gcc/
[official-gcc.git] / gcc / ada / s-tassta.adb
bloba78b0d8f813b3812692d32356fb01ba41c5fd88b
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K I N G . S T A G E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2009, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
32 pragma Polling (Off);
33 -- Turn off polling, we do not want ATC polling to take place during tasking
34 -- operations. It causes infinite loops and other problems.
36 with Ada.Exceptions;
37 with Ada.Unchecked_Deallocation;
39 with System.Interrupt_Management;
40 with System.Tasking.Debug;
41 with System.Address_Image;
42 with System.Task_Primitives;
43 with System.Task_Primitives.Operations;
44 with System.Tasking.Utilities;
45 with System.Tasking.Queuing;
46 with System.Tasking.Rendezvous;
47 with System.OS_Primitives;
48 with System.Secondary_Stack;
49 with System.Storage_Elements;
50 with System.Restrictions;
51 with System.Standard_Library;
52 with System.Traces.Tasking;
53 with System.Stack_Usage;
55 with System.Soft_Links;
56 -- These are procedure pointers to non-tasking routines that use task
57 -- specific data. In the absence of tasking, these routines refer to global
58 -- data. In the presence of tasking, they must be replaced with pointers to
59 -- task-specific versions. Also used for Create_TSD, Destroy_TSD,
60 -- Get_Current_Excep, Finalize_Global_List, Task_Termination, Handler.
62 with System.Tasking.Initialization;
63 pragma Elaborate_All (System.Tasking.Initialization);
64 -- This insures that tasking is initialized if any tasks are created
66 package body System.Tasking.Stages is
68 package STPO renames System.Task_Primitives.Operations;
69 package SSL renames System.Soft_Links;
70 package SSE renames System.Storage_Elements;
71 package SST renames System.Secondary_Stack;
73 use Ada.Exceptions;
75 use Parameters;
76 use Task_Primitives;
77 use Task_Primitives.Operations;
78 use Task_Info;
80 use System.Traces;
81 use System.Traces.Tasking;
83 -----------------------
84 -- Local Subprograms --
85 -----------------------
87 procedure Free is new
88 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
90 procedure Free_Entry_Names (T : Task_Id);
91 -- Deallocate all string names associated with task entries
93 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id);
94 -- This procedure outputs the task specific message for exception
95 -- tracing purposes.
97 procedure Task_Wrapper (Self_ID : Task_Id);
98 pragma Convention (C, Task_Wrapper);
99 -- This is the procedure that is called by the GNULL from the new context
100 -- when a task is created. It waits for activation and then calls the task
101 -- body procedure. When the task body procedure completes, it terminates
102 -- the task.
104 -- The Task_Wrapper's address will be provided to the underlying threads
105 -- library as the task entry point. Convention C is what makes most sense
106 -- for that purpose (Export C would make the function globally visible,
107 -- and affect the link name on which GDB depends). This will in addition
108 -- trigger an automatic stack alignment suitable for GCC's assumptions if
109 -- need be.
111 -- "Vulnerable_..." in the procedure names below means they must be called
112 -- with abort deferred.
114 procedure Vulnerable_Complete_Task (Self_ID : Task_Id);
115 -- Complete the calling task. This procedure must be called with
116 -- abort deferred. It should only be called by Complete_Task and
117 -- Finalize_Global_Tasks (for the environment task).
119 procedure Vulnerable_Complete_Master (Self_ID : Task_Id);
120 -- Complete the current master of the calling task. This procedure
121 -- must be called with abort deferred. It should only be called by
122 -- Vulnerable_Complete_Task and Complete_Master.
124 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id);
125 -- Signal to Self_ID's activator that Self_ID has completed activation.
126 -- This procedure must be called with abort deferred.
128 procedure Abort_Dependents (Self_ID : Task_Id);
129 -- Abort all the direct dependents of Self at its current master nesting
130 -- level, plus all of their dependents, transitively. RTS_Lock should be
131 -- locked by the caller.
133 procedure Vulnerable_Free_Task (T : Task_Id);
134 -- Recover all runtime system storage associated with the task T. This
135 -- should only be called after T has terminated and will no longer be
136 -- referenced.
138 -- For tasks created by an allocator that fails, due to an exception, it is
139 -- called from Expunge_Unactivated_Tasks.
141 -- Different code is used at master completion, in Terminate_Dependents,
142 -- due to a need for tighter synchronization with the master.
144 ----------------------
145 -- Abort_Dependents --
146 ----------------------
148 procedure Abort_Dependents (Self_ID : Task_Id) is
149 C : Task_Id;
150 P : Task_Id;
152 begin
153 C := All_Tasks_List;
154 while C /= null loop
155 P := C.Common.Parent;
156 while P /= null loop
157 if P = Self_ID then
159 -- ??? C is supposed to take care of its own dependents, so
160 -- there should be no need to worry about them. Need to double
161 -- check this.
163 if C.Master_of_Task = Self_ID.Master_Within then
164 Utilities.Abort_One_Task (Self_ID, C);
165 C.Dependents_Aborted := True;
166 end if;
168 exit;
169 end if;
171 P := P.Common.Parent;
172 end loop;
174 C := C.Common.All_Tasks_Link;
175 end loop;
177 Self_ID.Dependents_Aborted := True;
178 end Abort_Dependents;
180 -----------------
181 -- Abort_Tasks --
182 -----------------
184 procedure Abort_Tasks (Tasks : Task_List) is
185 begin
186 Utilities.Abort_Tasks (Tasks);
187 end Abort_Tasks;
189 --------------------
190 -- Activate_Tasks --
191 --------------------
193 -- Note that locks of activator and activated task are both locked here.
194 -- This is necessary because C.Common.State and Self.Common.Wait_Count have
195 -- to be synchronized. This is safe from deadlock because the activator is
196 -- always created before the activated task. That satisfies our
197 -- in-order-of-creation ATCB locking policy.
199 -- At one point, we may also lock the parent, if the parent is different
200 -- from the activator. That is also consistent with the lock ordering
201 -- policy, since the activator cannot be created before the parent.
203 -- Since we are holding both the activator's lock, and Task_Wrapper locks
204 -- that before it does anything more than initialize the low-level ATCB
205 -- components, it should be safe to wait to update the counts until we see
206 -- that the thread creation is successful.
208 -- If the thread creation fails, we do need to close the entries of the
209 -- task. The first phase, of dequeuing calls, only requires locking the
210 -- acceptor's ATCB, but the waking up of the callers requires locking the
211 -- caller's ATCB. We cannot safely do this while we are holding other
212 -- locks. Therefore, the queue-clearing operation is done in a separate
213 -- pass over the activation chain.
215 procedure Activate_Tasks (Chain_Access : Activation_Chain_Access) is
216 Self_ID : constant Task_Id := STPO.Self;
217 P : Task_Id;
218 C : Task_Id;
219 Next_C, Last_C : Task_Id;
220 Activate_Prio : System.Any_Priority;
221 Success : Boolean;
222 All_Elaborated : Boolean := True;
224 begin
225 -- If pragma Detect_Blocking is active, then we must check whether this
226 -- potentially blocking operation is called from a protected action.
228 if System.Tasking.Detect_Blocking
229 and then Self_ID.Common.Protected_Action_Nesting > 0
230 then
231 raise Program_Error with "potentially blocking operation";
232 end if;
234 pragma Debug
235 (Debug.Trace (Self_ID, "Activate_Tasks", 'C'));
237 Initialization.Defer_Abort_Nestable (Self_ID);
239 pragma Assert (Self_ID.Common.Wait_Count = 0);
241 -- Lock RTS_Lock, to prevent activated tasks from racing ahead before
242 -- we finish activating the chain.
244 Lock_RTS;
246 -- Check that all task bodies have been elaborated
248 C := Chain_Access.T_ID;
249 Last_C := null;
250 while C /= null loop
251 if C.Common.Elaborated /= null
252 and then not C.Common.Elaborated.all
253 then
254 All_Elaborated := False;
255 end if;
257 -- Reverse the activation chain so that tasks are activated in the
258 -- same order they're declared.
260 Next_C := C.Common.Activation_Link;
261 C.Common.Activation_Link := Last_C;
262 Last_C := C;
263 C := Next_C;
264 end loop;
266 Chain_Access.T_ID := Last_C;
268 if not All_Elaborated then
269 Unlock_RTS;
270 Initialization.Undefer_Abort_Nestable (Self_ID);
271 raise Program_Error with "Some tasks have not been elaborated";
272 end if;
274 -- Activate all the tasks in the chain. Creation of the thread of
275 -- control was deferred until activation. So create it now.
277 C := Chain_Access.T_ID;
278 while C /= null loop
279 if C.Common.State /= Terminated then
280 pragma Assert (C.Common.State = Unactivated);
282 P := C.Common.Parent;
283 Write_Lock (P);
284 Write_Lock (C);
286 Activate_Prio :=
287 (if C.Common.Base_Priority < Get_Priority (Self_ID)
288 then Get_Priority (Self_ID)
289 else C.Common.Base_Priority);
291 System.Task_Primitives.Operations.Create_Task
292 (C, Task_Wrapper'Address,
293 Parameters.Size_Type
294 (C.Common.Compiler_Data.Pri_Stack_Info.Size),
295 Activate_Prio, Success);
297 -- There would be a race between the created task and the creator
298 -- to do the following initialization, if we did not have a
299 -- Lock/Unlock_RTS pair in the task wrapper to prevent it from
300 -- racing ahead.
302 if Success then
303 C.Common.State := Activating;
304 C.Awake_Count := 1;
305 C.Alive_Count := 1;
306 P.Awake_Count := P.Awake_Count + 1;
307 P.Alive_Count := P.Alive_Count + 1;
309 if P.Common.State = Master_Completion_Sleep and then
310 C.Master_of_Task = P.Master_Within
311 then
312 pragma Assert (Self_ID /= P);
313 P.Common.Wait_Count := P.Common.Wait_Count + 1;
314 end if;
316 for J in System.Tasking.Debug.Known_Tasks'Range loop
317 if System.Tasking.Debug.Known_Tasks (J) = null then
318 System.Tasking.Debug.Known_Tasks (J) := C;
319 C.Known_Tasks_Index := J;
320 exit;
321 end if;
322 end loop;
324 if Global_Task_Debug_Event_Set then
325 Debug.Signal_Debug_Event
326 (Debug.Debug_Event_Activating, C);
327 end if;
329 C.Common.State := Runnable;
331 Unlock (C);
332 Unlock (P);
334 else
335 -- No need to set Awake_Count, State, etc. here since the loop
336 -- below will do that for any Unactivated tasks.
338 Unlock (C);
339 Unlock (P);
340 Self_ID.Common.Activation_Failed := True;
341 end if;
342 end if;
344 C := C.Common.Activation_Link;
345 end loop;
347 if not Single_Lock then
348 Unlock_RTS;
349 end if;
351 -- Close the entries of any tasks that failed thread creation, and count
352 -- those that have not finished activation.
354 Write_Lock (Self_ID);
355 Self_ID.Common.State := Activator_Sleep;
357 C := Chain_Access.T_ID;
358 while C /= null loop
359 Write_Lock (C);
361 if C.Common.State = Unactivated then
362 C.Common.Activator := null;
363 C.Common.State := Terminated;
364 C.Callable := False;
365 Utilities.Cancel_Queued_Entry_Calls (C);
367 elsif C.Common.Activator /= null then
368 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
369 end if;
371 Unlock (C);
372 P := C.Common.Activation_Link;
373 C.Common.Activation_Link := null;
374 C := P;
375 end loop;
377 -- Wait for the activated tasks to complete activation. It is
378 -- unsafe to abort any of these tasks until the count goes to zero.
380 loop
381 exit when Self_ID.Common.Wait_Count = 0;
382 Sleep (Self_ID, Activator_Sleep);
383 end loop;
385 Self_ID.Common.State := Runnable;
386 Unlock (Self_ID);
388 if Single_Lock then
389 Unlock_RTS;
390 end if;
392 -- Remove the tasks from the chain
394 Chain_Access.T_ID := null;
395 Initialization.Undefer_Abort_Nestable (Self_ID);
397 if Self_ID.Common.Activation_Failed then
398 Self_ID.Common.Activation_Failed := False;
399 raise Tasking_Error with "Failure during activation";
400 end if;
401 end Activate_Tasks;
403 -------------------------
404 -- Complete_Activation --
405 -------------------------
407 procedure Complete_Activation is
408 Self_ID : constant Task_Id := STPO.Self;
410 begin
411 Initialization.Defer_Abort_Nestable (Self_ID);
413 if Single_Lock then
414 Lock_RTS;
415 end if;
417 Vulnerable_Complete_Activation (Self_ID);
419 if Single_Lock then
420 Unlock_RTS;
421 end if;
423 Initialization.Undefer_Abort_Nestable (Self_ID);
425 -- ??? Why do we need to allow for nested deferral here?
427 if Runtime_Traces then
428 Send_Trace_Info (T_Activate);
429 end if;
430 end Complete_Activation;
432 ---------------------
433 -- Complete_Master --
434 ---------------------
436 procedure Complete_Master is
437 Self_ID : constant Task_Id := STPO.Self;
438 begin
439 pragma Assert
440 (Self_ID.Deferral_Level > 0
441 or else not System.Restrictions.Abort_Allowed);
442 Vulnerable_Complete_Master (Self_ID);
443 end Complete_Master;
445 -------------------
446 -- Complete_Task --
447 -------------------
449 -- See comments on Vulnerable_Complete_Task for details
451 procedure Complete_Task is
452 Self_ID : constant Task_Id := STPO.Self;
454 begin
455 pragma Assert
456 (Self_ID.Deferral_Level > 0
457 or else not System.Restrictions.Abort_Allowed);
459 Vulnerable_Complete_Task (Self_ID);
461 -- All of our dependents have terminated. Never undefer abort again!
463 end Complete_Task;
465 -----------------
466 -- Create_Task --
467 -----------------
469 -- Compiler interface only. Do not call from within the RTS. This must be
470 -- called to create a new task.
472 procedure Create_Task
473 (Priority : Integer;
474 Size : System.Parameters.Size_Type;
475 Task_Info : System.Task_Info.Task_Info_Type;
476 Relative_Deadline : Ada.Real_Time.Time_Span;
477 Num_Entries : Task_Entry_Index;
478 Master : Master_Level;
479 State : Task_Procedure_Access;
480 Discriminants : System.Address;
481 Elaborated : Access_Boolean;
482 Chain : in out Activation_Chain;
483 Task_Image : String;
484 Created_Task : out Task_Id;
485 Build_Entry_Names : Boolean)
487 T, P : Task_Id;
488 Self_ID : constant Task_Id := STPO.Self;
489 Success : Boolean;
490 Base_Priority : System.Any_Priority;
491 Len : Natural;
493 pragma Unreferenced (Relative_Deadline);
494 -- EDF scheduling is not supported by any of the target platforms so
495 -- this parameter is not passed any further.
497 begin
498 -- If Master is greater than the current master, it means that Master
499 -- has already awaited its dependent tasks. This raises Program_Error,
500 -- by 4.8(10.3/2). See AI-280. Ignore this check for foreign threads.
502 if Self_ID.Master_of_Task /= Foreign_Task_Level
503 and then Master > Self_ID.Master_Within
504 then
505 raise Program_Error with
506 "create task after awaiting termination";
507 end if;
509 -- If pragma Detect_Blocking is active must be checked whether this
510 -- potentially blocking operation is called from a protected action.
512 if System.Tasking.Detect_Blocking
513 and then Self_ID.Common.Protected_Action_Nesting > 0
514 then
515 raise Program_Error with "potentially blocking operation";
516 end if;
518 pragma Debug (Debug.Trace (Self_ID, "Create_Task", 'C'));
520 Base_Priority :=
521 (if Priority = Unspecified_Priority
522 then Self_ID.Common.Base_Priority
523 else System.Any_Priority (Priority));
525 -- Find parent P of new Task, via master level number
527 P := Self_ID;
529 if P /= null then
530 while P.Master_of_Task >= Master loop
531 P := P.Common.Parent;
532 exit when P = null;
533 end loop;
534 end if;
536 Initialization.Defer_Abort_Nestable (Self_ID);
538 begin
539 T := New_ATCB (Num_Entries);
540 exception
541 when others =>
542 Initialization.Undefer_Abort_Nestable (Self_ID);
543 raise Storage_Error with "Cannot allocate task";
544 end;
546 -- RTS_Lock is used by Abort_Dependents and Abort_Tasks. Up to this
547 -- point, it is possible that we may be part of a family of tasks that
548 -- is being aborted.
550 Lock_RTS;
551 Write_Lock (Self_ID);
553 -- Now, we must check that we have not been aborted. If so, we should
554 -- give up on creating this task, and simply return.
556 if not Self_ID.Callable then
557 pragma Assert (Self_ID.Pending_ATC_Level = 0);
558 pragma Assert (Self_ID.Pending_Action);
559 pragma Assert
560 (Chain.T_ID = null or else Chain.T_ID.Common.State = Unactivated);
562 Unlock (Self_ID);
563 Unlock_RTS;
564 Initialization.Undefer_Abort_Nestable (Self_ID);
566 -- ??? Should never get here
568 pragma Assert (False);
569 raise Standard'Abort_Signal;
570 end if;
572 Initialize_ATCB (Self_ID, State, Discriminants, P, Elaborated,
573 Base_Priority, Task_Info, Size, T, Success);
575 if not Success then
576 Free (T);
577 Unlock (Self_ID);
578 Unlock_RTS;
579 Initialization.Undefer_Abort_Nestable (Self_ID);
580 raise Storage_Error with "Failed to initialize task";
581 end if;
583 if Master = Foreign_Task_Level + 2 then
585 -- This should not happen, except when a foreign task creates non
586 -- library-level Ada tasks. In this case, we pretend the master is
587 -- a regular library level task, otherwise the run-time will get
588 -- confused when waiting for these tasks to terminate.
590 T.Master_of_Task := Library_Task_Level;
592 else
593 T.Master_of_Task := Master;
594 end if;
596 T.Master_Within := T.Master_of_Task + 1;
598 for L in T.Entry_Calls'Range loop
599 T.Entry_Calls (L).Self := T;
600 T.Entry_Calls (L).Level := L;
601 end loop;
603 if Task_Image'Length = 0 then
604 T.Common.Task_Image_Len := 0;
605 else
606 Len := 1;
607 T.Common.Task_Image (1) := Task_Image (Task_Image'First);
609 -- Remove unwanted blank space generated by 'Image
611 for J in Task_Image'First + 1 .. Task_Image'Last loop
612 if Task_Image (J) /= ' '
613 or else Task_Image (J - 1) /= '('
614 then
615 Len := Len + 1;
616 T.Common.Task_Image (Len) := Task_Image (J);
617 exit when Len = T.Common.Task_Image'Last;
618 end if;
619 end loop;
621 T.Common.Task_Image_Len := Len;
622 end if;
624 Unlock (Self_ID);
625 Unlock_RTS;
627 -- Note: we should not call 'new' while holding locks since new
628 -- may use locks (e.g. RTS_Lock under Windows) itself and cause a
629 -- deadlock.
631 if Build_Entry_Names then
632 T.Entry_Names :=
633 new Entry_Names_Array (1 .. Entry_Index (Num_Entries));
634 end if;
636 -- Create TSD as early as possible in the creation of a task, since it
637 -- may be used by the operation of Ada code within the task.
639 SSL.Create_TSD (T.Common.Compiler_Data);
640 T.Common.Activation_Link := Chain.T_ID;
641 Chain.T_ID := T;
642 Initialization.Initialize_Attributes_Link.all (T);
643 Created_Task := T;
644 Initialization.Undefer_Abort_Nestable (Self_ID);
646 if Runtime_Traces then
647 Send_Trace_Info (T_Create, T);
648 end if;
649 end Create_Task;
651 --------------------
652 -- Current_Master --
653 --------------------
655 function Current_Master return Master_Level is
656 begin
657 return STPO.Self.Master_Within;
658 end Current_Master;
660 ------------------
661 -- Enter_Master --
662 ------------------
664 procedure Enter_Master is
665 Self_ID : constant Task_Id := STPO.Self;
666 begin
667 Self_ID.Master_Within := Self_ID.Master_Within + 1;
668 end Enter_Master;
670 -------------------------------
671 -- Expunge_Unactivated_Tasks --
672 -------------------------------
674 -- See procedure Close_Entries for the general case
676 procedure Expunge_Unactivated_Tasks (Chain : in out Activation_Chain) is
677 Self_ID : constant Task_Id := STPO.Self;
678 C : Task_Id;
679 Call : Entry_Call_Link;
680 Temp : Task_Id;
682 begin
683 pragma Debug
684 (Debug.Trace (Self_ID, "Expunge_Unactivated_Tasks", 'C'));
686 Initialization.Defer_Abort_Nestable (Self_ID);
688 -- ???
689 -- Experimentation has shown that abort is sometimes (but not always)
690 -- already deferred when this is called.
692 -- That may indicate an error. Find out what is going on
694 C := Chain.T_ID;
695 while C /= null loop
696 pragma Assert (C.Common.State = Unactivated);
698 Temp := C.Common.Activation_Link;
700 if C.Common.State = Unactivated then
701 Lock_RTS;
702 Write_Lock (C);
704 for J in 1 .. C.Entry_Num loop
705 Queuing.Dequeue_Head (C.Entry_Queues (J), Call);
706 pragma Assert (Call = null);
707 end loop;
709 Unlock (C);
711 Initialization.Remove_From_All_Tasks_List (C);
712 Unlock_RTS;
714 Vulnerable_Free_Task (C);
715 C := Temp;
716 end if;
717 end loop;
719 Chain.T_ID := null;
720 Initialization.Undefer_Abort_Nestable (Self_ID);
721 end Expunge_Unactivated_Tasks;
723 ---------------------------
724 -- Finalize_Global_Tasks --
725 ---------------------------
727 -- ???
728 -- We have a potential problem here if finalization of global objects does
729 -- anything with signals or the timer server, since by that time those
730 -- servers have terminated.
732 -- It is hard to see how that would occur
734 -- However, a better solution might be to do all this finalization
735 -- using the global finalization chain.
737 procedure Finalize_Global_Tasks is
738 Self_ID : constant Task_Id := STPO.Self;
740 Ignore : Boolean;
741 pragma Unreferenced (Ignore);
743 function State
744 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
745 pragma Import (C, State, "__gnat_get_interrupt_state");
746 -- Get interrupt state for interrupt number Int. Defined in init.c
748 Default : constant Character := 's';
749 -- 's' Interrupt_State pragma set state to System (use "default"
750 -- system handler)
752 begin
753 if Self_ID.Deferral_Level = 0 then
754 -- ???
755 -- In principle, we should be able to predict whether abort is
756 -- already deferred here (and it should not be deferred yet but in
757 -- practice it seems Finalize_Global_Tasks is being called sometimes,
758 -- from RTS code for exceptions, with abort already deferred.
760 Initialization.Defer_Abort_Nestable (Self_ID);
762 -- Never undefer again!!!
763 end if;
765 -- This code is only executed by the environment task
767 pragma Assert (Self_ID = Environment_Task);
769 -- Set Environment_Task'Callable to false to notify library-level tasks
770 -- that it is waiting for them.
772 Self_ID.Callable := False;
774 -- Exit level 2 master, for normal tasks in library-level packages
776 Complete_Master;
778 -- Force termination of "independent" library-level server tasks
780 Lock_RTS;
782 Abort_Dependents (Self_ID);
784 if not Single_Lock then
785 Unlock_RTS;
786 end if;
788 -- We need to explicitly wait for the task to be terminated here
789 -- because on true concurrent system, we may end this procedure before
790 -- the tasks are really terminated.
792 Write_Lock (Self_ID);
794 -- If the Abort_Task signal is set to system, it means that we may not
795 -- have been able to abort all independent tasks (in particular
796 -- Server_Task may be blocked, waiting for a signal), in which case,
797 -- do not wait for Independent_Task_Count to go down to 0.
799 if State
800 (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
801 then
802 loop
803 exit when Utilities.Independent_Task_Count = 0;
805 -- We used to yield here, but this did not take into account low
806 -- priority tasks that would cause dead lock in some cases (true
807 -- FIFO scheduling).
809 Timed_Sleep
810 (Self_ID, 0.01, System.OS_Primitives.Relative,
811 Self_ID.Common.State, Ignore, Ignore);
812 end loop;
813 end if;
815 -- ??? On multi-processor environments, it seems that the above loop
816 -- isn't sufficient, so we need to add an additional delay.
818 Timed_Sleep
819 (Self_ID, 0.01, System.OS_Primitives.Relative,
820 Self_ID.Common.State, Ignore, Ignore);
822 Unlock (Self_ID);
824 if Single_Lock then
825 Unlock_RTS;
826 end if;
828 -- Complete the environment task
830 Vulnerable_Complete_Task (Self_ID);
832 -- Handle normal task termination by the environment task, but only
833 -- for the normal task termination. In the case of Abnormal and
834 -- Unhandled_Exception they must have been handled before, and the
835 -- task termination soft link must have been changed so the task
836 -- termination routine is not executed twice.
838 SSL.Task_Termination_Handler.all (Ada.Exceptions.Null_Occurrence);
840 -- Finalize the global list for controlled objects if needed
842 SSL.Finalize_Global_List.all;
844 -- Reset the soft links to non-tasking
846 SSL.Abort_Defer := SSL.Abort_Defer_NT'Access;
847 SSL.Abort_Undefer := SSL.Abort_Undefer_NT'Access;
848 SSL.Lock_Task := SSL.Task_Lock_NT'Access;
849 SSL.Unlock_Task := SSL.Task_Unlock_NT'Access;
850 SSL.Get_Jmpbuf_Address := SSL.Get_Jmpbuf_Address_NT'Access;
851 SSL.Set_Jmpbuf_Address := SSL.Set_Jmpbuf_Address_NT'Access;
852 SSL.Get_Sec_Stack_Addr := SSL.Get_Sec_Stack_Addr_NT'Access;
853 SSL.Set_Sec_Stack_Addr := SSL.Set_Sec_Stack_Addr_NT'Access;
854 SSL.Check_Abort_Status := SSL.Check_Abort_Status_NT'Access;
855 SSL.Get_Stack_Info := SSL.Get_Stack_Info_NT'Access;
857 -- Don't bother trying to finalize Initialization.Global_Task_Lock
858 -- and System.Task_Primitives.RTS_Lock.
860 end Finalize_Global_Tasks;
862 ----------------------
863 -- Free_Entry_Names --
864 ----------------------
866 procedure Free_Entry_Names (T : Task_Id) is
867 Names : Entry_Names_Array_Access := T.Entry_Names;
869 procedure Free_Entry_Names_Array_Access is new
870 Ada.Unchecked_Deallocation
871 (Entry_Names_Array, Entry_Names_Array_Access);
873 begin
874 if Names = null then
875 return;
876 end if;
878 Free_Entry_Names_Array (Names.all);
879 Free_Entry_Names_Array_Access (Names);
880 end Free_Entry_Names;
882 ---------------
883 -- Free_Task --
884 ---------------
886 procedure Free_Task (T : Task_Id) is
887 Self_Id : constant Task_Id := Self;
889 begin
890 if T.Common.State = Terminated then
892 -- It is not safe to call Abort_Defer or Write_Lock at this stage
894 Initialization.Task_Lock (Self_Id);
896 Lock_RTS;
897 Initialization.Finalize_Attributes_Link.all (T);
898 Initialization.Remove_From_All_Tasks_List (T);
899 Unlock_RTS;
901 Initialization.Task_Unlock (Self_Id);
903 Free_Entry_Names (T);
904 System.Task_Primitives.Operations.Finalize_TCB (T);
906 -- If the task is not terminated, then we simply ignore the call. This
907 -- happens when a user program attempts an unchecked deallocation on
908 -- a non-terminated task.
910 else
911 null;
912 end if;
913 end Free_Task;
915 ---------------------------
916 -- Move_Activation_Chain --
917 ---------------------------
919 procedure Move_Activation_Chain
920 (From, To : Activation_Chain_Access;
921 New_Master : Master_ID)
923 Self_ID : constant Task_Id := STPO.Self;
924 C : Task_Id;
926 begin
927 pragma Debug
928 (Debug.Trace (Self_ID, "Move_Activation_Chain", 'C'));
930 -- Nothing to do if From is empty, and we can check that without
931 -- deferring aborts.
933 C := From.all.T_ID;
935 if C = null then
936 return;
937 end if;
939 Initialization.Defer_Abort (Self_ID);
941 -- Loop through the From chain, changing their Master_of_Task
942 -- fields, and to find the end of the chain.
944 loop
945 C.Master_of_Task := New_Master;
946 exit when C.Common.Activation_Link = null;
947 C := C.Common.Activation_Link;
948 end loop;
950 -- Hook From in at the start of To
952 C.Common.Activation_Link := To.all.T_ID;
953 To.all.T_ID := From.all.T_ID;
955 -- Set From to empty
957 From.all.T_ID := null;
959 Initialization.Undefer_Abort (Self_ID);
960 end Move_Activation_Chain;
962 -- Compiler interface only. Do not call from within the RTS
964 --------------------
965 -- Set_Entry_Name --
966 --------------------
968 procedure Set_Entry_Name
969 (T : Task_Id;
970 Pos : Task_Entry_Index;
971 Val : String_Access)
973 begin
974 pragma Assert (T.Entry_Names /= null);
976 T.Entry_Names (Entry_Index (Pos)) := Val;
977 end Set_Entry_Name;
979 ------------------
980 -- Task_Wrapper --
981 ------------------
983 -- The task wrapper is a procedure that is called first for each task body
984 -- and which in turn calls the compiler-generated task body procedure.
985 -- The wrapper's main job is to do initialization for the task. It also
986 -- has some locally declared objects that serve as per-task local data.
987 -- Task finalization is done by Complete_Task, which is called from an
988 -- at-end handler that the compiler generates.
990 procedure Task_Wrapper (Self_ID : Task_Id) is
991 use type SSE.Storage_Offset;
992 use System.Standard_Library;
993 use System.Stack_Usage;
995 Bottom_Of_Stack : aliased Integer;
997 Task_Alternate_Stack :
998 aliased SSE.Storage_Array (1 .. Alternate_Stack_Size);
999 -- The alternate signal stack for this task, if any
1001 Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
1002 -- Whether to use above alternate signal stack for stack overflows
1004 Secondary_Stack_Size :
1005 constant SSE.Storage_Offset :=
1006 Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size *
1007 SSE.Storage_Offset (Parameters.Sec_Stack_Ratio) / 100;
1009 Secondary_Stack : aliased SSE.Storage_Array (1 .. Secondary_Stack_Size);
1011 pragma Warnings (Off);
1012 -- Why are warnings being turned off here???
1014 Secondary_Stack_Address : System.Address := Secondary_Stack'Address;
1015 -- Address of secondary stack. In the fixed secondary stack case, this
1016 -- value is not modified, causing a warning, hence the bracketing with
1017 -- Warnings (Off/On). But why is so much *more* bracketed???
1019 Small_Overflow_Guard : constant := 12 * 1024;
1020 -- Note: this used to be 4K, but was changed to 12K, since smaller
1021 -- values resulted in segmentation faults from dynamic stack analysis.
1023 Big_Overflow_Guard : constant := 16 * 1024;
1024 Small_Stack_Limit : constant := 64 * 1024;
1025 -- ??? These three values are experimental, and seems to work on most
1026 -- platforms. They still need to be analyzed further. They also need
1027 -- documentation, what are they???
1029 Size : Natural :=
1030 Natural (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size);
1032 Overflow_Guard : Natural;
1033 -- Size of the overflow guard, used by dynamic stack usage analysis
1035 pragma Warnings (On);
1037 SEH_Table : aliased SSE.Storage_Array (1 .. 8);
1038 -- Structured Exception Registration table (2 words)
1040 procedure Install_SEH_Handler (Addr : System.Address);
1041 pragma Import (C, Install_SEH_Handler, "__gnat_install_SEH_handler");
1042 -- Install the SEH (Structured Exception Handling) handler
1044 Cause : Cause_Of_Termination := Normal;
1045 -- Indicates the reason why this task terminates. Normal corresponds to
1046 -- a task terminating due to completing the last statement of its body,
1047 -- or as a result of waiting on a terminate alternative. If the task
1048 -- terminates because it is being aborted then Cause will be set to
1049 -- Abnormal. If the task terminates because of an exception raised by
1050 -- the execution of its task body, then Cause is set to
1051 -- Unhandled_Exception.
1053 EO : Exception_Occurrence;
1054 -- If the task terminates because of an exception raised by the
1055 -- execution of its task body, then EO will contain the associated
1056 -- exception occurrence. Otherwise, it will contain Null_Occurrence.
1058 TH : Termination_Handler := null;
1059 -- Pointer to the protected procedure to be executed upon task
1060 -- termination.
1062 procedure Search_Fall_Back_Handler (ID : Task_Id);
1063 -- Procedure that searches recursively a fall-back handler through the
1064 -- master relationship. If the handler is found, its pointer is stored
1065 -- in TH.
1067 ------------------------------
1068 -- Search_Fall_Back_Handler --
1069 ------------------------------
1071 procedure Search_Fall_Back_Handler (ID : Task_Id) is
1072 begin
1073 -- If there is a fall back handler, store its pointer for later
1074 -- execution.
1076 if ID.Common.Fall_Back_Handler /= null then
1077 TH := ID.Common.Fall_Back_Handler;
1079 -- Otherwise look for a fall back handler in the parent
1081 elsif ID.Common.Parent /= null then
1082 Search_Fall_Back_Handler (ID.Common.Parent);
1084 -- Otherwise, do nothing
1086 else
1087 return;
1088 end if;
1089 end Search_Fall_Back_Handler;
1091 begin
1092 pragma Assert (Self_ID.Deferral_Level = 1);
1094 -- Assume a size of the stack taken at this stage
1096 Overflow_Guard :=
1097 (if Size < Small_Stack_Limit
1098 then Small_Overflow_Guard
1099 else Big_Overflow_Guard);
1101 if not Parameters.Sec_Stack_Dynamic then
1102 Self_ID.Common.Compiler_Data.Sec_Stack_Addr :=
1103 Secondary_Stack'Address;
1104 SST.SS_Init (Secondary_Stack_Address, Integer (Secondary_Stack'Last));
1105 Size := Size - Natural (Secondary_Stack_Size);
1106 end if;
1108 if Use_Alternate_Stack then
1109 Self_ID.Common.Task_Alternate_Stack := Task_Alternate_Stack'Address;
1110 end if;
1112 Size := Size - Overflow_Guard;
1114 if System.Stack_Usage.Is_Enabled then
1115 STPO.Lock_RTS;
1116 Initialize_Analyzer
1117 (Self_ID.Common.Analyzer,
1118 Self_ID.Common.Task_Image
1119 (1 .. Self_ID.Common.Task_Image_Len),
1120 Natural
1121 (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size),
1122 Size,
1123 SSE.To_Integer (Bottom_Of_Stack'Address));
1124 STPO.Unlock_RTS;
1125 Fill_Stack (Self_ID.Common.Analyzer);
1126 end if;
1128 -- Set the guard page at the bottom of the stack. The call to unprotect
1129 -- the page is done in Terminate_Task
1131 Stack_Guard (Self_ID, True);
1133 -- Initialize low-level TCB components, that cannot be initialized by
1134 -- the creator. Enter_Task sets Self_ID.LL.Thread
1136 Enter_Task (Self_ID);
1138 -- We setup the SEH (Structured Exception Handling) handler if supported
1139 -- on the target.
1141 Install_SEH_Handler (SEH_Table'Address);
1143 -- Initialize exception occurrence
1145 Save_Occurrence (EO, Ada.Exceptions.Null_Occurrence);
1147 -- We lock RTS_Lock to wait for activator to finish activating the rest
1148 -- of the chain, so that everyone in the chain comes out in priority
1149 -- order.
1151 -- This also protects the value of
1152 -- Self_ID.Common.Activator.Common.Wait_Count.
1154 Lock_RTS;
1155 Unlock_RTS;
1157 if not System.Restrictions.Abort_Allowed then
1159 -- If Abort is not allowed, reset the deferral level since it will
1160 -- not get changed by the generated code. Keeping a default value
1161 -- of one would prevent some operations (e.g. select or delay) to
1162 -- proceed successfully.
1164 Self_ID.Deferral_Level := 0;
1165 end if;
1167 if Global_Task_Debug_Event_Set then
1168 Debug.Signal_Debug_Event
1169 (Debug.Debug_Event_Run, Self_ID);
1170 end if;
1172 begin
1173 -- We are separating the following portion of the code in order to
1174 -- place the exception handlers in a different block. In this way,
1175 -- we do not call Set_Jmpbuf_Address (which needs Self) before we
1176 -- set Self in Enter_Task
1178 -- Call the task body procedure
1180 -- The task body is called with abort still deferred. That
1181 -- eliminates a dangerous window, for which we had to patch-up in
1182 -- Terminate_Task.
1184 -- During the expansion of the task body, we insert an RTS-call
1185 -- to Abort_Undefer, at the first point where abort should be
1186 -- allowed.
1188 Self_ID.Common.Task_Entry_Point (Self_ID.Common.Task_Arg);
1189 Initialization.Defer_Abort_Nestable (Self_ID);
1191 exception
1192 -- We can't call Terminate_Task in the exception handlers below,
1193 -- since there may be (e.g. in the case of GCC exception handling)
1194 -- clean ups associated with the exception handler that need to
1195 -- access task specific data.
1197 -- Defer abort so that this task can't be aborted while exiting
1199 when Standard'Abort_Signal =>
1200 Initialization.Defer_Abort_Nestable (Self_ID);
1202 -- Update the cause that motivated the task termination so that
1203 -- the appropriate information is passed to the task termination
1204 -- procedure. Task termination as a result of waiting on a
1205 -- terminate alternative is a normal termination, although it is
1206 -- implemented using the abort mechanisms.
1208 if Self_ID.Terminate_Alternative then
1209 Cause := Normal;
1211 if Global_Task_Debug_Event_Set then
1212 Debug.Signal_Debug_Event
1213 (Debug.Debug_Event_Terminated, Self_ID);
1214 end if;
1215 else
1216 Cause := Abnormal;
1218 if Global_Task_Debug_Event_Set then
1219 Debug.Signal_Debug_Event
1220 (Debug.Debug_Event_Abort_Terminated, Self_ID);
1221 end if;
1222 end if;
1223 when others =>
1224 -- ??? Using an E : others here causes CD2C11A to fail on Tru64
1226 Initialization.Defer_Abort_Nestable (Self_ID);
1228 -- Perform the task specific exception tracing duty. We handle
1229 -- these outputs here and not in the common notification routine
1230 -- because we need access to tasking related data and we don't
1231 -- want to drag dependencies against tasking related units in the
1232 -- the common notification units. Additionally, no trace is ever
1233 -- triggered from the common routine for the Unhandled_Raise case
1234 -- in tasks, since an exception never appears unhandled in this
1235 -- context because of this handler.
1237 if Exception_Trace = Unhandled_Raise then
1238 Trace_Unhandled_Exception_In_Task (Self_ID);
1239 end if;
1241 -- Update the cause that motivated the task termination so that
1242 -- the appropriate information is passed to the task termination
1243 -- procedure, as well as the associated Exception_Occurrence.
1245 Cause := Unhandled_Exception;
1247 Save_Occurrence (EO, SSL.Get_Current_Excep.all.all);
1249 if Global_Task_Debug_Event_Set then
1250 Debug.Signal_Debug_Event
1251 (Debug.Debug_Event_Exception_Terminated, Self_ID);
1252 end if;
1253 end;
1255 -- Look for a task termination handler. This code is for all tasks but
1256 -- the environment task. The task termination code for the environment
1257 -- task is executed by SSL.Task_Termination_Handler.
1259 if Single_Lock then
1260 Lock_RTS;
1261 end if;
1263 Write_Lock (Self_ID);
1265 if Self_ID.Common.Specific_Handler /= null then
1266 TH := Self_ID.Common.Specific_Handler;
1267 else
1268 -- Look for a fall-back handler following the master relationship
1269 -- for the task.
1271 Search_Fall_Back_Handler (Self_ID);
1272 end if;
1274 Unlock (Self_ID);
1276 if Single_Lock then
1277 Unlock_RTS;
1278 end if;
1280 -- Execute the task termination handler if we found it
1282 if TH /= null then
1283 TH.all (Cause, Self_ID, EO);
1284 end if;
1286 if System.Stack_Usage.Is_Enabled then
1287 Compute_Result (Self_ID.Common.Analyzer);
1288 Report_Result (Self_ID.Common.Analyzer);
1289 end if;
1291 Terminate_Task (Self_ID);
1292 end Task_Wrapper;
1294 --------------------
1295 -- Terminate_Task --
1296 --------------------
1298 -- Before we allow the thread to exit, we must clean up. This is a
1299 -- delicate job. We must wake up the task's master, who may immediately try
1300 -- to deallocate the ATCB out from under the current task WHILE IT IS STILL
1301 -- EXECUTING.
1303 -- To avoid this, the parent task must be blocked up to the latest
1304 -- statement executed. The trouble is that we have another step that we
1305 -- also want to postpone to the very end, i.e., calling SSL.Destroy_TSD.
1306 -- We have to postpone that until the end because compiler-generated code
1307 -- is likely to try to access that data at just about any point.
1309 -- We can't call Destroy_TSD while we are holding any other locks, because
1310 -- it locks Global_Task_Lock, and our deadlock prevention rules require
1311 -- that to be the outermost lock. Our first "solution" was to just lock
1312 -- Global_Task_Lock in addition to the other locks, and force the parent to
1313 -- also lock this lock between its wakeup and its freeing of the ATCB. See
1314 -- Complete_Task for the parent-side of the code that has the matching
1315 -- calls to Task_Lock and Task_Unlock. That was not really a solution,
1316 -- since the operation Task_Unlock continued to access the ATCB after
1317 -- unlocking, after which the parent was observed to race ahead, deallocate
1318 -- the ATCB, and then reallocate it to another task. The call to
1319 -- Undefer_Abort in Task_Unlock by the "terminated" task was overwriting
1320 -- the data of the new task that reused the ATCB! To solve this problem, we
1321 -- introduced the new operation Final_Task_Unlock.
1323 procedure Terminate_Task (Self_ID : Task_Id) is
1324 Environment_Task : constant Task_Id := STPO.Environment_Task;
1325 Master_of_Task : Integer;
1327 begin
1328 Debug.Task_Termination_Hook;
1330 if Runtime_Traces then
1331 Send_Trace_Info (T_Terminate);
1332 end if;
1334 -- Since GCC cannot allocate stack chunks efficiently without reordering
1335 -- some of the allocations, we have to handle this unexpected situation
1336 -- here. We should normally never have to call Vulnerable_Complete_Task
1337 -- here.
1339 if Self_ID.Common.Activator /= null then
1340 Vulnerable_Complete_Task (Self_ID);
1341 end if;
1343 Initialization.Task_Lock (Self_ID);
1345 if Single_Lock then
1346 Lock_RTS;
1347 end if;
1349 Master_of_Task := Self_ID.Master_of_Task;
1351 -- Check if the current task is an independent task If so, decrement
1352 -- the Independent_Task_Count value.
1354 if Master_of_Task = Independent_Task_Level then
1355 if Single_Lock then
1356 Utilities.Independent_Task_Count :=
1357 Utilities.Independent_Task_Count - 1;
1358 else
1359 Write_Lock (Environment_Task);
1360 Utilities.Independent_Task_Count :=
1361 Utilities.Independent_Task_Count - 1;
1362 Unlock (Environment_Task);
1363 end if;
1364 end if;
1366 -- Unprotect the guard page if needed
1368 Stack_Guard (Self_ID, False);
1370 Utilities.Make_Passive (Self_ID, Task_Completed => True);
1372 if Single_Lock then
1373 Unlock_RTS;
1374 end if;
1376 pragma Assert (Check_Exit (Self_ID));
1378 SSL.Destroy_TSD (Self_ID.Common.Compiler_Data);
1379 Initialization.Final_Task_Unlock (Self_ID);
1381 -- WARNING: past this point, this thread must assume that the ATCB has
1382 -- been deallocated. It should not be accessed again.
1384 if Master_of_Task > 0 then
1385 STPO.Exit_Task;
1386 end if;
1387 end Terminate_Task;
1389 ----------------
1390 -- Terminated --
1391 ----------------
1393 function Terminated (T : Task_Id) return Boolean is
1394 Self_ID : constant Task_Id := STPO.Self;
1395 Result : Boolean;
1397 begin
1398 Initialization.Defer_Abort_Nestable (Self_ID);
1400 if Single_Lock then
1401 Lock_RTS;
1402 end if;
1404 Write_Lock (T);
1405 Result := T.Common.State = Terminated;
1406 Unlock (T);
1408 if Single_Lock then
1409 Unlock_RTS;
1410 end if;
1412 Initialization.Undefer_Abort_Nestable (Self_ID);
1413 return Result;
1414 end Terminated;
1416 ----------------------------------------
1417 -- Trace_Unhandled_Exception_In_Task --
1418 ----------------------------------------
1420 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id) is
1421 procedure To_Stderr (S : String);
1422 pragma Import (Ada, To_Stderr, "__gnat_to_stderr");
1424 use System.Soft_Links;
1425 use System.Standard_Library;
1427 function To_Address is new
1428 Ada.Unchecked_Conversion
1429 (Task_Id, System.Task_Primitives.Task_Address);
1431 function Tailored_Exception_Information
1432 (E : Exception_Occurrence) return String;
1433 pragma Import
1434 (Ada, Tailored_Exception_Information,
1435 "__gnat_tailored_exception_information");
1437 Excep : constant Exception_Occurrence_Access :=
1438 SSL.Get_Current_Excep.all;
1440 begin
1441 -- This procedure is called by the task outermost handler in
1442 -- Task_Wrapper below, so only once the task stack has been fully
1443 -- unwound. The common notification routine has been called at the
1444 -- raise point already.
1446 -- Lock to prevent unsynchronized output
1448 Initialization.Task_Lock (Self_Id);
1449 To_Stderr ("task ");
1451 if Self_Id.Common.Task_Image_Len /= 0 then
1452 To_Stderr
1453 (Self_Id.Common.Task_Image (1 .. Self_Id.Common.Task_Image_Len));
1454 To_Stderr ("_");
1455 end if;
1457 To_Stderr (System.Address_Image (To_Address (Self_Id)));
1458 To_Stderr (" terminated by unhandled exception");
1459 To_Stderr ((1 => ASCII.LF));
1460 To_Stderr (Tailored_Exception_Information (Excep.all));
1461 Initialization.Task_Unlock (Self_Id);
1462 end Trace_Unhandled_Exception_In_Task;
1464 ------------------------------------
1465 -- Vulnerable_Complete_Activation --
1466 ------------------------------------
1468 -- As in several other places, the locks of the activator and activated
1469 -- task are both locked here. This follows our deadlock prevention lock
1470 -- ordering policy, since the activated task must be created after the
1471 -- activator.
1473 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id) is
1474 Activator : constant Task_Id := Self_ID.Common.Activator;
1476 begin
1477 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Activation", 'C'));
1479 Write_Lock (Activator);
1480 Write_Lock (Self_ID);
1482 pragma Assert (Self_ID.Common.Activator /= null);
1484 -- Remove dangling reference to Activator, since a task may
1485 -- outlive its activator.
1487 Self_ID.Common.Activator := null;
1489 -- Wake up the activator, if it is waiting for a chain of tasks to
1490 -- activate, and we are the last in the chain to complete activation.
1492 if Activator.Common.State = Activator_Sleep then
1493 Activator.Common.Wait_Count := Activator.Common.Wait_Count - 1;
1495 if Activator.Common.Wait_Count = 0 then
1496 Wakeup (Activator, Activator_Sleep);
1497 end if;
1498 end if;
1500 -- The activator raises a Tasking_Error if any task it is activating
1501 -- is completed before the activation is done. However, if the reason
1502 -- for the task completion is an abort, we do not raise an exception.
1503 -- See RM 9.2(5).
1505 if not Self_ID.Callable and then Self_ID.Pending_ATC_Level /= 0 then
1506 Activator.Common.Activation_Failed := True;
1507 end if;
1509 Unlock (Self_ID);
1510 Unlock (Activator);
1512 -- After the activation, active priority should be the same as base
1513 -- priority. We must unlock the Activator first, though, since it
1514 -- should not wait if we have lower priority.
1516 if Get_Priority (Self_ID) /= Self_ID.Common.Base_Priority then
1517 Write_Lock (Self_ID);
1518 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
1519 Unlock (Self_ID);
1520 end if;
1521 end Vulnerable_Complete_Activation;
1523 --------------------------------
1524 -- Vulnerable_Complete_Master --
1525 --------------------------------
1527 procedure Vulnerable_Complete_Master (Self_ID : Task_Id) is
1528 C : Task_Id;
1529 P : Task_Id;
1530 CM : constant Master_Level := Self_ID.Master_Within;
1531 T : aliased Task_Id;
1533 To_Be_Freed : Task_Id;
1534 -- This is a list of ATCBs to be freed, after we have released all RTS
1535 -- locks. This is necessary because of the locking order rules, since
1536 -- the storage manager uses Global_Task_Lock.
1538 pragma Warnings (Off);
1539 function Check_Unactivated_Tasks return Boolean;
1540 pragma Warnings (On);
1541 -- Temporary error-checking code below. This is part of the checks
1542 -- added in the new run time. Call it only inside a pragma Assert.
1544 -----------------------------
1545 -- Check_Unactivated_Tasks --
1546 -----------------------------
1548 function Check_Unactivated_Tasks return Boolean is
1549 begin
1550 if not Single_Lock then
1551 Lock_RTS;
1552 end if;
1554 Write_Lock (Self_ID);
1556 C := All_Tasks_List;
1557 while C /= null loop
1558 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1559 return False;
1560 end if;
1562 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1563 Write_Lock (C);
1565 if C.Common.State = Unactivated then
1566 return False;
1567 end if;
1569 Unlock (C);
1570 end if;
1572 C := C.Common.All_Tasks_Link;
1573 end loop;
1575 Unlock (Self_ID);
1577 if not Single_Lock then
1578 Unlock_RTS;
1579 end if;
1581 return True;
1582 end Check_Unactivated_Tasks;
1584 -- Start of processing for Vulnerable_Complete_Master
1586 begin
1587 pragma Debug
1588 (Debug.Trace (Self_ID, "V_Complete_Master", 'C'));
1590 pragma Assert (Self_ID.Common.Wait_Count = 0);
1591 pragma Assert
1592 (Self_ID.Deferral_Level > 0
1593 or else not System.Restrictions.Abort_Allowed);
1595 -- Count how many active dependent tasks this master currently has, and
1596 -- record this in Wait_Count.
1598 -- This count should start at zero, since it is initialized to zero for
1599 -- new tasks, and the task should not exit the sleep-loops that use this
1600 -- count until the count reaches zero.
1602 -- While we're counting, if we run across any unactivated tasks that
1603 -- belong to this master, we summarily terminate them as required by
1604 -- RM-9.2(6).
1606 Lock_RTS;
1607 Write_Lock (Self_ID);
1609 C := All_Tasks_List;
1610 while C /= null loop
1612 -- Terminate unactivated (never-to-be activated) tasks
1614 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1616 pragma Assert (C.Common.State = Unactivated);
1617 -- Usually, C.Common.Activator = Self_ID implies C.Master_of_Task
1618 -- = CM. The only case where C is pending activation by this
1619 -- task, but the master of C is not CM is in Ada 2005, when C is
1620 -- part of a return object of a build-in-place function.
1622 Write_Lock (C);
1623 C.Common.Activator := null;
1624 C.Common.State := Terminated;
1625 C.Callable := False;
1626 Utilities.Cancel_Queued_Entry_Calls (C);
1627 Unlock (C);
1628 end if;
1630 -- Count it if dependent on this master
1632 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1633 Write_Lock (C);
1635 if C.Awake_Count /= 0 then
1636 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1637 end if;
1639 Unlock (C);
1640 end if;
1642 C := C.Common.All_Tasks_Link;
1643 end loop;
1645 Self_ID.Common.State := Master_Completion_Sleep;
1646 Unlock (Self_ID);
1648 if not Single_Lock then
1649 Unlock_RTS;
1650 end if;
1652 -- Wait until dependent tasks are all terminated or ready to terminate.
1653 -- While waiting, the task may be awakened if the task's priority needs
1654 -- changing, or this master is aborted. In the latter case, we abort the
1655 -- dependents, and resume waiting until Wait_Count goes to zero.
1657 Write_Lock (Self_ID);
1659 loop
1660 exit when Self_ID.Common.Wait_Count = 0;
1662 -- Here is a difference as compared to Complete_Master
1664 if Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
1665 and then not Self_ID.Dependents_Aborted
1666 then
1667 if Single_Lock then
1668 Abort_Dependents (Self_ID);
1669 else
1670 Unlock (Self_ID);
1671 Lock_RTS;
1672 Abort_Dependents (Self_ID);
1673 Unlock_RTS;
1674 Write_Lock (Self_ID);
1675 end if;
1676 else
1677 Sleep (Self_ID, Master_Completion_Sleep);
1678 end if;
1679 end loop;
1681 Self_ID.Common.State := Runnable;
1682 Unlock (Self_ID);
1684 -- Dependents are all terminated or on terminate alternatives. Now,
1685 -- force those on terminate alternatives to terminate, by aborting them.
1687 pragma Assert (Check_Unactivated_Tasks);
1689 if Self_ID.Alive_Count > 1 then
1690 -- ???
1691 -- Consider finding a way to skip the following extra steps if there
1692 -- are no dependents with terminate alternatives. This could be done
1693 -- by adding another count to the ATCB, similar to Awake_Count, but
1694 -- keeping track of tasks that are on terminate alternatives.
1696 pragma Assert (Self_ID.Common.Wait_Count = 0);
1698 -- Force any remaining dependents to terminate by aborting them
1700 if not Single_Lock then
1701 Lock_RTS;
1702 end if;
1704 Abort_Dependents (Self_ID);
1706 -- Above, when we "abort" the dependents we are simply using this
1707 -- operation for convenience. We are not required to support the full
1708 -- abort-statement semantics; in particular, we are not required to
1709 -- immediately cancel any queued or in-service entry calls. That is
1710 -- good, because if we tried to cancel a call we would need to lock
1711 -- the caller, in order to wake the caller up. Our anti-deadlock
1712 -- rules prevent us from doing that without releasing the locks on C
1713 -- and Self_ID. Releasing and retaking those locks would be wasteful
1714 -- at best, and should not be considered further without more
1715 -- detailed analysis of potential concurrent accesses to the ATCBs
1716 -- of C and Self_ID.
1718 -- Count how many "alive" dependent tasks this master currently has,
1719 -- and record this in Wait_Count. This count should start at zero,
1720 -- since it is initialized to zero for new tasks, and the task should
1721 -- not exit the sleep-loops that use this count until the count
1722 -- reaches zero.
1724 pragma Assert (Self_ID.Common.Wait_Count = 0);
1726 Write_Lock (Self_ID);
1728 C := All_Tasks_List;
1729 while C /= null loop
1730 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1731 Write_Lock (C);
1733 pragma Assert (C.Awake_Count = 0);
1735 if C.Alive_Count > 0 then
1736 pragma Assert (C.Terminate_Alternative);
1737 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1738 end if;
1740 Unlock (C);
1741 end if;
1743 C := C.Common.All_Tasks_Link;
1744 end loop;
1746 Self_ID.Common.State := Master_Phase_2_Sleep;
1747 Unlock (Self_ID);
1749 if not Single_Lock then
1750 Unlock_RTS;
1751 end if;
1753 -- Wait for all counted tasks to finish terminating themselves
1755 Write_Lock (Self_ID);
1757 loop
1758 exit when Self_ID.Common.Wait_Count = 0;
1759 Sleep (Self_ID, Master_Phase_2_Sleep);
1760 end loop;
1762 Self_ID.Common.State := Runnable;
1763 Unlock (Self_ID);
1764 end if;
1766 -- We don't wake up for abort here. We are already terminating just as
1767 -- fast as we can, so there is no point.
1769 -- Remove terminated tasks from the list of Self_ID's dependents, but
1770 -- don't free their ATCBs yet, because of lock order restrictions, which
1771 -- don't allow us to call "free" or "malloc" while holding any other
1772 -- locks. Instead, we put those ATCBs to be freed onto a temporary list,
1773 -- called To_Be_Freed.
1775 if not Single_Lock then
1776 Lock_RTS;
1777 end if;
1779 C := All_Tasks_List;
1780 P := null;
1781 while C /= null loop
1782 if C.Common.Parent = Self_ID and then C.Master_of_Task >= CM then
1783 if P /= null then
1784 P.Common.All_Tasks_Link := C.Common.All_Tasks_Link;
1785 else
1786 All_Tasks_List := C.Common.All_Tasks_Link;
1787 end if;
1789 T := C.Common.All_Tasks_Link;
1790 C.Common.All_Tasks_Link := To_Be_Freed;
1791 To_Be_Freed := C;
1792 C := T;
1794 else
1795 P := C;
1796 C := C.Common.All_Tasks_Link;
1797 end if;
1798 end loop;
1800 Unlock_RTS;
1802 -- Free all the ATCBs on the list To_Be_Freed
1804 -- The ATCBs in the list are no longer in All_Tasks_List, and after
1805 -- any interrupt entries are detached from them they should no longer
1806 -- be referenced.
1808 -- Global_Task_Lock (Task_Lock/Unlock) is locked in the loop below to
1809 -- avoid a race between a terminating task and its parent. The parent
1810 -- might try to deallocate the ACTB out from underneath the exiting
1811 -- task. Note that Free will also lock Global_Task_Lock, but that is
1812 -- OK, since this is the *one* lock for which we have a mechanism to
1813 -- support nested locking. See Task_Wrapper and its finalizer for more
1814 -- explanation.
1816 -- ???
1817 -- The check "T.Common.Parent /= null ..." below is to prevent dangling
1818 -- references to terminated library-level tasks, which could otherwise
1819 -- occur during finalization of library-level objects. A better solution
1820 -- might be to hook task objects into the finalization chain and
1821 -- deallocate the ATCB when the task object is deallocated. However,
1822 -- this change is not likely to gain anything significant, since all
1823 -- this storage should be recovered en-masse when the process exits.
1825 while To_Be_Freed /= null loop
1826 T := To_Be_Freed;
1827 To_Be_Freed := T.Common.All_Tasks_Link;
1829 -- ??? On SGI there is currently no Interrupt_Manager, that's why we
1830 -- need to check if the Interrupt_Manager_ID is null.
1832 if T.Interrupt_Entry and then Interrupt_Manager_ID /= null then
1833 declare
1834 Detach_Interrupt_Entries_Index : constant Task_Entry_Index := 1;
1835 -- Corresponds to the entry index of System.Interrupts.
1836 -- Interrupt_Manager.Detach_Interrupt_Entries.
1837 -- Be sure to update this value when changing
1838 -- Interrupt_Manager specs.
1840 type Param_Type is access all Task_Id;
1842 Param : aliased Param_Type := T'Access;
1844 begin
1845 System.Tasking.Rendezvous.Call_Simple
1846 (Interrupt_Manager_ID, Detach_Interrupt_Entries_Index,
1847 Param'Address);
1848 end;
1849 end if;
1851 if (T.Common.Parent /= null
1852 and then T.Common.Parent.Common.Parent /= null)
1853 or else T.Master_of_Task > Library_Task_Level
1854 then
1855 Initialization.Task_Lock (Self_ID);
1857 -- If Sec_Stack_Addr is not null, it means that Destroy_TSD
1858 -- has not been called yet (case of an unactivated task).
1860 if T.Common.Compiler_Data.Sec_Stack_Addr /= Null_Address then
1861 SSL.Destroy_TSD (T.Common.Compiler_Data);
1862 end if;
1864 Vulnerable_Free_Task (T);
1865 Initialization.Task_Unlock (Self_ID);
1866 end if;
1867 end loop;
1869 -- It might seem nice to let the terminated task deallocate its own
1870 -- ATCB. That would not cover the case of unactivated tasks. It also
1871 -- would force us to keep the underlying thread around past termination,
1872 -- since references to the ATCB are possible past termination.
1874 -- Currently, we get rid of the thread as soon as the task terminates,
1875 -- and let the parent recover the ATCB later.
1877 -- Some day, if we want to recover the ATCB earlier, at task
1878 -- termination, we could consider using "fat task IDs", that include the
1879 -- serial number with the ATCB pointer, to catch references to tasks
1880 -- that no longer have ATCBs. It is not clear how much this would gain,
1881 -- since the user-level task object would still be occupying storage.
1883 -- Make next master level up active. We don't need to lock the ATCB,
1884 -- since the value is only updated by each task for itself.
1886 Self_ID.Master_Within := CM - 1;
1887 end Vulnerable_Complete_Master;
1889 ------------------------------
1890 -- Vulnerable_Complete_Task --
1891 ------------------------------
1893 -- Complete the calling task
1895 -- This procedure must be called with abort deferred. It should only be
1896 -- called by Complete_Task and Finalize_Global_Tasks (for the environment
1897 -- task).
1899 -- The effect is similar to that of Complete_Master. Differences include
1900 -- the closing of entries here, and computation of the number of active
1901 -- dependent tasks in Complete_Master.
1903 -- We don't lock Self_ID before the call to Vulnerable_Complete_Activation,
1904 -- because that does its own locking, and because we do not need the lock
1905 -- to test Self_ID.Common.Activator. That value should only be read and
1906 -- modified by Self.
1908 procedure Vulnerable_Complete_Task (Self_ID : Task_Id) is
1909 begin
1910 pragma Assert
1911 (Self_ID.Deferral_Level > 0
1912 or else not System.Restrictions.Abort_Allowed);
1913 pragma Assert (Self_ID = Self);
1914 pragma Assert (Self_ID.Master_Within = Self_ID.Master_of_Task + 1
1915 or else
1916 Self_ID.Master_Within = Self_ID.Master_of_Task + 2);
1917 pragma Assert (Self_ID.Common.Wait_Count = 0);
1918 pragma Assert (Self_ID.Open_Accepts = null);
1919 pragma Assert (Self_ID.ATC_Nesting_Level = 1);
1921 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Task", 'C'));
1923 if Single_Lock then
1924 Lock_RTS;
1925 end if;
1927 Write_Lock (Self_ID);
1928 Self_ID.Callable := False;
1930 -- In theory, Self should have no pending entry calls left on its
1931 -- call-stack. Each async. select statement should clean its own call,
1932 -- and blocking entry calls should defer abort until the calls are
1933 -- cancelled, then clean up.
1935 Utilities.Cancel_Queued_Entry_Calls (Self_ID);
1936 Unlock (Self_ID);
1938 if Self_ID.Common.Activator /= null then
1939 Vulnerable_Complete_Activation (Self_ID);
1940 end if;
1942 if Single_Lock then
1943 Unlock_RTS;
1944 end if;
1946 -- If Self_ID.Master_Within = Self_ID.Master_of_Task + 2 we may have
1947 -- dependent tasks for which we need to wait. Otherwise we just exit.
1949 if Self_ID.Master_Within = Self_ID.Master_of_Task + 2 then
1950 Vulnerable_Complete_Master (Self_ID);
1951 end if;
1952 end Vulnerable_Complete_Task;
1954 --------------------------
1955 -- Vulnerable_Free_Task --
1956 --------------------------
1958 -- Recover all runtime system storage associated with the task T. This
1959 -- should only be called after T has terminated and will no longer be
1960 -- referenced.
1962 -- For tasks created by an allocator that fails, due to an exception, it
1963 -- is called from Expunge_Unactivated_Tasks.
1965 -- For tasks created by elaboration of task object declarations it is
1966 -- called from the finalization code of the Task_Wrapper procedure. It is
1967 -- also called from Ada.Unchecked_Deallocation, for objects that are or
1968 -- contain tasks.
1970 procedure Vulnerable_Free_Task (T : Task_Id) is
1971 begin
1972 pragma Debug (Debug.Trace (Self, "Vulnerable_Free_Task", 'C', T));
1974 if Single_Lock then
1975 Lock_RTS;
1976 end if;
1978 Write_Lock (T);
1979 Initialization.Finalize_Attributes_Link.all (T);
1980 Unlock (T);
1982 if Single_Lock then
1983 Unlock_RTS;
1984 end if;
1986 Free_Entry_Names (T);
1987 System.Task_Primitives.Operations.Finalize_TCB (T);
1988 end Vulnerable_Free_Task;
1990 -- Package elaboration code
1992 begin
1993 -- Establish the Adafinal oftlink
1995 -- This is not done inside the central RTS initialization routine
1996 -- to avoid with-ing this package from System.Tasking.Initialization.
1998 SSL.Adafinal := Finalize_Global_Tasks'Access;
2000 -- Establish soft links for subprograms that manipulate master_id's.
2001 -- This cannot be done when the RTS is initialized, because of various
2002 -- elaboration constraints.
2004 SSL.Current_Master := Stages.Current_Master'Access;
2005 SSL.Enter_Master := Stages.Enter_Master'Access;
2006 SSL.Complete_Master := Stages.Complete_Master'Access;
2007 end System.Tasking.Stages;