;
2184 if (MEM_P (tgtblk))
2186 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2187 if (mem_mode != BLKmode)
2188 copy_mode = mem_mode;
2191 for (bitpos = 0, xbitpos = padding_correction;
2192 bitpos < bytes * BITS_PER_UNIT;
2193 bitpos += bitsize, xbitpos += bitsize)
2195 /* We need a new source operand each time xbitpos is on a
2196 word boundary and when xbitpos == padding_correction
2197 (the first time through). */
2198 if (xbitpos % BITS_PER_WORD == 0
2199 || xbitpos == padding_correction)
2200 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2201 GET_MODE (srcreg));
2203 /* We need a new destination operand each time bitpos is on
2204 a word boundary. */
2205 if (bitpos % BITS_PER_WORD == 0)
2206 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2208 /* Use xbitpos for the source extraction (right justified) and
2209 bitpos for the destination store (left justified). */
2210 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2211 extract_bit_field (src, bitsize,
2212 xbitpos % BITS_PER_WORD, 1,
2213 NULL_RTX, copy_mode, copy_mode));
2216 return tgtblk;
2219 /* Add a USE expression for REG to the (possibly empty) list pointed
2220 to by CALL_FUSAGE. REG must denote a hard register. */
2222 void
2223 use_reg (rtx *call_fusage, rtx reg)
2225 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2227 *call_fusage
2228 = gen_rtx_EXPR_LIST (VOIDmode,
2229 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2232 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2233 starting at REGNO. All of these registers must be hard registers. */
2235 void
2236 use_regs (rtx *call_fusage, int regno, int nregs)
2238 int i;
2240 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2242 for (i = 0; i < nregs; i++)
2243 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2246 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2247 PARALLEL REGS. This is for calls that pass values in multiple
2248 non-contiguous locations. The Irix 6 ABI has examples of this. */
2250 void
2251 use_group_regs (rtx *call_fusage, rtx regs)
2253 int i;
2255 for (i = 0; i < XVECLEN (regs, 0); i++)
2257 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2259 /* A NULL entry means the parameter goes both on the stack and in
2260 registers. This can also be a MEM for targets that pass values
2261 partially on the stack and partially in registers. */
2262 if (reg != 0 && REG_P (reg))
2263 use_reg (call_fusage, reg);
2267 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2268 assigment and the code of the expresion on the RHS is CODE. Return
2269 NULL otherwise. */
2271 static gimple
2272 get_def_for_expr (tree name, enum tree_code code)
2274 gimple def_stmt;
2276 if (TREE_CODE (name) != SSA_NAME)
2277 return NULL;
2279 def_stmt = get_gimple_for_ssa_name (name);
2280 if (!def_stmt
2281 || gimple_assign_rhs_code (def_stmt) != code)
2282 return NULL;
2284 return def_stmt;
2288 /* Determine whether the LEN bytes generated by CONSTFUN can be
2289 stored to memory using several move instructions. CONSTFUNDATA is
2290 a pointer which will be passed as argument in every CONSTFUN call.
2291 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2292 a memset operation and false if it's a copy of a constant string.
2293 Return nonzero if a call to store_by_pieces should succeed. */
2296 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2297 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2298 void *constfundata, unsigned int align, bool memsetp)
2300 unsigned HOST_WIDE_INT l;
2301 unsigned int max_size;
2302 HOST_WIDE_INT offset = 0;
2303 enum machine_mode mode, tmode;
2304 enum insn_code icode;
2305 int reverse;
2306 rtx cst;
2308 if (len == 0)
2309 return 1;
2311 if (! (memsetp
2312 ? SET_BY_PIECES_P (len, align)
2313 : STORE_BY_PIECES_P (len, align)))
2314 return 0;
2316 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2317 if (align >= GET_MODE_ALIGNMENT (tmode))
2318 align = GET_MODE_ALIGNMENT (tmode);
2319 else
2321 enum machine_mode xmode;
2323 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2324 tmode != VOIDmode;
2325 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2326 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2327 || SLOW_UNALIGNED_ACCESS (tmode, align))
2328 break;
2330 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2333 /* We would first store what we can in the largest integer mode, then go to
2334 successively smaller modes. */
2336 for (reverse = 0;
2337 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2338 reverse++)
2340 l = len;
2341 mode = VOIDmode;
2342 max_size = STORE_MAX_PIECES + 1;
2343 while (max_size > 1)
2345 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2346 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2347 if (GET_MODE_SIZE (tmode) < max_size)
2348 mode = tmode;
2350 if (mode == VOIDmode)
2351 break;
2353 icode = optab_handler (mov_optab, mode)->insn_code;
2354 if (icode != CODE_FOR_nothing
2355 && align >= GET_MODE_ALIGNMENT (mode))
2357 unsigned int size = GET_MODE_SIZE (mode);
2359 while (l >= size)
2361 if (reverse)
2362 offset -= size;
2364 cst = (*constfun) (constfundata, offset, mode);
2365 if (!LEGITIMATE_CONSTANT_P (cst))
2366 return 0;
2368 if (!reverse)
2369 offset += size;
2371 l -= size;
2375 max_size = GET_MODE_SIZE (mode);
2378 /* The code above should have handled everything. */
2379 gcc_assert (!l);
2382 return 1;
2385 /* Generate several move instructions to store LEN bytes generated by
2386 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2387 pointer which will be passed as argument in every CONSTFUN call.
2388 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2389 a memset operation and false if it's a copy of a constant string.
2390 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2391 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2392 stpcpy. */
2395 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2396 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2397 void *constfundata, unsigned int align, bool memsetp, int endp)
2399 enum machine_mode to_addr_mode
2400 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2401 struct store_by_pieces_d data;
2403 if (len == 0)
2405 gcc_assert (endp != 2);
2406 return to;
2409 gcc_assert (memsetp
2410 ? SET_BY_PIECES_P (len, align)
2411 : STORE_BY_PIECES_P (len, align));
2412 data.constfun = constfun;
2413 data.constfundata = constfundata;
2414 data.len = len;
2415 data.to = to;
2416 store_by_pieces_1 (&data, align);
2417 if (endp)
2419 rtx to1;
2421 gcc_assert (!data.reverse);
2422 if (data.autinc_to)
2424 if (endp == 2)
2426 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2427 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2428 else
2429 data.to_addr = copy_to_mode_reg (to_addr_mode,
2430 plus_constant (data.to_addr,
2431 -1));
2433 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2434 data.offset);
2436 else
2438 if (endp == 2)
2439 --data.offset;
2440 to1 = adjust_address (data.to, QImode, data.offset);
2442 return to1;
2444 else
2445 return data.to;
2448 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2449 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2451 static void
2452 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2454 struct store_by_pieces_d data;
2456 if (len == 0)
2457 return;
2459 data.constfun = clear_by_pieces_1;
2460 data.constfundata = NULL;
2461 data.len = len;
2462 data.to = to;
2463 store_by_pieces_1 (&data, align);
2466 /* Callback routine for clear_by_pieces.
2467 Return const0_rtx unconditionally. */
2469 static rtx
2470 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2471 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2472 enum machine_mode mode ATTRIBUTE_UNUSED)
2474 return const0_rtx;
2477 /* Subroutine of clear_by_pieces and store_by_pieces.
2478 Generate several move instructions to store LEN bytes of block TO. (A MEM
2479 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2481 static void
2482 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2483 unsigned int align ATTRIBUTE_UNUSED)
2485 enum machine_mode to_addr_mode
2486 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2487 rtx to_addr = XEXP (data->to, 0);
2488 unsigned int max_size = STORE_MAX_PIECES + 1;
2489 enum machine_mode mode = VOIDmode, tmode;
2490 enum insn_code icode;
2492 data->offset = 0;
2493 data->to_addr = to_addr;
2494 data->autinc_to
2495 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2496 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2498 data->explicit_inc_to = 0;
2499 data->reverse
2500 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2501 if (data->reverse)
2502 data->offset = data->len;
2504 /* If storing requires more than two move insns,
2505 copy addresses to registers (to make displacements shorter)
2506 and use post-increment if available. */
2507 if (!data->autinc_to
2508 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2510 /* Determine the main mode we'll be using. */
2511 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2512 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2513 if (GET_MODE_SIZE (tmode) < max_size)
2514 mode = tmode;
2516 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2518 data->to_addr = copy_to_mode_reg (to_addr_mode,
2519 plus_constant (to_addr, data->len));
2520 data->autinc_to = 1;
2521 data->explicit_inc_to = -1;
2524 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2525 && ! data->autinc_to)
2527 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2528 data->autinc_to = 1;
2529 data->explicit_inc_to = 1;
2532 if ( !data->autinc_to && CONSTANT_P (to_addr))
2533 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2536 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2537 if (align >= GET_MODE_ALIGNMENT (tmode))
2538 align = GET_MODE_ALIGNMENT (tmode);
2539 else
2541 enum machine_mode xmode;
2543 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2544 tmode != VOIDmode;
2545 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2546 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2547 || SLOW_UNALIGNED_ACCESS (tmode, align))
2548 break;
2550 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2553 /* First store what we can in the largest integer mode, then go to
2554 successively smaller modes. */
2556 while (max_size > 1)
2558 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2559 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2560 if (GET_MODE_SIZE (tmode) < max_size)
2561 mode = tmode;
2563 if (mode == VOIDmode)
2564 break;
2566 icode = optab_handler (mov_optab, mode)->insn_code;
2567 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2568 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2570 max_size = GET_MODE_SIZE (mode);
2573 /* The code above should have handled everything. */
2574 gcc_assert (!data->len);
2577 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2578 with move instructions for mode MODE. GENFUN is the gen_... function
2579 to make a move insn for that mode. DATA has all the other info. */
2581 static void
2582 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2583 struct store_by_pieces_d *data)
2585 unsigned int size = GET_MODE_SIZE (mode);
2586 rtx to1, cst;
2588 while (data->len >= size)
2590 if (data->reverse)
2591 data->offset -= size;
2593 if (data->autinc_to)
2594 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2595 data->offset);
2596 else
2597 to1 = adjust_address (data->to, mode, data->offset);
2599 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2600 emit_insn (gen_add2_insn (data->to_addr,
2601 GEN_INT (-(HOST_WIDE_INT) size)));
2603 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2604 emit_insn ((*genfun) (to1, cst));
2606 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2607 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2609 if (! data->reverse)
2610 data->offset += size;
2612 data->len -= size;
2616 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2617 its length in bytes. */
2620 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2621 unsigned int expected_align, HOST_WIDE_INT expected_size)
2623 enum machine_mode mode = GET_MODE (object);
2624 unsigned int align;
2626 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2628 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2629 just move a zero. Otherwise, do this a piece at a time. */
2630 if (mode != BLKmode
2631 && CONST_INT_P (size)
2632 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2634 rtx zero = CONST0_RTX (mode);
2635 if (zero != NULL)
2637 emit_move_insn (object, zero);
2638 return NULL;
2641 if (COMPLEX_MODE_P (mode))
2643 zero = CONST0_RTX (GET_MODE_INNER (mode));
2644 if (zero != NULL)
2646 write_complex_part (object, zero, 0);
2647 write_complex_part (object, zero, 1);
2648 return NULL;
2653 if (size == const0_rtx)
2654 return NULL;
2656 align = MEM_ALIGN (object);
2658 if (CONST_INT_P (size)
2659 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2660 clear_by_pieces (object, INTVAL (size), align);
2661 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2662 expected_align, expected_size))
2664 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2665 return set_storage_via_libcall (object, size, const0_rtx,
2666 method == BLOCK_OP_TAILCALL);
2667 else
2668 gcc_unreachable ();
2670 return NULL;
2674 clear_storage (rtx object, rtx size, enum block_op_methods method)
2676 return clear_storage_hints (object, size, method, 0, -1);
2680 /* A subroutine of clear_storage. Expand a call to memset.
2681 Return the return value of memset, 0 otherwise. */
2684 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2686 tree call_expr, fn, object_tree, size_tree, val_tree;
2687 enum machine_mode size_mode;
2688 rtx retval;
2690 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2691 place those into new pseudos into a VAR_DECL and use them later. */
2693 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2695 size_mode = TYPE_MODE (sizetype);
2696 size = convert_to_mode (size_mode, size, 1);
2697 size = copy_to_mode_reg (size_mode, size);
2699 /* It is incorrect to use the libcall calling conventions to call
2700 memset in this context. This could be a user call to memset and
2701 the user may wish to examine the return value from memset. For
2702 targets where libcalls and normal calls have different conventions
2703 for returning pointers, we could end up generating incorrect code. */
2705 object_tree = make_tree (ptr_type_node, object);
2706 if (!CONST_INT_P (val))
2707 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2708 size_tree = make_tree (sizetype, size);
2709 val_tree = make_tree (integer_type_node, val);
2711 fn = clear_storage_libcall_fn (true);
2712 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2713 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2715 retval = expand_normal (call_expr);
2717 return retval;
2720 /* A subroutine of set_storage_via_libcall. Create the tree node
2721 for the function we use for block clears. The first time FOR_CALL
2722 is true, we call assemble_external. */
2724 tree block_clear_fn;
2726 void
2727 init_block_clear_fn (const char *asmspec)
2729 if (!block_clear_fn)
2731 tree fn, args;
2733 fn = get_identifier ("memset");
2734 args = build_function_type_list (ptr_type_node, ptr_type_node,
2735 integer_type_node, sizetype,
2736 NULL_TREE);
2738 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2739 DECL_EXTERNAL (fn) = 1;
2740 TREE_PUBLIC (fn) = 1;
2741 DECL_ARTIFICIAL (fn) = 1;
2742 TREE_NOTHROW (fn) = 1;
2743 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2744 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2746 block_clear_fn = fn;
2749 if (asmspec)
2750 set_user_assembler_name (block_clear_fn, asmspec);
2753 static tree
2754 clear_storage_libcall_fn (int for_call)
2756 static bool emitted_extern;
2758 if (!block_clear_fn)
2759 init_block_clear_fn (NULL);
2761 if (for_call && !emitted_extern)
2763 emitted_extern = true;
2764 make_decl_rtl (block_clear_fn);
2765 assemble_external (block_clear_fn);
2768 return block_clear_fn;
2771 /* Expand a setmem pattern; return true if successful. */
2773 bool
2774 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2775 unsigned int expected_align, HOST_WIDE_INT expected_size)
2777 /* Try the most limited insn first, because there's no point
2778 including more than one in the machine description unless
2779 the more limited one has some advantage. */
2781 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2782 enum machine_mode mode;
2784 if (expected_align < align)
2785 expected_align = align;
2787 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2788 mode = GET_MODE_WIDER_MODE (mode))
2790 enum insn_code code = setmem_optab[(int) mode];
2791 insn_operand_predicate_fn pred;
2793 if (code != CODE_FOR_nothing
2794 /* We don't need MODE to be narrower than
2795 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2796 the mode mask, as it is returned by the macro, it will
2797 definitely be less than the actual mode mask. */
2798 && ((CONST_INT_P (size)
2799 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2800 <= (GET_MODE_MASK (mode) >> 1)))
2801 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2802 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2803 || (*pred) (object, BLKmode))
2804 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2805 || (*pred) (opalign, VOIDmode)))
2807 rtx opsize, opchar;
2808 enum machine_mode char_mode;
2809 rtx last = get_last_insn ();
2810 rtx pat;
2812 opsize = convert_to_mode (mode, size, 1);
2813 pred = insn_data[(int) code].operand[1].predicate;
2814 if (pred != 0 && ! (*pred) (opsize, mode))
2815 opsize = copy_to_mode_reg (mode, opsize);
2817 opchar = val;
2818 char_mode = insn_data[(int) code].operand[2].mode;
2819 if (char_mode != VOIDmode)
2821 opchar = convert_to_mode (char_mode, opchar, 1);
2822 pred = insn_data[(int) code].operand[2].predicate;
2823 if (pred != 0 && ! (*pred) (opchar, char_mode))
2824 opchar = copy_to_mode_reg (char_mode, opchar);
2827 if (insn_data[(int) code].n_operands == 4)
2828 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2829 else
2830 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2831 GEN_INT (expected_align
2832 / BITS_PER_UNIT),
2833 GEN_INT (expected_size));
2834 if (pat)
2836 emit_insn (pat);
2837 return true;
2839 else
2840 delete_insns_since (last);
2844 return false;
2848 /* Write to one of the components of the complex value CPLX. Write VAL to
2849 the real part if IMAG_P is false, and the imaginary part if its true. */
2851 static void
2852 write_complex_part (rtx cplx, rtx val, bool imag_p)
2854 enum machine_mode cmode;
2855 enum machine_mode imode;
2856 unsigned ibitsize;
2858 if (GET_CODE (cplx) == CONCAT)
2860 emit_move_insn (XEXP (cplx, imag_p), val);
2861 return;
2864 cmode = GET_MODE (cplx);
2865 imode = GET_MODE_INNER (cmode);
2866 ibitsize = GET_MODE_BITSIZE (imode);
2868 /* For MEMs simplify_gen_subreg may generate an invalid new address
2869 because, e.g., the original address is considered mode-dependent
2870 by the target, which restricts simplify_subreg from invoking
2871 adjust_address_nv. Instead of preparing fallback support for an
2872 invalid address, we call adjust_address_nv directly. */
2873 if (MEM_P (cplx))
2875 emit_move_insn (adjust_address_nv (cplx, imode,
2876 imag_p ? GET_MODE_SIZE (imode) : 0),
2877 val);
2878 return;
2881 /* If the sub-object is at least word sized, then we know that subregging
2882 will work. This special case is important, since store_bit_field
2883 wants to operate on integer modes, and there's rarely an OImode to
2884 correspond to TCmode. */
2885 if (ibitsize >= BITS_PER_WORD
2886 /* For hard regs we have exact predicates. Assume we can split
2887 the original object if it spans an even number of hard regs.
2888 This special case is important for SCmode on 64-bit platforms
2889 where the natural size of floating-point regs is 32-bit. */
2890 || (REG_P (cplx)
2891 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2892 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2894 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2895 imag_p ? GET_MODE_SIZE (imode) : 0);
2896 if (part)
2898 emit_move_insn (part, val);
2899 return;
2901 else
2902 /* simplify_gen_subreg may fail for sub-word MEMs. */
2903 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2906 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2909 /* Extract one of the components of the complex value CPLX. Extract the
2910 real part if IMAG_P is false, and the imaginary part if it's true. */
2912 static rtx
2913 read_complex_part (rtx cplx, bool imag_p)
2915 enum machine_mode cmode, imode;
2916 unsigned ibitsize;
2918 if (GET_CODE (cplx) == CONCAT)
2919 return XEXP (cplx, imag_p);
2921 cmode = GET_MODE (cplx);
2922 imode = GET_MODE_INNER (cmode);
2923 ibitsize = GET_MODE_BITSIZE (imode);
2925 /* Special case reads from complex constants that got spilled to memory. */
2926 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2928 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2929 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2931 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2932 if (CONSTANT_CLASS_P (part))
2933 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2937 /* For MEMs simplify_gen_subreg may generate an invalid new address
2938 because, e.g., the original address is considered mode-dependent
2939 by the target, which restricts simplify_subreg from invoking
2940 adjust_address_nv. Instead of preparing fallback support for an
2941 invalid address, we call adjust_address_nv directly. */
2942 if (MEM_P (cplx))
2943 return adjust_address_nv (cplx, imode,
2944 imag_p ? GET_MODE_SIZE (imode) : 0);
2946 /* If the sub-object is at least word sized, then we know that subregging
2947 will work. This special case is important, since extract_bit_field
2948 wants to operate on integer modes, and there's rarely an OImode to
2949 correspond to TCmode. */
2950 if (ibitsize >= BITS_PER_WORD
2951 /* For hard regs we have exact predicates. Assume we can split
2952 the original object if it spans an even number of hard regs.
2953 This special case is important for SCmode on 64-bit platforms
2954 where the natural size of floating-point regs is 32-bit. */
2955 || (REG_P (cplx)
2956 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2957 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2959 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2960 imag_p ? GET_MODE_SIZE (imode) : 0);
2961 if (ret)
2962 return ret;
2963 else
2964 /* simplify_gen_subreg may fail for sub-word MEMs. */
2965 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2968 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2969 true, NULL_RTX, imode, imode);
2972 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2973 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2974 represented in NEW_MODE. If FORCE is true, this will never happen, as
2975 we'll force-create a SUBREG if needed. */
2977 static rtx
2978 emit_move_change_mode (enum machine_mode new_mode,
2979 enum machine_mode old_mode, rtx x, bool force)
2981 rtx ret;
2983 if (push_operand (x, GET_MODE (x)))
2985 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2986 MEM_COPY_ATTRIBUTES (ret, x);
2988 else if (MEM_P (x))
2990 /* We don't have to worry about changing the address since the
2991 size in bytes is supposed to be the same. */
2992 if (reload_in_progress)
2994 /* Copy the MEM to change the mode and move any
2995 substitutions from the old MEM to the new one. */
2996 ret = adjust_address_nv (x, new_mode, 0);
2997 copy_replacements (x, ret);
2999 else
3000 ret = adjust_address (x, new_mode, 0);
3002 else
3004 /* Note that we do want simplify_subreg's behavior of validating
3005 that the new mode is ok for a hard register. If we were to use
3006 simplify_gen_subreg, we would create the subreg, but would
3007 probably run into the target not being able to implement it. */
3008 /* Except, of course, when FORCE is true, when this is exactly what
3009 we want. Which is needed for CCmodes on some targets. */
3010 if (force)
3011 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3012 else
3013 ret = simplify_subreg (new_mode, x, old_mode, 0);
3016 return ret;
3019 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3020 an integer mode of the same size as MODE. Returns the instruction
3021 emitted, or NULL if such a move could not be generated. */
3023 static rtx
3024 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3026 enum machine_mode imode;
3027 enum insn_code code;
3029 /* There must exist a mode of the exact size we require. */
3030 imode = int_mode_for_mode (mode);
3031 if (imode == BLKmode)
3032 return NULL_RTX;
3034 /* The target must support moves in this mode. */
3035 code = optab_handler (mov_optab, imode)->insn_code;
3036 if (code == CODE_FOR_nothing)
3037 return NULL_RTX;
3039 x = emit_move_change_mode (imode, mode, x, force);
3040 if (x == NULL_RTX)
3041 return NULL_RTX;
3042 y = emit_move_change_mode (imode, mode, y, force);
3043 if (y == NULL_RTX)
3044 return NULL_RTX;
3045 return emit_insn (GEN_FCN (code) (x, y));
3048 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3049 Return an equivalent MEM that does not use an auto-increment. */
3051 static rtx
3052 emit_move_resolve_push (enum machine_mode mode, rtx x)
3054 enum rtx_code code = GET_CODE (XEXP (x, 0));
3055 HOST_WIDE_INT adjust;
3056 rtx temp;
3058 adjust = GET_MODE_SIZE (mode);
3059 #ifdef PUSH_ROUNDING
3060 adjust = PUSH_ROUNDING (adjust);
3061 #endif
3062 if (code == PRE_DEC || code == POST_DEC)
3063 adjust = -adjust;
3064 else if (code == PRE_MODIFY || code == POST_MODIFY)
3066 rtx expr = XEXP (XEXP (x, 0), 1);
3067 HOST_WIDE_INT val;
3069 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3070 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3071 val = INTVAL (XEXP (expr, 1));
3072 if (GET_CODE (expr) == MINUS)
3073 val = -val;
3074 gcc_assert (adjust == val || adjust == -val);
3075 adjust = val;
3078 /* Do not use anti_adjust_stack, since we don't want to update
3079 stack_pointer_delta. */
3080 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3081 GEN_INT (adjust), stack_pointer_rtx,
3082 0, OPTAB_LIB_WIDEN);
3083 if (temp != stack_pointer_rtx)
3084 emit_move_insn (stack_pointer_rtx, temp);
3086 switch (code)
3088 case PRE_INC:
3089 case PRE_DEC:
3090 case PRE_MODIFY:
3091 temp = stack_pointer_rtx;
3092 break;
3093 case POST_INC:
3094 case POST_DEC:
3095 case POST_MODIFY:
3096 temp = plus_constant (stack_pointer_rtx, -adjust);
3097 break;
3098 default:
3099 gcc_unreachable ();
3102 return replace_equiv_address (x, temp);
3105 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3106 X is known to satisfy push_operand, and MODE is known to be complex.
3107 Returns the last instruction emitted. */
3110 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3112 enum machine_mode submode = GET_MODE_INNER (mode);
3113 bool imag_first;
3115 #ifdef PUSH_ROUNDING
3116 unsigned int submodesize = GET_MODE_SIZE (submode);
3118 /* In case we output to the stack, but the size is smaller than the
3119 machine can push exactly, we need to use move instructions. */
3120 if (PUSH_ROUNDING (submodesize) != submodesize)
3122 x = emit_move_resolve_push (mode, x);
3123 return emit_move_insn (x, y);
3125 #endif
3127 /* Note that the real part always precedes the imag part in memory
3128 regardless of machine's endianness. */
3129 switch (GET_CODE (XEXP (x, 0)))
3131 case PRE_DEC:
3132 case POST_DEC:
3133 imag_first = true;
3134 break;
3135 case PRE_INC:
3136 case POST_INC:
3137 imag_first = false;
3138 break;
3139 default:
3140 gcc_unreachable ();
3143 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3144 read_complex_part (y, imag_first));
3145 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3146 read_complex_part (y, !imag_first));
3149 /* A subroutine of emit_move_complex. Perform the move from Y to X
3150 via two moves of the parts. Returns the last instruction emitted. */
3153 emit_move_complex_parts (rtx x, rtx y)
3155 /* Show the output dies here. This is necessary for SUBREGs
3156 of pseudos since we cannot track their lifetimes correctly;
3157 hard regs shouldn't appear here except as return values. */
3158 if (!reload_completed && !reload_in_progress
3159 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3160 emit_clobber (x);
3162 write_complex_part (x, read_complex_part (y, false), false);
3163 write_complex_part (x, read_complex_part (y, true), true);
3165 return get_last_insn ();
3168 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3169 MODE is known to be complex. Returns the last instruction emitted. */
3171 static rtx
3172 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3174 bool try_int;
3176 /* Need to take special care for pushes, to maintain proper ordering
3177 of the data, and possibly extra padding. */
3178 if (push_operand (x, mode))
3179 return emit_move_complex_push (mode, x, y);
3181 /* See if we can coerce the target into moving both values at once. */
3183 /* Move floating point as parts. */
3184 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3185 && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
3186 try_int = false;
3187 /* Not possible if the values are inherently not adjacent. */
3188 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3189 try_int = false;
3190 /* Is possible if both are registers (or subregs of registers). */
3191 else if (register_operand (x, mode) && register_operand (y, mode))
3192 try_int = true;
3193 /* If one of the operands is a memory, and alignment constraints
3194 are friendly enough, we may be able to do combined memory operations.
3195 We do not attempt this if Y is a constant because that combination is
3196 usually better with the by-parts thing below. */
3197 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3198 && (!STRICT_ALIGNMENT
3199 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3200 try_int = true;
3201 else
3202 try_int = false;
3204 if (try_int)
3206 rtx ret;
3208 /* For memory to memory moves, optimal behavior can be had with the
3209 existing block move logic. */
3210 if (MEM_P (x) && MEM_P (y))
3212 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3213 BLOCK_OP_NO_LIBCALL);
3214 return get_last_insn ();
3217 ret = emit_move_via_integer (mode, x, y, true);
3218 if (ret)
3219 return ret;
3222 return emit_move_complex_parts (x, y);
3225 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3226 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3228 static rtx
3229 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3231 rtx ret;
3233 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3234 if (mode != CCmode)
3236 enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
3237 if (code != CODE_FOR_nothing)
3239 x = emit_move_change_mode (CCmode, mode, x, true);
3240 y = emit_move_change_mode (CCmode, mode, y, true);
3241 return emit_insn (GEN_FCN (code) (x, y));
3245 /* Otherwise, find the MODE_INT mode of the same width. */
3246 ret = emit_move_via_integer (mode, x, y, false);
3247 gcc_assert (ret != NULL);
3248 return ret;
3251 /* Return true if word I of OP lies entirely in the
3252 undefined bits of a paradoxical subreg. */
3254 static bool
3255 undefined_operand_subword_p (const_rtx op, int i)
3257 enum machine_mode innermode, innermostmode;
3258 int offset;
3259 if (GET_CODE (op) != SUBREG)
3260 return false;
3261 innermode = GET_MODE (op);
3262 innermostmode = GET_MODE (SUBREG_REG (op));
3263 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3264 /* The SUBREG_BYTE represents offset, as if the value were stored in
3265 memory, except for a paradoxical subreg where we define
3266 SUBREG_BYTE to be 0; undo this exception as in
3267 simplify_subreg. */
3268 if (SUBREG_BYTE (op) == 0
3269 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3271 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3272 if (WORDS_BIG_ENDIAN)
3273 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3274 if (BYTES_BIG_ENDIAN)
3275 offset += difference % UNITS_PER_WORD;
3277 if (offset >= GET_MODE_SIZE (innermostmode)
3278 || offset <= -GET_MODE_SIZE (word_mode))
3279 return true;
3280 return false;
3283 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3284 MODE is any multi-word or full-word mode that lacks a move_insn
3285 pattern. Note that you will get better code if you define such
3286 patterns, even if they must turn into multiple assembler instructions. */
3288 static rtx
3289 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3291 rtx last_insn = 0;
3292 rtx seq, inner;
3293 bool need_clobber;
3294 int i;
3296 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3298 /* If X is a push on the stack, do the push now and replace
3299 X with a reference to the stack pointer. */
3300 if (push_operand (x, mode))
3301 x = emit_move_resolve_push (mode, x);
3303 /* If we are in reload, see if either operand is a MEM whose address
3304 is scheduled for replacement. */
3305 if (reload_in_progress && MEM_P (x)
3306 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3307 x = replace_equiv_address_nv (x, inner);
3308 if (reload_in_progress && MEM_P (y)
3309 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3310 y = replace_equiv_address_nv (y, inner);
3312 start_sequence ();
3314 need_clobber = false;
3315 for (i = 0;
3316 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3317 i++)
3319 rtx xpart = operand_subword (x, i, 1, mode);
3320 rtx ypart;
3322 /* Do not generate code for a move if it would come entirely
3323 from the undefined bits of a paradoxical subreg. */
3324 if (undefined_operand_subword_p (y, i))
3325 continue;
3327 ypart = operand_subword (y, i, 1, mode);
3329 /* If we can't get a part of Y, put Y into memory if it is a
3330 constant. Otherwise, force it into a register. Then we must
3331 be able to get a part of Y. */
3332 if (ypart == 0 && CONSTANT_P (y))
3334 y = use_anchored_address (force_const_mem (mode, y));
3335 ypart = operand_subword (y, i, 1, mode);
3337 else if (ypart == 0)
3338 ypart = operand_subword_force (y, i, mode);
3340 gcc_assert (xpart && ypart);
3342 need_clobber |= (GET_CODE (xpart) == SUBREG);
3344 last_insn = emit_move_insn (xpart, ypart);
3347 seq = get_insns ();
3348 end_sequence ();
3350 /* Show the output dies here. This is necessary for SUBREGs
3351 of pseudos since we cannot track their lifetimes correctly;
3352 hard regs shouldn't appear here except as return values.
3353 We never want to emit such a clobber after reload. */
3354 if (x != y
3355 && ! (reload_in_progress || reload_completed)
3356 && need_clobber != 0)
3357 emit_clobber (x);
3359 emit_insn (seq);
3361 return last_insn;
3364 /* Low level part of emit_move_insn.
3365 Called just like emit_move_insn, but assumes X and Y
3366 are basically valid. */
3369 emit_move_insn_1 (rtx x, rtx y)
3371 enum machine_mode mode = GET_MODE (x);
3372 enum insn_code code;
3374 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3376 code = optab_handler (mov_optab, mode)->insn_code;
3377 if (code != CODE_FOR_nothing)
3378 return emit_insn (GEN_FCN (code) (x, y));
3380 /* Expand complex moves by moving real part and imag part. */
3381 if (COMPLEX_MODE_P (mode))
3382 return emit_move_complex (mode, x, y);
3384 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3385 || ALL_FIXED_POINT_MODE_P (mode))
3387 rtx result = emit_move_via_integer (mode, x, y, true);
3389 /* If we can't find an integer mode, use multi words. */
3390 if (result)
3391 return result;
3392 else
3393 return emit_move_multi_word (mode, x, y);
3396 if (GET_MODE_CLASS (mode) == MODE_CC)
3397 return emit_move_ccmode (mode, x, y);
3399 /* Try using a move pattern for the corresponding integer mode. This is
3400 only safe when simplify_subreg can convert MODE constants into integer
3401 constants. At present, it can only do this reliably if the value
3402 fits within a HOST_WIDE_INT. */
3403 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3405 rtx ret = emit_move_via_integer (mode, x, y, false);
3406 if (ret)
3407 return ret;
3410 return emit_move_multi_word (mode, x, y);
3413 /* Generate code to copy Y into X.
3414 Both Y and X must have the same mode, except that
3415 Y can be a constant with VOIDmode.
3416 This mode cannot be BLKmode; use emit_block_move for that.
3418 Return the last instruction emitted. */
3421 emit_move_insn (rtx x, rtx y)
3423 enum machine_mode mode = GET_MODE (x);
3424 rtx y_cst = NULL_RTX;
3425 rtx last_insn, set;
3427 gcc_assert (mode != BLKmode
3428 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3430 if (CONSTANT_P (y))
3432 if (optimize
3433 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3434 && (last_insn = compress_float_constant (x, y)))
3435 return last_insn;
3437 y_cst = y;
3439 if (!LEGITIMATE_CONSTANT_P (y))
3441 y = force_const_mem (mode, y);
3443 /* If the target's cannot_force_const_mem prevented the spill,
3444 assume that the target's move expanders will also take care
3445 of the non-legitimate constant. */
3446 if (!y)
3447 y = y_cst;
3448 else
3449 y = use_anchored_address (y);
3453 /* If X or Y are memory references, verify that their addresses are valid
3454 for the machine. */
3455 if (MEM_P (x)
3456 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3457 MEM_ADDR_SPACE (x))
3458 && ! push_operand (x, GET_MODE (x))))
3459 x = validize_mem (x);
3461 if (MEM_P (y)
3462 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3463 MEM_ADDR_SPACE (y)))
3464 y = validize_mem (y);
3466 gcc_assert (mode != BLKmode);
3468 last_insn = emit_move_insn_1 (x, y);
3470 if (y_cst && REG_P (x)
3471 && (set = single_set (last_insn)) != NULL_RTX
3472 && SET_DEST (set) == x
3473 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3474 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3476 return last_insn;
3479 /* If Y is representable exactly in a narrower mode, and the target can
3480 perform the extension directly from constant or memory, then emit the
3481 move as an extension. */
3483 static rtx
3484 compress_float_constant (rtx x, rtx y)
3486 enum machine_mode dstmode = GET_MODE (x);
3487 enum machine_mode orig_srcmode = GET_MODE (y);
3488 enum machine_mode srcmode;
3489 REAL_VALUE_TYPE r;
3490 int oldcost, newcost;
3491 bool speed = optimize_insn_for_speed_p ();
3493 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3495 if (LEGITIMATE_CONSTANT_P (y))
3496 oldcost = rtx_cost (y, SET, speed);
3497 else
3498 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3500 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3501 srcmode != orig_srcmode;
3502 srcmode = GET_MODE_WIDER_MODE (srcmode))
3504 enum insn_code ic;
3505 rtx trunc_y, last_insn;
3507 /* Skip if the target can't extend this way. */
3508 ic = can_extend_p (dstmode, srcmode, 0);
3509 if (ic == CODE_FOR_nothing)
3510 continue;
3512 /* Skip if the narrowed value isn't exact. */
3513 if (! exact_real_truncate (srcmode, &r))
3514 continue;
3516 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3518 if (LEGITIMATE_CONSTANT_P (trunc_y))
3520 /* Skip if the target needs extra instructions to perform
3521 the extension. */
3522 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3523 continue;
3524 /* This is valid, but may not be cheaper than the original. */
3525 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3526 if (oldcost < newcost)
3527 continue;
3529 else if (float_extend_from_mem[dstmode][srcmode])
3531 trunc_y = force_const_mem (srcmode, trunc_y);
3532 /* This is valid, but may not be cheaper than the original. */
3533 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3534 if (oldcost < newcost)
3535 continue;
3536 trunc_y = validize_mem (trunc_y);
3538 else
3539 continue;
3541 /* For CSE's benefit, force the compressed constant pool entry
3542 into a new pseudo. This constant may be used in different modes,
3543 and if not, combine will put things back together for us. */
3544 trunc_y = force_reg (srcmode, trunc_y);
3545 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3546 last_insn = get_last_insn ();
3548 if (REG_P (x))
3549 set_unique_reg_note (last_insn, REG_EQUAL, y);
3551 return last_insn;
3554 return NULL_RTX;
3557 /* Pushing data onto the stack. */
3559 /* Push a block of length SIZE (perhaps variable)
3560 and return an rtx to address the beginning of the block.
3561 The value may be virtual_outgoing_args_rtx.
3563 EXTRA is the number of bytes of padding to push in addition to SIZE.
3564 BELOW nonzero means this padding comes at low addresses;
3565 otherwise, the padding comes at high addresses. */
3568 push_block (rtx size, int extra, int below)
3570 rtx temp;
3572 size = convert_modes (Pmode, ptr_mode, size, 1);
3573 if (CONSTANT_P (size))
3574 anti_adjust_stack (plus_constant (size, extra));
3575 else if (REG_P (size) && extra == 0)
3576 anti_adjust_stack (size);
3577 else
3579 temp = copy_to_mode_reg (Pmode, size);
3580 if (extra != 0)
3581 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3582 temp, 0, OPTAB_LIB_WIDEN);
3583 anti_adjust_stack (temp);
3586 #ifndef STACK_GROWS_DOWNWARD
3587 if (0)
3588 #else
3589 if (1)
3590 #endif
3592 temp = virtual_outgoing_args_rtx;
3593 if (extra != 0 && below)
3594 temp = plus_constant (temp, extra);
3596 else
3598 if (CONST_INT_P (size))
3599 temp = plus_constant (virtual_outgoing_args_rtx,
3600 -INTVAL (size) - (below ? 0 : extra));
3601 else if (extra != 0 && !below)
3602 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3603 negate_rtx (Pmode, plus_constant (size, extra)));
3604 else
3605 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3606 negate_rtx (Pmode, size));
3609 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3612 #ifdef PUSH_ROUNDING
3614 /* Emit single push insn. */
3616 static void
3617 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3619 rtx dest_addr;
3620 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3621 rtx dest;
3622 enum insn_code icode;
3623 insn_operand_predicate_fn pred;
3625 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3626 /* If there is push pattern, use it. Otherwise try old way of throwing
3627 MEM representing push operation to move expander. */
3628 icode = optab_handler (push_optab, mode)->insn_code;
3629 if (icode != CODE_FOR_nothing)
3631 if (((pred = insn_data[(int) icode].operand[0].predicate)
3632 && !((*pred) (x, mode))))
3633 x = force_reg (mode, x);
3634 emit_insn (GEN_FCN (icode) (x));
3635 return;
3637 if (GET_MODE_SIZE (mode) == rounded_size)
3638 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3639 /* If we are to pad downward, adjust the stack pointer first and
3640 then store X into the stack location using an offset. This is
3641 because emit_move_insn does not know how to pad; it does not have
3642 access to type. */
3643 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3645 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3646 HOST_WIDE_INT offset;
3648 emit_move_insn (stack_pointer_rtx,
3649 expand_binop (Pmode,
3650 #ifdef STACK_GROWS_DOWNWARD
3651 sub_optab,
3652 #else
3653 add_optab,
3654 #endif
3655 stack_pointer_rtx,
3656 GEN_INT (rounded_size),
3657 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3659 offset = (HOST_WIDE_INT) padding_size;
3660 #ifdef STACK_GROWS_DOWNWARD
3661 if (STACK_PUSH_CODE == POST_DEC)
3662 /* We have already decremented the stack pointer, so get the
3663 previous value. */
3664 offset += (HOST_WIDE_INT) rounded_size;
3665 #else
3666 if (STACK_PUSH_CODE == POST_INC)
3667 /* We have already incremented the stack pointer, so get the
3668 previous value. */
3669 offset -= (HOST_WIDE_INT) rounded_size;
3670 #endif
3671 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3673 else
3675 #ifdef STACK_GROWS_DOWNWARD
3676 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3677 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3678 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3679 #else
3680 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3681 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3682 GEN_INT (rounded_size));
3683 #endif
3684 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3687 dest = gen_rtx_MEM (mode, dest_addr);
3689 if (type != 0)
3691 set_mem_attributes (dest, type, 1);
3693 if (flag_optimize_sibling_calls)
3694 /* Function incoming arguments may overlap with sibling call
3695 outgoing arguments and we cannot allow reordering of reads
3696 from function arguments with stores to outgoing arguments
3697 of sibling calls. */
3698 set_mem_alias_set (dest, 0);
3700 emit_move_insn (dest, x);
3702 #endif
3704 /* Generate code to push X onto the stack, assuming it has mode MODE and
3705 type TYPE.
3706 MODE is redundant except when X is a CONST_INT (since they don't
3707 carry mode info).
3708 SIZE is an rtx for the size of data to be copied (in bytes),
3709 needed only if X is BLKmode.
3711 ALIGN (in bits) is maximum alignment we can assume.
3713 If PARTIAL and REG are both nonzero, then copy that many of the first
3714 bytes of X into registers starting with REG, and push the rest of X.
3715 The amount of space pushed is decreased by PARTIAL bytes.
3716 REG must be a hard register in this case.
3717 If REG is zero but PARTIAL is not, take any all others actions for an
3718 argument partially in registers, but do not actually load any
3719 registers.
3721 EXTRA is the amount in bytes of extra space to leave next to this arg.
3722 This is ignored if an argument block has already been allocated.
3724 On a machine that lacks real push insns, ARGS_ADDR is the address of
3725 the bottom of the argument block for this call. We use indexing off there
3726 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3727 argument block has not been preallocated.
3729 ARGS_SO_FAR is the size of args previously pushed for this call.
3731 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3732 for arguments passed in registers. If nonzero, it will be the number
3733 of bytes required. */
3735 void
3736 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3737 unsigned int align, int partial, rtx reg, int extra,
3738 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3739 rtx alignment_pad)
3741 rtx xinner;
3742 enum direction stack_direction
3743 #ifdef STACK_GROWS_DOWNWARD
3744 = downward;
3745 #else
3746 = upward;
3747 #endif
3749 /* Decide where to pad the argument: `downward' for below,
3750 `upward' for above, or `none' for don't pad it.
3751 Default is below for small data on big-endian machines; else above. */
3752 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3754 /* Invert direction if stack is post-decrement.
3755 FIXME: why? */
3756 if (STACK_PUSH_CODE == POST_DEC)
3757 if (where_pad != none)
3758 where_pad = (where_pad == downward ? upward : downward);
3760 xinner = x;
3762 if (mode == BLKmode
3763 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3765 /* Copy a block into the stack, entirely or partially. */
3767 rtx temp;
3768 int used;
3769 int offset;
3770 int skip;
3772 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3773 used = partial - offset;
3775 if (mode != BLKmode)
3777 /* A value is to be stored in an insufficiently aligned
3778 stack slot; copy via a suitably aligned slot if
3779 necessary. */
3780 size = GEN_INT (GET_MODE_SIZE (mode));
3781 if (!MEM_P (xinner))
3783 temp = assign_temp (type, 0, 1, 1);
3784 emit_move_insn (temp, xinner);
3785 xinner = temp;
3789 gcc_assert (size);
3791 /* USED is now the # of bytes we need not copy to the stack
3792 because registers will take care of them. */
3794 if (partial != 0)
3795 xinner = adjust_address (xinner, BLKmode, used);
3797 /* If the partial register-part of the arg counts in its stack size,
3798 skip the part of stack space corresponding to the registers.
3799 Otherwise, start copying to the beginning of the stack space,
3800 by setting SKIP to 0. */
3801 skip = (reg_parm_stack_space == 0) ? 0 : used;
3803 #ifdef PUSH_ROUNDING
3804 /* Do it with several push insns if that doesn't take lots of insns
3805 and if there is no difficulty with push insns that skip bytes
3806 on the stack for alignment purposes. */
3807 if (args_addr == 0
3808 && PUSH_ARGS
3809 && CONST_INT_P (size)
3810 && skip == 0
3811 && MEM_ALIGN (xinner) >= align
3812 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3813 /* Here we avoid the case of a structure whose weak alignment
3814 forces many pushes of a small amount of data,
3815 and such small pushes do rounding that causes trouble. */
3816 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3817 || align >= BIGGEST_ALIGNMENT
3818 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3819 == (align / BITS_PER_UNIT)))
3820 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3822 /* Push padding now if padding above and stack grows down,
3823 or if padding below and stack grows up.
3824 But if space already allocated, this has already been done. */
3825 if (extra && args_addr == 0
3826 && where_pad != none && where_pad != stack_direction)
3827 anti_adjust_stack (GEN_INT (extra));
3829 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3831 else
3832 #endif /* PUSH_ROUNDING */
3834 rtx target;
3836 /* Otherwise make space on the stack and copy the data
3837 to the address of that space. */
3839 /* Deduct words put into registers from the size we must copy. */
3840 if (partial != 0)
3842 if (CONST_INT_P (size))
3843 size = GEN_INT (INTVAL (size) - used);
3844 else
3845 size = expand_binop (GET_MODE (size), sub_optab, size,
3846 GEN_INT (used), NULL_RTX, 0,
3847 OPTAB_LIB_WIDEN);
3850 /* Get the address of the stack space.
3851 In this case, we do not deal with EXTRA separately.
3852 A single stack adjust will do. */
3853 if (! args_addr)
3855 temp = push_block (size, extra, where_pad == downward);
3856 extra = 0;
3858 else if (CONST_INT_P (args_so_far))
3859 temp = memory_address (BLKmode,
3860 plus_constant (args_addr,
3861 skip + INTVAL (args_so_far)));
3862 else
3863 temp = memory_address (BLKmode,
3864 plus_constant (gen_rtx_PLUS (Pmode,
3865 args_addr,
3866 args_so_far),
3867 skip));
3869 if (!ACCUMULATE_OUTGOING_ARGS)
3871 /* If the source is referenced relative to the stack pointer,
3872 copy it to another register to stabilize it. We do not need
3873 to do this if we know that we won't be changing sp. */
3875 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3876 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3877 temp = copy_to_reg (temp);
3880 target = gen_rtx_MEM (BLKmode, temp);
3882 /* We do *not* set_mem_attributes here, because incoming arguments
3883 may overlap with sibling call outgoing arguments and we cannot
3884 allow reordering of reads from function arguments with stores
3885 to outgoing arguments of sibling calls. We do, however, want
3886 to record the alignment of the stack slot. */
3887 /* ALIGN may well be better aligned than TYPE, e.g. due to
3888 PARM_BOUNDARY. Assume the caller isn't lying. */
3889 set_mem_align (target, align);
3891 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3894 else if (partial > 0)
3896 /* Scalar partly in registers. */
3898 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3899 int i;
3900 int not_stack;
3901 /* # bytes of start of argument
3902 that we must make space for but need not store. */
3903 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3904 int args_offset = INTVAL (args_so_far);
3905 int skip;
3907 /* Push padding now if padding above and stack grows down,
3908 or if padding below and stack grows up.
3909 But if space already allocated, this has already been done. */
3910 if (extra && args_addr == 0
3911 && where_pad != none && where_pad != stack_direction)
3912 anti_adjust_stack (GEN_INT (extra));
3914 /* If we make space by pushing it, we might as well push
3915 the real data. Otherwise, we can leave OFFSET nonzero
3916 and leave the space uninitialized. */
3917 if (args_addr == 0)
3918 offset = 0;
3920 /* Now NOT_STACK gets the number of words that we don't need to
3921 allocate on the stack. Convert OFFSET to words too. */
3922 not_stack = (partial - offset) / UNITS_PER_WORD;
3923 offset /= UNITS_PER_WORD;
3925 /* If the partial register-part of the arg counts in its stack size,
3926 skip the part of stack space corresponding to the registers.
3927 Otherwise, start copying to the beginning of the stack space,
3928 by setting SKIP to 0. */
3929 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3931 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3932 x = validize_mem (force_const_mem (mode, x));
3934 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3935 SUBREGs of such registers are not allowed. */
3936 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3937 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3938 x = copy_to_reg (x);
3940 /* Loop over all the words allocated on the stack for this arg. */
3941 /* We can do it by words, because any scalar bigger than a word
3942 has a size a multiple of a word. */
3943 #ifndef PUSH_ARGS_REVERSED
3944 for (i = not_stack; i < size; i++)
3945 #else
3946 for (i = size - 1; i >= not_stack; i--)
3947 #endif
3948 if (i >= not_stack + offset)
3949 emit_push_insn (operand_subword_force (x, i, mode),
3950 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3951 0, args_addr,
3952 GEN_INT (args_offset + ((i - not_stack + skip)
3953 * UNITS_PER_WORD)),
3954 reg_parm_stack_space, alignment_pad);
3956 else
3958 rtx addr;
3959 rtx dest;
3961 /* Push padding now if padding above and stack grows down,
3962 or if padding below and stack grows up.
3963 But if space already allocated, this has already been done. */
3964 if (extra && args_addr == 0
3965 && where_pad != none && where_pad != stack_direction)
3966 anti_adjust_stack (GEN_INT (extra));
3968 #ifdef PUSH_ROUNDING
3969 if (args_addr == 0 && PUSH_ARGS)
3970 emit_single_push_insn (mode, x, type);
3971 else
3972 #endif
3974 if (CONST_INT_P (args_so_far))
3975 addr
3976 = memory_address (mode,
3977 plus_constant (args_addr,
3978 INTVAL (args_so_far)));
3979 else
3980 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3981 args_so_far));
3982 dest = gen_rtx_MEM (mode, addr);
3984 /* We do *not* set_mem_attributes here, because incoming arguments
3985 may overlap with sibling call outgoing arguments and we cannot
3986 allow reordering of reads from function arguments with stores
3987 to outgoing arguments of sibling calls. We do, however, want
3988 to record the alignment of the stack slot. */
3989 /* ALIGN may well be better aligned than TYPE, e.g. due to
3990 PARM_BOUNDARY. Assume the caller isn't lying. */
3991 set_mem_align (dest, align);
3993 emit_move_insn (dest, x);
3997 /* If part should go in registers, copy that part
3998 into the appropriate registers. Do this now, at the end,
3999 since mem-to-mem copies above may do function calls. */
4000 if (partial > 0 && reg != 0)
4002 /* Handle calls that pass values in multiple non-contiguous locations.
4003 The Irix 6 ABI has examples of this. */
4004 if (GET_CODE (reg) == PARALLEL)
4005 emit_group_load (reg, x, type, -1);
4006 else
4008 gcc_assert (partial % UNITS_PER_WORD == 0);
4009 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4013 if (extra && args_addr == 0 && where_pad == stack_direction)
4014 anti_adjust_stack (GEN_INT (extra));
4016 if (alignment_pad && args_addr == 0)
4017 anti_adjust_stack (alignment_pad);
4020 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4021 operations. */
4023 static rtx
4024 get_subtarget (rtx x)
4026 return (optimize
4027 || x == 0
4028 /* Only registers can be subtargets. */
4029 || !REG_P (x)
4030 /* Don't use hard regs to avoid extending their life. */
4031 || REGNO (x) < FIRST_PSEUDO_REGISTER
4032 ? 0 : x);
4035 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4036 FIELD is a bitfield. Returns true if the optimization was successful,
4037 and there's nothing else to do. */
4039 static bool
4040 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4041 unsigned HOST_WIDE_INT bitpos,
4042 enum machine_mode mode1, rtx str_rtx,
4043 tree to, tree src)
4045 enum machine_mode str_mode = GET_MODE (str_rtx);
4046 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4047 tree op0, op1;
4048 rtx value, result;
4049 optab binop;
4051 if (mode1 != VOIDmode
4052 || bitsize >= BITS_PER_WORD
4053 || str_bitsize > BITS_PER_WORD
4054 || TREE_SIDE_EFFECTS (to)
4055 || TREE_THIS_VOLATILE (to))
4056 return false;
4058 STRIP_NOPS (src);
4059 if (!BINARY_CLASS_P (src)
4060 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4061 return false;
4063 op0 = TREE_OPERAND (src, 0);
4064 op1 = TREE_OPERAND (src, 1);
4065 STRIP_NOPS (op0);
4067 if (!operand_equal_p (to, op0, 0))
4068 return false;
4070 if (MEM_P (str_rtx))
4072 unsigned HOST_WIDE_INT offset1;
4074 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4075 str_mode = word_mode;
4076 str_mode = get_best_mode (bitsize, bitpos,
4077 MEM_ALIGN (str_rtx), str_mode, 0);
4078 if (str_mode == VOIDmode)
4079 return false;
4080 str_bitsize = GET_MODE_BITSIZE (str_mode);
4082 offset1 = bitpos;
4083 bitpos %= str_bitsize;
4084 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4085 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4087 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4088 return false;
4090 /* If the bit field covers the whole REG/MEM, store_field
4091 will likely generate better code. */
4092 if (bitsize >= str_bitsize)
4093 return false;
4095 /* We can't handle fields split across multiple entities. */
4096 if (bitpos + bitsize > str_bitsize)
4097 return false;
4099 if (BYTES_BIG_ENDIAN)
4100 bitpos = str_bitsize - bitpos - bitsize;
4102 switch (TREE_CODE (src))
4104 case PLUS_EXPR:
4105 case MINUS_EXPR:
4106 /* For now, just optimize the case of the topmost bitfield
4107 where we don't need to do any masking and also
4108 1 bit bitfields where xor can be used.
4109 We might win by one instruction for the other bitfields
4110 too if insv/extv instructions aren't used, so that
4111 can be added later. */
4112 if (bitpos + bitsize != str_bitsize
4113 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4114 break;
4116 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4117 value = convert_modes (str_mode,
4118 TYPE_MODE (TREE_TYPE (op1)), value,
4119 TYPE_UNSIGNED (TREE_TYPE (op1)));
4121 /* We may be accessing data outside the field, which means
4122 we can alias adjacent data. */
4123 if (MEM_P (str_rtx))
4125 str_rtx = shallow_copy_rtx (str_rtx);
4126 set_mem_alias_set (str_rtx, 0);
4127 set_mem_expr (str_rtx, 0);
4130 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4131 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4133 value = expand_and (str_mode, value, const1_rtx, NULL);
4134 binop = xor_optab;
4136 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4137 build_int_cst (NULL_TREE, bitpos),
4138 NULL_RTX, 1);
4139 result = expand_binop (str_mode, binop, str_rtx,
4140 value, str_rtx, 1, OPTAB_WIDEN);
4141 if (result != str_rtx)
4142 emit_move_insn (str_rtx, result);
4143 return true;
4145 case BIT_IOR_EXPR:
4146 case BIT_XOR_EXPR:
4147 if (TREE_CODE (op1) != INTEGER_CST)
4148 break;
4149 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4150 value = convert_modes (GET_MODE (str_rtx),
4151 TYPE_MODE (TREE_TYPE (op1)), value,
4152 TYPE_UNSIGNED (TREE_TYPE (op1)));
4154 /* We may be accessing data outside the field, which means
4155 we can alias adjacent data. */
4156 if (MEM_P (str_rtx))
4158 str_rtx = shallow_copy_rtx (str_rtx);
4159 set_mem_alias_set (str_rtx, 0);
4160 set_mem_expr (str_rtx, 0);
4163 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4164 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4166 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4167 - 1);
4168 value = expand_and (GET_MODE (str_rtx), value, mask,
4169 NULL_RTX);
4171 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4172 build_int_cst (NULL_TREE, bitpos),
4173 NULL_RTX, 1);
4174 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4175 value, str_rtx, 1, OPTAB_WIDEN);
4176 if (result != str_rtx)
4177 emit_move_insn (str_rtx, result);
4178 return true;
4180 default:
4181 break;
4184 return false;
4188 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4189 is true, try generating a nontemporal store. */
4191 void
4192 expand_assignment (tree to, tree from, bool nontemporal)
4194 rtx to_rtx = 0;
4195 rtx result;
4197 /* Don't crash if the lhs of the assignment was erroneous. */
4198 if (TREE_CODE (to) == ERROR_MARK)
4200 result = expand_normal (from);
4201 return;
4204 /* Optimize away no-op moves without side-effects. */
4205 if (operand_equal_p (to, from, 0))
4206 return;
4208 /* Assignment of a structure component needs special treatment
4209 if the structure component's rtx is not simply a MEM.
4210 Assignment of an array element at a constant index, and assignment of
4211 an array element in an unaligned packed structure field, has the same
4212 problem. */
4213 if (handled_component_p (to)
4214 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4216 enum machine_mode mode1;
4217 HOST_WIDE_INT bitsize, bitpos;
4218 tree offset;
4219 int unsignedp;
4220 int volatilep = 0;
4221 tree tem;
4223 push_temp_slots ();
4224 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4225 &unsignedp, &volatilep, true);
4227 /* If we are going to use store_bit_field and extract_bit_field,
4228 make sure to_rtx will be safe for multiple use. */
4230 to_rtx = expand_normal (tem);
4232 if (offset != 0)
4234 enum machine_mode address_mode;
4235 rtx offset_rtx;
4237 if (!MEM_P (to_rtx))
4239 /* We can get constant negative offsets into arrays with broken
4240 user code. Translate this to a trap instead of ICEing. */
4241 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4242 expand_builtin_trap ();
4243 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4246 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4247 address_mode
4248 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4249 if (GET_MODE (offset_rtx) != address_mode)
4250 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4252 /* A constant address in TO_RTX can have VOIDmode, we must not try
4253 to call force_reg for that case. Avoid that case. */
4254 if (MEM_P (to_rtx)
4255 && GET_MODE (to_rtx) == BLKmode
4256 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4257 && bitsize > 0
4258 && (bitpos % bitsize) == 0
4259 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4260 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4262 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4263 bitpos = 0;
4266 to_rtx = offset_address (to_rtx, offset_rtx,
4267 highest_pow2_factor_for_target (to,
4268 offset));
4271 /* No action is needed if the target is not a memory and the field
4272 lies completely outside that target. This can occur if the source
4273 code contains an out-of-bounds access to a small array. */
4274 if (!MEM_P (to_rtx)
4275 && GET_MODE (to_rtx) != BLKmode
4276 && (unsigned HOST_WIDE_INT) bitpos
4277 >= GET_MODE_BITSIZE (GET_MODE (to_rtx)))
4279 expand_normal (from);
4280 result = NULL;
4282 /* Handle expand_expr of a complex value returning a CONCAT. */
4283 else if (GET_CODE (to_rtx) == CONCAT)
4285 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4287 gcc_assert (bitpos == 0);
4288 result = store_expr (from, to_rtx, false, nontemporal);
4290 else
4292 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4293 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4294 nontemporal);
4297 else
4299 if (MEM_P (to_rtx))
4301 /* If the field is at offset zero, we could have been given the
4302 DECL_RTX of the parent struct. Don't munge it. */
4303 to_rtx = shallow_copy_rtx (to_rtx);
4305 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4307 /* Deal with volatile and readonly fields. The former is only
4308 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4309 if (volatilep)
4310 MEM_VOLATILE_P (to_rtx) = 1;
4311 if (component_uses_parent_alias_set (to))
4312 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4315 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4316 to_rtx, to, from))
4317 result = NULL;
4318 else
4319 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4320 TREE_TYPE (tem), get_alias_set (to),
4321 nontemporal);
4324 if (result)
4325 preserve_temp_slots (result);
4326 free_temp_slots ();
4327 pop_temp_slots ();
4328 return;
4331 else if (TREE_CODE (to) == MISALIGNED_INDIRECT_REF)
4333 addr_space_t as = ADDR_SPACE_GENERIC;
4334 enum machine_mode mode, op_mode1;
4335 enum insn_code icode;
4336 rtx reg, addr, mem, insn;
4338 if (POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (to, 0))))
4339 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 0))));
4341 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4342 reg = force_not_mem (reg);
4344 mode = TYPE_MODE (TREE_TYPE (to));
4345 addr = expand_expr (TREE_OPERAND (to, 0), NULL_RTX, VOIDmode,
4346 EXPAND_SUM);
4347 addr = memory_address_addr_space (mode, addr, as);
4348 mem = gen_rtx_MEM (mode, addr);
4350 set_mem_attributes (mem, to, 0);
4351 set_mem_addr_space (mem, as);
4353 icode = movmisalign_optab->handlers[mode].insn_code;
4354 gcc_assert (icode != CODE_FOR_nothing);
4356 op_mode1 = insn_data[icode].operand[1].mode;
4357 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4358 && op_mode1 != VOIDmode)
4359 reg = copy_to_mode_reg (op_mode1, reg);
4361 insn = GEN_FCN (icode) (mem, reg);
4362 emit_insn (insn);
4363 return;
4366 /* If the rhs is a function call and its value is not an aggregate,
4367 call the function before we start to compute the lhs.
4368 This is needed for correct code for cases such as
4369 val = setjmp (buf) on machines where reference to val
4370 requires loading up part of an address in a separate insn.
4372 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4373 since it might be a promoted variable where the zero- or sign- extension
4374 needs to be done. Handling this in the normal way is safe because no
4375 computation is done before the call. The same is true for SSA names. */
4376 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4377 && COMPLETE_TYPE_P (TREE_TYPE (from))
4378 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4379 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4380 && REG_P (DECL_RTL (to)))
4381 || TREE_CODE (to) == SSA_NAME))
4383 rtx value;
4385 push_temp_slots ();
4386 value = expand_normal (from);
4387 if (to_rtx == 0)
4388 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4390 /* Handle calls that return values in multiple non-contiguous locations.
4391 The Irix 6 ABI has examples of this. */
4392 if (GET_CODE (to_rtx) == PARALLEL)
4393 emit_group_load (to_rtx, value, TREE_TYPE (from),
4394 int_size_in_bytes (TREE_TYPE (from)));
4395 else if (GET_MODE (to_rtx) == BLKmode)
4396 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4397 else
4399 if (POINTER_TYPE_P (TREE_TYPE (to)))
4400 value = convert_memory_address_addr_space
4401 (GET_MODE (to_rtx), value,
4402 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4404 emit_move_insn (to_rtx, value);
4406 preserve_temp_slots (to_rtx);
4407 free_temp_slots ();
4408 pop_temp_slots ();
4409 return;
4412 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4413 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4415 if (to_rtx == 0)
4416 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4418 /* Don't move directly into a return register. */
4419 if (TREE_CODE (to) == RESULT_DECL
4420 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4422 rtx temp;
4424 push_temp_slots ();
4425 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4427 if (GET_CODE (to_rtx) == PARALLEL)
4428 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4429 int_size_in_bytes (TREE_TYPE (from)));
4430 else
4431 emit_move_insn (to_rtx, temp);
4433 preserve_temp_slots (to_rtx);
4434 free_temp_slots ();
4435 pop_temp_slots ();
4436 return;
4439 /* In case we are returning the contents of an object which overlaps
4440 the place the value is being stored, use a safe function when copying
4441 a value through a pointer into a structure value return block. */
4442 if (TREE_CODE (to) == RESULT_DECL
4443 && TREE_CODE (from) == INDIRECT_REF
4444 && ADDR_SPACE_GENERIC_P
4445 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4446 && refs_may_alias_p (to, from)
4447 && cfun->returns_struct
4448 && !cfun->returns_pcc_struct)
4450 rtx from_rtx, size;
4452 push_temp_slots ();
4453 size = expr_size (from);
4454 from_rtx = expand_normal (from);
4456 emit_library_call (memmove_libfunc, LCT_NORMAL,
4457 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4458 XEXP (from_rtx, 0), Pmode,
4459 convert_to_mode (TYPE_MODE (sizetype),
4460 size, TYPE_UNSIGNED (sizetype)),
4461 TYPE_MODE (sizetype));
4463 preserve_temp_slots (to_rtx);
4464 free_temp_slots ();
4465 pop_temp_slots ();
4466 return;
4469 /* Compute FROM and store the value in the rtx we got. */
4471 push_temp_slots ();
4472 result = store_expr (from, to_rtx, 0, nontemporal);
4473 preserve_temp_slots (result);
4474 free_temp_slots ();
4475 pop_temp_slots ();
4476 return;
4479 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4480 succeeded, false otherwise. */
4482 bool
4483 emit_storent_insn (rtx to, rtx from)
4485 enum machine_mode mode = GET_MODE (to), imode;
4486 enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
4487 rtx pattern;
4489 if (code == CODE_FOR_nothing)
4490 return false;
4492 imode = insn_data[code].operand[0].mode;
4493 if (!insn_data[code].operand[0].predicate (to, imode))
4494 return false;
4496 imode = insn_data[code].operand[1].mode;
4497 if (!insn_data[code].operand[1].predicate (from, imode))
4499 from = copy_to_mode_reg (imode, from);
4500 if (!insn_data[code].operand[1].predicate (from, imode))
4501 return false;
4504 pattern = GEN_FCN (code) (to, from);
4505 if (pattern == NULL_RTX)
4506 return false;
4508 emit_insn (pattern);
4509 return true;
4512 /* Generate code for computing expression EXP,
4513 and storing the value into TARGET.
4515 If the mode is BLKmode then we may return TARGET itself.
4516 It turns out that in BLKmode it doesn't cause a problem.
4517 because C has no operators that could combine two different
4518 assignments into the same BLKmode object with different values
4519 with no sequence point. Will other languages need this to
4520 be more thorough?
4522 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4523 stack, and block moves may need to be treated specially.
4525 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4528 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4530 rtx temp;
4531 rtx alt_rtl = NULL_RTX;
4532 location_t loc = EXPR_LOCATION (exp);
4534 if (VOID_TYPE_P (TREE_TYPE (exp)))
4536 /* C++ can generate ?: expressions with a throw expression in one
4537 branch and an rvalue in the other. Here, we resolve attempts to
4538 store the throw expression's nonexistent result. */
4539 gcc_assert (!call_param_p);
4540 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4541 return NULL_RTX;
4543 if (TREE_CODE (exp) == COMPOUND_EXPR)
4545 /* Perform first part of compound expression, then assign from second
4546 part. */
4547 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4548 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4549 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4550 nontemporal);
4552 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4554 /* For conditional expression, get safe form of the target. Then
4555 test the condition, doing the appropriate assignment on either
4556 side. This avoids the creation of unnecessary temporaries.
4557 For non-BLKmode, it is more efficient not to do this. */
4559 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4561 do_pending_stack_adjust ();
4562 NO_DEFER_POP;
4563 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4564 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4565 nontemporal);
4566 emit_jump_insn (gen_jump (lab2));
4567 emit_barrier ();
4568 emit_label (lab1);
4569 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4570 nontemporal);
4571 emit_label (lab2);
4572 OK_DEFER_POP;
4574 return NULL_RTX;
4576 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4577 /* If this is a scalar in a register that is stored in a wider mode
4578 than the declared mode, compute the result into its declared mode
4579 and then convert to the wider mode. Our value is the computed
4580 expression. */
4582 rtx inner_target = 0;
4584 /* We can do the conversion inside EXP, which will often result
4585 in some optimizations. Do the conversion in two steps: first
4586 change the signedness, if needed, then the extend. But don't
4587 do this if the type of EXP is a subtype of something else
4588 since then the conversion might involve more than just
4589 converting modes. */
4590 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4591 && TREE_TYPE (TREE_TYPE (exp)) == 0
4592 && GET_MODE_PRECISION (GET_MODE (target))
4593 == TYPE_PRECISION (TREE_TYPE (exp)))
4595 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4596 != SUBREG_PROMOTED_UNSIGNED_P (target))
4598 /* Some types, e.g. Fortran's logical*4, won't have a signed
4599 version, so use the mode instead. */
4600 tree ntype
4601 = (signed_or_unsigned_type_for
4602 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4603 if (ntype == NULL)
4604 ntype = lang_hooks.types.type_for_mode
4605 (TYPE_MODE (TREE_TYPE (exp)),
4606 SUBREG_PROMOTED_UNSIGNED_P (target));
4608 exp = fold_convert_loc (loc, ntype, exp);
4611 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4612 (GET_MODE (SUBREG_REG (target)),
4613 SUBREG_PROMOTED_UNSIGNED_P (target)),
4614 exp);
4616 inner_target = SUBREG_REG (target);
4619 temp = expand_expr (exp, inner_target, VOIDmode,
4620 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4622 /* If TEMP is a VOIDmode constant, use convert_modes to make
4623 sure that we properly convert it. */
4624 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4626 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4627 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4628 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4629 GET_MODE (target), temp,
4630 SUBREG_PROMOTED_UNSIGNED_P (target));
4633 convert_move (SUBREG_REG (target), temp,
4634 SUBREG_PROMOTED_UNSIGNED_P (target));
4636 return NULL_RTX;
4638 else if (TREE_CODE (exp) == STRING_CST
4639 && !nontemporal && !call_param_p
4640 && TREE_STRING_LENGTH (exp) > 0
4641 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4643 /* Optimize initialization of an array with a STRING_CST. */
4644 HOST_WIDE_INT exp_len, str_copy_len;
4645 rtx dest_mem;
4647 exp_len = int_expr_size (exp);
4648 if (exp_len <= 0)
4649 goto normal_expr;
4651 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4652 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4653 goto normal_expr;
4655 str_copy_len = TREE_STRING_LENGTH (exp);
4656 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4658 str_copy_len += STORE_MAX_PIECES - 1;
4659 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4661 str_copy_len = MIN (str_copy_len, exp_len);
4662 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4663 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4664 MEM_ALIGN (target), false))
4665 goto normal_expr;
4667 dest_mem = target;
4669 dest_mem = store_by_pieces (dest_mem,
4670 str_copy_len, builtin_strncpy_read_str,
4671 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4672 MEM_ALIGN (target), false,
4673 exp_len > str_copy_len ? 1 : 0);
4674 if (exp_len > str_copy_len)
4675 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4676 GEN_INT (exp_len - str_copy_len),
4677 BLOCK_OP_NORMAL);
4678 return NULL_RTX;
4680 else
4682 rtx tmp_target;
4684 normal_expr:
4685 /* If we want to use a nontemporal store, force the value to
4686 register first. */
4687 tmp_target = nontemporal ? NULL_RTX : target;
4688 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4689 (call_param_p
4690 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4691 &alt_rtl);
4694 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4695 the same as that of TARGET, adjust the constant. This is needed, for
4696 example, in case it is a CONST_DOUBLE and we want only a word-sized
4697 value. */
4698 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4699 && TREE_CODE (exp) != ERROR_MARK
4700 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4701 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4702 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4704 /* If value was not generated in the target, store it there.
4705 Convert the value to TARGET's type first if necessary and emit the
4706 pending incrementations that have been queued when expanding EXP.
4707 Note that we cannot emit the whole queue blindly because this will
4708 effectively disable the POST_INC optimization later.
4710 If TEMP and TARGET compare equal according to rtx_equal_p, but
4711 one or both of them are volatile memory refs, we have to distinguish
4712 two cases:
4713 - expand_expr has used TARGET. In this case, we must not generate
4714 another copy. This can be detected by TARGET being equal according
4715 to == .
4716 - expand_expr has not used TARGET - that means that the source just
4717 happens to have the same RTX form. Since temp will have been created
4718 by expand_expr, it will compare unequal according to == .
4719 We must generate a copy in this case, to reach the correct number
4720 of volatile memory references. */
4722 if ((! rtx_equal_p (temp, target)
4723 || (temp != target && (side_effects_p (temp)
4724 || side_effects_p (target))))
4725 && TREE_CODE (exp) != ERROR_MARK
4726 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4727 but TARGET is not valid memory reference, TEMP will differ
4728 from TARGET although it is really the same location. */
4729 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4730 /* If there's nothing to copy, don't bother. Don't call
4731 expr_size unless necessary, because some front-ends (C++)
4732 expr_size-hook must not be given objects that are not
4733 supposed to be bit-copied or bit-initialized. */
4734 && expr_size (exp) != const0_rtx)
4736 if (GET_MODE (temp) != GET_MODE (target)
4737 && GET_MODE (temp) != VOIDmode)
4739 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4740 if (GET_MODE (target) == BLKmode
4741 || GET_MODE (temp) == BLKmode)
4742 emit_block_move (target, temp, expr_size (exp),
4743 (call_param_p
4744 ? BLOCK_OP_CALL_PARM
4745 : BLOCK_OP_NORMAL));
4746 else
4747 convert_move (target, temp, unsignedp);
4750 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4752 /* Handle copying a string constant into an array. The string
4753 constant may be shorter than the array. So copy just the string's
4754 actual length, and clear the rest. First get the size of the data
4755 type of the string, which is actually the size of the target. */
4756 rtx size = expr_size (exp);
4758 if (CONST_INT_P (size)
4759 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4760 emit_block_move (target, temp, size,
4761 (call_param_p
4762 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4763 else
4765 enum machine_mode pointer_mode
4766 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4767 enum machine_mode address_mode
4768 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4770 /* Compute the size of the data to copy from the string. */
4771 tree copy_size
4772 = size_binop_loc (loc, MIN_EXPR,
4773 make_tree (sizetype, size),
4774 size_int (TREE_STRING_LENGTH (exp)));
4775 rtx copy_size_rtx
4776 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4777 (call_param_p
4778 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4779 rtx label = 0;
4781 /* Copy that much. */
4782 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4783 TYPE_UNSIGNED (sizetype));
4784 emit_block_move (target, temp, copy_size_rtx,
4785 (call_param_p
4786 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4788 /* Figure out how much is left in TARGET that we have to clear.
4789 Do all calculations in pointer_mode. */
4790 if (CONST_INT_P (copy_size_rtx))
4792 size = plus_constant (size, -INTVAL (copy_size_rtx));
4793 target = adjust_address (target, BLKmode,
4794 INTVAL (copy_size_rtx));
4796 else
4798 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4799 copy_size_rtx, NULL_RTX, 0,
4800 OPTAB_LIB_WIDEN);
4802 if (GET_MODE (copy_size_rtx) != address_mode)
4803 copy_size_rtx = convert_to_mode (address_mode,
4804 copy_size_rtx,
4805 TYPE_UNSIGNED (sizetype));
4807 target = offset_address (target, copy_size_rtx,
4808 highest_pow2_factor (copy_size));
4809 label = gen_label_rtx ();
4810 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4811 GET_MODE (size), 0, label);
4814 if (size != const0_rtx)
4815 clear_storage (target, size, BLOCK_OP_NORMAL);
4817 if (label)
4818 emit_label (label);
4821 /* Handle calls that return values in multiple non-contiguous locations.
4822 The Irix 6 ABI has examples of this. */
4823 else if (GET_CODE (target) == PARALLEL)
4824 emit_group_load (target, temp, TREE_TYPE (exp),
4825 int_size_in_bytes (TREE_TYPE (exp)));
4826 else if (GET_MODE (temp) == BLKmode)
4827 emit_block_move (target, temp, expr_size (exp),
4828 (call_param_p
4829 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4830 else if (nontemporal
4831 && emit_storent_insn (target, temp))
4832 /* If we managed to emit a nontemporal store, there is nothing else to
4833 do. */
4835 else
4837 temp = force_operand (temp, target);
4838 if (temp != target)
4839 emit_move_insn (target, temp);
4843 return NULL_RTX;
4846 /* Helper for categorize_ctor_elements. Identical interface. */
4848 static bool
4849 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4850 HOST_WIDE_INT *p_elt_count,
4851 bool *p_must_clear)
4853 unsigned HOST_WIDE_INT idx;
4854 HOST_WIDE_INT nz_elts, elt_count;
4855 tree value, purpose;
4857 /* Whether CTOR is a valid constant initializer, in accordance with what
4858 initializer_constant_valid_p does. If inferred from the constructor
4859 elements, true until proven otherwise. */
4860 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4861 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4863 nz_elts = 0;
4864 elt_count = 0;
4866 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4868 HOST_WIDE_INT mult = 1;
4870 if (TREE_CODE (purpose) == RANGE_EXPR)
4872 tree lo_index = TREE_OPERAND (purpose, 0);
4873 tree hi_index = TREE_OPERAND (purpose, 1);
4875 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4876 mult = (tree_low_cst (hi_index, 1)
4877 - tree_low_cst (lo_index, 1) + 1);
4880 switch (TREE_CODE (value))
4882 case CONSTRUCTOR:
4884 HOST_WIDE_INT nz = 0, ic = 0;
4886 bool const_elt_p
4887 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4889 nz_elts += mult * nz;
4890 elt_count += mult * ic;
4892 if (const_from_elts_p && const_p)
4893 const_p = const_elt_p;
4895 break;
4897 case INTEGER_CST:
4898 case REAL_CST:
4899 case FIXED_CST:
4900 if (!initializer_zerop (value))
4901 nz_elts += mult;
4902 elt_count += mult;
4903 break;
4905 case STRING_CST:
4906 nz_elts += mult * TREE_STRING_LENGTH (value);
4907 elt_count += mult * TREE_STRING_LENGTH (value);
4908 break;
4910 case COMPLEX_CST:
4911 if (!initializer_zerop (TREE_REALPART (value)))
4912 nz_elts += mult;
4913 if (!initializer_zerop (TREE_IMAGPART (value)))
4914 nz_elts += mult;
4915 elt_count += mult;
4916 break;
4918 case VECTOR_CST:
4920 tree v;
4921 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4923 if (!initializer_zerop (TREE_VALUE (v)))
4924 nz_elts += mult;
4925 elt_count += mult;
4928 break;
4930 default:
4932 HOST_WIDE_INT tc = count_type_elements (TREE_TYPE (value), true);
4933 if (tc < 1)
4934 tc = 1;
4935 nz_elts += mult * tc;
4936 elt_count += mult * tc;
4938 if (const_from_elts_p && const_p)
4939 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4940 != NULL_TREE;
4942 break;
4946 if (!*p_must_clear
4947 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4948 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4950 tree init_sub_type;
4951 bool clear_this = true;
4953 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4955 /* We don't expect more than one element of the union to be
4956 initialized. Not sure what we should do otherwise... */
4957 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4958 == 1);
4960 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4961 CONSTRUCTOR_ELTS (ctor),
4962 0)->value);
4964 /* ??? We could look at each element of the union, and find the
4965 largest element. Which would avoid comparing the size of the
4966 initialized element against any tail padding in the union.
4967 Doesn't seem worth the effort... */
4968 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4969 TYPE_SIZE (init_sub_type)) == 1)
4971 /* And now we have to find out if the element itself is fully
4972 constructed. E.g. for union { struct { int a, b; } s; } u
4973 = { .s = { .a = 1 } }. */
4974 if (elt_count == count_type_elements (init_sub_type, false))
4975 clear_this = false;
4979 *p_must_clear = clear_this;
4982 *p_nz_elts += nz_elts;
4983 *p_elt_count += elt_count;
4985 return const_p;
4988 /* Examine CTOR to discover:
4989 * how many scalar fields are set to nonzero values,
4990 and place it in *P_NZ_ELTS;
4991 * how many scalar fields in total are in CTOR,
4992 and place it in *P_ELT_COUNT.
4993 * if a type is a union, and the initializer from the constructor
4994 is not the largest element in the union, then set *p_must_clear.
4996 Return whether or not CTOR is a valid static constant initializer, the same
4997 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4999 bool
5000 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5001 HOST_WIDE_INT *p_elt_count,
5002 bool *p_must_clear)
5004 *p_nz_elts = 0;
5005 *p_elt_count = 0;
5006 *p_must_clear = false;
5008 return
5009 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
5012 /* Count the number of scalars in TYPE. Return -1 on overflow or
5013 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5014 array member at the end of the structure. */
5016 HOST_WIDE_INT
5017 count_type_elements (const_tree type, bool allow_flexarr)
5019 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5020 switch (TREE_CODE (type))
5022 case ARRAY_TYPE:
5024 tree telts = array_type_nelts (type);
5025 if (telts && host_integerp (telts, 1))
5027 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5028 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5029 if (n == 0)
5030 return 0;
5031 else if (max / n > m)
5032 return n * m;
5034 return -1;
5037 case RECORD_TYPE:
5039 HOST_WIDE_INT n = 0, t;
5040 tree f;
5042 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
5043 if (TREE_CODE (f) == FIELD_DECL)
5045 t = count_type_elements (TREE_TYPE (f), false);
5046 if (t < 0)
5048 /* Check for structures with flexible array member. */
5049 tree tf = TREE_TYPE (f);
5050 if (allow_flexarr
5051 && TREE_CHAIN (f) == NULL
5052 && TREE_CODE (tf) == ARRAY_TYPE
5053 && TYPE_DOMAIN (tf)
5054 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5055 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5056 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5057 && int_size_in_bytes (type) >= 0)
5058 break;
5060 return -1;
5062 n += t;
5065 return n;
5068 case UNION_TYPE:
5069 case QUAL_UNION_TYPE:
5070 return -1;
5072 case COMPLEX_TYPE:
5073 return 2;
5075 case VECTOR_TYPE:
5076 return TYPE_VECTOR_SUBPARTS (type);
5078 case INTEGER_TYPE:
5079 case REAL_TYPE:
5080 case FIXED_POINT_TYPE:
5081 case ENUMERAL_TYPE:
5082 case BOOLEAN_TYPE:
5083 case POINTER_TYPE:
5084 case OFFSET_TYPE:
5085 case REFERENCE_TYPE:
5086 return 1;
5088 case ERROR_MARK:
5089 return 0;
5091 case VOID_TYPE:
5092 case METHOD_TYPE:
5093 case FUNCTION_TYPE:
5094 case LANG_TYPE:
5095 default:
5096 gcc_unreachable ();
5100 /* Return 1 if EXP contains mostly (3/4) zeros. */
5102 static int
5103 mostly_zeros_p (const_tree exp)
5105 if (TREE_CODE (exp) == CONSTRUCTOR)
5108 HOST_WIDE_INT nz_elts, count, elts;
5109 bool must_clear;
5111 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5112 if (must_clear)
5113 return 1;
5115 elts = count_type_elements (TREE_TYPE (exp), false);
5117 return nz_elts < elts / 4;
5120 return initializer_zerop (exp);
5123 /* Return 1 if EXP contains all zeros. */
5125 static int
5126 all_zeros_p (const_tree exp)
5128 if (TREE_CODE (exp) == CONSTRUCTOR)
5131 HOST_WIDE_INT nz_elts, count;
5132 bool must_clear;
5134 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5135 return nz_elts == 0;
5138 return initializer_zerop (exp);
5141 /* Helper function for store_constructor.
5142 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5143 TYPE is the type of the CONSTRUCTOR, not the element type.
5144 CLEARED is as for store_constructor.
5145 ALIAS_SET is the alias set to use for any stores.
5147 This provides a recursive shortcut back to store_constructor when it isn't
5148 necessary to go through store_field. This is so that we can pass through
5149 the cleared field to let store_constructor know that we may not have to
5150 clear a substructure if the outer structure has already been cleared. */
5152 static void
5153 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5154 HOST_WIDE_INT bitpos, enum machine_mode mode,
5155 tree exp, tree type, int cleared,
5156 alias_set_type alias_set)
5158 if (TREE_CODE (exp) == CONSTRUCTOR
5159 /* We can only call store_constructor recursively if the size and
5160 bit position are on a byte boundary. */
5161 && bitpos % BITS_PER_UNIT == 0
5162 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5163 /* If we have a nonzero bitpos for a register target, then we just
5164 let store_field do the bitfield handling. This is unlikely to
5165 generate unnecessary clear instructions anyways. */
5166 && (bitpos == 0 || MEM_P (target)))
5168 if (MEM_P (target))
5169 target
5170 = adjust_address (target,
5171 GET_MODE (target) == BLKmode
5172 || 0 != (bitpos
5173 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5174 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5177 /* Update the alias set, if required. */
5178 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5179 && MEM_ALIAS_SET (target) != 0)
5181 target = copy_rtx (target);
5182 set_mem_alias_set (target, alias_set);
5185 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5187 else
5188 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5191 /* Store the value of constructor EXP into the rtx TARGET.
5192 TARGET is either a REG or a MEM; we know it cannot conflict, since
5193 safe_from_p has been called.
5194 CLEARED is true if TARGET is known to have been zero'd.
5195 SIZE is the number of bytes of TARGET we are allowed to modify: this
5196 may not be the same as the size of EXP if we are assigning to a field
5197 which has been packed to exclude padding bits. */
5199 static void
5200 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5202 tree type = TREE_TYPE (exp);
5203 #ifdef WORD_REGISTER_OPERATIONS
5204 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5205 #endif
5207 switch (TREE_CODE (type))
5209 case RECORD_TYPE:
5210 case UNION_TYPE:
5211 case QUAL_UNION_TYPE:
5213 unsigned HOST_WIDE_INT idx;
5214 tree field, value;
5216 /* If size is zero or the target is already cleared, do nothing. */
5217 if (size == 0 || cleared)
5218 cleared = 1;
5219 /* We either clear the aggregate or indicate the value is dead. */
5220 else if ((TREE_CODE (type) == UNION_TYPE
5221 || TREE_CODE (type) == QUAL_UNION_TYPE)
5222 && ! CONSTRUCTOR_ELTS (exp))
5223 /* If the constructor is empty, clear the union. */
5225 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5226 cleared = 1;
5229 /* If we are building a static constructor into a register,
5230 set the initial value as zero so we can fold the value into
5231 a constant. But if more than one register is involved,
5232 this probably loses. */
5233 else if (REG_P (target) && TREE_STATIC (exp)
5234 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5236 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5237 cleared = 1;
5240 /* If the constructor has fewer fields than the structure or
5241 if we are initializing the structure to mostly zeros, clear
5242 the whole structure first. Don't do this if TARGET is a
5243 register whose mode size isn't equal to SIZE since
5244 clear_storage can't handle this case. */
5245 else if (size > 0
5246 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5247 != fields_length (type))
5248 || mostly_zeros_p (exp))
5249 && (!REG_P (target)
5250 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5251 == size)))
5253 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5254 cleared = 1;
5257 if (REG_P (target) && !cleared)
5258 emit_clobber (target);
5260 /* Store each element of the constructor into the
5261 corresponding field of TARGET. */
5262 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5264 enum machine_mode mode;
5265 HOST_WIDE_INT bitsize;
5266 HOST_WIDE_INT bitpos = 0;
5267 tree offset;
5268 rtx to_rtx = target;
5270 /* Just ignore missing fields. We cleared the whole
5271 structure, above, if any fields are missing. */
5272 if (field == 0)
5273 continue;
5275 if (cleared && initializer_zerop (value))
5276 continue;
5278 if (host_integerp (DECL_SIZE (field), 1))
5279 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5280 else
5281 bitsize = -1;
5283 mode = DECL_MODE (field);
5284 if (DECL_BIT_FIELD (field))
5285 mode = VOIDmode;
5287 offset = DECL_FIELD_OFFSET (field);
5288 if (host_integerp (offset, 0)
5289 && host_integerp (bit_position (field), 0))
5291 bitpos = int_bit_position (field);
5292 offset = 0;
5294 else
5295 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5297 if (offset)
5299 enum machine_mode address_mode;
5300 rtx offset_rtx;
5302 offset
5303 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5304 make_tree (TREE_TYPE (exp),
5305 target));
5307 offset_rtx = expand_normal (offset);
5308 gcc_assert (MEM_P (to_rtx));
5310 address_mode
5311 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5312 if (GET_MODE (offset_rtx) != address_mode)
5313 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5315 to_rtx = offset_address (to_rtx, offset_rtx,
5316 highest_pow2_factor (offset));
5319 #ifdef WORD_REGISTER_OPERATIONS
5320 /* If this initializes a field that is smaller than a
5321 word, at the start of a word, try to widen it to a full
5322 word. This special case allows us to output C++ member
5323 function initializations in a form that the optimizers
5324 can understand. */
5325 if (REG_P (target)
5326 && bitsize < BITS_PER_WORD
5327 && bitpos % BITS_PER_WORD == 0
5328 && GET_MODE_CLASS (mode) == MODE_INT
5329 && TREE_CODE (value) == INTEGER_CST
5330 && exp_size >= 0
5331 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5333 tree type = TREE_TYPE (value);
5335 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5337 type = lang_hooks.types.type_for_size
5338 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5339 value = fold_convert (type, value);
5342 if (BYTES_BIG_ENDIAN)
5343 value
5344 = fold_build2 (LSHIFT_EXPR, type, value,
5345 build_int_cst (type,
5346 BITS_PER_WORD - bitsize));
5347 bitsize = BITS_PER_WORD;
5348 mode = word_mode;
5350 #endif
5352 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5353 && DECL_NONADDRESSABLE_P (field))
5355 to_rtx = copy_rtx (to_rtx);
5356 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5359 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5360 value, type, cleared,
5361 get_alias_set (TREE_TYPE (field)));
5363 break;
5365 case ARRAY_TYPE:
5367 tree value, index;
5368 unsigned HOST_WIDE_INT i;
5369 int need_to_clear;
5370 tree domain;
5371 tree elttype = TREE_TYPE (type);
5372 int const_bounds_p;
5373 HOST_WIDE_INT minelt = 0;
5374 HOST_WIDE_INT maxelt = 0;
5376 domain = TYPE_DOMAIN (type);
5377 const_bounds_p = (TYPE_MIN_VALUE (domain)
5378 && TYPE_MAX_VALUE (domain)
5379 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5380 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5382 /* If we have constant bounds for the range of the type, get them. */
5383 if (const_bounds_p)
5385 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5386 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5389 /* If the constructor has fewer elements than the array, clear
5390 the whole array first. Similarly if this is static
5391 constructor of a non-BLKmode object. */
5392 if (cleared)
5393 need_to_clear = 0;
5394 else if (REG_P (target) && TREE_STATIC (exp))
5395 need_to_clear = 1;
5396 else
5398 unsigned HOST_WIDE_INT idx;
5399 tree index, value;
5400 HOST_WIDE_INT count = 0, zero_count = 0;
5401 need_to_clear = ! const_bounds_p;
5403 /* This loop is a more accurate version of the loop in
5404 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5405 is also needed to check for missing elements. */
5406 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5408 HOST_WIDE_INT this_node_count;
5410 if (need_to_clear)
5411 break;
5413 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5415 tree lo_index = TREE_OPERAND (index, 0);
5416 tree hi_index = TREE_OPERAND (index, 1);
5418 if (! host_integerp (lo_index, 1)
5419 || ! host_integerp (hi_index, 1))
5421 need_to_clear = 1;
5422 break;
5425 this_node_count = (tree_low_cst (hi_index, 1)
5426 - tree_low_cst (lo_index, 1) + 1);
5428 else
5429 this_node_count = 1;
5431 count += this_node_count;
5432 if (mostly_zeros_p (value))
5433 zero_count += this_node_count;
5436 /* Clear the entire array first if there are any missing
5437 elements, or if the incidence of zero elements is >=
5438 75%. */
5439 if (! need_to_clear
5440 && (count < maxelt - minelt + 1
5441 || 4 * zero_count >= 3 * count))
5442 need_to_clear = 1;
5445 if (need_to_clear && size > 0)
5447 if (REG_P (target))
5448 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5449 else
5450 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5451 cleared = 1;
5454 if (!cleared && REG_P (target))
5455 /* Inform later passes that the old value is dead. */
5456 emit_clobber (target);
5458 /* Store each element of the constructor into the
5459 corresponding element of TARGET, determined by counting the
5460 elements. */
5461 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5463 enum machine_mode mode;
5464 HOST_WIDE_INT bitsize;
5465 HOST_WIDE_INT bitpos;
5466 rtx xtarget = target;
5468 if (cleared && initializer_zerop (value))
5469 continue;
5471 mode = TYPE_MODE (elttype);
5472 if (mode == BLKmode)
5473 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5474 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5475 : -1);
5476 else
5477 bitsize = GET_MODE_BITSIZE (mode);
5479 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5481 tree lo_index = TREE_OPERAND (index, 0);
5482 tree hi_index = TREE_OPERAND (index, 1);
5483 rtx index_r, pos_rtx;
5484 HOST_WIDE_INT lo, hi, count;
5485 tree position;
5487 /* If the range is constant and "small", unroll the loop. */
5488 if (const_bounds_p
5489 && host_integerp (lo_index, 0)
5490 && host_integerp (hi_index, 0)
5491 && (lo = tree_low_cst (lo_index, 0),
5492 hi = tree_low_cst (hi_index, 0),
5493 count = hi - lo + 1,
5494 (!MEM_P (target)
5495 || count <= 2
5496 || (host_integerp (TYPE_SIZE (elttype), 1)
5497 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5498 <= 40 * 8)))))
5500 lo -= minelt; hi -= minelt;
5501 for (; lo <= hi; lo++)
5503 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5505 if (MEM_P (target)
5506 && !MEM_KEEP_ALIAS_SET_P (target)
5507 && TREE_CODE (type) == ARRAY_TYPE
5508 && TYPE_NONALIASED_COMPONENT (type))
5510 target = copy_rtx (target);
5511 MEM_KEEP_ALIAS_SET_P (target) = 1;
5514 store_constructor_field
5515 (target, bitsize, bitpos, mode, value, type, cleared,
5516 get_alias_set (elttype));
5519 else
5521 rtx loop_start = gen_label_rtx ();
5522 rtx loop_end = gen_label_rtx ();
5523 tree exit_cond;
5525 expand_normal (hi_index);
5527 index = build_decl (EXPR_LOCATION (exp),
5528 VAR_DECL, NULL_TREE, domain);
5529 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5530 SET_DECL_RTL (index, index_r);
5531 store_expr (lo_index, index_r, 0, false);
5533 /* Build the head of the loop. */
5534 do_pending_stack_adjust ();
5535 emit_label (loop_start);
5537 /* Assign value to element index. */
5538 position =
5539 fold_convert (ssizetype,
5540 fold_build2 (MINUS_EXPR,
5541 TREE_TYPE (index),
5542 index,
5543 TYPE_MIN_VALUE (domain)));
5545 position =
5546 size_binop (MULT_EXPR, position,
5547 fold_convert (ssizetype,
5548 TYPE_SIZE_UNIT (elttype)));
5550 pos_rtx = expand_normal (position);
5551 xtarget = offset_address (target, pos_rtx,
5552 highest_pow2_factor (position));
5553 xtarget = adjust_address (xtarget, mode, 0);
5554 if (TREE_CODE (value) == CONSTRUCTOR)
5555 store_constructor (value, xtarget, cleared,
5556 bitsize / BITS_PER_UNIT);
5557 else
5558 store_expr (value, xtarget, 0, false);
5560 /* Generate a conditional jump to exit the loop. */
5561 exit_cond = build2 (LT_EXPR, integer_type_node,
5562 index, hi_index);
5563 jumpif (exit_cond, loop_end, -1);
5565 /* Update the loop counter, and jump to the head of
5566 the loop. */
5567 expand_assignment (index,
5568 build2 (PLUS_EXPR, TREE_TYPE (index),
5569 index, integer_one_node),
5570 false);
5572 emit_jump (loop_start);
5574 /* Build the end of the loop. */
5575 emit_label (loop_end);
5578 else if ((index != 0 && ! host_integerp (index, 0))
5579 || ! host_integerp (TYPE_SIZE (elttype), 1))
5581 tree position;
5583 if (index == 0)
5584 index = ssize_int (1);
5586 if (minelt)
5587 index = fold_convert (ssizetype,
5588 fold_build2 (MINUS_EXPR,
5589 TREE_TYPE (index),
5590 index,
5591 TYPE_MIN_VALUE (domain)));
5593 position =
5594 size_binop (MULT_EXPR, index,
5595 fold_convert (ssizetype,
5596 TYPE_SIZE_UNIT (elttype)));
5597 xtarget = offset_address (target,
5598 expand_normal (position),
5599 highest_pow2_factor (position));
5600 xtarget = adjust_address (xtarget, mode, 0);
5601 store_expr (value, xtarget, 0, false);
5603 else
5605 if (index != 0)
5606 bitpos = ((tree_low_cst (index, 0) - minelt)
5607 * tree_low_cst (TYPE_SIZE (elttype), 1));
5608 else
5609 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5611 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5612 && TREE_CODE (type) == ARRAY_TYPE
5613 && TYPE_NONALIASED_COMPONENT (type))
5615 target = copy_rtx (target);
5616 MEM_KEEP_ALIAS_SET_P (target) = 1;
5618 store_constructor_field (target, bitsize, bitpos, mode, value,
5619 type, cleared, get_alias_set (elttype));
5622 break;
5625 case VECTOR_TYPE:
5627 unsigned HOST_WIDE_INT idx;
5628 constructor_elt *ce;
5629 int i;
5630 int need_to_clear;
5631 int icode = 0;
5632 tree elttype = TREE_TYPE (type);
5633 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5634 enum machine_mode eltmode = TYPE_MODE (elttype);
5635 HOST_WIDE_INT bitsize;
5636 HOST_WIDE_INT bitpos;
5637 rtvec vector = NULL;
5638 unsigned n_elts;
5639 alias_set_type alias;
5641 gcc_assert (eltmode != BLKmode);
5643 n_elts = TYPE_VECTOR_SUBPARTS (type);
5644 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5646 enum machine_mode mode = GET_MODE (target);
5648 icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
5649 if (icode != CODE_FOR_nothing)
5651 unsigned int i;
5653 vector = rtvec_alloc (n_elts);
5654 for (i = 0; i < n_elts; i++)
5655 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5659 /* If the constructor has fewer elements than the vector,
5660 clear the whole array first. Similarly if this is static
5661 constructor of a non-BLKmode object. */
5662 if (cleared)
5663 need_to_clear = 0;
5664 else if (REG_P (target) && TREE_STATIC (exp))
5665 need_to_clear = 1;
5666 else
5668 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5669 tree value;
5671 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5673 int n_elts_here = tree_low_cst
5674 (int_const_binop (TRUNC_DIV_EXPR,
5675 TYPE_SIZE (TREE_TYPE (value)),
5676 TYPE_SIZE (elttype), 0), 1);
5678 count += n_elts_here;
5679 if (mostly_zeros_p (value))
5680 zero_count += n_elts_here;
5683 /* Clear the entire vector first if there are any missing elements,
5684 or if the incidence of zero elements is >= 75%. */
5685 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5688 if (need_to_clear && size > 0 && !vector)
5690 if (REG_P (target))
5691 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5692 else
5693 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5694 cleared = 1;
5697 /* Inform later passes that the old value is dead. */
5698 if (!cleared && !vector && REG_P (target))
5699 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5701 if (MEM_P (target))
5702 alias = MEM_ALIAS_SET (target);
5703 else
5704 alias = get_alias_set (elttype);
5706 /* Store each element of the constructor into the corresponding
5707 element of TARGET, determined by counting the elements. */
5708 for (idx = 0, i = 0;
5709 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5710 idx++, i += bitsize / elt_size)
5712 HOST_WIDE_INT eltpos;
5713 tree value = ce->value;
5715 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5716 if (cleared && initializer_zerop (value))
5717 continue;
5719 if (ce->index)
5720 eltpos = tree_low_cst (ce->index, 1);
5721 else
5722 eltpos = i;
5724 if (vector)
5726 /* Vector CONSTRUCTORs should only be built from smaller
5727 vectors in the case of BLKmode vectors. */
5728 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5729 RTVEC_ELT (vector, eltpos)
5730 = expand_normal (value);
5732 else
5734 enum machine_mode value_mode =
5735 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5736 ? TYPE_MODE (TREE_TYPE (value))
5737 : eltmode;
5738 bitpos = eltpos * elt_size;
5739 store_constructor_field (target, bitsize, bitpos,
5740 value_mode, value, type,
5741 cleared, alias);
5745 if (vector)
5746 emit_insn (GEN_FCN (icode)
5747 (target,
5748 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5749 break;
5752 default:
5753 gcc_unreachable ();
5757 /* Store the value of EXP (an expression tree)
5758 into a subfield of TARGET which has mode MODE and occupies
5759 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5760 If MODE is VOIDmode, it means that we are storing into a bit-field.
5762 Always return const0_rtx unless we have something particular to
5763 return.
5765 TYPE is the type of the underlying object,
5767 ALIAS_SET is the alias set for the destination. This value will
5768 (in general) be different from that for TARGET, since TARGET is a
5769 reference to the containing structure.
5771 If NONTEMPORAL is true, try generating a nontemporal store. */
5773 static rtx
5774 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5775 enum machine_mode mode, tree exp, tree type,
5776 alias_set_type alias_set, bool nontemporal)
5778 if (TREE_CODE (exp) == ERROR_MARK)
5779 return const0_rtx;
5781 /* If we have nothing to store, do nothing unless the expression has
5782 side-effects. */
5783 if (bitsize == 0)
5784 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5786 /* If we are storing into an unaligned field of an aligned union that is
5787 in a register, we may have the mode of TARGET being an integer mode but
5788 MODE == BLKmode. In that case, get an aligned object whose size and
5789 alignment are the same as TARGET and store TARGET into it (we can avoid
5790 the store if the field being stored is the entire width of TARGET). Then
5791 call ourselves recursively to store the field into a BLKmode version of
5792 that object. Finally, load from the object into TARGET. This is not
5793 very efficient in general, but should only be slightly more expensive
5794 than the otherwise-required unaligned accesses. Perhaps this can be
5795 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5796 twice, once with emit_move_insn and once via store_field. */
5798 if (mode == BLKmode
5799 && (REG_P (target) || GET_CODE (target) == SUBREG))
5801 rtx object = assign_temp (type, 0, 1, 1);
5802 rtx blk_object = adjust_address (object, BLKmode, 0);
5804 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5805 emit_move_insn (object, target);
5807 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5808 nontemporal);
5810 emit_move_insn (target, object);
5812 /* We want to return the BLKmode version of the data. */
5813 return blk_object;
5816 if (GET_CODE (target) == CONCAT)
5818 /* We're storing into a struct containing a single __complex. */
5820 gcc_assert (!bitpos);
5821 return store_expr (exp, target, 0, nontemporal);
5824 /* If the structure is in a register or if the component
5825 is a bit field, we cannot use addressing to access it.
5826 Use bit-field techniques or SUBREG to store in it. */
5828 if (mode == VOIDmode
5829 || (mode != BLKmode && ! direct_store[(int) mode]
5830 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5831 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5832 || REG_P (target)
5833 || GET_CODE (target) == SUBREG
5834 /* If the field isn't aligned enough to store as an ordinary memref,
5835 store it as a bit field. */
5836 || (mode != BLKmode
5837 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5838 || bitpos % GET_MODE_ALIGNMENT (mode))
5839 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5840 || (bitpos % BITS_PER_UNIT != 0)))
5841 /* If the RHS and field are a constant size and the size of the
5842 RHS isn't the same size as the bitfield, we must use bitfield
5843 operations. */
5844 || (bitsize >= 0
5845 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5846 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5848 rtx temp;
5849 gimple nop_def;
5851 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5852 implies a mask operation. If the precision is the same size as
5853 the field we're storing into, that mask is redundant. This is
5854 particularly common with bit field assignments generated by the
5855 C front end. */
5856 nop_def = get_def_for_expr (exp, NOP_EXPR);
5857 if (nop_def)
5859 tree type = TREE_TYPE (exp);
5860 if (INTEGRAL_TYPE_P (type)
5861 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5862 && bitsize == TYPE_PRECISION (type))
5864 tree op = gimple_assign_rhs1 (nop_def);
5865 type = TREE_TYPE (op);
5866 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5867 exp = op;
5871 temp = expand_normal (exp);
5873 /* If BITSIZE is narrower than the size of the type of EXP
5874 we will be narrowing TEMP. Normally, what's wanted are the
5875 low-order bits. However, if EXP's type is a record and this is
5876 big-endian machine, we want the upper BITSIZE bits. */
5877 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5878 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5879 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5880 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5881 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5882 - bitsize),
5883 NULL_RTX, 1);
5885 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5886 MODE. */
5887 if (mode != VOIDmode && mode != BLKmode
5888 && mode != TYPE_MODE (TREE_TYPE (exp)))
5889 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5891 /* If the modes of TEMP and TARGET are both BLKmode, both
5892 must be in memory and BITPOS must be aligned on a byte
5893 boundary. If so, we simply do a block copy. Likewise
5894 for a BLKmode-like TARGET. */
5895 if (GET_MODE (temp) == BLKmode
5896 && (GET_MODE (target) == BLKmode
5897 || (MEM_P (target)
5898 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5899 && (bitpos % BITS_PER_UNIT) == 0
5900 && (bitsize % BITS_PER_UNIT) == 0)))
5902 gcc_assert (MEM_P (target) && MEM_P (temp)
5903 && (bitpos % BITS_PER_UNIT) == 0);
5905 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5906 emit_block_move (target, temp,
5907 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5908 / BITS_PER_UNIT),
5909 BLOCK_OP_NORMAL);
5911 return const0_rtx;
5914 /* Store the value in the bitfield. */
5915 store_bit_field (target, bitsize, bitpos, mode, temp);
5917 return const0_rtx;
5919 else
5921 /* Now build a reference to just the desired component. */
5922 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5924 if (to_rtx == target)
5925 to_rtx = copy_rtx (to_rtx);
5927 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5928 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5929 set_mem_alias_set (to_rtx, alias_set);
5931 return store_expr (exp, to_rtx, 0, nontemporal);
5935 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5936 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5937 codes and find the ultimate containing object, which we return.
5939 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5940 bit position, and *PUNSIGNEDP to the signedness of the field.
5941 If the position of the field is variable, we store a tree
5942 giving the variable offset (in units) in *POFFSET.
5943 This offset is in addition to the bit position.
5944 If the position is not variable, we store 0 in *POFFSET.
5946 If any of the extraction expressions is volatile,
5947 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5949 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5950 Otherwise, it is a mode that can be used to access the field.
5952 If the field describes a variable-sized object, *PMODE is set to
5953 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5954 this case, but the address of the object can be found.
5956 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5957 look through nodes that serve as markers of a greater alignment than
5958 the one that can be deduced from the expression. These nodes make it
5959 possible for front-ends to prevent temporaries from being created by
5960 the middle-end on alignment considerations. For that purpose, the
5961 normal operating mode at high-level is to always pass FALSE so that
5962 the ultimate containing object is really returned; moreover, the
5963 associated predicate handled_component_p will always return TRUE
5964 on these nodes, thus indicating that they are essentially handled
5965 by get_inner_reference. TRUE should only be passed when the caller
5966 is scanning the expression in order to build another representation
5967 and specifically knows how to handle these nodes; as such, this is
5968 the normal operating mode in the RTL expanders. */
5970 tree
5971 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5972 HOST_WIDE_INT *pbitpos, tree *poffset,
5973 enum machine_mode *pmode, int *punsignedp,
5974 int *pvolatilep, bool keep_aligning)
5976 tree size_tree = 0;
5977 enum machine_mode mode = VOIDmode;
5978 bool blkmode_bitfield = false;
5979 tree offset = size_zero_node;
5980 tree bit_offset = bitsize_zero_node;
5982 /* First get the mode, signedness, and size. We do this from just the
5983 outermost expression. */
5984 *pbitsize = -1;
5985 if (TREE_CODE (exp) == COMPONENT_REF)
5987 tree field = TREE_OPERAND (exp, 1);
5988 size_tree = DECL_SIZE (field);
5989 if (!DECL_BIT_FIELD (field))
5990 mode = DECL_MODE (field);
5991 else if (DECL_MODE (field) == BLKmode)
5992 blkmode_bitfield = true;
5994 *punsignedp = DECL_UNSIGNED (field);
5996 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5998 size_tree = TREE_OPERAND (exp, 1);
5999 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6000 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6002 /* For vector types, with the correct size of access, use the mode of
6003 inner type. */
6004 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6005 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6006 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6007 mode = TYPE_MODE (TREE_TYPE (exp));
6009 else
6011 mode = TYPE_MODE (TREE_TYPE (exp));
6012 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6014 if (mode == BLKmode)
6015 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6016 else
6017 *pbitsize = GET_MODE_BITSIZE (mode);
6020 if (size_tree != 0)
6022 if (! host_integerp (size_tree, 1))
6023 mode = BLKmode, *pbitsize = -1;
6024 else
6025 *pbitsize = tree_low_cst (size_tree, 1);
6028 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6029 and find the ultimate containing object. */
6030 while (1)
6032 switch (TREE_CODE (exp))
6034 case BIT_FIELD_REF:
6035 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6036 TREE_OPERAND (exp, 2));
6037 break;
6039 case COMPONENT_REF:
6041 tree field = TREE_OPERAND (exp, 1);
6042 tree this_offset = component_ref_field_offset (exp);
6044 /* If this field hasn't been filled in yet, don't go past it.
6045 This should only happen when folding expressions made during
6046 type construction. */
6047 if (this_offset == 0)
6048 break;
6050 offset = size_binop (PLUS_EXPR, offset, this_offset);
6051 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6052 DECL_FIELD_BIT_OFFSET (field));
6054 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6056 break;
6058 case ARRAY_REF:
6059 case ARRAY_RANGE_REF:
6061 tree index = TREE_OPERAND (exp, 1);
6062 tree low_bound = array_ref_low_bound (exp);
6063 tree unit_size = array_ref_element_size (exp);
6065 /* We assume all arrays have sizes that are a multiple of a byte.
6066 First subtract the lower bound, if any, in the type of the
6067 index, then convert to sizetype and multiply by the size of
6068 the array element. */
6069 if (! integer_zerop (low_bound))
6070 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6071 index, low_bound);
6073 offset = size_binop (PLUS_EXPR, offset,
6074 size_binop (MULT_EXPR,
6075 fold_convert (sizetype, index),
6076 unit_size));
6078 break;
6080 case REALPART_EXPR:
6081 break;
6083 case IMAGPART_EXPR:
6084 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6085 bitsize_int (*pbitsize));
6086 break;
6088 case VIEW_CONVERT_EXPR:
6089 if (keep_aligning && STRICT_ALIGNMENT
6090 && (TYPE_ALIGN (TREE_TYPE (exp))
6091 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6092 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6093 < BIGGEST_ALIGNMENT)
6094 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6095 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6096 goto done;
6097 break;
6099 default:
6100 goto done;
6103 /* If any reference in the chain is volatile, the effect is volatile. */
6104 if (TREE_THIS_VOLATILE (exp))
6105 *pvolatilep = 1;
6107 exp = TREE_OPERAND (exp, 0);
6109 done:
6111 /* If OFFSET is constant, see if we can return the whole thing as a
6112 constant bit position. Make sure to handle overflow during
6113 this conversion. */
6114 if (host_integerp (offset, 0))
6116 double_int tem = double_int_mul (tree_to_double_int (offset),
6117 uhwi_to_double_int (BITS_PER_UNIT));
6118 tem = double_int_add (tem, tree_to_double_int (bit_offset));
6119 if (double_int_fits_in_shwi_p (tem))
6121 *pbitpos = double_int_to_shwi (tem);
6122 *poffset = offset = NULL_TREE;
6126 /* Otherwise, split it up. */
6127 if (offset)
6129 *pbitpos = tree_low_cst (bit_offset, 0);
6130 *poffset = offset;
6133 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6134 if (mode == VOIDmode
6135 && blkmode_bitfield
6136 && (*pbitpos % BITS_PER_UNIT) == 0
6137 && (*pbitsize % BITS_PER_UNIT) == 0)
6138 *pmode = BLKmode;
6139 else
6140 *pmode = mode;
6142 return exp;
6145 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6146 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6147 EXP is marked as PACKED. */
6149 bool
6150 contains_packed_reference (const_tree exp)
6152 bool packed_p = false;
6154 while (1)
6156 switch (TREE_CODE (exp))
6158 case COMPONENT_REF:
6160 tree field = TREE_OPERAND (exp, 1);
6161 packed_p = DECL_PACKED (field)
6162 || TYPE_PACKED (TREE_TYPE (field))
6163 || TYPE_PACKED (TREE_TYPE (exp));
6164 if (packed_p)
6165 goto done;
6167 break;
6169 case BIT_FIELD_REF:
6170 case ARRAY_REF:
6171 case ARRAY_RANGE_REF:
6172 case REALPART_EXPR:
6173 case IMAGPART_EXPR:
6174 case VIEW_CONVERT_EXPR:
6175 break;
6177 default:
6178 goto done;
6180 exp = TREE_OPERAND (exp, 0);
6182 done:
6183 return packed_p;
6186 /* Return a tree of sizetype representing the size, in bytes, of the element
6187 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6189 tree
6190 array_ref_element_size (tree exp)
6192 tree aligned_size = TREE_OPERAND (exp, 3);
6193 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6194 location_t loc = EXPR_LOCATION (exp);
6196 /* If a size was specified in the ARRAY_REF, it's the size measured
6197 in alignment units of the element type. So multiply by that value. */
6198 if (aligned_size)
6200 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6201 sizetype from another type of the same width and signedness. */
6202 if (TREE_TYPE (aligned_size) != sizetype)
6203 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6204 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6205 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6208 /* Otherwise, take the size from that of the element type. Substitute
6209 any PLACEHOLDER_EXPR that we have. */
6210 else
6211 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6214 /* Return a tree representing the lower bound of the array mentioned in
6215 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6217 tree
6218 array_ref_low_bound (tree exp)
6220 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6222 /* If a lower bound is specified in EXP, use it. */
6223 if (TREE_OPERAND (exp, 2))
6224 return TREE_OPERAND (exp, 2);
6226 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6227 substituting for a PLACEHOLDER_EXPR as needed. */
6228 if (domain_type && TYPE_MIN_VALUE (domain_type))
6229 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6231 /* Otherwise, return a zero of the appropriate type. */
6232 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6235 /* Return a tree representing the upper bound of the array mentioned in
6236 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6238 tree
6239 array_ref_up_bound (tree exp)
6241 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6243 /* If there is a domain type and it has an upper bound, use it, substituting
6244 for a PLACEHOLDER_EXPR as needed. */
6245 if (domain_type && TYPE_MAX_VALUE (domain_type))
6246 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6248 /* Otherwise fail. */
6249 return NULL_TREE;
6252 /* Return a tree representing the offset, in bytes, of the field referenced
6253 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6255 tree
6256 component_ref_field_offset (tree exp)
6258 tree aligned_offset = TREE_OPERAND (exp, 2);
6259 tree field = TREE_OPERAND (exp, 1);
6260 location_t loc = EXPR_LOCATION (exp);
6262 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6263 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6264 value. */
6265 if (aligned_offset)
6267 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6268 sizetype from another type of the same width and signedness. */
6269 if (TREE_TYPE (aligned_offset) != sizetype)
6270 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6271 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6272 size_int (DECL_OFFSET_ALIGN (field)
6273 / BITS_PER_UNIT));
6276 /* Otherwise, take the offset from that of the field. Substitute
6277 any PLACEHOLDER_EXPR that we have. */
6278 else
6279 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6282 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6284 static unsigned HOST_WIDE_INT
6285 target_align (const_tree target)
6287 /* We might have a chain of nested references with intermediate misaligning
6288 bitfields components, so need to recurse to find out. */
6290 unsigned HOST_WIDE_INT this_align, outer_align;
6292 switch (TREE_CODE (target))
6294 case BIT_FIELD_REF:
6295 return 1;
6297 case COMPONENT_REF:
6298 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6299 outer_align = target_align (TREE_OPERAND (target, 0));
6300 return MIN (this_align, outer_align);
6302 case ARRAY_REF:
6303 case ARRAY_RANGE_REF:
6304 this_align = TYPE_ALIGN (TREE_TYPE (target));
6305 outer_align = target_align (TREE_OPERAND (target, 0));
6306 return MIN (this_align, outer_align);
6308 CASE_CONVERT:
6309 case NON_LVALUE_EXPR:
6310 case VIEW_CONVERT_EXPR:
6311 this_align = TYPE_ALIGN (TREE_TYPE (target));
6312 outer_align = target_align (TREE_OPERAND (target, 0));
6313 return MAX (this_align, outer_align);
6315 default:
6316 return TYPE_ALIGN (TREE_TYPE (target));
6321 /* Given an rtx VALUE that may contain additions and multiplications, return
6322 an equivalent value that just refers to a register, memory, or constant.
6323 This is done by generating instructions to perform the arithmetic and
6324 returning a pseudo-register containing the value.
6326 The returned value may be a REG, SUBREG, MEM or constant. */
6329 force_operand (rtx value, rtx target)
6331 rtx op1, op2;
6332 /* Use subtarget as the target for operand 0 of a binary operation. */
6333 rtx subtarget = get_subtarget (target);
6334 enum rtx_code code = GET_CODE (value);
6336 /* Check for subreg applied to an expression produced by loop optimizer. */
6337 if (code == SUBREG
6338 && !REG_P (SUBREG_REG (value))
6339 && !MEM_P (SUBREG_REG (value)))
6341 value
6342 = simplify_gen_subreg (GET_MODE (value),
6343 force_reg (GET_MODE (SUBREG_REG (value)),
6344 force_operand (SUBREG_REG (value),
6345 NULL_RTX)),
6346 GET_MODE (SUBREG_REG (value)),
6347 SUBREG_BYTE (value));
6348 code = GET_CODE (value);
6351 /* Check for a PIC address load. */
6352 if ((code == PLUS || code == MINUS)
6353 && XEXP (value, 0) == pic_offset_table_rtx
6354 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6355 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6356 || GET_CODE (XEXP (value, 1)) == CONST))
6358 if (!subtarget)
6359 subtarget = gen_reg_rtx (GET_MODE (value));
6360 emit_move_insn (subtarget, value);
6361 return subtarget;
6364 if (ARITHMETIC_P (value))
6366 op2 = XEXP (value, 1);
6367 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6368 subtarget = 0;
6369 if (code == MINUS && CONST_INT_P (op2))
6371 code = PLUS;
6372 op2 = negate_rtx (GET_MODE (value), op2);
6375 /* Check for an addition with OP2 a constant integer and our first
6376 operand a PLUS of a virtual register and something else. In that
6377 case, we want to emit the sum of the virtual register and the
6378 constant first and then add the other value. This allows virtual
6379 register instantiation to simply modify the constant rather than
6380 creating another one around this addition. */
6381 if (code == PLUS && CONST_INT_P (op2)
6382 && GET_CODE (XEXP (value, 0)) == PLUS
6383 && REG_P (XEXP (XEXP (value, 0), 0))
6384 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6385 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6387 rtx temp = expand_simple_binop (GET_MODE (value), code,
6388 XEXP (XEXP (value, 0), 0), op2,
6389 subtarget, 0, OPTAB_LIB_WIDEN);
6390 return expand_simple_binop (GET_MODE (value), code, temp,
6391 force_operand (XEXP (XEXP (value,
6392 0), 1), 0),
6393 target, 0, OPTAB_LIB_WIDEN);
6396 op1 = force_operand (XEXP (value, 0), subtarget);
6397 op2 = force_operand (op2, NULL_RTX);
6398 switch (code)
6400 case MULT:
6401 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6402 case DIV:
6403 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6404 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6405 target, 1, OPTAB_LIB_WIDEN);
6406 else
6407 return expand_divmod (0,
6408 FLOAT_MODE_P (GET_MODE (value))
6409 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6410 GET_MODE (value), op1, op2, target, 0);
6411 case MOD:
6412 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6413 target, 0);
6414 case UDIV:
6415 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6416 target, 1);
6417 case UMOD:
6418 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6419 target, 1);
6420 case ASHIFTRT:
6421 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6422 target, 0, OPTAB_LIB_WIDEN);
6423 default:
6424 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6425 target, 1, OPTAB_LIB_WIDEN);
6428 if (UNARY_P (value))
6430 if (!target)
6431 target = gen_reg_rtx (GET_MODE (value));
6432 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6433 switch (code)
6435 case ZERO_EXTEND:
6436 case SIGN_EXTEND:
6437 case TRUNCATE:
6438 case FLOAT_EXTEND:
6439 case FLOAT_TRUNCATE:
6440 convert_move (target, op1, code == ZERO_EXTEND);
6441 return target;
6443 case FIX:
6444 case UNSIGNED_FIX:
6445 expand_fix (target, op1, code == UNSIGNED_FIX);
6446 return target;
6448 case FLOAT:
6449 case UNSIGNED_FLOAT:
6450 expand_float (target, op1, code == UNSIGNED_FLOAT);
6451 return target;
6453 default:
6454 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6458 #ifdef INSN_SCHEDULING
6459 /* On machines that have insn scheduling, we want all memory reference to be
6460 explicit, so we need to deal with such paradoxical SUBREGs. */
6461 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6462 && (GET_MODE_SIZE (GET_MODE (value))
6463 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6464 value
6465 = simplify_gen_subreg (GET_MODE (value),
6466 force_reg (GET_MODE (SUBREG_REG (value)),
6467 force_operand (SUBREG_REG (value),
6468 NULL_RTX)),
6469 GET_MODE (SUBREG_REG (value)),
6470 SUBREG_BYTE (value));
6471 #endif
6473 return value;
6476 /* Subroutine of expand_expr: return nonzero iff there is no way that
6477 EXP can reference X, which is being modified. TOP_P is nonzero if this
6478 call is going to be used to determine whether we need a temporary
6479 for EXP, as opposed to a recursive call to this function.
6481 It is always safe for this routine to return zero since it merely
6482 searches for optimization opportunities. */
6485 safe_from_p (const_rtx x, tree exp, int top_p)
6487 rtx exp_rtl = 0;
6488 int i, nops;
6490 if (x == 0
6491 /* If EXP has varying size, we MUST use a target since we currently
6492 have no way of allocating temporaries of variable size
6493 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6494 So we assume here that something at a higher level has prevented a
6495 clash. This is somewhat bogus, but the best we can do. Only
6496 do this when X is BLKmode and when we are at the top level. */
6497 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6498 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6499 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6500 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6501 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6502 != INTEGER_CST)
6503 && GET_MODE (x) == BLKmode)
6504 /* If X is in the outgoing argument area, it is always safe. */
6505 || (MEM_P (x)
6506 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6507 || (GET_CODE (XEXP (x, 0)) == PLUS
6508 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6509 return 1;
6511 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6512 find the underlying pseudo. */
6513 if (GET_CODE (x) == SUBREG)
6515 x = SUBREG_REG (x);
6516 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6517 return 0;
6520 /* Now look at our tree code and possibly recurse. */
6521 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6523 case tcc_declaration:
6524 exp_rtl = DECL_RTL_IF_SET (exp);
6525 break;
6527 case tcc_constant:
6528 return 1;
6530 case tcc_exceptional:
6531 if (TREE_CODE (exp) == TREE_LIST)
6533 while (1)
6535 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6536 return 0;
6537 exp = TREE_CHAIN (exp);
6538 if (!exp)
6539 return 1;
6540 if (TREE_CODE (exp) != TREE_LIST)
6541 return safe_from_p (x, exp, 0);
6544 else if (TREE_CODE (exp) == CONSTRUCTOR)
6546 constructor_elt *ce;
6547 unsigned HOST_WIDE_INT idx;
6549 for (idx = 0;
6550 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6551 idx++)
6552 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6553 || !safe_from_p (x, ce->value, 0))
6554 return 0;
6555 return 1;
6557 else if (TREE_CODE (exp) == ERROR_MARK)
6558 return 1; /* An already-visited SAVE_EXPR? */
6559 else
6560 return 0;
6562 case tcc_statement:
6563 /* The only case we look at here is the DECL_INITIAL inside a
6564 DECL_EXPR. */
6565 return (TREE_CODE (exp) != DECL_EXPR
6566 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6567 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6568 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6570 case tcc_binary:
6571 case tcc_comparison:
6572 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6573 return 0;
6574 /* Fall through. */
6576 case tcc_unary:
6577 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6579 case tcc_expression:
6580 case tcc_reference:
6581 case tcc_vl_exp:
6582 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6583 the expression. If it is set, we conflict iff we are that rtx or
6584 both are in memory. Otherwise, we check all operands of the
6585 expression recursively. */
6587 switch (TREE_CODE (exp))
6589 case ADDR_EXPR:
6590 /* If the operand is static or we are static, we can't conflict.
6591 Likewise if we don't conflict with the operand at all. */
6592 if (staticp (TREE_OPERAND (exp, 0))
6593 || TREE_STATIC (exp)
6594 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6595 return 1;
6597 /* Otherwise, the only way this can conflict is if we are taking
6598 the address of a DECL a that address if part of X, which is
6599 very rare. */
6600 exp = TREE_OPERAND (exp, 0);
6601 if (DECL_P (exp))
6603 if (!DECL_RTL_SET_P (exp)
6604 || !MEM_P (DECL_RTL (exp)))
6605 return 0;
6606 else
6607 exp_rtl = XEXP (DECL_RTL (exp), 0);
6609 break;
6611 case MISALIGNED_INDIRECT_REF:
6612 case ALIGN_INDIRECT_REF:
6613 case INDIRECT_REF:
6614 if (MEM_P (x)
6615 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6616 get_alias_set (exp)))
6617 return 0;
6618 break;
6620 case CALL_EXPR:
6621 /* Assume that the call will clobber all hard registers and
6622 all of memory. */
6623 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6624 || MEM_P (x))
6625 return 0;
6626 break;
6628 case WITH_CLEANUP_EXPR:
6629 case CLEANUP_POINT_EXPR:
6630 /* Lowered by gimplify.c. */
6631 gcc_unreachable ();
6633 case SAVE_EXPR:
6634 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6636 default:
6637 break;
6640 /* If we have an rtx, we do not need to scan our operands. */
6641 if (exp_rtl)
6642 break;
6644 nops = TREE_OPERAND_LENGTH (exp);
6645 for (i = 0; i < nops; i++)
6646 if (TREE_OPERAND (exp, i) != 0
6647 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6648 return 0;
6650 break;
6652 case tcc_type:
6653 /* Should never get a type here. */
6654 gcc_unreachable ();
6657 /* If we have an rtl, find any enclosed object. Then see if we conflict
6658 with it. */
6659 if (exp_rtl)
6661 if (GET_CODE (exp_rtl) == SUBREG)
6663 exp_rtl = SUBREG_REG (exp_rtl);
6664 if (REG_P (exp_rtl)
6665 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6666 return 0;
6669 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6670 are memory and they conflict. */
6671 return ! (rtx_equal_p (x, exp_rtl)
6672 || (MEM_P (x) && MEM_P (exp_rtl)
6673 && true_dependence (exp_rtl, VOIDmode, x,
6674 rtx_addr_varies_p)));
6677 /* If we reach here, it is safe. */
6678 return 1;
6682 /* Return the highest power of two that EXP is known to be a multiple of.
6683 This is used in updating alignment of MEMs in array references. */
6685 unsigned HOST_WIDE_INT
6686 highest_pow2_factor (const_tree exp)
6688 unsigned HOST_WIDE_INT c0, c1;
6690 switch (TREE_CODE (exp))
6692 case INTEGER_CST:
6693 /* We can find the lowest bit that's a one. If the low
6694 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6695 We need to handle this case since we can find it in a COND_EXPR,
6696 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6697 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6698 later ICE. */
6699 if (TREE_OVERFLOW (exp))
6700 return BIGGEST_ALIGNMENT;
6701 else
6703 /* Note: tree_low_cst is intentionally not used here,
6704 we don't care about the upper bits. */
6705 c0 = TREE_INT_CST_LOW (exp);
6706 c0 &= -c0;
6707 return c0 ? c0 : BIGGEST_ALIGNMENT;
6709 break;
6711 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6712 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6713 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6714 return MIN (c0, c1);
6716 case MULT_EXPR:
6717 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6718 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6719 return c0 * c1;
6721 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6722 case CEIL_DIV_EXPR:
6723 if (integer_pow2p (TREE_OPERAND (exp, 1))
6724 && host_integerp (TREE_OPERAND (exp, 1), 1))
6726 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6727 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6728 return MAX (1, c0 / c1);
6730 break;
6732 case BIT_AND_EXPR:
6733 /* The highest power of two of a bit-and expression is the maximum of
6734 that of its operands. We typically get here for a complex LHS and
6735 a constant negative power of two on the RHS to force an explicit
6736 alignment, so don't bother looking at the LHS. */
6737 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6739 CASE_CONVERT:
6740 case SAVE_EXPR:
6741 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6743 case COMPOUND_EXPR:
6744 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6746 case COND_EXPR:
6747 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6748 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6749 return MIN (c0, c1);
6751 default:
6752 break;
6755 return 1;
6758 /* Similar, except that the alignment requirements of TARGET are
6759 taken into account. Assume it is at least as aligned as its
6760 type, unless it is a COMPONENT_REF in which case the layout of
6761 the structure gives the alignment. */
6763 static unsigned HOST_WIDE_INT
6764 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6766 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6767 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6769 return MAX (factor, talign);
6772 /* Return &VAR expression for emulated thread local VAR. */
6774 static tree
6775 emutls_var_address (tree var)
6777 tree emuvar = emutls_decl (var);
6778 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6779 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6780 tree arglist = build_tree_list (NULL_TREE, arg);
6781 tree call = build_function_call_expr (UNKNOWN_LOCATION, fn, arglist);
6782 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6786 /* Subroutine of expand_expr. Expand the two operands of a binary
6787 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6788 The value may be stored in TARGET if TARGET is nonzero. The
6789 MODIFIER argument is as documented by expand_expr. */
6791 static void
6792 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6793 enum expand_modifier modifier)
6795 if (! safe_from_p (target, exp1, 1))
6796 target = 0;
6797 if (operand_equal_p (exp0, exp1, 0))
6799 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6800 *op1 = copy_rtx (*op0);
6802 else
6804 /* If we need to preserve evaluation order, copy exp0 into its own
6805 temporary variable so that it can't be clobbered by exp1. */
6806 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6807 exp0 = save_expr (exp0);
6808 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6809 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6814 /* Return a MEM that contains constant EXP. DEFER is as for
6815 output_constant_def and MODIFIER is as for expand_expr. */
6817 static rtx
6818 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6820 rtx mem;
6822 mem = output_constant_def (exp, defer);
6823 if (modifier != EXPAND_INITIALIZER)
6824 mem = use_anchored_address (mem);
6825 return mem;
6828 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6829 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6831 static rtx
6832 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6833 enum expand_modifier modifier, addr_space_t as)
6835 rtx result, subtarget;
6836 tree inner, offset;
6837 HOST_WIDE_INT bitsize, bitpos;
6838 int volatilep, unsignedp;
6839 enum machine_mode mode1;
6841 /* If we are taking the address of a constant and are at the top level,
6842 we have to use output_constant_def since we can't call force_const_mem
6843 at top level. */
6844 /* ??? This should be considered a front-end bug. We should not be
6845 generating ADDR_EXPR of something that isn't an LVALUE. The only
6846 exception here is STRING_CST. */
6847 if (CONSTANT_CLASS_P (exp))
6848 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6850 /* Everything must be something allowed by is_gimple_addressable. */
6851 switch (TREE_CODE (exp))
6853 case INDIRECT_REF:
6854 /* This case will happen via recursion for &a->b. */
6855 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6857 case CONST_DECL:
6858 /* Expand the initializer like constants above. */
6859 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6861 case REALPART_EXPR:
6862 /* The real part of the complex number is always first, therefore
6863 the address is the same as the address of the parent object. */
6864 offset = 0;
6865 bitpos = 0;
6866 inner = TREE_OPERAND (exp, 0);
6867 break;
6869 case IMAGPART_EXPR:
6870 /* The imaginary part of the complex number is always second.
6871 The expression is therefore always offset by the size of the
6872 scalar type. */
6873 offset = 0;
6874 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6875 inner = TREE_OPERAND (exp, 0);
6876 break;
6878 case VAR_DECL:
6879 /* TLS emulation hook - replace __thread VAR's &VAR with
6880 __emutls_get_address (&_emutls.VAR). */
6881 if (! targetm.have_tls
6882 && TREE_CODE (exp) == VAR_DECL
6883 && DECL_THREAD_LOCAL_P (exp))
6885 exp = emutls_var_address (exp);
6886 return expand_expr (exp, target, tmode, modifier);
6888 /* Fall through. */
6890 default:
6891 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6892 expand_expr, as that can have various side effects; LABEL_DECLs for
6893 example, may not have their DECL_RTL set yet. Expand the rtl of
6894 CONSTRUCTORs too, which should yield a memory reference for the
6895 constructor's contents. Assume language specific tree nodes can
6896 be expanded in some interesting way. */
6897 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6898 if (DECL_P (exp)
6899 || TREE_CODE (exp) == CONSTRUCTOR
6900 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6902 result = expand_expr (exp, target, tmode,
6903 modifier == EXPAND_INITIALIZER
6904 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6906 /* If the DECL isn't in memory, then the DECL wasn't properly
6907 marked TREE_ADDRESSABLE, which will be either a front-end
6908 or a tree optimizer bug. */
6909 gcc_assert (MEM_P (result));
6910 result = XEXP (result, 0);
6912 /* ??? Is this needed anymore? */
6913 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6915 assemble_external (exp);
6916 TREE_USED (exp) = 1;
6919 if (modifier != EXPAND_INITIALIZER
6920 && modifier != EXPAND_CONST_ADDRESS)
6921 result = force_operand (result, target);
6922 return result;
6925 /* Pass FALSE as the last argument to get_inner_reference although
6926 we are expanding to RTL. The rationale is that we know how to
6927 handle "aligning nodes" here: we can just bypass them because
6928 they won't change the final object whose address will be returned
6929 (they actually exist only for that purpose). */
6930 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6931 &mode1, &unsignedp, &volatilep, false);
6932 break;
6935 /* We must have made progress. */
6936 gcc_assert (inner != exp);
6938 subtarget = offset || bitpos ? NULL_RTX : target;
6939 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6940 inner alignment, force the inner to be sufficiently aligned. */
6941 if (CONSTANT_CLASS_P (inner)
6942 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6944 inner = copy_node (inner);
6945 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6946 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6947 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6949 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
6951 if (offset)
6953 rtx tmp;
6955 if (modifier != EXPAND_NORMAL)
6956 result = force_operand (result, NULL);
6957 tmp = expand_expr (offset, NULL_RTX, tmode,
6958 modifier == EXPAND_INITIALIZER
6959 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6961 result = convert_memory_address_addr_space (tmode, result, as);
6962 tmp = convert_memory_address_addr_space (tmode, tmp, as);
6964 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6965 result = gen_rtx_PLUS (tmode, result, tmp);
6966 else
6968 subtarget = bitpos ? NULL_RTX : target;
6969 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6970 1, OPTAB_LIB_WIDEN);
6974 if (bitpos)
6976 /* Someone beforehand should have rejected taking the address
6977 of such an object. */
6978 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6980 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6981 if (modifier < EXPAND_SUM)
6982 result = force_operand (result, target);
6985 return result;
6988 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6989 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6991 static rtx
6992 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6993 enum expand_modifier modifier)
6995 addr_space_t as = ADDR_SPACE_GENERIC;
6996 enum machine_mode address_mode = Pmode;
6997 enum machine_mode pointer_mode = ptr_mode;
6998 enum machine_mode rmode;
6999 rtx result;
7001 /* Target mode of VOIDmode says "whatever's natural". */
7002 if (tmode == VOIDmode)
7003 tmode = TYPE_MODE (TREE_TYPE (exp));
7005 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7007 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7008 address_mode = targetm.addr_space.address_mode (as);
7009 pointer_mode = targetm.addr_space.pointer_mode (as);
7012 /* We can get called with some Weird Things if the user does silliness
7013 like "(short) &a". In that case, convert_memory_address won't do
7014 the right thing, so ignore the given target mode. */
7015 if (tmode != address_mode && tmode != pointer_mode)
7016 tmode = address_mode;
7018 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7019 tmode, modifier, as);
7021 /* Despite expand_expr claims concerning ignoring TMODE when not
7022 strictly convenient, stuff breaks if we don't honor it. Note
7023 that combined with the above, we only do this for pointer modes. */
7024 rmode = GET_MODE (result);
7025 if (rmode == VOIDmode)
7026 rmode = tmode;
7027 if (rmode != tmode)
7028 result = convert_memory_address_addr_space (tmode, result, as);
7030 return result;
7033 /* Generate code for computing CONSTRUCTOR EXP.
7034 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7035 is TRUE, instead of creating a temporary variable in memory
7036 NULL is returned and the caller needs to handle it differently. */
7038 static rtx
7039 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7040 bool avoid_temp_mem)
7042 tree type = TREE_TYPE (exp);
7043 enum machine_mode mode = TYPE_MODE (type);
7045 /* Try to avoid creating a temporary at all. This is possible
7046 if all of the initializer is zero.
7047 FIXME: try to handle all [0..255] initializers we can handle
7048 with memset. */
7049 if (TREE_STATIC (exp)
7050 && !TREE_ADDRESSABLE (exp)
7051 && target != 0 && mode == BLKmode
7052 && all_zeros_p (exp))
7054 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7055 return target;
7058 /* All elts simple constants => refer to a constant in memory. But
7059 if this is a non-BLKmode mode, let it store a field at a time
7060 since that should make a CONST_INT or CONST_DOUBLE when we
7061 fold. Likewise, if we have a target we can use, it is best to
7062 store directly into the target unless the type is large enough
7063 that memcpy will be used. If we are making an initializer and
7064 all operands are constant, put it in memory as well.
7066 FIXME: Avoid trying to fill vector constructors piece-meal.
7067 Output them with output_constant_def below unless we're sure
7068 they're zeros. This should go away when vector initializers
7069 are treated like VECTOR_CST instead of arrays. */
7070 if ((TREE_STATIC (exp)
7071 && ((mode == BLKmode
7072 && ! (target != 0 && safe_from_p (target, exp, 1)))
7073 || TREE_ADDRESSABLE (exp)
7074 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7075 && (! MOVE_BY_PIECES_P
7076 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7077 TYPE_ALIGN (type)))
7078 && ! mostly_zeros_p (exp))))
7079 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7080 && TREE_CONSTANT (exp)))
7082 rtx constructor;
7084 if (avoid_temp_mem)
7085 return NULL_RTX;
7087 constructor = expand_expr_constant (exp, 1, modifier);
7089 if (modifier != EXPAND_CONST_ADDRESS
7090 && modifier != EXPAND_INITIALIZER
7091 && modifier != EXPAND_SUM)
7092 constructor = validize_mem (constructor);
7094 return constructor;
7097 /* Handle calls that pass values in multiple non-contiguous
7098 locations. The Irix 6 ABI has examples of this. */
7099 if (target == 0 || ! safe_from_p (target, exp, 1)
7100 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7102 if (avoid_temp_mem)
7103 return NULL_RTX;
7105 target
7106 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7107 | (TREE_READONLY (exp)
7108 * TYPE_QUAL_CONST))),
7109 0, TREE_ADDRESSABLE (exp), 1);
7112 store_constructor (exp, target, 0, int_expr_size (exp));
7113 return target;
7117 /* expand_expr: generate code for computing expression EXP.
7118 An rtx for the computed value is returned. The value is never null.
7119 In the case of a void EXP, const0_rtx is returned.
7121 The value may be stored in TARGET if TARGET is nonzero.
7122 TARGET is just a suggestion; callers must assume that
7123 the rtx returned may not be the same as TARGET.
7125 If TARGET is CONST0_RTX, it means that the value will be ignored.
7127 If TMODE is not VOIDmode, it suggests generating the
7128 result in mode TMODE. But this is done only when convenient.
7129 Otherwise, TMODE is ignored and the value generated in its natural mode.
7130 TMODE is just a suggestion; callers must assume that
7131 the rtx returned may not have mode TMODE.
7133 Note that TARGET may have neither TMODE nor MODE. In that case, it
7134 probably will not be used.
7136 If MODIFIER is EXPAND_SUM then when EXP is an addition
7137 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7138 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7139 products as above, or REG or MEM, or constant.
7140 Ordinarily in such cases we would output mul or add instructions
7141 and then return a pseudo reg containing the sum.
7143 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7144 it also marks a label as absolutely required (it can't be dead).
7145 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7146 This is used for outputting expressions used in initializers.
7148 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7149 with a constant address even if that address is not normally legitimate.
7150 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7152 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7153 a call parameter. Such targets require special care as we haven't yet
7154 marked TARGET so that it's safe from being trashed by libcalls. We
7155 don't want to use TARGET for anything but the final result;
7156 Intermediate values must go elsewhere. Additionally, calls to
7157 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7159 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7160 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7161 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7162 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7163 recursively. */
7166 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7167 enum expand_modifier modifier, rtx *alt_rtl)
7169 rtx ret;
7171 /* Handle ERROR_MARK before anybody tries to access its type. */
7172 if (TREE_CODE (exp) == ERROR_MARK
7173 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7175 ret = CONST0_RTX (tmode);
7176 return ret ? ret : const0_rtx;
7179 /* If this is an expression of some kind and it has an associated line
7180 number, then emit the line number before expanding the expression.
7182 We need to save and restore the file and line information so that
7183 errors discovered during expansion are emitted with the right
7184 information. It would be better of the diagnostic routines
7185 used the file/line information embedded in the tree nodes rather
7186 than globals. */
7187 if (cfun && EXPR_HAS_LOCATION (exp))
7189 location_t saved_location = input_location;
7190 location_t saved_curr_loc = get_curr_insn_source_location ();
7191 tree saved_block = get_curr_insn_block ();
7192 input_location = EXPR_LOCATION (exp);
7193 set_curr_insn_source_location (input_location);
7195 /* Record where the insns produced belong. */
7196 set_curr_insn_block (TREE_BLOCK (exp));
7198 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7200 input_location = saved_location;
7201 set_curr_insn_block (saved_block);
7202 set_curr_insn_source_location (saved_curr_loc);
7204 else
7206 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7209 return ret;
7213 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7214 enum expand_modifier modifier)
7216 rtx op0, op1, op2, temp;
7217 tree type;
7218 int unsignedp;
7219 enum machine_mode mode;
7220 enum tree_code code = ops->code;
7221 optab this_optab;
7222 rtx subtarget, original_target;
7223 int ignore;
7224 bool reduce_bit_field;
7225 gimple subexp0_def, subexp1_def;
7226 tree top0, top1;
7227 location_t loc = ops->location;
7228 tree treeop0, treeop1;
7229 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7230 ? reduce_to_bit_field_precision ((expr), \
7231 target, \
7232 type) \
7233 : (expr))
7235 type = ops->type;
7236 mode = TYPE_MODE (type);
7237 unsignedp = TYPE_UNSIGNED (type);
7239 treeop0 = ops->op0;
7240 treeop1 = ops->op1;
7242 /* We should be called only on simple (binary or unary) expressions,
7243 exactly those that are valid in gimple expressions that aren't
7244 GIMPLE_SINGLE_RHS (or invalid). */
7245 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7246 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS);
7248 ignore = (target == const0_rtx
7249 || ((CONVERT_EXPR_CODE_P (code)
7250 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7251 && TREE_CODE (type) == VOID_TYPE));
7253 /* We should be called only if we need the result. */
7254 gcc_assert (!ignore);
7256 /* An operation in what may be a bit-field type needs the
7257 result to be reduced to the precision of the bit-field type,
7258 which is narrower than that of the type's mode. */
7259 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7260 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7262 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7263 target = 0;
7265 /* Use subtarget as the target for operand 0 of a binary operation. */
7266 subtarget = get_subtarget (target);
7267 original_target = target;
7269 switch (code)
7271 case NON_LVALUE_EXPR:
7272 case PAREN_EXPR:
7273 CASE_CONVERT:
7274 if (treeop0 == error_mark_node)
7275 return const0_rtx;
7277 if (TREE_CODE (type) == UNION_TYPE)
7279 tree valtype = TREE_TYPE (treeop0);
7281 /* If both input and output are BLKmode, this conversion isn't doing
7282 anything except possibly changing memory attribute. */
7283 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7285 rtx result = expand_expr (treeop0, target, tmode,
7286 modifier);
7288 result = copy_rtx (result);
7289 set_mem_attributes (result, type, 0);
7290 return result;
7293 if (target == 0)
7295 if (TYPE_MODE (type) != BLKmode)
7296 target = gen_reg_rtx (TYPE_MODE (type));
7297 else
7298 target = assign_temp (type, 0, 1, 1);
7301 if (MEM_P (target))
7302 /* Store data into beginning of memory target. */
7303 store_expr (treeop0,
7304 adjust_address (target, TYPE_MODE (valtype), 0),
7305 modifier == EXPAND_STACK_PARM,
7306 false);
7308 else
7310 gcc_assert (REG_P (target));
7312 /* Store this field into a union of the proper type. */
7313 store_field (target,
7314 MIN ((int_size_in_bytes (TREE_TYPE
7315 (treeop0))
7316 * BITS_PER_UNIT),
7317 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7318 0, TYPE_MODE (valtype), treeop0,
7319 type, 0, false);
7322 /* Return the entire union. */
7323 return target;
7326 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7328 op0 = expand_expr (treeop0, target, VOIDmode,
7329 modifier);
7331 /* If the signedness of the conversion differs and OP0 is
7332 a promoted SUBREG, clear that indication since we now
7333 have to do the proper extension. */
7334 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7335 && GET_CODE (op0) == SUBREG)
7336 SUBREG_PROMOTED_VAR_P (op0) = 0;
7338 return REDUCE_BIT_FIELD (op0);
7341 op0 = expand_expr (treeop0, NULL_RTX, mode,
7342 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7343 if (GET_MODE (op0) == mode)
7346 /* If OP0 is a constant, just convert it into the proper mode. */
7347 else if (CONSTANT_P (op0))
7349 tree inner_type = TREE_TYPE (treeop0);
7350 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7352 if (modifier == EXPAND_INITIALIZER)
7353 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7354 subreg_lowpart_offset (mode,
7355 inner_mode));
7356 else
7357 op0= convert_modes (mode, inner_mode, op0,
7358 TYPE_UNSIGNED (inner_type));
7361 else if (modifier == EXPAND_INITIALIZER)
7362 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7364 else if (target == 0)
7365 op0 = convert_to_mode (mode, op0,
7366 TYPE_UNSIGNED (TREE_TYPE
7367 (treeop0)));
7368 else
7370 convert_move (target, op0,
7371 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7372 op0 = target;
7375 return REDUCE_BIT_FIELD (op0);
7377 case ADDR_SPACE_CONVERT_EXPR:
7379 tree treeop0_type = TREE_TYPE (treeop0);
7380 addr_space_t as_to;
7381 addr_space_t as_from;
7383 gcc_assert (POINTER_TYPE_P (type));
7384 gcc_assert (POINTER_TYPE_P (treeop0_type));
7386 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7387 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7389 /* Conversions between pointers to the same address space should
7390 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7391 gcc_assert (as_to != as_from);
7393 /* Ask target code to handle conversion between pointers
7394 to overlapping address spaces. */
7395 if (targetm.addr_space.subset_p (as_to, as_from)
7396 || targetm.addr_space.subset_p (as_from, as_to))
7398 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7399 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7400 gcc_assert (op0);
7401 return op0;
7404 /* For disjoint address spaces, converting anything but
7405 a null pointer invokes undefined behaviour. We simply
7406 always return a null pointer here. */
7407 return CONST0_RTX (mode);
7410 case POINTER_PLUS_EXPR:
7411 /* Even though the sizetype mode and the pointer's mode can be different
7412 expand is able to handle this correctly and get the correct result out
7413 of the PLUS_EXPR code. */
7414 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7415 if sizetype precision is smaller than pointer precision. */
7416 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7417 treeop1 = fold_convert_loc (loc, type,
7418 fold_convert_loc (loc, ssizetype,
7419 treeop1));
7420 case PLUS_EXPR:
7422 /* Check if this is a case for multiplication and addition. */
7423 if ((TREE_CODE (type) == INTEGER_TYPE
7424 || TREE_CODE (type) == FIXED_POINT_TYPE)
7425 && (subexp0_def = get_def_for_expr (treeop0,
7426 MULT_EXPR)))
7428 tree subsubexp0, subsubexp1;
7429 gimple subsubexp0_def, subsubexp1_def;
7430 enum tree_code this_code;
7432 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
7433 : FIXED_CONVERT_EXPR;
7434 subsubexp0 = gimple_assign_rhs1 (subexp0_def);
7435 subsubexp0_def = get_def_for_expr (subsubexp0, this_code);
7436 subsubexp1 = gimple_assign_rhs2 (subexp0_def);
7437 subsubexp1_def = get_def_for_expr (subsubexp1, this_code);
7438 if (subsubexp0_def && subsubexp1_def
7439 && (top0 = gimple_assign_rhs1 (subsubexp0_def))
7440 && (top1 = gimple_assign_rhs1 (subsubexp1_def))
7441 && (TYPE_PRECISION (TREE_TYPE (top0))
7442 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
7443 && (TYPE_PRECISION (TREE_TYPE (top0))
7444 == TYPE_PRECISION (TREE_TYPE (top1)))
7445 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7446 == TYPE_UNSIGNED (TREE_TYPE (top1))))
7448 tree op0type = TREE_TYPE (top0);
7449 enum machine_mode innermode = TYPE_MODE (op0type);
7450 bool zextend_p = TYPE_UNSIGNED (op0type);
7451 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
7452 if (sat_p == 0)
7453 this_optab = zextend_p ? umadd_widen_optab : smadd_widen_optab;
7454 else
7455 this_optab = zextend_p ? usmadd_widen_optab
7456 : ssmadd_widen_optab;
7457 if (mode == GET_MODE_2XWIDER_MODE (innermode)
7458 && (optab_handler (this_optab, mode)->insn_code
7459 != CODE_FOR_nothing))
7461 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7462 EXPAND_NORMAL);
7463 op2 = expand_expr (treeop1, subtarget,
7464 VOIDmode, EXPAND_NORMAL);
7465 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
7466 target, unsignedp);
7467 gcc_assert (temp);
7468 return REDUCE_BIT_FIELD (temp);
7473 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7474 something else, make sure we add the register to the constant and
7475 then to the other thing. This case can occur during strength
7476 reduction and doing it this way will produce better code if the
7477 frame pointer or argument pointer is eliminated.
7479 fold-const.c will ensure that the constant is always in the inner
7480 PLUS_EXPR, so the only case we need to do anything about is if
7481 sp, ap, or fp is our second argument, in which case we must swap
7482 the innermost first argument and our second argument. */
7484 if (TREE_CODE (treeop0) == PLUS_EXPR
7485 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7486 && TREE_CODE (treeop1) == VAR_DECL
7487 && (DECL_RTL (treeop1) == frame_pointer_rtx
7488 || DECL_RTL (treeop1) == stack_pointer_rtx
7489 || DECL_RTL (treeop1) == arg_pointer_rtx))
7491 tree t = treeop1;
7493 treeop1 = TREE_OPERAND (treeop0, 0);
7494 TREE_OPERAND (treeop0, 0) = t;
7497 /* If the result is to be ptr_mode and we are adding an integer to
7498 something, we might be forming a constant. So try to use
7499 plus_constant. If it produces a sum and we can't accept it,
7500 use force_operand. This allows P = &ARR[const] to generate
7501 efficient code on machines where a SYMBOL_REF is not a valid
7502 address.
7504 If this is an EXPAND_SUM call, always return the sum. */
7505 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7506 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7508 if (modifier == EXPAND_STACK_PARM)
7509 target = 0;
7510 if (TREE_CODE (treeop0) == INTEGER_CST
7511 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7512 && TREE_CONSTANT (treeop1))
7514 rtx constant_part;
7516 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7517 EXPAND_SUM);
7518 /* Use immed_double_const to ensure that the constant is
7519 truncated according to the mode of OP1, then sign extended
7520 to a HOST_WIDE_INT. Using the constant directly can result
7521 in non-canonical RTL in a 64x32 cross compile. */
7522 constant_part
7523 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7524 (HOST_WIDE_INT) 0,
7525 TYPE_MODE (TREE_TYPE (treeop1)));
7526 op1 = plus_constant (op1, INTVAL (constant_part));
7527 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7528 op1 = force_operand (op1, target);
7529 return REDUCE_BIT_FIELD (op1);
7532 else if (TREE_CODE (treeop1) == INTEGER_CST
7533 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7534 && TREE_CONSTANT (treeop0))
7536 rtx constant_part;
7538 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7539 (modifier == EXPAND_INITIALIZER
7540 ? EXPAND_INITIALIZER : EXPAND_SUM));
7541 if (! CONSTANT_P (op0))
7543 op1 = expand_expr (treeop1, NULL_RTX,
7544 VOIDmode, modifier);
7545 /* Return a PLUS if modifier says it's OK. */
7546 if (modifier == EXPAND_SUM
7547 || modifier == EXPAND_INITIALIZER)
7548 return simplify_gen_binary (PLUS, mode, op0, op1);
7549 goto binop2;
7551 /* Use immed_double_const to ensure that the constant is
7552 truncated according to the mode of OP1, then sign extended
7553 to a HOST_WIDE_INT. Using the constant directly can result
7554 in non-canonical RTL in a 64x32 cross compile. */
7555 constant_part
7556 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7557 (HOST_WIDE_INT) 0,
7558 TYPE_MODE (TREE_TYPE (treeop0)));
7559 op0 = plus_constant (op0, INTVAL (constant_part));
7560 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7561 op0 = force_operand (op0, target);
7562 return REDUCE_BIT_FIELD (op0);
7566 /* No sense saving up arithmetic to be done
7567 if it's all in the wrong mode to form part of an address.
7568 And force_operand won't know whether to sign-extend or
7569 zero-extend. */
7570 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7571 || mode != ptr_mode)
7573 expand_operands (treeop0, treeop1,
7574 subtarget, &op0, &op1, EXPAND_NORMAL);
7575 if (op0 == const0_rtx)
7576 return op1;
7577 if (op1 == const0_rtx)
7578 return op0;
7579 goto binop2;
7582 expand_operands (treeop0, treeop1,
7583 subtarget, &op0, &op1, modifier);
7584 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7586 case MINUS_EXPR:
7587 /* Check if this is a case for multiplication and subtraction. */
7588 if ((TREE_CODE (type) == INTEGER_TYPE
7589 || TREE_CODE (type) == FIXED_POINT_TYPE)
7590 && (subexp1_def = get_def_for_expr (treeop1,
7591 MULT_EXPR)))
7593 tree subsubexp0, subsubexp1;
7594 gimple subsubexp0_def, subsubexp1_def;
7595 enum tree_code this_code;
7597 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
7598 : FIXED_CONVERT_EXPR;
7599 subsubexp0 = gimple_assign_rhs1 (subexp1_def);
7600 subsubexp0_def = get_def_for_expr (subsubexp0, this_code);
7601 subsubexp1 = gimple_assign_rhs2 (subexp1_def);
7602 subsubexp1_def = get_def_for_expr (subsubexp1, this_code);
7603 if (subsubexp0_def && subsubexp1_def
7604 && (top0 = gimple_assign_rhs1 (subsubexp0_def))
7605 && (top1 = gimple_assign_rhs1 (subsubexp1_def))
7606 && (TYPE_PRECISION (TREE_TYPE (top0))
7607 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
7608 && (TYPE_PRECISION (TREE_TYPE (top0))
7609 == TYPE_PRECISION (TREE_TYPE (top1)))
7610 && (TYPE_UNSIGNED (TREE_TYPE (top0))
7611 == TYPE_UNSIGNED (TREE_TYPE (top1))))
7613 tree op0type = TREE_TYPE (top0);
7614 enum machine_mode innermode = TYPE_MODE (op0type);
7615 bool zextend_p = TYPE_UNSIGNED (op0type);
7616 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
7617 if (sat_p == 0)
7618 this_optab = zextend_p ? umsub_widen_optab : smsub_widen_optab;
7619 else
7620 this_optab = zextend_p ? usmsub_widen_optab
7621 : ssmsub_widen_optab;
7622 if (mode == GET_MODE_2XWIDER_MODE (innermode)
7623 && (optab_handler (this_optab, mode)->insn_code
7624 != CODE_FOR_nothing))
7626 expand_operands (top0, top1, NULL_RTX, &op0, &op1,
7627 EXPAND_NORMAL);
7628 op2 = expand_expr (treeop0, subtarget,
7629 VOIDmode, EXPAND_NORMAL);
7630 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
7631 target, unsignedp);
7632 gcc_assert (temp);
7633 return REDUCE_BIT_FIELD (temp);
7638 /* For initializers, we are allowed to return a MINUS of two
7639 symbolic constants. Here we handle all cases when both operands
7640 are constant. */
7641 /* Handle difference of two symbolic constants,
7642 for the sake of an initializer. */
7643 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7644 && really_constant_p (treeop0)
7645 && really_constant_p (treeop1))
7647 expand_operands (treeop0, treeop1,
7648 NULL_RTX, &op0, &op1, modifier);
7650 /* If the last operand is a CONST_INT, use plus_constant of
7651 the negated constant. Else make the MINUS. */
7652 if (CONST_INT_P (op1))
7653 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7654 else
7655 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7658 /* No sense saving up arithmetic to be done
7659 if it's all in the wrong mode to form part of an address.
7660 And force_operand won't know whether to sign-extend or
7661 zero-extend. */
7662 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7663 || mode != ptr_mode)
7664 goto binop;
7666 expand_operands (treeop0, treeop1,
7667 subtarget, &op0, &op1, modifier);
7669 /* Convert A - const to A + (-const). */
7670 if (CONST_INT_P (op1))
7672 op1 = negate_rtx (mode, op1);
7673 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7676 goto binop2;
7678 case WIDEN_MULT_EXPR:
7679 /* If first operand is constant, swap them.
7680 Thus the following special case checks need only
7681 check the second operand. */
7682 if (TREE_CODE (treeop0) == INTEGER_CST)
7684 tree t1 = treeop0;
7685 treeop0 = treeop1;
7686 treeop1 = t1;
7689 /* First, check if we have a multiplication of one signed and one
7690 unsigned operand. */
7691 if (TREE_CODE (treeop1) != INTEGER_CST
7692 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7693 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7695 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7696 this_optab = usmul_widen_optab;
7697 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7699 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
7701 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7702 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
7703 EXPAND_NORMAL);
7704 else
7705 expand_operands (treeop0, treeop1, subtarget, &op1, &op0,
7706 EXPAND_NORMAL);
7707 goto binop3;
7711 /* Check for a multiplication with matching signedness. */
7712 else if ((TREE_CODE (treeop1) == INTEGER_CST
7713 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
7714 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
7715 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
7717 tree op0type = TREE_TYPE (treeop0);
7718 enum machine_mode innermode = TYPE_MODE (op0type);
7719 bool zextend_p = TYPE_UNSIGNED (op0type);
7720 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7721 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7723 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7725 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
7727 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7728 EXPAND_NORMAL);
7729 temp = expand_widening_mult (mode, op0, op1, target,
7730 unsignedp, this_optab);
7731 return REDUCE_BIT_FIELD (temp);
7733 if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
7734 && innermode == word_mode)
7736 rtx htem, hipart;
7737 op0 = expand_normal (treeop0);
7738 if (TREE_CODE (treeop1) == INTEGER_CST)
7739 op1 = convert_modes (innermode, mode,
7740 expand_normal (treeop1), unsignedp);
7741 else
7742 op1 = expand_normal (treeop1);
7743 temp = expand_binop (mode, other_optab, op0, op1, target,
7744 unsignedp, OPTAB_LIB_WIDEN);
7745 hipart = gen_highpart (innermode, temp);
7746 htem = expand_mult_highpart_adjust (innermode, hipart,
7747 op0, op1, hipart,
7748 zextend_p);
7749 if (htem != hipart)
7750 emit_move_insn (hipart, htem);
7751 return REDUCE_BIT_FIELD (temp);
7755 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
7756 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
7757 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7758 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7760 case MULT_EXPR:
7761 /* If this is a fixed-point operation, then we cannot use the code
7762 below because "expand_mult" doesn't support sat/no-sat fixed-point
7763 multiplications. */
7764 if (ALL_FIXED_POINT_MODE_P (mode))
7765 goto binop;
7767 /* If first operand is constant, swap them.
7768 Thus the following special case checks need only
7769 check the second operand. */
7770 if (TREE_CODE (treeop0) == INTEGER_CST)
7772 tree t1 = treeop0;
7773 treeop0 = treeop1;
7774 treeop1 = t1;
7777 /* Attempt to return something suitable for generating an
7778 indexed address, for machines that support that. */
7780 if (modifier == EXPAND_SUM && mode == ptr_mode
7781 && host_integerp (treeop1, 0))
7783 tree exp1 = treeop1;
7785 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7786 EXPAND_SUM);
7788 if (!REG_P (op0))
7789 op0 = force_operand (op0, NULL_RTX);
7790 if (!REG_P (op0))
7791 op0 = copy_to_mode_reg (mode, op0);
7793 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7794 gen_int_mode (tree_low_cst (exp1, 0),
7795 TYPE_MODE (TREE_TYPE (exp1)))));
7798 if (modifier == EXPAND_STACK_PARM)
7799 target = 0;
7801 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7802 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7804 case TRUNC_DIV_EXPR:
7805 case FLOOR_DIV_EXPR:
7806 case CEIL_DIV_EXPR:
7807 case ROUND_DIV_EXPR:
7808 case EXACT_DIV_EXPR:
7809 /* If this is a fixed-point operation, then we cannot use the code
7810 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7811 divisions. */
7812 if (ALL_FIXED_POINT_MODE_P (mode))
7813 goto binop;
7815 if (modifier == EXPAND_STACK_PARM)
7816 target = 0;
7817 /* Possible optimization: compute the dividend with EXPAND_SUM
7818 then if the divisor is constant can optimize the case
7819 where some terms of the dividend have coeffs divisible by it. */
7820 expand_operands (treeop0, treeop1,
7821 subtarget, &op0, &op1, EXPAND_NORMAL);
7822 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7824 case RDIV_EXPR:
7825 goto binop;
7827 case TRUNC_MOD_EXPR:
7828 case FLOOR_MOD_EXPR:
7829 case CEIL_MOD_EXPR:
7830 case ROUND_MOD_EXPR:
7831 if (modifier == EXPAND_STACK_PARM)
7832 target = 0;
7833 expand_operands (treeop0, treeop1,
7834 subtarget, &op0, &op1, EXPAND_NORMAL);
7835 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7837 case FIXED_CONVERT_EXPR:
7838 op0 = expand_normal (treeop0);
7839 if (target == 0 || modifier == EXPAND_STACK_PARM)
7840 target = gen_reg_rtx (mode);
7842 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7843 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7844 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7845 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7846 else
7847 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7848 return target;
7850 case FIX_TRUNC_EXPR:
7851 op0 = expand_normal (treeop0);
7852 if (target == 0 || modifier == EXPAND_STACK_PARM)
7853 target = gen_reg_rtx (mode);
7854 expand_fix (target, op0, unsignedp);
7855 return target;
7857 case FLOAT_EXPR:
7858 op0 = expand_normal (treeop0);
7859 if (target == 0 || modifier == EXPAND_STACK_PARM)
7860 target = gen_reg_rtx (mode);
7861 /* expand_float can't figure out what to do if FROM has VOIDmode.
7862 So give it the correct mode. With -O, cse will optimize this. */
7863 if (GET_MODE (op0) == VOIDmode)
7864 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7865 op0);
7866 expand_float (target, op0,
7867 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7868 return target;
7870 case NEGATE_EXPR:
7871 op0 = expand_expr (treeop0, subtarget,
7872 VOIDmode, EXPAND_NORMAL);
7873 if (modifier == EXPAND_STACK_PARM)
7874 target = 0;
7875 temp = expand_unop (mode,
7876 optab_for_tree_code (NEGATE_EXPR, type,
7877 optab_default),
7878 op0, target, 0);
7879 gcc_assert (temp);
7880 return REDUCE_BIT_FIELD (temp);
7882 case ABS_EXPR:
7883 op0 = expand_expr (treeop0, subtarget,
7884 VOIDmode, EXPAND_NORMAL);
7885 if (modifier == EXPAND_STACK_PARM)
7886 target = 0;
7888 /* ABS_EXPR is not valid for complex arguments. */
7889 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7890 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7892 /* Unsigned abs is simply the operand. Testing here means we don't
7893 risk generating incorrect code below. */
7894 if (TYPE_UNSIGNED (type))
7895 return op0;
7897 return expand_abs (mode, op0, target, unsignedp,
7898 safe_from_p (target, treeop0, 1));
7900 case MAX_EXPR:
7901 case MIN_EXPR:
7902 target = original_target;
7903 if (target == 0
7904 || modifier == EXPAND_STACK_PARM
7905 || (MEM_P (target) && MEM_VOLATILE_P (target))
7906 || GET_MODE (target) != mode
7907 || (REG_P (target)
7908 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7909 target = gen_reg_rtx (mode);
7910 expand_operands (treeop0, treeop1,
7911 target, &op0, &op1, EXPAND_NORMAL);
7913 /* First try to do it with a special MIN or MAX instruction.
7914 If that does not win, use a conditional jump to select the proper
7915 value. */
7916 this_optab = optab_for_tree_code (code, type, optab_default);
7917 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7918 OPTAB_WIDEN);
7919 if (temp != 0)
7920 return temp;
7922 /* At this point, a MEM target is no longer useful; we will get better
7923 code without it. */
7925 if (! REG_P (target))
7926 target = gen_reg_rtx (mode);
7928 /* If op1 was placed in target, swap op0 and op1. */
7929 if (target != op0 && target == op1)
7931 temp = op0;
7932 op0 = op1;
7933 op1 = temp;
7936 /* We generate better code and avoid problems with op1 mentioning
7937 target by forcing op1 into a pseudo if it isn't a constant. */
7938 if (! CONSTANT_P (op1))
7939 op1 = force_reg (mode, op1);
7942 enum rtx_code comparison_code;
7943 rtx cmpop1 = op1;
7945 if (code == MAX_EXPR)
7946 comparison_code = unsignedp ? GEU : GE;
7947 else
7948 comparison_code = unsignedp ? LEU : LE;
7950 /* Canonicalize to comparisons against 0. */
7951 if (op1 == const1_rtx)
7953 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7954 or (a != 0 ? a : 1) for unsigned.
7955 For MIN we are safe converting (a <= 1 ? a : 1)
7956 into (a <= 0 ? a : 1) */
7957 cmpop1 = const0_rtx;
7958 if (code == MAX_EXPR)
7959 comparison_code = unsignedp ? NE : GT;
7961 if (op1 == constm1_rtx && !unsignedp)
7963 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7964 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7965 cmpop1 = const0_rtx;
7966 if (code == MIN_EXPR)
7967 comparison_code = LT;
7969 #ifdef HAVE_conditional_move
7970 /* Use a conditional move if possible. */
7971 if (can_conditionally_move_p (mode))
7973 rtx insn;
7975 /* ??? Same problem as in expmed.c: emit_conditional_move
7976 forces a stack adjustment via compare_from_rtx, and we
7977 lose the stack adjustment if the sequence we are about
7978 to create is discarded. */
7979 do_pending_stack_adjust ();
7981 start_sequence ();
7983 /* Try to emit the conditional move. */
7984 insn = emit_conditional_move (target, comparison_code,
7985 op0, cmpop1, mode,
7986 op0, op1, mode,
7987 unsignedp);
7989 /* If we could do the conditional move, emit the sequence,
7990 and return. */
7991 if (insn)
7993 rtx seq = get_insns ();
7994 end_sequence ();
7995 emit_insn (seq);
7996 return target;
7999 /* Otherwise discard the sequence and fall back to code with
8000 branches. */
8001 end_sequence ();
8003 #endif
8004 if (target != op0)
8005 emit_move_insn (target, op0);
8007 temp = gen_label_rtx ();
8008 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8009 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8010 -1);
8012 emit_move_insn (target, op1);
8013 emit_label (temp);
8014 return target;
8016 case BIT_NOT_EXPR:
8017 op0 = expand_expr (treeop0, subtarget,
8018 VOIDmode, EXPAND_NORMAL);
8019 if (modifier == EXPAND_STACK_PARM)
8020 target = 0;
8021 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8022 gcc_assert (temp);
8023 return temp;
8025 /* ??? Can optimize bitwise operations with one arg constant.
8026 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8027 and (a bitwise1 b) bitwise2 b (etc)
8028 but that is probably not worth while. */
8030 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8031 boolean values when we want in all cases to compute both of them. In
8032 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8033 as actual zero-or-1 values and then bitwise anding. In cases where
8034 there cannot be any side effects, better code would be made by
8035 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8036 how to recognize those cases. */
8038 case TRUTH_AND_EXPR:
8039 code = BIT_AND_EXPR;
8040 case BIT_AND_EXPR:
8041 goto binop;
8043 case TRUTH_OR_EXPR:
8044 code = BIT_IOR_EXPR;
8045 case BIT_IOR_EXPR:
8046 goto binop;
8048 case TRUTH_XOR_EXPR:
8049 code = BIT_XOR_EXPR;
8050 case BIT_XOR_EXPR:
8051 goto binop;
8053 case LROTATE_EXPR:
8054 case RROTATE_EXPR:
8055 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8056 || (GET_MODE_PRECISION (TYPE_MODE (type))
8057 == TYPE_PRECISION (type)));
8058 /* fall through */
8060 case LSHIFT_EXPR:
8061 case RSHIFT_EXPR:
8062 /* If this is a fixed-point operation, then we cannot use the code
8063 below because "expand_shift" doesn't support sat/no-sat fixed-point
8064 shifts. */
8065 if (ALL_FIXED_POINT_MODE_P (mode))
8066 goto binop;
8068 if (! safe_from_p (subtarget, treeop1, 1))
8069 subtarget = 0;
8070 if (modifier == EXPAND_STACK_PARM)
8071 target = 0;
8072 op0 = expand_expr (treeop0, subtarget,
8073 VOIDmode, EXPAND_NORMAL);
8074 temp = expand_shift (code, mode, op0, treeop1, target,
8075 unsignedp);
8076 if (code == LSHIFT_EXPR)
8077 temp = REDUCE_BIT_FIELD (temp);
8078 return temp;
8080 /* Could determine the answer when only additive constants differ. Also,
8081 the addition of one can be handled by changing the condition. */
8082 case LT_EXPR:
8083 case LE_EXPR:
8084 case GT_EXPR:
8085 case GE_EXPR:
8086 case EQ_EXPR:
8087 case NE_EXPR:
8088 case UNORDERED_EXPR:
8089 case ORDERED_EXPR:
8090 case UNLT_EXPR:
8091 case UNLE_EXPR:
8092 case UNGT_EXPR:
8093 case UNGE_EXPR:
8094 case UNEQ_EXPR:
8095 case LTGT_EXPR:
8096 temp = do_store_flag (ops,
8097 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8098 tmode != VOIDmode ? tmode : mode);
8099 if (temp)
8100 return temp;
8102 /* Use a compare and a jump for BLKmode comparisons, or for function
8103 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8105 if ((target == 0
8106 || modifier == EXPAND_STACK_PARM
8107 || ! safe_from_p (target, treeop0, 1)
8108 || ! safe_from_p (target, treeop1, 1)
8109 /* Make sure we don't have a hard reg (such as function's return
8110 value) live across basic blocks, if not optimizing. */
8111 || (!optimize && REG_P (target)
8112 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8113 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8115 emit_move_insn (target, const0_rtx);
8117 op1 = gen_label_rtx ();
8118 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8120 emit_move_insn (target, const1_rtx);
8122 emit_label (op1);
8123 return target;
8125 case TRUTH_NOT_EXPR:
8126 if (modifier == EXPAND_STACK_PARM)
8127 target = 0;
8128 op0 = expand_expr (treeop0, target,
8129 VOIDmode, EXPAND_NORMAL);
8130 /* The parser is careful to generate TRUTH_NOT_EXPR
8131 only with operands that are always zero or one. */
8132 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8133 target, 1, OPTAB_LIB_WIDEN);
8134 gcc_assert (temp);
8135 return temp;
8137 case COMPLEX_EXPR:
8138 /* Get the rtx code of the operands. */
8139 op0 = expand_normal (treeop0);
8140 op1 = expand_normal (treeop1);
8142 if (!target)
8143 target = gen_reg_rtx (TYPE_MODE (type));
8145 /* Move the real (op0) and imaginary (op1) parts to their location. */
8146 write_complex_part (target, op0, false);
8147 write_complex_part (target, op1, true);
8149 return target;
8151 case WIDEN_SUM_EXPR:
8153 tree oprnd0 = treeop0;
8154 tree oprnd1 = treeop1;
8156 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8157 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8158 target, unsignedp);
8159 return target;
8162 case REDUC_MAX_EXPR:
8163 case REDUC_MIN_EXPR:
8164 case REDUC_PLUS_EXPR:
8166 op0 = expand_normal (treeop0);
8167 this_optab = optab_for_tree_code (code, type, optab_default);
8168 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8169 gcc_assert (temp);
8170 return temp;
8173 case VEC_EXTRACT_EVEN_EXPR:
8174 case VEC_EXTRACT_ODD_EXPR:
8176 expand_operands (treeop0, treeop1,
8177 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8178 this_optab = optab_for_tree_code (code, type, optab_default);
8179 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8180 OPTAB_WIDEN);
8181 gcc_assert (temp);
8182 return temp;
8185 case VEC_INTERLEAVE_HIGH_EXPR:
8186 case VEC_INTERLEAVE_LOW_EXPR:
8188 expand_operands (treeop0, treeop1,
8189 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8190 this_optab = optab_for_tree_code (code, type, optab_default);
8191 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8192 OPTAB_WIDEN);
8193 gcc_assert (temp);
8194 return temp;
8197 case VEC_LSHIFT_EXPR:
8198 case VEC_RSHIFT_EXPR:
8200 target = expand_vec_shift_expr (ops, target);
8201 return target;
8204 case VEC_UNPACK_HI_EXPR:
8205 case VEC_UNPACK_LO_EXPR:
8207 op0 = expand_normal (treeop0);
8208 this_optab = optab_for_tree_code (code, type, optab_default);
8209 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8210 target, unsignedp);
8211 gcc_assert (temp);
8212 return temp;
8215 case VEC_UNPACK_FLOAT_HI_EXPR:
8216 case VEC_UNPACK_FLOAT_LO_EXPR:
8218 op0 = expand_normal (treeop0);
8219 /* The signedness is determined from input operand. */
8220 this_optab = optab_for_tree_code (code,
8221 TREE_TYPE (treeop0),
8222 optab_default);
8223 temp = expand_widen_pattern_expr
8224 (ops, op0, NULL_RTX, NULL_RTX,
8225 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8227 gcc_assert (temp);
8228 return temp;
8231 case VEC_WIDEN_MULT_HI_EXPR:
8232 case VEC_WIDEN_MULT_LO_EXPR:
8234 tree oprnd0 = treeop0;
8235 tree oprnd1 = treeop1;
8237 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8238 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8239 target, unsignedp);
8240 gcc_assert (target);
8241 return target;
8244 case VEC_PACK_TRUNC_EXPR:
8245 case VEC_PACK_SAT_EXPR:
8246 case VEC_PACK_FIX_TRUNC_EXPR:
8247 mode = TYPE_MODE (TREE_TYPE (treeop0));
8248 goto binop;
8250 default:
8251 gcc_unreachable ();
8254 /* Here to do an ordinary binary operator. */
8255 binop:
8256 expand_operands (treeop0, treeop1,
8257 subtarget, &op0, &op1, EXPAND_NORMAL);
8258 binop2:
8259 this_optab = optab_for_tree_code (code, type, optab_default);
8260 binop3:
8261 if (modifier == EXPAND_STACK_PARM)
8262 target = 0;
8263 temp = expand_binop (mode, this_optab, op0, op1, target,
8264 unsignedp, OPTAB_LIB_WIDEN);
8265 gcc_assert (temp);
8266 return REDUCE_BIT_FIELD (temp);
8268 #undef REDUCE_BIT_FIELD
8271 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8272 enum expand_modifier modifier, rtx *alt_rtl)
8274 rtx op0, op1, temp, decl_rtl;
8275 tree type;
8276 int unsignedp;
8277 enum machine_mode mode;
8278 enum tree_code code = TREE_CODE (exp);
8279 optab this_optab;
8280 rtx subtarget, original_target;
8281 int ignore;
8282 tree context;
8283 bool reduce_bit_field;
8284 location_t loc = EXPR_LOCATION (exp);
8285 struct separate_ops ops;
8286 tree treeop0, treeop1, treeop2;
8288 type = TREE_TYPE (exp);
8289 mode = TYPE_MODE (type);
8290 unsignedp = TYPE_UNSIGNED (type);
8292 treeop0 = treeop1 = treeop2 = NULL_TREE;
8293 if (!VL_EXP_CLASS_P (exp))
8294 switch (TREE_CODE_LENGTH (code))
8296 default:
8297 case 3: treeop2 = TREE_OPERAND (exp, 2);
8298 case 2: treeop1 = TREE_OPERAND (exp, 1);
8299 case 1: treeop0 = TREE_OPERAND (exp, 0);
8300 case 0: break;
8302 ops.code = code;
8303 ops.type = type;
8304 ops.op0 = treeop0;
8305 ops.op1 = treeop1;
8306 ops.op2 = treeop2;
8307 ops.location = loc;
8309 ignore = (target == const0_rtx
8310 || ((CONVERT_EXPR_CODE_P (code)
8311 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8312 && TREE_CODE (type) == VOID_TYPE));
8314 /* An operation in what may be a bit-field type needs the
8315 result to be reduced to the precision of the bit-field type,
8316 which is narrower than that of the type's mode. */
8317 reduce_bit_field = (!ignore
8318 && TREE_CODE (type) == INTEGER_TYPE
8319 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8321 /* If we are going to ignore this result, we need only do something
8322 if there is a side-effect somewhere in the expression. If there
8323 is, short-circuit the most common cases here. Note that we must
8324 not call expand_expr with anything but const0_rtx in case this
8325 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8327 if (ignore)
8329 if (! TREE_SIDE_EFFECTS (exp))
8330 return const0_rtx;
8332 /* Ensure we reference a volatile object even if value is ignored, but
8333 don't do this if all we are doing is taking its address. */
8334 if (TREE_THIS_VOLATILE (exp)
8335 && TREE_CODE (exp) != FUNCTION_DECL
8336 && mode != VOIDmode && mode != BLKmode
8337 && modifier != EXPAND_CONST_ADDRESS)
8339 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8340 if (MEM_P (temp))
8341 temp = copy_to_reg (temp);
8342 return const0_rtx;
8345 if (TREE_CODE_CLASS (code) == tcc_unary
8346 || code == COMPONENT_REF || code == INDIRECT_REF)
8347 return expand_expr (treeop0, const0_rtx, VOIDmode,
8348 modifier);
8350 else if (TREE_CODE_CLASS (code) == tcc_binary
8351 || TREE_CODE_CLASS (code) == tcc_comparison
8352 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8354 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8355 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8356 return const0_rtx;
8358 else if (code == BIT_FIELD_REF)
8360 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8361 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8362 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8363 return const0_rtx;
8366 target = 0;
8369 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8370 target = 0;
8372 /* Use subtarget as the target for operand 0 of a binary operation. */
8373 subtarget = get_subtarget (target);
8374 original_target = target;
8376 switch (code)
8378 case LABEL_DECL:
8380 tree function = decl_function_context (exp);
8382 temp = label_rtx (exp);
8383 temp = gen_rtx_LABEL_REF (Pmode, temp);
8385 if (function != current_function_decl
8386 && function != 0)
8387 LABEL_REF_NONLOCAL_P (temp) = 1;
8389 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8390 return temp;
8393 case SSA_NAME:
8394 /* ??? ivopts calls expander, without any preparation from
8395 out-of-ssa. So fake instructions as if this was an access to the
8396 base variable. This unnecessarily allocates a pseudo, see how we can
8397 reuse it, if partition base vars have it set already. */
8398 if (!currently_expanding_to_rtl)
8399 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier, NULL);
8401 gimple g = get_gimple_for_ssa_name (exp);
8402 if (g)
8403 return expand_expr_real (gimple_assign_rhs_to_tree (g), target,
8404 tmode, modifier, NULL);
8406 decl_rtl = get_rtx_for_ssa_name (exp);
8407 exp = SSA_NAME_VAR (exp);
8408 goto expand_decl_rtl;
8410 case PARM_DECL:
8411 case VAR_DECL:
8412 /* If a static var's type was incomplete when the decl was written,
8413 but the type is complete now, lay out the decl now. */
8414 if (DECL_SIZE (exp) == 0
8415 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8416 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8417 layout_decl (exp, 0);
8419 /* TLS emulation hook - replace __thread vars with
8420 *__emutls_get_address (&_emutls.var). */
8421 if (! targetm.have_tls
8422 && TREE_CODE (exp) == VAR_DECL
8423 && DECL_THREAD_LOCAL_P (exp))
8425 exp = build_fold_indirect_ref_loc (loc, emutls_var_address (exp));
8426 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
8429 /* ... fall through ... */
8431 case FUNCTION_DECL:
8432 case RESULT_DECL:
8433 decl_rtl = DECL_RTL (exp);
8434 expand_decl_rtl:
8435 gcc_assert (decl_rtl);
8436 decl_rtl = copy_rtx (decl_rtl);
8437 /* Record writes to register variables. */
8438 if (modifier == EXPAND_WRITE && REG_P (decl_rtl)
8439 && REGNO (decl_rtl) < FIRST_PSEUDO_REGISTER)
8441 int i = REGNO (decl_rtl);
8442 int nregs = hard_regno_nregs[i][GET_MODE (decl_rtl)];
8443 while (nregs)
8445 SET_HARD_REG_BIT (crtl->asm_clobbers, i);
8446 i++;
8447 nregs--;
8451 /* Ensure variable marked as used even if it doesn't go through
8452 a parser. If it hasn't be used yet, write out an external
8453 definition. */
8454 if (! TREE_USED (exp))
8456 assemble_external (exp);
8457 TREE_USED (exp) = 1;
8460 /* Show we haven't gotten RTL for this yet. */
8461 temp = 0;
8463 /* Variables inherited from containing functions should have
8464 been lowered by this point. */
8465 context = decl_function_context (exp);
8466 gcc_assert (!context
8467 || context == current_function_decl
8468 || TREE_STATIC (exp)
8469 /* ??? C++ creates functions that are not TREE_STATIC. */
8470 || TREE_CODE (exp) == FUNCTION_DECL);
8472 /* This is the case of an array whose size is to be determined
8473 from its initializer, while the initializer is still being parsed.
8474 See expand_decl. */
8476 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8477 temp = validize_mem (decl_rtl);
8479 /* If DECL_RTL is memory, we are in the normal case and the
8480 address is not valid, get the address into a register. */
8482 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8484 if (alt_rtl)
8485 *alt_rtl = decl_rtl;
8486 decl_rtl = use_anchored_address (decl_rtl);
8487 if (modifier != EXPAND_CONST_ADDRESS
8488 && modifier != EXPAND_SUM
8489 && !memory_address_addr_space_p (DECL_MODE (exp),
8490 XEXP (decl_rtl, 0),
8491 MEM_ADDR_SPACE (decl_rtl)))
8492 temp = replace_equiv_address (decl_rtl,
8493 copy_rtx (XEXP (decl_rtl, 0)));
8496 /* If we got something, return it. But first, set the alignment
8497 if the address is a register. */
8498 if (temp != 0)
8500 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8501 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8503 return temp;
8506 /* If the mode of DECL_RTL does not match that of the decl, it
8507 must be a promoted value. We return a SUBREG of the wanted mode,
8508 but mark it so that we know that it was already extended. */
8510 if (REG_P (decl_rtl)
8511 && GET_MODE (decl_rtl) != DECL_MODE (exp))
8513 enum machine_mode pmode;
8515 /* Get the signedness used for this variable. Ensure we get the
8516 same mode we got when the variable was declared. */
8517 pmode = promote_decl_mode (exp, &unsignedp);
8518 gcc_assert (GET_MODE (decl_rtl) == pmode);
8520 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8521 SUBREG_PROMOTED_VAR_P (temp) = 1;
8522 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8523 return temp;
8526 return decl_rtl;
8528 case INTEGER_CST:
8529 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8530 TREE_INT_CST_HIGH (exp), mode);
8532 return temp;
8534 case VECTOR_CST:
8536 tree tmp = NULL_TREE;
8537 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8538 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8539 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8540 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8541 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8542 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8543 return const_vector_from_tree (exp);
8544 if (GET_MODE_CLASS (mode) == MODE_INT)
8546 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8547 if (type_for_mode)
8548 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8550 if (!tmp)
8551 tmp = build_constructor_from_list (type,
8552 TREE_VECTOR_CST_ELTS (exp));
8553 return expand_expr (tmp, ignore ? const0_rtx : target,
8554 tmode, modifier);
8557 case CONST_DECL:
8558 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8560 case REAL_CST:
8561 /* If optimized, generate immediate CONST_DOUBLE
8562 which will be turned into memory by reload if necessary.
8564 We used to force a register so that loop.c could see it. But
8565 this does not allow gen_* patterns to perform optimizations with
8566 the constants. It also produces two insns in cases like "x = 1.0;".
8567 On most machines, floating-point constants are not permitted in
8568 many insns, so we'd end up copying it to a register in any case.
8570 Now, we do the copying in expand_binop, if appropriate. */
8571 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8572 TYPE_MODE (TREE_TYPE (exp)));
8574 case FIXED_CST:
8575 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8576 TYPE_MODE (TREE_TYPE (exp)));
8578 case COMPLEX_CST:
8579 /* Handle evaluating a complex constant in a CONCAT target. */
8580 if (original_target && GET_CODE (original_target) == CONCAT)
8582 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8583 rtx rtarg, itarg;
8585 rtarg = XEXP (original_target, 0);
8586 itarg = XEXP (original_target, 1);
8588 /* Move the real and imaginary parts separately. */
8589 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8590 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8592 if (op0 != rtarg)
8593 emit_move_insn (rtarg, op0);
8594 if (op1 != itarg)
8595 emit_move_insn (itarg, op1);
8597 return original_target;
8600 /* ... fall through ... */
8602 case STRING_CST:
8603 temp = expand_expr_constant (exp, 1, modifier);
8605 /* temp contains a constant address.
8606 On RISC machines where a constant address isn't valid,
8607 make some insns to get that address into a register. */
8608 if (modifier != EXPAND_CONST_ADDRESS
8609 && modifier != EXPAND_INITIALIZER
8610 && modifier != EXPAND_SUM
8611 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8612 MEM_ADDR_SPACE (temp)))
8613 return replace_equiv_address (temp,
8614 copy_rtx (XEXP (temp, 0)));
8615 return temp;
8617 case SAVE_EXPR:
8619 tree val = treeop0;
8620 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8622 if (!SAVE_EXPR_RESOLVED_P (exp))
8624 /* We can indeed still hit this case, typically via builtin
8625 expanders calling save_expr immediately before expanding
8626 something. Assume this means that we only have to deal
8627 with non-BLKmode values. */
8628 gcc_assert (GET_MODE (ret) != BLKmode);
8630 val = build_decl (EXPR_LOCATION (exp),
8631 VAR_DECL, NULL, TREE_TYPE (exp));
8632 DECL_ARTIFICIAL (val) = 1;
8633 DECL_IGNORED_P (val) = 1;
8634 treeop0 = val;
8635 TREE_OPERAND (exp, 0) = treeop0;
8636 SAVE_EXPR_RESOLVED_P (exp) = 1;
8638 if (!CONSTANT_P (ret))
8639 ret = copy_to_reg (ret);
8640 SET_DECL_RTL (val, ret);
8643 return ret;
8647 case CONSTRUCTOR:
8648 /* If we don't need the result, just ensure we evaluate any
8649 subexpressions. */
8650 if (ignore)
8652 unsigned HOST_WIDE_INT idx;
8653 tree value;
8655 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8656 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8658 return const0_rtx;
8661 return expand_constructor (exp, target, modifier, false);
8663 case MISALIGNED_INDIRECT_REF:
8664 case ALIGN_INDIRECT_REF:
8665 case INDIRECT_REF:
8667 tree exp1 = treeop0;
8668 addr_space_t as = ADDR_SPACE_GENERIC;
8669 enum machine_mode address_mode = Pmode;
8671 if (modifier != EXPAND_WRITE)
8673 tree t;
8675 t = fold_read_from_constant_string (exp);
8676 if (t)
8677 return expand_expr (t, target, tmode, modifier);
8680 if (POINTER_TYPE_P (TREE_TYPE (exp1)))
8682 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp1)));
8683 address_mode = targetm.addr_space.address_mode (as);
8686 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
8687 op0 = memory_address_addr_space (mode, op0, as);
8689 if (code == ALIGN_INDIRECT_REF)
8691 int align = TYPE_ALIGN_UNIT (type);
8692 op0 = gen_rtx_AND (address_mode, op0, GEN_INT (-align));
8693 op0 = memory_address_addr_space (mode, op0, as);
8696 temp = gen_rtx_MEM (mode, op0);
8698 set_mem_attributes (temp, exp, 0);
8699 set_mem_addr_space (temp, as);
8701 /* Resolve the misalignment now, so that we don't have to remember
8702 to resolve it later. Of course, this only works for reads. */
8703 if (code == MISALIGNED_INDIRECT_REF)
8705 int icode;
8706 rtx reg, insn;
8708 gcc_assert (modifier == EXPAND_NORMAL
8709 || modifier == EXPAND_STACK_PARM);
8711 /* The vectorizer should have already checked the mode. */
8712 icode = optab_handler (movmisalign_optab, mode)->insn_code;
8713 gcc_assert (icode != CODE_FOR_nothing);
8715 /* We've already validated the memory, and we're creating a
8716 new pseudo destination. The predicates really can't fail. */
8717 reg = gen_reg_rtx (mode);
8719 /* Nor can the insn generator. */
8720 insn = GEN_FCN (icode) (reg, temp);
8721 emit_insn (insn);
8723 return reg;
8726 return temp;
8729 case TARGET_MEM_REF:
8731 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8732 struct mem_address addr;
8733 tree base;
8735 get_address_description (exp, &addr);
8736 op0 = addr_for_mem_ref (&addr, as, true);
8737 op0 = memory_address_addr_space (mode, op0, as);
8738 temp = gen_rtx_MEM (mode, op0);
8739 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
8740 set_mem_addr_space (temp, as);
8741 base = get_base_address (TMR_ORIGINAL (exp));
8742 if (INDIRECT_REF_P (base)
8743 && TMR_BASE (exp)
8744 && TREE_CODE (TMR_BASE (exp)) == SSA_NAME
8745 && POINTER_TYPE_P (TREE_TYPE (TMR_BASE (exp))))
8747 set_mem_expr (temp, build1 (INDIRECT_REF,
8748 TREE_TYPE (exp), TMR_BASE (exp)));
8749 set_mem_offset (temp, NULL_RTX);
8752 return temp;
8754 case ARRAY_REF:
8757 tree array = treeop0;
8758 tree index = treeop1;
8760 /* Fold an expression like: "foo"[2].
8761 This is not done in fold so it won't happen inside &.
8762 Don't fold if this is for wide characters since it's too
8763 difficult to do correctly and this is a very rare case. */
8765 if (modifier != EXPAND_CONST_ADDRESS
8766 && modifier != EXPAND_INITIALIZER
8767 && modifier != EXPAND_MEMORY)
8769 tree t = fold_read_from_constant_string (exp);
8771 if (t)
8772 return expand_expr (t, target, tmode, modifier);
8775 /* If this is a constant index into a constant array,
8776 just get the value from the array. Handle both the cases when
8777 we have an explicit constructor and when our operand is a variable
8778 that was declared const. */
8780 if (modifier != EXPAND_CONST_ADDRESS
8781 && modifier != EXPAND_INITIALIZER
8782 && modifier != EXPAND_MEMORY
8783 && TREE_CODE (array) == CONSTRUCTOR
8784 && ! TREE_SIDE_EFFECTS (array)
8785 && TREE_CODE (index) == INTEGER_CST)
8787 unsigned HOST_WIDE_INT ix;
8788 tree field, value;
8790 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8791 field, value)
8792 if (tree_int_cst_equal (field, index))
8794 if (!TREE_SIDE_EFFECTS (value))
8795 return expand_expr (fold (value), target, tmode, modifier);
8796 break;
8800 else if (optimize >= 1
8801 && modifier != EXPAND_CONST_ADDRESS
8802 && modifier != EXPAND_INITIALIZER
8803 && modifier != EXPAND_MEMORY
8804 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8805 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8806 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8807 && targetm.binds_local_p (array))
8809 if (TREE_CODE (index) == INTEGER_CST)
8811 tree init = DECL_INITIAL (array);
8813 if (TREE_CODE (init) == CONSTRUCTOR)
8815 unsigned HOST_WIDE_INT ix;
8816 tree field, value;
8818 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8819 field, value)
8820 if (tree_int_cst_equal (field, index))
8822 if (TREE_SIDE_EFFECTS (value))
8823 break;
8825 if (TREE_CODE (value) == CONSTRUCTOR)
8827 /* If VALUE is a CONSTRUCTOR, this
8828 optimization is only useful if
8829 this doesn't store the CONSTRUCTOR
8830 into memory. If it does, it is more
8831 efficient to just load the data from
8832 the array directly. */
8833 rtx ret = expand_constructor (value, target,
8834 modifier, true);
8835 if (ret == NULL_RTX)
8836 break;
8839 return expand_expr (fold (value), target, tmode,
8840 modifier);
8843 else if(TREE_CODE (init) == STRING_CST)
8845 tree index1 = index;
8846 tree low_bound = array_ref_low_bound (exp);
8847 index1 = fold_convert_loc (loc, sizetype,
8848 treeop1);
8850 /* Optimize the special-case of a zero lower bound.
8852 We convert the low_bound to sizetype to avoid some problems
8853 with constant folding. (E.g. suppose the lower bound is 1,
8854 and its mode is QI. Without the conversion,l (ARRAY
8855 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8856 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8858 if (! integer_zerop (low_bound))
8859 index1 = size_diffop_loc (loc, index1,
8860 fold_convert_loc (loc, sizetype,
8861 low_bound));
8863 if (0 > compare_tree_int (index1,
8864 TREE_STRING_LENGTH (init)))
8866 tree type = TREE_TYPE (TREE_TYPE (init));
8867 enum machine_mode mode = TYPE_MODE (type);
8869 if (GET_MODE_CLASS (mode) == MODE_INT
8870 && GET_MODE_SIZE (mode) == 1)
8871 return gen_int_mode (TREE_STRING_POINTER (init)
8872 [TREE_INT_CST_LOW (index1)],
8873 mode);
8879 goto normal_inner_ref;
8881 case COMPONENT_REF:
8882 /* If the operand is a CONSTRUCTOR, we can just extract the
8883 appropriate field if it is present. */
8884 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8886 unsigned HOST_WIDE_INT idx;
8887 tree field, value;
8889 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8890 idx, field, value)
8891 if (field == treeop1
8892 /* We can normally use the value of the field in the
8893 CONSTRUCTOR. However, if this is a bitfield in
8894 an integral mode that we can fit in a HOST_WIDE_INT,
8895 we must mask only the number of bits in the bitfield,
8896 since this is done implicitly by the constructor. If
8897 the bitfield does not meet either of those conditions,
8898 we can't do this optimization. */
8899 && (! DECL_BIT_FIELD (field)
8900 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8901 && (GET_MODE_BITSIZE (DECL_MODE (field))
8902 <= HOST_BITS_PER_WIDE_INT))))
8904 if (DECL_BIT_FIELD (field)
8905 && modifier == EXPAND_STACK_PARM)
8906 target = 0;
8907 op0 = expand_expr (value, target, tmode, modifier);
8908 if (DECL_BIT_FIELD (field))
8910 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8911 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8913 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8915 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8916 op0 = expand_and (imode, op0, op1, target);
8918 else
8920 tree count
8921 = build_int_cst (NULL_TREE,
8922 GET_MODE_BITSIZE (imode) - bitsize);
8924 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8925 target, 0);
8926 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8927 target, 0);
8931 return op0;
8934 goto normal_inner_ref;
8936 case BIT_FIELD_REF:
8937 case ARRAY_RANGE_REF:
8938 normal_inner_ref:
8940 enum machine_mode mode1, mode2;
8941 HOST_WIDE_INT bitsize, bitpos;
8942 tree offset;
8943 int volatilep = 0, must_force_mem;
8944 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8945 &mode1, &unsignedp, &volatilep, true);
8946 rtx orig_op0, memloc;
8948 /* If we got back the original object, something is wrong. Perhaps
8949 we are evaluating an expression too early. In any event, don't
8950 infinitely recurse. */
8951 gcc_assert (tem != exp);
8953 /* If TEM's type is a union of variable size, pass TARGET to the inner
8954 computation, since it will need a temporary and TARGET is known
8955 to have to do. This occurs in unchecked conversion in Ada. */
8956 orig_op0 = op0
8957 = expand_expr (tem,
8958 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
8959 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
8960 != INTEGER_CST)
8961 && modifier != EXPAND_STACK_PARM
8962 ? target : NULL_RTX),
8963 VOIDmode,
8964 (modifier == EXPAND_INITIALIZER
8965 || modifier == EXPAND_CONST_ADDRESS
8966 || modifier == EXPAND_STACK_PARM)
8967 ? modifier : EXPAND_NORMAL);
8969 mode2
8970 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
8972 /* If we have either an offset, a BLKmode result, or a reference
8973 outside the underlying object, we must force it to memory.
8974 Such a case can occur in Ada if we have unchecked conversion
8975 of an expression from a scalar type to an aggregate type or
8976 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
8977 passed a partially uninitialized object or a view-conversion
8978 to a larger size. */
8979 must_force_mem = (offset
8980 || mode1 == BLKmode
8981 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
8983 /* Handle CONCAT first. */
8984 if (GET_CODE (op0) == CONCAT && !must_force_mem)
8986 if (bitpos == 0
8987 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
8988 return op0;
8989 if (bitpos == 0
8990 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
8991 && bitsize)
8993 op0 = XEXP (op0, 0);
8994 mode2 = GET_MODE (op0);
8996 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
8997 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
8998 && bitpos
8999 && bitsize)
9001 op0 = XEXP (op0, 1);
9002 bitpos = 0;
9003 mode2 = GET_MODE (op0);
9005 else
9006 /* Otherwise force into memory. */
9007 must_force_mem = 1;
9010 /* If this is a constant, put it in a register if it is a legitimate
9011 constant and we don't need a memory reference. */
9012 if (CONSTANT_P (op0)
9013 && mode2 != BLKmode
9014 && LEGITIMATE_CONSTANT_P (op0)
9015 && !must_force_mem)
9016 op0 = force_reg (mode2, op0);
9018 /* Otherwise, if this is a constant, try to force it to the constant
9019 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9020 is a legitimate constant. */
9021 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9022 op0 = validize_mem (memloc);
9024 /* Otherwise, if this is a constant or the object is not in memory
9025 and need be, put it there. */
9026 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9028 tree nt = build_qualified_type (TREE_TYPE (tem),
9029 (TYPE_QUALS (TREE_TYPE (tem))
9030 | TYPE_QUAL_CONST));
9031 memloc = assign_temp (nt, 1, 1, 1);
9032 emit_move_insn (memloc, op0);
9033 op0 = memloc;
9036 if (offset)
9038 enum machine_mode address_mode;
9039 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9040 EXPAND_SUM);
9042 gcc_assert (MEM_P (op0));
9044 address_mode
9045 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9046 if (GET_MODE (offset_rtx) != address_mode)
9047 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9049 if (GET_MODE (op0) == BLKmode
9050 /* A constant address in OP0 can have VOIDmode, we must
9051 not try to call force_reg in that case. */
9052 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9053 && bitsize != 0
9054 && (bitpos % bitsize) == 0
9055 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9056 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9058 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9059 bitpos = 0;
9062 op0 = offset_address (op0, offset_rtx,
9063 highest_pow2_factor (offset));
9066 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9067 record its alignment as BIGGEST_ALIGNMENT. */
9068 if (MEM_P (op0) && bitpos == 0 && offset != 0
9069 && is_aligning_offset (offset, tem))
9070 set_mem_align (op0, BIGGEST_ALIGNMENT);
9072 /* Don't forget about volatility even if this is a bitfield. */
9073 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9075 if (op0 == orig_op0)
9076 op0 = copy_rtx (op0);
9078 MEM_VOLATILE_P (op0) = 1;
9081 /* In cases where an aligned union has an unaligned object
9082 as a field, we might be extracting a BLKmode value from
9083 an integer-mode (e.g., SImode) object. Handle this case
9084 by doing the extract into an object as wide as the field
9085 (which we know to be the width of a basic mode), then
9086 storing into memory, and changing the mode to BLKmode. */
9087 if (mode1 == VOIDmode
9088 || REG_P (op0) || GET_CODE (op0) == SUBREG
9089 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9090 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9091 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9092 && modifier != EXPAND_CONST_ADDRESS
9093 && modifier != EXPAND_INITIALIZER)
9094 /* If the field isn't aligned enough to fetch as a memref,
9095 fetch it as a bit field. */
9096 || (mode1 != BLKmode
9097 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9098 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9099 || (MEM_P (op0)
9100 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9101 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9102 && ((modifier == EXPAND_CONST_ADDRESS
9103 || modifier == EXPAND_INITIALIZER)
9104 ? STRICT_ALIGNMENT
9105 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9106 || (bitpos % BITS_PER_UNIT != 0)))
9107 /* If the type and the field are a constant size and the
9108 size of the type isn't the same size as the bitfield,
9109 we must use bitfield operations. */
9110 || (bitsize >= 0
9111 && TYPE_SIZE (TREE_TYPE (exp))
9112 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9113 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9114 bitsize)))
9116 enum machine_mode ext_mode = mode;
9118 if (ext_mode == BLKmode
9119 && ! (target != 0 && MEM_P (op0)
9120 && MEM_P (target)
9121 && bitpos % BITS_PER_UNIT == 0))
9122 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9124 if (ext_mode == BLKmode)
9126 if (target == 0)
9127 target = assign_temp (type, 0, 1, 1);
9129 if (bitsize == 0)
9130 return target;
9132 /* In this case, BITPOS must start at a byte boundary and
9133 TARGET, if specified, must be a MEM. */
9134 gcc_assert (MEM_P (op0)
9135 && (!target || MEM_P (target))
9136 && !(bitpos % BITS_PER_UNIT));
9138 emit_block_move (target,
9139 adjust_address (op0, VOIDmode,
9140 bitpos / BITS_PER_UNIT),
9141 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9142 / BITS_PER_UNIT),
9143 (modifier == EXPAND_STACK_PARM
9144 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9146 return target;
9149 op0 = validize_mem (op0);
9151 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9152 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9154 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
9155 (modifier == EXPAND_STACK_PARM
9156 ? NULL_RTX : target),
9157 ext_mode, ext_mode);
9159 /* If the result is a record type and BITSIZE is narrower than
9160 the mode of OP0, an integral mode, and this is a big endian
9161 machine, we must put the field into the high-order bits. */
9162 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9163 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9164 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9165 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9166 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9167 - bitsize),
9168 op0, 1);
9170 /* If the result type is BLKmode, store the data into a temporary
9171 of the appropriate type, but with the mode corresponding to the
9172 mode for the data we have (op0's mode). It's tempting to make
9173 this a constant type, since we know it's only being stored once,
9174 but that can cause problems if we are taking the address of this
9175 COMPONENT_REF because the MEM of any reference via that address
9176 will have flags corresponding to the type, which will not
9177 necessarily be constant. */
9178 if (mode == BLKmode)
9180 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9181 rtx new_rtx;
9183 /* If the reference doesn't use the alias set of its type,
9184 we cannot create the temporary using that type. */
9185 if (component_uses_parent_alias_set (exp))
9187 new_rtx = assign_stack_local (ext_mode, size, 0);
9188 set_mem_alias_set (new_rtx, get_alias_set (exp));
9190 else
9191 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9193 emit_move_insn (new_rtx, op0);
9194 op0 = copy_rtx (new_rtx);
9195 PUT_MODE (op0, BLKmode);
9196 set_mem_attributes (op0, exp, 1);
9199 return op0;
9202 /* If the result is BLKmode, use that to access the object
9203 now as well. */
9204 if (mode == BLKmode)
9205 mode1 = BLKmode;
9207 /* Get a reference to just this component. */
9208 if (modifier == EXPAND_CONST_ADDRESS
9209 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9210 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9211 else
9212 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9214 if (op0 == orig_op0)
9215 op0 = copy_rtx (op0);
9217 set_mem_attributes (op0, exp, 0);
9218 if (REG_P (XEXP (op0, 0)))
9219 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9221 MEM_VOLATILE_P (op0) |= volatilep;
9222 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9223 || modifier == EXPAND_CONST_ADDRESS
9224 || modifier == EXPAND_INITIALIZER)
9225 return op0;
9226 else if (target == 0)
9227 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9229 convert_move (target, op0, unsignedp);
9230 return target;
9233 case OBJ_TYPE_REF:
9234 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9236 case CALL_EXPR:
9237 /* All valid uses of __builtin_va_arg_pack () are removed during
9238 inlining. */
9239 if (CALL_EXPR_VA_ARG_PACK (exp))
9240 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9242 tree fndecl = get_callee_fndecl (exp), attr;
9244 if (fndecl
9245 && (attr = lookup_attribute ("error",
9246 DECL_ATTRIBUTES (fndecl))) != NULL)
9247 error ("%Kcall to %qs declared with attribute error: %s",
9248 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9249 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9250 if (fndecl
9251 && (attr = lookup_attribute ("warning",
9252 DECL_ATTRIBUTES (fndecl))) != NULL)
9253 warning_at (tree_nonartificial_location (exp),
9254 0, "%Kcall to %qs declared with attribute warning: %s",
9255 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9256 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9258 /* Check for a built-in function. */
9259 if (fndecl && DECL_BUILT_IN (fndecl))
9261 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9262 return expand_builtin (exp, target, subtarget, tmode, ignore);
9265 return expand_call (exp, target, ignore);
9267 case VIEW_CONVERT_EXPR:
9268 op0 = NULL_RTX;
9270 /* If we are converting to BLKmode, try to avoid an intermediate
9271 temporary by fetching an inner memory reference. */
9272 if (mode == BLKmode
9273 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9274 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9275 && handled_component_p (treeop0))
9277 enum machine_mode mode1;
9278 HOST_WIDE_INT bitsize, bitpos;
9279 tree offset;
9280 int unsignedp;
9281 int volatilep = 0;
9282 tree tem
9283 = get_inner_reference (treeop0, &bitsize, &bitpos,
9284 &offset, &mode1, &unsignedp, &volatilep,
9285 true);
9286 rtx orig_op0;
9288 /* ??? We should work harder and deal with non-zero offsets. */
9289 if (!offset
9290 && (bitpos % BITS_PER_UNIT) == 0
9291 && bitsize >= 0
9292 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9294 /* See the normal_inner_ref case for the rationale. */
9295 orig_op0
9296 = expand_expr (tem,
9297 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9298 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9299 != INTEGER_CST)
9300 && modifier != EXPAND_STACK_PARM
9301 ? target : NULL_RTX),
9302 VOIDmode,
9303 (modifier == EXPAND_INITIALIZER
9304 || modifier == EXPAND_CONST_ADDRESS
9305 || modifier == EXPAND_STACK_PARM)
9306 ? modifier : EXPAND_NORMAL);
9308 if (MEM_P (orig_op0))
9310 op0 = orig_op0;
9312 /* Get a reference to just this component. */
9313 if (modifier == EXPAND_CONST_ADDRESS
9314 || modifier == EXPAND_SUM
9315 || modifier == EXPAND_INITIALIZER)
9316 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9317 else
9318 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9320 if (op0 == orig_op0)
9321 op0 = copy_rtx (op0);
9323 set_mem_attributes (op0, treeop0, 0);
9324 if (REG_P (XEXP (op0, 0)))
9325 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9327 MEM_VOLATILE_P (op0) |= volatilep;
9332 if (!op0)
9333 op0 = expand_expr (treeop0,
9334 NULL_RTX, VOIDmode, modifier);
9336 /* If the input and output modes are both the same, we are done. */
9337 if (mode == GET_MODE (op0))
9339 /* If neither mode is BLKmode, and both modes are the same size
9340 then we can use gen_lowpart. */
9341 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9342 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9343 && !COMPLEX_MODE_P (GET_MODE (op0)))
9345 if (GET_CODE (op0) == SUBREG)
9346 op0 = force_reg (GET_MODE (op0), op0);
9347 op0 = gen_lowpart (mode, op0);
9349 /* If both types are integral, convert from one mode to the other. */
9350 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9351 op0 = convert_modes (mode, GET_MODE (op0), op0,
9352 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9353 /* As a last resort, spill op0 to memory, and reload it in a
9354 different mode. */
9355 else if (!MEM_P (op0))
9357 /* If the operand is not a MEM, force it into memory. Since we
9358 are going to be changing the mode of the MEM, don't call
9359 force_const_mem for constants because we don't allow pool
9360 constants to change mode. */
9361 tree inner_type = TREE_TYPE (treeop0);
9363 gcc_assert (!TREE_ADDRESSABLE (exp));
9365 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9366 target
9367 = assign_stack_temp_for_type
9368 (TYPE_MODE (inner_type),
9369 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9371 emit_move_insn (target, op0);
9372 op0 = target;
9375 /* At this point, OP0 is in the correct mode. If the output type is
9376 such that the operand is known to be aligned, indicate that it is.
9377 Otherwise, we need only be concerned about alignment for non-BLKmode
9378 results. */
9379 if (MEM_P (op0))
9381 op0 = copy_rtx (op0);
9383 if (TYPE_ALIGN_OK (type))
9384 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9385 else if (STRICT_ALIGNMENT
9386 && mode != BLKmode
9387 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9389 tree inner_type = TREE_TYPE (treeop0);
9390 HOST_WIDE_INT temp_size
9391 = MAX (int_size_in_bytes (inner_type),
9392 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9393 rtx new_rtx
9394 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9395 rtx new_with_op0_mode
9396 = adjust_address (new_rtx, GET_MODE (op0), 0);
9398 gcc_assert (!TREE_ADDRESSABLE (exp));
9400 if (GET_MODE (op0) == BLKmode)
9401 emit_block_move (new_with_op0_mode, op0,
9402 GEN_INT (GET_MODE_SIZE (mode)),
9403 (modifier == EXPAND_STACK_PARM
9404 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9405 else
9406 emit_move_insn (new_with_op0_mode, op0);
9408 op0 = new_rtx;
9411 op0 = adjust_address (op0, mode, 0);
9414 return op0;
9416 /* Use a compare and a jump for BLKmode comparisons, or for function
9417 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9419 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9420 are occassionally created by folding during expansion. */
9421 case TRUTH_ANDIF_EXPR:
9422 case TRUTH_ORIF_EXPR:
9423 if (! ignore
9424 && (target == 0
9425 || modifier == EXPAND_STACK_PARM
9426 || ! safe_from_p (target, treeop0, 1)
9427 || ! safe_from_p (target, treeop1, 1)
9428 /* Make sure we don't have a hard reg (such as function's return
9429 value) live across basic blocks, if not optimizing. */
9430 || (!optimize && REG_P (target)
9431 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9432 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9434 if (target)
9435 emit_move_insn (target, const0_rtx);
9437 op1 = gen_label_rtx ();
9438 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9440 if (target)
9441 emit_move_insn (target, const1_rtx);
9443 emit_label (op1);
9444 return ignore ? const0_rtx : target;
9446 case STATEMENT_LIST:
9448 tree_stmt_iterator iter;
9450 gcc_assert (ignore);
9452 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9453 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9455 return const0_rtx;
9457 case COND_EXPR:
9458 /* A COND_EXPR with its type being VOID_TYPE represents a
9459 conditional jump and is handled in
9460 expand_gimple_cond_expr. */
9461 gcc_assert (!VOID_TYPE_P (type));
9463 /* Note that COND_EXPRs whose type is a structure or union
9464 are required to be constructed to contain assignments of
9465 a temporary variable, so that we can evaluate them here
9466 for side effect only. If type is void, we must do likewise. */
9468 gcc_assert (!TREE_ADDRESSABLE (type)
9469 && !ignore
9470 && TREE_TYPE (treeop1) != void_type_node
9471 && TREE_TYPE (treeop2) != void_type_node);
9473 /* If we are not to produce a result, we have no target. Otherwise,
9474 if a target was specified use it; it will not be used as an
9475 intermediate target unless it is safe. If no target, use a
9476 temporary. */
9478 if (modifier != EXPAND_STACK_PARM
9479 && original_target
9480 && safe_from_p (original_target, treeop0, 1)
9481 && GET_MODE (original_target) == mode
9482 #ifdef HAVE_conditional_move
9483 && (! can_conditionally_move_p (mode)
9484 || REG_P (original_target))
9485 #endif
9486 && !MEM_P (original_target))
9487 temp = original_target;
9488 else
9489 temp = assign_temp (type, 0, 0, 1);
9491 do_pending_stack_adjust ();
9492 NO_DEFER_POP;
9493 op0 = gen_label_rtx ();
9494 op1 = gen_label_rtx ();
9495 jumpifnot (treeop0, op0, -1);
9496 store_expr (treeop1, temp,
9497 modifier == EXPAND_STACK_PARM,
9498 false);
9500 emit_jump_insn (gen_jump (op1));
9501 emit_barrier ();
9502 emit_label (op0);
9503 store_expr (treeop2, temp,
9504 modifier == EXPAND_STACK_PARM,
9505 false);
9507 emit_label (op1);
9508 OK_DEFER_POP;
9509 return temp;
9511 case VEC_COND_EXPR:
9512 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9513 return target;
9515 case MODIFY_EXPR:
9517 tree lhs = treeop0;
9518 tree rhs = treeop1;
9519 gcc_assert (ignore);
9521 /* Check for |= or &= of a bitfield of size one into another bitfield
9522 of size 1. In this case, (unless we need the result of the
9523 assignment) we can do this more efficiently with a
9524 test followed by an assignment, if necessary.
9526 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9527 things change so we do, this code should be enhanced to
9528 support it. */
9529 if (TREE_CODE (lhs) == COMPONENT_REF
9530 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9531 || TREE_CODE (rhs) == BIT_AND_EXPR)
9532 && TREE_OPERAND (rhs, 0) == lhs
9533 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9534 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9535 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9537 rtx label = gen_label_rtx ();
9538 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9539 do_jump (TREE_OPERAND (rhs, 1),
9540 value ? label : 0,
9541 value ? 0 : label, -1);
9542 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9543 MOVE_NONTEMPORAL (exp));
9544 do_pending_stack_adjust ();
9545 emit_label (label);
9546 return const0_rtx;
9549 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9550 return const0_rtx;
9553 case ADDR_EXPR:
9554 return expand_expr_addr_expr (exp, target, tmode, modifier);
9556 case REALPART_EXPR:
9557 op0 = expand_normal (treeop0);
9558 return read_complex_part (op0, false);
9560 case IMAGPART_EXPR:
9561 op0 = expand_normal (treeop0);
9562 return read_complex_part (op0, true);
9564 case RETURN_EXPR:
9565 case LABEL_EXPR:
9566 case GOTO_EXPR:
9567 case SWITCH_EXPR:
9568 case ASM_EXPR:
9569 /* Expanded in cfgexpand.c. */
9570 gcc_unreachable ();
9572 case TRY_CATCH_EXPR:
9573 case CATCH_EXPR:
9574 case EH_FILTER_EXPR:
9575 case TRY_FINALLY_EXPR:
9576 /* Lowered by tree-eh.c. */
9577 gcc_unreachable ();
9579 case WITH_CLEANUP_EXPR:
9580 case CLEANUP_POINT_EXPR:
9581 case TARGET_EXPR:
9582 case CASE_LABEL_EXPR:
9583 case VA_ARG_EXPR:
9584 case BIND_EXPR:
9585 case INIT_EXPR:
9586 case CONJ_EXPR:
9587 case COMPOUND_EXPR:
9588 case PREINCREMENT_EXPR:
9589 case PREDECREMENT_EXPR:
9590 case POSTINCREMENT_EXPR:
9591 case POSTDECREMENT_EXPR:
9592 case LOOP_EXPR:
9593 case EXIT_EXPR:
9594 /* Lowered by gimplify.c. */
9595 gcc_unreachable ();
9597 case FDESC_EXPR:
9598 /* Function descriptors are not valid except for as
9599 initialization constants, and should not be expanded. */
9600 gcc_unreachable ();
9602 case WITH_SIZE_EXPR:
9603 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9604 have pulled out the size to use in whatever context it needed. */
9605 return expand_expr_real (treeop0, original_target, tmode,
9606 modifier, alt_rtl);
9608 case REALIGN_LOAD_EXPR:
9610 tree oprnd0 = treeop0;
9611 tree oprnd1 = treeop1;
9612 tree oprnd2 = treeop2;
9613 rtx op2;
9615 this_optab = optab_for_tree_code (code, type, optab_default);
9616 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9617 op2 = expand_normal (oprnd2);
9618 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9619 target, unsignedp);
9620 gcc_assert (temp);
9621 return temp;
9624 case DOT_PROD_EXPR:
9626 tree oprnd0 = treeop0;
9627 tree oprnd1 = treeop1;
9628 tree oprnd2 = treeop2;
9629 rtx op2;
9631 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9632 op2 = expand_normal (oprnd2);
9633 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9634 target, unsignedp);
9635 return target;
9638 case COMPOUND_LITERAL_EXPR:
9640 /* Initialize the anonymous variable declared in the compound
9641 literal, then return the variable. */
9642 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9644 /* Create RTL for this variable. */
9645 if (!DECL_RTL_SET_P (decl))
9647 if (DECL_HARD_REGISTER (decl))
9648 /* The user specified an assembler name for this variable.
9649 Set that up now. */
9650 rest_of_decl_compilation (decl, 0, 0);
9651 else
9652 expand_decl (decl);
9655 return expand_expr_real (decl, original_target, tmode,
9656 modifier, alt_rtl);
9659 default:
9660 return expand_expr_real_2 (&ops, target, tmode, modifier);
9664 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9665 signedness of TYPE), possibly returning the result in TARGET. */
9666 static rtx
9667 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9669 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9670 if (target && GET_MODE (target) != GET_MODE (exp))
9671 target = 0;
9672 /* For constant values, reduce using build_int_cst_type. */
9673 if (CONST_INT_P (exp))
9675 HOST_WIDE_INT value = INTVAL (exp);
9676 tree t = build_int_cst_type (type, value);
9677 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9679 else if (TYPE_UNSIGNED (type))
9681 rtx mask = immed_double_int_const (double_int_mask (prec),
9682 GET_MODE (exp));
9683 return expand_and (GET_MODE (exp), exp, mask, target);
9685 else
9687 tree count = build_int_cst (NULL_TREE,
9688 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9689 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9690 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9694 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9695 when applied to the address of EXP produces an address known to be
9696 aligned more than BIGGEST_ALIGNMENT. */
9698 static int
9699 is_aligning_offset (const_tree offset, const_tree exp)
9701 /* Strip off any conversions. */
9702 while (CONVERT_EXPR_P (offset))
9703 offset = TREE_OPERAND (offset, 0);
9705 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9706 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9707 if (TREE_CODE (offset) != BIT_AND_EXPR
9708 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9709 || compare_tree_int (TREE_OPERAND (offset, 1),
9710 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9711 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9712 return 0;
9714 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9715 It must be NEGATE_EXPR. Then strip any more conversions. */
9716 offset = TREE_OPERAND (offset, 0);
9717 while (CONVERT_EXPR_P (offset))
9718 offset = TREE_OPERAND (offset, 0);
9720 if (TREE_CODE (offset) != NEGATE_EXPR)
9721 return 0;
9723 offset = TREE_OPERAND (offset, 0);
9724 while (CONVERT_EXPR_P (offset))
9725 offset = TREE_OPERAND (offset, 0);
9727 /* This must now be the address of EXP. */
9728 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9731 /* Return the tree node if an ARG corresponds to a string constant or zero
9732 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9733 in bytes within the string that ARG is accessing. The type of the
9734 offset will be `sizetype'. */
9736 tree
9737 string_constant (tree arg, tree *ptr_offset)
9739 tree array, offset, lower_bound;
9740 STRIP_NOPS (arg);
9742 if (TREE_CODE (arg) == ADDR_EXPR)
9744 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9746 *ptr_offset = size_zero_node;
9747 return TREE_OPERAND (arg, 0);
9749 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9751 array = TREE_OPERAND (arg, 0);
9752 offset = size_zero_node;
9754 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9756 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9757 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9758 if (TREE_CODE (array) != STRING_CST
9759 && TREE_CODE (array) != VAR_DECL)
9760 return 0;
9762 /* Check if the array has a nonzero lower bound. */
9763 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9764 if (!integer_zerop (lower_bound))
9766 /* If the offset and base aren't both constants, return 0. */
9767 if (TREE_CODE (lower_bound) != INTEGER_CST)
9768 return 0;
9769 if (TREE_CODE (offset) != INTEGER_CST)
9770 return 0;
9771 /* Adjust offset by the lower bound. */
9772 offset = size_diffop (fold_convert (sizetype, offset),
9773 fold_convert (sizetype, lower_bound));
9776 else
9777 return 0;
9779 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9781 tree arg0 = TREE_OPERAND (arg, 0);
9782 tree arg1 = TREE_OPERAND (arg, 1);
9784 STRIP_NOPS (arg0);
9785 STRIP_NOPS (arg1);
9787 if (TREE_CODE (arg0) == ADDR_EXPR
9788 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9789 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9791 array = TREE_OPERAND (arg0, 0);
9792 offset = arg1;
9794 else if (TREE_CODE (arg1) == ADDR_EXPR
9795 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9796 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9798 array = TREE_OPERAND (arg1, 0);
9799 offset = arg0;
9801 else
9802 return 0;
9804 else
9805 return 0;
9807 if (TREE_CODE (array) == STRING_CST)
9809 *ptr_offset = fold_convert (sizetype, offset);
9810 return array;
9812 else if (TREE_CODE (array) == VAR_DECL)
9814 int length;
9816 /* Variables initialized to string literals can be handled too. */
9817 if (DECL_INITIAL (array) == NULL_TREE
9818 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9819 return 0;
9821 /* If they are read-only, non-volatile and bind locally. */
9822 if (! TREE_READONLY (array)
9823 || TREE_SIDE_EFFECTS (array)
9824 || ! targetm.binds_local_p (array))
9825 return 0;
9827 /* Avoid const char foo[4] = "abcde"; */
9828 if (DECL_SIZE_UNIT (array) == NULL_TREE
9829 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9830 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9831 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9832 return 0;
9834 /* If variable is bigger than the string literal, OFFSET must be constant
9835 and inside of the bounds of the string literal. */
9836 offset = fold_convert (sizetype, offset);
9837 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9838 && (! host_integerp (offset, 1)
9839 || compare_tree_int (offset, length) >= 0))
9840 return 0;
9842 *ptr_offset = offset;
9843 return DECL_INITIAL (array);
9846 return 0;
9849 /* Generate code to calculate OPS, and exploded expression
9850 using a store-flag instruction and return an rtx for the result.
9851 OPS reflects a comparison.
9853 If TARGET is nonzero, store the result there if convenient.
9855 Return zero if there is no suitable set-flag instruction
9856 available on this machine.
9858 Once expand_expr has been called on the arguments of the comparison,
9859 we are committed to doing the store flag, since it is not safe to
9860 re-evaluate the expression. We emit the store-flag insn by calling
9861 emit_store_flag, but only expand the arguments if we have a reason
9862 to believe that emit_store_flag will be successful. If we think that
9863 it will, but it isn't, we have to simulate the store-flag with a
9864 set/jump/set sequence. */
9866 static rtx
9867 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9869 enum rtx_code code;
9870 tree arg0, arg1, type;
9871 tree tem;
9872 enum machine_mode operand_mode;
9873 int unsignedp;
9874 rtx op0, op1;
9875 rtx subtarget = target;
9876 location_t loc = ops->location;
9878 arg0 = ops->op0;
9879 arg1 = ops->op1;
9881 /* Don't crash if the comparison was erroneous. */
9882 if (arg0 == error_mark_node || arg1 == error_mark_node)
9883 return const0_rtx;
9885 type = TREE_TYPE (arg0);
9886 operand_mode = TYPE_MODE (type);
9887 unsignedp = TYPE_UNSIGNED (type);
9889 /* We won't bother with BLKmode store-flag operations because it would mean
9890 passing a lot of information to emit_store_flag. */
9891 if (operand_mode == BLKmode)
9892 return 0;
9894 /* We won't bother with store-flag operations involving function pointers
9895 when function pointers must be canonicalized before comparisons. */
9896 #ifdef HAVE_canonicalize_funcptr_for_compare
9897 if (HAVE_canonicalize_funcptr_for_compare
9898 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9899 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9900 == FUNCTION_TYPE))
9901 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9902 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9903 == FUNCTION_TYPE))))
9904 return 0;
9905 #endif
9907 STRIP_NOPS (arg0);
9908 STRIP_NOPS (arg1);
9910 /* Get the rtx comparison code to use. We know that EXP is a comparison
9911 operation of some type. Some comparisons against 1 and -1 can be
9912 converted to comparisons with zero. Do so here so that the tests
9913 below will be aware that we have a comparison with zero. These
9914 tests will not catch constants in the first operand, but constants
9915 are rarely passed as the first operand. */
9917 switch (ops->code)
9919 case EQ_EXPR:
9920 code = EQ;
9921 break;
9922 case NE_EXPR:
9923 code = NE;
9924 break;
9925 case LT_EXPR:
9926 if (integer_onep (arg1))
9927 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9928 else
9929 code = unsignedp ? LTU : LT;
9930 break;
9931 case LE_EXPR:
9932 if (! unsignedp && integer_all_onesp (arg1))
9933 arg1 = integer_zero_node, code = LT;
9934 else
9935 code = unsignedp ? LEU : LE;
9936 break;
9937 case GT_EXPR:
9938 if (! unsignedp && integer_all_onesp (arg1))
9939 arg1 = integer_zero_node, code = GE;
9940 else
9941 code = unsignedp ? GTU : GT;
9942 break;
9943 case GE_EXPR:
9944 if (integer_onep (arg1))
9945 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9946 else
9947 code = unsignedp ? GEU : GE;
9948 break;
9950 case UNORDERED_EXPR:
9951 code = UNORDERED;
9952 break;
9953 case ORDERED_EXPR:
9954 code = ORDERED;
9955 break;
9956 case UNLT_EXPR:
9957 code = UNLT;
9958 break;
9959 case UNLE_EXPR:
9960 code = UNLE;
9961 break;
9962 case UNGT_EXPR:
9963 code = UNGT;
9964 break;
9965 case UNGE_EXPR:
9966 code = UNGE;
9967 break;
9968 case UNEQ_EXPR:
9969 code = UNEQ;
9970 break;
9971 case LTGT_EXPR:
9972 code = LTGT;
9973 break;
9975 default:
9976 gcc_unreachable ();
9979 /* Put a constant second. */
9980 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
9981 || TREE_CODE (arg0) == FIXED_CST)
9983 tem = arg0; arg0 = arg1; arg1 = tem;
9984 code = swap_condition (code);
9987 /* If this is an equality or inequality test of a single bit, we can
9988 do this by shifting the bit being tested to the low-order bit and
9989 masking the result with the constant 1. If the condition was EQ,
9990 we xor it with 1. This does not require an scc insn and is faster
9991 than an scc insn even if we have it.
9993 The code to make this transformation was moved into fold_single_bit_test,
9994 so we just call into the folder and expand its result. */
9996 if ((code == NE || code == EQ)
9997 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9998 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10000 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10001 return expand_expr (fold_single_bit_test (loc,
10002 code == NE ? NE_EXPR : EQ_EXPR,
10003 arg0, arg1, type),
10004 target, VOIDmode, EXPAND_NORMAL);
10007 if (! get_subtarget (target)
10008 || GET_MODE (subtarget) != operand_mode)
10009 subtarget = 0;
10011 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10013 if (target == 0)
10014 target = gen_reg_rtx (mode);
10016 /* Try a cstore if possible. */
10017 return emit_store_flag_force (target, code, op0, op1,
10018 operand_mode, unsignedp, 1);
10022 /* Stubs in case we haven't got a casesi insn. */
10023 #ifndef HAVE_casesi
10024 # define HAVE_casesi 0
10025 # define gen_casesi(a, b, c, d, e) (0)
10026 # define CODE_FOR_casesi CODE_FOR_nothing
10027 #endif
10029 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10030 0 otherwise (i.e. if there is no casesi instruction). */
10032 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10033 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10034 rtx fallback_label ATTRIBUTE_UNUSED)
10036 enum machine_mode index_mode = SImode;
10037 int index_bits = GET_MODE_BITSIZE (index_mode);
10038 rtx op1, op2, index;
10039 enum machine_mode op_mode;
10041 if (! HAVE_casesi)
10042 return 0;
10044 /* Convert the index to SImode. */
10045 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10047 enum machine_mode omode = TYPE_MODE (index_type);
10048 rtx rangertx = expand_normal (range);
10050 /* We must handle the endpoints in the original mode. */
10051 index_expr = build2 (MINUS_EXPR, index_type,
10052 index_expr, minval);
10053 minval = integer_zero_node;
10054 index = expand_normal (index_expr);
10055 if (default_label)
10056 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10057 omode, 1, default_label);
10058 /* Now we can safely truncate. */
10059 index = convert_to_mode (index_mode, index, 0);
10061 else
10063 if (TYPE_MODE (index_type) != index_mode)
10065 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10066 index_expr = fold_convert (index_type, index_expr);
10069 index = expand_normal (index_expr);
10072 do_pending_stack_adjust ();
10074 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10075 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10076 (index, op_mode))
10077 index = copy_to_mode_reg (op_mode, index);
10079 op1 = expand_normal (minval);
10081 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10082 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10083 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10084 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10085 (op1, op_mode))
10086 op1 = copy_to_mode_reg (op_mode, op1);
10088 op2 = expand_normal (range);
10090 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10091 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10092 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10093 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10094 (op2, op_mode))
10095 op2 = copy_to_mode_reg (op_mode, op2);
10097 emit_jump_insn (gen_casesi (index, op1, op2,
10098 table_label, !default_label
10099 ? fallback_label : default_label));
10100 return 1;
10103 /* Attempt to generate a tablejump instruction; same concept. */
10104 #ifndef HAVE_tablejump
10105 #define HAVE_tablejump 0
10106 #define gen_tablejump(x, y) (0)
10107 #endif
10109 /* Subroutine of the next function.
10111 INDEX is the value being switched on, with the lowest value
10112 in the table already subtracted.
10113 MODE is its expected mode (needed if INDEX is constant).
10114 RANGE is the length of the jump table.
10115 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10117 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10118 index value is out of range. */
10120 static void
10121 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10122 rtx default_label)
10124 rtx temp, vector;
10126 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10127 cfun->cfg->max_jumptable_ents = INTVAL (range);
10129 /* Do an unsigned comparison (in the proper mode) between the index
10130 expression and the value which represents the length of the range.
10131 Since we just finished subtracting the lower bound of the range
10132 from the index expression, this comparison allows us to simultaneously
10133 check that the original index expression value is both greater than
10134 or equal to the minimum value of the range and less than or equal to
10135 the maximum value of the range. */
10137 if (default_label)
10138 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10139 default_label);
10141 /* If index is in range, it must fit in Pmode.
10142 Convert to Pmode so we can index with it. */
10143 if (mode != Pmode)
10144 index = convert_to_mode (Pmode, index, 1);
10146 /* Don't let a MEM slip through, because then INDEX that comes
10147 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10148 and break_out_memory_refs will go to work on it and mess it up. */
10149 #ifdef PIC_CASE_VECTOR_ADDRESS
10150 if (flag_pic && !REG_P (index))
10151 index = copy_to_mode_reg (Pmode, index);
10152 #endif
10154 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10155 GET_MODE_SIZE, because this indicates how large insns are. The other
10156 uses should all be Pmode, because they are addresses. This code
10157 could fail if addresses and insns are not the same size. */
10158 index = gen_rtx_PLUS (Pmode,
10159 gen_rtx_MULT (Pmode, index,
10160 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10161 gen_rtx_LABEL_REF (Pmode, table_label));
10162 #ifdef PIC_CASE_VECTOR_ADDRESS
10163 if (flag_pic)
10164 index = PIC_CASE_VECTOR_ADDRESS (index);
10165 else
10166 #endif
10167 index = memory_address (CASE_VECTOR_MODE, index);
10168 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10169 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10170 convert_move (temp, vector, 0);
10172 emit_jump_insn (gen_tablejump (temp, table_label));
10174 /* If we are generating PIC code or if the table is PC-relative, the
10175 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10176 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10177 emit_barrier ();
10181 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10182 rtx table_label, rtx default_label)
10184 rtx index;
10186 if (! HAVE_tablejump)
10187 return 0;
10189 index_expr = fold_build2 (MINUS_EXPR, index_type,
10190 fold_convert (index_type, index_expr),
10191 fold_convert (index_type, minval));
10192 index = expand_normal (index_expr);
10193 do_pending_stack_adjust ();
10195 do_tablejump (index, TYPE_MODE (index_type),
10196 convert_modes (TYPE_MODE (index_type),
10197 TYPE_MODE (TREE_TYPE (range)),
10198 expand_normal (range),
10199 TYPE_UNSIGNED (TREE_TYPE (range))),
10200 table_label, default_label);
10201 return 1;
10204 /* Nonzero if the mode is a valid vector mode for this architecture.
10205 This returns nonzero even if there is no hardware support for the
10206 vector mode, but we can emulate with narrower modes. */
10209 vector_mode_valid_p (enum machine_mode mode)
10211 enum mode_class mclass = GET_MODE_CLASS (mode);
10212 enum machine_mode innermode;
10214 /* Doh! What's going on? */
10215 if (mclass != MODE_VECTOR_INT
10216 && mclass != MODE_VECTOR_FLOAT
10217 && mclass != MODE_VECTOR_FRACT
10218 && mclass != MODE_VECTOR_UFRACT
10219 && mclass != MODE_VECTOR_ACCUM
10220 && mclass != MODE_VECTOR_UACCUM)
10221 return 0;
10223 /* Hardware support. Woo hoo! */
10224 if (targetm.vector_mode_supported_p (mode))
10225 return 1;
10227 innermode = GET_MODE_INNER (mode);
10229 /* We should probably return 1 if requesting V4DI and we have no DI,
10230 but we have V2DI, but this is probably very unlikely. */
10232 /* If we have support for the inner mode, we can safely emulate it.
10233 We may not have V2DI, but me can emulate with a pair of DIs. */
10234 return targetm.scalar_mode_supported_p (innermode);
10237 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10238 static rtx
10239 const_vector_from_tree (tree exp)
10241 rtvec v;
10242 int units, i;
10243 tree link, elt;
10244 enum machine_mode inner, mode;
10246 mode = TYPE_MODE (TREE_TYPE (exp));
10248 if (initializer_zerop (exp))
10249 return CONST0_RTX (mode);
10251 units = GET_MODE_NUNITS (mode);
10252 inner = GET_MODE_INNER (mode);
10254 v = rtvec_alloc (units);
10256 link = TREE_VECTOR_CST_ELTS (exp);
10257 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10259 elt = TREE_VALUE (link);
10261 if (TREE_CODE (elt) == REAL_CST)
10262 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10263 inner);
10264 else if (TREE_CODE (elt) == FIXED_CST)
10265 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10266 inner);
10267 else
10268 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10269 inner);
10272 /* Initialize remaining elements to 0. */
10273 for (; i < units; ++i)
10274 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10276 return gen_rtx_CONST_VECTOR (mode, v);
10280 /* Build a decl for a EH personality function named NAME. */
10282 tree
10283 build_personality_function (const char *name)
10285 tree decl, type;
10287 type = build_function_type_list (integer_type_node, integer_type_node,
10288 long_long_unsigned_type_node,
10289 ptr_type_node, ptr_type_node, NULL_TREE);
10290 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10291 get_identifier (name), type);
10292 DECL_ARTIFICIAL (decl) = 1;
10293 DECL_EXTERNAL (decl) = 1;
10294 TREE_PUBLIC (decl) = 1;
10296 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10297 are the flags assigned by targetm.encode_section_info. */
10298 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10300 return decl;
10303 /* Extracts the personality function of DECL and returns the corresponding
10304 libfunc. */
10307 get_personality_function (tree decl)
10309 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10310 enum eh_personality_kind pk;
10312 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10313 if (pk == eh_personality_none)
10314 return NULL;
10316 if (!personality
10317 && pk == eh_personality_any)
10318 personality = lang_hooks.eh_personality ();
10320 if (pk == eh_personality_lang)
10321 gcc_assert (personality != NULL_TREE);
10323 return XEXP (DECL_RTL (personality), 0);
10326 #include "gt-expr.h"