PR rtl-optimization/44174
[official-gcc.git] / gcc / sel-sched-ir.c
blobb88dad1b3f6c992226acbd11f80dc3595bc5b7cf
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "diagnostic-core.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "timevar.h"
38 #include "tree-pass.h"
39 #include "sched-int.h"
40 #include "ggc.h"
41 #include "tree.h"
42 #include "vec.h"
43 #include "langhooks.h"
44 #include "rtlhooks-def.h"
45 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
47 #ifdef INSN_SCHEDULING
48 #include "sel-sched-ir.h"
49 /* We don't have to use it except for sel_print_insn. */
50 #include "sel-sched-dump.h"
52 /* A vector holding bb info for whole scheduling pass. */
53 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
55 /* A vector holding bb info. */
56 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
58 /* A pool for allocating all lists. */
59 alloc_pool sched_lists_pool;
61 /* This contains information about successors for compute_av_set. */
62 struct succs_info current_succs;
64 /* Data structure to describe interaction with the generic scheduler utils. */
65 static struct common_sched_info_def sel_common_sched_info;
67 /* The loop nest being pipelined. */
68 struct loop *current_loop_nest;
70 /* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72 static VEC(loop_p, heap) *loop_nests = NULL;
74 /* Saves blocks already in loop regions, indexed by bb->index. */
75 static sbitmap bbs_in_loop_rgns = NULL;
77 /* CFG hooks that are saved before changing create_basic_block hook. */
78 static struct cfg_hooks orig_cfg_hooks;
81 /* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83 static int *rev_top_order_index = NULL;
85 /* Length of the above array. */
86 static int rev_top_order_index_len = -1;
88 /* A regset pool structure. */
89 static struct
91 /* The stack to which regsets are returned. */
92 regset *v;
94 /* Its pointer. */
95 int n;
97 /* Its size. */
98 int s;
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
105 /* The pointer of VV stack. */
106 int nn;
108 /* Its size. */
109 int ss;
111 /* The difference between allocated and returned regsets. */
112 int diff;
113 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
115 /* This represents the nop pool. */
116 static struct
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
121 /* Its pointer. */
122 int n;
124 /* Its size. */
125 int s;
126 } nop_pool = { NULL, 0, 0 };
128 /* The pool for basic block notes. */
129 static rtx_vec_t bb_note_pool;
131 /* A NOP pattern used to emit placeholder insns. */
132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135 rtx exit_insn = NULL_RTX;
137 /* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */
139 bool preheader_removed = false;
142 /* Forward static declarations. */
143 static void fence_clear (fence_t);
145 static void deps_init_id (idata_t, insn_t, bool);
146 static void init_id_from_df (idata_t, insn_t, bool);
147 static expr_t set_insn_init (expr_t, vinsn_t, int);
149 static void cfg_preds (basic_block, insn_t **, int *);
150 static void prepare_insn_expr (insn_t, int);
151 static void free_history_vect (VEC (expr_history_def, heap) **);
153 static void move_bb_info (basic_block, basic_block);
154 static void remove_empty_bb (basic_block, bool);
155 static void sel_merge_blocks (basic_block, basic_block);
156 static void sel_remove_loop_preheader (void);
157 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
159 static bool insn_is_the_only_one_in_bb_p (insn_t);
160 static void create_initial_data_sets (basic_block);
162 static void free_av_set (basic_block);
163 static void invalidate_av_set (basic_block);
164 static void extend_insn_data (void);
165 static void sel_init_new_insn (insn_t, int);
166 static void finish_insns (void);
168 /* Various list functions. */
170 /* Copy an instruction list L. */
171 ilist_t
172 ilist_copy (ilist_t l)
174 ilist_t head = NULL, *tailp = &head;
176 while (l)
178 ilist_add (tailp, ILIST_INSN (l));
179 tailp = &ILIST_NEXT (*tailp);
180 l = ILIST_NEXT (l);
183 return head;
186 /* Invert an instruction list L. */
187 ilist_t
188 ilist_invert (ilist_t l)
190 ilist_t res = NULL;
192 while (l)
194 ilist_add (&res, ILIST_INSN (l));
195 l = ILIST_NEXT (l);
198 return res;
201 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
202 void
203 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
205 bnd_t bnd;
207 _list_add (lp);
208 bnd = BLIST_BND (*lp);
210 BND_TO (bnd) = to;
211 BND_PTR (bnd) = ptr;
212 BND_AV (bnd) = NULL;
213 BND_AV1 (bnd) = NULL;
214 BND_DC (bnd) = dc;
217 /* Remove the list note pointed to by LP. */
218 void
219 blist_remove (blist_t *lp)
221 bnd_t b = BLIST_BND (*lp);
223 av_set_clear (&BND_AV (b));
224 av_set_clear (&BND_AV1 (b));
225 ilist_clear (&BND_PTR (b));
227 _list_remove (lp);
230 /* Init a fence tail L. */
231 void
232 flist_tail_init (flist_tail_t l)
234 FLIST_TAIL_HEAD (l) = NULL;
235 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
238 /* Try to find fence corresponding to INSN in L. */
239 fence_t
240 flist_lookup (flist_t l, insn_t insn)
242 while (l)
244 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
245 return FLIST_FENCE (l);
247 l = FLIST_NEXT (l);
250 return NULL;
253 /* Init the fields of F before running fill_insns. */
254 static void
255 init_fence_for_scheduling (fence_t f)
257 FENCE_BNDS (f) = NULL;
258 FENCE_PROCESSED_P (f) = false;
259 FENCE_SCHEDULED_P (f) = false;
262 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
263 static void
264 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
265 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
266 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
267 int cycle, int cycle_issued_insns, int issue_more,
268 bool starts_cycle_p, bool after_stall_p)
270 fence_t f;
272 _list_add (lp);
273 f = FLIST_FENCE (*lp);
275 FENCE_INSN (f) = insn;
277 gcc_assert (state != NULL);
278 FENCE_STATE (f) = state;
280 FENCE_CYCLE (f) = cycle;
281 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
282 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
283 FENCE_AFTER_STALL_P (f) = after_stall_p;
285 gcc_assert (dc != NULL);
286 FENCE_DC (f) = dc;
288 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
289 FENCE_TC (f) = tc;
291 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
292 FENCE_ISSUE_MORE (f) = issue_more;
293 FENCE_EXECUTING_INSNS (f) = executing_insns;
294 FENCE_READY_TICKS (f) = ready_ticks;
295 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
296 FENCE_SCHED_NEXT (f) = sched_next;
298 init_fence_for_scheduling (f);
301 /* Remove the head node of the list pointed to by LP. */
302 static void
303 flist_remove (flist_t *lp)
305 if (FENCE_INSN (FLIST_FENCE (*lp)))
306 fence_clear (FLIST_FENCE (*lp));
307 _list_remove (lp);
310 /* Clear the fence list pointed to by LP. */
311 void
312 flist_clear (flist_t *lp)
314 while (*lp)
315 flist_remove (lp);
318 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
319 void
320 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
322 def_t d;
324 _list_add (dl);
325 d = DEF_LIST_DEF (*dl);
327 d->orig_insn = original_insn;
328 d->crosses_call = crosses_call;
332 /* Functions to work with target contexts. */
334 /* Bulk target context. It is convenient for debugging purposes to ensure
335 that there are no uninitialized (null) target contexts. */
336 static tc_t bulk_tc = (tc_t) 1;
338 /* Target hooks wrappers. In the future we can provide some default
339 implementations for them. */
341 /* Allocate a store for the target context. */
342 static tc_t
343 alloc_target_context (void)
345 return (targetm.sched.alloc_sched_context
346 ? targetm.sched.alloc_sched_context () : bulk_tc);
349 /* Init target context TC.
350 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
351 Overwise, copy current backend context to TC. */
352 static void
353 init_target_context (tc_t tc, bool clean_p)
355 if (targetm.sched.init_sched_context)
356 targetm.sched.init_sched_context (tc, clean_p);
359 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
360 int init_target_context (). */
361 tc_t
362 create_target_context (bool clean_p)
364 tc_t tc = alloc_target_context ();
366 init_target_context (tc, clean_p);
367 return tc;
370 /* Copy TC to the current backend context. */
371 void
372 set_target_context (tc_t tc)
374 if (targetm.sched.set_sched_context)
375 targetm.sched.set_sched_context (tc);
378 /* TC is about to be destroyed. Free any internal data. */
379 static void
380 clear_target_context (tc_t tc)
382 if (targetm.sched.clear_sched_context)
383 targetm.sched.clear_sched_context (tc);
386 /* Clear and free it. */
387 static void
388 delete_target_context (tc_t tc)
390 clear_target_context (tc);
392 if (targetm.sched.free_sched_context)
393 targetm.sched.free_sched_context (tc);
396 /* Make a copy of FROM in TO.
397 NB: May be this should be a hook. */
398 static void
399 copy_target_context (tc_t to, tc_t from)
401 tc_t tmp = create_target_context (false);
403 set_target_context (from);
404 init_target_context (to, false);
406 set_target_context (tmp);
407 delete_target_context (tmp);
410 /* Create a copy of TC. */
411 static tc_t
412 create_copy_of_target_context (tc_t tc)
414 tc_t copy = alloc_target_context ();
416 copy_target_context (copy, tc);
418 return copy;
421 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
422 is the same as in init_target_context (). */
423 void
424 reset_target_context (tc_t tc, bool clean_p)
426 clear_target_context (tc);
427 init_target_context (tc, clean_p);
430 /* Functions to work with dependence contexts.
431 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
432 context. It accumulates information about processed insns to decide if
433 current insn is dependent on the processed ones. */
435 /* Make a copy of FROM in TO. */
436 static void
437 copy_deps_context (deps_t to, deps_t from)
439 init_deps (to, false);
440 deps_join (to, from);
443 /* Allocate store for dep context. */
444 static deps_t
445 alloc_deps_context (void)
447 return XNEW (struct deps_desc);
450 /* Allocate and initialize dep context. */
451 static deps_t
452 create_deps_context (void)
454 deps_t dc = alloc_deps_context ();
456 init_deps (dc, false);
457 return dc;
460 /* Create a copy of FROM. */
461 static deps_t
462 create_copy_of_deps_context (deps_t from)
464 deps_t to = alloc_deps_context ();
466 copy_deps_context (to, from);
467 return to;
470 /* Clean up internal data of DC. */
471 static void
472 clear_deps_context (deps_t dc)
474 free_deps (dc);
477 /* Clear and free DC. */
478 static void
479 delete_deps_context (deps_t dc)
481 clear_deps_context (dc);
482 free (dc);
485 /* Clear and init DC. */
486 static void
487 reset_deps_context (deps_t dc)
489 clear_deps_context (dc);
490 init_deps (dc, false);
493 /* This structure describes the dependence analysis hooks for advancing
494 dependence context. */
495 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
497 NULL,
499 NULL, /* start_insn */
500 NULL, /* finish_insn */
501 NULL, /* start_lhs */
502 NULL, /* finish_lhs */
503 NULL, /* start_rhs */
504 NULL, /* finish_rhs */
505 haifa_note_reg_set,
506 haifa_note_reg_clobber,
507 haifa_note_reg_use,
508 NULL, /* note_mem_dep */
509 NULL, /* note_dep */
511 0, 0, 0
514 /* Process INSN and add its impact on DC. */
515 void
516 advance_deps_context (deps_t dc, insn_t insn)
518 sched_deps_info = &advance_deps_context_sched_deps_info;
519 deps_analyze_insn (dc, insn);
523 /* Functions to work with DFA states. */
525 /* Allocate store for a DFA state. */
526 static state_t
527 state_alloc (void)
529 return xmalloc (dfa_state_size);
532 /* Allocate and initialize DFA state. */
533 static state_t
534 state_create (void)
536 state_t state = state_alloc ();
538 state_reset (state);
539 advance_state (state);
540 return state;
543 /* Free DFA state. */
544 static void
545 state_free (state_t state)
547 free (state);
550 /* Make a copy of FROM in TO. */
551 static void
552 state_copy (state_t to, state_t from)
554 memcpy (to, from, dfa_state_size);
557 /* Create a copy of FROM. */
558 static state_t
559 state_create_copy (state_t from)
561 state_t to = state_alloc ();
563 state_copy (to, from);
564 return to;
568 /* Functions to work with fences. */
570 /* Clear the fence. */
571 static void
572 fence_clear (fence_t f)
574 state_t s = FENCE_STATE (f);
575 deps_t dc = FENCE_DC (f);
576 void *tc = FENCE_TC (f);
578 ilist_clear (&FENCE_BNDS (f));
580 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
581 || (s == NULL && dc == NULL && tc == NULL));
583 if (s != NULL)
584 free (s);
586 if (dc != NULL)
587 delete_deps_context (dc);
589 if (tc != NULL)
590 delete_target_context (tc);
591 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
592 free (FENCE_READY_TICKS (f));
593 FENCE_READY_TICKS (f) = NULL;
596 /* Init a list of fences with successors of OLD_FENCE. */
597 void
598 init_fences (insn_t old_fence)
600 insn_t succ;
601 succ_iterator si;
602 bool first = true;
603 int ready_ticks_size = get_max_uid () + 1;
605 FOR_EACH_SUCC_1 (succ, si, old_fence,
606 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
609 if (first)
610 first = false;
611 else
612 gcc_assert (flag_sel_sched_pipelining_outer_loops);
614 flist_add (&fences, succ,
615 state_create (),
616 create_deps_context () /* dc */,
617 create_target_context (true) /* tc */,
618 NULL_RTX /* last_scheduled_insn */,
619 NULL, /* executing_insns */
620 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
621 ready_ticks_size,
622 NULL_RTX /* sched_next */,
623 1 /* cycle */, 0 /* cycle_issued_insns */,
624 issue_rate, /* issue_more */
625 1 /* starts_cycle_p */, 0 /* after_stall_p */);
629 /* Merges two fences (filling fields of fence F with resulting values) by
630 following rules: 1) state, target context and last scheduled insn are
631 propagated from fallthrough edge if it is available;
632 2) deps context and cycle is propagated from more probable edge;
633 3) all other fields are set to corresponding constant values.
635 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
636 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
637 and AFTER_STALL_P are the corresponding fields of the second fence. */
638 static void
639 merge_fences (fence_t f, insn_t insn,
640 state_t state, deps_t dc, void *tc,
641 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
642 int *ready_ticks, int ready_ticks_size,
643 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
645 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
647 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
648 && !sched_next && !FENCE_SCHED_NEXT (f));
650 /* Check if we can decide which path fences came.
651 If we can't (or don't want to) - reset all. */
652 if (last_scheduled_insn == NULL
653 || last_scheduled_insn_old == NULL
654 /* This is a case when INSN is reachable on several paths from
655 one insn (this can happen when pipelining of outer loops is on and
656 there are two edges: one going around of inner loop and the other -
657 right through it; in such case just reset everything). */
658 || last_scheduled_insn == last_scheduled_insn_old)
660 state_reset (FENCE_STATE (f));
661 state_free (state);
663 reset_deps_context (FENCE_DC (f));
664 delete_deps_context (dc);
666 reset_target_context (FENCE_TC (f), true);
667 delete_target_context (tc);
669 if (cycle > FENCE_CYCLE (f))
670 FENCE_CYCLE (f) = cycle;
672 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
673 FENCE_ISSUE_MORE (f) = issue_rate;
674 VEC_free (rtx, gc, executing_insns);
675 free (ready_ticks);
676 if (FENCE_EXECUTING_INSNS (f))
677 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
678 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
679 if (FENCE_READY_TICKS (f))
680 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
682 else
684 edge edge_old = NULL, edge_new = NULL;
685 edge candidate;
686 succ_iterator si;
687 insn_t succ;
689 /* Find fallthrough edge. */
690 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
691 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
693 if (!candidate
694 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
695 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
697 /* No fallthrough edge leading to basic block of INSN. */
698 state_reset (FENCE_STATE (f));
699 state_free (state);
701 reset_target_context (FENCE_TC (f), true);
702 delete_target_context (tc);
704 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
705 FENCE_ISSUE_MORE (f) = issue_rate;
707 else
708 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
710 /* Would be weird if same insn is successor of several fallthrough
711 edges. */
712 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
713 != BLOCK_FOR_INSN (last_scheduled_insn_old));
715 state_free (FENCE_STATE (f));
716 FENCE_STATE (f) = state;
718 delete_target_context (FENCE_TC (f));
719 FENCE_TC (f) = tc;
721 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
722 FENCE_ISSUE_MORE (f) = issue_more;
724 else
726 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
727 state_free (state);
728 delete_target_context (tc);
730 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
731 != BLOCK_FOR_INSN (last_scheduled_insn));
734 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
735 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
736 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
738 if (succ == insn)
740 /* No same successor allowed from several edges. */
741 gcc_assert (!edge_old);
742 edge_old = si.e1;
745 /* Find edge of second predecessor (last_scheduled_insn->insn). */
746 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
747 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
749 if (succ == insn)
751 /* No same successor allowed from several edges. */
752 gcc_assert (!edge_new);
753 edge_new = si.e1;
757 /* Check if we can choose most probable predecessor. */
758 if (edge_old == NULL || edge_new == NULL)
760 reset_deps_context (FENCE_DC (f));
761 delete_deps_context (dc);
762 VEC_free (rtx, gc, executing_insns);
763 free (ready_ticks);
765 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
766 if (FENCE_EXECUTING_INSNS (f))
767 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
768 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
769 if (FENCE_READY_TICKS (f))
770 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
772 else
773 if (edge_new->probability > edge_old->probability)
775 delete_deps_context (FENCE_DC (f));
776 FENCE_DC (f) = dc;
777 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
778 FENCE_EXECUTING_INSNS (f) = executing_insns;
779 free (FENCE_READY_TICKS (f));
780 FENCE_READY_TICKS (f) = ready_ticks;
781 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
782 FENCE_CYCLE (f) = cycle;
784 else
786 /* Leave DC and CYCLE untouched. */
787 delete_deps_context (dc);
788 VEC_free (rtx, gc, executing_insns);
789 free (ready_ticks);
793 /* Fill remaining invariant fields. */
794 if (after_stall_p)
795 FENCE_AFTER_STALL_P (f) = 1;
797 FENCE_ISSUED_INSNS (f) = 0;
798 FENCE_STARTS_CYCLE_P (f) = 1;
799 FENCE_SCHED_NEXT (f) = NULL;
802 /* Add a new fence to NEW_FENCES list, initializing it from all
803 other parameters. */
804 static void
805 add_to_fences (flist_tail_t new_fences, insn_t insn,
806 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
807 VEC(rtx, gc) *executing_insns, int *ready_ticks,
808 int ready_ticks_size, rtx sched_next, int cycle,
809 int cycle_issued_insns, int issue_rate,
810 bool starts_cycle_p, bool after_stall_p)
812 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
814 if (! f)
816 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
817 last_scheduled_insn, executing_insns, ready_ticks,
818 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
819 issue_rate, starts_cycle_p, after_stall_p);
821 FLIST_TAIL_TAILP (new_fences)
822 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
824 else
826 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
827 executing_insns, ready_ticks, ready_ticks_size,
828 sched_next, cycle, issue_rate, after_stall_p);
832 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
833 void
834 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
836 fence_t f, old;
837 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
839 old = FLIST_FENCE (old_fences);
840 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
841 FENCE_INSN (FLIST_FENCE (old_fences)));
842 if (f)
844 merge_fences (f, old->insn, old->state, old->dc, old->tc,
845 old->last_scheduled_insn, old->executing_insns,
846 old->ready_ticks, old->ready_ticks_size,
847 old->sched_next, old->cycle, old->issue_more,
848 old->after_stall_p);
850 else
852 _list_add (tailp);
853 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
854 *FLIST_FENCE (*tailp) = *old;
855 init_fence_for_scheduling (FLIST_FENCE (*tailp));
857 FENCE_INSN (old) = NULL;
860 /* Add a new fence to NEW_FENCES list and initialize most of its data
861 as a clean one. */
862 void
863 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
865 int ready_ticks_size = get_max_uid () + 1;
867 add_to_fences (new_fences,
868 succ, state_create (), create_deps_context (),
869 create_target_context (true),
870 NULL_RTX, NULL,
871 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
872 NULL_RTX, FENCE_CYCLE (fence) + 1,
873 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
876 /* Add a new fence to NEW_FENCES list and initialize all of its data
877 from FENCE and SUCC. */
878 void
879 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
881 int * new_ready_ticks
882 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
884 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
885 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
886 add_to_fences (new_fences,
887 succ, state_create_copy (FENCE_STATE (fence)),
888 create_copy_of_deps_context (FENCE_DC (fence)),
889 create_copy_of_target_context (FENCE_TC (fence)),
890 FENCE_LAST_SCHEDULED_INSN (fence),
891 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
892 new_ready_ticks,
893 FENCE_READY_TICKS_SIZE (fence),
894 FENCE_SCHED_NEXT (fence),
895 FENCE_CYCLE (fence),
896 FENCE_ISSUED_INSNS (fence),
897 FENCE_ISSUE_MORE (fence),
898 FENCE_STARTS_CYCLE_P (fence),
899 FENCE_AFTER_STALL_P (fence));
903 /* Functions to work with regset and nop pools. */
905 /* Returns the new regset from pool. It might have some of the bits set
906 from the previous usage. */
907 regset
908 get_regset_from_pool (void)
910 regset rs;
912 if (regset_pool.n != 0)
913 rs = regset_pool.v[--regset_pool.n];
914 else
915 /* We need to create the regset. */
917 rs = ALLOC_REG_SET (&reg_obstack);
919 if (regset_pool.nn == regset_pool.ss)
920 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
921 (regset_pool.ss = 2 * regset_pool.ss + 1));
922 regset_pool.vv[regset_pool.nn++] = rs;
925 regset_pool.diff++;
927 return rs;
930 /* Same as above, but returns the empty regset. */
931 regset
932 get_clear_regset_from_pool (void)
934 regset rs = get_regset_from_pool ();
936 CLEAR_REG_SET (rs);
937 return rs;
940 /* Return regset RS to the pool for future use. */
941 void
942 return_regset_to_pool (regset rs)
944 gcc_assert (rs);
945 regset_pool.diff--;
947 if (regset_pool.n == regset_pool.s)
948 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
949 (regset_pool.s = 2 * regset_pool.s + 1));
950 regset_pool.v[regset_pool.n++] = rs;
953 #ifdef ENABLE_CHECKING
954 /* This is used as a qsort callback for sorting regset pool stacks.
955 X and XX are addresses of two regsets. They are never equal. */
956 static int
957 cmp_v_in_regset_pool (const void *x, const void *xx)
959 return *((const regset *) x) - *((const regset *) xx);
961 #endif
963 /* Free the regset pool possibly checking for memory leaks. */
964 void
965 free_regset_pool (void)
967 #ifdef ENABLE_CHECKING
969 regset *v = regset_pool.v;
970 int i = 0;
971 int n = regset_pool.n;
973 regset *vv = regset_pool.vv;
974 int ii = 0;
975 int nn = regset_pool.nn;
977 int diff = 0;
979 gcc_assert (n <= nn);
981 /* Sort both vectors so it will be possible to compare them. */
982 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
983 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
985 while (ii < nn)
987 if (v[i] == vv[ii])
988 i++;
989 else
990 /* VV[II] was lost. */
991 diff++;
993 ii++;
996 gcc_assert (diff == regset_pool.diff);
998 #endif
1000 /* If not true - we have a memory leak. */
1001 gcc_assert (regset_pool.diff == 0);
1003 while (regset_pool.n)
1005 --regset_pool.n;
1006 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1009 free (regset_pool.v);
1010 regset_pool.v = NULL;
1011 regset_pool.s = 0;
1013 free (regset_pool.vv);
1014 regset_pool.vv = NULL;
1015 regset_pool.nn = 0;
1016 regset_pool.ss = 0;
1018 regset_pool.diff = 0;
1022 /* Functions to work with nop pools. NOP insns are used as temporary
1023 placeholders of the insns being scheduled to allow correct update of
1024 the data sets. When update is finished, NOPs are deleted. */
1026 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1027 nops sel-sched generates. */
1028 static vinsn_t nop_vinsn = NULL;
1030 /* Emit a nop before INSN, taking it from pool. */
1031 insn_t
1032 get_nop_from_pool (insn_t insn)
1034 insn_t nop;
1035 bool old_p = nop_pool.n != 0;
1036 int flags;
1038 if (old_p)
1039 nop = nop_pool.v[--nop_pool.n];
1040 else
1041 nop = nop_pattern;
1043 nop = emit_insn_before (nop, insn);
1045 if (old_p)
1046 flags = INSN_INIT_TODO_SSID;
1047 else
1048 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1050 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1051 sel_init_new_insn (nop, flags);
1053 return nop;
1056 /* Remove NOP from the instruction stream and return it to the pool. */
1057 void
1058 return_nop_to_pool (insn_t nop, bool full_tidying)
1060 gcc_assert (INSN_IN_STREAM_P (nop));
1061 sel_remove_insn (nop, false, full_tidying);
1063 if (nop_pool.n == nop_pool.s)
1064 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1065 (nop_pool.s = 2 * nop_pool.s + 1));
1066 nop_pool.v[nop_pool.n++] = nop;
1069 /* Free the nop pool. */
1070 void
1071 free_nop_pool (void)
1073 nop_pool.n = 0;
1074 nop_pool.s = 0;
1075 free (nop_pool.v);
1076 nop_pool.v = NULL;
1080 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1081 The callback is given two rtxes XX and YY and writes the new rtxes
1082 to NX and NY in case some needs to be skipped. */
1083 static int
1084 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1086 const_rtx x = *xx;
1087 const_rtx y = *yy;
1089 if (GET_CODE (x) == UNSPEC
1090 && (targetm.sched.skip_rtx_p == NULL
1091 || targetm.sched.skip_rtx_p (x)))
1093 *nx = XVECEXP (x, 0, 0);
1094 *ny = CONST_CAST_RTX (y);
1095 return 1;
1098 if (GET_CODE (y) == UNSPEC
1099 && (targetm.sched.skip_rtx_p == NULL
1100 || targetm.sched.skip_rtx_p (y)))
1102 *nx = CONST_CAST_RTX (x);
1103 *ny = XVECEXP (y, 0, 0);
1104 return 1;
1107 return 0;
1110 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1111 to support ia64 speculation. When changes are needed, new rtx X and new mode
1112 NMODE are written, and the callback returns true. */
1113 static int
1114 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1115 rtx *nx, enum machine_mode* nmode)
1117 if (GET_CODE (x) == UNSPEC
1118 && targetm.sched.skip_rtx_p
1119 && targetm.sched.skip_rtx_p (x))
1121 *nx = XVECEXP (x, 0 ,0);
1122 *nmode = VOIDmode;
1123 return 1;
1126 return 0;
1129 /* Returns LHS and RHS are ok to be scheduled separately. */
1130 static bool
1131 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1133 if (lhs == NULL || rhs == NULL)
1134 return false;
1136 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1137 to use reg, if const can be used. Moreover, scheduling const as rhs may
1138 lead to mode mismatch cause consts don't have modes but they could be
1139 merged from branches where the same const used in different modes. */
1140 if (CONSTANT_P (rhs))
1141 return false;
1143 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1144 if (COMPARISON_P (rhs))
1145 return false;
1147 /* Do not allow single REG to be an rhs. */
1148 if (REG_P (rhs))
1149 return false;
1151 /* See comment at find_used_regs_1 (*1) for explanation of this
1152 restriction. */
1153 /* FIXME: remove this later. */
1154 if (MEM_P (lhs))
1155 return false;
1157 /* This will filter all tricky things like ZERO_EXTRACT etc.
1158 For now we don't handle it. */
1159 if (!REG_P (lhs) && !MEM_P (lhs))
1160 return false;
1162 return true;
1165 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1166 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1167 used e.g. for insns from recovery blocks. */
1168 static void
1169 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1171 hash_rtx_callback_function hrcf;
1172 int insn_class;
1174 VINSN_INSN_RTX (vi) = insn;
1175 VINSN_COUNT (vi) = 0;
1176 vi->cost = -1;
1178 if (INSN_NOP_P (insn))
1179 return;
1181 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1182 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1183 else
1184 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1186 /* Hash vinsn depending on whether it is separable or not. */
1187 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1188 if (VINSN_SEPARABLE_P (vi))
1190 rtx rhs = VINSN_RHS (vi);
1192 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1193 NULL, NULL, false, hrcf);
1194 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1195 VOIDmode, NULL, NULL,
1196 false, hrcf);
1198 else
1200 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1201 NULL, NULL, false, hrcf);
1202 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1205 insn_class = haifa_classify_insn (insn);
1206 if (insn_class >= 2
1207 && (!targetm.sched.get_insn_spec_ds
1208 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1209 == 0)))
1210 VINSN_MAY_TRAP_P (vi) = true;
1211 else
1212 VINSN_MAY_TRAP_P (vi) = false;
1215 /* Indicate that VI has become the part of an rtx object. */
1216 void
1217 vinsn_attach (vinsn_t vi)
1219 /* Assert that VI is not pending for deletion. */
1220 gcc_assert (VINSN_INSN_RTX (vi));
1222 VINSN_COUNT (vi)++;
1225 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1226 VINSN_TYPE (VI). */
1227 static vinsn_t
1228 vinsn_create (insn_t insn, bool force_unique_p)
1230 vinsn_t vi = XCNEW (struct vinsn_def);
1232 vinsn_init (vi, insn, force_unique_p);
1233 return vi;
1236 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1237 the copy. */
1238 vinsn_t
1239 vinsn_copy (vinsn_t vi, bool reattach_p)
1241 rtx copy;
1242 bool unique = VINSN_UNIQUE_P (vi);
1243 vinsn_t new_vi;
1245 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1246 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1247 if (reattach_p)
1249 vinsn_detach (vi);
1250 vinsn_attach (new_vi);
1253 return new_vi;
1256 /* Delete the VI vinsn and free its data. */
1257 static void
1258 vinsn_delete (vinsn_t vi)
1260 gcc_assert (VINSN_COUNT (vi) == 0);
1262 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1264 return_regset_to_pool (VINSN_REG_SETS (vi));
1265 return_regset_to_pool (VINSN_REG_USES (vi));
1266 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1269 free (vi);
1272 /* Indicate that VI is no longer a part of some rtx object.
1273 Remove VI if it is no longer needed. */
1274 void
1275 vinsn_detach (vinsn_t vi)
1277 gcc_assert (VINSN_COUNT (vi) > 0);
1279 if (--VINSN_COUNT (vi) == 0)
1280 vinsn_delete (vi);
1283 /* Returns TRUE if VI is a branch. */
1284 bool
1285 vinsn_cond_branch_p (vinsn_t vi)
1287 insn_t insn;
1289 if (!VINSN_UNIQUE_P (vi))
1290 return false;
1292 insn = VINSN_INSN_RTX (vi);
1293 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1294 return false;
1296 return control_flow_insn_p (insn);
1299 /* Return latency of INSN. */
1300 static int
1301 sel_insn_rtx_cost (rtx insn)
1303 int cost;
1305 /* A USE insn, or something else we don't need to
1306 understand. We can't pass these directly to
1307 result_ready_cost or insn_default_latency because it will
1308 trigger a fatal error for unrecognizable insns. */
1309 if (recog_memoized (insn) < 0)
1310 cost = 0;
1311 else
1313 cost = insn_default_latency (insn);
1315 if (cost < 0)
1316 cost = 0;
1319 return cost;
1322 /* Return the cost of the VI.
1323 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1325 sel_vinsn_cost (vinsn_t vi)
1327 int cost = vi->cost;
1329 if (cost < 0)
1331 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1332 vi->cost = cost;
1335 return cost;
1339 /* Functions for insn emitting. */
1341 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1342 EXPR and SEQNO. */
1343 insn_t
1344 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1346 insn_t new_insn;
1348 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1350 new_insn = emit_insn_after (pattern, after);
1351 set_insn_init (expr, NULL, seqno);
1352 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1354 return new_insn;
1357 /* Force newly generated vinsns to be unique. */
1358 static bool init_insn_force_unique_p = false;
1360 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1361 initialize its data from EXPR and SEQNO. */
1362 insn_t
1363 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1364 insn_t after)
1366 insn_t insn;
1368 gcc_assert (!init_insn_force_unique_p);
1370 init_insn_force_unique_p = true;
1371 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1372 CANT_MOVE (insn) = 1;
1373 init_insn_force_unique_p = false;
1375 return insn;
1378 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1379 take it as a new vinsn instead of EXPR's vinsn.
1380 We simplify insns later, after scheduling region in
1381 simplify_changed_insns. */
1382 insn_t
1383 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1384 insn_t after)
1386 expr_t emit_expr;
1387 insn_t insn;
1388 int flags;
1390 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1391 seqno);
1392 insn = EXPR_INSN_RTX (emit_expr);
1393 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1395 flags = INSN_INIT_TODO_SSID;
1396 if (INSN_LUID (insn) == 0)
1397 flags |= INSN_INIT_TODO_LUID;
1398 sel_init_new_insn (insn, flags);
1400 return insn;
1403 /* Move insn from EXPR after AFTER. */
1404 insn_t
1405 sel_move_insn (expr_t expr, int seqno, insn_t after)
1407 insn_t insn = EXPR_INSN_RTX (expr);
1408 basic_block bb = BLOCK_FOR_INSN (after);
1409 insn_t next = NEXT_INSN (after);
1411 /* Assert that in move_op we disconnected this insn properly. */
1412 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1413 PREV_INSN (insn) = after;
1414 NEXT_INSN (insn) = next;
1416 NEXT_INSN (after) = insn;
1417 PREV_INSN (next) = insn;
1419 /* Update links from insn to bb and vice versa. */
1420 df_insn_change_bb (insn, bb);
1421 if (BB_END (bb) == after)
1422 BB_END (bb) = insn;
1424 prepare_insn_expr (insn, seqno);
1425 return insn;
1429 /* Functions to work with right-hand sides. */
1431 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1432 VECT and return true when found. Use NEW_VINSN for comparison only when
1433 COMPARE_VINSNS is true. Write to INDP the index on which
1434 the search has stopped, such that inserting the new element at INDP will
1435 retain VECT's sort order. */
1436 static bool
1437 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1438 unsigned uid, vinsn_t new_vinsn,
1439 bool compare_vinsns, int *indp)
1441 expr_history_def *arr;
1442 int i, j, len = VEC_length (expr_history_def, vect);
1444 if (len == 0)
1446 *indp = 0;
1447 return false;
1450 arr = VEC_address (expr_history_def, vect);
1451 i = 0, j = len - 1;
1453 while (i <= j)
1455 unsigned auid = arr[i].uid;
1456 vinsn_t avinsn = arr[i].new_expr_vinsn;
1458 if (auid == uid
1459 /* When undoing transformation on a bookkeeping copy, the new vinsn
1460 may not be exactly equal to the one that is saved in the vector.
1461 This is because the insn whose copy we're checking was possibly
1462 substituted itself. */
1463 && (! compare_vinsns
1464 || vinsn_equal_p (avinsn, new_vinsn)))
1466 *indp = i;
1467 return true;
1469 else if (auid > uid)
1470 break;
1471 i++;
1474 *indp = i;
1475 return false;
1478 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1479 the position found or -1, if no such value is in vector.
1480 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1482 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1483 vinsn_t new_vinsn, bool originators_p)
1485 int ind;
1487 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1488 false, &ind))
1489 return ind;
1491 if (INSN_ORIGINATORS (insn) && originators_p)
1493 unsigned uid;
1494 bitmap_iterator bi;
1496 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1497 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1498 return ind;
1501 return -1;
1504 /* Insert new element in a sorted history vector pointed to by PVECT,
1505 if it is not there already. The element is searched using
1506 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1507 the history of a transformation. */
1508 void
1509 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1510 unsigned uid, enum local_trans_type type,
1511 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1512 ds_t spec_ds)
1514 VEC(expr_history_def, heap) *vect = *pvect;
1515 expr_history_def temp;
1516 bool res;
1517 int ind;
1519 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1521 if (res)
1523 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1525 /* It is possible that speculation types of expressions that were
1526 propagated through different paths will be different here. In this
1527 case, merge the status to get the correct check later. */
1528 if (phist->spec_ds != spec_ds)
1529 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1530 return;
1533 temp.uid = uid;
1534 temp.old_expr_vinsn = old_expr_vinsn;
1535 temp.new_expr_vinsn = new_expr_vinsn;
1536 temp.spec_ds = spec_ds;
1537 temp.type = type;
1539 vinsn_attach (old_expr_vinsn);
1540 vinsn_attach (new_expr_vinsn);
1541 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1542 *pvect = vect;
1545 /* Free history vector PVECT. */
1546 static void
1547 free_history_vect (VEC (expr_history_def, heap) **pvect)
1549 unsigned i;
1550 expr_history_def *phist;
1552 if (! *pvect)
1553 return;
1555 for (i = 0;
1556 VEC_iterate (expr_history_def, *pvect, i, phist);
1557 i++)
1559 vinsn_detach (phist->old_expr_vinsn);
1560 vinsn_detach (phist->new_expr_vinsn);
1563 VEC_free (expr_history_def, heap, *pvect);
1564 *pvect = NULL;
1568 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1569 bool
1570 vinsn_equal_p (vinsn_t x, vinsn_t y)
1572 rtx_equal_p_callback_function repcf;
1574 if (x == y)
1575 return true;
1577 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1578 return false;
1580 if (VINSN_HASH (x) != VINSN_HASH (y))
1581 return false;
1583 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1584 if (VINSN_SEPARABLE_P (x))
1586 /* Compare RHSes of VINSNs. */
1587 gcc_assert (VINSN_RHS (x));
1588 gcc_assert (VINSN_RHS (y));
1590 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1593 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1597 /* Functions for working with expressions. */
1599 /* Initialize EXPR. */
1600 static void
1601 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1602 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1603 ds_t spec_to_check_ds, int orig_sched_cycle,
1604 VEC(expr_history_def, heap) *history, signed char target_available,
1605 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1606 bool cant_move)
1608 vinsn_attach (vi);
1610 EXPR_VINSN (expr) = vi;
1611 EXPR_SPEC (expr) = spec;
1612 EXPR_USEFULNESS (expr) = use;
1613 EXPR_PRIORITY (expr) = priority;
1614 EXPR_PRIORITY_ADJ (expr) = 0;
1615 EXPR_SCHED_TIMES (expr) = sched_times;
1616 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1617 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1618 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1619 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1621 if (history)
1622 EXPR_HISTORY_OF_CHANGES (expr) = history;
1623 else
1624 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1626 EXPR_TARGET_AVAILABLE (expr) = target_available;
1627 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1628 EXPR_WAS_RENAMED (expr) = was_renamed;
1629 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1630 EXPR_CANT_MOVE (expr) = cant_move;
1633 /* Make a copy of the expr FROM into the expr TO. */
1634 void
1635 copy_expr (expr_t to, expr_t from)
1637 VEC(expr_history_def, heap) *temp = NULL;
1639 if (EXPR_HISTORY_OF_CHANGES (from))
1641 unsigned i;
1642 expr_history_def *phist;
1644 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1645 for (i = 0;
1646 VEC_iterate (expr_history_def, temp, i, phist);
1647 i++)
1649 vinsn_attach (phist->old_expr_vinsn);
1650 vinsn_attach (phist->new_expr_vinsn);
1654 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1655 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1656 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1657 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1658 EXPR_ORIG_SCHED_CYCLE (from), temp,
1659 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1660 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1661 EXPR_CANT_MOVE (from));
1664 /* Same, but the final expr will not ever be in av sets, so don't copy
1665 "uninteresting" data such as bitmap cache. */
1666 void
1667 copy_expr_onside (expr_t to, expr_t from)
1669 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1670 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1671 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1672 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1673 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1674 EXPR_CANT_MOVE (from));
1677 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1678 initializing new insns. */
1679 static void
1680 prepare_insn_expr (insn_t insn, int seqno)
1682 expr_t expr = INSN_EXPR (insn);
1683 ds_t ds;
1685 INSN_SEQNO (insn) = seqno;
1686 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1687 EXPR_SPEC (expr) = 0;
1688 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1689 EXPR_WAS_SUBSTITUTED (expr) = 0;
1690 EXPR_WAS_RENAMED (expr) = 0;
1691 EXPR_TARGET_AVAILABLE (expr) = 1;
1692 INSN_LIVE_VALID_P (insn) = false;
1694 /* ??? If this expression is speculative, make its dependence
1695 as weak as possible. We can filter this expression later
1696 in process_spec_exprs, because we do not distinguish
1697 between the status we got during compute_av_set and the
1698 existing status. To be fixed. */
1699 ds = EXPR_SPEC_DONE_DS (expr);
1700 if (ds)
1701 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1703 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1706 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1707 is non-null when expressions are merged from different successors at
1708 a split point. */
1709 static void
1710 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1712 if (EXPR_TARGET_AVAILABLE (to) < 0
1713 || EXPR_TARGET_AVAILABLE (from) < 0)
1714 EXPR_TARGET_AVAILABLE (to) = -1;
1715 else
1717 /* We try to detect the case when one of the expressions
1718 can only be reached through another one. In this case,
1719 we can do better. */
1720 if (split_point == NULL)
1722 int toind, fromind;
1724 toind = EXPR_ORIG_BB_INDEX (to);
1725 fromind = EXPR_ORIG_BB_INDEX (from);
1727 if (toind && toind == fromind)
1728 /* Do nothing -- everything is done in
1729 merge_with_other_exprs. */
1731 else
1732 EXPR_TARGET_AVAILABLE (to) = -1;
1734 else
1735 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1739 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1740 is non-null when expressions are merged from different successors at
1741 a split point. */
1742 static void
1743 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1745 ds_t old_to_ds, old_from_ds;
1747 old_to_ds = EXPR_SPEC_DONE_DS (to);
1748 old_from_ds = EXPR_SPEC_DONE_DS (from);
1750 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1751 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1752 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1754 /* When merging e.g. control & data speculative exprs, or a control
1755 speculative with a control&data speculative one, we really have
1756 to change vinsn too. Also, when speculative status is changed,
1757 we also need to record this as a transformation in expr's history. */
1758 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1760 old_to_ds = ds_get_speculation_types (old_to_ds);
1761 old_from_ds = ds_get_speculation_types (old_from_ds);
1763 if (old_to_ds != old_from_ds)
1765 ds_t record_ds;
1767 /* When both expressions are speculative, we need to change
1768 the vinsn first. */
1769 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1771 int res;
1773 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1774 gcc_assert (res >= 0);
1777 if (split_point != NULL)
1779 /* Record the change with proper status. */
1780 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1781 record_ds &= ~(old_to_ds & SPECULATIVE);
1782 record_ds &= ~(old_from_ds & SPECULATIVE);
1784 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1785 INSN_UID (split_point), TRANS_SPECULATION,
1786 EXPR_VINSN (from), EXPR_VINSN (to),
1787 record_ds);
1794 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1795 this is done along different paths. */
1796 void
1797 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1799 int i;
1800 expr_history_def *phist;
1802 /* For now, we just set the spec of resulting expr to be minimum of the specs
1803 of merged exprs. */
1804 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1805 EXPR_SPEC (to) = EXPR_SPEC (from);
1807 if (split_point)
1808 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1809 else
1810 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1811 EXPR_USEFULNESS (from));
1813 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1814 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1816 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1817 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1819 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1820 EXPR_ORIG_BB_INDEX (to) = 0;
1822 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1823 EXPR_ORIG_SCHED_CYCLE (from));
1825 /* We keep this vector sorted. */
1826 for (i = 0;
1827 VEC_iterate (expr_history_def, EXPR_HISTORY_OF_CHANGES (from),
1828 i, phist);
1829 i++)
1830 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1831 phist->uid, phist->type,
1832 phist->old_expr_vinsn, phist->new_expr_vinsn,
1833 phist->spec_ds);
1835 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1836 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1837 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1839 update_target_availability (to, from, split_point);
1840 update_speculative_bits (to, from, split_point);
1843 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1844 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1845 are merged from different successors at a split point. */
1846 void
1847 merge_expr (expr_t to, expr_t from, insn_t split_point)
1849 vinsn_t to_vi = EXPR_VINSN (to);
1850 vinsn_t from_vi = EXPR_VINSN (from);
1852 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1854 /* Make sure that speculative pattern is propagated into exprs that
1855 have non-speculative one. This will provide us with consistent
1856 speculative bits and speculative patterns inside expr. */
1857 if (EXPR_SPEC_DONE_DS (to) == 0
1858 && EXPR_SPEC_DONE_DS (from) != 0)
1859 change_vinsn_in_expr (to, EXPR_VINSN (from));
1861 merge_expr_data (to, from, split_point);
1862 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1865 /* Clear the information of this EXPR. */
1866 void
1867 clear_expr (expr_t expr)
1870 vinsn_detach (EXPR_VINSN (expr));
1871 EXPR_VINSN (expr) = NULL;
1873 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1876 /* For a given LV_SET, mark EXPR having unavailable target register. */
1877 static void
1878 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1880 if (EXPR_SEPARABLE_P (expr))
1882 if (REG_P (EXPR_LHS (expr))
1883 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1885 /* If it's an insn like r1 = use (r1, ...), and it exists in
1886 different forms in each of the av_sets being merged, we can't say
1887 whether original destination register is available or not.
1888 However, this still works if destination register is not used
1889 in the original expression: if the branch at which LV_SET we're
1890 looking here is not actually 'other branch' in sense that same
1891 expression is available through it (but it can't be determined
1892 at computation stage because of transformations on one of the
1893 branches), it still won't affect the availability.
1894 Liveness of a register somewhere on a code motion path means
1895 it's either read somewhere on a codemotion path, live on
1896 'other' branch, live at the point immediately following
1897 the original operation, or is read by the original operation.
1898 The latter case is filtered out in the condition below.
1899 It still doesn't cover the case when register is defined and used
1900 somewhere within the code motion path, and in this case we could
1901 miss a unifying code motion along both branches using a renamed
1902 register, but it won't affect a code correctness since upon
1903 an actual code motion a bookkeeping code would be generated. */
1904 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1905 REGNO (EXPR_LHS (expr))))
1906 EXPR_TARGET_AVAILABLE (expr) = -1;
1907 else
1908 EXPR_TARGET_AVAILABLE (expr) = false;
1911 else
1913 unsigned regno;
1914 reg_set_iterator rsi;
1916 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1917 0, regno, rsi)
1918 if (bitmap_bit_p (lv_set, regno))
1920 EXPR_TARGET_AVAILABLE (expr) = false;
1921 break;
1924 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1925 0, regno, rsi)
1926 if (bitmap_bit_p (lv_set, regno))
1928 EXPR_TARGET_AVAILABLE (expr) = false;
1929 break;
1934 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1935 or dependence status have changed, 2 when also the target register
1936 became unavailable, 0 if nothing had to be changed. */
1938 speculate_expr (expr_t expr, ds_t ds)
1940 int res;
1941 rtx orig_insn_rtx;
1942 rtx spec_pat;
1943 ds_t target_ds, current_ds;
1945 /* Obtain the status we need to put on EXPR. */
1946 target_ds = (ds & SPECULATIVE);
1947 current_ds = EXPR_SPEC_DONE_DS (expr);
1948 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1950 orig_insn_rtx = EXPR_INSN_RTX (expr);
1952 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1954 switch (res)
1956 case 0:
1957 EXPR_SPEC_DONE_DS (expr) = ds;
1958 return current_ds != ds ? 1 : 0;
1960 case 1:
1962 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1963 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1965 change_vinsn_in_expr (expr, spec_vinsn);
1966 EXPR_SPEC_DONE_DS (expr) = ds;
1967 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1969 /* Do not allow clobbering the address register of speculative
1970 insns. */
1971 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1972 expr_dest_regno (expr)))
1974 EXPR_TARGET_AVAILABLE (expr) = false;
1975 return 2;
1978 return 1;
1981 case -1:
1982 return -1;
1984 default:
1985 gcc_unreachable ();
1986 return -1;
1990 /* Return a destination register, if any, of EXPR. */
1992 expr_dest_reg (expr_t expr)
1994 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1996 if (dest != NULL_RTX && REG_P (dest))
1997 return dest;
1999 return NULL_RTX;
2002 /* Returns the REGNO of the R's destination. */
2003 unsigned
2004 expr_dest_regno (expr_t expr)
2006 rtx dest = expr_dest_reg (expr);
2008 gcc_assert (dest != NULL_RTX);
2009 return REGNO (dest);
2012 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2013 AV_SET having unavailable target register. */
2014 void
2015 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2017 expr_t expr;
2018 av_set_iterator avi;
2020 FOR_EACH_EXPR (expr, avi, join_set)
2021 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2022 set_unavailable_target_for_expr (expr, lv_set);
2026 /* Av set functions. */
2028 /* Add a new element to av set SETP.
2029 Return the element added. */
2030 static av_set_t
2031 av_set_add_element (av_set_t *setp)
2033 /* Insert at the beginning of the list. */
2034 _list_add (setp);
2035 return *setp;
2038 /* Add EXPR to SETP. */
2039 void
2040 av_set_add (av_set_t *setp, expr_t expr)
2042 av_set_t elem;
2044 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2045 elem = av_set_add_element (setp);
2046 copy_expr (_AV_SET_EXPR (elem), expr);
2049 /* Same, but do not copy EXPR. */
2050 static void
2051 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2053 av_set_t elem;
2055 elem = av_set_add_element (setp);
2056 *_AV_SET_EXPR (elem) = *expr;
2059 /* Remove expr pointed to by IP from the av_set. */
2060 void
2061 av_set_iter_remove (av_set_iterator *ip)
2063 clear_expr (_AV_SET_EXPR (*ip->lp));
2064 _list_iter_remove (ip);
2067 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2068 sense of vinsn_equal_p function. Return NULL if no such expr is
2069 in SET was found. */
2070 expr_t
2071 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2073 expr_t expr;
2074 av_set_iterator i;
2076 FOR_EACH_EXPR (expr, i, set)
2077 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2078 return expr;
2079 return NULL;
2082 /* Same, but also remove the EXPR found. */
2083 static expr_t
2084 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2086 expr_t expr;
2087 av_set_iterator i;
2089 FOR_EACH_EXPR_1 (expr, i, setp)
2090 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2092 _list_iter_remove_nofree (&i);
2093 return expr;
2095 return NULL;
2098 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2099 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2100 Returns NULL if no such expr is in SET was found. */
2101 static expr_t
2102 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2104 expr_t cur_expr;
2105 av_set_iterator i;
2107 FOR_EACH_EXPR (cur_expr, i, set)
2109 if (cur_expr == expr)
2110 continue;
2111 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2112 return cur_expr;
2115 return NULL;
2118 /* If other expression is already in AVP, remove one of them. */
2119 expr_t
2120 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2122 expr_t expr2;
2124 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2125 if (expr2 != NULL)
2127 /* Reset target availability on merge, since taking it only from one
2128 of the exprs would be controversial for different code. */
2129 EXPR_TARGET_AVAILABLE (expr2) = -1;
2130 EXPR_USEFULNESS (expr2) = 0;
2132 merge_expr (expr2, expr, NULL);
2134 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2135 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2137 av_set_iter_remove (ip);
2138 return expr2;
2141 return expr;
2144 /* Return true if there is an expr that correlates to VI in SET. */
2145 bool
2146 av_set_is_in_p (av_set_t set, vinsn_t vi)
2148 return av_set_lookup (set, vi) != NULL;
2151 /* Return a copy of SET. */
2152 av_set_t
2153 av_set_copy (av_set_t set)
2155 expr_t expr;
2156 av_set_iterator i;
2157 av_set_t res = NULL;
2159 FOR_EACH_EXPR (expr, i, set)
2160 av_set_add (&res, expr);
2162 return res;
2165 /* Join two av sets that do not have common elements by attaching second set
2166 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2167 _AV_SET_NEXT of first set's last element). */
2168 static void
2169 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2171 gcc_assert (*to_tailp == NULL);
2172 *to_tailp = *fromp;
2173 *fromp = NULL;
2176 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2177 pointed to by FROMP afterwards. */
2178 void
2179 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2181 expr_t expr1;
2182 av_set_iterator i;
2184 /* Delete from TOP all exprs, that present in FROMP. */
2185 FOR_EACH_EXPR_1 (expr1, i, top)
2187 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2189 if (expr2)
2191 merge_expr (expr2, expr1, insn);
2192 av_set_iter_remove (&i);
2196 join_distinct_sets (i.lp, fromp);
2199 /* Same as above, but also update availability of target register in
2200 TOP judging by TO_LV_SET and FROM_LV_SET. */
2201 void
2202 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2203 regset from_lv_set, insn_t insn)
2205 expr_t expr1;
2206 av_set_iterator i;
2207 av_set_t *to_tailp, in_both_set = NULL;
2209 /* Delete from TOP all expres, that present in FROMP. */
2210 FOR_EACH_EXPR_1 (expr1, i, top)
2212 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2214 if (expr2)
2216 /* It may be that the expressions have different destination
2217 registers, in which case we need to check liveness here. */
2218 if (EXPR_SEPARABLE_P (expr1))
2220 int regno1 = (REG_P (EXPR_LHS (expr1))
2221 ? (int) expr_dest_regno (expr1) : -1);
2222 int regno2 = (REG_P (EXPR_LHS (expr2))
2223 ? (int) expr_dest_regno (expr2) : -1);
2225 /* ??? We don't have a way to check restrictions for
2226 *other* register on the current path, we did it only
2227 for the current target register. Give up. */
2228 if (regno1 != regno2)
2229 EXPR_TARGET_AVAILABLE (expr2) = -1;
2231 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2232 EXPR_TARGET_AVAILABLE (expr2) = -1;
2234 merge_expr (expr2, expr1, insn);
2235 av_set_add_nocopy (&in_both_set, expr2);
2236 av_set_iter_remove (&i);
2238 else
2239 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2240 FROM_LV_SET. */
2241 set_unavailable_target_for_expr (expr1, from_lv_set);
2243 to_tailp = i.lp;
2245 /* These expressions are not present in TOP. Check liveness
2246 restrictions on TO_LV_SET. */
2247 FOR_EACH_EXPR (expr1, i, *fromp)
2248 set_unavailable_target_for_expr (expr1, to_lv_set);
2250 join_distinct_sets (i.lp, &in_both_set);
2251 join_distinct_sets (to_tailp, fromp);
2254 /* Clear av_set pointed to by SETP. */
2255 void
2256 av_set_clear (av_set_t *setp)
2258 expr_t expr;
2259 av_set_iterator i;
2261 FOR_EACH_EXPR_1 (expr, i, setp)
2262 av_set_iter_remove (&i);
2264 gcc_assert (*setp == NULL);
2267 /* Leave only one non-speculative element in the SETP. */
2268 void
2269 av_set_leave_one_nonspec (av_set_t *setp)
2271 expr_t expr;
2272 av_set_iterator i;
2273 bool has_one_nonspec = false;
2275 /* Keep all speculative exprs, and leave one non-speculative
2276 (the first one). */
2277 FOR_EACH_EXPR_1 (expr, i, setp)
2279 if (!EXPR_SPEC_DONE_DS (expr))
2281 if (has_one_nonspec)
2282 av_set_iter_remove (&i);
2283 else
2284 has_one_nonspec = true;
2289 /* Return the N'th element of the SET. */
2290 expr_t
2291 av_set_element (av_set_t set, int n)
2293 expr_t expr;
2294 av_set_iterator i;
2296 FOR_EACH_EXPR (expr, i, set)
2297 if (n-- == 0)
2298 return expr;
2300 gcc_unreachable ();
2301 return NULL;
2304 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2305 void
2306 av_set_substract_cond_branches (av_set_t *avp)
2308 av_set_iterator i;
2309 expr_t expr;
2311 FOR_EACH_EXPR_1 (expr, i, avp)
2312 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2313 av_set_iter_remove (&i);
2316 /* Multiplies usefulness attribute of each member of av-set *AVP by
2317 value PROB / ALL_PROB. */
2318 void
2319 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2321 av_set_iterator i;
2322 expr_t expr;
2324 FOR_EACH_EXPR (expr, i, av)
2325 EXPR_USEFULNESS (expr) = (all_prob
2326 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2327 : 0);
2330 /* Leave in AVP only those expressions, which are present in AV,
2331 and return it. */
2332 void
2333 av_set_intersect (av_set_t *avp, av_set_t av)
2335 av_set_iterator i;
2336 expr_t expr;
2338 FOR_EACH_EXPR_1 (expr, i, avp)
2339 if (av_set_lookup (av, EXPR_VINSN (expr)) == NULL)
2340 av_set_iter_remove (&i);
2345 /* Dependence hooks to initialize insn data. */
2347 /* This is used in hooks callable from dependence analysis when initializing
2348 instruction's data. */
2349 static struct
2351 /* Where the dependence was found (lhs/rhs). */
2352 deps_where_t where;
2354 /* The actual data object to initialize. */
2355 idata_t id;
2357 /* True when the insn should not be made clonable. */
2358 bool force_unique_p;
2360 /* True when insn should be treated as of type USE, i.e. never renamed. */
2361 bool force_use_p;
2362 } deps_init_id_data;
2365 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2366 clonable. */
2367 static void
2368 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2370 int type;
2372 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2373 That clonable insns which can be separated into lhs and rhs have type SET.
2374 Other clonable insns have type USE. */
2375 type = GET_CODE (insn);
2377 /* Only regular insns could be cloned. */
2378 if (type == INSN && !force_unique_p)
2379 type = SET;
2380 else if (type == JUMP_INSN && simplejump_p (insn))
2381 type = PC;
2382 else if (type == DEBUG_INSN)
2383 type = !force_unique_p ? USE : INSN;
2385 IDATA_TYPE (id) = type;
2386 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2387 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2388 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2391 /* Start initializing insn data. */
2392 static void
2393 deps_init_id_start_insn (insn_t insn)
2395 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2397 setup_id_for_insn (deps_init_id_data.id, insn,
2398 deps_init_id_data.force_unique_p);
2399 deps_init_id_data.where = DEPS_IN_INSN;
2402 /* Start initializing lhs data. */
2403 static void
2404 deps_init_id_start_lhs (rtx lhs)
2406 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2407 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2409 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2411 IDATA_LHS (deps_init_id_data.id) = lhs;
2412 deps_init_id_data.where = DEPS_IN_LHS;
2416 /* Finish initializing lhs data. */
2417 static void
2418 deps_init_id_finish_lhs (void)
2420 deps_init_id_data.where = DEPS_IN_INSN;
2423 /* Note a set of REGNO. */
2424 static void
2425 deps_init_id_note_reg_set (int regno)
2427 haifa_note_reg_set (regno);
2429 if (deps_init_id_data.where == DEPS_IN_RHS)
2430 deps_init_id_data.force_use_p = true;
2432 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2433 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2435 #ifdef STACK_REGS
2436 /* Make instructions that set stack registers to be ineligible for
2437 renaming to avoid issues with find_used_regs. */
2438 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2439 deps_init_id_data.force_use_p = true;
2440 #endif
2443 /* Note a clobber of REGNO. */
2444 static void
2445 deps_init_id_note_reg_clobber (int regno)
2447 haifa_note_reg_clobber (regno);
2449 if (deps_init_id_data.where == DEPS_IN_RHS)
2450 deps_init_id_data.force_use_p = true;
2452 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2453 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2456 /* Note a use of REGNO. */
2457 static void
2458 deps_init_id_note_reg_use (int regno)
2460 haifa_note_reg_use (regno);
2462 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2463 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2466 /* Start initializing rhs data. */
2467 static void
2468 deps_init_id_start_rhs (rtx rhs)
2470 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2472 /* And there was no sel_deps_reset_to_insn (). */
2473 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2475 IDATA_RHS (deps_init_id_data.id) = rhs;
2476 deps_init_id_data.where = DEPS_IN_RHS;
2480 /* Finish initializing rhs data. */
2481 static void
2482 deps_init_id_finish_rhs (void)
2484 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2485 || deps_init_id_data.where == DEPS_IN_INSN);
2486 deps_init_id_data.where = DEPS_IN_INSN;
2489 /* Finish initializing insn data. */
2490 static void
2491 deps_init_id_finish_insn (void)
2493 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2495 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2497 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2498 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2500 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2501 || deps_init_id_data.force_use_p)
2503 /* This should be a USE, as we don't want to schedule its RHS
2504 separately. However, we still want to have them recorded
2505 for the purposes of substitution. That's why we don't
2506 simply call downgrade_to_use () here. */
2507 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2508 gcc_assert (!lhs == !rhs);
2510 IDATA_TYPE (deps_init_id_data.id) = USE;
2514 deps_init_id_data.where = DEPS_IN_NOWHERE;
2517 /* This is dependence info used for initializing insn's data. */
2518 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2520 /* This initializes most of the static part of the above structure. */
2521 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2523 NULL,
2525 deps_init_id_start_insn,
2526 deps_init_id_finish_insn,
2527 deps_init_id_start_lhs,
2528 deps_init_id_finish_lhs,
2529 deps_init_id_start_rhs,
2530 deps_init_id_finish_rhs,
2531 deps_init_id_note_reg_set,
2532 deps_init_id_note_reg_clobber,
2533 deps_init_id_note_reg_use,
2534 NULL, /* note_mem_dep */
2535 NULL, /* note_dep */
2537 0, /* use_cselib */
2538 0, /* use_deps_list */
2539 0 /* generate_spec_deps */
2542 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2543 we don't actually need information about lhs and rhs. */
2544 static void
2545 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2547 rtx pat = PATTERN (insn);
2549 if (NONJUMP_INSN_P (insn)
2550 && GET_CODE (pat) == SET
2551 && !force_unique_p)
2553 IDATA_RHS (id) = SET_SRC (pat);
2554 IDATA_LHS (id) = SET_DEST (pat);
2556 else
2557 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2560 /* Possibly downgrade INSN to USE. */
2561 static void
2562 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2564 bool must_be_use = false;
2565 unsigned uid = INSN_UID (insn);
2566 df_ref *rec;
2567 rtx lhs = IDATA_LHS (id);
2568 rtx rhs = IDATA_RHS (id);
2570 /* We downgrade only SETs. */
2571 if (IDATA_TYPE (id) != SET)
2572 return;
2574 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2576 IDATA_TYPE (id) = USE;
2577 return;
2580 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2582 df_ref def = *rec;
2584 if (DF_REF_INSN (def)
2585 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2586 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2588 must_be_use = true;
2589 break;
2592 #ifdef STACK_REGS
2593 /* Make instructions that set stack registers to be ineligible for
2594 renaming to avoid issues with find_used_regs. */
2595 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2597 must_be_use = true;
2598 break;
2600 #endif
2603 if (must_be_use)
2604 IDATA_TYPE (id) = USE;
2607 /* Setup register sets describing INSN in ID. */
2608 static void
2609 setup_id_reg_sets (idata_t id, insn_t insn)
2611 unsigned uid = INSN_UID (insn);
2612 df_ref *rec;
2613 regset tmp = get_clear_regset_from_pool ();
2615 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2617 df_ref def = *rec;
2618 unsigned int regno = DF_REF_REGNO (def);
2620 /* Post modifies are treated like clobbers by sched-deps.c. */
2621 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2622 | DF_REF_PRE_POST_MODIFY)))
2623 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2624 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2626 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2628 #ifdef STACK_REGS
2629 /* For stack registers, treat writes to them as writes
2630 to the first one to be consistent with sched-deps.c. */
2631 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2632 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2633 #endif
2635 /* Mark special refs that generate read/write def pair. */
2636 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2637 || regno == STACK_POINTER_REGNUM)
2638 bitmap_set_bit (tmp, regno);
2641 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2643 df_ref use = *rec;
2644 unsigned int regno = DF_REF_REGNO (use);
2646 /* When these refs are met for the first time, skip them, as
2647 these uses are just counterparts of some defs. */
2648 if (bitmap_bit_p (tmp, regno))
2649 bitmap_clear_bit (tmp, regno);
2650 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2652 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2654 #ifdef STACK_REGS
2655 /* For stack registers, treat reads from them as reads from
2656 the first one to be consistent with sched-deps.c. */
2657 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2658 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2659 #endif
2663 return_regset_to_pool (tmp);
2666 /* Initialize instruction data for INSN in ID using DF's data. */
2667 static void
2668 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2670 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2672 setup_id_for_insn (id, insn, force_unique_p);
2673 setup_id_lhs_rhs (id, insn, force_unique_p);
2675 if (INSN_NOP_P (insn))
2676 return;
2678 maybe_downgrade_id_to_use (id, insn);
2679 setup_id_reg_sets (id, insn);
2682 /* Initialize instruction data for INSN in ID. */
2683 static void
2684 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2686 struct deps_desc _dc, *dc = &_dc;
2688 deps_init_id_data.where = DEPS_IN_NOWHERE;
2689 deps_init_id_data.id = id;
2690 deps_init_id_data.force_unique_p = force_unique_p;
2691 deps_init_id_data.force_use_p = false;
2693 init_deps (dc, false);
2695 memcpy (&deps_init_id_sched_deps_info,
2696 &const_deps_init_id_sched_deps_info,
2697 sizeof (deps_init_id_sched_deps_info));
2699 if (spec_info != NULL)
2700 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2702 sched_deps_info = &deps_init_id_sched_deps_info;
2704 deps_analyze_insn (dc, insn);
2706 free_deps (dc);
2708 deps_init_id_data.id = NULL;
2713 /* Implement hooks for collecting fundamental insn properties like if insn is
2714 an ASM or is within a SCHED_GROUP. */
2716 /* True when a "one-time init" data for INSN was already inited. */
2717 static bool
2718 first_time_insn_init (insn_t insn)
2720 return INSN_LIVE (insn) == NULL;
2723 /* Hash an entry in a transformed_insns hashtable. */
2724 static hashval_t
2725 hash_transformed_insns (const void *p)
2727 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2730 /* Compare the entries in a transformed_insns hashtable. */
2731 static int
2732 eq_transformed_insns (const void *p, const void *q)
2734 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2735 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2737 if (INSN_UID (i1) == INSN_UID (i2))
2738 return 1;
2739 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2742 /* Free an entry in a transformed_insns hashtable. */
2743 static void
2744 free_transformed_insns (void *p)
2746 struct transformed_insns *pti = (struct transformed_insns *) p;
2748 vinsn_detach (pti->vinsn_old);
2749 vinsn_detach (pti->vinsn_new);
2750 free (pti);
2753 /* Init the s_i_d data for INSN which should be inited just once, when
2754 we first see the insn. */
2755 static void
2756 init_first_time_insn_data (insn_t insn)
2758 /* This should not be set if this is the first time we init data for
2759 insn. */
2760 gcc_assert (first_time_insn_init (insn));
2762 /* These are needed for nops too. */
2763 INSN_LIVE (insn) = get_regset_from_pool ();
2764 INSN_LIVE_VALID_P (insn) = false;
2766 if (!INSN_NOP_P (insn))
2768 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2769 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2770 INSN_TRANSFORMED_INSNS (insn)
2771 = htab_create (16, hash_transformed_insns,
2772 eq_transformed_insns, free_transformed_insns);
2773 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2777 /* Free almost all above data for INSN that is scheduled already.
2778 Used for extra-large basic blocks. */
2779 void
2780 free_data_for_scheduled_insn (insn_t insn)
2782 gcc_assert (! first_time_insn_init (insn));
2784 if (! INSN_ANALYZED_DEPS (insn))
2785 return;
2787 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2788 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2789 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2791 /* This is allocated only for bookkeeping insns. */
2792 if (INSN_ORIGINATORS (insn))
2793 BITMAP_FREE (INSN_ORIGINATORS (insn));
2794 free_deps (&INSN_DEPS_CONTEXT (insn));
2796 INSN_ANALYZED_DEPS (insn) = NULL;
2798 /* Clear the readonly flag so we would ICE when trying to recalculate
2799 the deps context (as we believe that it should not happen). */
2800 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2803 /* Free the same data as above for INSN. */
2804 static void
2805 free_first_time_insn_data (insn_t insn)
2807 gcc_assert (! first_time_insn_init (insn));
2809 free_data_for_scheduled_insn (insn);
2810 return_regset_to_pool (INSN_LIVE (insn));
2811 INSN_LIVE (insn) = NULL;
2812 INSN_LIVE_VALID_P (insn) = false;
2815 /* Initialize region-scope data structures for basic blocks. */
2816 static void
2817 init_global_and_expr_for_bb (basic_block bb)
2819 if (sel_bb_empty_p (bb))
2820 return;
2822 invalidate_av_set (bb);
2825 /* Data for global dependency analysis (to initialize CANT_MOVE and
2826 SCHED_GROUP_P). */
2827 static struct
2829 /* Previous insn. */
2830 insn_t prev_insn;
2831 } init_global_data;
2833 /* Determine if INSN is in the sched_group, is an asm or should not be
2834 cloned. After that initialize its expr. */
2835 static void
2836 init_global_and_expr_for_insn (insn_t insn)
2838 if (LABEL_P (insn))
2839 return;
2841 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2843 init_global_data.prev_insn = NULL_RTX;
2844 return;
2847 gcc_assert (INSN_P (insn));
2849 if (SCHED_GROUP_P (insn))
2850 /* Setup a sched_group. */
2852 insn_t prev_insn = init_global_data.prev_insn;
2854 if (prev_insn)
2855 INSN_SCHED_NEXT (prev_insn) = insn;
2857 init_global_data.prev_insn = insn;
2859 else
2860 init_global_data.prev_insn = NULL_RTX;
2862 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2863 || asm_noperands (PATTERN (insn)) >= 0)
2864 /* Mark INSN as an asm. */
2865 INSN_ASM_P (insn) = true;
2868 bool force_unique_p;
2869 ds_t spec_done_ds;
2871 /* Certain instructions cannot be cloned, and frame related insns and
2872 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2873 their block. */
2874 if (prologue_epilogue_contains (insn))
2876 if (RTX_FRAME_RELATED_P (insn))
2877 CANT_MOVE (insn) = 1;
2878 else
2880 rtx note;
2881 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2882 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2883 && ((enum insn_note) INTVAL (XEXP (note, 0))
2884 == NOTE_INSN_EPILOGUE_BEG))
2886 CANT_MOVE (insn) = 1;
2887 break;
2890 force_unique_p = true;
2892 else
2893 if (CANT_MOVE (insn)
2894 || INSN_ASM_P (insn)
2895 || SCHED_GROUP_P (insn)
2896 /* Exception handling insns are always unique. */
2897 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2898 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2899 || control_flow_insn_p (insn))
2900 force_unique_p = true;
2901 else
2902 force_unique_p = false;
2904 if (targetm.sched.get_insn_spec_ds)
2906 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2907 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2909 else
2910 spec_done_ds = 0;
2912 /* Initialize INSN's expr. */
2913 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2914 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2915 spec_done_ds, 0, 0, NULL, true, false, false, false,
2916 CANT_MOVE (insn));
2919 init_first_time_insn_data (insn);
2922 /* Scan the region and initialize instruction data for basic blocks BBS. */
2923 void
2924 sel_init_global_and_expr (bb_vec_t bbs)
2926 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2927 const struct sched_scan_info_def ssi =
2929 NULL, /* extend_bb */
2930 init_global_and_expr_for_bb, /* init_bb */
2931 extend_insn_data, /* extend_insn */
2932 init_global_and_expr_for_insn /* init_insn */
2935 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2938 /* Finalize region-scope data structures for basic blocks. */
2939 static void
2940 finish_global_and_expr_for_bb (basic_block bb)
2942 av_set_clear (&BB_AV_SET (bb));
2943 BB_AV_LEVEL (bb) = 0;
2946 /* Finalize INSN's data. */
2947 static void
2948 finish_global_and_expr_insn (insn_t insn)
2950 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2951 return;
2953 gcc_assert (INSN_P (insn));
2955 if (INSN_LUID (insn) > 0)
2957 free_first_time_insn_data (insn);
2958 INSN_WS_LEVEL (insn) = 0;
2959 CANT_MOVE (insn) = 0;
2961 /* We can no longer assert this, as vinsns of this insn could be
2962 easily live in other insn's caches. This should be changed to
2963 a counter-like approach among all vinsns. */
2964 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2965 clear_expr (INSN_EXPR (insn));
2969 /* Finalize per instruction data for the whole region. */
2970 void
2971 sel_finish_global_and_expr (void)
2974 bb_vec_t bbs;
2975 int i;
2977 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2979 for (i = 0; i < current_nr_blocks; i++)
2980 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2982 /* Clear AV_SETs and INSN_EXPRs. */
2984 const struct sched_scan_info_def ssi =
2986 NULL, /* extend_bb */
2987 finish_global_and_expr_for_bb, /* init_bb */
2988 NULL, /* extend_insn */
2989 finish_global_and_expr_insn /* init_insn */
2992 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2995 VEC_free (basic_block, heap, bbs);
2998 finish_insns ();
3002 /* In the below hooks, we merely calculate whether or not a dependence
3003 exists, and in what part of insn. However, we will need more data
3004 when we'll start caching dependence requests. */
3006 /* Container to hold information for dependency analysis. */
3007 static struct
3009 deps_t dc;
3011 /* A variable to track which part of rtx we are scanning in
3012 sched-deps.c: sched_analyze_insn (). */
3013 deps_where_t where;
3015 /* Current producer. */
3016 insn_t pro;
3018 /* Current consumer. */
3019 vinsn_t con;
3021 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3022 X is from { INSN, LHS, RHS }. */
3023 ds_t has_dep_p[DEPS_IN_NOWHERE];
3024 } has_dependence_data;
3026 /* Start analyzing dependencies of INSN. */
3027 static void
3028 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3030 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3032 has_dependence_data.where = DEPS_IN_INSN;
3035 /* Finish analyzing dependencies of an insn. */
3036 static void
3037 has_dependence_finish_insn (void)
3039 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3041 has_dependence_data.where = DEPS_IN_NOWHERE;
3044 /* Start analyzing dependencies of LHS. */
3045 static void
3046 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3048 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3050 if (VINSN_LHS (has_dependence_data.con) != NULL)
3051 has_dependence_data.where = DEPS_IN_LHS;
3054 /* Finish analyzing dependencies of an lhs. */
3055 static void
3056 has_dependence_finish_lhs (void)
3058 has_dependence_data.where = DEPS_IN_INSN;
3061 /* Start analyzing dependencies of RHS. */
3062 static void
3063 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3065 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3067 if (VINSN_RHS (has_dependence_data.con) != NULL)
3068 has_dependence_data.where = DEPS_IN_RHS;
3071 /* Start analyzing dependencies of an rhs. */
3072 static void
3073 has_dependence_finish_rhs (void)
3075 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3076 || has_dependence_data.where == DEPS_IN_INSN);
3078 has_dependence_data.where = DEPS_IN_INSN;
3081 /* Note a set of REGNO. */
3082 static void
3083 has_dependence_note_reg_set (int regno)
3085 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3087 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3088 VINSN_INSN_RTX
3089 (has_dependence_data.con)))
3091 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3093 if (reg_last->sets != NULL
3094 || reg_last->clobbers != NULL)
3095 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3097 if (reg_last->uses)
3098 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3102 /* Note a clobber of REGNO. */
3103 static void
3104 has_dependence_note_reg_clobber (int regno)
3106 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3108 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3109 VINSN_INSN_RTX
3110 (has_dependence_data.con)))
3112 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3114 if (reg_last->sets)
3115 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3117 if (reg_last->uses)
3118 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3122 /* Note a use of REGNO. */
3123 static void
3124 has_dependence_note_reg_use (int regno)
3126 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3128 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3129 VINSN_INSN_RTX
3130 (has_dependence_data.con)))
3132 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3134 if (reg_last->sets)
3135 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3137 if (reg_last->clobbers)
3138 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3140 /* Handle BE_IN_SPEC. */
3141 if (reg_last->uses)
3143 ds_t pro_spec_checked_ds;
3145 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3146 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3148 if (pro_spec_checked_ds != 0)
3149 /* Merge BE_IN_SPEC bits into *DSP. */
3150 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3151 NULL_RTX, NULL_RTX);
3156 /* Note a memory dependence. */
3157 static void
3158 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3159 rtx pending_mem ATTRIBUTE_UNUSED,
3160 insn_t pending_insn ATTRIBUTE_UNUSED,
3161 ds_t ds ATTRIBUTE_UNUSED)
3163 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3164 VINSN_INSN_RTX (has_dependence_data.con)))
3166 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3168 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3172 /* Note a dependence. */
3173 static void
3174 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3175 ds_t ds ATTRIBUTE_UNUSED)
3177 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3178 VINSN_INSN_RTX (has_dependence_data.con)))
3180 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3182 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3186 /* Mark the insn as having a hard dependence that prevents speculation. */
3187 void
3188 sel_mark_hard_insn (rtx insn)
3190 int i;
3192 /* Only work when we're in has_dependence_p mode.
3193 ??? This is a hack, this should actually be a hook. */
3194 if (!has_dependence_data.dc || !has_dependence_data.pro)
3195 return;
3197 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3198 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3200 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3201 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3204 /* This structure holds the hooks for the dependency analysis used when
3205 actually processing dependencies in the scheduler. */
3206 static struct sched_deps_info_def has_dependence_sched_deps_info;
3208 /* This initializes most of the fields of the above structure. */
3209 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3211 NULL,
3213 has_dependence_start_insn,
3214 has_dependence_finish_insn,
3215 has_dependence_start_lhs,
3216 has_dependence_finish_lhs,
3217 has_dependence_start_rhs,
3218 has_dependence_finish_rhs,
3219 has_dependence_note_reg_set,
3220 has_dependence_note_reg_clobber,
3221 has_dependence_note_reg_use,
3222 has_dependence_note_mem_dep,
3223 has_dependence_note_dep,
3225 0, /* use_cselib */
3226 0, /* use_deps_list */
3227 0 /* generate_spec_deps */
3230 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3231 static void
3232 setup_has_dependence_sched_deps_info (void)
3234 memcpy (&has_dependence_sched_deps_info,
3235 &const_has_dependence_sched_deps_info,
3236 sizeof (has_dependence_sched_deps_info));
3238 if (spec_info != NULL)
3239 has_dependence_sched_deps_info.generate_spec_deps = 1;
3241 sched_deps_info = &has_dependence_sched_deps_info;
3244 /* Remove all dependences found and recorded in has_dependence_data array. */
3245 void
3246 sel_clear_has_dependence (void)
3248 int i;
3250 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3251 has_dependence_data.has_dep_p[i] = 0;
3254 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3255 to the dependence information array in HAS_DEP_PP. */
3256 ds_t
3257 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3259 int i;
3260 ds_t ds;
3261 struct deps_desc *dc;
3263 if (INSN_SIMPLEJUMP_P (pred))
3264 /* Unconditional jump is just a transfer of control flow.
3265 Ignore it. */
3266 return false;
3268 dc = &INSN_DEPS_CONTEXT (pred);
3270 /* We init this field lazily. */
3271 if (dc->reg_last == NULL)
3272 init_deps_reg_last (dc);
3274 if (!dc->readonly)
3276 has_dependence_data.pro = NULL;
3277 /* Initialize empty dep context with information about PRED. */
3278 advance_deps_context (dc, pred);
3279 dc->readonly = 1;
3282 has_dependence_data.where = DEPS_IN_NOWHERE;
3283 has_dependence_data.pro = pred;
3284 has_dependence_data.con = EXPR_VINSN (expr);
3285 has_dependence_data.dc = dc;
3287 sel_clear_has_dependence ();
3289 /* Now catch all dependencies that would be generated between PRED and
3290 INSN. */
3291 setup_has_dependence_sched_deps_info ();
3292 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3293 has_dependence_data.dc = NULL;
3295 /* When a barrier was found, set DEPS_IN_INSN bits. */
3296 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3297 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3298 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3299 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3301 /* Do not allow stores to memory to move through checks. Currently
3302 we don't move this to sched-deps.c as the check doesn't have
3303 obvious places to which this dependence can be attached.
3304 FIMXE: this should go to a hook. */
3305 if (EXPR_LHS (expr)
3306 && MEM_P (EXPR_LHS (expr))
3307 && sel_insn_is_speculation_check (pred))
3308 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3310 *has_dep_pp = has_dependence_data.has_dep_p;
3311 ds = 0;
3312 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3313 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3314 NULL_RTX, NULL_RTX);
3316 return ds;
3320 /* Dependence hooks implementation that checks dependence latency constraints
3321 on the insns being scheduled. The entry point for these routines is
3322 tick_check_p predicate. */
3324 static struct
3326 /* An expr we are currently checking. */
3327 expr_t expr;
3329 /* A minimal cycle for its scheduling. */
3330 int cycle;
3332 /* Whether we have seen a true dependence while checking. */
3333 bool seen_true_dep_p;
3334 } tick_check_data;
3336 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3337 on PRO with status DS and weight DW. */
3338 static void
3339 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3341 expr_t con_expr = tick_check_data.expr;
3342 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3344 if (con_insn != pro_insn)
3346 enum reg_note dt;
3347 int tick;
3349 if (/* PROducer was removed from above due to pipelining. */
3350 !INSN_IN_STREAM_P (pro_insn)
3351 /* Or PROducer was originally on the next iteration regarding the
3352 CONsumer. */
3353 || (INSN_SCHED_TIMES (pro_insn)
3354 - EXPR_SCHED_TIMES (con_expr)) > 1)
3355 /* Don't count this dependence. */
3356 return;
3358 dt = ds_to_dt (ds);
3359 if (dt == REG_DEP_TRUE)
3360 tick_check_data.seen_true_dep_p = true;
3362 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3365 dep_def _dep, *dep = &_dep;
3367 init_dep (dep, pro_insn, con_insn, dt);
3369 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3372 /* When there are several kinds of dependencies between pro and con,
3373 only REG_DEP_TRUE should be taken into account. */
3374 if (tick > tick_check_data.cycle
3375 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3376 tick_check_data.cycle = tick;
3380 /* An implementation of note_dep hook. */
3381 static void
3382 tick_check_note_dep (insn_t pro, ds_t ds)
3384 tick_check_dep_with_dw (pro, ds, 0);
3387 /* An implementation of note_mem_dep hook. */
3388 static void
3389 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3391 dw_t dw;
3393 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3394 ? estimate_dep_weak (mem1, mem2)
3395 : 0);
3397 tick_check_dep_with_dw (pro, ds, dw);
3400 /* This structure contains hooks for dependence analysis used when determining
3401 whether an insn is ready for scheduling. */
3402 static struct sched_deps_info_def tick_check_sched_deps_info =
3404 NULL,
3406 NULL,
3407 NULL,
3408 NULL,
3409 NULL,
3410 NULL,
3411 NULL,
3412 haifa_note_reg_set,
3413 haifa_note_reg_clobber,
3414 haifa_note_reg_use,
3415 tick_check_note_mem_dep,
3416 tick_check_note_dep,
3418 0, 0, 0
3421 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3422 scheduled. Return 0 if all data from producers in DC is ready. */
3424 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3426 int cycles_left;
3427 /* Initialize variables. */
3428 tick_check_data.expr = expr;
3429 tick_check_data.cycle = 0;
3430 tick_check_data.seen_true_dep_p = false;
3431 sched_deps_info = &tick_check_sched_deps_info;
3433 gcc_assert (!dc->readonly);
3434 dc->readonly = 1;
3435 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3436 dc->readonly = 0;
3438 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3440 return cycles_left >= 0 ? cycles_left : 0;
3444 /* Functions to work with insns. */
3446 /* Returns true if LHS of INSN is the same as DEST of an insn
3447 being moved. */
3448 bool
3449 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3451 rtx lhs = INSN_LHS (insn);
3453 if (lhs == NULL || dest == NULL)
3454 return false;
3456 return rtx_equal_p (lhs, dest);
3459 /* Return s_i_d entry of INSN. Callable from debugger. */
3460 sel_insn_data_def
3461 insn_sid (insn_t insn)
3463 return *SID (insn);
3466 /* True when INSN is a speculative check. We can tell this by looking
3467 at the data structures of the selective scheduler, not by examining
3468 the pattern. */
3469 bool
3470 sel_insn_is_speculation_check (rtx insn)
3472 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3475 /* Extracts machine mode MODE and destination location DST_LOC
3476 for given INSN. */
3477 void
3478 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3480 rtx pat = PATTERN (insn);
3482 gcc_assert (dst_loc);
3483 gcc_assert (GET_CODE (pat) == SET);
3485 *dst_loc = SET_DEST (pat);
3487 gcc_assert (*dst_loc);
3488 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3490 if (mode)
3491 *mode = GET_MODE (*dst_loc);
3494 /* Returns true when moving through JUMP will result in bookkeeping
3495 creation. */
3496 bool
3497 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3499 insn_t succ;
3500 succ_iterator si;
3502 FOR_EACH_SUCC (succ, si, jump)
3503 if (sel_num_cfg_preds_gt_1 (succ))
3504 return true;
3506 return false;
3509 /* Return 'true' if INSN is the only one in its basic block. */
3510 static bool
3511 insn_is_the_only_one_in_bb_p (insn_t insn)
3513 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3516 #ifdef ENABLE_CHECKING
3517 /* Check that the region we're scheduling still has at most one
3518 backedge. */
3519 static void
3520 verify_backedges (void)
3522 if (pipelining_p)
3524 int i, n = 0;
3525 edge e;
3526 edge_iterator ei;
3528 for (i = 0; i < current_nr_blocks; i++)
3529 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3530 if (in_current_region_p (e->dest)
3531 && BLOCK_TO_BB (e->dest->index) < i)
3532 n++;
3534 gcc_assert (n <= 1);
3537 #endif
3540 /* Functions to work with control flow. */
3542 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3543 are sorted in topological order (it might have been invalidated by
3544 redirecting an edge). */
3545 static void
3546 sel_recompute_toporder (void)
3548 int i, n, rgn;
3549 int *postorder, n_blocks;
3551 postorder = XALLOCAVEC (int, n_basic_blocks);
3552 n_blocks = post_order_compute (postorder, false, false);
3554 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3555 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3556 if (CONTAINING_RGN (postorder[i]) == rgn)
3558 BLOCK_TO_BB (postorder[i]) = n;
3559 BB_TO_BLOCK (n) = postorder[i];
3560 n++;
3563 /* Assert that we updated info for all blocks. We may miss some blocks if
3564 this function is called when redirecting an edge made a block
3565 unreachable, but that block is not deleted yet. */
3566 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3569 /* Tidy the possibly empty block BB. */
3570 static bool
3571 maybe_tidy_empty_bb (basic_block bb)
3573 basic_block succ_bb, pred_bb;
3574 VEC (basic_block, heap) *dom_bbs;
3575 edge e;
3576 edge_iterator ei;
3577 bool rescan_p;
3579 /* Keep empty bb only if this block immediately precedes EXIT and
3580 has incoming non-fallthrough edge, or it has no predecessors or
3581 successors. Otherwise remove it. */
3582 if (!sel_bb_empty_p (bb)
3583 || (single_succ_p (bb)
3584 && single_succ (bb) == EXIT_BLOCK_PTR
3585 && (!single_pred_p (bb)
3586 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3587 || EDGE_COUNT (bb->preds) == 0
3588 || EDGE_COUNT (bb->succs) == 0)
3589 return false;
3591 /* Do not attempt to redirect complex edges. */
3592 FOR_EACH_EDGE (e, ei, bb->preds)
3593 if (e->flags & EDGE_COMPLEX)
3594 return false;
3596 free_data_sets (bb);
3598 /* Do not delete BB if it has more than one successor.
3599 That can occur when we moving a jump. */
3600 if (!single_succ_p (bb))
3602 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3603 sel_merge_blocks (bb->prev_bb, bb);
3604 return true;
3607 succ_bb = single_succ (bb);
3608 rescan_p = true;
3609 pred_bb = NULL;
3610 dom_bbs = NULL;
3612 /* Redirect all non-fallthru edges to the next bb. */
3613 while (rescan_p)
3615 rescan_p = false;
3617 FOR_EACH_EDGE (e, ei, bb->preds)
3619 pred_bb = e->src;
3621 if (!(e->flags & EDGE_FALLTHRU))
3623 /* We can not invalidate computed topological order by moving
3624 the edge destination block (E->SUCC) along a fallthru edge.
3626 We will update dominators here only when we'll get
3627 an unreachable block when redirecting, otherwise
3628 sel_redirect_edge_and_branch will take care of it. */
3629 if (e->dest != bb
3630 && single_pred_p (e->dest))
3631 VEC_safe_push (basic_block, heap, dom_bbs, e->dest);
3632 sel_redirect_edge_and_branch (e, succ_bb);
3633 rescan_p = true;
3634 break;
3636 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3637 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3638 still have to adjust it. */
3639 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3641 /* If possible, try to remove the unneeded conditional jump. */
3642 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3643 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3645 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3646 tidy_fallthru_edge (e);
3648 else
3649 sel_redirect_edge_and_branch (e, succ_bb);
3650 rescan_p = true;
3651 break;
3656 if (can_merge_blocks_p (bb->prev_bb, bb))
3657 sel_merge_blocks (bb->prev_bb, bb);
3658 else
3660 /* This is a block without fallthru predecessor. Just delete it. */
3661 gcc_assert (pred_bb != NULL);
3663 if (in_current_region_p (pred_bb))
3664 move_bb_info (pred_bb, bb);
3665 remove_empty_bb (bb, true);
3668 if (!VEC_empty (basic_block, dom_bbs))
3670 VEC_safe_push (basic_block, heap, dom_bbs, succ_bb);
3671 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3672 VEC_free (basic_block, heap, dom_bbs);
3675 return true;
3678 /* Tidy the control flow after we have removed original insn from
3679 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3680 is true, also try to optimize control flow on non-empty blocks. */
3681 bool
3682 tidy_control_flow (basic_block xbb, bool full_tidying)
3684 bool changed = true;
3685 insn_t first, last;
3687 /* First check whether XBB is empty. */
3688 changed = maybe_tidy_empty_bb (xbb);
3689 if (changed || !full_tidying)
3690 return changed;
3692 /* Check if there is a unnecessary jump after insn left. */
3693 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3694 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3695 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3697 if (sel_remove_insn (BB_END (xbb), false, false))
3698 return true;
3699 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3702 first = sel_bb_head (xbb);
3703 last = sel_bb_end (xbb);
3704 if (MAY_HAVE_DEBUG_INSNS)
3706 if (first != last && DEBUG_INSN_P (first))
3708 first = NEXT_INSN (first);
3709 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3711 if (first != last && DEBUG_INSN_P (last))
3713 last = PREV_INSN (last);
3714 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3716 /* Check if there is an unnecessary jump in previous basic block leading
3717 to next basic block left after removing INSN from stream.
3718 If it is so, remove that jump and redirect edge to current
3719 basic block (where there was INSN before deletion). This way
3720 when NOP will be deleted several instructions later with its
3721 basic block we will not get a jump to next instruction, which
3722 can be harmful. */
3723 if (first == last
3724 && !sel_bb_empty_p (xbb)
3725 && INSN_NOP_P (last)
3726 /* Flow goes fallthru from current block to the next. */
3727 && EDGE_COUNT (xbb->succs) == 1
3728 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3729 /* When successor is an EXIT block, it may not be the next block. */
3730 && single_succ (xbb) != EXIT_BLOCK_PTR
3731 /* And unconditional jump in previous basic block leads to
3732 next basic block of XBB and this jump can be safely removed. */
3733 && in_current_region_p (xbb->prev_bb)
3734 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3735 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3736 /* Also this jump is not at the scheduling boundary. */
3737 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3739 bool recompute_toporder_p;
3740 /* Clear data structures of jump - jump itself will be removed
3741 by sel_redirect_edge_and_branch. */
3742 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3743 recompute_toporder_p
3744 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3746 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3748 /* It can turn out that after removing unused jump, basic block
3749 that contained that jump, becomes empty too. In such case
3750 remove it too. */
3751 if (sel_bb_empty_p (xbb->prev_bb))
3752 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3753 if (recompute_toporder_p)
3754 sel_recompute_toporder ();
3757 #ifdef ENABLE_CHECKING
3758 verify_backedges ();
3759 verify_dominators (CDI_DOMINATORS);
3760 #endif
3762 return changed;
3765 /* Purge meaningless empty blocks in the middle of a region. */
3766 void
3767 purge_empty_blocks (void)
3769 int i;
3771 /* Do not attempt to delete the first basic block in the region. */
3772 for (i = 1; i < current_nr_blocks; )
3774 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3776 if (maybe_tidy_empty_bb (b))
3777 continue;
3779 i++;
3783 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3784 do not delete insn's data, because it will be later re-emitted.
3785 Return true if we have removed some blocks afterwards. */
3786 bool
3787 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3789 basic_block bb = BLOCK_FOR_INSN (insn);
3791 gcc_assert (INSN_IN_STREAM_P (insn));
3793 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3795 expr_t expr;
3796 av_set_iterator i;
3798 /* When we remove a debug insn that is head of a BB, it remains
3799 in the AV_SET of the block, but it shouldn't. */
3800 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3801 if (EXPR_INSN_RTX (expr) == insn)
3803 av_set_iter_remove (&i);
3804 break;
3808 if (only_disconnect)
3810 insn_t prev = PREV_INSN (insn);
3811 insn_t next = NEXT_INSN (insn);
3812 basic_block bb = BLOCK_FOR_INSN (insn);
3814 NEXT_INSN (prev) = next;
3815 PREV_INSN (next) = prev;
3817 if (BB_HEAD (bb) == insn)
3819 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3820 BB_HEAD (bb) = prev;
3822 if (BB_END (bb) == insn)
3823 BB_END (bb) = prev;
3825 else
3827 remove_insn (insn);
3828 clear_expr (INSN_EXPR (insn));
3831 /* It is necessary to null this fields before calling add_insn (). */
3832 PREV_INSN (insn) = NULL_RTX;
3833 NEXT_INSN (insn) = NULL_RTX;
3835 return tidy_control_flow (bb, full_tidying);
3838 /* Estimate number of the insns in BB. */
3839 static int
3840 sel_estimate_number_of_insns (basic_block bb)
3842 int res = 0;
3843 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3845 for (; insn != next_tail; insn = NEXT_INSN (insn))
3846 if (NONDEBUG_INSN_P (insn))
3847 res++;
3849 return res;
3852 /* We don't need separate luids for notes or labels. */
3853 static int
3854 sel_luid_for_non_insn (rtx x)
3856 gcc_assert (NOTE_P (x) || LABEL_P (x));
3858 return -1;
3861 /* Return seqno of the only predecessor of INSN. */
3862 static int
3863 get_seqno_of_a_pred (insn_t insn)
3865 int seqno;
3867 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3869 if (!sel_bb_head_p (insn))
3870 seqno = INSN_SEQNO (PREV_INSN (insn));
3871 else
3873 basic_block bb = BLOCK_FOR_INSN (insn);
3875 if (single_pred_p (bb)
3876 && !in_current_region_p (single_pred (bb)))
3878 /* We can have preds outside a region when splitting edges
3879 for pipelining of an outer loop. Use succ instead.
3880 There should be only one of them. */
3881 insn_t succ = NULL;
3882 succ_iterator si;
3883 bool first = true;
3885 gcc_assert (flag_sel_sched_pipelining_outer_loops
3886 && current_loop_nest);
3887 FOR_EACH_SUCC_1 (succ, si, insn,
3888 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3890 gcc_assert (first);
3891 first = false;
3894 gcc_assert (succ != NULL);
3895 seqno = INSN_SEQNO (succ);
3897 else
3899 insn_t *preds;
3900 int n;
3902 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3903 gcc_assert (n == 1);
3905 seqno = INSN_SEQNO (preds[0]);
3907 free (preds);
3911 return seqno;
3914 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3915 with positive seqno exist. */
3917 get_seqno_by_preds (rtx insn)
3919 basic_block bb = BLOCK_FOR_INSN (insn);
3920 rtx tmp = insn, head = BB_HEAD (bb);
3921 insn_t *preds;
3922 int n, i, seqno;
3924 while (tmp != head)
3925 if (INSN_P (tmp))
3926 return INSN_SEQNO (tmp);
3927 else
3928 tmp = PREV_INSN (tmp);
3930 cfg_preds (bb, &preds, &n);
3931 for (i = 0, seqno = -1; i < n; i++)
3932 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3934 return seqno;
3939 /* Extend pass-scope data structures for basic blocks. */
3940 void
3941 sel_extend_global_bb_info (void)
3943 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3944 last_basic_block);
3947 /* Extend region-scope data structures for basic blocks. */
3948 static void
3949 extend_region_bb_info (void)
3951 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3952 last_basic_block);
3955 /* Extend all data structures to fit for all basic blocks. */
3956 static void
3957 extend_bb_info (void)
3959 sel_extend_global_bb_info ();
3960 extend_region_bb_info ();
3963 /* Finalize pass-scope data structures for basic blocks. */
3964 void
3965 sel_finish_global_bb_info (void)
3967 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3970 /* Finalize region-scope data structures for basic blocks. */
3971 static void
3972 finish_region_bb_info (void)
3974 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3978 /* Data for each insn in current region. */
3979 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3981 /* A vector for the insns we've emitted. */
3982 static insn_vec_t new_insns = NULL;
3984 /* Extend data structures for insns from current region. */
3985 static void
3986 extend_insn_data (void)
3988 int reserve;
3990 sched_extend_target ();
3991 sched_deps_init (false);
3993 /* Extend data structures for insns from current region. */
3994 reserve = (sched_max_luid + 1
3995 - VEC_length (sel_insn_data_def, s_i_d));
3996 if (reserve > 0
3997 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
3999 int size;
4001 if (sched_max_luid / 2 > 1024)
4002 size = sched_max_luid + 1024;
4003 else
4004 size = 3 * sched_max_luid / 2;
4007 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
4011 /* Finalize data structures for insns from current region. */
4012 static void
4013 finish_insns (void)
4015 unsigned i;
4017 /* Clear here all dependence contexts that may have left from insns that were
4018 removed during the scheduling. */
4019 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
4021 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
4023 if (sid_entry->live)
4024 return_regset_to_pool (sid_entry->live);
4025 if (sid_entry->analyzed_deps)
4027 BITMAP_FREE (sid_entry->analyzed_deps);
4028 BITMAP_FREE (sid_entry->found_deps);
4029 htab_delete (sid_entry->transformed_insns);
4030 free_deps (&sid_entry->deps_context);
4032 if (EXPR_VINSN (&sid_entry->expr))
4034 clear_expr (&sid_entry->expr);
4036 /* Also, clear CANT_MOVE bit here, because we really don't want it
4037 to be passed to the next region. */
4038 CANT_MOVE_BY_LUID (i) = 0;
4042 VEC_free (sel_insn_data_def, heap, s_i_d);
4045 /* A proxy to pass initialization data to init_insn (). */
4046 static sel_insn_data_def _insn_init_ssid;
4047 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4049 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4050 static bool insn_init_create_new_vinsn_p;
4052 /* Set all necessary data for initialization of the new insn[s]. */
4053 static expr_t
4054 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4056 expr_t x = &insn_init_ssid->expr;
4058 copy_expr_onside (x, expr);
4059 if (vi != NULL)
4061 insn_init_create_new_vinsn_p = false;
4062 change_vinsn_in_expr (x, vi);
4064 else
4065 insn_init_create_new_vinsn_p = true;
4067 insn_init_ssid->seqno = seqno;
4068 return x;
4071 /* Init data for INSN. */
4072 static void
4073 init_insn_data (insn_t insn)
4075 expr_t expr;
4076 sel_insn_data_t ssid = insn_init_ssid;
4078 /* The fields mentioned below are special and hence are not being
4079 propagated to the new insns. */
4080 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4081 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4082 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4084 expr = INSN_EXPR (insn);
4085 copy_expr (expr, &ssid->expr);
4086 prepare_insn_expr (insn, ssid->seqno);
4088 if (insn_init_create_new_vinsn_p)
4089 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4091 if (first_time_insn_init (insn))
4092 init_first_time_insn_data (insn);
4095 /* This is used to initialize spurious jumps generated by
4096 sel_redirect_edge (). */
4097 static void
4098 init_simplejump_data (insn_t insn)
4100 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4101 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
4102 false, true);
4103 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4104 init_first_time_insn_data (insn);
4107 /* Perform deferred initialization of insns. This is used to process
4108 a new jump that may be created by redirect_edge. */
4109 void
4110 sel_init_new_insn (insn_t insn, int flags)
4112 /* We create data structures for bb when the first insn is emitted in it. */
4113 if (INSN_P (insn)
4114 && INSN_IN_STREAM_P (insn)
4115 && insn_is_the_only_one_in_bb_p (insn))
4117 extend_bb_info ();
4118 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4121 if (flags & INSN_INIT_TODO_LUID)
4122 sched_init_luids (NULL, NULL, NULL, insn);
4124 if (flags & INSN_INIT_TODO_SSID)
4126 extend_insn_data ();
4127 init_insn_data (insn);
4128 clear_expr (&insn_init_ssid->expr);
4131 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4133 extend_insn_data ();
4134 init_simplejump_data (insn);
4137 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4138 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4142 /* Functions to init/finish work with lv sets. */
4144 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4145 static void
4146 init_lv_set (basic_block bb)
4148 gcc_assert (!BB_LV_SET_VALID_P (bb));
4150 BB_LV_SET (bb) = get_regset_from_pool ();
4151 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4152 BB_LV_SET_VALID_P (bb) = true;
4155 /* Copy liveness information to BB from FROM_BB. */
4156 static void
4157 copy_lv_set_from (basic_block bb, basic_block from_bb)
4159 gcc_assert (!BB_LV_SET_VALID_P (bb));
4161 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4162 BB_LV_SET_VALID_P (bb) = true;
4165 /* Initialize lv set of all bb headers. */
4166 void
4167 init_lv_sets (void)
4169 basic_block bb;
4171 /* Initialize of LV sets. */
4172 FOR_EACH_BB (bb)
4173 init_lv_set (bb);
4175 /* Don't forget EXIT_BLOCK. */
4176 init_lv_set (EXIT_BLOCK_PTR);
4179 /* Release lv set of HEAD. */
4180 static void
4181 free_lv_set (basic_block bb)
4183 gcc_assert (BB_LV_SET (bb) != NULL);
4185 return_regset_to_pool (BB_LV_SET (bb));
4186 BB_LV_SET (bb) = NULL;
4187 BB_LV_SET_VALID_P (bb) = false;
4190 /* Finalize lv sets of all bb headers. */
4191 void
4192 free_lv_sets (void)
4194 basic_block bb;
4196 /* Don't forget EXIT_BLOCK. */
4197 free_lv_set (EXIT_BLOCK_PTR);
4199 /* Free LV sets. */
4200 FOR_EACH_BB (bb)
4201 if (BB_LV_SET (bb))
4202 free_lv_set (bb);
4205 /* Initialize an invalid AV_SET for BB.
4206 This set will be updated next time compute_av () process BB. */
4207 static void
4208 invalidate_av_set (basic_block bb)
4210 gcc_assert (BB_AV_LEVEL (bb) <= 0
4211 && BB_AV_SET (bb) == NULL);
4213 BB_AV_LEVEL (bb) = -1;
4216 /* Create initial data sets for BB (they will be invalid). */
4217 static void
4218 create_initial_data_sets (basic_block bb)
4220 if (BB_LV_SET (bb))
4221 BB_LV_SET_VALID_P (bb) = false;
4222 else
4223 BB_LV_SET (bb) = get_regset_from_pool ();
4224 invalidate_av_set (bb);
4227 /* Free av set of BB. */
4228 static void
4229 free_av_set (basic_block bb)
4231 av_set_clear (&BB_AV_SET (bb));
4232 BB_AV_LEVEL (bb) = 0;
4235 /* Free data sets of BB. */
4236 void
4237 free_data_sets (basic_block bb)
4239 free_lv_set (bb);
4240 free_av_set (bb);
4243 /* Exchange lv sets of TO and FROM. */
4244 static void
4245 exchange_lv_sets (basic_block to, basic_block from)
4248 regset to_lv_set = BB_LV_SET (to);
4250 BB_LV_SET (to) = BB_LV_SET (from);
4251 BB_LV_SET (from) = to_lv_set;
4255 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4257 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4258 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4263 /* Exchange av sets of TO and FROM. */
4264 static void
4265 exchange_av_sets (basic_block to, basic_block from)
4268 av_set_t to_av_set = BB_AV_SET (to);
4270 BB_AV_SET (to) = BB_AV_SET (from);
4271 BB_AV_SET (from) = to_av_set;
4275 int to_av_level = BB_AV_LEVEL (to);
4277 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4278 BB_AV_LEVEL (from) = to_av_level;
4282 /* Exchange data sets of TO and FROM. */
4283 void
4284 exchange_data_sets (basic_block to, basic_block from)
4286 exchange_lv_sets (to, from);
4287 exchange_av_sets (to, from);
4290 /* Copy data sets of FROM to TO. */
4291 void
4292 copy_data_sets (basic_block to, basic_block from)
4294 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4295 gcc_assert (BB_AV_SET (to) == NULL);
4297 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4298 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4300 if (BB_AV_SET_VALID_P (from))
4302 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4304 if (BB_LV_SET_VALID_P (from))
4306 gcc_assert (BB_LV_SET (to) != NULL);
4307 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4311 /* Return an av set for INSN, if any. */
4312 av_set_t
4313 get_av_set (insn_t insn)
4315 av_set_t av_set;
4317 gcc_assert (AV_SET_VALID_P (insn));
4319 if (sel_bb_head_p (insn))
4320 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4321 else
4322 av_set = NULL;
4324 return av_set;
4327 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4329 get_av_level (insn_t insn)
4331 int av_level;
4333 gcc_assert (INSN_P (insn));
4335 if (sel_bb_head_p (insn))
4336 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4337 else
4338 av_level = INSN_WS_LEVEL (insn);
4340 return av_level;
4345 /* Variables to work with control-flow graph. */
4347 /* The basic block that already has been processed by the sched_data_update (),
4348 but hasn't been in sel_add_bb () yet. */
4349 static VEC (basic_block, heap) *last_added_blocks = NULL;
4351 /* A pool for allocating successor infos. */
4352 static struct
4354 /* A stack for saving succs_info structures. */
4355 struct succs_info *stack;
4357 /* Its size. */
4358 int size;
4360 /* Top of the stack. */
4361 int top;
4363 /* Maximal value of the top. */
4364 int max_top;
4365 } succs_info_pool;
4367 /* Functions to work with control-flow graph. */
4369 /* Return basic block note of BB. */
4370 insn_t
4371 sel_bb_head (basic_block bb)
4373 insn_t head;
4375 if (bb == EXIT_BLOCK_PTR)
4377 gcc_assert (exit_insn != NULL_RTX);
4378 head = exit_insn;
4380 else
4382 insn_t note;
4384 note = bb_note (bb);
4385 head = next_nonnote_insn (note);
4387 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4388 head = NULL_RTX;
4391 return head;
4394 /* Return true if INSN is a basic block header. */
4395 bool
4396 sel_bb_head_p (insn_t insn)
4398 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4401 /* Return last insn of BB. */
4402 insn_t
4403 sel_bb_end (basic_block bb)
4405 if (sel_bb_empty_p (bb))
4406 return NULL_RTX;
4408 gcc_assert (bb != EXIT_BLOCK_PTR);
4410 return BB_END (bb);
4413 /* Return true if INSN is the last insn in its basic block. */
4414 bool
4415 sel_bb_end_p (insn_t insn)
4417 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4420 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4421 bool
4422 sel_bb_empty_p (basic_block bb)
4424 return sel_bb_head (bb) == NULL;
4427 /* True when BB belongs to the current scheduling region. */
4428 bool
4429 in_current_region_p (basic_block bb)
4431 if (bb->index < NUM_FIXED_BLOCKS)
4432 return false;
4434 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4437 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4438 basic_block
4439 fallthru_bb_of_jump (rtx jump)
4441 if (!JUMP_P (jump))
4442 return NULL;
4444 if (!any_condjump_p (jump))
4445 return NULL;
4447 /* A basic block that ends with a conditional jump may still have one successor
4448 (and be followed by a barrier), we are not interested. */
4449 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4450 return NULL;
4452 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4455 /* Remove all notes from BB. */
4456 static void
4457 init_bb (basic_block bb)
4459 remove_notes (bb_note (bb), BB_END (bb));
4460 BB_NOTE_LIST (bb) = note_list;
4463 void
4464 sel_init_bbs (bb_vec_t bbs, basic_block bb)
4466 const struct sched_scan_info_def ssi =
4468 extend_bb_info, /* extend_bb */
4469 init_bb, /* init_bb */
4470 NULL, /* extend_insn */
4471 NULL /* init_insn */
4474 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4477 /* Restore notes for the whole region. */
4478 static void
4479 sel_restore_notes (void)
4481 int bb;
4482 insn_t insn;
4484 for (bb = 0; bb < current_nr_blocks; bb++)
4486 basic_block first, last;
4488 first = EBB_FIRST_BB (bb);
4489 last = EBB_LAST_BB (bb)->next_bb;
4493 note_list = BB_NOTE_LIST (first);
4494 restore_other_notes (NULL, first);
4495 BB_NOTE_LIST (first) = NULL_RTX;
4497 FOR_BB_INSNS (first, insn)
4498 if (NONDEBUG_INSN_P (insn))
4499 reemit_notes (insn);
4501 first = first->next_bb;
4503 while (first != last);
4507 /* Free per-bb data structures. */
4508 void
4509 sel_finish_bbs (void)
4511 sel_restore_notes ();
4513 /* Remove current loop preheader from this loop. */
4514 if (current_loop_nest)
4515 sel_remove_loop_preheader ();
4517 finish_region_bb_info ();
4520 /* Return true if INSN has a single successor of type FLAGS. */
4521 bool
4522 sel_insn_has_single_succ_p (insn_t insn, int flags)
4524 insn_t succ;
4525 succ_iterator si;
4526 bool first_p = true;
4528 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4530 if (first_p)
4531 first_p = false;
4532 else
4533 return false;
4536 return true;
4539 /* Allocate successor's info. */
4540 static struct succs_info *
4541 alloc_succs_info (void)
4543 if (succs_info_pool.top == succs_info_pool.max_top)
4545 int i;
4547 if (++succs_info_pool.max_top >= succs_info_pool.size)
4548 gcc_unreachable ();
4550 i = ++succs_info_pool.top;
4551 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4552 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4553 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4555 else
4556 succs_info_pool.top++;
4558 return &succs_info_pool.stack[succs_info_pool.top];
4561 /* Free successor's info. */
4562 void
4563 free_succs_info (struct succs_info * sinfo)
4565 gcc_assert (succs_info_pool.top >= 0
4566 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4567 succs_info_pool.top--;
4569 /* Clear stale info. */
4570 VEC_block_remove (rtx, sinfo->succs_ok,
4571 0, VEC_length (rtx, sinfo->succs_ok));
4572 VEC_block_remove (rtx, sinfo->succs_other,
4573 0, VEC_length (rtx, sinfo->succs_other));
4574 VEC_block_remove (int, sinfo->probs_ok,
4575 0, VEC_length (int, sinfo->probs_ok));
4576 sinfo->all_prob = 0;
4577 sinfo->succs_ok_n = 0;
4578 sinfo->all_succs_n = 0;
4581 /* Compute successor info for INSN. FLAGS are the flags passed
4582 to the FOR_EACH_SUCC_1 iterator. */
4583 struct succs_info *
4584 compute_succs_info (insn_t insn, short flags)
4586 succ_iterator si;
4587 insn_t succ;
4588 struct succs_info *sinfo = alloc_succs_info ();
4590 /* Traverse *all* successors and decide what to do with each. */
4591 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4593 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4594 perform code motion through inner loops. */
4595 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4597 if (current_flags & flags)
4599 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4600 VEC_safe_push (int, heap, sinfo->probs_ok,
4601 /* FIXME: Improve calculation when skipping
4602 inner loop to exits. */
4603 (si.bb_end
4604 ? si.e1->probability
4605 : REG_BR_PROB_BASE));
4606 sinfo->succs_ok_n++;
4608 else
4609 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4611 /* Compute all_prob. */
4612 if (!si.bb_end)
4613 sinfo->all_prob = REG_BR_PROB_BASE;
4614 else
4615 sinfo->all_prob += si.e1->probability;
4617 sinfo->all_succs_n++;
4620 return sinfo;
4623 /* Return the predecessors of BB in PREDS and their number in N.
4624 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4625 static void
4626 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4628 edge e;
4629 edge_iterator ei;
4631 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4633 FOR_EACH_EDGE (e, ei, bb->preds)
4635 basic_block pred_bb = e->src;
4636 insn_t bb_end = BB_END (pred_bb);
4638 if (!in_current_region_p (pred_bb))
4640 gcc_assert (flag_sel_sched_pipelining_outer_loops
4641 && current_loop_nest);
4642 continue;
4645 if (sel_bb_empty_p (pred_bb))
4646 cfg_preds_1 (pred_bb, preds, n, size);
4647 else
4649 if (*n == *size)
4650 *preds = XRESIZEVEC (insn_t, *preds,
4651 (*size = 2 * *size + 1));
4652 (*preds)[(*n)++] = bb_end;
4656 gcc_assert (*n != 0
4657 || (flag_sel_sched_pipelining_outer_loops
4658 && current_loop_nest));
4661 /* Find all predecessors of BB and record them in PREDS and their number
4662 in N. Empty blocks are skipped, and only normal (forward in-region)
4663 edges are processed. */
4664 static void
4665 cfg_preds (basic_block bb, insn_t **preds, int *n)
4667 int size = 0;
4669 *preds = NULL;
4670 *n = 0;
4671 cfg_preds_1 (bb, preds, n, &size);
4674 /* Returns true if we are moving INSN through join point. */
4675 bool
4676 sel_num_cfg_preds_gt_1 (insn_t insn)
4678 basic_block bb;
4680 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4681 return false;
4683 bb = BLOCK_FOR_INSN (insn);
4685 while (1)
4687 if (EDGE_COUNT (bb->preds) > 1)
4688 return true;
4690 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4691 bb = EDGE_PRED (bb, 0)->src;
4693 if (!sel_bb_empty_p (bb))
4694 break;
4697 return false;
4700 /* Returns true when BB should be the end of an ebb. Adapted from the
4701 code in sched-ebb.c. */
4702 bool
4703 bb_ends_ebb_p (basic_block bb)
4705 basic_block next_bb = bb_next_bb (bb);
4706 edge e;
4708 if (next_bb == EXIT_BLOCK_PTR
4709 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4710 || (LABEL_P (BB_HEAD (next_bb))
4711 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4712 Work around that. */
4713 && !single_pred_p (next_bb)))
4714 return true;
4716 if (!in_current_region_p (next_bb))
4717 return true;
4719 e = find_fallthru_edge (bb->succs);
4720 if (e)
4722 gcc_assert (e->dest == next_bb);
4724 return false;
4727 return true;
4730 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4731 successor of INSN. */
4732 bool
4733 in_same_ebb_p (insn_t insn, insn_t succ)
4735 basic_block ptr = BLOCK_FOR_INSN (insn);
4737 for(;;)
4739 if (ptr == BLOCK_FOR_INSN (succ))
4740 return true;
4742 if (bb_ends_ebb_p (ptr))
4743 return false;
4745 ptr = bb_next_bb (ptr);
4748 gcc_unreachable ();
4749 return false;
4752 /* Recomputes the reverse topological order for the function and
4753 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4754 modified appropriately. */
4755 static void
4756 recompute_rev_top_order (void)
4758 int *postorder;
4759 int n_blocks, i;
4761 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4763 rev_top_order_index_len = last_basic_block;
4764 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4765 rev_top_order_index_len);
4768 postorder = XNEWVEC (int, n_basic_blocks);
4770 n_blocks = post_order_compute (postorder, true, false);
4771 gcc_assert (n_basic_blocks == n_blocks);
4773 /* Build reverse function: for each basic block with BB->INDEX == K
4774 rev_top_order_index[K] is it's reverse topological sort number. */
4775 for (i = 0; i < n_blocks; i++)
4777 gcc_assert (postorder[i] < rev_top_order_index_len);
4778 rev_top_order_index[postorder[i]] = i;
4781 free (postorder);
4784 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4785 void
4786 clear_outdated_rtx_info (basic_block bb)
4788 rtx insn;
4790 FOR_BB_INSNS (bb, insn)
4791 if (INSN_P (insn))
4793 SCHED_GROUP_P (insn) = 0;
4794 INSN_AFTER_STALL_P (insn) = 0;
4795 INSN_SCHED_TIMES (insn) = 0;
4796 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4798 /* We cannot use the changed caches, as previously we could ignore
4799 the LHS dependence due to enabled renaming and transform
4800 the expression, and currently we'll be unable to do this. */
4801 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4805 /* Add BB_NOTE to the pool of available basic block notes. */
4806 static void
4807 return_bb_to_pool (basic_block bb)
4809 rtx note = bb_note (bb);
4811 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4812 && bb->aux == NULL);
4814 /* It turns out that current cfg infrastructure does not support
4815 reuse of basic blocks. Don't bother for now. */
4816 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4819 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4820 static rtx
4821 get_bb_note_from_pool (void)
4823 if (VEC_empty (rtx, bb_note_pool))
4824 return NULL_RTX;
4825 else
4827 rtx note = VEC_pop (rtx, bb_note_pool);
4829 PREV_INSN (note) = NULL_RTX;
4830 NEXT_INSN (note) = NULL_RTX;
4832 return note;
4836 /* Free bb_note_pool. */
4837 void
4838 free_bb_note_pool (void)
4840 VEC_free (rtx, heap, bb_note_pool);
4843 /* Setup scheduler pool and successor structure. */
4844 void
4845 alloc_sched_pools (void)
4847 int succs_size;
4849 succs_size = MAX_WS + 1;
4850 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4851 succs_info_pool.size = succs_size;
4852 succs_info_pool.top = -1;
4853 succs_info_pool.max_top = -1;
4855 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4856 sizeof (struct _list_node), 500);
4859 /* Free the pools. */
4860 void
4861 free_sched_pools (void)
4863 int i;
4865 free_alloc_pool (sched_lists_pool);
4866 gcc_assert (succs_info_pool.top == -1);
4867 for (i = 0; i < succs_info_pool.max_top; i++)
4869 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4870 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4871 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4873 free (succs_info_pool.stack);
4877 /* Returns a position in RGN where BB can be inserted retaining
4878 topological order. */
4879 static int
4880 find_place_to_insert_bb (basic_block bb, int rgn)
4882 bool has_preds_outside_rgn = false;
4883 edge e;
4884 edge_iterator ei;
4886 /* Find whether we have preds outside the region. */
4887 FOR_EACH_EDGE (e, ei, bb->preds)
4888 if (!in_current_region_p (e->src))
4890 has_preds_outside_rgn = true;
4891 break;
4894 /* Recompute the top order -- needed when we have > 1 pred
4895 and in case we don't have preds outside. */
4896 if (flag_sel_sched_pipelining_outer_loops
4897 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4899 int i, bbi = bb->index, cur_bbi;
4901 recompute_rev_top_order ();
4902 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4904 cur_bbi = BB_TO_BLOCK (i);
4905 if (rev_top_order_index[bbi]
4906 < rev_top_order_index[cur_bbi])
4907 break;
4910 /* We skipped the right block, so we increase i. We accomodate
4911 it for increasing by step later, so we decrease i. */
4912 return (i + 1) - 1;
4914 else if (has_preds_outside_rgn)
4916 /* This is the case when we generate an extra empty block
4917 to serve as region head during pipelining. */
4918 e = EDGE_SUCC (bb, 0);
4919 gcc_assert (EDGE_COUNT (bb->succs) == 1
4920 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4921 && (BLOCK_TO_BB (e->dest->index) == 0));
4922 return -1;
4925 /* We don't have preds outside the region. We should have
4926 the only pred, because the multiple preds case comes from
4927 the pipelining of outer loops, and that is handled above.
4928 Just take the bbi of this single pred. */
4929 if (EDGE_COUNT (bb->succs) > 0)
4931 int pred_bbi;
4933 gcc_assert (EDGE_COUNT (bb->preds) == 1);
4935 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4936 return BLOCK_TO_BB (pred_bbi);
4938 else
4939 /* BB has no successors. It is safe to put it in the end. */
4940 return current_nr_blocks - 1;
4943 /* Deletes an empty basic block freeing its data. */
4944 static void
4945 delete_and_free_basic_block (basic_block bb)
4947 gcc_assert (sel_bb_empty_p (bb));
4949 if (BB_LV_SET (bb))
4950 free_lv_set (bb);
4952 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4954 /* Can't assert av_set properties because we use sel_aremove_bb
4955 when removing loop preheader from the region. At the point of
4956 removing the preheader we already have deallocated sel_region_bb_info. */
4957 gcc_assert (BB_LV_SET (bb) == NULL
4958 && !BB_LV_SET_VALID_P (bb)
4959 && BB_AV_LEVEL (bb) == 0
4960 && BB_AV_SET (bb) == NULL);
4962 delete_basic_block (bb);
4965 /* Add BB to the current region and update the region data. */
4966 static void
4967 add_block_to_current_region (basic_block bb)
4969 int i, pos, bbi = -2, rgn;
4971 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4972 bbi = find_place_to_insert_bb (bb, rgn);
4973 bbi += 1;
4974 pos = RGN_BLOCKS (rgn) + bbi;
4976 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4977 && ebb_head[bbi] == pos);
4979 /* Make a place for the new block. */
4980 extend_regions ();
4982 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4983 BLOCK_TO_BB (rgn_bb_table[i])++;
4985 memmove (rgn_bb_table + pos + 1,
4986 rgn_bb_table + pos,
4987 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4989 /* Initialize data for BB. */
4990 rgn_bb_table[pos] = bb->index;
4991 BLOCK_TO_BB (bb->index) = bbi;
4992 CONTAINING_RGN (bb->index) = rgn;
4994 RGN_NR_BLOCKS (rgn)++;
4996 for (i = rgn + 1; i <= nr_regions; i++)
4997 RGN_BLOCKS (i)++;
5000 /* Remove BB from the current region and update the region data. */
5001 static void
5002 remove_bb_from_region (basic_block bb)
5004 int i, pos, bbi = -2, rgn;
5006 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5007 bbi = BLOCK_TO_BB (bb->index);
5008 pos = RGN_BLOCKS (rgn) + bbi;
5010 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5011 && ebb_head[bbi] == pos);
5013 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5014 BLOCK_TO_BB (rgn_bb_table[i])--;
5016 memmove (rgn_bb_table + pos,
5017 rgn_bb_table + pos + 1,
5018 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5020 RGN_NR_BLOCKS (rgn)--;
5021 for (i = rgn + 1; i <= nr_regions; i++)
5022 RGN_BLOCKS (i)--;
5025 /* Add BB to the current region and update all data. If BB is NULL, add all
5026 blocks from last_added_blocks vector. */
5027 static void
5028 sel_add_bb (basic_block bb)
5030 /* Extend luids so that new notes will receive zero luids. */
5031 sched_init_luids (NULL, NULL, NULL, NULL);
5032 sched_init_bbs ();
5033 sel_init_bbs (last_added_blocks, NULL);
5035 /* When bb is passed explicitly, the vector should contain
5036 the only element that equals to bb; otherwise, the vector
5037 should not be NULL. */
5038 gcc_assert (last_added_blocks != NULL);
5040 if (bb != NULL)
5042 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5043 && VEC_index (basic_block,
5044 last_added_blocks, 0) == bb);
5045 add_block_to_current_region (bb);
5047 /* We associate creating/deleting data sets with the first insn
5048 appearing / disappearing in the bb. */
5049 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5050 create_initial_data_sets (bb);
5052 VEC_free (basic_block, heap, last_added_blocks);
5054 else
5055 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5057 int i;
5058 basic_block temp_bb = NULL;
5060 for (i = 0;
5061 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5063 add_block_to_current_region (bb);
5064 temp_bb = bb;
5067 /* We need to fetch at least one bb so we know the region
5068 to update. */
5069 gcc_assert (temp_bb != NULL);
5070 bb = temp_bb;
5072 VEC_free (basic_block, heap, last_added_blocks);
5075 rgn_setup_region (CONTAINING_RGN (bb->index));
5078 /* Remove BB from the current region and update all data.
5079 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5080 static void
5081 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5083 unsigned idx = bb->index;
5085 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5087 remove_bb_from_region (bb);
5088 return_bb_to_pool (bb);
5089 bitmap_clear_bit (blocks_to_reschedule, idx);
5091 if (remove_from_cfg_p)
5093 basic_block succ = single_succ (bb);
5094 delete_and_free_basic_block (bb);
5095 set_immediate_dominator (CDI_DOMINATORS, succ,
5096 recompute_dominator (CDI_DOMINATORS, succ));
5099 rgn_setup_region (CONTAINING_RGN (idx));
5102 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5103 static void
5104 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5106 gcc_assert (in_current_region_p (merge_bb));
5108 concat_note_lists (BB_NOTE_LIST (empty_bb),
5109 &BB_NOTE_LIST (merge_bb));
5110 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5114 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5115 region, but keep it in CFG. */
5116 static void
5117 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5119 /* The block should contain just a note or a label.
5120 We try to check whether it is unused below. */
5121 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5122 || LABEL_P (BB_HEAD (empty_bb)));
5124 /* If basic block has predecessors or successors, redirect them. */
5125 if (remove_from_cfg_p
5126 && (EDGE_COUNT (empty_bb->preds) > 0
5127 || EDGE_COUNT (empty_bb->succs) > 0))
5129 basic_block pred;
5130 basic_block succ;
5132 /* We need to init PRED and SUCC before redirecting edges. */
5133 if (EDGE_COUNT (empty_bb->preds) > 0)
5135 edge e;
5137 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5139 e = EDGE_PRED (empty_bb, 0);
5140 gcc_assert (e->src == empty_bb->prev_bb
5141 && (e->flags & EDGE_FALLTHRU));
5143 pred = empty_bb->prev_bb;
5145 else
5146 pred = NULL;
5148 if (EDGE_COUNT (empty_bb->succs) > 0)
5150 /* We do not check fallthruness here as above, because
5151 after removing a jump the edge may actually be not fallthru. */
5152 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5153 succ = EDGE_SUCC (empty_bb, 0)->dest;
5155 else
5156 succ = NULL;
5158 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5160 edge e = EDGE_PRED (empty_bb, 0);
5162 if (e->flags & EDGE_FALLTHRU)
5163 redirect_edge_succ_nodup (e, succ);
5164 else
5165 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5168 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5170 edge e = EDGE_SUCC (empty_bb, 0);
5172 if (find_edge (pred, e->dest) == NULL)
5173 redirect_edge_pred (e, pred);
5177 /* Finish removing. */
5178 sel_remove_bb (empty_bb, remove_from_cfg_p);
5181 /* An implementation of create_basic_block hook, which additionally updates
5182 per-bb data structures. */
5183 static basic_block
5184 sel_create_basic_block (void *headp, void *endp, basic_block after)
5186 basic_block new_bb;
5187 insn_t new_bb_note;
5189 gcc_assert (flag_sel_sched_pipelining_outer_loops
5190 || last_added_blocks == NULL);
5192 new_bb_note = get_bb_note_from_pool ();
5194 if (new_bb_note == NULL_RTX)
5195 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5196 else
5198 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5199 new_bb_note, after);
5200 new_bb->aux = NULL;
5203 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5205 return new_bb;
5208 /* Implement sched_init_only_bb (). */
5209 static void
5210 sel_init_only_bb (basic_block bb, basic_block after)
5212 gcc_assert (after == NULL);
5214 extend_regions ();
5215 rgn_make_new_region_out_of_new_block (bb);
5218 /* Update the latch when we've splitted or merged it from FROM block to TO.
5219 This should be checked for all outer loops, too. */
5220 static void
5221 change_loops_latches (basic_block from, basic_block to)
5223 gcc_assert (from != to);
5225 if (current_loop_nest)
5227 struct loop *loop;
5229 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5230 if (considered_for_pipelining_p (loop) && loop->latch == from)
5232 gcc_assert (loop == current_loop_nest);
5233 loop->latch = to;
5234 gcc_assert (loop_latch_edge (loop));
5239 /* Splits BB on two basic blocks, adding it to the region and extending
5240 per-bb data structures. Returns the newly created bb. */
5241 static basic_block
5242 sel_split_block (basic_block bb, rtx after)
5244 basic_block new_bb;
5245 insn_t insn;
5247 new_bb = sched_split_block_1 (bb, after);
5248 sel_add_bb (new_bb);
5250 /* This should be called after sel_add_bb, because this uses
5251 CONTAINING_RGN for the new block, which is not yet initialized.
5252 FIXME: this function may be a no-op now. */
5253 change_loops_latches (bb, new_bb);
5255 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5256 FOR_BB_INSNS (new_bb, insn)
5257 if (INSN_P (insn))
5258 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5260 if (sel_bb_empty_p (bb))
5262 gcc_assert (!sel_bb_empty_p (new_bb));
5264 /* NEW_BB has data sets that need to be updated and BB holds
5265 data sets that should be removed. Exchange these data sets
5266 so that we won't lose BB's valid data sets. */
5267 exchange_data_sets (new_bb, bb);
5268 free_data_sets (bb);
5271 if (!sel_bb_empty_p (new_bb)
5272 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5273 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5275 return new_bb;
5278 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5279 Otherwise returns NULL. */
5280 static rtx
5281 check_for_new_jump (basic_block bb, int prev_max_uid)
5283 rtx end;
5285 end = sel_bb_end (bb);
5286 if (end && INSN_UID (end) >= prev_max_uid)
5287 return end;
5288 return NULL;
5291 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5292 New means having UID at least equal to PREV_MAX_UID. */
5293 static rtx
5294 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5296 rtx jump;
5298 /* Return immediately if no new insns were emitted. */
5299 if (get_max_uid () == prev_max_uid)
5300 return NULL;
5302 /* Now check both blocks for new jumps. It will ever be only one. */
5303 if ((jump = check_for_new_jump (from, prev_max_uid)))
5304 return jump;
5306 if (jump_bb != NULL
5307 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5308 return jump;
5309 return NULL;
5312 /* Splits E and adds the newly created basic block to the current region.
5313 Returns this basic block. */
5314 basic_block
5315 sel_split_edge (edge e)
5317 basic_block new_bb, src, other_bb = NULL;
5318 int prev_max_uid;
5319 rtx jump;
5321 src = e->src;
5322 prev_max_uid = get_max_uid ();
5323 new_bb = split_edge (e);
5325 if (flag_sel_sched_pipelining_outer_loops
5326 && current_loop_nest)
5328 int i;
5329 basic_block bb;
5331 /* Some of the basic blocks might not have been added to the loop.
5332 Add them here, until this is fixed in force_fallthru. */
5333 for (i = 0;
5334 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5335 if (!bb->loop_father)
5337 add_bb_to_loop (bb, e->dest->loop_father);
5339 gcc_assert (!other_bb && (new_bb->index != bb->index));
5340 other_bb = bb;
5344 /* Add all last_added_blocks to the region. */
5345 sel_add_bb (NULL);
5347 jump = find_new_jump (src, new_bb, prev_max_uid);
5348 if (jump)
5349 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5351 /* Put the correct lv set on this block. */
5352 if (other_bb && !sel_bb_empty_p (other_bb))
5353 compute_live (sel_bb_head (other_bb));
5355 return new_bb;
5358 /* Implement sched_create_empty_bb (). */
5359 static basic_block
5360 sel_create_empty_bb (basic_block after)
5362 basic_block new_bb;
5364 new_bb = sched_create_empty_bb_1 (after);
5366 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5367 later. */
5368 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5369 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5371 VEC_free (basic_block, heap, last_added_blocks);
5372 return new_bb;
5375 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5376 will be splitted to insert a check. */
5377 basic_block
5378 sel_create_recovery_block (insn_t orig_insn)
5380 basic_block first_bb, second_bb, recovery_block;
5381 basic_block before_recovery = NULL;
5382 rtx jump;
5384 first_bb = BLOCK_FOR_INSN (orig_insn);
5385 if (sel_bb_end_p (orig_insn))
5387 /* Avoid introducing an empty block while splitting. */
5388 gcc_assert (single_succ_p (first_bb));
5389 second_bb = single_succ (first_bb);
5391 else
5392 second_bb = sched_split_block (first_bb, orig_insn);
5394 recovery_block = sched_create_recovery_block (&before_recovery);
5395 if (before_recovery)
5396 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5398 gcc_assert (sel_bb_empty_p (recovery_block));
5399 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5400 if (current_loops != NULL)
5401 add_bb_to_loop (recovery_block, first_bb->loop_father);
5403 sel_add_bb (recovery_block);
5405 jump = BB_END (recovery_block);
5406 gcc_assert (sel_bb_head (recovery_block) == jump);
5407 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5409 return recovery_block;
5412 /* Merge basic block B into basic block A. */
5413 static void
5414 sel_merge_blocks (basic_block a, basic_block b)
5416 gcc_assert (sel_bb_empty_p (b)
5417 && EDGE_COUNT (b->preds) == 1
5418 && EDGE_PRED (b, 0)->src == b->prev_bb);
5420 move_bb_info (b->prev_bb, b);
5421 remove_empty_bb (b, false);
5422 merge_blocks (a, b);
5423 change_loops_latches (b, a);
5426 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5427 data structures for possibly created bb and insns. Returns the newly
5428 added bb or NULL, when a bb was not needed. */
5429 void
5430 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5432 basic_block jump_bb, src, orig_dest = e->dest;
5433 int prev_max_uid;
5434 rtx jump;
5436 /* This function is now used only for bookkeeping code creation, where
5437 we'll never get the single pred of orig_dest block and thus will not
5438 hit unreachable blocks when updating dominator info. */
5439 gcc_assert (!sel_bb_empty_p (e->src)
5440 && !single_pred_p (orig_dest));
5441 src = e->src;
5442 prev_max_uid = get_max_uid ();
5443 jump_bb = redirect_edge_and_branch_force (e, to);
5445 if (jump_bb != NULL)
5446 sel_add_bb (jump_bb);
5448 /* This function could not be used to spoil the loop structure by now,
5449 thus we don't care to update anything. But check it to be sure. */
5450 if (current_loop_nest
5451 && pipelining_p)
5452 gcc_assert (loop_latch_edge (current_loop_nest));
5454 jump = find_new_jump (src, jump_bb, prev_max_uid);
5455 if (jump)
5456 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5457 set_immediate_dominator (CDI_DOMINATORS, to,
5458 recompute_dominator (CDI_DOMINATORS, to));
5459 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5460 recompute_dominator (CDI_DOMINATORS, orig_dest));
5463 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5464 redirected edge are in reverse topological order. */
5465 bool
5466 sel_redirect_edge_and_branch (edge e, basic_block to)
5468 bool latch_edge_p;
5469 basic_block src, orig_dest = e->dest;
5470 int prev_max_uid;
5471 rtx jump;
5472 edge redirected;
5473 bool recompute_toporder_p = false;
5474 bool maybe_unreachable = single_pred_p (orig_dest);
5476 latch_edge_p = (pipelining_p
5477 && current_loop_nest
5478 && e == loop_latch_edge (current_loop_nest));
5480 src = e->src;
5481 prev_max_uid = get_max_uid ();
5483 redirected = redirect_edge_and_branch (e, to);
5485 gcc_assert (redirected && last_added_blocks == NULL);
5487 /* When we've redirected a latch edge, update the header. */
5488 if (latch_edge_p)
5490 current_loop_nest->header = to;
5491 gcc_assert (loop_latch_edge (current_loop_nest));
5494 /* In rare situations, the topological relation between the blocks connected
5495 by the redirected edge can change (see PR42245 for an example). Update
5496 block_to_bb/bb_to_block. */
5497 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5498 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5499 recompute_toporder_p = true;
5501 jump = find_new_jump (src, NULL, prev_max_uid);
5502 if (jump)
5503 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5505 /* Only update dominator info when we don't have unreachable blocks.
5506 Otherwise we'll update in maybe_tidy_empty_bb. */
5507 if (!maybe_unreachable)
5509 set_immediate_dominator (CDI_DOMINATORS, to,
5510 recompute_dominator (CDI_DOMINATORS, to));
5511 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5512 recompute_dominator (CDI_DOMINATORS, orig_dest));
5514 return recompute_toporder_p;
5517 /* This variable holds the cfg hooks used by the selective scheduler. */
5518 static struct cfg_hooks sel_cfg_hooks;
5520 /* Register sel-sched cfg hooks. */
5521 void
5522 sel_register_cfg_hooks (void)
5524 sched_split_block = sel_split_block;
5526 orig_cfg_hooks = get_cfg_hooks ();
5527 sel_cfg_hooks = orig_cfg_hooks;
5529 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5531 set_cfg_hooks (sel_cfg_hooks);
5533 sched_init_only_bb = sel_init_only_bb;
5534 sched_split_block = sel_split_block;
5535 sched_create_empty_bb = sel_create_empty_bb;
5538 /* Unregister sel-sched cfg hooks. */
5539 void
5540 sel_unregister_cfg_hooks (void)
5542 sched_create_empty_bb = NULL;
5543 sched_split_block = NULL;
5544 sched_init_only_bb = NULL;
5546 set_cfg_hooks (orig_cfg_hooks);
5550 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5551 LABEL is where this jump should be directed. */
5553 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5555 rtx insn_rtx;
5557 gcc_assert (!INSN_P (pattern));
5559 start_sequence ();
5561 if (label == NULL_RTX)
5562 insn_rtx = emit_insn (pattern);
5563 else if (DEBUG_INSN_P (label))
5564 insn_rtx = emit_debug_insn (pattern);
5565 else
5567 insn_rtx = emit_jump_insn (pattern);
5568 JUMP_LABEL (insn_rtx) = label;
5569 ++LABEL_NUSES (label);
5572 end_sequence ();
5574 sched_init_luids (NULL, NULL, NULL, NULL);
5575 sched_extend_target ();
5576 sched_deps_init (false);
5578 /* Initialize INSN_CODE now. */
5579 recog_memoized (insn_rtx);
5580 return insn_rtx;
5583 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5584 must not be clonable. */
5585 vinsn_t
5586 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5588 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5590 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5591 return vinsn_create (insn_rtx, force_unique_p);
5594 /* Create a copy of INSN_RTX. */
5596 create_copy_of_insn_rtx (rtx insn_rtx)
5598 rtx res;
5600 if (DEBUG_INSN_P (insn_rtx))
5601 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5602 insn_rtx);
5604 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5606 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5607 NULL_RTX);
5608 return res;
5611 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5612 void
5613 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5615 vinsn_detach (EXPR_VINSN (expr));
5617 EXPR_VINSN (expr) = new_vinsn;
5618 vinsn_attach (new_vinsn);
5621 /* Helpers for global init. */
5622 /* This structure is used to be able to call existing bundling mechanism
5623 and calculate insn priorities. */
5624 static struct haifa_sched_info sched_sel_haifa_sched_info =
5626 NULL, /* init_ready_list */
5627 NULL, /* can_schedule_ready_p */
5628 NULL, /* schedule_more_p */
5629 NULL, /* new_ready */
5630 NULL, /* rgn_rank */
5631 sel_print_insn, /* rgn_print_insn */
5632 contributes_to_priority,
5633 NULL, /* insn_finishes_block_p */
5635 NULL, NULL,
5636 NULL, NULL,
5637 0, 0,
5639 NULL, /* add_remove_insn */
5640 NULL, /* begin_schedule_ready */
5641 NULL, /* advance_target_bb */
5642 SEL_SCHED | NEW_BBS
5645 /* Setup special insns used in the scheduler. */
5646 void
5647 setup_nop_and_exit_insns (void)
5649 gcc_assert (nop_pattern == NULL_RTX
5650 && exit_insn == NULL_RTX);
5652 nop_pattern = constm1_rtx;
5654 start_sequence ();
5655 emit_insn (nop_pattern);
5656 exit_insn = get_insns ();
5657 end_sequence ();
5658 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5661 /* Free special insns used in the scheduler. */
5662 void
5663 free_nop_and_exit_insns (void)
5665 exit_insn = NULL_RTX;
5666 nop_pattern = NULL_RTX;
5669 /* Setup a special vinsn used in new insns initialization. */
5670 void
5671 setup_nop_vinsn (void)
5673 nop_vinsn = vinsn_create (exit_insn, false);
5674 vinsn_attach (nop_vinsn);
5677 /* Free a special vinsn used in new insns initialization. */
5678 void
5679 free_nop_vinsn (void)
5681 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5682 vinsn_detach (nop_vinsn);
5683 nop_vinsn = NULL;
5686 /* Call a set_sched_flags hook. */
5687 void
5688 sel_set_sched_flags (void)
5690 /* ??? This means that set_sched_flags were called, and we decided to
5691 support speculation. However, set_sched_flags also modifies flags
5692 on current_sched_info, doing this only at global init. And we
5693 sometimes change c_s_i later. So put the correct flags again. */
5694 if (spec_info && targetm.sched.set_sched_flags)
5695 targetm.sched.set_sched_flags (spec_info);
5698 /* Setup pointers to global sched info structures. */
5699 void
5700 sel_setup_sched_infos (void)
5702 rgn_setup_common_sched_info ();
5704 memcpy (&sel_common_sched_info, common_sched_info,
5705 sizeof (sel_common_sched_info));
5707 sel_common_sched_info.fix_recovery_cfg = NULL;
5708 sel_common_sched_info.add_block = NULL;
5709 sel_common_sched_info.estimate_number_of_insns
5710 = sel_estimate_number_of_insns;
5711 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5712 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5714 common_sched_info = &sel_common_sched_info;
5716 current_sched_info = &sched_sel_haifa_sched_info;
5717 current_sched_info->sched_max_insns_priority =
5718 get_rgn_sched_max_insns_priority ();
5720 sel_set_sched_flags ();
5724 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5725 *BB_ORD_INDEX after that is increased. */
5726 static void
5727 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5729 RGN_NR_BLOCKS (rgn) += 1;
5730 RGN_DONT_CALC_DEPS (rgn) = 0;
5731 RGN_HAS_REAL_EBB (rgn) = 0;
5732 CONTAINING_RGN (bb->index) = rgn;
5733 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5734 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5735 (*bb_ord_index)++;
5737 /* FIXME: it is true only when not scheduling ebbs. */
5738 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5741 /* Functions to support pipelining of outer loops. */
5743 /* Creates a new empty region and returns it's number. */
5744 static int
5745 sel_create_new_region (void)
5747 int new_rgn_number = nr_regions;
5749 RGN_NR_BLOCKS (new_rgn_number) = 0;
5751 /* FIXME: This will work only when EBBs are not created. */
5752 if (new_rgn_number != 0)
5753 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5754 RGN_NR_BLOCKS (new_rgn_number - 1);
5755 else
5756 RGN_BLOCKS (new_rgn_number) = 0;
5758 /* Set the blocks of the next region so the other functions may
5759 calculate the number of blocks in the region. */
5760 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5761 RGN_NR_BLOCKS (new_rgn_number);
5763 nr_regions++;
5765 return new_rgn_number;
5768 /* If X has a smaller topological sort number than Y, returns -1;
5769 if greater, returns 1. */
5770 static int
5771 bb_top_order_comparator (const void *x, const void *y)
5773 basic_block bb1 = *(const basic_block *) x;
5774 basic_block bb2 = *(const basic_block *) y;
5776 gcc_assert (bb1 == bb2
5777 || rev_top_order_index[bb1->index]
5778 != rev_top_order_index[bb2->index]);
5780 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5781 bbs with greater number should go earlier. */
5782 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5783 return -1;
5784 else
5785 return 1;
5788 /* Create a region for LOOP and return its number. If we don't want
5789 to pipeline LOOP, return -1. */
5790 static int
5791 make_region_from_loop (struct loop *loop)
5793 unsigned int i;
5794 int new_rgn_number = -1;
5795 struct loop *inner;
5797 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5798 int bb_ord_index = 0;
5799 basic_block *loop_blocks;
5800 basic_block preheader_block;
5802 if (loop->num_nodes
5803 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5804 return -1;
5806 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5807 for (inner = loop->inner; inner; inner = inner->inner)
5808 if (flow_bb_inside_loop_p (inner, loop->latch))
5809 return -1;
5811 loop->ninsns = num_loop_insns (loop);
5812 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5813 return -1;
5815 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5817 for (i = 0; i < loop->num_nodes; i++)
5818 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5820 free (loop_blocks);
5821 return -1;
5824 preheader_block = loop_preheader_edge (loop)->src;
5825 gcc_assert (preheader_block);
5826 gcc_assert (loop_blocks[0] == loop->header);
5828 new_rgn_number = sel_create_new_region ();
5830 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5831 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5833 for (i = 0; i < loop->num_nodes; i++)
5835 /* Add only those blocks that haven't been scheduled in the inner loop.
5836 The exception is the basic blocks with bookkeeping code - they should
5837 be added to the region (and they actually don't belong to the loop
5838 body, but to the region containing that loop body). */
5840 gcc_assert (new_rgn_number >= 0);
5842 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5844 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5845 new_rgn_number);
5846 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5850 free (loop_blocks);
5851 MARK_LOOP_FOR_PIPELINING (loop);
5853 return new_rgn_number;
5856 /* Create a new region from preheader blocks LOOP_BLOCKS. */
5857 void
5858 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5860 unsigned int i;
5861 int new_rgn_number = -1;
5862 basic_block bb;
5864 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5865 int bb_ord_index = 0;
5867 new_rgn_number = sel_create_new_region ();
5869 FOR_EACH_VEC_ELT (basic_block, *loop_blocks, i, bb)
5871 gcc_assert (new_rgn_number >= 0);
5873 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5876 VEC_free (basic_block, heap, *loop_blocks);
5877 gcc_assert (*loop_blocks == NULL);
5881 /* Create region(s) from loop nest LOOP, such that inner loops will be
5882 pipelined before outer loops. Returns true when a region for LOOP
5883 is created. */
5884 static bool
5885 make_regions_from_loop_nest (struct loop *loop)
5887 struct loop *cur_loop;
5888 int rgn_number;
5890 /* Traverse all inner nodes of the loop. */
5891 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5892 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5893 return false;
5895 /* At this moment all regular inner loops should have been pipelined.
5896 Try to create a region from this loop. */
5897 rgn_number = make_region_from_loop (loop);
5899 if (rgn_number < 0)
5900 return false;
5902 VEC_safe_push (loop_p, heap, loop_nests, loop);
5903 return true;
5906 /* Initalize data structures needed. */
5907 void
5908 sel_init_pipelining (void)
5910 /* Collect loop information to be used in outer loops pipelining. */
5911 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5912 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5913 | LOOPS_HAVE_RECORDED_EXITS
5914 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5915 current_loop_nest = NULL;
5917 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5918 sbitmap_zero (bbs_in_loop_rgns);
5920 recompute_rev_top_order ();
5923 /* Returns a struct loop for region RGN. */
5924 loop_p
5925 get_loop_nest_for_rgn (unsigned int rgn)
5927 /* Regions created with extend_rgns don't have corresponding loop nests,
5928 because they don't represent loops. */
5929 if (rgn < VEC_length (loop_p, loop_nests))
5930 return VEC_index (loop_p, loop_nests, rgn);
5931 else
5932 return NULL;
5935 /* True when LOOP was included into pipelining regions. */
5936 bool
5937 considered_for_pipelining_p (struct loop *loop)
5939 if (loop_depth (loop) == 0)
5940 return false;
5942 /* Now, the loop could be too large or irreducible. Check whether its
5943 region is in LOOP_NESTS.
5944 We determine the region number of LOOP as the region number of its
5945 latch. We can't use header here, because this header could be
5946 just removed preheader and it will give us the wrong region number.
5947 Latch can't be used because it could be in the inner loop too. */
5948 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
5950 int rgn = CONTAINING_RGN (loop->latch->index);
5952 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5953 return true;
5956 return false;
5959 /* Makes regions from the rest of the blocks, after loops are chosen
5960 for pipelining. */
5961 static void
5962 make_regions_from_the_rest (void)
5964 int cur_rgn_blocks;
5965 int *loop_hdr;
5966 int i;
5968 basic_block bb;
5969 edge e;
5970 edge_iterator ei;
5971 int *degree;
5973 /* Index in rgn_bb_table where to start allocating new regions. */
5974 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
5976 /* Make regions from all the rest basic blocks - those that don't belong to
5977 any loop or belong to irreducible loops. Prepare the data structures
5978 for extend_rgns. */
5980 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5981 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5982 loop. */
5983 loop_hdr = XNEWVEC (int, last_basic_block);
5984 degree = XCNEWVEC (int, last_basic_block);
5987 /* For each basic block that belongs to some loop assign the number
5988 of innermost loop it belongs to. */
5989 for (i = 0; i < last_basic_block; i++)
5990 loop_hdr[i] = -1;
5992 FOR_EACH_BB (bb)
5994 if (bb->loop_father && !bb->loop_father->num == 0
5995 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5996 loop_hdr[bb->index] = bb->loop_father->num;
5999 /* For each basic block degree is calculated as the number of incoming
6000 edges, that are going out of bbs that are not yet scheduled.
6001 The basic blocks that are scheduled have degree value of zero. */
6002 FOR_EACH_BB (bb)
6004 degree[bb->index] = 0;
6006 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
6008 FOR_EACH_EDGE (e, ei, bb->preds)
6009 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
6010 degree[bb->index]++;
6012 else
6013 degree[bb->index] = -1;
6016 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6018 /* Any block that did not end up in a region is placed into a region
6019 by itself. */
6020 FOR_EACH_BB (bb)
6021 if (degree[bb->index] >= 0)
6023 rgn_bb_table[cur_rgn_blocks] = bb->index;
6024 RGN_NR_BLOCKS (nr_regions) = 1;
6025 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6026 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6027 RGN_HAS_REAL_EBB (nr_regions) = 0;
6028 CONTAINING_RGN (bb->index) = nr_regions++;
6029 BLOCK_TO_BB (bb->index) = 0;
6032 free (degree);
6033 free (loop_hdr);
6036 /* Free data structures used in pipelining of loops. */
6037 void sel_finish_pipelining (void)
6039 loop_iterator li;
6040 struct loop *loop;
6042 /* Release aux fields so we don't free them later by mistake. */
6043 FOR_EACH_LOOP (li, loop, 0)
6044 loop->aux = NULL;
6046 loop_optimizer_finalize ();
6048 VEC_free (loop_p, heap, loop_nests);
6050 free (rev_top_order_index);
6051 rev_top_order_index = NULL;
6054 /* This function replaces the find_rgns when
6055 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6056 void
6057 sel_find_rgns (void)
6059 sel_init_pipelining ();
6060 extend_regions ();
6062 if (current_loops)
6064 loop_p loop;
6065 loop_iterator li;
6067 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6068 ? LI_FROM_INNERMOST
6069 : LI_ONLY_INNERMOST))
6070 make_regions_from_loop_nest (loop);
6073 /* Make regions from all the rest basic blocks and schedule them.
6074 These blocks include blocks that don't belong to any loop or belong
6075 to irreducible loops. */
6076 make_regions_from_the_rest ();
6078 /* We don't need bbs_in_loop_rgns anymore. */
6079 sbitmap_free (bbs_in_loop_rgns);
6080 bbs_in_loop_rgns = NULL;
6083 /* Adds the preheader blocks from previous loop to current region taking
6084 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
6085 This function is only used with -fsel-sched-pipelining-outer-loops. */
6086 void
6087 sel_add_loop_preheaders (void)
6089 int i;
6090 basic_block bb;
6091 VEC(basic_block, heap) *preheader_blocks
6092 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6094 for (i = 0;
6095 VEC_iterate (basic_block, preheader_blocks, i, bb);
6096 i++)
6098 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
6099 sel_add_bb (bb);
6102 VEC_free (basic_block, heap, preheader_blocks);
6105 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6106 Please note that the function should also work when pipelining_p is
6107 false, because it is used when deciding whether we should or should
6108 not reschedule pipelined code. */
6109 bool
6110 sel_is_loop_preheader_p (basic_block bb)
6112 if (current_loop_nest)
6114 struct loop *outer;
6116 if (preheader_removed)
6117 return false;
6119 /* Preheader is the first block in the region. */
6120 if (BLOCK_TO_BB (bb->index) == 0)
6121 return true;
6123 /* We used to find a preheader with the topological information.
6124 Check that the above code is equivalent to what we did before. */
6126 if (in_current_region_p (current_loop_nest->header))
6127 gcc_assert (!(BLOCK_TO_BB (bb->index)
6128 < BLOCK_TO_BB (current_loop_nest->header->index)));
6130 /* Support the situation when the latch block of outer loop
6131 could be from here. */
6132 for (outer = loop_outer (current_loop_nest);
6133 outer;
6134 outer = loop_outer (outer))
6135 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6136 gcc_unreachable ();
6139 return false;
6142 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6143 can be removed, making the corresponding edge fallthrough (assuming that
6144 all basic blocks between JUMP_BB and DEST_BB are empty). */
6145 static bool
6146 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6148 if (!onlyjump_p (BB_END (jump_bb))
6149 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6150 return false;
6152 /* Several outgoing edges, abnormal edge or destination of jump is
6153 not DEST_BB. */
6154 if (EDGE_COUNT (jump_bb->succs) != 1
6155 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6156 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6157 return false;
6159 /* If not anything of the upper. */
6160 return true;
6163 /* Removes the loop preheader from the current region and saves it in
6164 PREHEADER_BLOCKS of the father loop, so they will be added later to
6165 region that represents an outer loop. */
6166 static void
6167 sel_remove_loop_preheader (void)
6169 int i, old_len;
6170 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6171 basic_block bb;
6172 bool all_empty_p = true;
6173 VEC(basic_block, heap) *preheader_blocks
6174 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6176 gcc_assert (current_loop_nest);
6177 old_len = VEC_length (basic_block, preheader_blocks);
6179 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6180 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6182 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6184 /* If the basic block belongs to region, but doesn't belong to
6185 corresponding loop, then it should be a preheader. */
6186 if (sel_is_loop_preheader_p (bb))
6188 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6189 if (BB_END (bb) != bb_note (bb))
6190 all_empty_p = false;
6194 /* Remove these blocks only after iterating over the whole region. */
6195 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6196 i >= old_len;
6197 i--)
6199 bb = VEC_index (basic_block, preheader_blocks, i);
6200 sel_remove_bb (bb, false);
6203 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6205 if (!all_empty_p)
6206 /* Immediately create new region from preheader. */
6207 make_region_from_loop_preheader (&preheader_blocks);
6208 else
6210 /* If all preheader blocks are empty - dont create new empty region.
6211 Instead, remove them completely. */
6212 FOR_EACH_VEC_ELT (basic_block, preheader_blocks, i, bb)
6214 edge e;
6215 edge_iterator ei;
6216 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6218 /* Redirect all incoming edges to next basic block. */
6219 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6221 if (! (e->flags & EDGE_FALLTHRU))
6222 redirect_edge_and_branch (e, bb->next_bb);
6223 else
6224 redirect_edge_succ (e, bb->next_bb);
6226 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6227 delete_and_free_basic_block (bb);
6229 /* Check if after deleting preheader there is a nonconditional
6230 jump in PREV_BB that leads to the next basic block NEXT_BB.
6231 If it is so - delete this jump and clear data sets of its
6232 basic block if it becomes empty. */
6233 if (next_bb->prev_bb == prev_bb
6234 && prev_bb != ENTRY_BLOCK_PTR
6235 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6237 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6238 if (BB_END (prev_bb) == bb_note (prev_bb))
6239 free_data_sets (prev_bb);
6242 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6243 recompute_dominator (CDI_DOMINATORS,
6244 next_bb));
6247 VEC_free (basic_block, heap, preheader_blocks);
6249 else
6250 /* Store preheader within the father's loop structure. */
6251 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6252 preheader_blocks);
6254 #endif