1 ------------------------------------------------------------------------------
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
5 -- S Y S T E M . B I T _ O P S --
9 -- Copyright (C) 1996-2009, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
27 -- GNAT was originally developed by the GNAT team at New York University. --
28 -- Extensive contributions were provided by Ada Core Technologies Inc. --
30 ------------------------------------------------------------------------------
34 with System
; use System
;
35 with System
.Unsigned_Types
; use System
.Unsigned_Types
;
37 with Ada
.Unchecked_Conversion
;
39 package body System
.Bit_Ops
is
41 subtype Bits_Array
is System
.Unsigned_Types
.Packed_Bytes1
(Positive);
42 -- Dummy array type used to interpret the address values. We use the
43 -- unaligned version always, since this will handle both the aligned and
44 -- unaligned cases, and we always do these operations by bytes anyway.
45 -- Note: we use a ones origin array here so that the computations of the
46 -- length in bytes work correctly (give a non-negative value) for the
47 -- case of zero length bit strings). Note that we never allocate any
48 -- objects of this type (we can't because they would be absurdly big).
50 type Bits
is access Bits_Array
;
51 -- This is the actual type into which address values are converted
53 function To_Bits
is new Ada
.Unchecked_Conversion
(Address
, Bits
);
55 LE
: constant := Standard
'Default_Bit_Order;
56 -- Static constant set to 0 for big-endian, 1 for little-endian
58 -- The following is an array of masks used to mask the final byte, either
59 -- at the high end (big-endian case) or the low end (little-endian case).
61 Masks
: constant array (1 .. 7) of Packed_Byte
:= (
62 (1 - LE
) * 2#
1000_0000#
+ LE
* 2#
0000_0001#
,
63 (1 - LE
) * 2#
1100_0000#
+ LE
* 2#
0000_0011#
,
64 (1 - LE
) * 2#
1110_0000#
+ LE
* 2#
0000_0111#
,
65 (1 - LE
) * 2#
1111_0000#
+ LE
* 2#
0000_1111#
,
66 (1 - LE
) * 2#
1111_1000#
+ LE
* 2#
0001_1111#
,
67 (1 - LE
) * 2#
1111_1100#
+ LE
* 2#
0011_1111#
,
68 (1 - LE
) * 2#
1111_1110#
+ LE
* 2#
0111_1111#
);
70 -----------------------
71 -- Local Subprograms --
72 -----------------------
74 procedure Raise_Error
;
75 -- Raise Constraint_Error, complaining about unequal lengths
88 LeftB
: constant Bits
:= To_Bits
(Left
);
89 RightB
: constant Bits
:= To_Bits
(Right
);
90 ResultB
: constant Bits
:= To_Bits
(Result
);
97 for J
in 1 .. (Rlen
+ 7) / 8 loop
98 ResultB
(J
) := LeftB
(J
) and RightB
(J
);
110 Rlen
: Natural) return Boolean
112 LeftB
: constant Bits
:= To_Bits
(Left
);
113 RightB
: constant Bits
:= To_Bits
(Right
);
121 BLen
: constant Natural := Llen
/ 8;
122 Bitc
: constant Natural := Llen
mod 8;
125 if LeftB
(1 .. BLen
) /= RightB
(1 .. BLen
) then
130 ((LeftB
(BLen
+ 1) xor RightB
(BLen
+ 1))
131 and Masks
(Bitc
)) = 0;
145 (Opnd
: System
.Address
;
147 Result
: System
.Address
)
149 OpndB
: constant Bits
:= To_Bits
(Opnd
);
150 ResultB
: constant Bits
:= To_Bits
(Result
);
153 for J
in 1 .. (Len
+ 7) / 8 loop
154 ResultB
(J
) := not OpndB
(J
);
169 LeftB
: constant Bits
:= To_Bits
(Left
);
170 RightB
: constant Bits
:= To_Bits
(Right
);
171 ResultB
: constant Bits
:= To_Bits
(Result
);
178 for J
in 1 .. (Rlen
+ 7) / 8 loop
179 ResultB
(J
) := LeftB
(J
) or RightB
(J
);
194 LeftB
: constant Bits
:= To_Bits
(Left
);
195 RightB
: constant Bits
:= To_Bits
(Right
);
196 ResultB
: constant Bits
:= To_Bits
(Result
);
203 for J
in 1 .. (Rlen
+ 7) / 8 loop
204 ResultB
(J
) := LeftB
(J
) xor RightB
(J
);
212 procedure Raise_Error
is
214 raise Constraint_Error
;