1 /* Discovery of auto-inc and auto-dec instructions.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "insn-config.h"
40 #include "tree-pass.h"
45 /* This pass was originally removed from flow.c. However there is
46 almost nothing that remains of that code.
48 There are (4) basic forms that are matched:
77 (For this case to be true, b must not be assigned or used between
78 the *a and the assignment to b. B must also be a Pmode reg.)
96 There are three types of values of c.
98 1) c is a constant equal to the width of the value being accessed by
99 the pointer. This is useful for machines that have
100 HAVE_PRE_INCREMENT, HAVE_POST_INCREMENT, HAVE_PRE_DECREMENT or
101 HAVE_POST_DECREMENT defined.
103 2) c is a constant not equal to the width of the value being accessed
104 by the pointer. This is useful for machines that have
105 HAVE_PRE_MODIFY_DISP, HAVE_POST_MODIFY_DISP defined.
107 3) c is a register. This is useful for machines that have
108 HAVE_PRE_MODIFY_REG, HAVE_POST_MODIFY_REG
110 The is one special case: if a already had an offset equal to it +-
111 its width and that offset is equal to -c when the increment was
112 before the ref or +c if the increment was after the ref, then if we
113 can do the combination but switch the pre/post bit. */
126 /* The states of the second operands of mem refs and inc insns. If no
127 second operand of the mem_ref was found, it is assumed to just be
128 ZERO. SIZE is the size of the mode accessed in the memref. The
129 ANY is used for constants that are not +-size or 0. REG is used if
130 the forms are reg1 + reg2. */
135 INC_NEG_SIZE
, /* == +size */
136 INC_POS_SIZE
, /* == -size */
137 INC_NEG_ANY
, /* == some -constant */
138 INC_POS_ANY
, /* == some +constant */
139 INC_REG
, /* == some register */
143 /* The eight forms that pre/post inc/dec can take. */
147 SIMPLE_PRE_INC
, /* ++size */
148 SIMPLE_POST_INC
, /* size++ */
149 SIMPLE_PRE_DEC
, /* --size */
150 SIMPLE_POST_DEC
, /* size-- */
151 DISP_PRE
, /* ++con */
152 DISP_POST
, /* con++ */
157 /* Tmp mem rtx for use in cost modeling. */
160 static enum inc_state
161 set_inc_state (HOST_WIDE_INT val
, int size
)
166 return (val
== -size
) ? INC_NEG_SIZE
: INC_NEG_ANY
;
168 return (val
== size
) ? INC_POS_SIZE
: INC_POS_ANY
;
171 /* The DECISION_TABLE that describes what form, if any, the increment
172 or decrement will take. It is a three dimensional table. The first
173 index is the type of constant or register found as the second
174 operand of the inc insn. The second index is the type of constant
175 or register found as the second operand of the memory reference (if
176 no second operand exists, 0 is used). The third index is the form
177 and location (relative to the mem reference) of inc insn. */
179 static bool initialized
= false;
180 static enum gen_form decision_table
[INC_last
][INC_last
][FORM_last
];
183 init_decision_table (void)
187 if (HAVE_PRE_INCREMENT
|| HAVE_PRE_MODIFY_DISP
)
189 /* Prefer the simple form if both are available. */
190 value
= (HAVE_PRE_INCREMENT
) ? SIMPLE_PRE_INC
: DISP_PRE
;
192 decision_table
[INC_POS_SIZE
][INC_ZERO
][FORM_PRE_ADD
] = value
;
193 decision_table
[INC_POS_SIZE
][INC_ZERO
][FORM_PRE_INC
] = value
;
195 decision_table
[INC_POS_SIZE
][INC_POS_SIZE
][FORM_POST_ADD
] = value
;
196 decision_table
[INC_POS_SIZE
][INC_POS_SIZE
][FORM_POST_INC
] = value
;
199 if (HAVE_POST_INCREMENT
|| HAVE_POST_MODIFY_DISP
)
201 /* Prefer the simple form if both are available. */
202 value
= (HAVE_POST_INCREMENT
) ? SIMPLE_POST_INC
: DISP_POST
;
204 decision_table
[INC_POS_SIZE
][INC_ZERO
][FORM_POST_ADD
] = value
;
205 decision_table
[INC_POS_SIZE
][INC_ZERO
][FORM_POST_INC
] = value
;
207 decision_table
[INC_POS_SIZE
][INC_NEG_SIZE
][FORM_PRE_ADD
] = value
;
208 decision_table
[INC_POS_SIZE
][INC_NEG_SIZE
][FORM_PRE_INC
] = value
;
211 if (HAVE_PRE_DECREMENT
|| HAVE_PRE_MODIFY_DISP
)
213 /* Prefer the simple form if both are available. */
214 value
= (HAVE_PRE_DECREMENT
) ? SIMPLE_PRE_DEC
: DISP_PRE
;
216 decision_table
[INC_NEG_SIZE
][INC_ZERO
][FORM_PRE_ADD
] = value
;
217 decision_table
[INC_NEG_SIZE
][INC_ZERO
][FORM_PRE_INC
] = value
;
219 decision_table
[INC_NEG_SIZE
][INC_NEG_SIZE
][FORM_POST_ADD
] = value
;
220 decision_table
[INC_NEG_SIZE
][INC_NEG_SIZE
][FORM_POST_INC
] = value
;
223 if (HAVE_POST_DECREMENT
|| HAVE_POST_MODIFY_DISP
)
225 /* Prefer the simple form if both are available. */
226 value
= (HAVE_POST_DECREMENT
) ? SIMPLE_POST_DEC
: DISP_POST
;
228 decision_table
[INC_NEG_SIZE
][INC_ZERO
][FORM_POST_ADD
] = value
;
229 decision_table
[INC_NEG_SIZE
][INC_ZERO
][FORM_POST_INC
] = value
;
231 decision_table
[INC_NEG_SIZE
][INC_POS_SIZE
][FORM_PRE_ADD
] = value
;
232 decision_table
[INC_NEG_SIZE
][INC_POS_SIZE
][FORM_PRE_INC
] = value
;
235 if (HAVE_PRE_MODIFY_DISP
)
237 decision_table
[INC_POS_ANY
][INC_ZERO
][FORM_PRE_ADD
] = DISP_PRE
;
238 decision_table
[INC_POS_ANY
][INC_ZERO
][FORM_PRE_INC
] = DISP_PRE
;
240 decision_table
[INC_POS_ANY
][INC_POS_ANY
][FORM_POST_ADD
] = DISP_PRE
;
241 decision_table
[INC_POS_ANY
][INC_POS_ANY
][FORM_POST_INC
] = DISP_PRE
;
243 decision_table
[INC_NEG_ANY
][INC_ZERO
][FORM_PRE_ADD
] = DISP_PRE
;
244 decision_table
[INC_NEG_ANY
][INC_ZERO
][FORM_PRE_INC
] = DISP_PRE
;
246 decision_table
[INC_NEG_ANY
][INC_NEG_ANY
][FORM_POST_ADD
] = DISP_PRE
;
247 decision_table
[INC_NEG_ANY
][INC_NEG_ANY
][FORM_POST_INC
] = DISP_PRE
;
250 if (HAVE_POST_MODIFY_DISP
)
252 decision_table
[INC_POS_ANY
][INC_ZERO
][FORM_POST_ADD
] = DISP_POST
;
253 decision_table
[INC_POS_ANY
][INC_ZERO
][FORM_POST_INC
] = DISP_POST
;
255 decision_table
[INC_POS_ANY
][INC_NEG_ANY
][FORM_PRE_ADD
] = DISP_POST
;
256 decision_table
[INC_POS_ANY
][INC_NEG_ANY
][FORM_PRE_INC
] = DISP_POST
;
258 decision_table
[INC_NEG_ANY
][INC_ZERO
][FORM_POST_ADD
] = DISP_POST
;
259 decision_table
[INC_NEG_ANY
][INC_ZERO
][FORM_POST_INC
] = DISP_POST
;
261 decision_table
[INC_NEG_ANY
][INC_POS_ANY
][FORM_PRE_ADD
] = DISP_POST
;
262 decision_table
[INC_NEG_ANY
][INC_POS_ANY
][FORM_PRE_INC
] = DISP_POST
;
265 /* This is much simpler than the other cases because we do not look
266 for the reg1-reg2 case. Note that we do not have a INC_POS_REG
267 and INC_NEG_REG states. Most of the use of such states would be
268 on a target that had an R1 - R2 update address form.
270 There is the remote possibility that you could also catch a = a +
271 b; *(a - b) as a postdecrement of (a + b). However, it is
272 unclear if *(a - b) would ever be generated on a machine that did
273 not have that kind of addressing mode. The IA-64 and RS6000 will
274 not do this, and I cannot speak for any other. If any
275 architecture does have an a-b update for, these cases should be
277 if (HAVE_PRE_MODIFY_REG
)
279 decision_table
[INC_REG
][INC_ZERO
][FORM_PRE_ADD
] = REG_PRE
;
280 decision_table
[INC_REG
][INC_ZERO
][FORM_PRE_INC
] = REG_PRE
;
282 decision_table
[INC_REG
][INC_REG
][FORM_POST_ADD
] = REG_PRE
;
283 decision_table
[INC_REG
][INC_REG
][FORM_POST_INC
] = REG_PRE
;
286 if (HAVE_POST_MODIFY_REG
)
288 decision_table
[INC_REG
][INC_ZERO
][FORM_POST_ADD
] = REG_POST
;
289 decision_table
[INC_REG
][INC_ZERO
][FORM_POST_INC
] = REG_POST
;
295 /* Parsed fields of an inc insn of the form "reg_res = reg0+reg1" or
296 "reg_res = reg0+c". */
298 static struct inc_insn
300 rtx insn
; /* The insn being parsed. */
301 rtx pat
; /* The pattern of the insn. */
302 bool reg1_is_const
; /* True if reg1 is const, false if reg1 is a reg. */
307 enum inc_state reg1_state
;/* The form of the const if reg1 is a const. */
308 HOST_WIDE_INT reg1_val
;/* Value if reg1 is const. */
312 /* Dump the parsed inc insn to FILE. */
315 dump_inc_insn (FILE *file
)
317 const char *f
= ((inc_insn
.form
== FORM_PRE_ADD
)
318 || (inc_insn
.form
== FORM_PRE_INC
)) ? "pre" : "post";
320 dump_insn_slim (file
, inc_insn
.insn
);
322 switch (inc_insn
.form
)
326 if (inc_insn
.reg1_is_const
)
327 fprintf (file
, "found %s add(%d) r[%d]=r[%d]+%d\n",
328 f
, INSN_UID (inc_insn
.insn
),
329 REGNO (inc_insn
.reg_res
),
330 REGNO (inc_insn
.reg0
), (int) inc_insn
.reg1_val
);
332 fprintf (file
, "found %s add(%d) r[%d]=r[%d]+r[%d]\n",
333 f
, INSN_UID (inc_insn
.insn
),
334 REGNO (inc_insn
.reg_res
),
335 REGNO (inc_insn
.reg0
), REGNO (inc_insn
.reg1
));
340 if (inc_insn
.reg1_is_const
)
341 fprintf (file
, "found %s inc(%d) r[%d]+=%d\n",
342 f
, INSN_UID (inc_insn
.insn
),
343 REGNO (inc_insn
.reg_res
), (int) inc_insn
.reg1_val
);
345 fprintf (file
, "found %s inc(%d) r[%d]+=r[%d]\n",
346 f
, INSN_UID (inc_insn
.insn
),
347 REGNO (inc_insn
.reg_res
), REGNO (inc_insn
.reg1
));
356 /* Parsed fields of a mem ref of the form "*(reg0+reg1)" or "*(reg0+c)". */
358 static struct mem_insn
360 rtx insn
; /* The insn being parsed. */
361 rtx pat
; /* The pattern of the insn. */
362 rtx
*mem_loc
; /* The address of the field that holds the mem */
363 /* that is to be replaced. */
364 bool reg1_is_const
; /* True if reg1 is const, false if reg1 is a reg. */
366 rtx reg1
; /* This is either a reg or a const depending on
368 enum inc_state reg1_state
;/* The form of the const if reg1 is a const. */
369 HOST_WIDE_INT reg1_val
;/* Value if reg1 is const. */
373 /* Dump the parsed mem insn to FILE. */
376 dump_mem_insn (FILE *file
)
378 dump_insn_slim (file
, mem_insn
.insn
);
380 if (mem_insn
.reg1_is_const
)
381 fprintf (file
, "found mem(%d) *(r[%d]+%d)\n",
382 INSN_UID (mem_insn
.insn
),
383 REGNO (mem_insn
.reg0
), (int) mem_insn
.reg1_val
);
385 fprintf (file
, "found mem(%d) *(r[%d]+r[%d])\n",
386 INSN_UID (mem_insn
.insn
),
387 REGNO (mem_insn
.reg0
), REGNO (mem_insn
.reg1
));
391 /* The following three arrays contain pointers to instructions. They
392 are indexed by REGNO. At any point in the basic block where we are
393 looking these three arrays contain, respectively, the next insn
394 that uses REGNO, the next inc or add insn that uses REGNO and the
395 next insn that sets REGNO.
397 The arrays are not cleared when we move from block to block so
398 whenever an insn is retrieved from these arrays, it's block number
399 must be compared with the current block.
402 static rtx
*reg_next_use
= NULL
;
403 static rtx
*reg_next_inc_use
= NULL
;
404 static rtx
*reg_next_def
= NULL
;
407 /* Move dead note that match PATTERN to TO_INSN from FROM_INSN. We do
408 not really care about moving any other notes from the inc or add
409 insn. Moving the REG_EQUAL and REG_EQUIV is clearly wrong and it
410 does not appear that there are any other kinds of relevant notes. */
413 move_dead_notes (rtx to_insn
, rtx from_insn
, rtx pattern
)
417 rtx prev_note
= NULL
;
419 for (note
= REG_NOTES (from_insn
); note
; note
= next_note
)
421 next_note
= XEXP (note
, 1);
423 if ((REG_NOTE_KIND (note
) == REG_DEAD
)
424 && pattern
== XEXP (note
, 0))
426 XEXP (note
, 1) = REG_NOTES (to_insn
);
427 REG_NOTES (to_insn
) = note
;
429 XEXP (prev_note
, 1) = next_note
;
431 REG_NOTES (from_insn
) = next_note
;
433 else prev_note
= note
;
438 /* Create a mov insn DEST_REG <- SRC_REG and insert it before
442 insert_move_insn_before (rtx next_insn
, rtx dest_reg
, rtx src_reg
)
447 emit_move_insn (dest_reg
, src_reg
);
448 insns
= get_insns ();
450 emit_insn_before (insns
, next_insn
);
455 /* Change mem_insn.mem_loc so that uses NEW_ADDR which has an
456 increment of INC_REG. To have reached this point, the change is a
457 legitimate one from a dataflow point of view. The only questions
458 are is this a valid change to the instruction and is this a
459 profitable change to the instruction. */
462 attempt_change (rtx new_addr
, rtx inc_reg
)
464 /* There are four cases: For the two cases that involve an add
465 instruction, we are going to have to delete the add and insert a
466 mov. We are going to assume that the mov is free. This is
467 fairly early in the backend and there are a lot of opportunities
468 for removing that move later. In particular, there is the case
469 where the move may be dead, this is what dead code elimination
470 passes are for. The two cases where we have an inc insn will be
473 basic_block bb
= BLOCK_FOR_INSN (mem_insn
.insn
);
476 rtx mem
= *mem_insn
.mem_loc
;
477 enum machine_mode mode
= GET_MODE (mem
);
481 bool speed
= optimize_bb_for_speed_p (bb
);
483 PUT_MODE (mem_tmp
, mode
);
484 XEXP (mem_tmp
, 0) = new_addr
;
486 old_cost
= (rtx_cost (mem
, SET
, speed
)
487 + rtx_cost (PATTERN (inc_insn
.insn
), SET
, speed
));
488 new_cost
= rtx_cost (mem_tmp
, SET
, speed
);
490 /* The first item of business is to see if this is profitable. */
491 if (old_cost
< new_cost
)
494 fprintf (dump_file
, "cost failure old=%d new=%d\n", old_cost
, new_cost
);
498 /* Jump thru a lot of hoops to keep the attributes up to date. We
499 do not want to call one of the change address variants that take
500 an offset even though we know the offset in many cases. These
501 assume you are changing where the address is pointing by the
503 new_mem
= replace_equiv_address_nv (mem
, new_addr
);
504 if (! validate_change (mem_insn
.insn
, mem_insn
.mem_loc
, new_mem
, 0))
507 fprintf (dump_file
, "validation failure\n");
511 /* From here to the end of the function we are committed to the
512 change, i.e. nothing fails. Generate any necessary movs, move
513 any regnotes, and fix up the reg_next_{use,inc_use,def}. */
514 switch (inc_insn
.form
)
517 /* Replace the addition with a move. Do it at the location of
518 the addition since the operand of the addition may change
519 before the memory reference. */
520 mov_insn
= insert_move_insn_before (inc_insn
.insn
,
521 inc_insn
.reg_res
, inc_insn
.reg0
);
522 move_dead_notes (mov_insn
, inc_insn
.insn
, inc_insn
.reg0
);
524 regno
= REGNO (inc_insn
.reg_res
);
525 reg_next_def
[regno
] = mov_insn
;
526 reg_next_use
[regno
] = NULL
;
527 regno
= REGNO (inc_insn
.reg0
);
528 reg_next_use
[regno
] = mov_insn
;
529 df_recompute_luids (bb
);
533 regno
= REGNO (inc_insn
.reg_res
);
534 if (reg_next_use
[regno
] == reg_next_inc_use
[regno
])
535 reg_next_inc_use
[regno
] = NULL
;
539 regno
= REGNO (inc_insn
.reg_res
);
540 reg_next_def
[regno
] = mem_insn
.insn
;
541 reg_next_use
[regno
] = NULL
;
546 mov_insn
= insert_move_insn_before (mem_insn
.insn
,
547 inc_insn
.reg_res
, inc_insn
.reg0
);
548 move_dead_notes (mov_insn
, inc_insn
.insn
, inc_insn
.reg0
);
550 /* Do not move anything to the mov insn because the instruction
551 pointer for the main iteration has not yet hit that. It is
552 still pointing to the mem insn. */
553 regno
= REGNO (inc_insn
.reg_res
);
554 reg_next_def
[regno
] = mem_insn
.insn
;
555 reg_next_use
[regno
] = NULL
;
557 regno
= REGNO (inc_insn
.reg0
);
558 reg_next_use
[regno
] = mem_insn
.insn
;
559 if ((reg_next_use
[regno
] == reg_next_inc_use
[regno
])
560 || (reg_next_inc_use
[regno
] == inc_insn
.insn
))
561 reg_next_inc_use
[regno
] = NULL
;
562 df_recompute_luids (bb
);
570 if (!inc_insn
.reg1_is_const
)
572 regno
= REGNO (inc_insn
.reg1
);
573 reg_next_use
[regno
] = mem_insn
.insn
;
574 if ((reg_next_use
[regno
] == reg_next_inc_use
[regno
])
575 || (reg_next_inc_use
[regno
] == inc_insn
.insn
))
576 reg_next_inc_use
[regno
] = NULL
;
579 delete_insn (inc_insn
.insn
);
581 if (dump_file
&& mov_insn
)
583 fprintf (dump_file
, "inserting mov ");
584 dump_insn_slim (dump_file
, mov_insn
);
587 /* Record that this insn has an implicit side effect. */
588 add_reg_note (mem_insn
.insn
, REG_INC
, inc_reg
);
592 fprintf (dump_file
, "****success ");
593 dump_insn_slim (dump_file
, mem_insn
.insn
);
600 /* Try to combine the instruction in INC_INSN with the instruction in
601 MEM_INSN. First the form is determined using the DECISION_TABLE
602 and the results of parsing the INC_INSN and the MEM_INSN.
603 Assuming the form is ok, a prototype new address is built which is
604 passed to ATTEMPT_CHANGE for final processing. */
609 enum gen_form gen_form
;
610 rtx mem
= *mem_insn
.mem_loc
;
611 rtx inc_reg
= inc_insn
.form
== FORM_POST_ADD
?
612 inc_insn
.reg_res
: mem_insn
.reg0
;
614 /* The width of the mem being accessed. */
615 int size
= GET_MODE_SIZE (GET_MODE (mem
));
616 rtx last_insn
= NULL
;
617 enum machine_mode reg_mode
= GET_MODE (inc_reg
);
619 switch (inc_insn
.form
)
623 last_insn
= mem_insn
.insn
;
627 last_insn
= inc_insn
.insn
;
634 /* Cannot handle auto inc of the stack. */
635 if (inc_reg
== stack_pointer_rtx
)
638 fprintf (dump_file
, "cannot inc stack %d failure\n", REGNO (inc_reg
));
642 /* Look to see if the inc register is dead after the memory
643 reference. If it is, do not do the combination. */
644 if (find_regno_note (last_insn
, REG_DEAD
, REGNO (inc_reg
)))
647 fprintf (dump_file
, "dead failure %d\n", REGNO (inc_reg
));
651 mem_insn
.reg1_state
= (mem_insn
.reg1_is_const
)
652 ? set_inc_state (mem_insn
.reg1_val
, size
) : INC_REG
;
653 inc_insn
.reg1_state
= (inc_insn
.reg1_is_const
)
654 ? set_inc_state (inc_insn
.reg1_val
, size
) : INC_REG
;
656 /* Now get the form that we are generating. */
657 gen_form
= decision_table
658 [inc_insn
.reg1_state
][mem_insn
.reg1_state
][inc_insn
.form
];
660 if (dbg_cnt (auto_inc_dec
) == false)
669 case SIMPLE_PRE_INC
: /* ++size */
671 fprintf (dump_file
, "trying SIMPLE_PRE_INC\n");
672 return attempt_change (gen_rtx_PRE_INC (reg_mode
, inc_reg
), inc_reg
);
675 case SIMPLE_POST_INC
: /* size++ */
677 fprintf (dump_file
, "trying SIMPLE_POST_INC\n");
678 return attempt_change (gen_rtx_POST_INC (reg_mode
, inc_reg
), inc_reg
);
681 case SIMPLE_PRE_DEC
: /* --size */
683 fprintf (dump_file
, "trying SIMPLE_PRE_DEC\n");
684 return attempt_change (gen_rtx_PRE_DEC (reg_mode
, inc_reg
), inc_reg
);
687 case SIMPLE_POST_DEC
: /* size-- */
689 fprintf (dump_file
, "trying SIMPLE_POST_DEC\n");
690 return attempt_change (gen_rtx_POST_DEC (reg_mode
, inc_reg
), inc_reg
);
693 case DISP_PRE
: /* ++con */
695 fprintf (dump_file
, "trying DISP_PRE\n");
696 return attempt_change (gen_rtx_PRE_MODIFY (reg_mode
,
698 gen_rtx_PLUS (reg_mode
,
704 case DISP_POST
: /* con++ */
706 fprintf (dump_file
, "trying POST_DISP\n");
707 return attempt_change (gen_rtx_POST_MODIFY (reg_mode
,
709 gen_rtx_PLUS (reg_mode
,
715 case REG_PRE
: /* ++reg */
717 fprintf (dump_file
, "trying PRE_REG\n");
718 return attempt_change (gen_rtx_PRE_MODIFY (reg_mode
,
720 gen_rtx_PLUS (reg_mode
,
726 case REG_POST
: /* reg++ */
728 fprintf (dump_file
, "trying POST_REG\n");
729 return attempt_change (gen_rtx_POST_MODIFY (reg_mode
,
731 gen_rtx_PLUS (reg_mode
,
739 /* Return the next insn that uses (if reg_next_use is passed in
740 NEXT_ARRAY) or defines (if reg_next_def is passed in NEXT_ARRAY)
744 get_next_ref (int regno
, basic_block bb
, rtx
*next_array
)
746 rtx insn
= next_array
[regno
];
748 /* Lazy about cleaning out the next_arrays. */
749 if (insn
&& BLOCK_FOR_INSN (insn
) != bb
)
751 next_array
[regno
] = NULL
;
759 /* Reverse the operands in a mem insn. */
764 rtx tmp
= mem_insn
.reg1
;
765 mem_insn
.reg1
= mem_insn
.reg0
;
770 /* Reverse the operands in a inc insn. */
775 rtx tmp
= inc_insn
.reg1
;
776 inc_insn
.reg1
= inc_insn
.reg0
;
781 /* Return true if INSN is of a form "a = b op c" where a and b are
782 regs. op is + if c is a reg and +|- if c is a const. Fill in
783 INC_INSN with what is found.
785 This function is called in two contexts, if BEFORE_MEM is true,
786 this is called for each insn in the basic block. If BEFORE_MEM is
787 false, it is called for the instruction in the block that uses the
788 index register for some memory reference that is currently being
792 parse_add_or_inc (rtx insn
, bool before_mem
)
794 rtx pat
= single_set (insn
);
798 /* Result must be single reg. */
799 if (!REG_P (SET_DEST (pat
)))
802 if ((GET_CODE (SET_SRC (pat
)) != PLUS
)
803 && (GET_CODE (SET_SRC (pat
)) != MINUS
))
806 if (!REG_P (XEXP (SET_SRC (pat
), 0)))
809 inc_insn
.insn
= insn
;
811 inc_insn
.reg_res
= SET_DEST (pat
);
812 inc_insn
.reg0
= XEXP (SET_SRC (pat
), 0);
813 if (rtx_equal_p (inc_insn
.reg_res
, inc_insn
.reg0
))
814 inc_insn
.form
= before_mem
? FORM_PRE_INC
: FORM_POST_INC
;
816 inc_insn
.form
= before_mem
? FORM_PRE_ADD
: FORM_POST_ADD
;
818 if (CONST_INT_P (XEXP (SET_SRC (pat
), 1)))
820 /* Process a = b + c where c is a const. */
821 inc_insn
.reg1_is_const
= true;
822 if (GET_CODE (SET_SRC (pat
)) == PLUS
)
824 inc_insn
.reg1
= XEXP (SET_SRC (pat
), 1);
825 inc_insn
.reg1_val
= INTVAL (inc_insn
.reg1
);
829 inc_insn
.reg1_val
= -INTVAL (XEXP (SET_SRC (pat
), 1));
830 inc_insn
.reg1
= GEN_INT (inc_insn
.reg1_val
);
834 else if ((HAVE_PRE_MODIFY_REG
|| HAVE_POST_MODIFY_REG
)
835 && (REG_P (XEXP (SET_SRC (pat
), 1)))
836 && GET_CODE (SET_SRC (pat
)) == PLUS
)
838 /* Process a = b + c where c is a reg. */
839 inc_insn
.reg1
= XEXP (SET_SRC (pat
), 1);
840 inc_insn
.reg1_is_const
= false;
842 if (inc_insn
.form
== FORM_PRE_INC
843 || inc_insn
.form
== FORM_POST_INC
)
845 else if (rtx_equal_p (inc_insn
.reg_res
, inc_insn
.reg1
))
847 /* Reverse the two operands and turn *_ADD into *_INC since
850 inc_insn
.form
= before_mem
? FORM_PRE_INC
: FORM_POST_INC
;
861 /* A recursive function that checks all of the mem uses in
862 ADDRESS_OF_X to see if any single one of them is compatible with
863 what has been found in inc_insn.
865 -1 is returned for success. 0 is returned if nothing was found and
866 1 is returned for failure. */
869 find_address (rtx
*address_of_x
)
871 rtx x
= *address_of_x
;
872 enum rtx_code code
= GET_CODE (x
);
873 const char *const fmt
= GET_RTX_FORMAT (code
);
878 if (code
== MEM
&& rtx_equal_p (XEXP (x
, 0), inc_insn
.reg_res
))
880 /* Match with *reg0. */
881 mem_insn
.mem_loc
= address_of_x
;
882 mem_insn
.reg0
= inc_insn
.reg_res
;
883 mem_insn
.reg1_is_const
= true;
884 mem_insn
.reg1_val
= 0;
885 mem_insn
.reg1
= GEN_INT (0);
888 if (code
== MEM
&& GET_CODE (XEXP (x
, 0)) == PLUS
889 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), inc_insn
.reg_res
))
891 rtx b
= XEXP (XEXP (x
, 0), 1);
892 mem_insn
.mem_loc
= address_of_x
;
893 mem_insn
.reg0
= inc_insn
.reg_res
;
895 mem_insn
.reg1_is_const
= inc_insn
.reg1_is_const
;
898 /* Match with *(reg0 + reg1) where reg1 is a const. */
899 HOST_WIDE_INT val
= INTVAL (b
);
900 if (inc_insn
.reg1_is_const
901 && (inc_insn
.reg1_val
== val
|| inc_insn
.reg1_val
== -val
))
903 mem_insn
.reg1_val
= val
;
907 else if (!inc_insn
.reg1_is_const
908 && rtx_equal_p (inc_insn
.reg1
, b
))
909 /* Match with *(reg0 + reg1). */
913 if (code
== SIGN_EXTRACT
|| code
== ZERO_EXTRACT
)
915 /* If REG occurs inside a MEM used in a bit-field reference,
916 that is unacceptable. */
917 if (find_address (&XEXP (x
, 0)))
921 if (x
== inc_insn
.reg_res
)
924 /* Time for some deep diving. */
925 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
929 tem
= find_address (&XEXP (x
, i
));
930 /* If this is the first use, let it go so the rest of the
931 insn can be checked. */
935 /* More than one match was found. */
938 else if (fmt
[i
] == 'E')
941 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
943 tem
= find_address (&XVECEXP (x
, i
, j
));
944 /* If this is the first use, let it go so the rest of
945 the insn can be checked. */
949 /* More than one match was found. */
957 /* Once a suitable mem reference has been found and the MEM_INSN
958 structure has been filled in, FIND_INC is called to see if there is
959 a suitable add or inc insn that follows the mem reference and
960 determine if it is suitable to merge.
962 In the case where the MEM_INSN has two registers in the reference,
963 this function may be called recursively. The first time looking
964 for an add of the first register, and if that fails, looking for an
965 add of the second register. The FIRST_TRY parameter is used to
966 only allow the parameters to be reversed once. */
969 find_inc (bool first_try
)
972 basic_block bb
= BLOCK_FOR_INSN (mem_insn
.insn
);
976 /* Make sure this reg appears only once in this insn. */
977 if (count_occurrences (PATTERN (mem_insn
.insn
), mem_insn
.reg0
, 1) != 1)
980 fprintf (dump_file
, "mem count failure\n");
985 dump_mem_insn (dump_file
);
987 /* Find the next use that is an inc. */
988 insn
= get_next_ref (REGNO (mem_insn
.reg0
),
989 BLOCK_FOR_INSN (mem_insn
.insn
),
994 /* Even though we know the next use is an add or inc because it came
995 from the reg_next_inc_use, we must still reparse. */
996 if (!parse_add_or_inc (insn
, false))
998 /* Next use was not an add. Look for one extra case. It could be
1005 if we reverse the operands in the mem ref we would
1006 find this. Only try it once though. */
1007 if (first_try
&& !mem_insn
.reg1_is_const
)
1010 return find_inc (false);
1016 /* Need to assure that none of the operands of the inc instruction are
1017 assigned to by the mem insn. */
1018 for (def_rec
= DF_INSN_DEFS (mem_insn
.insn
); *def_rec
; def_rec
++)
1020 df_ref def
= *def_rec
;
1021 unsigned int regno
= DF_REF_REGNO (def
);
1022 if ((regno
== REGNO (inc_insn
.reg0
))
1023 || (regno
== REGNO (inc_insn
.reg_res
)))
1026 fprintf (dump_file
, "inc conflicts with store failure.\n");
1029 if (!inc_insn
.reg1_is_const
&& (regno
== REGNO (inc_insn
.reg1
)))
1032 fprintf (dump_file
, "inc conflicts with store failure.\n");
1038 dump_inc_insn (dump_file
);
1040 if (inc_insn
.form
== FORM_POST_ADD
)
1042 /* Make sure that there is no insn that assigns to inc_insn.res
1043 between the mem_insn and the inc_insn. */
1044 rtx other_insn
= get_next_ref (REGNO (inc_insn
.reg_res
),
1045 BLOCK_FOR_INSN (mem_insn
.insn
),
1047 if (other_insn
!= inc_insn
.insn
)
1051 "result of add is assigned to between mem and inc insns.\n");
1055 other_insn
= get_next_ref (REGNO (inc_insn
.reg_res
),
1056 BLOCK_FOR_INSN (mem_insn
.insn
),
1059 && (other_insn
!= inc_insn
.insn
)
1060 && (DF_INSN_LUID (inc_insn
.insn
) > DF_INSN_LUID (other_insn
)))
1064 "result of add is used between mem and inc insns.\n");
1068 /* For the post_add to work, the result_reg of the inc must not be
1069 used in the mem insn since this will become the new index
1071 if (count_occurrences (PATTERN (mem_insn
.insn
), inc_insn
.reg_res
, 1) == 0
1072 && reg_overlap_mentioned_p (inc_insn
.reg_res
, PATTERN (mem_insn
.insn
)))
1074 debug_rtx (mem_insn
.insn
);
1075 debug_rtx (inc_insn
.reg_res
);
1078 if (count_occurrences (PATTERN (mem_insn
.insn
), inc_insn
.reg_res
, 1) != 0)
1081 fprintf (dump_file
, "base reg replacement failure.\n");
1086 if (mem_insn
.reg1_is_const
)
1088 if (mem_insn
.reg1_val
== 0)
1090 if (!inc_insn
.reg1_is_const
)
1092 /* The mem looks like *r0 and the rhs of the add has two
1094 int luid
= DF_INSN_LUID (inc_insn
.insn
);
1095 if (inc_insn
.form
== FORM_POST_ADD
)
1097 /* The trick is that we are not going to increment r0,
1098 we are going to increment the result of the add insn.
1099 For this trick to be correct, the result reg of
1100 the inc must be a valid addressing reg. */
1101 addr_space_t as
= MEM_ADDR_SPACE (*mem_insn
.mem_loc
);
1102 if (GET_MODE (inc_insn
.reg_res
)
1103 != targetm
.addr_space
.address_mode (as
))
1106 fprintf (dump_file
, "base reg mode failure.\n");
1110 /* We also need to make sure that the next use of
1111 inc result is after the inc. */
1113 = get_next_ref (REGNO (inc_insn
.reg1
), bb
, reg_next_use
);
1114 if (other_insn
&& luid
> DF_INSN_LUID (other_insn
))
1117 if (!rtx_equal_p (mem_insn
.reg0
, inc_insn
.reg0
))
1122 = get_next_ref (REGNO (inc_insn
.reg1
), bb
, reg_next_def
);
1123 if (other_insn
&& luid
> DF_INSN_LUID (other_insn
))
1127 /* Both the inc/add and the mem have a constant. Need to check
1128 that the constants are ok. */
1129 else if ((mem_insn
.reg1_val
!= inc_insn
.reg1_val
)
1130 && (mem_insn
.reg1_val
!= -inc_insn
.reg1_val
))
1135 /* The mem insn is of the form *(a + b) where a and b are both
1136 regs. It may be that in order to match the add or inc we
1137 need to treat it as if it was *(b + a). It may also be that
1138 the add is of the form a + c where c does not match b and
1139 then we just abandon this. */
1141 int luid
= DF_INSN_LUID (inc_insn
.insn
);
1144 /* Make sure this reg appears only once in this insn. */
1145 if (count_occurrences (PATTERN (mem_insn
.insn
), mem_insn
.reg1
, 1) != 1)
1148 if (inc_insn
.form
== FORM_POST_ADD
)
1150 /* For this trick to be correct, the result reg of the inc
1151 must be a valid addressing reg. */
1152 addr_space_t as
= MEM_ADDR_SPACE (*mem_insn
.mem_loc
);
1153 if (GET_MODE (inc_insn
.reg_res
)
1154 != targetm
.addr_space
.address_mode (as
))
1157 fprintf (dump_file
, "base reg mode failure.\n");
1161 if (rtx_equal_p (mem_insn
.reg0
, inc_insn
.reg0
))
1163 if (!rtx_equal_p (mem_insn
.reg1
, inc_insn
.reg1
))
1165 /* See comment above on find_inc (false) call. */
1169 return find_inc (false);
1175 /* Need to check that there are no assignments to b
1176 before the add insn. */
1178 = get_next_ref (REGNO (inc_insn
.reg1
), bb
, reg_next_def
);
1179 if (other_insn
&& luid
> DF_INSN_LUID (other_insn
))
1181 /* All ok for the next step. */
1185 /* We know that mem_insn.reg0 must equal inc_insn.reg1
1186 or else we would not have found the inc insn. */
1188 if (!rtx_equal_p (mem_insn
.reg0
, inc_insn
.reg0
))
1190 /* See comment above on find_inc (false) call. */
1192 return find_inc (false);
1196 /* To have gotten here know that.
1201 We also know that the lhs of the inc is not b or a. We
1202 need to make sure that there are no assignments to b
1203 between the mem ref and the inc. */
1206 = get_next_ref (REGNO (inc_insn
.reg0
), bb
, reg_next_def
);
1207 if (other_insn
&& luid
> DF_INSN_LUID (other_insn
))
1211 /* Need to check that the next use of the add result is later than
1212 add insn since this will be the reg incremented. */
1214 = get_next_ref (REGNO (inc_insn
.reg_res
), bb
, reg_next_use
);
1215 if (other_insn
&& luid
> DF_INSN_LUID (other_insn
))
1218 else /* FORM_POST_INC. There is less to check here because we
1219 know that operands must line up. */
1221 if (!rtx_equal_p (mem_insn
.reg1
, inc_insn
.reg1
))
1222 /* See comment above on find_inc (false) call. */
1227 return find_inc (false);
1233 /* To have gotten here know that.
1238 We also know that the lhs of the inc is not b. We need to make
1239 sure that there are no assignments to b between the mem ref and
1242 = get_next_ref (REGNO (inc_insn
.reg1
), bb
, reg_next_def
);
1243 if (other_insn
&& luid
> DF_INSN_LUID (other_insn
))
1248 if (inc_insn
.form
== FORM_POST_INC
)
1251 = get_next_ref (REGNO (inc_insn
.reg0
), bb
, reg_next_use
);
1252 /* When we found inc_insn, we were looking for the
1253 next add or inc, not the next insn that used the
1254 reg. Because we are going to increment the reg
1255 in this form, we need to make sure that there
1256 were no intervening uses of reg. */
1257 if (inc_insn
.insn
!= other_insn
)
1261 return try_merge ();
1265 /* A recursive function that walks ADDRESS_OF_X to find all of the mem
1266 uses in pat that could be used as an auto inc or dec. It then
1267 calls FIND_INC for each one. */
1270 find_mem (rtx
*address_of_x
)
1272 rtx x
= *address_of_x
;
1273 enum rtx_code code
= GET_CODE (x
);
1274 const char *const fmt
= GET_RTX_FORMAT (code
);
1277 if (code
== MEM
&& REG_P (XEXP (x
, 0)))
1279 /* Match with *reg0. */
1280 mem_insn
.mem_loc
= address_of_x
;
1281 mem_insn
.reg0
= XEXP (x
, 0);
1282 mem_insn
.reg1_is_const
= true;
1283 mem_insn
.reg1_val
= 0;
1284 mem_insn
.reg1
= GEN_INT (0);
1285 if (find_inc (true))
1288 if (code
== MEM
&& GET_CODE (XEXP (x
, 0)) == PLUS
1289 && REG_P (XEXP (XEXP (x
, 0), 0)))
1291 rtx reg1
= XEXP (XEXP (x
, 0), 1);
1292 mem_insn
.mem_loc
= address_of_x
;
1293 mem_insn
.reg0
= XEXP (XEXP (x
, 0), 0);
1294 mem_insn
.reg1
= reg1
;
1295 if (CONST_INT_P (reg1
))
1297 mem_insn
.reg1_is_const
= true;
1298 /* Match with *(reg0 + c) where c is a const. */
1299 mem_insn
.reg1_val
= INTVAL (reg1
);
1300 if (find_inc (true))
1303 else if (REG_P (reg1
))
1305 /* Match with *(reg0 + reg1). */
1306 mem_insn
.reg1_is_const
= false;
1307 if (find_inc (true))
1312 if (code
== SIGN_EXTRACT
|| code
== ZERO_EXTRACT
)
1314 /* If REG occurs inside a MEM used in a bit-field reference,
1315 that is unacceptable. */
1319 /* Time for some deep diving. */
1320 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1324 if (find_mem (&XEXP (x
, i
)))
1327 else if (fmt
[i
] == 'E')
1330 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
1331 if (find_mem (&XVECEXP (x
, i
, j
)))
1339 /* Try to combine all incs and decs by constant values with memory
1340 references in BB. */
1343 merge_in_block (int max_reg
, basic_block bb
)
1347 int success_in_block
= 0;
1350 fprintf (dump_file
, "\n\nstarting bb %d\n", bb
->index
);
1352 FOR_BB_INSNS_REVERSE_SAFE (bb
, insn
, curr
)
1354 unsigned int uid
= INSN_UID (insn
);
1355 bool insn_is_add_or_inc
= true;
1357 if (!NONDEBUG_INSN_P (insn
))
1360 /* This continue is deliberate. We do not want the uses of the
1361 jump put into reg_next_use because it is not considered safe to
1362 combine a preincrement with a jump. */
1367 dump_insn_slim (dump_file
, insn
);
1369 /* Does this instruction increment or decrement a register? */
1370 if (parse_add_or_inc (insn
, true))
1372 int regno
= REGNO (inc_insn
.reg_res
);
1373 /* Cannot handle case where there are three separate regs
1374 before a mem ref. Too many moves would be needed to be
1376 if ((inc_insn
.form
== FORM_PRE_INC
) || inc_insn
.reg1_is_const
)
1378 mem_insn
.insn
= get_next_ref (regno
, bb
, reg_next_use
);
1382 if (!inc_insn
.reg1_is_const
)
1384 /* We are only here if we are going to try a
1385 HAVE_*_MODIFY_REG type transformation. c is a
1386 reg and we must sure that the path from the
1387 inc_insn to the mem_insn.insn is both def and use
1388 clear of c because the inc insn is going to move
1389 into the mem_insn.insn. */
1390 int luid
= DF_INSN_LUID (mem_insn
.insn
);
1392 = get_next_ref (REGNO (inc_insn
.reg1
), bb
, reg_next_use
);
1394 if (other_insn
&& luid
> DF_INSN_LUID (other_insn
))
1398 = get_next_ref (REGNO (inc_insn
.reg1
), bb
, reg_next_def
);
1400 if (other_insn
&& luid
> DF_INSN_LUID (other_insn
))
1405 dump_inc_insn (dump_file
);
1407 if (ok
&& find_address (&PATTERN (mem_insn
.insn
)) == -1)
1410 dump_mem_insn (dump_file
);
1414 insn_is_add_or_inc
= false;
1422 insn_is_add_or_inc
= false;
1423 mem_insn
.insn
= insn
;
1424 if (find_mem (&PATTERN (insn
)))
1428 /* If the inc insn was merged with a mem, the inc insn is gone
1429 and there is noting to update. */
1430 if (DF_INSN_UID_GET (uid
))
1434 /* Need to update next use. */
1435 for (def_rec
= DF_INSN_UID_DEFS (uid
); *def_rec
; def_rec
++)
1437 df_ref def
= *def_rec
;
1438 reg_next_use
[DF_REF_REGNO (def
)] = NULL
;
1439 reg_next_inc_use
[DF_REF_REGNO (def
)] = NULL
;
1440 reg_next_def
[DF_REF_REGNO (def
)] = insn
;
1443 for (use_rec
= DF_INSN_UID_USES (uid
); *use_rec
; use_rec
++)
1445 df_ref use
= *use_rec
;
1446 reg_next_use
[DF_REF_REGNO (use
)] = insn
;
1447 if (insn_is_add_or_inc
)
1448 reg_next_inc_use
[DF_REF_REGNO (use
)] = insn
;
1450 reg_next_inc_use
[DF_REF_REGNO (use
)] = NULL
;
1454 fprintf (dump_file
, "skipping update of deleted insn %d\n", uid
);
1457 /* If we were successful, try again. There may have been several
1458 opportunities that were interleaved. This is rare but
1459 gcc.c-torture/compile/pr17273.c actually exhibits this. */
1460 if (success_in_block
)
1462 /* In this case, we must clear these vectors since the trick of
1463 testing if the stale insn in the block will not work. */
1464 memset (reg_next_use
, 0, max_reg
* sizeof(rtx
));
1465 memset (reg_next_inc_use
, 0, max_reg
* sizeof(rtx
));
1466 memset (reg_next_def
, 0, max_reg
* sizeof(rtx
));
1467 df_recompute_luids (bb
);
1468 merge_in_block (max_reg
, bb
);
1475 rest_of_handle_auto_inc_dec (void)
1479 int max_reg
= max_reg_num ();
1482 init_decision_table ();
1484 mem_tmp
= gen_rtx_MEM (Pmode
, NULL_RTX
);
1486 df_note_add_problem ();
1489 reg_next_use
= XCNEWVEC (rtx
, max_reg
);
1490 reg_next_inc_use
= XCNEWVEC (rtx
, max_reg
);
1491 reg_next_def
= XCNEWVEC (rtx
, max_reg
);
1493 merge_in_block (max_reg
, bb
);
1495 free (reg_next_use
);
1496 free (reg_next_inc_use
);
1497 free (reg_next_def
);
1505 /* Discover auto-inc auto-dec instructions. */
1508 gate_auto_inc_dec (void)
1511 return (optimize
> 0 && flag_auto_inc_dec
);
1518 struct rtl_opt_pass pass_inc_dec
=
1522 "auto_inc_dec", /* name */
1523 gate_auto_inc_dec
, /* gate */
1524 rest_of_handle_auto_inc_dec
, /* execute */
1527 0, /* static_pass_number */
1528 TV_AUTO_INC_DEC
, /* tv_id */
1529 0, /* properties_required */
1530 0, /* properties_provided */
1531 0, /* properties_destroyed */
1532 0, /* todo_flags_start */
1534 TODO_df_finish
, /* todo_flags_finish */