1 /* Functions related to building classes and their related objects.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* High-level class interface. */
26 #include "coretypes.h"
32 #include "stringpool.h"
33 #include "stor-layout.h"
40 #include "hard-reg-set.h"
44 #include "splay-tree.h"
47 /* The number of nested classes being processed. If we are not in the
48 scope of any class, this is zero. */
50 int current_class_depth
;
52 /* In order to deal with nested classes, we keep a stack of classes.
53 The topmost entry is the innermost class, and is the entry at index
54 CURRENT_CLASS_DEPTH */
56 typedef struct class_stack_node
{
57 /* The name of the class. */
60 /* The _TYPE node for the class. */
63 /* The access specifier pending for new declarations in the scope of
67 /* If were defining TYPE, the names used in this class. */
68 splay_tree names_used
;
70 /* Nonzero if this class is no longer open, because of a call to
73 }* class_stack_node_t
;
75 typedef struct vtbl_init_data_s
77 /* The base for which we're building initializers. */
79 /* The type of the most-derived type. */
81 /* The binfo for the dynamic type. This will be TYPE_BINFO (derived),
82 unless ctor_vtbl_p is true. */
84 /* The negative-index vtable initializers built up so far. These
85 are in order from least negative index to most negative index. */
86 vec
<constructor_elt
, va_gc
> *inits
;
87 /* The binfo for the virtual base for which we're building
88 vcall offset initializers. */
90 /* The functions in vbase for which we have already provided vcall
92 vec
<tree
, va_gc
> *fns
;
93 /* The vtable index of the next vcall or vbase offset. */
95 /* Nonzero if we are building the initializer for the primary
98 /* Nonzero if we are building the initializer for a construction
101 /* True when adding vcall offset entries to the vtable. False when
102 merely computing the indices. */
103 bool generate_vcall_entries
;
106 /* The type of a function passed to walk_subobject_offsets. */
107 typedef int (*subobject_offset_fn
) (tree
, tree
, splay_tree
);
109 /* The stack itself. This is a dynamically resized array. The
110 number of elements allocated is CURRENT_CLASS_STACK_SIZE. */
111 static int current_class_stack_size
;
112 static class_stack_node_t current_class_stack
;
114 /* The size of the largest empty class seen in this translation unit. */
115 static GTY (()) tree sizeof_biggest_empty_class
;
117 /* An array of all local classes present in this translation unit, in
118 declaration order. */
119 vec
<tree
, va_gc
> *local_classes
;
121 static tree
get_vfield_name (tree
);
122 static void finish_struct_anon (tree
);
123 static tree
get_vtable_name (tree
);
124 static void get_basefndecls (tree
, tree
, vec
<tree
> *);
125 static int build_primary_vtable (tree
, tree
);
126 static int build_secondary_vtable (tree
);
127 static void finish_vtbls (tree
);
128 static void modify_vtable_entry (tree
, tree
, tree
, tree
, tree
*);
129 static void finish_struct_bits (tree
);
130 static int alter_access (tree
, tree
, tree
);
131 static void handle_using_decl (tree
, tree
);
132 static tree
dfs_modify_vtables (tree
, void *);
133 static tree
modify_all_vtables (tree
, tree
);
134 static void determine_primary_bases (tree
);
135 static void finish_struct_methods (tree
);
136 static void maybe_warn_about_overly_private_class (tree
);
137 static int method_name_cmp (const void *, const void *);
138 static int resort_method_name_cmp (const void *, const void *);
139 static void add_implicitly_declared_members (tree
, tree
*, int, int);
140 static tree
fixed_type_or_null (tree
, int *, int *);
141 static tree
build_simple_base_path (tree expr
, tree binfo
);
142 static tree
build_vtbl_ref_1 (tree
, tree
);
143 static void build_vtbl_initializer (tree
, tree
, tree
, tree
, int *,
144 vec
<constructor_elt
, va_gc
> **);
145 static int count_fields (tree
);
146 static int add_fields_to_record_type (tree
, struct sorted_fields_type
*, int);
147 static void insert_into_classtype_sorted_fields (tree
, tree
, int);
148 static bool check_bitfield_decl (tree
);
149 static void check_field_decl (tree
, tree
, int *, int *, int *);
150 static void check_field_decls (tree
, tree
*, int *, int *);
151 static tree
*build_base_field (record_layout_info
, tree
, splay_tree
, tree
*);
152 static void build_base_fields (record_layout_info
, splay_tree
, tree
*);
153 static void check_methods (tree
);
154 static void remove_zero_width_bit_fields (tree
);
155 static bool accessible_nvdtor_p (tree
);
156 static void check_bases (tree
, int *, int *);
157 static void check_bases_and_members (tree
);
158 static tree
create_vtable_ptr (tree
, tree
*);
159 static void include_empty_classes (record_layout_info
);
160 static void layout_class_type (tree
, tree
*);
161 static void propagate_binfo_offsets (tree
, tree
);
162 static void layout_virtual_bases (record_layout_info
, splay_tree
);
163 static void build_vbase_offset_vtbl_entries (tree
, vtbl_init_data
*);
164 static void add_vcall_offset_vtbl_entries_r (tree
, vtbl_init_data
*);
165 static void add_vcall_offset_vtbl_entries_1 (tree
, vtbl_init_data
*);
166 static void build_vcall_offset_vtbl_entries (tree
, vtbl_init_data
*);
167 static void add_vcall_offset (tree
, tree
, vtbl_init_data
*);
168 static void layout_vtable_decl (tree
, int);
169 static tree
dfs_find_final_overrider_pre (tree
, void *);
170 static tree
dfs_find_final_overrider_post (tree
, void *);
171 static tree
find_final_overrider (tree
, tree
, tree
);
172 static int make_new_vtable (tree
, tree
);
173 static tree
get_primary_binfo (tree
);
174 static int maybe_indent_hierarchy (FILE *, int, int);
175 static tree
dump_class_hierarchy_r (FILE *, int, tree
, tree
, int);
176 static void dump_class_hierarchy (tree
);
177 static void dump_class_hierarchy_1 (FILE *, int, tree
);
178 static void dump_array (FILE *, tree
);
179 static void dump_vtable (tree
, tree
, tree
);
180 static void dump_vtt (tree
, tree
);
181 static void dump_thunk (FILE *, int, tree
);
182 static tree
build_vtable (tree
, tree
, tree
);
183 static void initialize_vtable (tree
, vec
<constructor_elt
, va_gc
> *);
184 static void layout_nonempty_base_or_field (record_layout_info
,
185 tree
, tree
, splay_tree
);
186 static tree
end_of_class (tree
, int);
187 static bool layout_empty_base (record_layout_info
, tree
, tree
, splay_tree
);
188 static void accumulate_vtbl_inits (tree
, tree
, tree
, tree
, tree
,
189 vec
<constructor_elt
, va_gc
> **);
190 static void dfs_accumulate_vtbl_inits (tree
, tree
, tree
, tree
, tree
,
191 vec
<constructor_elt
, va_gc
> **);
192 static void build_rtti_vtbl_entries (tree
, vtbl_init_data
*);
193 static void build_vcall_and_vbase_vtbl_entries (tree
, vtbl_init_data
*);
194 static void clone_constructors_and_destructors (tree
);
195 static tree
build_clone (tree
, tree
);
196 static void update_vtable_entry_for_fn (tree
, tree
, tree
, tree
*, unsigned);
197 static void build_ctor_vtbl_group (tree
, tree
);
198 static void build_vtt (tree
);
199 static tree
binfo_ctor_vtable (tree
);
200 static void build_vtt_inits (tree
, tree
, vec
<constructor_elt
, va_gc
> **,
202 static tree
dfs_build_secondary_vptr_vtt_inits (tree
, void *);
203 static tree
dfs_fixup_binfo_vtbls (tree
, void *);
204 static int record_subobject_offset (tree
, tree
, splay_tree
);
205 static int check_subobject_offset (tree
, tree
, splay_tree
);
206 static int walk_subobject_offsets (tree
, subobject_offset_fn
,
207 tree
, splay_tree
, tree
, int);
208 static void record_subobject_offsets (tree
, tree
, splay_tree
, bool);
209 static int layout_conflict_p (tree
, tree
, splay_tree
, int);
210 static int splay_tree_compare_integer_csts (splay_tree_key k1
,
212 static void warn_about_ambiguous_bases (tree
);
213 static bool type_requires_array_cookie (tree
);
214 static bool base_derived_from (tree
, tree
);
215 static int empty_base_at_nonzero_offset_p (tree
, tree
, splay_tree
);
216 static tree
end_of_base (tree
);
217 static tree
get_vcall_index (tree
, tree
);
219 /* Variables shared between class.c and call.c. */
222 int n_vtable_entries
= 0;
223 int n_vtable_searches
= 0;
224 int n_vtable_elems
= 0;
225 int n_convert_harshness
= 0;
226 int n_compute_conversion_costs
= 0;
227 int n_inner_fields_searched
= 0;
229 /* Convert to or from a base subobject. EXPR is an expression of type
230 `A' or `A*', an expression of type `B' or `B*' is returned. To
231 convert A to a base B, CODE is PLUS_EXPR and BINFO is the binfo for
232 the B base instance within A. To convert base A to derived B, CODE
233 is MINUS_EXPR and BINFO is the binfo for the A instance within B.
234 In this latter case, A must not be a morally virtual base of B.
235 NONNULL is true if EXPR is known to be non-NULL (this is only
236 needed when EXPR is of pointer type). CV qualifiers are preserved
240 build_base_path (enum tree_code code
,
244 tsubst_flags_t complain
)
246 tree v_binfo
= NULL_TREE
;
247 tree d_binfo
= NULL_TREE
;
251 tree null_test
= NULL
;
252 tree ptr_target_type
;
254 int want_pointer
= TYPE_PTR_P (TREE_TYPE (expr
));
255 bool has_empty
= false;
259 if (expr
== error_mark_node
|| binfo
== error_mark_node
|| !binfo
)
260 return error_mark_node
;
262 for (probe
= binfo
; probe
; probe
= BINFO_INHERITANCE_CHAIN (probe
))
265 if (is_empty_class (BINFO_TYPE (probe
)))
267 if (!v_binfo
&& BINFO_VIRTUAL_P (probe
))
271 probe
= TYPE_MAIN_VARIANT (TREE_TYPE (expr
));
273 probe
= TYPE_MAIN_VARIANT (TREE_TYPE (probe
));
275 if (code
== PLUS_EXPR
276 && !SAME_BINFO_TYPE_P (BINFO_TYPE (d_binfo
), probe
))
278 /* This can happen when adjust_result_of_qualified_name_lookup can't
279 find a unique base binfo in a call to a member function. We
280 couldn't give the diagnostic then since we might have been calling
281 a static member function, so we do it now. */
282 if (complain
& tf_error
)
284 tree base
= lookup_base (probe
, BINFO_TYPE (d_binfo
),
285 ba_unique
, NULL
, complain
);
286 gcc_assert (base
== error_mark_node
);
288 return error_mark_node
;
291 gcc_assert ((code
== MINUS_EXPR
292 && SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), probe
))
293 || code
== PLUS_EXPR
);
295 if (binfo
== d_binfo
)
299 if (code
== MINUS_EXPR
&& v_binfo
)
301 if (complain
& tf_error
)
303 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), BINFO_TYPE (v_binfo
)))
306 error ("cannot convert from pointer to base class %qT to "
307 "pointer to derived class %qT because the base is "
308 "virtual", BINFO_TYPE (binfo
), BINFO_TYPE (d_binfo
));
310 error ("cannot convert from base class %qT to derived "
311 "class %qT because the base is virtual",
312 BINFO_TYPE (binfo
), BINFO_TYPE (d_binfo
));
317 error ("cannot convert from pointer to base class %qT to "
318 "pointer to derived class %qT via virtual base %qT",
319 BINFO_TYPE (binfo
), BINFO_TYPE (d_binfo
),
320 BINFO_TYPE (v_binfo
));
322 error ("cannot convert from base class %qT to derived "
323 "class %qT via virtual base %qT", BINFO_TYPE (binfo
),
324 BINFO_TYPE (d_binfo
), BINFO_TYPE (v_binfo
));
327 return error_mark_node
;
332 rvalue
= !real_lvalue_p (expr
);
333 /* This must happen before the call to save_expr. */
334 expr
= cp_build_addr_expr (expr
, complain
);
337 expr
= mark_rvalue_use (expr
);
339 offset
= BINFO_OFFSET (binfo
);
340 fixed_type_p
= resolves_to_fixed_type_p (expr
, &nonnull
);
341 target_type
= code
== PLUS_EXPR
? BINFO_TYPE (binfo
) : BINFO_TYPE (d_binfo
);
342 /* TARGET_TYPE has been extracted from BINFO, and, is therefore always
343 cv-unqualified. Extract the cv-qualifiers from EXPR so that the
344 expression returned matches the input. */
345 target_type
= cp_build_qualified_type
346 (target_type
, cp_type_quals (TREE_TYPE (TREE_TYPE (expr
))));
347 ptr_target_type
= build_pointer_type (target_type
);
349 /* Do we need to look in the vtable for the real offset? */
350 virtual_access
= (v_binfo
&& fixed_type_p
<= 0);
352 /* Don't bother with the calculations inside sizeof; they'll ICE if the
353 source type is incomplete and the pointer value doesn't matter. In a
354 template (even in instantiate_non_dependent_expr), we don't have vtables
355 set up properly yet, and the value doesn't matter there either; we're
356 just interested in the result of overload resolution. */
357 if (cp_unevaluated_operand
!= 0
358 || in_template_function ())
360 expr
= build_nop (ptr_target_type
, expr
);
364 /* If we're in an NSDMI, we don't have the full constructor context yet
365 that we need for converting to a virtual base, so just build a stub
366 CONVERT_EXPR and expand it later in bot_replace. */
367 if (virtual_access
&& fixed_type_p
< 0
368 && current_scope () != current_function_decl
)
370 expr
= build1 (CONVERT_EXPR
, ptr_target_type
, expr
);
371 CONVERT_EXPR_VBASE_PATH (expr
) = true;
375 /* Do we need to check for a null pointer? */
376 if (want_pointer
&& !nonnull
)
378 /* If we know the conversion will not actually change the value
379 of EXPR, then we can avoid testing the expression for NULL.
380 We have to avoid generating a COMPONENT_REF for a base class
381 field, because other parts of the compiler know that such
382 expressions are always non-NULL. */
383 if (!virtual_access
&& integer_zerop (offset
))
384 return build_nop (ptr_target_type
, expr
);
385 null_test
= error_mark_node
;
388 /* Protect against multiple evaluation if necessary. */
389 if (TREE_SIDE_EFFECTS (expr
) && (null_test
|| virtual_access
))
390 expr
= save_expr (expr
);
392 /* Now that we've saved expr, build the real null test. */
395 tree zero
= cp_convert (TREE_TYPE (expr
), nullptr_node
, complain
);
396 null_test
= fold_build2_loc (input_location
, NE_EXPR
, boolean_type_node
,
400 /* If this is a simple base reference, express it as a COMPONENT_REF. */
401 if (code
== PLUS_EXPR
&& !virtual_access
402 /* We don't build base fields for empty bases, and they aren't very
403 interesting to the optimizers anyway. */
406 expr
= cp_build_indirect_ref (expr
, RO_NULL
, complain
);
407 expr
= build_simple_base_path (expr
, binfo
);
411 expr
= build_address (expr
);
412 target_type
= TREE_TYPE (expr
);
418 /* Going via virtual base V_BINFO. We need the static offset
419 from V_BINFO to BINFO, and the dynamic offset from D_BINFO to
420 V_BINFO. That offset is an entry in D_BINFO's vtable. */
423 if (fixed_type_p
< 0 && in_base_initializer
)
425 /* In a base member initializer, we cannot rely on the
426 vtable being set up. We have to indirect via the
430 t
= TREE_TYPE (TYPE_VFIELD (current_class_type
));
431 t
= build_pointer_type (t
);
432 v_offset
= convert (t
, current_vtt_parm
);
433 v_offset
= cp_build_indirect_ref (v_offset
, RO_NULL
, complain
);
438 if ((flag_sanitize
& SANITIZE_VPTR
) && fixed_type_p
== 0)
440 t
= cp_ubsan_maybe_instrument_cast_to_vbase (input_location
,
445 v_offset
= build_vfield_ref (cp_build_indirect_ref (t
, RO_NULL
,
447 TREE_TYPE (TREE_TYPE (expr
)));
450 if (v_offset
== error_mark_node
)
451 return error_mark_node
;
453 v_offset
= fold_build_pointer_plus (v_offset
, BINFO_VPTR_FIELD (v_binfo
));
454 v_offset
= build1 (NOP_EXPR
,
455 build_pointer_type (ptrdiff_type_node
),
457 v_offset
= cp_build_indirect_ref (v_offset
, RO_NULL
, complain
);
458 TREE_CONSTANT (v_offset
) = 1;
460 offset
= convert_to_integer (ptrdiff_type_node
,
461 size_diffop_loc (input_location
, offset
,
462 BINFO_OFFSET (v_binfo
)));
464 if (!integer_zerop (offset
))
465 v_offset
= build2 (code
, ptrdiff_type_node
, v_offset
, offset
);
467 if (fixed_type_p
< 0)
468 /* Negative fixed_type_p means this is a constructor or destructor;
469 virtual base layout is fixed in in-charge [cd]tors, but not in
471 offset
= build3 (COND_EXPR
, ptrdiff_type_node
,
472 build2 (EQ_EXPR
, boolean_type_node
,
473 current_in_charge_parm
, integer_zero_node
),
475 convert_to_integer (ptrdiff_type_node
,
476 BINFO_OFFSET (binfo
)));
482 target_type
= ptr_target_type
;
484 expr
= build1 (NOP_EXPR
, ptr_target_type
, expr
);
486 if (!integer_zerop (offset
))
488 offset
= fold_convert (sizetype
, offset
);
489 if (code
== MINUS_EXPR
)
490 offset
= fold_build1_loc (input_location
, NEGATE_EXPR
, sizetype
, offset
);
491 expr
= fold_build_pointer_plus (expr
, offset
);
499 expr
= cp_build_indirect_ref (expr
, RO_NULL
, complain
);
506 expr
= fold_build3_loc (input_location
, COND_EXPR
, target_type
, null_test
, expr
,
507 build_zero_cst (target_type
));
512 /* Subroutine of build_base_path; EXPR and BINFO are as in that function.
513 Perform a derived-to-base conversion by recursively building up a
514 sequence of COMPONENT_REFs to the appropriate base fields. */
517 build_simple_base_path (tree expr
, tree binfo
)
519 tree type
= BINFO_TYPE (binfo
);
520 tree d_binfo
= BINFO_INHERITANCE_CHAIN (binfo
);
523 if (d_binfo
== NULL_TREE
)
527 gcc_assert (TYPE_MAIN_VARIANT (TREE_TYPE (expr
)) == type
);
529 /* Transform `(a, b).x' into `(*(a, &b)).x', `(a ? b : c).x'
530 into `(*(a ? &b : &c)).x', and so on. A COND_EXPR is only
531 an lvalue in the front end; only _DECLs and _REFs are lvalues
533 temp
= unary_complex_lvalue (ADDR_EXPR
, expr
);
535 expr
= cp_build_indirect_ref (temp
, RO_NULL
, tf_warning_or_error
);
541 expr
= build_simple_base_path (expr
, d_binfo
);
543 for (field
= TYPE_FIELDS (BINFO_TYPE (d_binfo
));
544 field
; field
= DECL_CHAIN (field
))
545 /* Is this the base field created by build_base_field? */
546 if (TREE_CODE (field
) == FIELD_DECL
547 && DECL_FIELD_IS_BASE (field
)
548 && TREE_TYPE (field
) == type
549 /* If we're looking for a field in the most-derived class,
550 also check the field offset; we can have two base fields
551 of the same type if one is an indirect virtual base and one
552 is a direct non-virtual base. */
553 && (BINFO_INHERITANCE_CHAIN (d_binfo
)
554 || tree_int_cst_equal (byte_position (field
),
555 BINFO_OFFSET (binfo
))))
557 /* We don't use build_class_member_access_expr here, as that
558 has unnecessary checks, and more importantly results in
559 recursive calls to dfs_walk_once. */
560 int type_quals
= cp_type_quals (TREE_TYPE (expr
));
562 expr
= build3 (COMPONENT_REF
,
563 cp_build_qualified_type (type
, type_quals
),
564 expr
, field
, NULL_TREE
);
565 expr
= fold_if_not_in_template (expr
);
567 /* Mark the expression const or volatile, as appropriate.
568 Even though we've dealt with the type above, we still have
569 to mark the expression itself. */
570 if (type_quals
& TYPE_QUAL_CONST
)
571 TREE_READONLY (expr
) = 1;
572 if (type_quals
& TYPE_QUAL_VOLATILE
)
573 TREE_THIS_VOLATILE (expr
) = 1;
578 /* Didn't find the base field?!? */
582 /* Convert OBJECT to the base TYPE. OBJECT is an expression whose
583 type is a class type or a pointer to a class type. In the former
584 case, TYPE is also a class type; in the latter it is another
585 pointer type. If CHECK_ACCESS is true, an error message is emitted
586 if TYPE is inaccessible. If OBJECT has pointer type, the value is
587 assumed to be non-NULL. */
590 convert_to_base (tree object
, tree type
, bool check_access
, bool nonnull
,
591 tsubst_flags_t complain
)
596 if (TYPE_PTR_P (TREE_TYPE (object
)))
598 object_type
= TREE_TYPE (TREE_TYPE (object
));
599 type
= TREE_TYPE (type
);
602 object_type
= TREE_TYPE (object
);
604 binfo
= lookup_base (object_type
, type
, check_access
? ba_check
: ba_unique
,
606 if (!binfo
|| binfo
== error_mark_node
)
607 return error_mark_node
;
609 return build_base_path (PLUS_EXPR
, object
, binfo
, nonnull
, complain
);
612 /* EXPR is an expression with unqualified class type. BASE is a base
613 binfo of that class type. Returns EXPR, converted to the BASE
614 type. This function assumes that EXPR is the most derived class;
615 therefore virtual bases can be found at their static offsets. */
618 convert_to_base_statically (tree expr
, tree base
)
622 expr_type
= TREE_TYPE (expr
);
623 if (!SAME_BINFO_TYPE_P (BINFO_TYPE (base
), expr_type
))
625 /* If this is a non-empty base, use a COMPONENT_REF. */
626 if (!is_empty_class (BINFO_TYPE (base
)))
627 return build_simple_base_path (expr
, base
);
629 /* We use fold_build2 and fold_convert below to simplify the trees
630 provided to the optimizers. It is not safe to call these functions
631 when processing a template because they do not handle C++-specific
633 gcc_assert (!processing_template_decl
);
634 expr
= cp_build_addr_expr (expr
, tf_warning_or_error
);
635 if (!integer_zerop (BINFO_OFFSET (base
)))
636 expr
= fold_build_pointer_plus_loc (input_location
,
637 expr
, BINFO_OFFSET (base
));
638 expr
= fold_convert (build_pointer_type (BINFO_TYPE (base
)), expr
);
639 expr
= build_fold_indirect_ref_loc (input_location
, expr
);
647 build_vfield_ref (tree datum
, tree type
)
649 tree vfield
, vcontext
;
651 if (datum
== error_mark_node
652 /* Can happen in case of duplicate base types (c++/59082). */
653 || !TYPE_VFIELD (type
))
654 return error_mark_node
;
656 /* First, convert to the requested type. */
657 if (!same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (datum
), type
))
658 datum
= convert_to_base (datum
, type
, /*check_access=*/false,
659 /*nonnull=*/true, tf_warning_or_error
);
661 /* Second, the requested type may not be the owner of its own vptr.
662 If not, convert to the base class that owns it. We cannot use
663 convert_to_base here, because VCONTEXT may appear more than once
664 in the inheritance hierarchy of TYPE, and thus direct conversion
665 between the types may be ambiguous. Following the path back up
666 one step at a time via primary bases avoids the problem. */
667 vfield
= TYPE_VFIELD (type
);
668 vcontext
= DECL_CONTEXT (vfield
);
669 while (!same_type_ignoring_top_level_qualifiers_p (vcontext
, type
))
671 datum
= build_simple_base_path (datum
, CLASSTYPE_PRIMARY_BINFO (type
));
672 type
= TREE_TYPE (datum
);
675 return build3 (COMPONENT_REF
, TREE_TYPE (vfield
), datum
, vfield
, NULL_TREE
);
678 /* Given an object INSTANCE, return an expression which yields the
679 vtable element corresponding to INDEX. There are many special
680 cases for INSTANCE which we take care of here, mainly to avoid
681 creating extra tree nodes when we don't have to. */
684 build_vtbl_ref_1 (tree instance
, tree idx
)
687 tree vtbl
= NULL_TREE
;
689 /* Try to figure out what a reference refers to, and
690 access its virtual function table directly. */
693 tree fixed_type
= fixed_type_or_null (instance
, NULL
, &cdtorp
);
695 tree basetype
= non_reference (TREE_TYPE (instance
));
697 if (fixed_type
&& !cdtorp
)
699 tree binfo
= lookup_base (fixed_type
, basetype
,
700 ba_unique
, NULL
, tf_none
);
701 if (binfo
&& binfo
!= error_mark_node
)
702 vtbl
= unshare_expr (BINFO_VTABLE (binfo
));
706 vtbl
= build_vfield_ref (instance
, basetype
);
708 aref
= build_array_ref (input_location
, vtbl
, idx
);
709 TREE_CONSTANT (aref
) |= TREE_CONSTANT (vtbl
) && TREE_CONSTANT (idx
);
715 build_vtbl_ref (tree instance
, tree idx
)
717 tree aref
= build_vtbl_ref_1 (instance
, idx
);
722 /* Given a stable object pointer INSTANCE_PTR, return an expression which
723 yields a function pointer corresponding to vtable element INDEX. */
726 build_vfn_ref (tree instance_ptr
, tree idx
)
730 aref
= build_vtbl_ref_1 (cp_build_indirect_ref (instance_ptr
, RO_NULL
,
731 tf_warning_or_error
),
734 /* When using function descriptors, the address of the
735 vtable entry is treated as a function pointer. */
736 if (TARGET_VTABLE_USES_DESCRIPTORS
)
737 aref
= build1 (NOP_EXPR
, TREE_TYPE (aref
),
738 cp_build_addr_expr (aref
, tf_warning_or_error
));
740 /* Remember this as a method reference, for later devirtualization. */
741 aref
= build3 (OBJ_TYPE_REF
, TREE_TYPE (aref
), aref
, instance_ptr
, idx
);
746 /* Return the name of the virtual function table (as an IDENTIFIER_NODE)
747 for the given TYPE. */
750 get_vtable_name (tree type
)
752 return mangle_vtbl_for_type (type
);
755 /* DECL is an entity associated with TYPE, like a virtual table or an
756 implicitly generated constructor. Determine whether or not DECL
757 should have external or internal linkage at the object file
758 level. This routine does not deal with COMDAT linkage and other
759 similar complexities; it simply sets TREE_PUBLIC if it possible for
760 entities in other translation units to contain copies of DECL, in
764 set_linkage_according_to_type (tree
/*type*/, tree decl
)
766 TREE_PUBLIC (decl
) = 1;
767 determine_visibility (decl
);
770 /* Create a VAR_DECL for a primary or secondary vtable for CLASS_TYPE.
771 (For a secondary vtable for B-in-D, CLASS_TYPE should be D, not B.)
772 Use NAME for the name of the vtable, and VTABLE_TYPE for its type. */
775 build_vtable (tree class_type
, tree name
, tree vtable_type
)
779 decl
= build_lang_decl (VAR_DECL
, name
, vtable_type
);
780 /* vtable names are already mangled; give them their DECL_ASSEMBLER_NAME
781 now to avoid confusion in mangle_decl. */
782 SET_DECL_ASSEMBLER_NAME (decl
, name
);
783 DECL_CONTEXT (decl
) = class_type
;
784 DECL_ARTIFICIAL (decl
) = 1;
785 TREE_STATIC (decl
) = 1;
786 TREE_READONLY (decl
) = 1;
787 DECL_VIRTUAL_P (decl
) = 1;
788 DECL_ALIGN (decl
) = TARGET_VTABLE_ENTRY_ALIGN
;
789 DECL_USER_ALIGN (decl
) = true;
790 DECL_VTABLE_OR_VTT_P (decl
) = 1;
791 set_linkage_according_to_type (class_type
, decl
);
792 /* The vtable has not been defined -- yet. */
793 DECL_EXTERNAL (decl
) = 1;
794 DECL_NOT_REALLY_EXTERN (decl
) = 1;
796 /* Mark the VAR_DECL node representing the vtable itself as a
797 "gratuitous" one, thereby forcing dwarfout.c to ignore it. It
798 is rather important that such things be ignored because any
799 effort to actually generate DWARF for them will run into
800 trouble when/if we encounter code like:
803 struct S { virtual void member (); };
805 because the artificial declaration of the vtable itself (as
806 manufactured by the g++ front end) will say that the vtable is
807 a static member of `S' but only *after* the debug output for
808 the definition of `S' has already been output. This causes
809 grief because the DWARF entry for the definition of the vtable
810 will try to refer back to an earlier *declaration* of the
811 vtable as a static member of `S' and there won't be one. We
812 might be able to arrange to have the "vtable static member"
813 attached to the member list for `S' before the debug info for
814 `S' get written (which would solve the problem) but that would
815 require more intrusive changes to the g++ front end. */
816 DECL_IGNORED_P (decl
) = 1;
821 /* Get the VAR_DECL of the vtable for TYPE. TYPE need not be polymorphic,
822 or even complete. If this does not exist, create it. If COMPLETE is
823 nonzero, then complete the definition of it -- that will render it
824 impossible to actually build the vtable, but is useful to get at those
825 which are known to exist in the runtime. */
828 get_vtable_decl (tree type
, int complete
)
832 if (CLASSTYPE_VTABLES (type
))
833 return CLASSTYPE_VTABLES (type
);
835 decl
= build_vtable (type
, get_vtable_name (type
), vtbl_type_node
);
836 CLASSTYPE_VTABLES (type
) = decl
;
840 DECL_EXTERNAL (decl
) = 1;
841 cp_finish_decl (decl
, NULL_TREE
, false, NULL_TREE
, 0);
847 /* Build the primary virtual function table for TYPE. If BINFO is
848 non-NULL, build the vtable starting with the initial approximation
849 that it is the same as the one which is the head of the association
850 list. Returns a nonzero value if a new vtable is actually
854 build_primary_vtable (tree binfo
, tree type
)
859 decl
= get_vtable_decl (type
, /*complete=*/0);
863 if (BINFO_NEW_VTABLE_MARKED (binfo
))
864 /* We have already created a vtable for this base, so there's
865 no need to do it again. */
868 virtuals
= copy_list (BINFO_VIRTUALS (binfo
));
869 TREE_TYPE (decl
) = TREE_TYPE (get_vtbl_decl_for_binfo (binfo
));
870 DECL_SIZE (decl
) = TYPE_SIZE (TREE_TYPE (decl
));
871 DECL_SIZE_UNIT (decl
) = TYPE_SIZE_UNIT (TREE_TYPE (decl
));
875 gcc_assert (TREE_TYPE (decl
) == vtbl_type_node
);
876 virtuals
= NULL_TREE
;
879 if (GATHER_STATISTICS
)
882 n_vtable_elems
+= list_length (virtuals
);
885 /* Initialize the association list for this type, based
886 on our first approximation. */
887 BINFO_VTABLE (TYPE_BINFO (type
)) = decl
;
888 BINFO_VIRTUALS (TYPE_BINFO (type
)) = virtuals
;
889 SET_BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (type
));
893 /* Give BINFO a new virtual function table which is initialized
894 with a skeleton-copy of its original initialization. The only
895 entry that changes is the `delta' entry, so we can really
896 share a lot of structure.
898 FOR_TYPE is the most derived type which caused this table to
901 Returns nonzero if we haven't met BINFO before.
903 The order in which vtables are built (by calling this function) for
904 an object must remain the same, otherwise a binary incompatibility
908 build_secondary_vtable (tree binfo
)
910 if (BINFO_NEW_VTABLE_MARKED (binfo
))
911 /* We already created a vtable for this base. There's no need to
915 /* Remember that we've created a vtable for this BINFO, so that we
916 don't try to do so again. */
917 SET_BINFO_NEW_VTABLE_MARKED (binfo
);
919 /* Make fresh virtual list, so we can smash it later. */
920 BINFO_VIRTUALS (binfo
) = copy_list (BINFO_VIRTUALS (binfo
));
922 /* Secondary vtables are laid out as part of the same structure as
923 the primary vtable. */
924 BINFO_VTABLE (binfo
) = NULL_TREE
;
928 /* Create a new vtable for BINFO which is the hierarchy dominated by
929 T. Return nonzero if we actually created a new vtable. */
932 make_new_vtable (tree t
, tree binfo
)
934 if (binfo
== TYPE_BINFO (t
))
935 /* In this case, it is *type*'s vtable we are modifying. We start
936 with the approximation that its vtable is that of the
937 immediate base class. */
938 return build_primary_vtable (binfo
, t
);
940 /* This is our very own copy of `basetype' to play with. Later,
941 we will fill in all the virtual functions that override the
942 virtual functions in these base classes which are not defined
943 by the current type. */
944 return build_secondary_vtable (binfo
);
947 /* Make *VIRTUALS, an entry on the BINFO_VIRTUALS list for BINFO
948 (which is in the hierarchy dominated by T) list FNDECL as its
949 BV_FN. DELTA is the required constant adjustment from the `this'
950 pointer where the vtable entry appears to the `this' required when
951 the function is actually called. */
954 modify_vtable_entry (tree t
,
964 if (fndecl
!= BV_FN (v
)
965 || !tree_int_cst_equal (delta
, BV_DELTA (v
)))
967 /* We need a new vtable for BINFO. */
968 if (make_new_vtable (t
, binfo
))
970 /* If we really did make a new vtable, we also made a copy
971 of the BINFO_VIRTUALS list. Now, we have to find the
972 corresponding entry in that list. */
973 *virtuals
= BINFO_VIRTUALS (binfo
);
974 while (BV_FN (*virtuals
) != BV_FN (v
))
975 *virtuals
= TREE_CHAIN (*virtuals
);
979 BV_DELTA (v
) = delta
;
980 BV_VCALL_INDEX (v
) = NULL_TREE
;
986 /* Add method METHOD to class TYPE. If USING_DECL is non-null, it is
987 the USING_DECL naming METHOD. Returns true if the method could be
988 added to the method vec. */
991 add_method (tree type
, tree method
, tree using_decl
)
995 bool template_conv_p
= false;
997 vec
<tree
, va_gc
> *method_vec
;
999 bool insert_p
= false;
1003 if (method
== error_mark_node
)
1006 complete_p
= COMPLETE_TYPE_P (type
);
1007 conv_p
= DECL_CONV_FN_P (method
);
1009 template_conv_p
= (TREE_CODE (method
) == TEMPLATE_DECL
1010 && DECL_TEMPLATE_CONV_FN_P (method
));
1012 method_vec
= CLASSTYPE_METHOD_VEC (type
);
1015 /* Make a new method vector. We start with 8 entries. We must
1016 allocate at least two (for constructors and destructors), and
1017 we're going to end up with an assignment operator at some
1019 vec_alloc (method_vec
, 8);
1020 /* Create slots for constructors and destructors. */
1021 method_vec
->quick_push (NULL_TREE
);
1022 method_vec
->quick_push (NULL_TREE
);
1023 CLASSTYPE_METHOD_VEC (type
) = method_vec
;
1026 /* Maintain TYPE_HAS_USER_CONSTRUCTOR, etc. */
1027 grok_special_member_properties (method
);
1029 /* Constructors and destructors go in special slots. */
1030 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (method
))
1031 slot
= CLASSTYPE_CONSTRUCTOR_SLOT
;
1032 else if (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method
))
1034 slot
= CLASSTYPE_DESTRUCTOR_SLOT
;
1036 if (TYPE_FOR_JAVA (type
))
1038 if (!DECL_ARTIFICIAL (method
))
1039 error ("Java class %qT cannot have a destructor", type
);
1040 else if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
1041 error ("Java class %qT cannot have an implicit non-trivial "
1051 /* See if we already have an entry with this name. */
1052 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
1053 vec_safe_iterate (method_vec
, slot
, &m
);
1056 m
= OVL_CURRENT (m
);
1057 if (template_conv_p
)
1059 if (TREE_CODE (m
) == TEMPLATE_DECL
1060 && DECL_TEMPLATE_CONV_FN_P (m
))
1064 if (conv_p
&& !DECL_CONV_FN_P (m
))
1066 if (DECL_NAME (m
) == DECL_NAME (method
))
1072 && !DECL_CONV_FN_P (m
)
1073 && DECL_NAME (m
) > DECL_NAME (method
))
1077 current_fns
= insert_p
? NULL_TREE
: (*method_vec
)[slot
];
1079 /* Check to see if we've already got this method. */
1080 for (fns
= current_fns
; fns
; fns
= OVL_NEXT (fns
))
1082 tree fn
= OVL_CURRENT (fns
);
1088 if (TREE_CODE (fn
) != TREE_CODE (method
))
1091 /* [over.load] Member function declarations with the
1092 same name and the same parameter types cannot be
1093 overloaded if any of them is a static member
1094 function declaration.
1096 [over.load] Member function declarations with the same name and
1097 the same parameter-type-list as well as member function template
1098 declarations with the same name, the same parameter-type-list, and
1099 the same template parameter lists cannot be overloaded if any of
1100 them, but not all, have a ref-qualifier.
1102 [namespace.udecl] When a using-declaration brings names
1103 from a base class into a derived class scope, member
1104 functions in the derived class override and/or hide member
1105 functions with the same name and parameter types in a base
1106 class (rather than conflicting). */
1107 fn_type
= TREE_TYPE (fn
);
1108 method_type
= TREE_TYPE (method
);
1109 parms1
= TYPE_ARG_TYPES (fn_type
);
1110 parms2
= TYPE_ARG_TYPES (method_type
);
1112 /* Compare the quals on the 'this' parm. Don't compare
1113 the whole types, as used functions are treated as
1114 coming from the using class in overload resolution. */
1115 if (! DECL_STATIC_FUNCTION_P (fn
)
1116 && ! DECL_STATIC_FUNCTION_P (method
)
1117 /* Either both or neither need to be ref-qualified for
1118 differing quals to allow overloading. */
1119 && (FUNCTION_REF_QUALIFIED (fn_type
)
1120 == FUNCTION_REF_QUALIFIED (method_type
))
1121 && (type_memfn_quals (fn_type
) != type_memfn_quals (method_type
)
1122 || type_memfn_rqual (fn_type
) != type_memfn_rqual (method_type
)))
1125 /* For templates, the return type and template parameters
1126 must be identical. */
1127 if (TREE_CODE (fn
) == TEMPLATE_DECL
1128 && (!same_type_p (TREE_TYPE (fn_type
),
1129 TREE_TYPE (method_type
))
1130 || !comp_template_parms (DECL_TEMPLATE_PARMS (fn
),
1131 DECL_TEMPLATE_PARMS (method
))))
1134 if (! DECL_STATIC_FUNCTION_P (fn
))
1135 parms1
= TREE_CHAIN (parms1
);
1136 if (! DECL_STATIC_FUNCTION_P (method
))
1137 parms2
= TREE_CHAIN (parms2
);
1139 if (compparms (parms1
, parms2
)
1140 && (!DECL_CONV_FN_P (fn
)
1141 || same_type_p (TREE_TYPE (fn_type
),
1142 TREE_TYPE (method_type
))))
1144 /* For function versions, their parms and types match
1145 but they are not duplicates. Record function versions
1146 as and when they are found. extern "C" functions are
1147 not treated as versions. */
1148 if (TREE_CODE (fn
) == FUNCTION_DECL
1149 && TREE_CODE (method
) == FUNCTION_DECL
1150 && !DECL_EXTERN_C_P (fn
)
1151 && !DECL_EXTERN_C_P (method
)
1152 && targetm
.target_option
.function_versions (fn
, method
))
1154 /* Mark functions as versions if necessary. Modify the mangled
1155 decl name if necessary. */
1156 if (!DECL_FUNCTION_VERSIONED (fn
))
1158 DECL_FUNCTION_VERSIONED (fn
) = 1;
1159 if (DECL_ASSEMBLER_NAME_SET_P (fn
))
1162 if (!DECL_FUNCTION_VERSIONED (method
))
1164 DECL_FUNCTION_VERSIONED (method
) = 1;
1165 if (DECL_ASSEMBLER_NAME_SET_P (method
))
1166 mangle_decl (method
);
1168 cgraph_node::record_function_versions (fn
, method
);
1171 if (DECL_INHERITED_CTOR_BASE (method
))
1173 if (DECL_INHERITED_CTOR_BASE (fn
))
1175 error_at (DECL_SOURCE_LOCATION (method
),
1176 "%q#D inherited from %qT", method
,
1177 DECL_INHERITED_CTOR_BASE (method
));
1178 error_at (DECL_SOURCE_LOCATION (fn
),
1179 "conflicts with version inherited from %qT",
1180 DECL_INHERITED_CTOR_BASE (fn
));
1182 /* Otherwise defer to the other function. */
1187 if (DECL_CONTEXT (fn
) == type
)
1188 /* Defer to the local function. */
1193 error ("%q+#D cannot be overloaded", method
);
1194 error ("with %q+#D", fn
);
1197 /* We don't call duplicate_decls here to merge the
1198 declarations because that will confuse things if the
1199 methods have inline definitions. In particular, we
1200 will crash while processing the definitions. */
1205 /* A class should never have more than one destructor. */
1206 if (current_fns
&& DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (method
))
1209 /* Add the new binding. */
1212 overload
= ovl_cons (method
, current_fns
);
1213 OVL_USED (overload
) = true;
1216 overload
= build_overload (method
, current_fns
);
1219 TYPE_HAS_CONVERSION (type
) = 1;
1220 else if (slot
>= CLASSTYPE_FIRST_CONVERSION_SLOT
&& !complete_p
)
1221 push_class_level_binding (DECL_NAME (method
), overload
);
1227 /* We only expect to add few methods in the COMPLETE_P case, so
1228 just make room for one more method in that case. */
1230 reallocated
= vec_safe_reserve_exact (method_vec
, 1);
1232 reallocated
= vec_safe_reserve (method_vec
, 1);
1234 CLASSTYPE_METHOD_VEC (type
) = method_vec
;
1235 if (slot
== method_vec
->length ())
1236 method_vec
->quick_push (overload
);
1238 method_vec
->quick_insert (slot
, overload
);
1241 /* Replace the current slot. */
1242 (*method_vec
)[slot
] = overload
;
1246 /* Subroutines of finish_struct. */
1248 /* Change the access of FDECL to ACCESS in T. Return 1 if change was
1249 legit, otherwise return 0. */
1252 alter_access (tree t
, tree fdecl
, tree access
)
1256 if (!DECL_LANG_SPECIFIC (fdecl
))
1257 retrofit_lang_decl (fdecl
);
1259 gcc_assert (!DECL_DISCRIMINATOR_P (fdecl
));
1261 elem
= purpose_member (t
, DECL_ACCESS (fdecl
));
1264 if (TREE_VALUE (elem
) != access
)
1266 if (TREE_CODE (TREE_TYPE (fdecl
)) == FUNCTION_DECL
)
1267 error ("conflicting access specifications for method"
1268 " %q+D, ignored", TREE_TYPE (fdecl
));
1270 error ("conflicting access specifications for field %qE, ignored",
1275 /* They're changing the access to the same thing they changed
1276 it to before. That's OK. */
1282 perform_or_defer_access_check (TYPE_BINFO (t
), fdecl
, fdecl
,
1283 tf_warning_or_error
);
1284 DECL_ACCESS (fdecl
) = tree_cons (t
, access
, DECL_ACCESS (fdecl
));
1290 /* Process the USING_DECL, which is a member of T. */
1293 handle_using_decl (tree using_decl
, tree t
)
1295 tree decl
= USING_DECL_DECLS (using_decl
);
1296 tree name
= DECL_NAME (using_decl
);
1298 = TREE_PRIVATE (using_decl
) ? access_private_node
1299 : TREE_PROTECTED (using_decl
) ? access_protected_node
1300 : access_public_node
;
1301 tree flist
= NULL_TREE
;
1304 gcc_assert (!processing_template_decl
&& decl
);
1306 old_value
= lookup_member (t
, name
, /*protect=*/0, /*want_type=*/false,
1307 tf_warning_or_error
);
1310 if (is_overloaded_fn (old_value
))
1311 old_value
= OVL_CURRENT (old_value
);
1313 if (DECL_P (old_value
) && DECL_CONTEXT (old_value
) == t
)
1316 old_value
= NULL_TREE
;
1319 cp_emit_debug_info_for_using (decl
, t
);
1321 if (is_overloaded_fn (decl
))
1326 else if (is_overloaded_fn (old_value
))
1329 /* It's OK to use functions from a base when there are functions with
1330 the same name already present in the current class. */;
1333 error ("%q+D invalid in %q#T", using_decl
, t
);
1334 error (" because of local method %q+#D with same name",
1335 OVL_CURRENT (old_value
));
1339 else if (!DECL_ARTIFICIAL (old_value
))
1341 error ("%q+D invalid in %q#T", using_decl
, t
);
1342 error (" because of local member %q+#D with same name", old_value
);
1346 /* Make type T see field decl FDECL with access ACCESS. */
1348 for (; flist
; flist
= OVL_NEXT (flist
))
1350 add_method (t
, OVL_CURRENT (flist
), using_decl
);
1351 alter_access (t
, OVL_CURRENT (flist
), access
);
1354 alter_access (t
, decl
, access
);
1357 /* Data structure for find_abi_tags_r, below. */
1361 tree t
; // The type that we're checking for missing tags.
1362 tree subob
; // The subobject of T that we're getting tags from.
1363 tree tags
; // error_mark_node for diagnostics, or a list of missing tags.
1366 /* Subroutine of find_abi_tags_r. Handle a single TAG found on the class TP
1367 in the context of P. TAG can be either an identifier (the DECL_NAME of
1368 a tag NAMESPACE_DECL) or a STRING_CST (a tag attribute). */
1371 check_tag (tree tag
, tree id
, tree
*tp
, abi_tag_data
*p
)
1373 if (!IDENTIFIER_MARKED (id
))
1375 if (p
->tags
!= error_mark_node
)
1377 /* We're collecting tags from template arguments or from
1378 the type of a variable or function return type. */
1379 p
->tags
= tree_cons (NULL_TREE
, tag
, p
->tags
);
1381 /* Don't inherit this tag multiple times. */
1382 IDENTIFIER_MARKED (id
) = true;
1386 /* Tags inherited from type template arguments are only used
1387 to avoid warnings. */
1388 ABI_TAG_IMPLICIT (p
->tags
) = true;
1391 /* For functions and variables we want to warn, too. */
1394 /* Otherwise we're diagnosing missing tags. */
1395 if (TREE_CODE (p
->t
) == FUNCTION_DECL
)
1397 if (warning (OPT_Wabi_tag
, "%qD inherits the %E ABI tag "
1398 "that %qT (used in its return type) has",
1400 inform (location_of (*tp
), "%qT declared here", *tp
);
1402 else if (TREE_CODE (p
->t
) == VAR_DECL
)
1404 if (warning (OPT_Wabi_tag
, "%qD inherits the %E ABI tag "
1405 "that %qT (used in its type) has", p
->t
, tag
, *tp
))
1406 inform (location_of (*tp
), "%qT declared here", *tp
);
1408 else if (TYPE_P (p
->subob
))
1410 if (warning (OPT_Wabi_tag
, "%qT does not have the %E ABI tag "
1411 "that base %qT has", p
->t
, tag
, p
->subob
))
1412 inform (location_of (p
->subob
), "%qT declared here",
1417 if (warning (OPT_Wabi_tag
, "%qT does not have the %E ABI tag "
1418 "that %qT (used in the type of %qD) has",
1419 p
->t
, tag
, *tp
, p
->subob
))
1421 inform (location_of (p
->subob
), "%qD declared here",
1423 inform (location_of (*tp
), "%qT declared here", *tp
);
1429 /* Find all the ABI tags in the attribute list ATTR and either call
1430 check_tag (if TP is non-null) or set IDENTIFIER_MARKED to val. */
1433 mark_or_check_attr_tags (tree attr
, tree
*tp
, abi_tag_data
*p
, bool val
)
1437 for (; (attr
= lookup_attribute ("abi_tag", attr
));
1438 attr
= TREE_CHAIN (attr
))
1439 for (tree list
= TREE_VALUE (attr
); list
;
1440 list
= TREE_CHAIN (list
))
1442 tree tag
= TREE_VALUE (list
);
1443 tree id
= get_identifier (TREE_STRING_POINTER (tag
));
1445 check_tag (tag
, id
, tp
, p
);
1447 IDENTIFIER_MARKED (id
) = val
;
1451 /* Find all the ABI tags on T and its enclosing scopes and either call
1452 check_tag (if TP is non-null) or set IDENTIFIER_MARKED to val. */
1455 mark_or_check_tags (tree t
, tree
*tp
, abi_tag_data
*p
, bool val
)
1457 while (t
!= global_namespace
)
1462 attr
= TYPE_ATTRIBUTES (t
);
1463 t
= CP_TYPE_CONTEXT (t
);
1467 attr
= DECL_ATTRIBUTES (t
);
1468 t
= CP_DECL_CONTEXT (t
);
1470 mark_or_check_attr_tags (attr
, tp
, p
, val
);
1474 /* walk_tree callback for check_abi_tags: if the type at *TP involves any
1475 types with ABI tags, add the corresponding identifiers to the VEC in
1476 *DATA and set IDENTIFIER_MARKED. */
1479 find_abi_tags_r (tree
*tp
, int *walk_subtrees
, void *data
)
1481 if (!OVERLOAD_TYPE_P (*tp
))
1484 /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1485 anyway, but let's make sure of it. */
1486 *walk_subtrees
= false;
1488 abi_tag_data
*p
= static_cast<struct abi_tag_data
*>(data
);
1490 mark_or_check_tags (*tp
, tp
, p
, false);
1495 /* walk_tree callback for mark_abi_tags: if *TP is a class, set
1496 IDENTIFIER_MARKED on its ABI tags. */
1499 mark_abi_tags_r (tree
*tp
, int *walk_subtrees
, void *data
)
1501 if (!OVERLOAD_TYPE_P (*tp
))
1504 /* walk_tree shouldn't be walking into any subtrees of a RECORD_TYPE
1505 anyway, but let's make sure of it. */
1506 *walk_subtrees
= false;
1508 bool *valp
= static_cast<bool*>(data
);
1510 mark_or_check_tags (*tp
, NULL
, NULL
, *valp
);
1515 /* Set IDENTIFIER_MARKED on all the ABI tags on T and its enclosing
1519 mark_abi_tags (tree t
, bool val
)
1521 mark_or_check_tags (t
, NULL
, NULL
, val
);
1524 if (DECL_LANG_SPECIFIC (t
) && DECL_USE_TEMPLATE (t
)
1525 && PRIMARY_TEMPLATE_P (DECL_TI_TEMPLATE (t
)))
1527 /* Template arguments are part of the signature. */
1528 tree level
= INNERMOST_TEMPLATE_ARGS (DECL_TI_ARGS (t
));
1529 for (int j
= 0; j
< TREE_VEC_LENGTH (level
); ++j
)
1531 tree arg
= TREE_VEC_ELT (level
, j
);
1532 cp_walk_tree_without_duplicates (&arg
, mark_abi_tags_r
, &val
);
1535 if (TREE_CODE (t
) == FUNCTION_DECL
)
1536 /* A function's parameter types are part of the signature, so
1537 we don't need to inherit any tags that are also in them. */
1538 for (tree arg
= FUNCTION_FIRST_USER_PARMTYPE (t
); arg
;
1539 arg
= TREE_CHAIN (arg
))
1540 cp_walk_tree_without_duplicates (&TREE_VALUE (arg
),
1541 mark_abi_tags_r
, &val
);
1545 /* Check that T has all the ABI tags that subobject SUBOB has, or
1546 warn if not. If T is a (variable or function) declaration, also
1547 add any missing tags. */
1550 check_abi_tags (tree t
, tree subob
)
1552 bool inherit
= DECL_P (t
);
1554 if (!inherit
&& !warn_abi_tag
)
1557 tree decl
= TYPE_P (t
) ? TYPE_NAME (t
) : t
;
1558 if (!TREE_PUBLIC (decl
))
1559 /* No need to worry about things local to this TU. */
1562 mark_abi_tags (t
, true);
1564 tree subtype
= TYPE_P (subob
) ? subob
: TREE_TYPE (subob
);
1565 struct abi_tag_data data
= { t
, subob
, error_mark_node
};
1567 data
.tags
= NULL_TREE
;
1569 cp_walk_tree_without_duplicates (&subtype
, find_abi_tags_r
, &data
);
1571 if (inherit
&& data
.tags
)
1573 tree attr
= lookup_attribute ("abi_tag", DECL_ATTRIBUTES (t
));
1575 TREE_VALUE (attr
) = chainon (data
.tags
, TREE_VALUE (attr
));
1578 = tree_cons (get_identifier ("abi_tag"), data
.tags
,
1579 DECL_ATTRIBUTES (t
));
1582 mark_abi_tags (t
, false);
1585 /* Check that DECL has all the ABI tags that are used in parts of its type
1586 that are not reflected in its mangled name. */
1589 check_abi_tags (tree decl
)
1591 if (TREE_CODE (decl
) == VAR_DECL
)
1592 check_abi_tags (decl
, TREE_TYPE (decl
));
1593 else if (TREE_CODE (decl
) == FUNCTION_DECL
1594 && !mangle_return_type_p (decl
))
1595 check_abi_tags (decl
, TREE_TYPE (TREE_TYPE (decl
)));
1599 inherit_targ_abi_tags (tree t
)
1601 if (!CLASS_TYPE_P (t
)
1602 || CLASSTYPE_TEMPLATE_INFO (t
) == NULL_TREE
)
1605 mark_abi_tags (t
, true);
1607 tree args
= CLASSTYPE_TI_ARGS (t
);
1608 struct abi_tag_data data
= { t
, NULL_TREE
, NULL_TREE
};
1609 for (int i
= 0; i
< TMPL_ARGS_DEPTH (args
); ++i
)
1611 tree level
= TMPL_ARGS_LEVEL (args
, i
+1);
1612 for (int j
= 0; j
< TREE_VEC_LENGTH (level
); ++j
)
1614 tree arg
= TREE_VEC_ELT (level
, j
);
1616 cp_walk_tree_without_duplicates (&arg
, find_abi_tags_r
, &data
);
1620 // If we found some tags on our template arguments, add them to our
1621 // abi_tag attribute.
1624 tree attr
= lookup_attribute ("abi_tag", TYPE_ATTRIBUTES (t
));
1626 TREE_VALUE (attr
) = chainon (data
.tags
, TREE_VALUE (attr
));
1629 = tree_cons (get_identifier ("abi_tag"), data
.tags
,
1630 TYPE_ATTRIBUTES (t
));
1633 mark_abi_tags (t
, false);
1636 /* Return true, iff class T has a non-virtual destructor that is
1637 accessible from outside the class heirarchy (i.e. is public, or
1638 there's a suitable friend. */
1641 accessible_nvdtor_p (tree t
)
1643 tree dtor
= CLASSTYPE_DESTRUCTORS (t
);
1645 /* An implicitly declared destructor is always public. And,
1646 if it were virtual, we would have created it by now. */
1650 if (DECL_VINDEX (dtor
))
1651 return false; /* Virtual */
1653 if (!TREE_PRIVATE (dtor
) && !TREE_PROTECTED (dtor
))
1654 return true; /* Public */
1656 if (CLASSTYPE_FRIEND_CLASSES (t
)
1657 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t
)))
1658 return true; /* Has friends */
1663 /* Run through the base classes of T, updating CANT_HAVE_CONST_CTOR_P,
1664 and NO_CONST_ASN_REF_P. Also set flag bits in T based on
1665 properties of the bases. */
1668 check_bases (tree t
,
1669 int* cant_have_const_ctor_p
,
1670 int* no_const_asn_ref_p
)
1673 bool seen_non_virtual_nearly_empty_base_p
= 0;
1674 int seen_tm_mask
= 0;
1677 tree field
= NULL_TREE
;
1679 if (!CLASSTYPE_NON_STD_LAYOUT (t
))
1680 for (field
= TYPE_FIELDS (t
); field
; field
= DECL_CHAIN (field
))
1681 if (TREE_CODE (field
) == FIELD_DECL
)
1684 for (binfo
= TYPE_BINFO (t
), i
= 0;
1685 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
1687 tree basetype
= TREE_TYPE (base_binfo
);
1689 gcc_assert (COMPLETE_TYPE_P (basetype
));
1691 if (CLASSTYPE_FINAL (basetype
))
1692 error ("cannot derive from %<final%> base %qT in derived type %qT",
1695 /* If any base class is non-literal, so is the derived class. */
1696 if (!CLASSTYPE_LITERAL_P (basetype
))
1697 CLASSTYPE_LITERAL_P (t
) = false;
1699 /* If the base class doesn't have copy constructors or
1700 assignment operators that take const references, then the
1701 derived class cannot have such a member automatically
1703 if (TYPE_HAS_COPY_CTOR (basetype
)
1704 && ! TYPE_HAS_CONST_COPY_CTOR (basetype
))
1705 *cant_have_const_ctor_p
= 1;
1706 if (TYPE_HAS_COPY_ASSIGN (basetype
)
1707 && !TYPE_HAS_CONST_COPY_ASSIGN (basetype
))
1708 *no_const_asn_ref_p
= 1;
1710 if (BINFO_VIRTUAL_P (base_binfo
))
1711 /* A virtual base does not effect nearly emptiness. */
1713 else if (CLASSTYPE_NEARLY_EMPTY_P (basetype
))
1715 if (seen_non_virtual_nearly_empty_base_p
)
1716 /* And if there is more than one nearly empty base, then the
1717 derived class is not nearly empty either. */
1718 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
1720 /* Remember we've seen one. */
1721 seen_non_virtual_nearly_empty_base_p
= 1;
1723 else if (!is_empty_class (basetype
))
1724 /* If the base class is not empty or nearly empty, then this
1725 class cannot be nearly empty. */
1726 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
1728 /* A lot of properties from the bases also apply to the derived
1730 TYPE_NEEDS_CONSTRUCTING (t
) |= TYPE_NEEDS_CONSTRUCTING (basetype
);
1731 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
1732 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (basetype
);
1733 TYPE_HAS_COMPLEX_COPY_ASSIGN (t
)
1734 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (basetype
)
1735 || !TYPE_HAS_COPY_ASSIGN (basetype
));
1736 TYPE_HAS_COMPLEX_COPY_CTOR (t
) |= (TYPE_HAS_COMPLEX_COPY_CTOR (basetype
)
1737 || !TYPE_HAS_COPY_CTOR (basetype
));
1738 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t
)
1739 |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (basetype
);
1740 TYPE_HAS_COMPLEX_MOVE_CTOR (t
) |= TYPE_HAS_COMPLEX_MOVE_CTOR (basetype
);
1741 TYPE_POLYMORPHIC_P (t
) |= TYPE_POLYMORPHIC_P (basetype
);
1742 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
)
1743 |= CLASSTYPE_CONTAINS_EMPTY_CLASS_P (basetype
);
1744 TYPE_HAS_COMPLEX_DFLT (t
) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (basetype
)
1745 || TYPE_HAS_COMPLEX_DFLT (basetype
));
1746 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT
1747 (t
, CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
)
1748 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (basetype
));
1749 SET_CLASSTYPE_REF_FIELDS_NEED_INIT
1750 (t
, CLASSTYPE_REF_FIELDS_NEED_INIT (t
)
1751 | CLASSTYPE_REF_FIELDS_NEED_INIT (basetype
));
1753 /* A standard-layout class is a class that:
1755 * has no non-standard-layout base classes, */
1756 CLASSTYPE_NON_STD_LAYOUT (t
) |= CLASSTYPE_NON_STD_LAYOUT (basetype
);
1757 if (!CLASSTYPE_NON_STD_LAYOUT (t
))
1760 /* ...has no base classes of the same type as the first non-static
1762 if (field
&& DECL_CONTEXT (field
) == t
1763 && (same_type_ignoring_top_level_qualifiers_p
1764 (TREE_TYPE (field
), basetype
)))
1765 CLASSTYPE_NON_STD_LAYOUT (t
) = 1;
1767 /* ...either has no non-static data members in the most-derived
1768 class and at most one base class with non-static data
1769 members, or has no base classes with non-static data
1771 for (basefield
= TYPE_FIELDS (basetype
); basefield
;
1772 basefield
= DECL_CHAIN (basefield
))
1773 if (TREE_CODE (basefield
) == FIELD_DECL
)
1776 CLASSTYPE_NON_STD_LAYOUT (t
) = 1;
1783 /* Don't bother collecting tm attributes if transactional memory
1784 support is not enabled. */
1787 tree tm_attr
= find_tm_attribute (TYPE_ATTRIBUTES (basetype
));
1789 seen_tm_mask
|= tm_attr_to_mask (tm_attr
);
1792 check_abi_tags (t
, basetype
);
1795 /* If one of the base classes had TM attributes, and the current class
1796 doesn't define its own, then the current class inherits one. */
1797 if (seen_tm_mask
&& !find_tm_attribute (TYPE_ATTRIBUTES (t
)))
1799 tree tm_attr
= tm_mask_to_attr (seen_tm_mask
& -seen_tm_mask
);
1800 TYPE_ATTRIBUTES (t
) = tree_cons (tm_attr
, NULL
, TYPE_ATTRIBUTES (t
));
1804 /* Determine all the primary bases within T. Sets BINFO_PRIMARY_BASE_P for
1805 those that are primaries. Sets BINFO_LOST_PRIMARY_P for those
1806 that have had a nearly-empty virtual primary base stolen by some
1807 other base in the hierarchy. Determines CLASSTYPE_PRIMARY_BASE for
1811 determine_primary_bases (tree t
)
1814 tree primary
= NULL_TREE
;
1815 tree type_binfo
= TYPE_BINFO (t
);
1818 /* Determine the primary bases of our bases. */
1819 for (base_binfo
= TREE_CHAIN (type_binfo
); base_binfo
;
1820 base_binfo
= TREE_CHAIN (base_binfo
))
1822 tree primary
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (base_binfo
));
1824 /* See if we're the non-virtual primary of our inheritance
1826 if (!BINFO_VIRTUAL_P (base_binfo
))
1828 tree parent
= BINFO_INHERITANCE_CHAIN (base_binfo
);
1829 tree parent_primary
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (parent
));
1832 && SAME_BINFO_TYPE_P (BINFO_TYPE (base_binfo
),
1833 BINFO_TYPE (parent_primary
)))
1834 /* We are the primary binfo. */
1835 BINFO_PRIMARY_P (base_binfo
) = 1;
1837 /* Determine if we have a virtual primary base, and mark it so.
1839 if (primary
&& BINFO_VIRTUAL_P (primary
))
1841 tree this_primary
= copied_binfo (primary
, base_binfo
);
1843 if (BINFO_PRIMARY_P (this_primary
))
1844 /* Someone already claimed this base. */
1845 BINFO_LOST_PRIMARY_P (base_binfo
) = 1;
1850 BINFO_PRIMARY_P (this_primary
) = 1;
1851 BINFO_INHERITANCE_CHAIN (this_primary
) = base_binfo
;
1853 /* A virtual binfo might have been copied from within
1854 another hierarchy. As we're about to use it as a
1855 primary base, make sure the offsets match. */
1856 delta
= size_diffop_loc (input_location
,
1858 BINFO_OFFSET (base_binfo
)),
1860 BINFO_OFFSET (this_primary
)));
1862 propagate_binfo_offsets (this_primary
, delta
);
1867 /* First look for a dynamic direct non-virtual base. */
1868 for (i
= 0; BINFO_BASE_ITERATE (type_binfo
, i
, base_binfo
); i
++)
1870 tree basetype
= BINFO_TYPE (base_binfo
);
1872 if (TYPE_CONTAINS_VPTR_P (basetype
) && !BINFO_VIRTUAL_P (base_binfo
))
1874 primary
= base_binfo
;
1879 /* A "nearly-empty" virtual base class can be the primary base
1880 class, if no non-virtual polymorphic base can be found. Look for
1881 a nearly-empty virtual dynamic base that is not already a primary
1882 base of something in the hierarchy. If there is no such base,
1883 just pick the first nearly-empty virtual base. */
1885 for (base_binfo
= TREE_CHAIN (type_binfo
); base_binfo
;
1886 base_binfo
= TREE_CHAIN (base_binfo
))
1887 if (BINFO_VIRTUAL_P (base_binfo
)
1888 && CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (base_binfo
)))
1890 if (!BINFO_PRIMARY_P (base_binfo
))
1892 /* Found one that is not primary. */
1893 primary
= base_binfo
;
1897 /* Remember the first candidate. */
1898 primary
= base_binfo
;
1902 /* If we've got a primary base, use it. */
1905 tree basetype
= BINFO_TYPE (primary
);
1907 CLASSTYPE_PRIMARY_BINFO (t
) = primary
;
1908 if (BINFO_PRIMARY_P (primary
))
1909 /* We are stealing a primary base. */
1910 BINFO_LOST_PRIMARY_P (BINFO_INHERITANCE_CHAIN (primary
)) = 1;
1911 BINFO_PRIMARY_P (primary
) = 1;
1912 if (BINFO_VIRTUAL_P (primary
))
1916 BINFO_INHERITANCE_CHAIN (primary
) = type_binfo
;
1917 /* A virtual binfo might have been copied from within
1918 another hierarchy. As we're about to use it as a primary
1919 base, make sure the offsets match. */
1920 delta
= size_diffop_loc (input_location
, ssize_int (0),
1921 convert (ssizetype
, BINFO_OFFSET (primary
)));
1923 propagate_binfo_offsets (primary
, delta
);
1926 primary
= TYPE_BINFO (basetype
);
1928 TYPE_VFIELD (t
) = TYPE_VFIELD (basetype
);
1929 BINFO_VTABLE (type_binfo
) = BINFO_VTABLE (primary
);
1930 BINFO_VIRTUALS (type_binfo
) = BINFO_VIRTUALS (primary
);
1934 /* Update the variant types of T. */
1937 fixup_type_variants (tree t
)
1944 for (variants
= TYPE_NEXT_VARIANT (t
);
1946 variants
= TYPE_NEXT_VARIANT (variants
))
1948 /* These fields are in the _TYPE part of the node, not in
1949 the TYPE_LANG_SPECIFIC component, so they are not shared. */
1950 TYPE_HAS_USER_CONSTRUCTOR (variants
) = TYPE_HAS_USER_CONSTRUCTOR (t
);
1951 TYPE_NEEDS_CONSTRUCTING (variants
) = TYPE_NEEDS_CONSTRUCTING (t
);
1952 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (variants
)
1953 = TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
);
1955 TYPE_POLYMORPHIC_P (variants
) = TYPE_POLYMORPHIC_P (t
);
1957 TYPE_BINFO (variants
) = TYPE_BINFO (t
);
1959 /* Copy whatever these are holding today. */
1960 TYPE_VFIELD (variants
) = TYPE_VFIELD (t
);
1961 TYPE_FIELDS (variants
) = TYPE_FIELDS (t
);
1965 /* Early variant fixups: we apply attributes at the beginning of the class
1966 definition, and we need to fix up any variants that have already been
1967 made via elaborated-type-specifier so that check_qualified_type works. */
1970 fixup_attribute_variants (tree t
)
1977 tree attrs
= TYPE_ATTRIBUTES (t
);
1978 unsigned align
= TYPE_ALIGN (t
);
1979 bool user_align
= TYPE_USER_ALIGN (t
);
1981 for (variants
= TYPE_NEXT_VARIANT (t
);
1983 variants
= TYPE_NEXT_VARIANT (variants
))
1985 /* These are the two fields that check_qualified_type looks at and
1986 are affected by attributes. */
1987 TYPE_ATTRIBUTES (variants
) = attrs
;
1988 unsigned valign
= align
;
1989 if (TYPE_USER_ALIGN (variants
))
1990 valign
= MAX (valign
, TYPE_ALIGN (variants
));
1992 TYPE_USER_ALIGN (variants
) = user_align
;
1993 TYPE_ALIGN (variants
) = valign
;
1997 /* Set memoizing fields and bits of T (and its variants) for later
2001 finish_struct_bits (tree t
)
2003 /* Fix up variants (if any). */
2004 fixup_type_variants (t
);
2006 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t
)) && TYPE_POLYMORPHIC_P (t
))
2007 /* For a class w/o baseclasses, 'finish_struct' has set
2008 CLASSTYPE_PURE_VIRTUALS correctly (by definition).
2009 Similarly for a class whose base classes do not have vtables.
2010 When neither of these is true, we might have removed abstract
2011 virtuals (by providing a definition), added some (by declaring
2012 new ones), or redeclared ones from a base class. We need to
2013 recalculate what's really an abstract virtual at this point (by
2014 looking in the vtables). */
2015 get_pure_virtuals (t
);
2017 /* If this type has a copy constructor or a destructor, force its
2018 mode to be BLKmode, and force its TREE_ADDRESSABLE bit to be
2019 nonzero. This will cause it to be passed by invisible reference
2020 and prevent it from being returned in a register. */
2021 if (type_has_nontrivial_copy_init (t
)
2022 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
))
2025 DECL_MODE (TYPE_MAIN_DECL (t
)) = BLKmode
;
2026 for (variants
= t
; variants
; variants
= TYPE_NEXT_VARIANT (variants
))
2028 SET_TYPE_MODE (variants
, BLKmode
);
2029 TREE_ADDRESSABLE (variants
) = 1;
2034 /* Issue warnings about T having private constructors, but no friends,
2037 HAS_NONPRIVATE_METHOD is nonzero if T has any non-private methods or
2038 static members. HAS_NONPRIVATE_STATIC_FN is nonzero if T has any
2039 non-private static member functions. */
2042 maybe_warn_about_overly_private_class (tree t
)
2044 int has_member_fn
= 0;
2045 int has_nonprivate_method
= 0;
2048 if (!warn_ctor_dtor_privacy
2049 /* If the class has friends, those entities might create and
2050 access instances, so we should not warn. */
2051 || (CLASSTYPE_FRIEND_CLASSES (t
)
2052 || DECL_FRIENDLIST (TYPE_MAIN_DECL (t
)))
2053 /* We will have warned when the template was declared; there's
2054 no need to warn on every instantiation. */
2055 || CLASSTYPE_TEMPLATE_INSTANTIATION (t
))
2056 /* There's no reason to even consider warning about this
2060 /* We only issue one warning, if more than one applies, because
2061 otherwise, on code like:
2064 // Oops - forgot `public:'
2070 we warn several times about essentially the same problem. */
2072 /* Check to see if all (non-constructor, non-destructor) member
2073 functions are private. (Since there are no friends or
2074 non-private statics, we can't ever call any of the private member
2076 for (fn
= TYPE_METHODS (t
); fn
; fn
= DECL_CHAIN (fn
))
2077 /* We're not interested in compiler-generated methods; they don't
2078 provide any way to call private members. */
2079 if (!DECL_ARTIFICIAL (fn
))
2081 if (!TREE_PRIVATE (fn
))
2083 if (DECL_STATIC_FUNCTION_P (fn
))
2084 /* A non-private static member function is just like a
2085 friend; it can create and invoke private member
2086 functions, and be accessed without a class
2090 has_nonprivate_method
= 1;
2091 /* Keep searching for a static member function. */
2093 else if (!DECL_CONSTRUCTOR_P (fn
) && !DECL_DESTRUCTOR_P (fn
))
2097 if (!has_nonprivate_method
&& has_member_fn
)
2099 /* There are no non-private methods, and there's at least one
2100 private member function that isn't a constructor or
2101 destructor. (If all the private members are
2102 constructors/destructors we want to use the code below that
2103 issues error messages specifically referring to
2104 constructors/destructors.) */
2106 tree binfo
= TYPE_BINFO (t
);
2108 for (i
= 0; i
!= BINFO_N_BASE_BINFOS (binfo
); i
++)
2109 if (BINFO_BASE_ACCESS (binfo
, i
) != access_private_node
)
2111 has_nonprivate_method
= 1;
2114 if (!has_nonprivate_method
)
2116 warning (OPT_Wctor_dtor_privacy
,
2117 "all member functions in class %qT are private", t
);
2122 /* Even if some of the member functions are non-private, the class
2123 won't be useful for much if all the constructors or destructors
2124 are private: such an object can never be created or destroyed. */
2125 fn
= CLASSTYPE_DESTRUCTORS (t
);
2126 if (fn
&& TREE_PRIVATE (fn
))
2128 warning (OPT_Wctor_dtor_privacy
,
2129 "%q#T only defines a private destructor and has no friends",
2134 /* Warn about classes that have private constructors and no friends. */
2135 if (TYPE_HAS_USER_CONSTRUCTOR (t
)
2136 /* Implicitly generated constructors are always public. */
2137 && (!CLASSTYPE_LAZY_DEFAULT_CTOR (t
)
2138 || !CLASSTYPE_LAZY_COPY_CTOR (t
)))
2140 int nonprivate_ctor
= 0;
2142 /* If a non-template class does not define a copy
2143 constructor, one is defined for it, enabling it to avoid
2144 this warning. For a template class, this does not
2145 happen, and so we would normally get a warning on:
2147 template <class T> class C { private: C(); };
2149 To avoid this asymmetry, we check TYPE_HAS_COPY_CTOR. All
2150 complete non-template or fully instantiated classes have this
2152 if (!TYPE_HAS_COPY_CTOR (t
))
2153 nonprivate_ctor
= 1;
2155 for (fn
= CLASSTYPE_CONSTRUCTORS (t
); fn
; fn
= OVL_NEXT (fn
))
2157 tree ctor
= OVL_CURRENT (fn
);
2158 /* Ideally, we wouldn't count copy constructors (or, in
2159 fact, any constructor that takes an argument of the
2160 class type as a parameter) because such things cannot
2161 be used to construct an instance of the class unless
2162 you already have one. But, for now at least, we're
2164 if (! TREE_PRIVATE (ctor
))
2166 nonprivate_ctor
= 1;
2171 if (nonprivate_ctor
== 0)
2173 warning (OPT_Wctor_dtor_privacy
,
2174 "%q#T only defines private constructors and has no friends",
2182 gt_pointer_operator new_value
;
2186 /* Comparison function to compare two TYPE_METHOD_VEC entries by name. */
2189 method_name_cmp (const void* m1_p
, const void* m2_p
)
2191 const tree
*const m1
= (const tree
*) m1_p
;
2192 const tree
*const m2
= (const tree
*) m2_p
;
2194 if (*m1
== NULL_TREE
&& *m2
== NULL_TREE
)
2196 if (*m1
== NULL_TREE
)
2198 if (*m2
== NULL_TREE
)
2200 if (DECL_NAME (OVL_CURRENT (*m1
)) < DECL_NAME (OVL_CURRENT (*m2
)))
2205 /* This routine compares two fields like method_name_cmp but using the
2206 pointer operator in resort_field_decl_data. */
2209 resort_method_name_cmp (const void* m1_p
, const void* m2_p
)
2211 const tree
*const m1
= (const tree
*) m1_p
;
2212 const tree
*const m2
= (const tree
*) m2_p
;
2213 if (*m1
== NULL_TREE
&& *m2
== NULL_TREE
)
2215 if (*m1
== NULL_TREE
)
2217 if (*m2
== NULL_TREE
)
2220 tree d1
= DECL_NAME (OVL_CURRENT (*m1
));
2221 tree d2
= DECL_NAME (OVL_CURRENT (*m2
));
2222 resort_data
.new_value (&d1
, resort_data
.cookie
);
2223 resort_data
.new_value (&d2
, resort_data
.cookie
);
2230 /* Resort TYPE_METHOD_VEC because pointers have been reordered. */
2233 resort_type_method_vec (void* obj
,
2235 gt_pointer_operator new_value
,
2238 vec
<tree
, va_gc
> *method_vec
= (vec
<tree
, va_gc
> *) obj
;
2239 int len
= vec_safe_length (method_vec
);
2243 /* The type conversion ops have to live at the front of the vec, so we
2245 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
2246 vec_safe_iterate (method_vec
, slot
, &fn
);
2248 if (!DECL_CONV_FN_P (OVL_CURRENT (fn
)))
2253 resort_data
.new_value
= new_value
;
2254 resort_data
.cookie
= cookie
;
2255 qsort (method_vec
->address () + slot
, len
- slot
, sizeof (tree
),
2256 resort_method_name_cmp
);
2260 /* Warn about duplicate methods in fn_fields.
2262 Sort methods that are not special (i.e., constructors, destructors,
2263 and type conversion operators) so that we can find them faster in
2267 finish_struct_methods (tree t
)
2270 vec
<tree
, va_gc
> *method_vec
;
2273 method_vec
= CLASSTYPE_METHOD_VEC (t
);
2277 len
= method_vec
->length ();
2279 /* Clear DECL_IN_AGGR_P for all functions. */
2280 for (fn_fields
= TYPE_METHODS (t
); fn_fields
;
2281 fn_fields
= DECL_CHAIN (fn_fields
))
2282 DECL_IN_AGGR_P (fn_fields
) = 0;
2284 /* Issue warnings about private constructors and such. If there are
2285 no methods, then some public defaults are generated. */
2286 maybe_warn_about_overly_private_class (t
);
2288 /* The type conversion ops have to live at the front of the vec, so we
2290 for (slot
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
2291 method_vec
->iterate (slot
, &fn_fields
);
2293 if (!DECL_CONV_FN_P (OVL_CURRENT (fn_fields
)))
2296 qsort (method_vec
->address () + slot
,
2297 len
-slot
, sizeof (tree
), method_name_cmp
);
2300 /* Make BINFO's vtable have N entries, including RTTI entries,
2301 vbase and vcall offsets, etc. Set its type and call the back end
2305 layout_vtable_decl (tree binfo
, int n
)
2310 atype
= build_array_of_n_type (vtable_entry_type
, n
);
2311 layout_type (atype
);
2313 /* We may have to grow the vtable. */
2314 vtable
= get_vtbl_decl_for_binfo (binfo
);
2315 if (!same_type_p (TREE_TYPE (vtable
), atype
))
2317 TREE_TYPE (vtable
) = atype
;
2318 DECL_SIZE (vtable
) = DECL_SIZE_UNIT (vtable
) = NULL_TREE
;
2319 layout_decl (vtable
, 0);
2323 /* True iff FNDECL and BASE_FNDECL (both non-static member functions)
2324 have the same signature. */
2327 same_signature_p (const_tree fndecl
, const_tree base_fndecl
)
2329 /* One destructor overrides another if they are the same kind of
2331 if (DECL_DESTRUCTOR_P (base_fndecl
) && DECL_DESTRUCTOR_P (fndecl
)
2332 && special_function_p (base_fndecl
) == special_function_p (fndecl
))
2334 /* But a non-destructor never overrides a destructor, nor vice
2335 versa, nor do different kinds of destructors override
2336 one-another. For example, a complete object destructor does not
2337 override a deleting destructor. */
2338 if (DECL_DESTRUCTOR_P (base_fndecl
) || DECL_DESTRUCTOR_P (fndecl
))
2341 if (DECL_NAME (fndecl
) == DECL_NAME (base_fndecl
)
2342 || (DECL_CONV_FN_P (fndecl
)
2343 && DECL_CONV_FN_P (base_fndecl
)
2344 && same_type_p (DECL_CONV_FN_TYPE (fndecl
),
2345 DECL_CONV_FN_TYPE (base_fndecl
))))
2347 tree fntype
= TREE_TYPE (fndecl
);
2348 tree base_fntype
= TREE_TYPE (base_fndecl
);
2349 if (type_memfn_quals (fntype
) == type_memfn_quals (base_fntype
)
2350 && type_memfn_rqual (fntype
) == type_memfn_rqual (base_fntype
)
2351 && compparms (FUNCTION_FIRST_USER_PARMTYPE (fndecl
),
2352 FUNCTION_FIRST_USER_PARMTYPE (base_fndecl
)))
2358 /* Returns TRUE if DERIVED is a binfo containing the binfo BASE as a
2362 base_derived_from (tree derived
, tree base
)
2366 for (probe
= base
; probe
; probe
= BINFO_INHERITANCE_CHAIN (probe
))
2368 if (probe
== derived
)
2370 else if (BINFO_VIRTUAL_P (probe
))
2371 /* If we meet a virtual base, we can't follow the inheritance
2372 any more. See if the complete type of DERIVED contains
2373 such a virtual base. */
2374 return (binfo_for_vbase (BINFO_TYPE (probe
), BINFO_TYPE (derived
))
2380 typedef struct find_final_overrider_data_s
{
2381 /* The function for which we are trying to find a final overrider. */
2383 /* The base class in which the function was declared. */
2384 tree declaring_base
;
2385 /* The candidate overriders. */
2387 /* Path to most derived. */
2389 } find_final_overrider_data
;
2391 /* Add the overrider along the current path to FFOD->CANDIDATES.
2392 Returns true if an overrider was found; false otherwise. */
2395 dfs_find_final_overrider_1 (tree binfo
,
2396 find_final_overrider_data
*ffod
,
2401 /* If BINFO is not the most derived type, try a more derived class.
2402 A definition there will overrider a definition here. */
2406 if (dfs_find_final_overrider_1
2407 (ffod
->path
[depth
], ffod
, depth
))
2411 method
= look_for_overrides_here (BINFO_TYPE (binfo
), ffod
->fn
);
2414 tree
*candidate
= &ffod
->candidates
;
2416 /* Remove any candidates overridden by this new function. */
2419 /* If *CANDIDATE overrides METHOD, then METHOD
2420 cannot override anything else on the list. */
2421 if (base_derived_from (TREE_VALUE (*candidate
), binfo
))
2423 /* If METHOD overrides *CANDIDATE, remove *CANDIDATE. */
2424 if (base_derived_from (binfo
, TREE_VALUE (*candidate
)))
2425 *candidate
= TREE_CHAIN (*candidate
);
2427 candidate
= &TREE_CHAIN (*candidate
);
2430 /* Add the new function. */
2431 ffod
->candidates
= tree_cons (method
, binfo
, ffod
->candidates
);
2438 /* Called from find_final_overrider via dfs_walk. */
2441 dfs_find_final_overrider_pre (tree binfo
, void *data
)
2443 find_final_overrider_data
*ffod
= (find_final_overrider_data
*) data
;
2445 if (binfo
== ffod
->declaring_base
)
2446 dfs_find_final_overrider_1 (binfo
, ffod
, ffod
->path
.length ());
2447 ffod
->path
.safe_push (binfo
);
2453 dfs_find_final_overrider_post (tree
/*binfo*/, void *data
)
2455 find_final_overrider_data
*ffod
= (find_final_overrider_data
*) data
;
2461 /* Returns a TREE_LIST whose TREE_PURPOSE is the final overrider for
2462 FN and whose TREE_VALUE is the binfo for the base where the
2463 overriding occurs. BINFO (in the hierarchy dominated by the binfo
2464 DERIVED) is the base object in which FN is declared. */
2467 find_final_overrider (tree derived
, tree binfo
, tree fn
)
2469 find_final_overrider_data ffod
;
2471 /* Getting this right is a little tricky. This is valid:
2473 struct S { virtual void f (); };
2474 struct T { virtual void f (); };
2475 struct U : public S, public T { };
2477 even though calling `f' in `U' is ambiguous. But,
2479 struct R { virtual void f(); };
2480 struct S : virtual public R { virtual void f (); };
2481 struct T : virtual public R { virtual void f (); };
2482 struct U : public S, public T { };
2484 is not -- there's no way to decide whether to put `S::f' or
2485 `T::f' in the vtable for `R'.
2487 The solution is to look at all paths to BINFO. If we find
2488 different overriders along any two, then there is a problem. */
2489 if (DECL_THUNK_P (fn
))
2490 fn
= THUNK_TARGET (fn
);
2492 /* Determine the depth of the hierarchy. */
2494 ffod
.declaring_base
= binfo
;
2495 ffod
.candidates
= NULL_TREE
;
2496 ffod
.path
.create (30);
2498 dfs_walk_all (derived
, dfs_find_final_overrider_pre
,
2499 dfs_find_final_overrider_post
, &ffod
);
2501 ffod
.path
.release ();
2503 /* If there was no winner, issue an error message. */
2504 if (!ffod
.candidates
|| TREE_CHAIN (ffod
.candidates
))
2505 return error_mark_node
;
2507 return ffod
.candidates
;
2510 /* Return the index of the vcall offset for FN when TYPE is used as a
2514 get_vcall_index (tree fn
, tree type
)
2516 vec
<tree_pair_s
, va_gc
> *indices
= CLASSTYPE_VCALL_INDICES (type
);
2520 FOR_EACH_VEC_SAFE_ELT (indices
, ix
, p
)
2521 if ((DECL_DESTRUCTOR_P (fn
) && DECL_DESTRUCTOR_P (p
->purpose
))
2522 || same_signature_p (fn
, p
->purpose
))
2525 /* There should always be an appropriate index. */
2529 /* Update an entry in the vtable for BINFO, which is in the hierarchy
2530 dominated by T. FN is the old function; VIRTUALS points to the
2531 corresponding position in the new BINFO_VIRTUALS list. IX is the index
2532 of that entry in the list. */
2535 update_vtable_entry_for_fn (tree t
, tree binfo
, tree fn
, tree
* virtuals
,
2543 tree overrider_fn
, overrider_target
;
2544 tree target_fn
= DECL_THUNK_P (fn
) ? THUNK_TARGET (fn
) : fn
;
2545 tree over_return
, base_return
;
2548 /* Find the nearest primary base (possibly binfo itself) which defines
2549 this function; this is the class the caller will convert to when
2550 calling FN through BINFO. */
2551 for (b
= binfo
; ; b
= get_primary_binfo (b
))
2554 if (look_for_overrides_here (BINFO_TYPE (b
), target_fn
))
2557 /* The nearest definition is from a lost primary. */
2558 if (BINFO_LOST_PRIMARY_P (b
))
2563 /* Find the final overrider. */
2564 overrider
= find_final_overrider (TYPE_BINFO (t
), b
, target_fn
);
2565 if (overrider
== error_mark_node
)
2567 error ("no unique final overrider for %qD in %qT", target_fn
, t
);
2570 overrider_target
= overrider_fn
= TREE_PURPOSE (overrider
);
2572 /* Check for adjusting covariant return types. */
2573 over_return
= TREE_TYPE (TREE_TYPE (overrider_target
));
2574 base_return
= TREE_TYPE (TREE_TYPE (target_fn
));
2576 if (POINTER_TYPE_P (over_return
)
2577 && TREE_CODE (over_return
) == TREE_CODE (base_return
)
2578 && CLASS_TYPE_P (TREE_TYPE (over_return
))
2579 && CLASS_TYPE_P (TREE_TYPE (base_return
))
2580 /* If the overrider is invalid, don't even try. */
2581 && !DECL_INVALID_OVERRIDER_P (overrider_target
))
2583 /* If FN is a covariant thunk, we must figure out the adjustment
2584 to the final base FN was converting to. As OVERRIDER_TARGET might
2585 also be converting to the return type of FN, we have to
2586 combine the two conversions here. */
2587 tree fixed_offset
, virtual_offset
;
2589 over_return
= TREE_TYPE (over_return
);
2590 base_return
= TREE_TYPE (base_return
);
2592 if (DECL_THUNK_P (fn
))
2594 gcc_assert (DECL_RESULT_THUNK_P (fn
));
2595 fixed_offset
= ssize_int (THUNK_FIXED_OFFSET (fn
));
2596 virtual_offset
= THUNK_VIRTUAL_OFFSET (fn
);
2599 fixed_offset
= virtual_offset
= NULL_TREE
;
2602 /* Find the equivalent binfo within the return type of the
2603 overriding function. We will want the vbase offset from
2605 virtual_offset
= binfo_for_vbase (BINFO_TYPE (virtual_offset
),
2607 else if (!same_type_ignoring_top_level_qualifiers_p
2608 (over_return
, base_return
))
2610 /* There was no existing virtual thunk (which takes
2611 precedence). So find the binfo of the base function's
2612 return type within the overriding function's return type.
2613 We cannot call lookup base here, because we're inside a
2614 dfs_walk, and will therefore clobber the BINFO_MARKED
2615 flags. Fortunately we know the covariancy is valid (it
2616 has already been checked), so we can just iterate along
2617 the binfos, which have been chained in inheritance graph
2618 order. Of course it is lame that we have to repeat the
2619 search here anyway -- we should really be caching pieces
2620 of the vtable and avoiding this repeated work. */
2621 tree thunk_binfo
, base_binfo
;
2623 /* Find the base binfo within the overriding function's
2624 return type. We will always find a thunk_binfo, except
2625 when the covariancy is invalid (which we will have
2626 already diagnosed). */
2627 for (base_binfo
= TYPE_BINFO (base_return
),
2628 thunk_binfo
= TYPE_BINFO (over_return
);
2630 thunk_binfo
= TREE_CHAIN (thunk_binfo
))
2631 if (SAME_BINFO_TYPE_P (BINFO_TYPE (thunk_binfo
),
2632 BINFO_TYPE (base_binfo
)))
2635 /* See if virtual inheritance is involved. */
2636 for (virtual_offset
= thunk_binfo
;
2638 virtual_offset
= BINFO_INHERITANCE_CHAIN (virtual_offset
))
2639 if (BINFO_VIRTUAL_P (virtual_offset
))
2643 || (thunk_binfo
&& !BINFO_OFFSET_ZEROP (thunk_binfo
)))
2645 tree offset
= convert (ssizetype
, BINFO_OFFSET (thunk_binfo
));
2649 /* We convert via virtual base. Adjust the fixed
2650 offset to be from there. */
2652 size_diffop (offset
,
2654 BINFO_OFFSET (virtual_offset
)));
2657 /* There was an existing fixed offset, this must be
2658 from the base just converted to, and the base the
2659 FN was thunking to. */
2660 fixed_offset
= size_binop (PLUS_EXPR
, fixed_offset
, offset
);
2662 fixed_offset
= offset
;
2666 if (fixed_offset
|| virtual_offset
)
2667 /* Replace the overriding function with a covariant thunk. We
2668 will emit the overriding function in its own slot as
2670 overrider_fn
= make_thunk (overrider_target
, /*this_adjusting=*/0,
2671 fixed_offset
, virtual_offset
);
2674 gcc_assert (DECL_INVALID_OVERRIDER_P (overrider_target
) ||
2675 !DECL_THUNK_P (fn
));
2677 /* If we need a covariant thunk, then we may need to adjust first_defn.
2678 The ABI specifies that the thunks emitted with a function are
2679 determined by which bases the function overrides, so we need to be
2680 sure that we're using a thunk for some overridden base; even if we
2681 know that the necessary this adjustment is zero, there may not be an
2682 appropriate zero-this-adjusment thunk for us to use since thunks for
2683 overriding virtual bases always use the vcall offset.
2685 Furthermore, just choosing any base that overrides this function isn't
2686 quite right, as this slot won't be used for calls through a type that
2687 puts a covariant thunk here. Calling the function through such a type
2688 will use a different slot, and that slot is the one that determines
2689 the thunk emitted for that base.
2691 So, keep looking until we find the base that we're really overriding
2692 in this slot: the nearest primary base that doesn't use a covariant
2693 thunk in this slot. */
2694 if (overrider_target
!= overrider_fn
)
2696 if (BINFO_TYPE (b
) == DECL_CONTEXT (overrider_target
))
2697 /* We already know that the overrider needs a covariant thunk. */
2698 b
= get_primary_binfo (b
);
2699 for (; ; b
= get_primary_binfo (b
))
2701 tree main_binfo
= TYPE_BINFO (BINFO_TYPE (b
));
2702 tree bv
= chain_index (ix
, BINFO_VIRTUALS (main_binfo
));
2703 if (!DECL_THUNK_P (TREE_VALUE (bv
)))
2705 if (BINFO_LOST_PRIMARY_P (b
))
2711 /* Assume that we will produce a thunk that convert all the way to
2712 the final overrider, and not to an intermediate virtual base. */
2713 virtual_base
= NULL_TREE
;
2715 /* See if we can convert to an intermediate virtual base first, and then
2716 use the vcall offset located there to finish the conversion. */
2717 for (; b
; b
= BINFO_INHERITANCE_CHAIN (b
))
2719 /* If we find the final overrider, then we can stop
2721 if (SAME_BINFO_TYPE_P (BINFO_TYPE (b
),
2722 BINFO_TYPE (TREE_VALUE (overrider
))))
2725 /* If we find a virtual base, and we haven't yet found the
2726 overrider, then there is a virtual base between the
2727 declaring base (first_defn) and the final overrider. */
2728 if (BINFO_VIRTUAL_P (b
))
2735 /* Compute the constant adjustment to the `this' pointer. The
2736 `this' pointer, when this function is called, will point at BINFO
2737 (or one of its primary bases, which are at the same offset). */
2739 /* The `this' pointer needs to be adjusted from the declaration to
2740 the nearest virtual base. */
2741 delta
= size_diffop_loc (input_location
,
2742 convert (ssizetype
, BINFO_OFFSET (virtual_base
)),
2743 convert (ssizetype
, BINFO_OFFSET (first_defn
)));
2745 /* If the nearest definition is in a lost primary, we don't need an
2746 entry in our vtable. Except possibly in a constructor vtable,
2747 if we happen to get our primary back. In that case, the offset
2748 will be zero, as it will be a primary base. */
2749 delta
= size_zero_node
;
2751 /* The `this' pointer needs to be adjusted from pointing to
2752 BINFO to pointing at the base where the final overrider
2754 delta
= size_diffop_loc (input_location
,
2756 BINFO_OFFSET (TREE_VALUE (overrider
))),
2757 convert (ssizetype
, BINFO_OFFSET (binfo
)));
2759 modify_vtable_entry (t
, binfo
, overrider_fn
, delta
, virtuals
);
2762 BV_VCALL_INDEX (*virtuals
)
2763 = get_vcall_index (overrider_target
, BINFO_TYPE (virtual_base
));
2765 BV_VCALL_INDEX (*virtuals
) = NULL_TREE
;
2767 BV_LOST_PRIMARY (*virtuals
) = lost
;
2770 /* Called from modify_all_vtables via dfs_walk. */
2773 dfs_modify_vtables (tree binfo
, void* data
)
2775 tree t
= (tree
) data
;
2780 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
2781 /* A base without a vtable needs no modification, and its bases
2782 are uninteresting. */
2783 return dfs_skip_bases
;
2785 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
)
2786 && !CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
2787 /* Don't do the primary vtable, if it's new. */
2790 if (BINFO_PRIMARY_P (binfo
) && !BINFO_VIRTUAL_P (binfo
))
2791 /* There's no need to modify the vtable for a non-virtual primary
2792 base; we're not going to use that vtable anyhow. We do still
2793 need to do this for virtual primary bases, as they could become
2794 non-primary in a construction vtable. */
2797 make_new_vtable (t
, binfo
);
2799 /* Now, go through each of the virtual functions in the virtual
2800 function table for BINFO. Find the final overrider, and update
2801 the BINFO_VIRTUALS list appropriately. */
2802 for (ix
= 0, virtuals
= BINFO_VIRTUALS (binfo
),
2803 old_virtuals
= BINFO_VIRTUALS (TYPE_BINFO (BINFO_TYPE (binfo
)));
2805 ix
++, virtuals
= TREE_CHAIN (virtuals
),
2806 old_virtuals
= TREE_CHAIN (old_virtuals
))
2807 update_vtable_entry_for_fn (t
,
2809 BV_FN (old_virtuals
),
2815 /* Update all of the primary and secondary vtables for T. Create new
2816 vtables as required, and initialize their RTTI information. Each
2817 of the functions in VIRTUALS is declared in T and may override a
2818 virtual function from a base class; find and modify the appropriate
2819 entries to point to the overriding functions. Returns a list, in
2820 declaration order, of the virtual functions that are declared in T,
2821 but do not appear in the primary base class vtable, and which
2822 should therefore be appended to the end of the vtable for T. */
2825 modify_all_vtables (tree t
, tree virtuals
)
2827 tree binfo
= TYPE_BINFO (t
);
2830 /* Mangle the vtable name before entering dfs_walk (c++/51884). */
2831 if (TYPE_CONTAINS_VPTR_P (t
))
2832 get_vtable_decl (t
, false);
2834 /* Update all of the vtables. */
2835 dfs_walk_once (binfo
, dfs_modify_vtables
, NULL
, t
);
2837 /* Add virtual functions not already in our primary vtable. These
2838 will be both those introduced by this class, and those overridden
2839 from secondary bases. It does not include virtuals merely
2840 inherited from secondary bases. */
2841 for (fnsp
= &virtuals
; *fnsp
; )
2843 tree fn
= TREE_VALUE (*fnsp
);
2845 if (!value_member (fn
, BINFO_VIRTUALS (binfo
))
2846 || DECL_VINDEX (fn
) == error_mark_node
)
2848 /* We don't need to adjust the `this' pointer when
2849 calling this function. */
2850 BV_DELTA (*fnsp
) = integer_zero_node
;
2851 BV_VCALL_INDEX (*fnsp
) = NULL_TREE
;
2853 /* This is a function not already in our vtable. Keep it. */
2854 fnsp
= &TREE_CHAIN (*fnsp
);
2857 /* We've already got an entry for this function. Skip it. */
2858 *fnsp
= TREE_CHAIN (*fnsp
);
2864 /* Get the base virtual function declarations in T that have the
2868 get_basefndecls (tree name
, tree t
, vec
<tree
> *base_fndecls
)
2871 int n_baseclasses
= BINFO_N_BASE_BINFOS (TYPE_BINFO (t
));
2874 /* Find virtual functions in T with the indicated NAME. */
2875 i
= lookup_fnfields_1 (t
, name
);
2876 bool found_decls
= false;
2878 for (methods
= (*CLASSTYPE_METHOD_VEC (t
))[i
];
2880 methods
= OVL_NEXT (methods
))
2882 tree method
= OVL_CURRENT (methods
);
2884 if (TREE_CODE (method
) == FUNCTION_DECL
2885 && DECL_VINDEX (method
))
2887 base_fndecls
->safe_push (method
);
2895 for (i
= 0; i
< n_baseclasses
; i
++)
2897 tree basetype
= BINFO_TYPE (BINFO_BASE_BINFO (TYPE_BINFO (t
), i
));
2898 get_basefndecls (name
, basetype
, base_fndecls
);
2902 /* If this declaration supersedes the declaration of
2903 a method declared virtual in the base class, then
2904 mark this field as being virtual as well. */
2907 check_for_override (tree decl
, tree ctype
)
2909 bool overrides_found
= false;
2910 if (TREE_CODE (decl
) == TEMPLATE_DECL
)
2911 /* In [temp.mem] we have:
2913 A specialization of a member function template does not
2914 override a virtual function from a base class. */
2916 if ((DECL_DESTRUCTOR_P (decl
)
2917 || IDENTIFIER_VIRTUAL_P (DECL_NAME (decl
))
2918 || DECL_CONV_FN_P (decl
))
2919 && look_for_overrides (ctype
, decl
)
2920 && !DECL_STATIC_FUNCTION_P (decl
))
2921 /* Set DECL_VINDEX to a value that is neither an INTEGER_CST nor
2922 the error_mark_node so that we know it is an overriding
2925 DECL_VINDEX (decl
) = decl
;
2926 overrides_found
= true;
2927 if (warn_override
&& !DECL_OVERRIDE_P (decl
)
2928 && !DECL_DESTRUCTOR_P (decl
))
2929 warning_at (DECL_SOURCE_LOCATION (decl
), OPT_Wsuggest_override
,
2930 "%q+D can be marked override", decl
);
2933 if (DECL_VIRTUAL_P (decl
))
2935 if (!DECL_VINDEX (decl
))
2936 DECL_VINDEX (decl
) = error_mark_node
;
2937 IDENTIFIER_VIRTUAL_P (DECL_NAME (decl
)) = 1;
2938 if (DECL_DESTRUCTOR_P (decl
))
2939 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (ctype
) = true;
2941 else if (DECL_FINAL_P (decl
))
2942 error ("%q+#D marked %<final%>, but is not virtual", decl
);
2943 if (DECL_OVERRIDE_P (decl
) && !overrides_found
)
2944 error ("%q+#D marked %<override%>, but does not override", decl
);
2947 /* Warn about hidden virtual functions that are not overridden in t.
2948 We know that constructors and destructors don't apply. */
2951 warn_hidden (tree t
)
2953 vec
<tree
, va_gc
> *method_vec
= CLASSTYPE_METHOD_VEC (t
);
2957 /* We go through each separately named virtual function. */
2958 for (i
= CLASSTYPE_FIRST_CONVERSION_SLOT
;
2959 vec_safe_iterate (method_vec
, i
, &fns
);
2969 /* All functions in this slot in the CLASSTYPE_METHOD_VEC will
2970 have the same name. Figure out what name that is. */
2971 name
= DECL_NAME (OVL_CURRENT (fns
));
2972 /* There are no possibly hidden functions yet. */
2973 auto_vec
<tree
, 20> base_fndecls
;
2974 /* Iterate through all of the base classes looking for possibly
2975 hidden functions. */
2976 for (binfo
= TYPE_BINFO (t
), j
= 0;
2977 BINFO_BASE_ITERATE (binfo
, j
, base_binfo
); j
++)
2979 tree basetype
= BINFO_TYPE (base_binfo
);
2980 get_basefndecls (name
, basetype
, &base_fndecls
);
2983 /* If there are no functions to hide, continue. */
2984 if (base_fndecls
.is_empty ())
2987 /* Remove any overridden functions. */
2988 for (fn
= fns
; fn
; fn
= OVL_NEXT (fn
))
2990 fndecl
= OVL_CURRENT (fn
);
2991 if (TREE_CODE (fndecl
) == FUNCTION_DECL
2992 && DECL_VINDEX (fndecl
))
2994 /* If the method from the base class has the same
2995 signature as the method from the derived class, it
2996 has been overridden. */
2997 for (size_t k
= 0; k
< base_fndecls
.length (); k
++)
2999 && same_signature_p (fndecl
, base_fndecls
[k
]))
3000 base_fndecls
[k
] = NULL_TREE
;
3004 /* Now give a warning for all base functions without overriders,
3005 as they are hidden. */
3008 FOR_EACH_VEC_ELT (base_fndecls
, k
, base_fndecl
)
3011 /* Here we know it is a hider, and no overrider exists. */
3012 warning (OPT_Woverloaded_virtual
, "%q+D was hidden", base_fndecl
);
3013 warning (OPT_Woverloaded_virtual
, " by %q+D", fns
);
3018 /* Recursive helper for finish_struct_anon. */
3021 finish_struct_anon_r (tree field
, bool complain
)
3023 bool is_union
= TREE_CODE (TREE_TYPE (field
)) == UNION_TYPE
;
3024 tree elt
= TYPE_FIELDS (TREE_TYPE (field
));
3025 for (; elt
; elt
= DECL_CHAIN (elt
))
3027 /* We're generally only interested in entities the user
3028 declared, but we also find nested classes by noticing
3029 the TYPE_DECL that we create implicitly. You're
3030 allowed to put one anonymous union inside another,
3031 though, so we explicitly tolerate that. We use
3032 TYPE_ANONYMOUS_P rather than ANON_AGGR_TYPE_P so that
3033 we also allow unnamed types used for defining fields. */
3034 if (DECL_ARTIFICIAL (elt
)
3035 && (!DECL_IMPLICIT_TYPEDEF_P (elt
)
3036 || TYPE_ANONYMOUS_P (TREE_TYPE (elt
))))
3039 if (TREE_CODE (elt
) != FIELD_DECL
)
3041 /* We already complained about static data members in
3042 finish_static_data_member_decl. */
3043 if (complain
&& TREE_CODE (elt
) != VAR_DECL
)
3046 permerror (input_location
,
3047 "%q+#D invalid; an anonymous union can "
3048 "only have non-static data members", elt
);
3050 permerror (input_location
,
3051 "%q+#D invalid; an anonymous struct can "
3052 "only have non-static data members", elt
);
3059 if (TREE_PRIVATE (elt
))
3062 permerror (input_location
,
3063 "private member %q+#D in anonymous union", elt
);
3065 permerror (input_location
,
3066 "private member %q+#D in anonymous struct", elt
);
3068 else if (TREE_PROTECTED (elt
))
3071 permerror (input_location
,
3072 "protected member %q+#D in anonymous union", elt
);
3074 permerror (input_location
,
3075 "protected member %q+#D in anonymous struct", elt
);
3079 TREE_PRIVATE (elt
) = TREE_PRIVATE (field
);
3080 TREE_PROTECTED (elt
) = TREE_PROTECTED (field
);
3082 /* Recurse into the anonymous aggregates to handle correctly
3083 access control (c++/24926):
3094 if (DECL_NAME (elt
) == NULL_TREE
3095 && ANON_AGGR_TYPE_P (TREE_TYPE (elt
)))
3096 finish_struct_anon_r (elt
, /*complain=*/false);
3100 /* Check for things that are invalid. There are probably plenty of other
3101 things we should check for also. */
3104 finish_struct_anon (tree t
)
3106 for (tree field
= TYPE_FIELDS (t
); field
; field
= DECL_CHAIN (field
))
3108 if (TREE_STATIC (field
))
3110 if (TREE_CODE (field
) != FIELD_DECL
)
3113 if (DECL_NAME (field
) == NULL_TREE
3114 && ANON_AGGR_TYPE_P (TREE_TYPE (field
)))
3115 finish_struct_anon_r (field
, /*complain=*/true);
3119 /* Add T to CLASSTYPE_DECL_LIST of current_class_type which
3120 will be used later during class template instantiation.
3121 When FRIEND_P is zero, T can be a static member data (VAR_DECL),
3122 a non-static member data (FIELD_DECL), a member function
3123 (FUNCTION_DECL), a nested type (RECORD_TYPE, ENUM_TYPE),
3124 a typedef (TYPE_DECL) or a member class template (TEMPLATE_DECL)
3125 When FRIEND_P is nonzero, T is either a friend class
3126 (RECORD_TYPE, TEMPLATE_DECL) or a friend function
3127 (FUNCTION_DECL, TEMPLATE_DECL). */
3130 maybe_add_class_template_decl_list (tree type
, tree t
, int friend_p
)
3132 /* Save some memory by not creating TREE_LIST if TYPE is not template. */
3133 if (CLASSTYPE_TEMPLATE_INFO (type
))
3134 CLASSTYPE_DECL_LIST (type
)
3135 = tree_cons (friend_p
? NULL_TREE
: type
,
3136 t
, CLASSTYPE_DECL_LIST (type
));
3139 /* This function is called from declare_virt_assop_and_dtor via
3142 DATA is a type that direcly or indirectly inherits the base
3143 represented by BINFO. If BINFO contains a virtual assignment [copy
3144 assignment or move assigment] operator or a virtual constructor,
3145 declare that function in DATA if it hasn't been already declared. */
3148 dfs_declare_virt_assop_and_dtor (tree binfo
, void *data
)
3150 tree bv
, fn
, t
= (tree
)data
;
3151 tree opname
= ansi_assopname (NOP_EXPR
);
3153 gcc_assert (t
&& CLASS_TYPE_P (t
));
3154 gcc_assert (binfo
&& TREE_CODE (binfo
) == TREE_BINFO
);
3156 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
3157 /* A base without a vtable needs no modification, and its bases
3158 are uninteresting. */
3159 return dfs_skip_bases
;
3161 if (BINFO_PRIMARY_P (binfo
))
3162 /* If this is a primary base, then we have already looked at the
3163 virtual functions of its vtable. */
3166 for (bv
= BINFO_VIRTUALS (binfo
); bv
; bv
= TREE_CHAIN (bv
))
3170 if (DECL_NAME (fn
) == opname
)
3172 if (CLASSTYPE_LAZY_COPY_ASSIGN (t
))
3173 lazily_declare_fn (sfk_copy_assignment
, t
);
3174 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t
))
3175 lazily_declare_fn (sfk_move_assignment
, t
);
3177 else if (DECL_DESTRUCTOR_P (fn
)
3178 && CLASSTYPE_LAZY_DESTRUCTOR (t
))
3179 lazily_declare_fn (sfk_destructor
, t
);
3185 /* If the class type T has a direct or indirect base that contains a
3186 virtual assignment operator or a virtual destructor, declare that
3187 function in T if it hasn't been already declared. */
3190 declare_virt_assop_and_dtor (tree t
)
3192 if (!(TYPE_POLYMORPHIC_P (t
)
3193 && (CLASSTYPE_LAZY_COPY_ASSIGN (t
)
3194 || CLASSTYPE_LAZY_MOVE_ASSIGN (t
)
3195 || CLASSTYPE_LAZY_DESTRUCTOR (t
))))
3198 dfs_walk_all (TYPE_BINFO (t
),
3199 dfs_declare_virt_assop_and_dtor
,
3203 /* Declare the inheriting constructor for class T inherited from base
3204 constructor CTOR with the parameter array PARMS of size NPARMS. */
3207 one_inheriting_sig (tree t
, tree ctor
, tree
*parms
, int nparms
)
3209 /* We don't declare an inheriting ctor that would be a default,
3210 copy or move ctor for derived or base. */
3214 && TREE_CODE (parms
[0]) == REFERENCE_TYPE
)
3216 tree parm
= TYPE_MAIN_VARIANT (TREE_TYPE (parms
[0]));
3217 if (parm
== t
|| parm
== DECL_CONTEXT (ctor
))
3221 tree parmlist
= void_list_node
;
3222 for (int i
= nparms
- 1; i
>= 0; i
--)
3223 parmlist
= tree_cons (NULL_TREE
, parms
[i
], parmlist
);
3224 tree fn
= implicitly_declare_fn (sfk_inheriting_constructor
,
3225 t
, false, ctor
, parmlist
);
3226 gcc_assert (TYPE_MAIN_VARIANT (t
) == t
);
3227 if (add_method (t
, fn
, NULL_TREE
))
3229 DECL_CHAIN (fn
) = TYPE_METHODS (t
);
3230 TYPE_METHODS (t
) = fn
;
3234 /* Declare all the inheriting constructors for class T inherited from base
3235 constructor CTOR. */
3238 one_inherited_ctor (tree ctor
, tree t
)
3240 tree parms
= FUNCTION_FIRST_USER_PARMTYPE (ctor
);
3242 tree
*new_parms
= XALLOCAVEC (tree
, list_length (parms
));
3244 for (; parms
&& parms
!= void_list_node
; parms
= TREE_CHAIN (parms
))
3246 if (TREE_PURPOSE (parms
))
3247 one_inheriting_sig (t
, ctor
, new_parms
, i
);
3248 new_parms
[i
++] = TREE_VALUE (parms
);
3250 one_inheriting_sig (t
, ctor
, new_parms
, i
);
3251 if (parms
== NULL_TREE
)
3253 if (warning (OPT_Winherited_variadic_ctor
,
3254 "the ellipsis in %qD is not inherited", ctor
))
3255 inform (DECL_SOURCE_LOCATION (ctor
), "%qD declared here", ctor
);
3259 /* Create default constructors, assignment operators, and so forth for
3260 the type indicated by T, if they are needed. CANT_HAVE_CONST_CTOR,
3261 and CANT_HAVE_CONST_ASSIGNMENT are nonzero if, for whatever reason,
3262 the class cannot have a default constructor, copy constructor
3263 taking a const reference argument, or an assignment operator taking
3264 a const reference, respectively. */
3267 add_implicitly_declared_members (tree t
, tree
* access_decls
,
3268 int cant_have_const_cctor
,
3269 int cant_have_const_assignment
)
3271 bool move_ok
= false;
3273 if (cxx_dialect
>= cxx11
&& !CLASSTYPE_DESTRUCTORS (t
)
3274 && !TYPE_HAS_COPY_CTOR (t
) && !TYPE_HAS_COPY_ASSIGN (t
)
3275 && !type_has_move_constructor (t
) && !type_has_move_assign (t
))
3279 if (!CLASSTYPE_DESTRUCTORS (t
))
3281 /* In general, we create destructors lazily. */
3282 CLASSTYPE_LAZY_DESTRUCTOR (t
) = 1;
3284 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
3285 && TYPE_FOR_JAVA (t
))
3286 /* But if this is a Java class, any non-trivial destructor is
3287 invalid, even if compiler-generated. Therefore, if the
3288 destructor is non-trivial we create it now. */
3289 lazily_declare_fn (sfk_destructor
, t
);
3294 If there is no user-declared constructor for a class, a default
3295 constructor is implicitly declared. */
3296 if (! TYPE_HAS_USER_CONSTRUCTOR (t
))
3298 TYPE_HAS_DEFAULT_CONSTRUCTOR (t
) = 1;
3299 CLASSTYPE_LAZY_DEFAULT_CTOR (t
) = 1;
3300 if (cxx_dialect
>= cxx11
)
3301 TYPE_HAS_CONSTEXPR_CTOR (t
)
3302 /* This might force the declaration. */
3303 = type_has_constexpr_default_constructor (t
);
3308 If a class definition does not explicitly declare a copy
3309 constructor, one is declared implicitly. */
3310 if (! TYPE_HAS_COPY_CTOR (t
) && ! TYPE_FOR_JAVA (t
))
3312 TYPE_HAS_COPY_CTOR (t
) = 1;
3313 TYPE_HAS_CONST_COPY_CTOR (t
) = !cant_have_const_cctor
;
3314 CLASSTYPE_LAZY_COPY_CTOR (t
) = 1;
3316 CLASSTYPE_LAZY_MOVE_CTOR (t
) = 1;
3319 /* If there is no assignment operator, one will be created if and
3320 when it is needed. For now, just record whether or not the type
3321 of the parameter to the assignment operator will be a const or
3322 non-const reference. */
3323 if (!TYPE_HAS_COPY_ASSIGN (t
) && !TYPE_FOR_JAVA (t
))
3325 TYPE_HAS_COPY_ASSIGN (t
) = 1;
3326 TYPE_HAS_CONST_COPY_ASSIGN (t
) = !cant_have_const_assignment
;
3327 CLASSTYPE_LAZY_COPY_ASSIGN (t
) = 1;
3328 if (move_ok
&& !LAMBDA_TYPE_P (t
))
3329 CLASSTYPE_LAZY_MOVE_ASSIGN (t
) = 1;
3332 /* We can't be lazy about declaring functions that might override
3333 a virtual function from a base class. */
3334 declare_virt_assop_and_dtor (t
);
3336 while (*access_decls
)
3338 tree using_decl
= TREE_VALUE (*access_decls
);
3339 tree decl
= USING_DECL_DECLS (using_decl
);
3340 if (DECL_NAME (using_decl
) == ctor_identifier
)
3342 /* declare, then remove the decl */
3343 tree ctor_list
= decl
;
3344 location_t loc
= input_location
;
3345 input_location
= DECL_SOURCE_LOCATION (using_decl
);
3347 for (; ctor_list
; ctor_list
= OVL_NEXT (ctor_list
))
3348 one_inherited_ctor (OVL_CURRENT (ctor_list
), t
);
3349 *access_decls
= TREE_CHAIN (*access_decls
);
3350 input_location
= loc
;
3353 access_decls
= &TREE_CHAIN (*access_decls
);
3357 /* Subroutine of insert_into_classtype_sorted_fields. Recursively
3358 count the number of fields in TYPE, including anonymous union
3362 count_fields (tree fields
)
3366 for (x
= fields
; x
; x
= DECL_CHAIN (x
))
3368 if (TREE_CODE (x
) == FIELD_DECL
&& ANON_AGGR_TYPE_P (TREE_TYPE (x
)))
3369 n_fields
+= count_fields (TYPE_FIELDS (TREE_TYPE (x
)));
3376 /* Subroutine of insert_into_classtype_sorted_fields. Recursively add
3377 all the fields in the TREE_LIST FIELDS to the SORTED_FIELDS_TYPE
3378 elts, starting at offset IDX. */
3381 add_fields_to_record_type (tree fields
, struct sorted_fields_type
*field_vec
, int idx
)
3384 for (x
= fields
; x
; x
= DECL_CHAIN (x
))
3386 if (TREE_CODE (x
) == FIELD_DECL
&& ANON_AGGR_TYPE_P (TREE_TYPE (x
)))
3387 idx
= add_fields_to_record_type (TYPE_FIELDS (TREE_TYPE (x
)), field_vec
, idx
);
3389 field_vec
->elts
[idx
++] = x
;
3394 /* Add all of the enum values of ENUMTYPE, to the FIELD_VEC elts,
3395 starting at offset IDX. */
3398 add_enum_fields_to_record_type (tree enumtype
,
3399 struct sorted_fields_type
*field_vec
,
3403 for (values
= TYPE_VALUES (enumtype
); values
; values
= TREE_CHAIN (values
))
3404 field_vec
->elts
[idx
++] = TREE_VALUE (values
);
3408 /* FIELD is a bit-field. We are finishing the processing for its
3409 enclosing type. Issue any appropriate messages and set appropriate
3410 flags. Returns false if an error has been diagnosed. */
3413 check_bitfield_decl (tree field
)
3415 tree type
= TREE_TYPE (field
);
3418 /* Extract the declared width of the bitfield, which has been
3419 temporarily stashed in DECL_INITIAL. */
3420 w
= DECL_INITIAL (field
);
3421 gcc_assert (w
!= NULL_TREE
);
3422 /* Remove the bit-field width indicator so that the rest of the
3423 compiler does not treat that value as an initializer. */
3424 DECL_INITIAL (field
) = NULL_TREE
;
3426 /* Detect invalid bit-field type. */
3427 if (!INTEGRAL_OR_ENUMERATION_TYPE_P (type
))
3429 error ("bit-field %q+#D with non-integral type", field
);
3430 w
= error_mark_node
;
3434 location_t loc
= input_location
;
3435 /* Avoid the non_lvalue wrapper added by fold for PLUS_EXPRs. */
3438 /* detect invalid field size. */
3439 input_location
= DECL_SOURCE_LOCATION (field
);
3440 w
= cxx_constant_value (w
);
3441 input_location
= loc
;
3443 if (TREE_CODE (w
) != INTEGER_CST
)
3445 error ("bit-field %q+D width not an integer constant", field
);
3446 w
= error_mark_node
;
3448 else if (tree_int_cst_sgn (w
) < 0)
3450 error ("negative width in bit-field %q+D", field
);
3451 w
= error_mark_node
;
3453 else if (integer_zerop (w
) && DECL_NAME (field
) != 0)
3455 error ("zero width for bit-field %q+D", field
);
3456 w
= error_mark_node
;
3458 else if ((TREE_CODE (type
) != ENUMERAL_TYPE
3459 && TREE_CODE (type
) != BOOLEAN_TYPE
3460 && compare_tree_int (w
, TYPE_PRECISION (type
)) > 0)
3461 || ((TREE_CODE (type
) == ENUMERAL_TYPE
3462 || TREE_CODE (type
) == BOOLEAN_TYPE
)
3463 && tree_int_cst_lt (TYPE_SIZE (type
), w
)))
3464 warning (0, "width of %q+D exceeds its type", field
);
3465 else if (TREE_CODE (type
) == ENUMERAL_TYPE
3466 && (0 > (compare_tree_int
3467 (w
, TYPE_PRECISION (ENUM_UNDERLYING_TYPE (type
))))))
3468 warning (0, "%q+D is too small to hold all values of %q#T", field
, type
);
3471 if (w
!= error_mark_node
)
3473 DECL_SIZE (field
) = convert (bitsizetype
, w
);
3474 DECL_BIT_FIELD (field
) = 1;
3479 /* Non-bit-fields are aligned for their type. */
3480 DECL_BIT_FIELD (field
) = 0;
3481 CLEAR_DECL_C_BIT_FIELD (field
);
3486 /* FIELD is a non bit-field. We are finishing the processing for its
3487 enclosing type T. Issue any appropriate messages and set appropriate
3491 check_field_decl (tree field
,
3493 int* cant_have_const_ctor
,
3494 int* no_const_asn_ref
,
3495 int* any_default_members
)
3497 tree type
= strip_array_types (TREE_TYPE (field
));
3499 /* In C++98 an anonymous union cannot contain any fields which would change
3500 the settings of CANT_HAVE_CONST_CTOR and friends. */
3501 if (ANON_UNION_TYPE_P (type
) && cxx_dialect
< cxx11
)
3503 /* And, we don't set TYPE_HAS_CONST_COPY_CTOR, etc., for anonymous
3504 structs. So, we recurse through their fields here. */
3505 else if (ANON_AGGR_TYPE_P (type
))
3509 for (fields
= TYPE_FIELDS (type
); fields
; fields
= DECL_CHAIN (fields
))
3510 if (TREE_CODE (fields
) == FIELD_DECL
&& !DECL_C_BIT_FIELD (field
))
3511 check_field_decl (fields
, t
, cant_have_const_ctor
,
3512 no_const_asn_ref
, any_default_members
);
3514 /* Check members with class type for constructors, destructors,
3516 else if (CLASS_TYPE_P (type
))
3518 /* Never let anything with uninheritable virtuals
3519 make it through without complaint. */
3520 abstract_virtuals_error (field
, type
);
3522 if (TREE_CODE (t
) == UNION_TYPE
&& cxx_dialect
< cxx11
)
3525 int oldcount
= errorcount
;
3526 if (TYPE_NEEDS_CONSTRUCTING (type
))
3527 error ("member %q+#D with constructor not allowed in union",
3529 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
3530 error ("member %q+#D with destructor not allowed in union", field
);
3531 if (TYPE_HAS_COMPLEX_COPY_ASSIGN (type
))
3532 error ("member %q+#D with copy assignment operator not allowed in union",
3534 if (!warned
&& errorcount
> oldcount
)
3536 inform (DECL_SOURCE_LOCATION (field
), "unrestricted unions "
3537 "only available with -std=c++11 or -std=gnu++11");
3543 TYPE_NEEDS_CONSTRUCTING (t
) |= TYPE_NEEDS_CONSTRUCTING (type
);
3544 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
3545 |= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
);
3546 TYPE_HAS_COMPLEX_COPY_ASSIGN (t
)
3547 |= (TYPE_HAS_COMPLEX_COPY_ASSIGN (type
)
3548 || !TYPE_HAS_COPY_ASSIGN (type
));
3549 TYPE_HAS_COMPLEX_COPY_CTOR (t
) |= (TYPE_HAS_COMPLEX_COPY_CTOR (type
)
3550 || !TYPE_HAS_COPY_CTOR (type
));
3551 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t
) |= TYPE_HAS_COMPLEX_MOVE_ASSIGN (type
);
3552 TYPE_HAS_COMPLEX_MOVE_CTOR (t
) |= TYPE_HAS_COMPLEX_MOVE_CTOR (type
);
3553 TYPE_HAS_COMPLEX_DFLT (t
) |= (!TYPE_HAS_DEFAULT_CONSTRUCTOR (type
)
3554 || TYPE_HAS_COMPLEX_DFLT (type
));
3557 if (TYPE_HAS_COPY_CTOR (type
)
3558 && !TYPE_HAS_CONST_COPY_CTOR (type
))
3559 *cant_have_const_ctor
= 1;
3561 if (TYPE_HAS_COPY_ASSIGN (type
)
3562 && !TYPE_HAS_CONST_COPY_ASSIGN (type
))
3563 *no_const_asn_ref
= 1;
3566 check_abi_tags (t
, field
);
3568 if (DECL_INITIAL (field
) != NULL_TREE
)
3570 /* `build_class_init_list' does not recognize
3572 if (TREE_CODE (t
) == UNION_TYPE
&& *any_default_members
!= 0)
3573 error ("multiple fields in union %qT initialized", t
);
3574 *any_default_members
= 1;
3578 /* Check the data members (both static and non-static), class-scoped
3579 typedefs, etc., appearing in the declaration of T. Issue
3580 appropriate diagnostics. Sets ACCESS_DECLS to a list (in
3581 declaration order) of access declarations; each TREE_VALUE in this
3582 list is a USING_DECL.
3584 In addition, set the following flags:
3587 The class is empty, i.e., contains no non-static data members.
3589 CANT_HAVE_CONST_CTOR_P
3590 This class cannot have an implicitly generated copy constructor
3591 taking a const reference.
3593 CANT_HAVE_CONST_ASN_REF
3594 This class cannot have an implicitly generated assignment
3595 operator taking a const reference.
3597 All of these flags should be initialized before calling this
3600 Returns a pointer to the end of the TYPE_FIELDs chain; additional
3601 fields can be added by adding to this chain. */
3604 check_field_decls (tree t
, tree
*access_decls
,
3605 int *cant_have_const_ctor_p
,
3606 int *no_const_asn_ref_p
)
3611 int any_default_members
;
3613 int field_access
= -1;
3615 /* Assume there are no access declarations. */
3616 *access_decls
= NULL_TREE
;
3617 /* Assume this class has no pointer members. */
3618 has_pointers
= false;
3619 /* Assume none of the members of this class have default
3621 any_default_members
= 0;
3623 for (field
= &TYPE_FIELDS (t
); *field
; field
= next
)
3626 tree type
= TREE_TYPE (x
);
3627 int this_field_access
;
3629 next
= &DECL_CHAIN (x
);
3631 if (TREE_CODE (x
) == USING_DECL
)
3633 /* Save the access declarations for our caller. */
3634 *access_decls
= tree_cons (NULL_TREE
, x
, *access_decls
);
3638 if (TREE_CODE (x
) == TYPE_DECL
3639 || TREE_CODE (x
) == TEMPLATE_DECL
)
3642 /* If we've gotten this far, it's a data member, possibly static,
3643 or an enumerator. */
3644 if (TREE_CODE (x
) != CONST_DECL
)
3645 DECL_CONTEXT (x
) = t
;
3647 /* When this goes into scope, it will be a non-local reference. */
3648 DECL_NONLOCAL (x
) = 1;
3650 if (TREE_CODE (t
) == UNION_TYPE
3651 && cxx_dialect
< cxx11
)
3653 /* [class.union] (C++98)
3655 If a union contains a static data member, or a member of
3656 reference type, the program is ill-formed.
3658 In C++11 this limitation doesn't exist anymore. */
3661 error ("in C++98 %q+D may not be static because it is "
3662 "a member of a union", x
);
3665 if (TREE_CODE (type
) == REFERENCE_TYPE
)
3667 error ("in C++98 %q+D may not have reference type %qT "
3668 "because it is a member of a union", x
, type
);
3673 /* Perform error checking that did not get done in
3675 if (TREE_CODE (type
) == FUNCTION_TYPE
)
3677 error ("field %q+D invalidly declared function type", x
);
3678 type
= build_pointer_type (type
);
3679 TREE_TYPE (x
) = type
;
3681 else if (TREE_CODE (type
) == METHOD_TYPE
)
3683 error ("field %q+D invalidly declared method type", x
);
3684 type
= build_pointer_type (type
);
3685 TREE_TYPE (x
) = type
;
3688 if (type
== error_mark_node
)
3691 if (TREE_CODE (x
) == CONST_DECL
|| VAR_P (x
))
3694 /* Now it can only be a FIELD_DECL. */
3696 if (TREE_PRIVATE (x
) || TREE_PROTECTED (x
))
3697 CLASSTYPE_NON_AGGREGATE (t
) = 1;
3699 /* If at least one non-static data member is non-literal, the whole
3700 class becomes non-literal. Per Core/1453, volatile non-static
3701 data members and base classes are also not allowed.
3702 Note: if the type is incomplete we will complain later on. */
3703 if (COMPLETE_TYPE_P (type
)
3704 && (!literal_type_p (type
) || CP_TYPE_VOLATILE_P (type
)))
3705 CLASSTYPE_LITERAL_P (t
) = false;
3707 /* A standard-layout class is a class that:
3709 has the same access control (Clause 11) for all non-static data members,
3711 this_field_access
= TREE_PROTECTED (x
) ? 1 : TREE_PRIVATE (x
) ? 2 : 0;
3712 if (field_access
== -1)
3713 field_access
= this_field_access
;
3714 else if (this_field_access
!= field_access
)
3715 CLASSTYPE_NON_STD_LAYOUT (t
) = 1;
3717 /* If this is of reference type, check if it needs an init. */
3718 if (TREE_CODE (type
) == REFERENCE_TYPE
)
3720 CLASSTYPE_NON_LAYOUT_POD_P (t
) = 1;
3721 CLASSTYPE_NON_STD_LAYOUT (t
) = 1;
3722 if (DECL_INITIAL (x
) == NULL_TREE
)
3723 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t
, 1);
3724 if (cxx_dialect
< cxx11
)
3726 /* ARM $12.6.2: [A member initializer list] (or, for an
3727 aggregate, initialization by a brace-enclosed list) is the
3728 only way to initialize nonstatic const and reference
3730 TYPE_HAS_COMPLEX_COPY_ASSIGN (t
) = 1;
3731 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t
) = 1;
3735 type
= strip_array_types (type
);
3737 if (TYPE_PACKED (t
))
3739 if (!layout_pod_type_p (type
) && !TYPE_PACKED (type
))
3743 "ignoring packed attribute because of unpacked non-POD field %q+#D",
3747 else if (DECL_C_BIT_FIELD (x
)
3748 || TYPE_ALIGN (TREE_TYPE (x
)) > BITS_PER_UNIT
)
3749 DECL_PACKED (x
) = 1;
3752 if (DECL_C_BIT_FIELD (x
) && integer_zerop (DECL_INITIAL (x
)))
3753 /* We don't treat zero-width bitfields as making a class
3758 /* The class is non-empty. */
3759 CLASSTYPE_EMPTY_P (t
) = 0;
3760 /* The class is not even nearly empty. */
3761 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
3762 /* If one of the data members contains an empty class,
3764 if (CLASS_TYPE_P (type
)
3765 && CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type
))
3766 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 1;
3769 /* This is used by -Weffc++ (see below). Warn only for pointers
3770 to members which might hold dynamic memory. So do not warn
3771 for pointers to functions or pointers to members. */
3772 if (TYPE_PTR_P (type
)
3773 && !TYPE_PTRFN_P (type
))
3774 has_pointers
= true;
3776 if (CLASS_TYPE_P (type
))
3778 if (CLASSTYPE_REF_FIELDS_NEED_INIT (type
))
3779 SET_CLASSTYPE_REF_FIELDS_NEED_INIT (t
, 1);
3780 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (type
))
3781 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
, 1);
3784 if (DECL_MUTABLE_P (x
) || TYPE_HAS_MUTABLE_P (type
))
3785 CLASSTYPE_HAS_MUTABLE (t
) = 1;
3787 if (DECL_MUTABLE_P (x
))
3789 if (CP_TYPE_CONST_P (type
))
3791 error ("member %q+D cannot be declared both %<const%> "
3792 "and %<mutable%>", x
);
3795 if (TREE_CODE (type
) == REFERENCE_TYPE
)
3797 error ("member %q+D cannot be declared as a %<mutable%> "
3803 if (! layout_pod_type_p (type
))
3804 /* DR 148 now allows pointers to members (which are POD themselves),
3805 to be allowed in POD structs. */
3806 CLASSTYPE_NON_LAYOUT_POD_P (t
) = 1;
3808 if (!std_layout_type_p (type
))
3809 CLASSTYPE_NON_STD_LAYOUT (t
) = 1;
3811 if (! zero_init_p (type
))
3812 CLASSTYPE_NON_ZERO_INIT_P (t
) = 1;
3814 /* We set DECL_C_BIT_FIELD in grokbitfield.
3815 If the type and width are valid, we'll also set DECL_BIT_FIELD. */
3816 if (! DECL_C_BIT_FIELD (x
) || ! check_bitfield_decl (x
))
3817 check_field_decl (x
, t
,
3818 cant_have_const_ctor_p
,
3820 &any_default_members
);
3822 /* Now that we've removed bit-field widths from DECL_INITIAL,
3823 anything left in DECL_INITIAL is an NSDMI that makes the class
3824 non-aggregate in C++11. */
3825 if (DECL_INITIAL (x
) && cxx_dialect
< cxx14
)
3826 CLASSTYPE_NON_AGGREGATE (t
) = true;
3828 /* If any field is const, the structure type is pseudo-const. */
3829 if (CP_TYPE_CONST_P (type
))
3831 C_TYPE_FIELDS_READONLY (t
) = 1;
3832 if (DECL_INITIAL (x
) == NULL_TREE
)
3833 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
, 1);
3834 if (cxx_dialect
< cxx11
)
3836 /* ARM $12.6.2: [A member initializer list] (or, for an
3837 aggregate, initialization by a brace-enclosed list) is the
3838 only way to initialize nonstatic const and reference
3840 TYPE_HAS_COMPLEX_COPY_ASSIGN (t
) = 1;
3841 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t
) = 1;
3844 /* A field that is pseudo-const makes the structure likewise. */
3845 else if (CLASS_TYPE_P (type
))
3847 C_TYPE_FIELDS_READONLY (t
) |= C_TYPE_FIELDS_READONLY (type
);
3848 SET_CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
,
3849 CLASSTYPE_READONLY_FIELDS_NEED_INIT (t
)
3850 | CLASSTYPE_READONLY_FIELDS_NEED_INIT (type
));
3853 /* Core issue 80: A nonstatic data member is required to have a
3854 different name from the class iff the class has a
3855 user-declared constructor. */
3856 if (constructor_name_p (DECL_NAME (x
), t
)
3857 && TYPE_HAS_USER_CONSTRUCTOR (t
))
3858 permerror (input_location
, "field %q+#D with same name as class", x
);
3861 /* Effective C++ rule 11: if a class has dynamic memory held by pointers,
3862 it should also define a copy constructor and an assignment operator to
3863 implement the correct copy semantic (deep vs shallow, etc.). As it is
3864 not feasible to check whether the constructors do allocate dynamic memory
3865 and store it within members, we approximate the warning like this:
3867 -- Warn only if there are members which are pointers
3868 -- Warn only if there is a non-trivial constructor (otherwise,
3869 there cannot be memory allocated).
3870 -- Warn only if there is a non-trivial destructor. We assume that the
3871 user at least implemented the cleanup correctly, and a destructor
3872 is needed to free dynamic memory.
3874 This seems enough for practical purposes. */
3877 && TYPE_HAS_USER_CONSTRUCTOR (t
)
3878 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
)
3879 && !(TYPE_HAS_COPY_CTOR (t
) && TYPE_HAS_COPY_ASSIGN (t
)))
3881 warning (OPT_Weffc__
, "%q#T has pointer data members", t
);
3883 if (! TYPE_HAS_COPY_CTOR (t
))
3885 warning (OPT_Weffc__
,
3886 " but does not override %<%T(const %T&)%>", t
, t
);
3887 if (!TYPE_HAS_COPY_ASSIGN (t
))
3888 warning (OPT_Weffc__
, " or %<operator=(const %T&)%>", t
);
3890 else if (! TYPE_HAS_COPY_ASSIGN (t
))
3891 warning (OPT_Weffc__
,
3892 " but does not override %<operator=(const %T&)%>", t
);
3895 /* Non-static data member initializers make the default constructor
3897 if (any_default_members
)
3899 TYPE_NEEDS_CONSTRUCTING (t
) = true;
3900 TYPE_HAS_COMPLEX_DFLT (t
) = true;
3903 /* If any of the fields couldn't be packed, unset TYPE_PACKED. */
3905 TYPE_PACKED (t
) = 0;
3907 /* Check anonymous struct/anonymous union fields. */
3908 finish_struct_anon (t
);
3910 /* We've built up the list of access declarations in reverse order.
3912 *access_decls
= nreverse (*access_decls
);
3915 /* If TYPE is an empty class type, records its OFFSET in the table of
3919 record_subobject_offset (tree type
, tree offset
, splay_tree offsets
)
3923 if (!is_empty_class (type
))
3926 /* Record the location of this empty object in OFFSETS. */
3927 n
= splay_tree_lookup (offsets
, (splay_tree_key
) offset
);
3929 n
= splay_tree_insert (offsets
,
3930 (splay_tree_key
) offset
,
3931 (splay_tree_value
) NULL_TREE
);
3932 n
->value
= ((splay_tree_value
)
3933 tree_cons (NULL_TREE
,
3940 /* Returns nonzero if TYPE is an empty class type and there is
3941 already an entry in OFFSETS for the same TYPE as the same OFFSET. */
3944 check_subobject_offset (tree type
, tree offset
, splay_tree offsets
)
3949 if (!is_empty_class (type
))
3952 /* Record the location of this empty object in OFFSETS. */
3953 n
= splay_tree_lookup (offsets
, (splay_tree_key
) offset
);
3957 for (t
= (tree
) n
->value
; t
; t
= TREE_CHAIN (t
))
3958 if (same_type_p (TREE_VALUE (t
), type
))
3964 /* Walk through all the subobjects of TYPE (located at OFFSET). Call
3965 F for every subobject, passing it the type, offset, and table of
3966 OFFSETS. If VBASES_P is one, then virtual non-primary bases should
3969 If MAX_OFFSET is non-NULL, then subobjects with an offset greater
3970 than MAX_OFFSET will not be walked.
3972 If F returns a nonzero value, the traversal ceases, and that value
3973 is returned. Otherwise, returns zero. */
3976 walk_subobject_offsets (tree type
,
3977 subobject_offset_fn f
,
3984 tree type_binfo
= NULL_TREE
;
3986 /* If this OFFSET is bigger than the MAX_OFFSET, then we should
3988 if (max_offset
&& tree_int_cst_lt (max_offset
, offset
))
3991 if (type
== error_mark_node
)
3997 type
= BINFO_TYPE (type
);
4000 if (CLASS_TYPE_P (type
))
4006 /* Avoid recursing into objects that are not interesting. */
4007 if (!CLASSTYPE_CONTAINS_EMPTY_CLASS_P (type
))
4010 /* Record the location of TYPE. */
4011 r
= (*f
) (type
, offset
, offsets
);
4015 /* Iterate through the direct base classes of TYPE. */
4017 type_binfo
= TYPE_BINFO (type
);
4018 for (i
= 0; BINFO_BASE_ITERATE (type_binfo
, i
, binfo
); i
++)
4022 if (BINFO_VIRTUAL_P (binfo
))
4026 /* We cannot rely on BINFO_OFFSET being set for the base
4027 class yet, but the offsets for direct non-virtual
4028 bases can be calculated by going back to the TYPE. */
4029 orig_binfo
= BINFO_BASE_BINFO (TYPE_BINFO (type
), i
);
4030 binfo_offset
= size_binop (PLUS_EXPR
,
4032 BINFO_OFFSET (orig_binfo
));
4034 r
= walk_subobject_offsets (binfo
,
4044 if (CLASSTYPE_VBASECLASSES (type
))
4047 vec
<tree
, va_gc
> *vbases
;
4049 /* Iterate through the virtual base classes of TYPE. In G++
4050 3.2, we included virtual bases in the direct base class
4051 loop above, which results in incorrect results; the
4052 correct offsets for virtual bases are only known when
4053 working with the most derived type. */
4055 for (vbases
= CLASSTYPE_VBASECLASSES (type
), ix
= 0;
4056 vec_safe_iterate (vbases
, ix
, &binfo
); ix
++)
4058 r
= walk_subobject_offsets (binfo
,
4060 size_binop (PLUS_EXPR
,
4062 BINFO_OFFSET (binfo
)),
4071 /* We still have to walk the primary base, if it is
4072 virtual. (If it is non-virtual, then it was walked
4074 tree vbase
= get_primary_binfo (type_binfo
);
4076 if (vbase
&& BINFO_VIRTUAL_P (vbase
)
4077 && BINFO_PRIMARY_P (vbase
)
4078 && BINFO_INHERITANCE_CHAIN (vbase
) == type_binfo
)
4080 r
= (walk_subobject_offsets
4082 offsets
, max_offset
, /*vbases_p=*/0));
4089 /* Iterate through the fields of TYPE. */
4090 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
4091 if (TREE_CODE (field
) == FIELD_DECL
4092 && TREE_TYPE (field
) != error_mark_node
4093 && !DECL_ARTIFICIAL (field
))
4097 field_offset
= byte_position (field
);
4099 r
= walk_subobject_offsets (TREE_TYPE (field
),
4101 size_binop (PLUS_EXPR
,
4111 else if (TREE_CODE (type
) == ARRAY_TYPE
)
4113 tree element_type
= strip_array_types (type
);
4114 tree domain
= TYPE_DOMAIN (type
);
4117 /* Avoid recursing into objects that are not interesting. */
4118 if (!CLASS_TYPE_P (element_type
)
4119 || !CLASSTYPE_CONTAINS_EMPTY_CLASS_P (element_type
))
4122 /* Step through each of the elements in the array. */
4123 for (index
= size_zero_node
;
4124 !tree_int_cst_lt (TYPE_MAX_VALUE (domain
), index
);
4125 index
= size_binop (PLUS_EXPR
, index
, size_one_node
))
4127 r
= walk_subobject_offsets (TREE_TYPE (type
),
4135 offset
= size_binop (PLUS_EXPR
, offset
,
4136 TYPE_SIZE_UNIT (TREE_TYPE (type
)));
4137 /* If this new OFFSET is bigger than the MAX_OFFSET, then
4138 there's no point in iterating through the remaining
4139 elements of the array. */
4140 if (max_offset
&& tree_int_cst_lt (max_offset
, offset
))
4148 /* Record all of the empty subobjects of TYPE (either a type or a
4149 binfo). If IS_DATA_MEMBER is true, then a non-static data member
4150 is being placed at OFFSET; otherwise, it is a base class that is
4151 being placed at OFFSET. */
4154 record_subobject_offsets (tree type
,
4157 bool is_data_member
)
4160 /* If recording subobjects for a non-static data member or a
4161 non-empty base class , we do not need to record offsets beyond
4162 the size of the biggest empty class. Additional data members
4163 will go at the end of the class. Additional base classes will go
4164 either at offset zero (if empty, in which case they cannot
4165 overlap with offsets past the size of the biggest empty class) or
4166 at the end of the class.
4168 However, if we are placing an empty base class, then we must record
4169 all offsets, as either the empty class is at offset zero (where
4170 other empty classes might later be placed) or at the end of the
4171 class (where other objects might then be placed, so other empty
4172 subobjects might later overlap). */
4174 || !is_empty_class (BINFO_TYPE (type
)))
4175 max_offset
= sizeof_biggest_empty_class
;
4177 max_offset
= NULL_TREE
;
4178 walk_subobject_offsets (type
, record_subobject_offset
, offset
,
4179 offsets
, max_offset
, is_data_member
);
4182 /* Returns nonzero if any of the empty subobjects of TYPE (located at
4183 OFFSET) conflict with entries in OFFSETS. If VBASES_P is nonzero,
4184 virtual bases of TYPE are examined. */
4187 layout_conflict_p (tree type
,
4192 splay_tree_node max_node
;
4194 /* Get the node in OFFSETS that indicates the maximum offset where
4195 an empty subobject is located. */
4196 max_node
= splay_tree_max (offsets
);
4197 /* If there aren't any empty subobjects, then there's no point in
4198 performing this check. */
4202 return walk_subobject_offsets (type
, check_subobject_offset
, offset
,
4203 offsets
, (tree
) (max_node
->key
),
4207 /* DECL is a FIELD_DECL corresponding either to a base subobject of a
4208 non-static data member of the type indicated by RLI. BINFO is the
4209 binfo corresponding to the base subobject, OFFSETS maps offsets to
4210 types already located at those offsets. This function determines
4211 the position of the DECL. */
4214 layout_nonempty_base_or_field (record_layout_info rli
,
4219 tree offset
= NULL_TREE
;
4225 /* For the purposes of determining layout conflicts, we want to
4226 use the class type of BINFO; TREE_TYPE (DECL) will be the
4227 CLASSTYPE_AS_BASE version, which does not contain entries for
4228 zero-sized bases. */
4229 type
= TREE_TYPE (binfo
);
4234 type
= TREE_TYPE (decl
);
4238 /* Try to place the field. It may take more than one try if we have
4239 a hard time placing the field without putting two objects of the
4240 same type at the same address. */
4243 struct record_layout_info_s old_rli
= *rli
;
4245 /* Place this field. */
4246 place_field (rli
, decl
);
4247 offset
= byte_position (decl
);
4249 /* We have to check to see whether or not there is already
4250 something of the same type at the offset we're about to use.
4251 For example, consider:
4254 struct T : public S { int i; };
4255 struct U : public S, public T {};
4257 Here, we put S at offset zero in U. Then, we can't put T at
4258 offset zero -- its S component would be at the same address
4259 as the S we already allocated. So, we have to skip ahead.
4260 Since all data members, including those whose type is an
4261 empty class, have nonzero size, any overlap can happen only
4262 with a direct or indirect base-class -- it can't happen with
4264 /* In a union, overlap is permitted; all members are placed at
4266 if (TREE_CODE (rli
->t
) == UNION_TYPE
)
4268 if (layout_conflict_p (field_p
? type
: binfo
, offset
,
4271 /* Strip off the size allocated to this field. That puts us
4272 at the first place we could have put the field with
4273 proper alignment. */
4276 /* Bump up by the alignment required for the type. */
4278 = size_binop (PLUS_EXPR
, rli
->bitpos
,
4280 ? CLASSTYPE_ALIGN (type
)
4281 : TYPE_ALIGN (type
)));
4282 normalize_rli (rli
);
4285 /* There was no conflict. We're done laying out this field. */
4289 /* Now that we know where it will be placed, update its
4291 if (binfo
&& CLASS_TYPE_P (BINFO_TYPE (binfo
)))
4292 /* Indirect virtual bases may have a nonzero BINFO_OFFSET at
4293 this point because their BINFO_OFFSET is copied from another
4294 hierarchy. Therefore, we may not need to add the entire
4296 propagate_binfo_offsets (binfo
,
4297 size_diffop_loc (input_location
,
4298 convert (ssizetype
, offset
),
4300 BINFO_OFFSET (binfo
))));
4303 /* Returns true if TYPE is empty and OFFSET is nonzero. */
4306 empty_base_at_nonzero_offset_p (tree type
,
4308 splay_tree
/*offsets*/)
4310 return is_empty_class (type
) && !integer_zerop (offset
);
4313 /* Layout the empty base BINFO. EOC indicates the byte currently just
4314 past the end of the class, and should be correctly aligned for a
4315 class of the type indicated by BINFO; OFFSETS gives the offsets of
4316 the empty bases allocated so far. T is the most derived
4317 type. Return nonzero iff we added it at the end. */
4320 layout_empty_base (record_layout_info rli
, tree binfo
,
4321 tree eoc
, splay_tree offsets
)
4324 tree basetype
= BINFO_TYPE (binfo
);
4327 /* This routine should only be used for empty classes. */
4328 gcc_assert (is_empty_class (basetype
));
4329 alignment
= ssize_int (CLASSTYPE_ALIGN_UNIT (basetype
));
4331 if (!integer_zerop (BINFO_OFFSET (binfo
)))
4332 propagate_binfo_offsets
4333 (binfo
, size_diffop_loc (input_location
,
4334 size_zero_node
, BINFO_OFFSET (binfo
)));
4336 /* This is an empty base class. We first try to put it at offset
4338 if (layout_conflict_p (binfo
,
4339 BINFO_OFFSET (binfo
),
4343 /* That didn't work. Now, we move forward from the next
4344 available spot in the class. */
4346 propagate_binfo_offsets (binfo
, convert (ssizetype
, eoc
));
4349 if (!layout_conflict_p (binfo
,
4350 BINFO_OFFSET (binfo
),
4353 /* We finally found a spot where there's no overlap. */
4356 /* There's overlap here, too. Bump along to the next spot. */
4357 propagate_binfo_offsets (binfo
, alignment
);
4361 if (CLASSTYPE_USER_ALIGN (basetype
))
4363 rli
->record_align
= MAX (rli
->record_align
, CLASSTYPE_ALIGN (basetype
));
4365 rli
->unpacked_align
= MAX (rli
->unpacked_align
, CLASSTYPE_ALIGN (basetype
));
4366 TYPE_USER_ALIGN (rli
->t
) = 1;
4372 /* Layout the base given by BINFO in the class indicated by RLI.
4373 *BASE_ALIGN is a running maximum of the alignments of
4374 any base class. OFFSETS gives the location of empty base
4375 subobjects. T is the most derived type. Return nonzero if the new
4376 object cannot be nearly-empty. A new FIELD_DECL is inserted at
4377 *NEXT_FIELD, unless BINFO is for an empty base class.
4379 Returns the location at which the next field should be inserted. */
4382 build_base_field (record_layout_info rli
, tree binfo
,
4383 splay_tree offsets
, tree
*next_field
)
4386 tree basetype
= BINFO_TYPE (binfo
);
4388 if (!COMPLETE_TYPE_P (basetype
))
4389 /* This error is now reported in xref_tag, thus giving better
4390 location information. */
4393 /* Place the base class. */
4394 if (!is_empty_class (basetype
))
4398 /* The containing class is non-empty because it has a non-empty
4400 CLASSTYPE_EMPTY_P (t
) = 0;
4402 /* Create the FIELD_DECL. */
4403 decl
= build_decl (input_location
,
4404 FIELD_DECL
, NULL_TREE
, CLASSTYPE_AS_BASE (basetype
));
4405 DECL_ARTIFICIAL (decl
) = 1;
4406 DECL_IGNORED_P (decl
) = 1;
4407 DECL_FIELD_CONTEXT (decl
) = t
;
4408 if (CLASSTYPE_AS_BASE (basetype
))
4410 DECL_SIZE (decl
) = CLASSTYPE_SIZE (basetype
);
4411 DECL_SIZE_UNIT (decl
) = CLASSTYPE_SIZE_UNIT (basetype
);
4412 DECL_ALIGN (decl
) = CLASSTYPE_ALIGN (basetype
);
4413 DECL_USER_ALIGN (decl
) = CLASSTYPE_USER_ALIGN (basetype
);
4414 DECL_MODE (decl
) = TYPE_MODE (basetype
);
4415 DECL_FIELD_IS_BASE (decl
) = 1;
4417 /* Try to place the field. It may take more than one try if we
4418 have a hard time placing the field without putting two
4419 objects of the same type at the same address. */
4420 layout_nonempty_base_or_field (rli
, decl
, binfo
, offsets
);
4421 /* Add the new FIELD_DECL to the list of fields for T. */
4422 DECL_CHAIN (decl
) = *next_field
;
4424 next_field
= &DECL_CHAIN (decl
);
4432 /* On some platforms (ARM), even empty classes will not be
4434 eoc
= round_up_loc (input_location
,
4435 rli_size_unit_so_far (rli
),
4436 CLASSTYPE_ALIGN_UNIT (basetype
));
4437 atend
= layout_empty_base (rli
, binfo
, eoc
, offsets
);
4438 /* A nearly-empty class "has no proper base class that is empty,
4439 not morally virtual, and at an offset other than zero." */
4440 if (!BINFO_VIRTUAL_P (binfo
) && CLASSTYPE_NEARLY_EMPTY_P (t
))
4443 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
4444 /* The check above (used in G++ 3.2) is insufficient because
4445 an empty class placed at offset zero might itself have an
4446 empty base at a nonzero offset. */
4447 else if (walk_subobject_offsets (basetype
,
4448 empty_base_at_nonzero_offset_p
,
4451 /*max_offset=*/NULL_TREE
,
4453 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
4456 /* We do not create a FIELD_DECL for empty base classes because
4457 it might overlap some other field. We want to be able to
4458 create CONSTRUCTORs for the class by iterating over the
4459 FIELD_DECLs, and the back end does not handle overlapping
4462 /* An empty virtual base causes a class to be non-empty
4463 -- but in that case we do not need to clear CLASSTYPE_EMPTY_P
4464 here because that was already done when the virtual table
4465 pointer was created. */
4468 /* Record the offsets of BINFO and its base subobjects. */
4469 record_subobject_offsets (binfo
,
4470 BINFO_OFFSET (binfo
),
4472 /*is_data_member=*/false);
4477 /* Layout all of the non-virtual base classes. Record empty
4478 subobjects in OFFSETS. T is the most derived type. Return nonzero
4479 if the type cannot be nearly empty. The fields created
4480 corresponding to the base classes will be inserted at
4484 build_base_fields (record_layout_info rli
,
4485 splay_tree offsets
, tree
*next_field
)
4487 /* Chain to hold all the new FIELD_DECLs which stand in for base class
4490 int n_baseclasses
= BINFO_N_BASE_BINFOS (TYPE_BINFO (t
));
4493 /* The primary base class is always allocated first. */
4494 if (CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
4495 next_field
= build_base_field (rli
, CLASSTYPE_PRIMARY_BINFO (t
),
4496 offsets
, next_field
);
4498 /* Now allocate the rest of the bases. */
4499 for (i
= 0; i
< n_baseclasses
; ++i
)
4503 base_binfo
= BINFO_BASE_BINFO (TYPE_BINFO (t
), i
);
4505 /* The primary base was already allocated above, so we don't
4506 need to allocate it again here. */
4507 if (base_binfo
== CLASSTYPE_PRIMARY_BINFO (t
))
4510 /* Virtual bases are added at the end (a primary virtual base
4511 will have already been added). */
4512 if (BINFO_VIRTUAL_P (base_binfo
))
4515 next_field
= build_base_field (rli
, base_binfo
,
4516 offsets
, next_field
);
4520 /* Go through the TYPE_METHODS of T issuing any appropriate
4521 diagnostics, figuring out which methods override which other
4522 methods, and so forth. */
4525 check_methods (tree t
)
4529 for (x
= TYPE_METHODS (t
); x
; x
= DECL_CHAIN (x
))
4531 check_for_override (x
, t
);
4532 if (DECL_PURE_VIRTUAL_P (x
) && (TREE_CODE (x
) != FUNCTION_DECL
|| ! DECL_VINDEX (x
)))
4533 error ("initializer specified for non-virtual method %q+D", x
);
4534 /* The name of the field is the original field name
4535 Save this in auxiliary field for later overloading. */
4536 if (TREE_CODE (x
) == FUNCTION_DECL
&& DECL_VINDEX (x
))
4538 TYPE_POLYMORPHIC_P (t
) = 1;
4539 if (DECL_PURE_VIRTUAL_P (x
))
4540 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t
), x
);
4542 /* All user-provided destructors are non-trivial.
4543 Constructors and assignment ops are handled in
4544 grok_special_member_properties. */
4545 if (DECL_DESTRUCTOR_P (x
) && user_provided_p (x
))
4546 TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
) = 1;
4550 /* FN is a constructor or destructor. Clone the declaration to create
4551 a specialized in-charge or not-in-charge version, as indicated by
4555 build_clone (tree fn
, tree name
)
4560 /* Copy the function. */
4561 clone
= copy_decl (fn
);
4562 /* Reset the function name. */
4563 DECL_NAME (clone
) = name
;
4564 /* Remember where this function came from. */
4565 DECL_ABSTRACT_ORIGIN (clone
) = fn
;
4566 /* Make it easy to find the CLONE given the FN. */
4567 DECL_CHAIN (clone
) = DECL_CHAIN (fn
);
4568 DECL_CHAIN (fn
) = clone
;
4570 /* If this is a template, do the rest on the DECL_TEMPLATE_RESULT. */
4571 if (TREE_CODE (clone
) == TEMPLATE_DECL
)
4573 tree result
= build_clone (DECL_TEMPLATE_RESULT (clone
), name
);
4574 DECL_TEMPLATE_RESULT (clone
) = result
;
4575 DECL_TEMPLATE_INFO (result
) = copy_node (DECL_TEMPLATE_INFO (result
));
4576 DECL_TI_TEMPLATE (result
) = clone
;
4577 TREE_TYPE (clone
) = TREE_TYPE (result
);
4581 SET_DECL_ASSEMBLER_NAME (clone
, NULL_TREE
);
4582 DECL_CLONED_FUNCTION (clone
) = fn
;
4583 /* There's no pending inline data for this function. */
4584 DECL_PENDING_INLINE_INFO (clone
) = NULL
;
4585 DECL_PENDING_INLINE_P (clone
) = 0;
4587 /* The base-class destructor is not virtual. */
4588 if (name
== base_dtor_identifier
)
4590 DECL_VIRTUAL_P (clone
) = 0;
4591 if (TREE_CODE (clone
) != TEMPLATE_DECL
)
4592 DECL_VINDEX (clone
) = NULL_TREE
;
4595 /* If there was an in-charge parameter, drop it from the function
4597 if (DECL_HAS_IN_CHARGE_PARM_P (clone
))
4603 exceptions
= TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone
));
4604 basetype
= TYPE_METHOD_BASETYPE (TREE_TYPE (clone
));
4605 parmtypes
= TYPE_ARG_TYPES (TREE_TYPE (clone
));
4606 /* Skip the `this' parameter. */
4607 parmtypes
= TREE_CHAIN (parmtypes
);
4608 /* Skip the in-charge parameter. */
4609 parmtypes
= TREE_CHAIN (parmtypes
);
4610 /* And the VTT parm, in a complete [cd]tor. */
4611 if (DECL_HAS_VTT_PARM_P (fn
)
4612 && ! DECL_NEEDS_VTT_PARM_P (clone
))
4613 parmtypes
= TREE_CHAIN (parmtypes
);
4614 /* If this is subobject constructor or destructor, add the vtt
4617 = build_method_type_directly (basetype
,
4618 TREE_TYPE (TREE_TYPE (clone
)),
4621 TREE_TYPE (clone
) = build_exception_variant (TREE_TYPE (clone
),
4624 = cp_build_type_attribute_variant (TREE_TYPE (clone
),
4625 TYPE_ATTRIBUTES (TREE_TYPE (fn
)));
4628 /* Copy the function parameters. */
4629 DECL_ARGUMENTS (clone
) = copy_list (DECL_ARGUMENTS (clone
));
4630 /* Remove the in-charge parameter. */
4631 if (DECL_HAS_IN_CHARGE_PARM_P (clone
))
4633 DECL_CHAIN (DECL_ARGUMENTS (clone
))
4634 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone
)));
4635 DECL_HAS_IN_CHARGE_PARM_P (clone
) = 0;
4637 /* And the VTT parm, in a complete [cd]tor. */
4638 if (DECL_HAS_VTT_PARM_P (fn
))
4640 if (DECL_NEEDS_VTT_PARM_P (clone
))
4641 DECL_HAS_VTT_PARM_P (clone
) = 1;
4644 DECL_CHAIN (DECL_ARGUMENTS (clone
))
4645 = DECL_CHAIN (DECL_CHAIN (DECL_ARGUMENTS (clone
)));
4646 DECL_HAS_VTT_PARM_P (clone
) = 0;
4650 for (parms
= DECL_ARGUMENTS (clone
); parms
; parms
= DECL_CHAIN (parms
))
4652 DECL_CONTEXT (parms
) = clone
;
4653 cxx_dup_lang_specific_decl (parms
);
4656 /* Create the RTL for this function. */
4657 SET_DECL_RTL (clone
, NULL
);
4658 rest_of_decl_compilation (clone
, /*top_level=*/1, at_eof
);
4661 note_decl_for_pch (clone
);
4666 /* Implementation of DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P, do
4667 not invoke this function directly.
4669 For a non-thunk function, returns the address of the slot for storing
4670 the function it is a clone of. Otherwise returns NULL_TREE.
4672 If JUST_TESTING, looks through TEMPLATE_DECL and returns NULL if
4673 cloned_function is unset. This is to support the separate
4674 DECL_CLONED_FUNCTION and DECL_CLONED_FUNCTION_P modes; using the latter
4675 on a template makes sense, but not the former. */
4678 decl_cloned_function_p (const_tree decl
, bool just_testing
)
4682 decl
= STRIP_TEMPLATE (decl
);
4684 if (TREE_CODE (decl
) != FUNCTION_DECL
4685 || !DECL_LANG_SPECIFIC (decl
)
4686 || DECL_LANG_SPECIFIC (decl
)->u
.fn
.thunk_p
)
4688 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4690 lang_check_failed (__FILE__
, __LINE__
, __FUNCTION__
);
4696 ptr
= &DECL_LANG_SPECIFIC (decl
)->u
.fn
.u5
.cloned_function
;
4697 if (just_testing
&& *ptr
== NULL_TREE
)
4703 /* Produce declarations for all appropriate clones of FN. If
4704 UPDATE_METHOD_VEC_P is nonzero, the clones are added to the
4705 CLASTYPE_METHOD_VEC as well. */
4708 clone_function_decl (tree fn
, int update_method_vec_p
)
4712 /* Avoid inappropriate cloning. */
4714 && DECL_CLONED_FUNCTION_P (DECL_CHAIN (fn
)))
4717 if (DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (fn
))
4719 /* For each constructor, we need two variants: an in-charge version
4720 and a not-in-charge version. */
4721 clone
= build_clone (fn
, complete_ctor_identifier
);
4722 if (update_method_vec_p
)
4723 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
4724 clone
= build_clone (fn
, base_ctor_identifier
);
4725 if (update_method_vec_p
)
4726 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
4730 gcc_assert (DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn
));
4732 /* For each destructor, we need three variants: an in-charge
4733 version, a not-in-charge version, and an in-charge deleting
4734 version. We clone the deleting version first because that
4735 means it will go second on the TYPE_METHODS list -- and that
4736 corresponds to the correct layout order in the virtual
4739 For a non-virtual destructor, we do not build a deleting
4741 if (DECL_VIRTUAL_P (fn
))
4743 clone
= build_clone (fn
, deleting_dtor_identifier
);
4744 if (update_method_vec_p
)
4745 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
4747 clone
= build_clone (fn
, complete_dtor_identifier
);
4748 if (update_method_vec_p
)
4749 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
4750 clone
= build_clone (fn
, base_dtor_identifier
);
4751 if (update_method_vec_p
)
4752 add_method (DECL_CONTEXT (clone
), clone
, NULL_TREE
);
4755 /* Note that this is an abstract function that is never emitted. */
4756 DECL_ABSTRACT_P (fn
) = true;
4759 /* DECL is an in charge constructor, which is being defined. This will
4760 have had an in class declaration, from whence clones were
4761 declared. An out-of-class definition can specify additional default
4762 arguments. As it is the clones that are involved in overload
4763 resolution, we must propagate the information from the DECL to its
4767 adjust_clone_args (tree decl
)
4771 for (clone
= DECL_CHAIN (decl
); clone
&& DECL_CLONED_FUNCTION_P (clone
);
4772 clone
= DECL_CHAIN (clone
))
4774 tree orig_clone_parms
= TYPE_ARG_TYPES (TREE_TYPE (clone
));
4775 tree orig_decl_parms
= TYPE_ARG_TYPES (TREE_TYPE (decl
));
4776 tree decl_parms
, clone_parms
;
4778 clone_parms
= orig_clone_parms
;
4780 /* Skip the 'this' parameter. */
4781 orig_clone_parms
= TREE_CHAIN (orig_clone_parms
);
4782 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
4784 if (DECL_HAS_IN_CHARGE_PARM_P (decl
))
4785 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
4786 if (DECL_HAS_VTT_PARM_P (decl
))
4787 orig_decl_parms
= TREE_CHAIN (orig_decl_parms
);
4789 clone_parms
= orig_clone_parms
;
4790 if (DECL_HAS_VTT_PARM_P (clone
))
4791 clone_parms
= TREE_CHAIN (clone_parms
);
4793 for (decl_parms
= orig_decl_parms
; decl_parms
;
4794 decl_parms
= TREE_CHAIN (decl_parms
),
4795 clone_parms
= TREE_CHAIN (clone_parms
))
4797 gcc_assert (same_type_p (TREE_TYPE (decl_parms
),
4798 TREE_TYPE (clone_parms
)));
4800 if (TREE_PURPOSE (decl_parms
) && !TREE_PURPOSE (clone_parms
))
4802 /* A default parameter has been added. Adjust the
4803 clone's parameters. */
4804 tree exceptions
= TYPE_RAISES_EXCEPTIONS (TREE_TYPE (clone
));
4805 tree attrs
= TYPE_ATTRIBUTES (TREE_TYPE (clone
));
4806 tree basetype
= TYPE_METHOD_BASETYPE (TREE_TYPE (clone
));
4809 clone_parms
= orig_decl_parms
;
4811 if (DECL_HAS_VTT_PARM_P (clone
))
4813 clone_parms
= tree_cons (TREE_PURPOSE (orig_clone_parms
),
4814 TREE_VALUE (orig_clone_parms
),
4816 TREE_TYPE (clone_parms
) = TREE_TYPE (orig_clone_parms
);
4818 type
= build_method_type_directly (basetype
,
4819 TREE_TYPE (TREE_TYPE (clone
)),
4822 type
= build_exception_variant (type
, exceptions
);
4824 type
= cp_build_type_attribute_variant (type
, attrs
);
4825 TREE_TYPE (clone
) = type
;
4827 clone_parms
= NULL_TREE
;
4831 gcc_assert (!clone_parms
);
4835 /* For each of the constructors and destructors in T, create an
4836 in-charge and not-in-charge variant. */
4839 clone_constructors_and_destructors (tree t
)
4843 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4845 if (!CLASSTYPE_METHOD_VEC (t
))
4848 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
4849 clone_function_decl (OVL_CURRENT (fns
), /*update_method_vec_p=*/1);
4850 for (fns
= CLASSTYPE_DESTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
4851 clone_function_decl (OVL_CURRENT (fns
), /*update_method_vec_p=*/1);
4854 /* Deduce noexcept for a destructor DTOR. */
4857 deduce_noexcept_on_destructor (tree dtor
)
4859 if (!TYPE_RAISES_EXCEPTIONS (TREE_TYPE (dtor
)))
4861 tree eh_spec
= unevaluated_noexcept_spec ();
4862 TREE_TYPE (dtor
) = build_exception_variant (TREE_TYPE (dtor
), eh_spec
);
4866 /* For each destructor in T, deduce noexcept:
4868 12.4/3: A declaration of a destructor that does not have an
4869 exception-specification is implicitly considered to have the
4870 same exception-specification as an implicit declaration (15.4). */
4873 deduce_noexcept_on_destructors (tree t
)
4875 /* If for some reason we don't have a CLASSTYPE_METHOD_VEC, we bail
4877 if (!CLASSTYPE_METHOD_VEC (t
))
4880 for (tree fns
= CLASSTYPE_DESTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
4881 deduce_noexcept_on_destructor (OVL_CURRENT (fns
));
4884 /* Subroutine of set_one_vmethod_tm_attributes. Search base classes
4885 of TYPE for virtual functions which FNDECL overrides. Return a
4886 mask of the tm attributes found therein. */
4889 look_for_tm_attr_overrides (tree type
, tree fndecl
)
4891 tree binfo
= TYPE_BINFO (type
);
4895 for (ix
= 0; BINFO_BASE_ITERATE (binfo
, ix
, base_binfo
); ++ix
)
4897 tree o
, basetype
= BINFO_TYPE (base_binfo
);
4899 if (!TYPE_POLYMORPHIC_P (basetype
))
4902 o
= look_for_overrides_here (basetype
, fndecl
);
4904 found
|= tm_attr_to_mask (find_tm_attribute
4905 (TYPE_ATTRIBUTES (TREE_TYPE (o
))));
4907 found
|= look_for_tm_attr_overrides (basetype
, fndecl
);
4913 /* Subroutine of set_method_tm_attributes. Handle the checks and
4914 inheritance for one virtual method FNDECL. */
4917 set_one_vmethod_tm_attributes (tree type
, tree fndecl
)
4922 found
= look_for_tm_attr_overrides (type
, fndecl
);
4924 /* If FNDECL doesn't actually override anything (i.e. T is the
4925 class that first declares FNDECL virtual), then we're done. */
4929 tm_attr
= find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl
)));
4930 have
= tm_attr_to_mask (tm_attr
);
4932 /* Intel STM Language Extension 3.0, Section 4.2 table 4:
4933 tm_pure must match exactly, otherwise no weakening of
4934 tm_safe > tm_callable > nothing. */
4935 /* ??? The tm_pure attribute didn't make the transition to the
4936 multivendor language spec. */
4937 if (have
== TM_ATTR_PURE
)
4939 if (found
!= TM_ATTR_PURE
)
4945 /* If the overridden function is tm_pure, then FNDECL must be. */
4946 else if (found
== TM_ATTR_PURE
&& tm_attr
)
4948 /* Look for base class combinations that cannot be satisfied. */
4949 else if (found
!= TM_ATTR_PURE
&& (found
& TM_ATTR_PURE
))
4951 found
&= ~TM_ATTR_PURE
;
4953 error_at (DECL_SOURCE_LOCATION (fndecl
),
4954 "method overrides both %<transaction_pure%> and %qE methods",
4955 tm_mask_to_attr (found
));
4957 /* If FNDECL did not declare an attribute, then inherit the most
4959 else if (tm_attr
== NULL
)
4961 apply_tm_attr (fndecl
, tm_mask_to_attr (found
& -found
));
4963 /* Otherwise validate that we're not weaker than a function
4964 that is being overridden. */
4968 if (found
<= TM_ATTR_CALLABLE
&& have
> found
)
4974 error_at (DECL_SOURCE_LOCATION (fndecl
),
4975 "method declared %qE overriding %qE method",
4976 tm_attr
, tm_mask_to_attr (found
));
4979 /* For each of the methods in T, propagate a class-level tm attribute. */
4982 set_method_tm_attributes (tree t
)
4984 tree class_tm_attr
, fndecl
;
4986 /* Don't bother collecting tm attributes if transactional memory
4987 support is not enabled. */
4991 /* Process virtual methods first, as they inherit directly from the
4992 base virtual function and also require validation of new attributes. */
4993 if (TYPE_CONTAINS_VPTR_P (t
))
4996 for (vchain
= BINFO_VIRTUALS (TYPE_BINFO (t
)); vchain
;
4997 vchain
= TREE_CHAIN (vchain
))
4999 fndecl
= BV_FN (vchain
);
5000 if (DECL_THUNK_P (fndecl
))
5001 fndecl
= THUNK_TARGET (fndecl
);
5002 set_one_vmethod_tm_attributes (t
, fndecl
);
5006 /* If the class doesn't have an attribute, nothing more to do. */
5007 class_tm_attr
= find_tm_attribute (TYPE_ATTRIBUTES (t
));
5008 if (class_tm_attr
== NULL
)
5011 /* Any method that does not yet have a tm attribute inherits
5012 the one from the class. */
5013 for (fndecl
= TYPE_METHODS (t
); fndecl
; fndecl
= TREE_CHAIN (fndecl
))
5015 if (!find_tm_attribute (TYPE_ATTRIBUTES (TREE_TYPE (fndecl
))))
5016 apply_tm_attr (fndecl
, class_tm_attr
);
5020 /* Returns true iff class T has a user-defined constructor other than
5021 the default constructor. */
5024 type_has_user_nondefault_constructor (tree t
)
5028 if (!TYPE_HAS_USER_CONSTRUCTOR (t
))
5031 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
5033 tree fn
= OVL_CURRENT (fns
);
5034 if (!DECL_ARTIFICIAL (fn
)
5035 && (TREE_CODE (fn
) == TEMPLATE_DECL
5036 || (skip_artificial_parms_for (fn
, DECL_ARGUMENTS (fn
))
5044 /* Returns the defaulted constructor if T has one. Otherwise, returns
5048 in_class_defaulted_default_constructor (tree t
)
5052 if (!TYPE_HAS_USER_CONSTRUCTOR (t
))
5055 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
5057 tree fn
= OVL_CURRENT (fns
);
5059 if (DECL_DEFAULTED_IN_CLASS_P (fn
))
5061 args
= FUNCTION_FIRST_USER_PARMTYPE (fn
);
5062 while (args
&& TREE_PURPOSE (args
))
5063 args
= TREE_CHAIN (args
);
5064 if (!args
|| args
== void_list_node
)
5072 /* Returns true iff FN is a user-provided function, i.e. user-declared
5073 and not defaulted at its first declaration; or explicit, private,
5074 protected, or non-const. */
5077 user_provided_p (tree fn
)
5079 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
5082 return (!DECL_ARTIFICIAL (fn
)
5083 && !(DECL_INITIALIZED_IN_CLASS_P (fn
)
5084 && (DECL_DEFAULTED_FN (fn
) || DECL_DELETED_FN (fn
))));
5087 /* Returns true iff class T has a user-provided constructor. */
5090 type_has_user_provided_constructor (tree t
)
5094 if (!CLASS_TYPE_P (t
))
5097 if (!TYPE_HAS_USER_CONSTRUCTOR (t
))
5100 /* This can happen in error cases; avoid crashing. */
5101 if (!CLASSTYPE_METHOD_VEC (t
))
5104 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
5105 if (user_provided_p (OVL_CURRENT (fns
)))
5111 /* Returns true iff class T has a non-user-provided (i.e. implicitly
5112 declared or explicitly defaulted in the class body) default
5116 type_has_non_user_provided_default_constructor (tree t
)
5120 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (t
))
5122 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t
))
5125 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
5127 tree fn
= OVL_CURRENT (fns
);
5128 if (TREE_CODE (fn
) == FUNCTION_DECL
5129 && !user_provided_p (fn
)
5130 && sufficient_parms_p (FUNCTION_FIRST_USER_PARMTYPE (fn
)))
5137 /* TYPE is being used as a virtual base, and has a non-trivial move
5138 assignment. Return true if this is due to there being a user-provided
5139 move assignment in TYPE or one of its subobjects; if there isn't, then
5140 multiple move assignment can't cause any harm. */
5143 vbase_has_user_provided_move_assign (tree type
)
5145 /* Does the type itself have a user-provided move assignment operator? */
5147 = lookup_fnfields_slot_nolazy (type
, ansi_assopname (NOP_EXPR
));
5148 fns
; fns
= OVL_NEXT (fns
))
5150 tree fn
= OVL_CURRENT (fns
);
5151 if (move_fn_p (fn
) && user_provided_p (fn
))
5155 /* Do any of its bases? */
5156 tree binfo
= TYPE_BINFO (type
);
5158 for (int i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
5159 if (vbase_has_user_provided_move_assign (BINFO_TYPE (base_binfo
)))
5162 /* Or non-static data members? */
5163 for (tree field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
5165 if (TREE_CODE (field
) == FIELD_DECL
5166 && CLASS_TYPE_P (TREE_TYPE (field
))
5167 && vbase_has_user_provided_move_assign (TREE_TYPE (field
)))
5175 /* If default-initialization leaves part of TYPE uninitialized, returns
5176 a DECL for the field or TYPE itself (DR 253). */
5179 default_init_uninitialized_part (tree type
)
5184 type
= strip_array_types (type
);
5185 if (!CLASS_TYPE_P (type
))
5187 if (!type_has_non_user_provided_default_constructor (type
))
5189 for (binfo
= TYPE_BINFO (type
), i
= 0;
5190 BINFO_BASE_ITERATE (binfo
, i
, t
); ++i
)
5192 r
= default_init_uninitialized_part (BINFO_TYPE (t
));
5196 for (t
= TYPE_FIELDS (type
); t
; t
= DECL_CHAIN (t
))
5197 if (TREE_CODE (t
) == FIELD_DECL
5198 && !DECL_ARTIFICIAL (t
)
5199 && !DECL_INITIAL (t
))
5201 r
= default_init_uninitialized_part (TREE_TYPE (t
));
5203 return DECL_P (r
) ? r
: t
;
5209 /* Returns true iff for class T, a trivial synthesized default constructor
5210 would be constexpr. */
5213 trivial_default_constructor_is_constexpr (tree t
)
5215 /* A defaulted trivial default constructor is constexpr
5216 if there is nothing to initialize. */
5217 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (t
));
5218 return is_really_empty_class (t
);
5221 /* Returns true iff class T has a constexpr default constructor. */
5224 type_has_constexpr_default_constructor (tree t
)
5228 if (!CLASS_TYPE_P (t
))
5230 /* The caller should have stripped an enclosing array. */
5231 gcc_assert (TREE_CODE (t
) != ARRAY_TYPE
);
5234 if (CLASSTYPE_LAZY_DEFAULT_CTOR (t
))
5236 if (!TYPE_HAS_COMPLEX_DFLT (t
))
5237 return trivial_default_constructor_is_constexpr (t
);
5238 /* Non-trivial, we need to check subobject constructors. */
5239 lazily_declare_fn (sfk_constructor
, t
);
5241 fns
= locate_ctor (t
);
5242 return (fns
&& DECL_DECLARED_CONSTEXPR_P (fns
));
5245 /* Returns true iff class TYPE has a virtual destructor. */
5248 type_has_virtual_destructor (tree type
)
5252 if (!CLASS_TYPE_P (type
))
5255 gcc_assert (COMPLETE_TYPE_P (type
));
5256 dtor
= CLASSTYPE_DESTRUCTORS (type
);
5257 return (dtor
&& DECL_VIRTUAL_P (dtor
));
5260 /* Returns true iff class T has a move constructor. */
5263 type_has_move_constructor (tree t
)
5267 if (CLASSTYPE_LAZY_MOVE_CTOR (t
))
5269 gcc_assert (COMPLETE_TYPE_P (t
));
5270 lazily_declare_fn (sfk_move_constructor
, t
);
5273 if (!CLASSTYPE_METHOD_VEC (t
))
5276 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
5277 if (move_fn_p (OVL_CURRENT (fns
)))
5283 /* Returns true iff class T has a move assignment operator. */
5286 type_has_move_assign (tree t
)
5290 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t
))
5292 gcc_assert (COMPLETE_TYPE_P (t
));
5293 lazily_declare_fn (sfk_move_assignment
, t
);
5296 for (fns
= lookup_fnfields_slot_nolazy (t
, ansi_assopname (NOP_EXPR
));
5297 fns
; fns
= OVL_NEXT (fns
))
5298 if (move_fn_p (OVL_CURRENT (fns
)))
5304 /* Returns true iff class T has a move constructor that was explicitly
5305 declared in the class body. Note that this is different from
5306 "user-provided", which doesn't include functions that are defaulted in
5310 type_has_user_declared_move_constructor (tree t
)
5314 if (CLASSTYPE_LAZY_MOVE_CTOR (t
))
5317 if (!CLASSTYPE_METHOD_VEC (t
))
5320 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
5322 tree fn
= OVL_CURRENT (fns
);
5323 if (move_fn_p (fn
) && !DECL_ARTIFICIAL (fn
))
5330 /* Returns true iff class T has a move assignment operator that was
5331 explicitly declared in the class body. */
5334 type_has_user_declared_move_assign (tree t
)
5338 if (CLASSTYPE_LAZY_MOVE_ASSIGN (t
))
5341 for (fns
= lookup_fnfields_slot_nolazy (t
, ansi_assopname (NOP_EXPR
));
5342 fns
; fns
= OVL_NEXT (fns
))
5344 tree fn
= OVL_CURRENT (fns
);
5345 if (move_fn_p (fn
) && !DECL_ARTIFICIAL (fn
))
5352 /* Nonzero if we need to build up a constructor call when initializing an
5353 object of this class, either because it has a user-declared constructor
5354 or because it doesn't have a default constructor (so we need to give an
5355 error if no initializer is provided). Use TYPE_NEEDS_CONSTRUCTING when
5356 what you care about is whether or not an object can be produced by a
5357 constructor (e.g. so we don't set TREE_READONLY on const variables of
5358 such type); use this function when what you care about is whether or not
5359 to try to call a constructor to create an object. The latter case is
5360 the former plus some cases of constructors that cannot be called. */
5363 type_build_ctor_call (tree t
)
5366 if (TYPE_NEEDS_CONSTRUCTING (t
))
5368 inner
= strip_array_types (t
);
5369 if (!CLASS_TYPE_P (inner
) || ANON_AGGR_TYPE_P (inner
))
5371 if (!TYPE_HAS_DEFAULT_CONSTRUCTOR (inner
))
5373 if (cxx_dialect
< cxx11
)
5375 /* A user-declared constructor might be private, and a constructor might
5376 be trivial but deleted. */
5377 for (tree fns
= lookup_fnfields_slot (inner
, complete_ctor_identifier
);
5378 fns
; fns
= OVL_NEXT (fns
))
5380 tree fn
= OVL_CURRENT (fns
);
5381 if (!DECL_ARTIFICIAL (fn
)
5382 || DECL_DELETED_FN (fn
))
5388 /* Like type_build_ctor_call, but for destructors. */
5391 type_build_dtor_call (tree t
)
5394 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
))
5396 inner
= strip_array_types (t
);
5397 if (!CLASS_TYPE_P (inner
) || ANON_AGGR_TYPE_P (inner
)
5398 || !COMPLETE_TYPE_P (inner
))
5400 if (cxx_dialect
< cxx11
)
5402 /* A user-declared destructor might be private, and a destructor might
5403 be trivial but deleted. */
5404 for (tree fns
= lookup_fnfields_slot (inner
, complete_dtor_identifier
);
5405 fns
; fns
= OVL_NEXT (fns
))
5407 tree fn
= OVL_CURRENT (fns
);
5408 if (!DECL_ARTIFICIAL (fn
)
5409 || DECL_DELETED_FN (fn
))
5415 /* Remove all zero-width bit-fields from T. */
5418 remove_zero_width_bit_fields (tree t
)
5422 fieldsp
= &TYPE_FIELDS (t
);
5425 if (TREE_CODE (*fieldsp
) == FIELD_DECL
5426 && DECL_C_BIT_FIELD (*fieldsp
)
5427 /* We should not be confused by the fact that grokbitfield
5428 temporarily sets the width of the bit field into
5429 DECL_INITIAL (*fieldsp).
5430 check_bitfield_decl eventually sets DECL_SIZE (*fieldsp)
5432 && (DECL_SIZE (*fieldsp
) == NULL_TREE
5433 || integer_zerop (DECL_SIZE (*fieldsp
))))
5434 *fieldsp
= DECL_CHAIN (*fieldsp
);
5436 fieldsp
= &DECL_CHAIN (*fieldsp
);
5440 /* Returns TRUE iff we need a cookie when dynamically allocating an
5441 array whose elements have the indicated class TYPE. */
5444 type_requires_array_cookie (tree type
)
5447 bool has_two_argument_delete_p
= false;
5449 gcc_assert (CLASS_TYPE_P (type
));
5451 /* If there's a non-trivial destructor, we need a cookie. In order
5452 to iterate through the array calling the destructor for each
5453 element, we'll have to know how many elements there are. */
5454 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
5457 /* If the usual deallocation function is a two-argument whose second
5458 argument is of type `size_t', then we have to pass the size of
5459 the array to the deallocation function, so we will need to store
5461 fns
= lookup_fnfields (TYPE_BINFO (type
),
5462 ansi_opname (VEC_DELETE_EXPR
),
5464 /* If there are no `operator []' members, or the lookup is
5465 ambiguous, then we don't need a cookie. */
5466 if (!fns
|| fns
== error_mark_node
)
5468 /* Loop through all of the functions. */
5469 for (fns
= BASELINK_FUNCTIONS (fns
); fns
; fns
= OVL_NEXT (fns
))
5474 /* Select the current function. */
5475 fn
= OVL_CURRENT (fns
);
5476 /* See if this function is a one-argument delete function. If
5477 it is, then it will be the usual deallocation function. */
5478 second_parm
= TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn
)));
5479 if (second_parm
== void_list_node
)
5481 /* Do not consider this function if its second argument is an
5485 /* Otherwise, if we have a two-argument function and the second
5486 argument is `size_t', it will be the usual deallocation
5487 function -- unless there is one-argument function, too. */
5488 if (TREE_CHAIN (second_parm
) == void_list_node
5489 && same_type_p (TREE_VALUE (second_parm
), size_type_node
))
5490 has_two_argument_delete_p
= true;
5493 return has_two_argument_delete_p
;
5496 /* Finish computing the `literal type' property of class type T.
5498 At this point, we have already processed base classes and
5499 non-static data members. We need to check whether the copy
5500 constructor is trivial, the destructor is trivial, and there
5501 is a trivial default constructor or at least one constexpr
5502 constructor other than the copy constructor. */
5505 finalize_literal_type_property (tree t
)
5509 if (cxx_dialect
< cxx11
5510 || TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
))
5511 CLASSTYPE_LITERAL_P (t
) = false;
5512 else if (CLASSTYPE_LITERAL_P (t
) && !TYPE_HAS_TRIVIAL_DFLT (t
)
5513 && CLASSTYPE_NON_AGGREGATE (t
)
5514 && !TYPE_HAS_CONSTEXPR_CTOR (t
))
5515 CLASSTYPE_LITERAL_P (t
) = false;
5517 if (!CLASSTYPE_LITERAL_P (t
))
5518 for (fn
= TYPE_METHODS (t
); fn
; fn
= DECL_CHAIN (fn
))
5519 if (DECL_DECLARED_CONSTEXPR_P (fn
)
5520 && TREE_CODE (fn
) != TEMPLATE_DECL
5521 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
)
5522 && !DECL_CONSTRUCTOR_P (fn
))
5524 DECL_DECLARED_CONSTEXPR_P (fn
) = false;
5525 if (!DECL_GENERATED_P (fn
))
5527 error ("enclosing class of constexpr non-static member "
5528 "function %q+#D is not a literal type", fn
);
5529 explain_non_literal_class (t
);
5534 /* T is a non-literal type used in a context which requires a constant
5535 expression. Explain why it isn't literal. */
5538 explain_non_literal_class (tree t
)
5540 static hash_set
<tree
> *diagnosed
;
5542 if (!CLASS_TYPE_P (t
))
5544 t
= TYPE_MAIN_VARIANT (t
);
5546 if (diagnosed
== NULL
)
5547 diagnosed
= new hash_set
<tree
>;
5548 if (diagnosed
->add (t
))
5549 /* Already explained. */
5552 inform (0, "%q+T is not literal because:", t
);
5553 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
))
5554 inform (0, " %q+T has a non-trivial destructor", t
);
5555 else if (CLASSTYPE_NON_AGGREGATE (t
)
5556 && !TYPE_HAS_TRIVIAL_DFLT (t
)
5557 && !TYPE_HAS_CONSTEXPR_CTOR (t
))
5559 inform (0, " %q+T is not an aggregate, does not have a trivial "
5560 "default constructor, and has no constexpr constructor that "
5561 "is not a copy or move constructor", t
);
5562 if (type_has_non_user_provided_default_constructor (t
))
5564 /* Note that we can't simply call locate_ctor because when the
5565 constructor is deleted it just returns NULL_TREE. */
5567 for (fns
= CLASSTYPE_CONSTRUCTORS (t
); fns
; fns
= OVL_NEXT (fns
))
5569 tree fn
= OVL_CURRENT (fns
);
5570 tree parms
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
5572 parms
= skip_artificial_parms_for (fn
, parms
);
5574 if (sufficient_parms_p (parms
))
5576 if (DECL_DELETED_FN (fn
))
5577 maybe_explain_implicit_delete (fn
);
5579 explain_invalid_constexpr_fn (fn
);
5587 tree binfo
, base_binfo
, field
; int i
;
5588 for (binfo
= TYPE_BINFO (t
), i
= 0;
5589 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
5591 tree basetype
= TREE_TYPE (base_binfo
);
5592 if (!CLASSTYPE_LITERAL_P (basetype
))
5594 inform (0, " base class %qT of %q+T is non-literal",
5596 explain_non_literal_class (basetype
);
5600 for (field
= TYPE_FIELDS (t
); field
; field
= TREE_CHAIN (field
))
5603 if (TREE_CODE (field
) != FIELD_DECL
)
5605 ftype
= TREE_TYPE (field
);
5606 if (!literal_type_p (ftype
))
5608 inform (0, " non-static data member %q+D has "
5609 "non-literal type", field
);
5610 if (CLASS_TYPE_P (ftype
))
5611 explain_non_literal_class (ftype
);
5613 if (CP_TYPE_VOLATILE_P (ftype
))
5614 inform (0, " non-static data member %q+D has "
5615 "volatile type", field
);
5620 /* Check the validity of the bases and members declared in T. Add any
5621 implicitly-generated functions (like copy-constructors and
5622 assignment operators). Compute various flag bits (like
5623 CLASSTYPE_NON_LAYOUT_POD_T) for T. This routine works purely at the C++
5624 level: i.e., independently of the ABI in use. */
5627 check_bases_and_members (tree t
)
5629 /* Nonzero if the implicitly generated copy constructor should take
5630 a non-const reference argument. */
5631 int cant_have_const_ctor
;
5632 /* Nonzero if the implicitly generated assignment operator
5633 should take a non-const reference argument. */
5634 int no_const_asn_ref
;
5636 bool saved_complex_asn_ref
;
5637 bool saved_nontrivial_dtor
;
5640 /* By default, we use const reference arguments and generate default
5642 cant_have_const_ctor
= 0;
5643 no_const_asn_ref
= 0;
5645 /* Check all the base-classes. */
5646 check_bases (t
, &cant_have_const_ctor
,
5649 /* Deduce noexcept on destructors. This needs to happen after we've set
5650 triviality flags appropriately for our bases. */
5651 if (cxx_dialect
>= cxx11
)
5652 deduce_noexcept_on_destructors (t
);
5654 /* Check all the method declarations. */
5657 /* Save the initial values of these flags which only indicate whether
5658 or not the class has user-provided functions. As we analyze the
5659 bases and members we can set these flags for other reasons. */
5660 saved_complex_asn_ref
= TYPE_HAS_COMPLEX_COPY_ASSIGN (t
);
5661 saved_nontrivial_dtor
= TYPE_HAS_NONTRIVIAL_DESTRUCTOR (t
);
5663 /* Check all the data member declarations. We cannot call
5664 check_field_decls until we have called check_bases check_methods,
5665 as check_field_decls depends on TYPE_HAS_NONTRIVIAL_DESTRUCTOR
5666 being set appropriately. */
5667 check_field_decls (t
, &access_decls
,
5668 &cant_have_const_ctor
,
5671 /* A nearly-empty class has to be vptr-containing; a nearly empty
5672 class contains just a vptr. */
5673 if (!TYPE_CONTAINS_VPTR_P (t
))
5674 CLASSTYPE_NEARLY_EMPTY_P (t
) = 0;
5676 /* Do some bookkeeping that will guide the generation of implicitly
5677 declared member functions. */
5678 TYPE_HAS_COMPLEX_COPY_CTOR (t
) |= TYPE_CONTAINS_VPTR_P (t
);
5679 TYPE_HAS_COMPLEX_MOVE_CTOR (t
) |= TYPE_CONTAINS_VPTR_P (t
);
5680 /* We need to call a constructor for this class if it has a
5681 user-provided constructor, or if the default constructor is going
5682 to initialize the vptr. (This is not an if-and-only-if;
5683 TYPE_NEEDS_CONSTRUCTING is set elsewhere if bases or members
5684 themselves need constructing.) */
5685 TYPE_NEEDS_CONSTRUCTING (t
)
5686 |= (type_has_user_provided_constructor (t
) || TYPE_CONTAINS_VPTR_P (t
));
5689 An aggregate is an array or a class with no user-provided
5690 constructors ... and no virtual functions.
5692 Again, other conditions for being an aggregate are checked
5694 CLASSTYPE_NON_AGGREGATE (t
)
5695 |= (type_has_user_provided_constructor (t
) || TYPE_POLYMORPHIC_P (t
));
5696 /* This is the C++98/03 definition of POD; it changed in C++0x, but we
5697 retain the old definition internally for ABI reasons. */
5698 CLASSTYPE_NON_LAYOUT_POD_P (t
)
5699 |= (CLASSTYPE_NON_AGGREGATE (t
)
5700 || saved_nontrivial_dtor
|| saved_complex_asn_ref
);
5701 CLASSTYPE_NON_STD_LAYOUT (t
) |= TYPE_CONTAINS_VPTR_P (t
);
5702 TYPE_HAS_COMPLEX_COPY_ASSIGN (t
) |= TYPE_CONTAINS_VPTR_P (t
);
5703 TYPE_HAS_COMPLEX_MOVE_ASSIGN (t
) |= TYPE_CONTAINS_VPTR_P (t
);
5704 TYPE_HAS_COMPLEX_DFLT (t
) |= TYPE_CONTAINS_VPTR_P (t
);
5706 /* If the only explicitly declared default constructor is user-provided,
5707 set TYPE_HAS_COMPLEX_DFLT. */
5708 if (!TYPE_HAS_COMPLEX_DFLT (t
)
5709 && TYPE_HAS_DEFAULT_CONSTRUCTOR (t
)
5710 && !type_has_non_user_provided_default_constructor (t
))
5711 TYPE_HAS_COMPLEX_DFLT (t
) = true;
5713 /* Warn if a public base of a polymorphic type has an accessible
5714 non-virtual destructor. It is only now that we know the class is
5715 polymorphic. Although a polymorphic base will have a already
5716 been diagnosed during its definition, we warn on use too. */
5717 if (TYPE_POLYMORPHIC_P (t
) && warn_nonvdtor
)
5719 tree binfo
= TYPE_BINFO (t
);
5720 vec
<tree
, va_gc
> *accesses
= BINFO_BASE_ACCESSES (binfo
);
5724 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
5726 tree basetype
= TREE_TYPE (base_binfo
);
5728 if ((*accesses
)[i
] == access_public_node
5729 && (TYPE_POLYMORPHIC_P (basetype
) || warn_ecpp
)
5730 && accessible_nvdtor_p (basetype
))
5731 warning (OPT_Wnon_virtual_dtor
,
5732 "base class %q#T has accessible non-virtual destructor",
5737 /* If the class has no user-declared constructor, but does have
5738 non-static const or reference data members that can never be
5739 initialized, issue a warning. */
5740 if (warn_uninitialized
5741 /* Classes with user-declared constructors are presumed to
5742 initialize these members. */
5743 && !TYPE_HAS_USER_CONSTRUCTOR (t
)
5744 /* Aggregates can be initialized with brace-enclosed
5746 && CLASSTYPE_NON_AGGREGATE (t
))
5750 for (field
= TYPE_FIELDS (t
); field
; field
= DECL_CHAIN (field
))
5754 if (TREE_CODE (field
) != FIELD_DECL
5755 || DECL_INITIAL (field
) != NULL_TREE
)
5758 type
= TREE_TYPE (field
);
5759 if (TREE_CODE (type
) == REFERENCE_TYPE
)
5760 warning (OPT_Wuninitialized
, "non-static reference %q+#D "
5761 "in class without a constructor", field
);
5762 else if (CP_TYPE_CONST_P (type
)
5763 && (!CLASS_TYPE_P (type
)
5764 || !TYPE_HAS_DEFAULT_CONSTRUCTOR (type
)))
5765 warning (OPT_Wuninitialized
, "non-static const member %q+#D "
5766 "in class without a constructor", field
);
5770 /* Synthesize any needed methods. */
5771 add_implicitly_declared_members (t
, &access_decls
,
5772 cant_have_const_ctor
,
5775 /* Check defaulted declarations here so we have cant_have_const_ctor
5776 and don't need to worry about clones. */
5777 for (fn
= TYPE_METHODS (t
); fn
; fn
= DECL_CHAIN (fn
))
5778 if (!DECL_ARTIFICIAL (fn
) && DECL_DEFAULTED_IN_CLASS_P (fn
))
5780 int copy
= copy_fn_p (fn
);
5784 = (DECL_CONSTRUCTOR_P (fn
) ? !cant_have_const_ctor
5785 : !no_const_asn_ref
);
5786 bool fn_const_p
= (copy
== 2);
5788 if (fn_const_p
&& !imp_const_p
)
5789 /* If the function is defaulted outside the class, we just
5790 give the synthesis error. */
5791 error ("%q+D declared to take const reference, but implicit "
5792 "declaration would take non-const", fn
);
5794 defaulted_late_check (fn
);
5797 if (LAMBDA_TYPE_P (t
))
5799 /* "This class type is not an aggregate." */
5800 CLASSTYPE_NON_AGGREGATE (t
) = 1;
5803 /* Compute the 'literal type' property before we
5804 do anything with non-static member functions. */
5805 finalize_literal_type_property (t
);
5807 /* Create the in-charge and not-in-charge variants of constructors
5809 clone_constructors_and_destructors (t
);
5811 /* Process the using-declarations. */
5812 for (; access_decls
; access_decls
= TREE_CHAIN (access_decls
))
5813 handle_using_decl (TREE_VALUE (access_decls
), t
);
5815 /* Build and sort the CLASSTYPE_METHOD_VEC. */
5816 finish_struct_methods (t
);
5818 /* Figure out whether or not we will need a cookie when dynamically
5819 allocating an array of this type. */
5820 TYPE_LANG_SPECIFIC (t
)->u
.c
.vec_new_uses_cookie
5821 = type_requires_array_cookie (t
);
5824 /* If T needs a pointer to its virtual function table, set TYPE_VFIELD
5825 accordingly. If a new vfield was created (because T doesn't have a
5826 primary base class), then the newly created field is returned. It
5827 is not added to the TYPE_FIELDS list; it is the caller's
5828 responsibility to do that. Accumulate declared virtual functions
5832 create_vtable_ptr (tree t
, tree
* virtuals_p
)
5836 /* Collect the virtual functions declared in T. */
5837 for (fn
= TYPE_METHODS (t
); fn
; fn
= DECL_CHAIN (fn
))
5838 if (TREE_CODE (fn
) == FUNCTION_DECL
5839 && DECL_VINDEX (fn
) && !DECL_MAYBE_IN_CHARGE_DESTRUCTOR_P (fn
)
5840 && TREE_CODE (DECL_VINDEX (fn
)) != INTEGER_CST
)
5842 tree new_virtual
= make_node (TREE_LIST
);
5844 BV_FN (new_virtual
) = fn
;
5845 BV_DELTA (new_virtual
) = integer_zero_node
;
5846 BV_VCALL_INDEX (new_virtual
) = NULL_TREE
;
5848 TREE_CHAIN (new_virtual
) = *virtuals_p
;
5849 *virtuals_p
= new_virtual
;
5852 /* If we couldn't find an appropriate base class, create a new field
5853 here. Even if there weren't any new virtual functions, we might need a
5854 new virtual function table if we're supposed to include vptrs in
5855 all classes that need them. */
5856 if (!TYPE_VFIELD (t
) && (*virtuals_p
|| TYPE_CONTAINS_VPTR_P (t
)))
5858 /* We build this decl with vtbl_ptr_type_node, which is a
5859 `vtable_entry_type*'. It might seem more precise to use
5860 `vtable_entry_type (*)[N]' where N is the number of virtual
5861 functions. However, that would require the vtable pointer in
5862 base classes to have a different type than the vtable pointer
5863 in derived classes. We could make that happen, but that
5864 still wouldn't solve all the problems. In particular, the
5865 type-based alias analysis code would decide that assignments
5866 to the base class vtable pointer can't alias assignments to
5867 the derived class vtable pointer, since they have different
5868 types. Thus, in a derived class destructor, where the base
5869 class constructor was inlined, we could generate bad code for
5870 setting up the vtable pointer.
5872 Therefore, we use one type for all vtable pointers. We still
5873 use a type-correct type; it's just doesn't indicate the array
5874 bounds. That's better than using `void*' or some such; it's
5875 cleaner, and it let's the alias analysis code know that these
5876 stores cannot alias stores to void*! */
5879 field
= build_decl (input_location
,
5880 FIELD_DECL
, get_vfield_name (t
), vtbl_ptr_type_node
);
5881 DECL_VIRTUAL_P (field
) = 1;
5882 DECL_ARTIFICIAL (field
) = 1;
5883 DECL_FIELD_CONTEXT (field
) = t
;
5884 DECL_FCONTEXT (field
) = t
;
5885 if (TYPE_PACKED (t
))
5886 DECL_PACKED (field
) = 1;
5888 TYPE_VFIELD (t
) = field
;
5890 /* This class is non-empty. */
5891 CLASSTYPE_EMPTY_P (t
) = 0;
5899 /* Add OFFSET to all base types of BINFO which is a base in the
5900 hierarchy dominated by T.
5902 OFFSET, which is a type offset, is number of bytes. */
5905 propagate_binfo_offsets (tree binfo
, tree offset
)
5911 /* Update BINFO's offset. */
5912 BINFO_OFFSET (binfo
)
5913 = convert (sizetype
,
5914 size_binop (PLUS_EXPR
,
5915 convert (ssizetype
, BINFO_OFFSET (binfo
)),
5918 /* Find the primary base class. */
5919 primary_binfo
= get_primary_binfo (binfo
);
5921 if (primary_binfo
&& BINFO_INHERITANCE_CHAIN (primary_binfo
) == binfo
)
5922 propagate_binfo_offsets (primary_binfo
, offset
);
5924 /* Scan all of the bases, pushing the BINFO_OFFSET adjust
5926 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
5928 /* Don't do the primary base twice. */
5929 if (base_binfo
== primary_binfo
)
5932 if (BINFO_VIRTUAL_P (base_binfo
))
5935 propagate_binfo_offsets (base_binfo
, offset
);
5939 /* Set BINFO_OFFSET for all of the virtual bases for RLI->T. Update
5940 TYPE_ALIGN and TYPE_SIZE for T. OFFSETS gives the location of
5941 empty subobjects of T. */
5944 layout_virtual_bases (record_layout_info rli
, splay_tree offsets
)
5950 if (BINFO_N_BASE_BINFOS (TYPE_BINFO (t
)) == 0)
5953 /* Find the last field. The artificial fields created for virtual
5954 bases will go after the last extant field to date. */
5955 next_field
= &TYPE_FIELDS (t
);
5957 next_field
= &DECL_CHAIN (*next_field
);
5959 /* Go through the virtual bases, allocating space for each virtual
5960 base that is not already a primary base class. These are
5961 allocated in inheritance graph order. */
5962 for (vbase
= TYPE_BINFO (t
); vbase
; vbase
= TREE_CHAIN (vbase
))
5964 if (!BINFO_VIRTUAL_P (vbase
))
5967 if (!BINFO_PRIMARY_P (vbase
))
5969 /* This virtual base is not a primary base of any class in the
5970 hierarchy, so we have to add space for it. */
5971 next_field
= build_base_field (rli
, vbase
,
5972 offsets
, next_field
);
5977 /* Returns the offset of the byte just past the end of the base class
5981 end_of_base (tree binfo
)
5985 if (!CLASSTYPE_AS_BASE (BINFO_TYPE (binfo
)))
5986 size
= TYPE_SIZE_UNIT (char_type_node
);
5987 else if (is_empty_class (BINFO_TYPE (binfo
)))
5988 /* An empty class has zero CLASSTYPE_SIZE_UNIT, but we need to
5989 allocate some space for it. It cannot have virtual bases, so
5990 TYPE_SIZE_UNIT is fine. */
5991 size
= TYPE_SIZE_UNIT (BINFO_TYPE (binfo
));
5993 size
= CLASSTYPE_SIZE_UNIT (BINFO_TYPE (binfo
));
5995 return size_binop (PLUS_EXPR
, BINFO_OFFSET (binfo
), size
);
5998 /* Returns the offset of the byte just past the end of the base class
5999 with the highest offset in T. If INCLUDE_VIRTUALS_P is zero, then
6000 only non-virtual bases are included. */
6003 end_of_class (tree t
, int include_virtuals_p
)
6005 tree result
= size_zero_node
;
6006 vec
<tree
, va_gc
> *vbases
;
6012 for (binfo
= TYPE_BINFO (t
), i
= 0;
6013 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
6015 if (!include_virtuals_p
6016 && BINFO_VIRTUAL_P (base_binfo
)
6017 && (!BINFO_PRIMARY_P (base_binfo
)
6018 || BINFO_INHERITANCE_CHAIN (base_binfo
) != TYPE_BINFO (t
)))
6021 offset
= end_of_base (base_binfo
);
6022 if (tree_int_cst_lt (result
, offset
))
6026 if (include_virtuals_p
)
6027 for (vbases
= CLASSTYPE_VBASECLASSES (t
), i
= 0;
6028 vec_safe_iterate (vbases
, i
, &base_binfo
); i
++)
6030 offset
= end_of_base (base_binfo
);
6031 if (tree_int_cst_lt (result
, offset
))
6038 /* Warn about bases of T that are inaccessible because they are
6039 ambiguous. For example:
6042 struct T : public S {};
6043 struct U : public S, public T {};
6045 Here, `(S*) new U' is not allowed because there are two `S'
6049 warn_about_ambiguous_bases (tree t
)
6052 vec
<tree
, va_gc
> *vbases
;
6057 /* If there are no repeated bases, nothing can be ambiguous. */
6058 if (!CLASSTYPE_REPEATED_BASE_P (t
))
6061 /* Check direct bases. */
6062 for (binfo
= TYPE_BINFO (t
), i
= 0;
6063 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
6065 basetype
= BINFO_TYPE (base_binfo
);
6067 if (!uniquely_derived_from_p (basetype
, t
))
6068 warning (0, "direct base %qT inaccessible in %qT due to ambiguity",
6072 /* Check for ambiguous virtual bases. */
6074 for (vbases
= CLASSTYPE_VBASECLASSES (t
), i
= 0;
6075 vec_safe_iterate (vbases
, i
, &binfo
); i
++)
6077 basetype
= BINFO_TYPE (binfo
);
6079 if (!uniquely_derived_from_p (basetype
, t
))
6080 warning (OPT_Wextra
, "virtual base %qT inaccessible in %qT due "
6081 "to ambiguity", basetype
, t
);
6085 /* Compare two INTEGER_CSTs K1 and K2. */
6088 splay_tree_compare_integer_csts (splay_tree_key k1
, splay_tree_key k2
)
6090 return tree_int_cst_compare ((tree
) k1
, (tree
) k2
);
6093 /* Increase the size indicated in RLI to account for empty classes
6094 that are "off the end" of the class. */
6097 include_empty_classes (record_layout_info rli
)
6102 /* It might be the case that we grew the class to allocate a
6103 zero-sized base class. That won't be reflected in RLI, yet,
6104 because we are willing to overlay multiple bases at the same
6105 offset. However, now we need to make sure that RLI is big enough
6106 to reflect the entire class. */
6107 eoc
= end_of_class (rli
->t
,
6108 CLASSTYPE_AS_BASE (rli
->t
) != NULL_TREE
);
6109 rli_size
= rli_size_unit_so_far (rli
);
6110 if (TREE_CODE (rli_size
) == INTEGER_CST
6111 && tree_int_cst_lt (rli_size
, eoc
))
6113 /* The size should have been rounded to a whole byte. */
6114 gcc_assert (tree_int_cst_equal
6115 (rli
->bitpos
, round_down (rli
->bitpos
, BITS_PER_UNIT
)));
6117 = size_binop (PLUS_EXPR
,
6119 size_binop (MULT_EXPR
,
6120 convert (bitsizetype
,
6121 size_binop (MINUS_EXPR
,
6123 bitsize_int (BITS_PER_UNIT
)));
6124 normalize_rli (rli
);
6128 /* Calculate the TYPE_SIZE, TYPE_ALIGN, etc for T. Calculate
6129 BINFO_OFFSETs for all of the base-classes. Position the vtable
6130 pointer. Accumulate declared virtual functions on VIRTUALS_P. */
6133 layout_class_type (tree t
, tree
*virtuals_p
)
6135 tree non_static_data_members
;
6138 record_layout_info rli
;
6139 /* Maps offsets (represented as INTEGER_CSTs) to a TREE_LIST of
6140 types that appear at that offset. */
6141 splay_tree empty_base_offsets
;
6142 /* True if the last field laid out was a bit-field. */
6143 bool last_field_was_bitfield
= false;
6144 /* The location at which the next field should be inserted. */
6146 /* T, as a base class. */
6149 /* Keep track of the first non-static data member. */
6150 non_static_data_members
= TYPE_FIELDS (t
);
6152 /* Start laying out the record. */
6153 rli
= start_record_layout (t
);
6155 /* Mark all the primary bases in the hierarchy. */
6156 determine_primary_bases (t
);
6158 /* Create a pointer to our virtual function table. */
6159 vptr
= create_vtable_ptr (t
, virtuals_p
);
6161 /* The vptr is always the first thing in the class. */
6164 DECL_CHAIN (vptr
) = TYPE_FIELDS (t
);
6165 TYPE_FIELDS (t
) = vptr
;
6166 next_field
= &DECL_CHAIN (vptr
);
6167 place_field (rli
, vptr
);
6170 next_field
= &TYPE_FIELDS (t
);
6172 /* Build FIELD_DECLs for all of the non-virtual base-types. */
6173 empty_base_offsets
= splay_tree_new (splay_tree_compare_integer_csts
,
6175 build_base_fields (rli
, empty_base_offsets
, next_field
);
6177 /* Layout the non-static data members. */
6178 for (field
= non_static_data_members
; field
; field
= DECL_CHAIN (field
))
6183 /* We still pass things that aren't non-static data members to
6184 the back end, in case it wants to do something with them. */
6185 if (TREE_CODE (field
) != FIELD_DECL
)
6187 place_field (rli
, field
);
6188 /* If the static data member has incomplete type, keep track
6189 of it so that it can be completed later. (The handling
6190 of pending statics in finish_record_layout is
6191 insufficient; consider:
6194 struct S2 { static S1 s1; };
6196 At this point, finish_record_layout will be called, but
6197 S1 is still incomplete.) */
6200 maybe_register_incomplete_var (field
);
6201 /* The visibility of static data members is determined
6202 at their point of declaration, not their point of
6204 determine_visibility (field
);
6209 type
= TREE_TYPE (field
);
6210 if (type
== error_mark_node
)
6213 padding
= NULL_TREE
;
6215 /* If this field is a bit-field whose width is greater than its
6216 type, then there are some special rules for allocating
6218 if (DECL_C_BIT_FIELD (field
)
6219 && tree_int_cst_lt (TYPE_SIZE (type
), DECL_SIZE (field
)))
6223 bool was_unnamed_p
= false;
6224 /* We must allocate the bits as if suitably aligned for the
6225 longest integer type that fits in this many bits. type
6226 of the field. Then, we are supposed to use the left over
6227 bits as additional padding. */
6228 for (itk
= itk_char
; itk
!= itk_none
; ++itk
)
6229 if (integer_types
[itk
] != NULL_TREE
6230 && (tree_int_cst_lt (size_int (MAX_FIXED_MODE_SIZE
),
6231 TYPE_SIZE (integer_types
[itk
]))
6232 || tree_int_cst_lt (DECL_SIZE (field
),
6233 TYPE_SIZE (integer_types
[itk
]))))
6236 /* ITK now indicates a type that is too large for the
6237 field. We have to back up by one to find the largest
6242 integer_type
= integer_types
[itk
];
6243 } while (itk
> 0 && integer_type
== NULL_TREE
);
6245 /* Figure out how much additional padding is required. */
6246 if (tree_int_cst_lt (TYPE_SIZE (integer_type
), DECL_SIZE (field
)))
6248 if (TREE_CODE (t
) == UNION_TYPE
)
6249 /* In a union, the padding field must have the full width
6250 of the bit-field; all fields start at offset zero. */
6251 padding
= DECL_SIZE (field
);
6253 padding
= size_binop (MINUS_EXPR
, DECL_SIZE (field
),
6254 TYPE_SIZE (integer_type
));
6257 /* An unnamed bitfield does not normally affect the
6258 alignment of the containing class on a target where
6259 PCC_BITFIELD_TYPE_MATTERS. But, the C++ ABI does not
6260 make any exceptions for unnamed bitfields when the
6261 bitfields are longer than their types. Therefore, we
6262 temporarily give the field a name. */
6263 if (PCC_BITFIELD_TYPE_MATTERS
&& !DECL_NAME (field
))
6265 was_unnamed_p
= true;
6266 DECL_NAME (field
) = make_anon_name ();
6269 DECL_SIZE (field
) = TYPE_SIZE (integer_type
);
6270 DECL_ALIGN (field
) = TYPE_ALIGN (integer_type
);
6271 DECL_USER_ALIGN (field
) = TYPE_USER_ALIGN (integer_type
);
6272 layout_nonempty_base_or_field (rli
, field
, NULL_TREE
,
6273 empty_base_offsets
);
6275 DECL_NAME (field
) = NULL_TREE
;
6276 /* Now that layout has been performed, set the size of the
6277 field to the size of its declared type; the rest of the
6278 field is effectively invisible. */
6279 DECL_SIZE (field
) = TYPE_SIZE (type
);
6280 /* We must also reset the DECL_MODE of the field. */
6281 DECL_MODE (field
) = TYPE_MODE (type
);
6284 layout_nonempty_base_or_field (rli
, field
, NULL_TREE
,
6285 empty_base_offsets
);
6287 /* Remember the location of any empty classes in FIELD. */
6288 record_subobject_offsets (TREE_TYPE (field
),
6289 byte_position(field
),
6291 /*is_data_member=*/true);
6293 /* If a bit-field does not immediately follow another bit-field,
6294 and yet it starts in the middle of a byte, we have failed to
6295 comply with the ABI. */
6297 && DECL_C_BIT_FIELD (field
)
6298 /* The TREE_NO_WARNING flag gets set by Objective-C when
6299 laying out an Objective-C class. The ObjC ABI differs
6300 from the C++ ABI, and so we do not want a warning
6302 && !TREE_NO_WARNING (field
)
6303 && !last_field_was_bitfield
6304 && !integer_zerop (size_binop (TRUNC_MOD_EXPR
,
6305 DECL_FIELD_BIT_OFFSET (field
),
6306 bitsize_unit_node
)))
6307 warning (OPT_Wabi
, "offset of %q+D is not ABI-compliant and may "
6308 "change in a future version of GCC", field
);
6310 /* The middle end uses the type of expressions to determine the
6311 possible range of expression values. In order to optimize
6312 "x.i > 7" to "false" for a 2-bit bitfield "i", the middle end
6313 must be made aware of the width of "i", via its type.
6315 Because C++ does not have integer types of arbitrary width,
6316 we must (for the purposes of the front end) convert from the
6317 type assigned here to the declared type of the bitfield
6318 whenever a bitfield expression is used as an rvalue.
6319 Similarly, when assigning a value to a bitfield, the value
6320 must be converted to the type given the bitfield here. */
6321 if (DECL_C_BIT_FIELD (field
))
6323 unsigned HOST_WIDE_INT width
;
6324 tree ftype
= TREE_TYPE (field
);
6325 width
= tree_to_uhwi (DECL_SIZE (field
));
6326 if (width
!= TYPE_PRECISION (ftype
))
6329 = c_build_bitfield_integer_type (width
,
6330 TYPE_UNSIGNED (ftype
));
6332 = cp_build_qualified_type (TREE_TYPE (field
),
6333 cp_type_quals (ftype
));
6337 /* If we needed additional padding after this field, add it
6343 padding_field
= build_decl (input_location
,
6347 DECL_BIT_FIELD (padding_field
) = 1;
6348 DECL_SIZE (padding_field
) = padding
;
6349 DECL_CONTEXT (padding_field
) = t
;
6350 DECL_ARTIFICIAL (padding_field
) = 1;
6351 DECL_IGNORED_P (padding_field
) = 1;
6352 layout_nonempty_base_or_field (rli
, padding_field
,
6354 empty_base_offsets
);
6357 last_field_was_bitfield
= DECL_C_BIT_FIELD (field
);
6360 if (!integer_zerop (rli
->bitpos
))
6362 /* Make sure that we are on a byte boundary so that the size of
6363 the class without virtual bases will always be a round number
6365 rli
->bitpos
= round_up_loc (input_location
, rli
->bitpos
, BITS_PER_UNIT
);
6366 normalize_rli (rli
);
6369 /* Delete all zero-width bit-fields from the list of fields. Now
6370 that the type is laid out they are no longer important. */
6371 remove_zero_width_bit_fields (t
);
6373 /* Create the version of T used for virtual bases. We do not use
6374 make_class_type for this version; this is an artificial type. For
6375 a POD type, we just reuse T. */
6376 if (CLASSTYPE_NON_LAYOUT_POD_P (t
) || CLASSTYPE_EMPTY_P (t
))
6378 base_t
= make_node (TREE_CODE (t
));
6380 /* Set the size and alignment for the new type. */
6383 /* If the ABI version is not at least two, and the last
6384 field was a bit-field, RLI may not be on a byte
6385 boundary. In particular, rli_size_unit_so_far might
6386 indicate the last complete byte, while rli_size_so_far
6387 indicates the total number of bits used. Therefore,
6388 rli_size_so_far, rather than rli_size_unit_so_far, is
6389 used to compute TYPE_SIZE_UNIT. */
6390 eoc
= end_of_class (t
, /*include_virtuals_p=*/0);
6391 TYPE_SIZE_UNIT (base_t
)
6392 = size_binop (MAX_EXPR
,
6394 size_binop (CEIL_DIV_EXPR
,
6395 rli_size_so_far (rli
),
6396 bitsize_int (BITS_PER_UNIT
))),
6399 = size_binop (MAX_EXPR
,
6400 rli_size_so_far (rli
),
6401 size_binop (MULT_EXPR
,
6402 convert (bitsizetype
, eoc
),
6403 bitsize_int (BITS_PER_UNIT
)));
6404 TYPE_ALIGN (base_t
) = rli
->record_align
;
6405 TYPE_USER_ALIGN (base_t
) = TYPE_USER_ALIGN (t
);
6407 /* Copy the fields from T. */
6408 next_field
= &TYPE_FIELDS (base_t
);
6409 for (field
= TYPE_FIELDS (t
); field
; field
= DECL_CHAIN (field
))
6410 if (TREE_CODE (field
) == FIELD_DECL
)
6412 *next_field
= build_decl (input_location
,
6416 DECL_CONTEXT (*next_field
) = base_t
;
6417 DECL_FIELD_OFFSET (*next_field
) = DECL_FIELD_OFFSET (field
);
6418 DECL_FIELD_BIT_OFFSET (*next_field
)
6419 = DECL_FIELD_BIT_OFFSET (field
);
6420 DECL_SIZE (*next_field
) = DECL_SIZE (field
);
6421 DECL_MODE (*next_field
) = DECL_MODE (field
);
6422 next_field
= &DECL_CHAIN (*next_field
);
6425 /* Record the base version of the type. */
6426 CLASSTYPE_AS_BASE (t
) = base_t
;
6427 TYPE_CONTEXT (base_t
) = t
;
6430 CLASSTYPE_AS_BASE (t
) = t
;
6432 /* Every empty class contains an empty class. */
6433 if (CLASSTYPE_EMPTY_P (t
))
6434 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 1;
6436 /* Set the TYPE_DECL for this type to contain the right
6437 value for DECL_OFFSET, so that we can use it as part
6438 of a COMPONENT_REF for multiple inheritance. */
6439 layout_decl (TYPE_MAIN_DECL (t
), 0);
6441 /* Now fix up any virtual base class types that we left lying
6442 around. We must get these done before we try to lay out the
6443 virtual function table. As a side-effect, this will remove the
6444 base subobject fields. */
6445 layout_virtual_bases (rli
, empty_base_offsets
);
6447 /* Make sure that empty classes are reflected in RLI at this
6449 include_empty_classes(rli
);
6451 /* Make sure not to create any structures with zero size. */
6452 if (integer_zerop (rli_size_unit_so_far (rli
)) && CLASSTYPE_EMPTY_P (t
))
6454 build_decl (input_location
,
6455 FIELD_DECL
, NULL_TREE
, char_type_node
));
6457 /* If this is a non-POD, declaring it packed makes a difference to how it
6458 can be used as a field; don't let finalize_record_size undo it. */
6459 if (TYPE_PACKED (t
) && !layout_pod_type_p (t
))
6460 rli
->packed_maybe_necessary
= true;
6462 /* Let the back end lay out the type. */
6463 finish_record_layout (rli
, /*free_p=*/true);
6465 if (TYPE_SIZE_UNIT (t
)
6466 && TREE_CODE (TYPE_SIZE_UNIT (t
)) == INTEGER_CST
6467 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (t
))
6468 && !valid_constant_size_p (TYPE_SIZE_UNIT (t
)))
6469 error ("type %qT is too large", t
);
6471 /* Warn about bases that can't be talked about due to ambiguity. */
6472 warn_about_ambiguous_bases (t
);
6474 /* Now that we're done with layout, give the base fields the real types. */
6475 for (field
= TYPE_FIELDS (t
); field
; field
= DECL_CHAIN (field
))
6476 if (DECL_ARTIFICIAL (field
) && IS_FAKE_BASE_TYPE (TREE_TYPE (field
)))
6477 TREE_TYPE (field
) = TYPE_CONTEXT (TREE_TYPE (field
));
6480 splay_tree_delete (empty_base_offsets
);
6482 if (CLASSTYPE_EMPTY_P (t
)
6483 && tree_int_cst_lt (sizeof_biggest_empty_class
,
6484 TYPE_SIZE_UNIT (t
)))
6485 sizeof_biggest_empty_class
= TYPE_SIZE_UNIT (t
);
6488 /* Determine the "key method" for the class type indicated by TYPE,
6489 and set CLASSTYPE_KEY_METHOD accordingly. */
6492 determine_key_method (tree type
)
6496 if (TYPE_FOR_JAVA (type
)
6497 || processing_template_decl
6498 || CLASSTYPE_TEMPLATE_INSTANTIATION (type
)
6499 || CLASSTYPE_INTERFACE_KNOWN (type
))
6502 /* The key method is the first non-pure virtual function that is not
6503 inline at the point of class definition. On some targets the
6504 key function may not be inline; those targets should not call
6505 this function until the end of the translation unit. */
6506 for (method
= TYPE_METHODS (type
); method
!= NULL_TREE
;
6507 method
= DECL_CHAIN (method
))
6508 if (TREE_CODE (method
) == FUNCTION_DECL
6509 && DECL_VINDEX (method
) != NULL_TREE
6510 && ! DECL_DECLARED_INLINE_P (method
)
6511 && ! DECL_PURE_VIRTUAL_P (method
))
6513 CLASSTYPE_KEY_METHOD (type
) = method
;
6521 /* Allocate and return an instance of struct sorted_fields_type with
6524 static struct sorted_fields_type
*
6525 sorted_fields_type_new (int n
)
6527 struct sorted_fields_type
*sft
;
6528 sft
= (sorted_fields_type
*) ggc_internal_alloc (sizeof (sorted_fields_type
)
6529 + n
* sizeof (tree
));
6536 /* Perform processing required when the definition of T (a class type)
6540 finish_struct_1 (tree t
)
6543 /* A TREE_LIST. The TREE_VALUE of each node is a FUNCTION_DECL. */
6544 tree virtuals
= NULL_TREE
;
6546 if (COMPLETE_TYPE_P (t
))
6548 gcc_assert (MAYBE_CLASS_TYPE_P (t
));
6549 error ("redefinition of %q#T", t
);
6554 /* If this type was previously laid out as a forward reference,
6555 make sure we lay it out again. */
6556 TYPE_SIZE (t
) = NULL_TREE
;
6557 CLASSTYPE_PRIMARY_BINFO (t
) = NULL_TREE
;
6559 /* Make assumptions about the class; we'll reset the flags if
6561 CLASSTYPE_EMPTY_P (t
) = 1;
6562 CLASSTYPE_NEARLY_EMPTY_P (t
) = 1;
6563 CLASSTYPE_CONTAINS_EMPTY_CLASS_P (t
) = 0;
6564 CLASSTYPE_LITERAL_P (t
) = true;
6566 /* Do end-of-class semantic processing: checking the validity of the
6567 bases and members and add implicitly generated methods. */
6568 check_bases_and_members (t
);
6570 /* Find the key method. */
6571 if (TYPE_CONTAINS_VPTR_P (t
))
6573 /* The Itanium C++ ABI permits the key method to be chosen when
6574 the class is defined -- even though the key method so
6575 selected may later turn out to be an inline function. On
6576 some systems (such as ARM Symbian OS) the key method cannot
6577 be determined until the end of the translation unit. On such
6578 systems, we leave CLASSTYPE_KEY_METHOD set to NULL, which
6579 will cause the class to be added to KEYED_CLASSES. Then, in
6580 finish_file we will determine the key method. */
6581 if (targetm
.cxx
.key_method_may_be_inline ())
6582 determine_key_method (t
);
6584 /* If a polymorphic class has no key method, we may emit the vtable
6585 in every translation unit where the class definition appears. If
6586 we're devirtualizing, we can look into the vtable even if we
6587 aren't emitting it. */
6588 if (CLASSTYPE_KEY_METHOD (t
) == NULL_TREE
)
6589 keyed_classes
= tree_cons (NULL_TREE
, t
, keyed_classes
);
6592 /* Layout the class itself. */
6593 layout_class_type (t
, &virtuals
);
6594 if (CLASSTYPE_AS_BASE (t
) != t
)
6595 /* We use the base type for trivial assignments, and hence it
6597 compute_record_mode (CLASSTYPE_AS_BASE (t
));
6599 virtuals
= modify_all_vtables (t
, nreverse (virtuals
));
6601 /* If necessary, create the primary vtable for this class. */
6602 if (virtuals
|| TYPE_CONTAINS_VPTR_P (t
))
6604 /* We must enter these virtuals into the table. */
6605 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
6606 build_primary_vtable (NULL_TREE
, t
);
6607 else if (! BINFO_NEW_VTABLE_MARKED (TYPE_BINFO (t
)))
6608 /* Here we know enough to change the type of our virtual
6609 function table, but we will wait until later this function. */
6610 build_primary_vtable (CLASSTYPE_PRIMARY_BINFO (t
), t
);
6612 /* If we're warning about ABI tags, check the types of the new
6613 virtual functions. */
6615 for (tree v
= virtuals
; v
; v
= TREE_CHAIN (v
))
6616 check_abi_tags (t
, TREE_VALUE (v
));
6619 if (TYPE_CONTAINS_VPTR_P (t
))
6624 if (BINFO_VTABLE (TYPE_BINFO (t
)))
6625 gcc_assert (DECL_VIRTUAL_P (BINFO_VTABLE (TYPE_BINFO (t
))));
6626 if (!CLASSTYPE_HAS_PRIMARY_BASE_P (t
))
6627 gcc_assert (BINFO_VIRTUALS (TYPE_BINFO (t
)) == NULL_TREE
);
6629 /* Add entries for virtual functions introduced by this class. */
6630 BINFO_VIRTUALS (TYPE_BINFO (t
))
6631 = chainon (BINFO_VIRTUALS (TYPE_BINFO (t
)), virtuals
);
6633 /* Set DECL_VINDEX for all functions declared in this class. */
6634 for (vindex
= 0, fn
= BINFO_VIRTUALS (TYPE_BINFO (t
));
6636 fn
= TREE_CHAIN (fn
),
6637 vindex
+= (TARGET_VTABLE_USES_DESCRIPTORS
6638 ? TARGET_VTABLE_USES_DESCRIPTORS
: 1))
6640 tree fndecl
= BV_FN (fn
);
6642 if (DECL_THUNK_P (fndecl
))
6643 /* A thunk. We should never be calling this entry directly
6644 from this vtable -- we'd use the entry for the non
6645 thunk base function. */
6646 DECL_VINDEX (fndecl
) = NULL_TREE
;
6647 else if (TREE_CODE (DECL_VINDEX (fndecl
)) != INTEGER_CST
)
6648 DECL_VINDEX (fndecl
) = build_int_cst (NULL_TREE
, vindex
);
6652 finish_struct_bits (t
);
6653 set_method_tm_attributes (t
);
6655 /* Complete the rtl for any static member objects of the type we're
6657 for (x
= TYPE_FIELDS (t
); x
; x
= DECL_CHAIN (x
))
6658 if (VAR_P (x
) && TREE_STATIC (x
)
6659 && TREE_TYPE (x
) != error_mark_node
6660 && same_type_p (TYPE_MAIN_VARIANT (TREE_TYPE (x
)), t
))
6661 DECL_MODE (x
) = TYPE_MODE (t
);
6663 /* Done with FIELDS...now decide whether to sort these for
6664 faster lookups later.
6666 We use a small number because most searches fail (succeeding
6667 ultimately as the search bores through the inheritance
6668 hierarchy), and we want this failure to occur quickly. */
6670 insert_into_classtype_sorted_fields (TYPE_FIELDS (t
), t
, 8);
6672 /* Complain if one of the field types requires lower visibility. */
6673 constrain_class_visibility (t
);
6675 /* Make the rtl for any new vtables we have created, and unmark
6676 the base types we marked. */
6679 /* Build the VTT for T. */
6682 /* This warning does not make sense for Java classes, since they
6683 cannot have destructors. */
6684 if (!TYPE_FOR_JAVA (t
) && warn_nonvdtor
6685 && TYPE_POLYMORPHIC_P (t
) && accessible_nvdtor_p (t
)
6686 && !CLASSTYPE_FINAL (t
))
6687 warning (OPT_Wnon_virtual_dtor
,
6688 "%q#T has virtual functions and accessible"
6689 " non-virtual destructor", t
);
6693 if (warn_overloaded_virtual
)
6696 /* Class layout, assignment of virtual table slots, etc., is now
6697 complete. Give the back end a chance to tweak the visibility of
6698 the class or perform any other required target modifications. */
6699 targetm
.cxx
.adjust_class_at_definition (t
);
6701 maybe_suppress_debug_info (t
);
6703 if (flag_vtable_verify
)
6704 vtv_save_class_info (t
);
6706 dump_class_hierarchy (t
);
6708 /* Finish debugging output for this type. */
6709 rest_of_type_compilation (t
, ! LOCAL_CLASS_P (t
));
6711 if (TYPE_TRANSPARENT_AGGR (t
))
6713 tree field
= first_field (t
);
6714 if (field
== NULL_TREE
|| error_operand_p (field
))
6716 error ("type transparent %q#T does not have any fields", t
);
6717 TYPE_TRANSPARENT_AGGR (t
) = 0;
6719 else if (DECL_ARTIFICIAL (field
))
6721 if (DECL_FIELD_IS_BASE (field
))
6722 error ("type transparent class %qT has base classes", t
);
6725 gcc_checking_assert (DECL_VIRTUAL_P (field
));
6726 error ("type transparent class %qT has virtual functions", t
);
6728 TYPE_TRANSPARENT_AGGR (t
) = 0;
6730 else if (TYPE_MODE (t
) != DECL_MODE (field
))
6732 error ("type transparent %q#T cannot be made transparent because "
6733 "the type of the first field has a different ABI from the "
6734 "class overall", t
);
6735 TYPE_TRANSPARENT_AGGR (t
) = 0;
6740 /* Insert FIELDS into T for the sorted case if the FIELDS count is
6741 equal to THRESHOLD or greater than THRESHOLD. */
6744 insert_into_classtype_sorted_fields (tree fields
, tree t
, int threshold
)
6746 int n_fields
= count_fields (fields
);
6747 if (n_fields
>= threshold
)
6749 struct sorted_fields_type
*field_vec
= sorted_fields_type_new (n_fields
);
6750 add_fields_to_record_type (fields
, field_vec
, 0);
6751 qsort (field_vec
->elts
, n_fields
, sizeof (tree
), field_decl_cmp
);
6752 CLASSTYPE_SORTED_FIELDS (t
) = field_vec
;
6756 /* Insert lately defined enum ENUMTYPE into T for the sorted case. */
6759 insert_late_enum_def_into_classtype_sorted_fields (tree enumtype
, tree t
)
6761 struct sorted_fields_type
*sorted_fields
= CLASSTYPE_SORTED_FIELDS (t
);
6766 = list_length (TYPE_VALUES (enumtype
)) + sorted_fields
->len
;
6767 struct sorted_fields_type
*field_vec
= sorted_fields_type_new (n_fields
);
6769 for (i
= 0; i
< sorted_fields
->len
; ++i
)
6770 field_vec
->elts
[i
] = sorted_fields
->elts
[i
];
6772 add_enum_fields_to_record_type (enumtype
, field_vec
,
6773 sorted_fields
->len
);
6774 qsort (field_vec
->elts
, n_fields
, sizeof (tree
), field_decl_cmp
);
6775 CLASSTYPE_SORTED_FIELDS (t
) = field_vec
;
6779 /* When T was built up, the member declarations were added in reverse
6780 order. Rearrange them to declaration order. */
6783 unreverse_member_declarations (tree t
)
6789 /* The following lists are all in reverse order. Put them in
6790 declaration order now. */
6791 TYPE_METHODS (t
) = nreverse (TYPE_METHODS (t
));
6792 CLASSTYPE_DECL_LIST (t
) = nreverse (CLASSTYPE_DECL_LIST (t
));
6794 /* Actually, for the TYPE_FIELDS, only the non TYPE_DECLs are in
6795 reverse order, so we can't just use nreverse. */
6797 for (x
= TYPE_FIELDS (t
);
6798 x
&& TREE_CODE (x
) != TYPE_DECL
;
6801 next
= DECL_CHAIN (x
);
6802 DECL_CHAIN (x
) = prev
;
6807 DECL_CHAIN (TYPE_FIELDS (t
)) = x
;
6809 TYPE_FIELDS (t
) = prev
;
6814 finish_struct (tree t
, tree attributes
)
6816 location_t saved_loc
= input_location
;
6818 /* Now that we've got all the field declarations, reverse everything
6820 unreverse_member_declarations (t
);
6822 cplus_decl_attributes (&t
, attributes
, (int) ATTR_FLAG_TYPE_IN_PLACE
);
6823 fixup_attribute_variants (t
);
6825 /* Nadger the current location so that diagnostics point to the start of
6826 the struct, not the end. */
6827 input_location
= DECL_SOURCE_LOCATION (TYPE_NAME (t
));
6829 if (processing_template_decl
)
6833 finish_struct_methods (t
);
6834 TYPE_SIZE (t
) = bitsize_zero_node
;
6835 TYPE_SIZE_UNIT (t
) = size_zero_node
;
6837 /* We need to emit an error message if this type was used as a parameter
6838 and it is an abstract type, even if it is a template. We construct
6839 a simple CLASSTYPE_PURE_VIRTUALS list without taking bases into
6840 account and we call complete_vars with this type, which will check
6841 the PARM_DECLS. Note that while the type is being defined,
6842 CLASSTYPE_PURE_VIRTUALS contains the list of the inline friends
6843 (see CLASSTYPE_INLINE_FRIENDS) so we need to clear it. */
6844 CLASSTYPE_PURE_VIRTUALS (t
) = NULL
;
6845 for (x
= TYPE_METHODS (t
); x
; x
= DECL_CHAIN (x
))
6846 if (DECL_PURE_VIRTUAL_P (x
))
6847 vec_safe_push (CLASSTYPE_PURE_VIRTUALS (t
), x
);
6849 /* We need to add the target functions to the CLASSTYPE_METHOD_VEC if
6850 an enclosing scope is a template class, so that this function be
6851 found by lookup_fnfields_1 when the using declaration is not
6852 instantiated yet. */
6853 for (x
= TYPE_FIELDS (t
); x
; x
= DECL_CHAIN (x
))
6854 if (TREE_CODE (x
) == USING_DECL
)
6856 tree fn
= strip_using_decl (x
);
6857 if (is_overloaded_fn (fn
))
6858 for (; fn
; fn
= OVL_NEXT (fn
))
6859 add_method (t
, OVL_CURRENT (fn
), x
);
6862 /* Remember current #pragma pack value. */
6863 TYPE_PRECISION (t
) = maximum_field_alignment
;
6865 /* Fix up any variants we've already built. */
6866 for (x
= TYPE_NEXT_VARIANT (t
); x
; x
= TYPE_NEXT_VARIANT (x
))
6868 TYPE_SIZE (x
) = TYPE_SIZE (t
);
6869 TYPE_SIZE_UNIT (x
) = TYPE_SIZE_UNIT (t
);
6870 TYPE_FIELDS (x
) = TYPE_FIELDS (t
);
6871 TYPE_METHODS (x
) = TYPE_METHODS (t
);
6875 finish_struct_1 (t
);
6877 if (is_std_init_list (t
))
6879 /* People keep complaining that the compiler crashes on an invalid
6880 definition of initializer_list, so I guess we should explicitly
6881 reject it. What the compiler internals care about is that it's a
6882 template and has a pointer field followed by an integer field. */
6884 if (processing_template_decl
)
6886 tree f
= next_initializable_field (TYPE_FIELDS (t
));
6887 if (f
&& TREE_CODE (TREE_TYPE (f
)) == POINTER_TYPE
)
6889 f
= next_initializable_field (DECL_CHAIN (f
));
6890 if (f
&& same_type_p (TREE_TYPE (f
), size_type_node
))
6895 fatal_error (input_location
,
6896 "definition of std::initializer_list does not match "
6897 "#include <initializer_list>");
6900 input_location
= saved_loc
;
6902 TYPE_BEING_DEFINED (t
) = 0;
6904 if (current_class_type
)
6907 error ("trying to finish struct, but kicked out due to previous parse errors");
6909 if (processing_template_decl
&& at_function_scope_p ()
6910 /* Lambdas are defined by the LAMBDA_EXPR. */
6911 && !LAMBDA_TYPE_P (t
))
6912 add_stmt (build_min (TAG_DEFN
, t
));
6917 /* Hash table to avoid endless recursion when handling references. */
6918 static hash_table
<nofree_ptr_hash
<tree_node
> > *fixed_type_or_null_ref_ht
;
6920 /* Return the dynamic type of INSTANCE, if known.
6921 Used to determine whether the virtual function table is needed
6924 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
6925 of our knowledge of its type. *NONNULL should be initialized
6926 before this function is called. */
6929 fixed_type_or_null (tree instance
, int *nonnull
, int *cdtorp
)
6931 #define RECUR(T) fixed_type_or_null((T), nonnull, cdtorp)
6933 switch (TREE_CODE (instance
))
6936 if (POINTER_TYPE_P (TREE_TYPE (instance
)))
6939 return RECUR (TREE_OPERAND (instance
, 0));
6942 /* This is a call to a constructor, hence it's never zero. */
6943 if (TREE_HAS_CONSTRUCTOR (instance
))
6947 return TREE_TYPE (instance
);
6952 /* This is a call to a constructor, hence it's never zero. */
6953 if (TREE_HAS_CONSTRUCTOR (instance
))
6957 return TREE_TYPE (instance
);
6959 return RECUR (TREE_OPERAND (instance
, 0));
6961 case POINTER_PLUS_EXPR
:
6964 if (TREE_CODE (TREE_OPERAND (instance
, 0)) == ADDR_EXPR
)
6965 return RECUR (TREE_OPERAND (instance
, 0));
6966 if (TREE_CODE (TREE_OPERAND (instance
, 1)) == INTEGER_CST
)
6967 /* Propagate nonnull. */
6968 return RECUR (TREE_OPERAND (instance
, 0));
6973 return RECUR (TREE_OPERAND (instance
, 0));
6976 instance
= TREE_OPERAND (instance
, 0);
6979 /* Just because we see an ADDR_EXPR doesn't mean we're dealing
6980 with a real object -- given &p->f, p can still be null. */
6981 tree t
= get_base_address (instance
);
6982 /* ??? Probably should check DECL_WEAK here. */
6983 if (t
&& DECL_P (t
))
6986 return RECUR (instance
);
6989 /* If this component is really a base class reference, then the field
6990 itself isn't definitive. */
6991 if (DECL_FIELD_IS_BASE (TREE_OPERAND (instance
, 1)))
6992 return RECUR (TREE_OPERAND (instance
, 0));
6993 return RECUR (TREE_OPERAND (instance
, 1));
6997 if (TREE_CODE (TREE_TYPE (instance
)) == ARRAY_TYPE
6998 && MAYBE_CLASS_TYPE_P (TREE_TYPE (TREE_TYPE (instance
))))
7002 return TREE_TYPE (TREE_TYPE (instance
));
7004 /* fall through... */
7008 if (MAYBE_CLASS_TYPE_P (TREE_TYPE (instance
)))
7012 return TREE_TYPE (instance
);
7014 else if (instance
== current_class_ptr
)
7019 /* if we're in a ctor or dtor, we know our type. If
7020 current_class_ptr is set but we aren't in a function, we're in
7021 an NSDMI (and therefore a constructor). */
7022 if (current_scope () != current_function_decl
7023 || (DECL_LANG_SPECIFIC (current_function_decl
)
7024 && (DECL_CONSTRUCTOR_P (current_function_decl
)
7025 || DECL_DESTRUCTOR_P (current_function_decl
))))
7029 return TREE_TYPE (TREE_TYPE (instance
));
7032 else if (TREE_CODE (TREE_TYPE (instance
)) == REFERENCE_TYPE
)
7034 /* We only need one hash table because it is always left empty. */
7035 if (!fixed_type_or_null_ref_ht
)
7036 fixed_type_or_null_ref_ht
7037 = new hash_table
<nofree_ptr_hash
<tree_node
> > (37);
7039 /* Reference variables should be references to objects. */
7043 /* Enter the INSTANCE in a table to prevent recursion; a
7044 variable's initializer may refer to the variable
7046 if (VAR_P (instance
)
7047 && DECL_INITIAL (instance
)
7048 && !type_dependent_expression_p_push (DECL_INITIAL (instance
))
7049 && !fixed_type_or_null_ref_ht
->find (instance
))
7054 slot
= fixed_type_or_null_ref_ht
->find_slot (instance
, INSERT
);
7056 type
= RECUR (DECL_INITIAL (instance
));
7057 fixed_type_or_null_ref_ht
->remove_elt (instance
);
7070 /* Return nonzero if the dynamic type of INSTANCE is known, and
7071 equivalent to the static type. We also handle the case where
7072 INSTANCE is really a pointer. Return negative if this is a
7073 ctor/dtor. There the dynamic type is known, but this might not be
7074 the most derived base of the original object, and hence virtual
7075 bases may not be laid out according to this type.
7077 Used to determine whether the virtual function table is needed
7080 *NONNULL is set iff INSTANCE can be known to be nonnull, regardless
7081 of our knowledge of its type. *NONNULL should be initialized
7082 before this function is called. */
7085 resolves_to_fixed_type_p (tree instance
, int* nonnull
)
7087 tree t
= TREE_TYPE (instance
);
7091 /* processing_template_decl can be false in a template if we're in
7092 instantiate_non_dependent_expr, but we still want to suppress
7094 if (in_template_function ())
7096 /* In a template we only care about the type of the result. */
7102 fixed
= fixed_type_or_null (instance
, nonnull
, &cdtorp
);
7103 if (fixed
== NULL_TREE
)
7105 if (POINTER_TYPE_P (t
))
7107 if (!same_type_ignoring_top_level_qualifiers_p (t
, fixed
))
7109 return cdtorp
? -1 : 1;
7114 init_class_processing (void)
7116 current_class_depth
= 0;
7117 current_class_stack_size
= 10;
7119 = XNEWVEC (struct class_stack_node
, current_class_stack_size
);
7120 vec_alloc (local_classes
, 8);
7121 sizeof_biggest_empty_class
= size_zero_node
;
7123 ridpointers
[(int) RID_PUBLIC
] = access_public_node
;
7124 ridpointers
[(int) RID_PRIVATE
] = access_private_node
;
7125 ridpointers
[(int) RID_PROTECTED
] = access_protected_node
;
7128 /* Restore the cached PREVIOUS_CLASS_LEVEL. */
7131 restore_class_cache (void)
7135 /* We are re-entering the same class we just left, so we don't
7136 have to search the whole inheritance matrix to find all the
7137 decls to bind again. Instead, we install the cached
7138 class_shadowed list and walk through it binding names. */
7139 push_binding_level (previous_class_level
);
7140 class_binding_level
= previous_class_level
;
7141 /* Restore IDENTIFIER_TYPE_VALUE. */
7142 for (type
= class_binding_level
->type_shadowed
;
7144 type
= TREE_CHAIN (type
))
7145 SET_IDENTIFIER_TYPE_VALUE (TREE_PURPOSE (type
), TREE_TYPE (type
));
7148 /* Set global variables CURRENT_CLASS_NAME and CURRENT_CLASS_TYPE as
7149 appropriate for TYPE.
7151 So that we may avoid calls to lookup_name, we cache the _TYPE
7152 nodes of local TYPE_DECLs in the TREE_TYPE field of the name.
7154 For multiple inheritance, we perform a two-pass depth-first search
7155 of the type lattice. */
7158 pushclass (tree type
)
7160 class_stack_node_t csn
;
7162 type
= TYPE_MAIN_VARIANT (type
);
7164 /* Make sure there is enough room for the new entry on the stack. */
7165 if (current_class_depth
+ 1 >= current_class_stack_size
)
7167 current_class_stack_size
*= 2;
7169 = XRESIZEVEC (struct class_stack_node
, current_class_stack
,
7170 current_class_stack_size
);
7173 /* Insert a new entry on the class stack. */
7174 csn
= current_class_stack
+ current_class_depth
;
7175 csn
->name
= current_class_name
;
7176 csn
->type
= current_class_type
;
7177 csn
->access
= current_access_specifier
;
7178 csn
->names_used
= 0;
7180 current_class_depth
++;
7182 /* Now set up the new type. */
7183 current_class_name
= TYPE_NAME (type
);
7184 if (TREE_CODE (current_class_name
) == TYPE_DECL
)
7185 current_class_name
= DECL_NAME (current_class_name
);
7186 current_class_type
= type
;
7188 /* By default, things in classes are private, while things in
7189 structures or unions are public. */
7190 current_access_specifier
= (CLASSTYPE_DECLARED_CLASS (type
)
7191 ? access_private_node
7192 : access_public_node
);
7194 if (previous_class_level
7195 && type
!= previous_class_level
->this_entity
7196 && current_class_depth
== 1)
7198 /* Forcibly remove any old class remnants. */
7199 invalidate_class_lookup_cache ();
7202 if (!previous_class_level
7203 || type
!= previous_class_level
->this_entity
7204 || current_class_depth
> 1)
7207 restore_class_cache ();
7210 /* When we exit a toplevel class scope, we save its binding level so
7211 that we can restore it quickly. Here, we've entered some other
7212 class, so we must invalidate our cache. */
7215 invalidate_class_lookup_cache (void)
7217 previous_class_level
= NULL
;
7220 /* Get out of the current class scope. If we were in a class scope
7221 previously, that is the one popped to. */
7228 current_class_depth
--;
7229 current_class_name
= current_class_stack
[current_class_depth
].name
;
7230 current_class_type
= current_class_stack
[current_class_depth
].type
;
7231 current_access_specifier
= current_class_stack
[current_class_depth
].access
;
7232 if (current_class_stack
[current_class_depth
].names_used
)
7233 splay_tree_delete (current_class_stack
[current_class_depth
].names_used
);
7236 /* Mark the top of the class stack as hidden. */
7239 push_class_stack (void)
7241 if (current_class_depth
)
7242 ++current_class_stack
[current_class_depth
- 1].hidden
;
7245 /* Mark the top of the class stack as un-hidden. */
7248 pop_class_stack (void)
7250 if (current_class_depth
)
7251 --current_class_stack
[current_class_depth
- 1].hidden
;
7254 /* Returns 1 if the class type currently being defined is either T or
7255 a nested type of T. */
7258 currently_open_class (tree t
)
7262 if (!CLASS_TYPE_P (t
))
7265 t
= TYPE_MAIN_VARIANT (t
);
7267 /* We start looking from 1 because entry 0 is from global scope,
7269 for (i
= current_class_depth
; i
> 0; --i
)
7272 if (i
== current_class_depth
)
7273 c
= current_class_type
;
7276 if (current_class_stack
[i
].hidden
)
7278 c
= current_class_stack
[i
].type
;
7282 if (same_type_p (c
, t
))
7288 /* If either current_class_type or one of its enclosing classes are derived
7289 from T, return the appropriate type. Used to determine how we found
7290 something via unqualified lookup. */
7293 currently_open_derived_class (tree t
)
7297 /* The bases of a dependent type are unknown. */
7298 if (dependent_type_p (t
))
7301 if (!current_class_type
)
7304 if (DERIVED_FROM_P (t
, current_class_type
))
7305 return current_class_type
;
7307 for (i
= current_class_depth
- 1; i
> 0; --i
)
7309 if (current_class_stack
[i
].hidden
)
7311 if (DERIVED_FROM_P (t
, current_class_stack
[i
].type
))
7312 return current_class_stack
[i
].type
;
7318 /* Return the outermost enclosing class type that is still open, or
7322 outermost_open_class (void)
7324 if (!current_class_type
)
7327 if (TYPE_BEING_DEFINED (current_class_type
))
7328 r
= current_class_type
;
7329 for (int i
= current_class_depth
- 1; i
> 0; --i
)
7331 if (current_class_stack
[i
].hidden
)
7333 tree t
= current_class_stack
[i
].type
;
7334 if (!TYPE_BEING_DEFINED (t
))
7341 /* Returns the innermost class type which is not a lambda closure type. */
7344 current_nonlambda_class_type (void)
7348 /* We start looking from 1 because entry 0 is from global scope,
7350 for (i
= current_class_depth
; i
> 0; --i
)
7353 if (i
== current_class_depth
)
7354 c
= current_class_type
;
7357 if (current_class_stack
[i
].hidden
)
7359 c
= current_class_stack
[i
].type
;
7363 if (!LAMBDA_TYPE_P (c
))
7369 /* When entering a class scope, all enclosing class scopes' names with
7370 static meaning (static variables, static functions, types and
7371 enumerators) have to be visible. This recursive function calls
7372 pushclass for all enclosing class contexts until global or a local
7373 scope is reached. TYPE is the enclosed class. */
7376 push_nested_class (tree type
)
7378 /* A namespace might be passed in error cases, like A::B:C. */
7379 if (type
== NULL_TREE
7380 || !CLASS_TYPE_P (type
))
7383 push_nested_class (DECL_CONTEXT (TYPE_MAIN_DECL (type
)));
7388 /* Undoes a push_nested_class call. */
7391 pop_nested_class (void)
7393 tree context
= DECL_CONTEXT (TYPE_MAIN_DECL (current_class_type
));
7396 if (context
&& CLASS_TYPE_P (context
))
7397 pop_nested_class ();
7400 /* Returns the number of extern "LANG" blocks we are nested within. */
7403 current_lang_depth (void)
7405 return vec_safe_length (current_lang_base
);
7408 /* Set global variables CURRENT_LANG_NAME to appropriate value
7409 so that behavior of name-mangling machinery is correct. */
7412 push_lang_context (tree name
)
7414 vec_safe_push (current_lang_base
, current_lang_name
);
7416 if (name
== lang_name_cplusplus
)
7418 current_lang_name
= name
;
7420 else if (name
== lang_name_java
)
7422 current_lang_name
= name
;
7423 /* DECL_IGNORED_P is initially set for these types, to avoid clutter.
7424 (See record_builtin_java_type in decl.c.) However, that causes
7425 incorrect debug entries if these types are actually used.
7426 So we re-enable debug output after extern "Java". */
7427 DECL_IGNORED_P (TYPE_NAME (java_byte_type_node
)) = 0;
7428 DECL_IGNORED_P (TYPE_NAME (java_short_type_node
)) = 0;
7429 DECL_IGNORED_P (TYPE_NAME (java_int_type_node
)) = 0;
7430 DECL_IGNORED_P (TYPE_NAME (java_long_type_node
)) = 0;
7431 DECL_IGNORED_P (TYPE_NAME (java_float_type_node
)) = 0;
7432 DECL_IGNORED_P (TYPE_NAME (java_double_type_node
)) = 0;
7433 DECL_IGNORED_P (TYPE_NAME (java_char_type_node
)) = 0;
7434 DECL_IGNORED_P (TYPE_NAME (java_boolean_type_node
)) = 0;
7436 else if (name
== lang_name_c
)
7438 current_lang_name
= name
;
7441 error ("language string %<\"%E\"%> not recognized", name
);
7444 /* Get out of the current language scope. */
7447 pop_lang_context (void)
7449 current_lang_name
= current_lang_base
->pop ();
7452 /* Type instantiation routines. */
7454 /* Given an OVERLOAD and a TARGET_TYPE, return the function that
7455 matches the TARGET_TYPE. If there is no satisfactory match, return
7456 error_mark_node, and issue an error & warning messages under
7457 control of FLAGS. Permit pointers to member function if FLAGS
7458 permits. If TEMPLATE_ONLY, the name of the overloaded function was
7459 a template-id, and EXPLICIT_TARGS are the explicitly provided
7462 If OVERLOAD is for one or more member functions, then ACCESS_PATH
7463 is the base path used to reference those member functions. If
7464 the address is resolved to a member function, access checks will be
7465 performed and errors issued if appropriate. */
7468 resolve_address_of_overloaded_function (tree target_type
,
7470 tsubst_flags_t complain
,
7472 tree explicit_targs
,
7475 /* Here's what the standard says:
7479 If the name is a function template, template argument deduction
7480 is done, and if the argument deduction succeeds, the deduced
7481 arguments are used to generate a single template function, which
7482 is added to the set of overloaded functions considered.
7484 Non-member functions and static member functions match targets of
7485 type "pointer-to-function" or "reference-to-function." Nonstatic
7486 member functions match targets of type "pointer-to-member
7487 function;" the function type of the pointer to member is used to
7488 select the member function from the set of overloaded member
7489 functions. If a nonstatic member function is selected, the
7490 reference to the overloaded function name is required to have the
7491 form of a pointer to member as described in 5.3.1.
7493 If more than one function is selected, any template functions in
7494 the set are eliminated if the set also contains a non-template
7495 function, and any given template function is eliminated if the
7496 set contains a second template function that is more specialized
7497 than the first according to the partial ordering rules 14.5.5.2.
7498 After such eliminations, if any, there shall remain exactly one
7499 selected function. */
7502 /* We store the matches in a TREE_LIST rooted here. The functions
7503 are the TREE_PURPOSE, not the TREE_VALUE, in this list, for easy
7504 interoperability with most_specialized_instantiation. */
7505 tree matches
= NULL_TREE
;
7507 tree target_fn_type
;
7509 /* By the time we get here, we should be seeing only real
7510 pointer-to-member types, not the internal POINTER_TYPE to
7511 METHOD_TYPE representation. */
7512 gcc_assert (!TYPE_PTR_P (target_type
)
7513 || TREE_CODE (TREE_TYPE (target_type
)) != METHOD_TYPE
);
7515 gcc_assert (is_overloaded_fn (overload
));
7517 /* Check that the TARGET_TYPE is reasonable. */
7518 if (TYPE_PTRFN_P (target_type
)
7519 || TYPE_REFFN_P (target_type
))
7521 else if (TYPE_PTRMEMFUNC_P (target_type
))
7522 /* This is OK, too. */
7524 else if (TREE_CODE (target_type
) == FUNCTION_TYPE
)
7525 /* This is OK, too. This comes from a conversion to reference
7527 target_type
= build_reference_type (target_type
);
7530 if (complain
& tf_error
)
7531 error ("cannot resolve overloaded function %qD based on"
7532 " conversion to type %qT",
7533 DECL_NAME (OVL_FUNCTION (overload
)), target_type
);
7534 return error_mark_node
;
7537 /* Non-member functions and static member functions match targets of type
7538 "pointer-to-function" or "reference-to-function." Nonstatic member
7539 functions match targets of type "pointer-to-member-function;" the
7540 function type of the pointer to member is used to select the member
7541 function from the set of overloaded member functions.
7543 So figure out the FUNCTION_TYPE that we want to match against. */
7544 target_fn_type
= static_fn_type (target_type
);
7546 /* If we can find a non-template function that matches, we can just
7547 use it. There's no point in generating template instantiations
7548 if we're just going to throw them out anyhow. But, of course, we
7549 can only do this when we don't *need* a template function. */
7554 for (fns
= overload
; fns
; fns
= OVL_NEXT (fns
))
7556 tree fn
= OVL_CURRENT (fns
);
7558 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
7559 /* We're not looking for templates just yet. */
7562 if ((TREE_CODE (TREE_TYPE (fn
)) == METHOD_TYPE
)
7564 /* We're looking for a non-static member, and this isn't
7565 one, or vice versa. */
7568 /* Ignore functions which haven't been explicitly
7570 if (DECL_ANTICIPATED (fn
))
7573 /* See if there's a match. */
7574 if (same_type_p (target_fn_type
, static_fn_type (fn
)))
7575 matches
= tree_cons (fn
, NULL_TREE
, matches
);
7579 /* Now, if we've already got a match (or matches), there's no need
7580 to proceed to the template functions. But, if we don't have a
7581 match we need to look at them, too. */
7584 tree target_arg_types
;
7585 tree target_ret_type
;
7588 unsigned int nargs
, ia
;
7591 target_arg_types
= TYPE_ARG_TYPES (target_fn_type
);
7592 target_ret_type
= TREE_TYPE (target_fn_type
);
7594 nargs
= list_length (target_arg_types
);
7595 args
= XALLOCAVEC (tree
, nargs
);
7596 for (arg
= target_arg_types
, ia
= 0;
7597 arg
!= NULL_TREE
&& arg
!= void_list_node
;
7598 arg
= TREE_CHAIN (arg
), ++ia
)
7599 args
[ia
] = TREE_VALUE (arg
);
7602 for (fns
= overload
; fns
; fns
= OVL_NEXT (fns
))
7604 tree fn
= OVL_CURRENT (fns
);
7608 if (TREE_CODE (fn
) != TEMPLATE_DECL
)
7609 /* We're only looking for templates. */
7612 if ((TREE_CODE (TREE_TYPE (fn
)) == METHOD_TYPE
)
7614 /* We're not looking for a non-static member, and this is
7615 one, or vice versa. */
7618 tree ret
= target_ret_type
;
7620 /* If the template has a deduced return type, don't expose it to
7621 template argument deduction. */
7622 if (undeduced_auto_decl (fn
))
7625 /* Try to do argument deduction. */
7626 targs
= make_tree_vec (DECL_NTPARMS (fn
));
7627 instantiation
= fn_type_unification (fn
, explicit_targs
, targs
, args
,
7629 DEDUCE_EXACT
, LOOKUP_NORMAL
,
7631 if (instantiation
== error_mark_node
)
7632 /* Instantiation failed. */
7635 /* And now force instantiation to do return type deduction. */
7636 if (undeduced_auto_decl (instantiation
))
7639 instantiate_decl (instantiation
, /*defer*/false, /*class*/false);
7642 require_deduced_type (instantiation
);
7645 /* See if there's a match. */
7646 if (same_type_p (target_fn_type
, static_fn_type (instantiation
)))
7647 matches
= tree_cons (instantiation
, fn
, matches
);
7650 /* Now, remove all but the most specialized of the matches. */
7653 tree match
= most_specialized_instantiation (matches
);
7655 if (match
!= error_mark_node
)
7656 matches
= tree_cons (TREE_PURPOSE (match
),
7662 /* Now we should have exactly one function in MATCHES. */
7663 if (matches
== NULL_TREE
)
7665 /* There were *no* matches. */
7666 if (complain
& tf_error
)
7668 error ("no matches converting function %qD to type %q#T",
7669 DECL_NAME (OVL_CURRENT (overload
)),
7672 print_candidates (overload
);
7674 return error_mark_node
;
7676 else if (TREE_CHAIN (matches
))
7678 /* There were too many matches. First check if they're all
7679 the same function. */
7680 tree match
= NULL_TREE
;
7682 fn
= TREE_PURPOSE (matches
);
7684 /* For multi-versioned functions, more than one match is just fine and
7685 decls_match will return false as they are different. */
7686 for (match
= TREE_CHAIN (matches
); match
; match
= TREE_CHAIN (match
))
7687 if (!decls_match (fn
, TREE_PURPOSE (match
))
7688 && !targetm
.target_option
.function_versions
7689 (fn
, TREE_PURPOSE (match
)))
7694 if (complain
& tf_error
)
7696 error ("converting overloaded function %qD to type %q#T is ambiguous",
7697 DECL_NAME (OVL_FUNCTION (overload
)),
7700 /* Since print_candidates expects the functions in the
7701 TREE_VALUE slot, we flip them here. */
7702 for (match
= matches
; match
; match
= TREE_CHAIN (match
))
7703 TREE_VALUE (match
) = TREE_PURPOSE (match
);
7705 print_candidates (matches
);
7708 return error_mark_node
;
7712 /* Good, exactly one match. Now, convert it to the correct type. */
7713 fn
= TREE_PURPOSE (matches
);
7715 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
)
7716 && !(complain
& tf_ptrmem_ok
) && !flag_ms_extensions
)
7718 static int explained
;
7720 if (!(complain
& tf_error
))
7721 return error_mark_node
;
7723 permerror (input_location
, "assuming pointer to member %qD", fn
);
7726 inform (input_location
, "(a pointer to member can only be formed with %<&%E%>)", fn
);
7731 /* If a pointer to a function that is multi-versioned is requested, the
7732 pointer to the dispatcher function is returned instead. This works
7733 well because indirectly calling the function will dispatch the right
7734 function version at run-time. */
7735 if (DECL_FUNCTION_VERSIONED (fn
))
7737 fn
= get_function_version_dispatcher (fn
);
7739 return error_mark_node
;
7740 /* Mark all the versions corresponding to the dispatcher as used. */
7741 if (!(complain
& tf_conv
))
7742 mark_versions_used (fn
);
7745 /* If we're doing overload resolution purely for the purpose of
7746 determining conversion sequences, we should not consider the
7747 function used. If this conversion sequence is selected, the
7748 function will be marked as used at this point. */
7749 if (!(complain
& tf_conv
))
7751 /* Make =delete work with SFINAE. */
7752 if (DECL_DELETED_FN (fn
) && !(complain
& tf_error
))
7753 return error_mark_node
;
7754 if (!mark_used (fn
, complain
) && !(complain
& tf_error
))
7755 return error_mark_node
;
7758 /* We could not check access to member functions when this
7759 expression was originally created since we did not know at that
7760 time to which function the expression referred. */
7761 if (DECL_FUNCTION_MEMBER_P (fn
))
7763 gcc_assert (access_path
);
7764 perform_or_defer_access_check (access_path
, fn
, fn
, complain
);
7767 if (TYPE_PTRFN_P (target_type
) || TYPE_PTRMEMFUNC_P (target_type
))
7768 return cp_build_addr_expr (fn
, complain
);
7771 /* The target must be a REFERENCE_TYPE. Above, cp_build_unary_op
7772 will mark the function as addressed, but here we must do it
7774 cxx_mark_addressable (fn
);
7780 /* This function will instantiate the type of the expression given in
7781 RHS to match the type of LHSTYPE. If errors exist, then return
7782 error_mark_node. COMPLAIN is a bit mask. If TF_ERROR is set, then
7783 we complain on errors. If we are not complaining, never modify rhs,
7784 as overload resolution wants to try many possible instantiations, in
7785 the hope that at least one will work.
7787 For non-recursive calls, LHSTYPE should be a function, pointer to
7788 function, or a pointer to member function. */
7791 instantiate_type (tree lhstype
, tree rhs
, tsubst_flags_t complain
)
7793 tsubst_flags_t complain_in
= complain
;
7794 tree access_path
= NULL_TREE
;
7796 complain
&= ~tf_ptrmem_ok
;
7798 if (lhstype
== unknown_type_node
)
7800 if (complain
& tf_error
)
7801 error ("not enough type information");
7802 return error_mark_node
;
7805 if (TREE_TYPE (rhs
) != NULL_TREE
&& ! (type_unknown_p (rhs
)))
7807 tree fntype
= non_reference (lhstype
);
7808 if (same_type_p (fntype
, TREE_TYPE (rhs
)))
7810 if (flag_ms_extensions
7811 && TYPE_PTRMEMFUNC_P (fntype
)
7812 && !TYPE_PTRMEMFUNC_P (TREE_TYPE (rhs
)))
7813 /* Microsoft allows `A::f' to be resolved to a
7814 pointer-to-member. */
7818 if (complain
& tf_error
)
7819 error ("cannot convert %qE from type %qT to type %qT",
7820 rhs
, TREE_TYPE (rhs
), fntype
);
7821 return error_mark_node
;
7825 if (BASELINK_P (rhs
))
7827 access_path
= BASELINK_ACCESS_BINFO (rhs
);
7828 rhs
= BASELINK_FUNCTIONS (rhs
);
7831 /* If we are in a template, and have a NON_DEPENDENT_EXPR, we cannot
7832 deduce any type information. */
7833 if (TREE_CODE (rhs
) == NON_DEPENDENT_EXPR
)
7835 if (complain
& tf_error
)
7836 error ("not enough type information");
7837 return error_mark_node
;
7840 /* There only a few kinds of expressions that may have a type
7841 dependent on overload resolution. */
7842 gcc_assert (TREE_CODE (rhs
) == ADDR_EXPR
7843 || TREE_CODE (rhs
) == COMPONENT_REF
7844 || is_overloaded_fn (rhs
)
7845 || (flag_ms_extensions
&& TREE_CODE (rhs
) == FUNCTION_DECL
));
7847 /* This should really only be used when attempting to distinguish
7848 what sort of a pointer to function we have. For now, any
7849 arithmetic operation which is not supported on pointers
7850 is rejected as an error. */
7852 switch (TREE_CODE (rhs
))
7856 tree member
= TREE_OPERAND (rhs
, 1);
7858 member
= instantiate_type (lhstype
, member
, complain
);
7859 if (member
!= error_mark_node
7860 && TREE_SIDE_EFFECTS (TREE_OPERAND (rhs
, 0)))
7861 /* Do not lose object's side effects. */
7862 return build2 (COMPOUND_EXPR
, TREE_TYPE (member
),
7863 TREE_OPERAND (rhs
, 0), member
);
7868 rhs
= TREE_OPERAND (rhs
, 1);
7869 if (BASELINK_P (rhs
))
7870 return instantiate_type (lhstype
, rhs
, complain_in
);
7872 /* This can happen if we are forming a pointer-to-member for a
7874 gcc_assert (TREE_CODE (rhs
) == TEMPLATE_ID_EXPR
);
7878 case TEMPLATE_ID_EXPR
:
7880 tree fns
= TREE_OPERAND (rhs
, 0);
7881 tree args
= TREE_OPERAND (rhs
, 1);
7884 resolve_address_of_overloaded_function (lhstype
, fns
, complain_in
,
7885 /*template_only=*/true,
7892 resolve_address_of_overloaded_function (lhstype
, rhs
, complain_in
,
7893 /*template_only=*/false,
7894 /*explicit_targs=*/NULL_TREE
,
7899 if (PTRMEM_OK_P (rhs
))
7900 complain
|= tf_ptrmem_ok
;
7902 return instantiate_type (lhstype
, TREE_OPERAND (rhs
, 0), complain
);
7906 return error_mark_node
;
7911 return error_mark_node
;
7914 /* Return the name of the virtual function pointer field
7915 (as an IDENTIFIER_NODE) for the given TYPE. Note that
7916 this may have to look back through base types to find the
7917 ultimate field name. (For single inheritance, these could
7918 all be the same name. Who knows for multiple inheritance). */
7921 get_vfield_name (tree type
)
7923 tree binfo
, base_binfo
;
7926 for (binfo
= TYPE_BINFO (type
);
7927 BINFO_N_BASE_BINFOS (binfo
);
7930 base_binfo
= BINFO_BASE_BINFO (binfo
, 0);
7932 if (BINFO_VIRTUAL_P (base_binfo
)
7933 || !TYPE_CONTAINS_VPTR_P (BINFO_TYPE (base_binfo
)))
7937 type
= BINFO_TYPE (binfo
);
7938 buf
= (char *) alloca (sizeof (VFIELD_NAME_FORMAT
)
7939 + TYPE_NAME_LENGTH (type
) + 2);
7940 sprintf (buf
, VFIELD_NAME_FORMAT
,
7941 IDENTIFIER_POINTER (constructor_name (type
)));
7942 return get_identifier (buf
);
7946 print_class_statistics (void)
7948 if (! GATHER_STATISTICS
)
7951 fprintf (stderr
, "convert_harshness = %d\n", n_convert_harshness
);
7952 fprintf (stderr
, "compute_conversion_costs = %d\n", n_compute_conversion_costs
);
7955 fprintf (stderr
, "vtables = %d; vtable searches = %d\n",
7956 n_vtables
, n_vtable_searches
);
7957 fprintf (stderr
, "vtable entries = %d; vtable elems = %d\n",
7958 n_vtable_entries
, n_vtable_elems
);
7962 /* Build a dummy reference to ourselves so Derived::Base (and A::A) works,
7963 according to [class]:
7964 The class-name is also inserted
7965 into the scope of the class itself. For purposes of access checking,
7966 the inserted class name is treated as if it were a public member name. */
7969 build_self_reference (void)
7971 tree name
= constructor_name (current_class_type
);
7972 tree value
= build_lang_decl (TYPE_DECL
, name
, current_class_type
);
7975 DECL_NONLOCAL (value
) = 1;
7976 DECL_CONTEXT (value
) = current_class_type
;
7977 DECL_ARTIFICIAL (value
) = 1;
7978 SET_DECL_SELF_REFERENCE_P (value
);
7979 set_underlying_type (value
);
7981 if (processing_template_decl
)
7982 value
= push_template_decl (value
);
7984 saved_cas
= current_access_specifier
;
7985 current_access_specifier
= access_public_node
;
7986 finish_member_declaration (value
);
7987 current_access_specifier
= saved_cas
;
7990 /* Returns 1 if TYPE contains only padding bytes. */
7993 is_empty_class (tree type
)
7995 if (type
== error_mark_node
)
7998 if (! CLASS_TYPE_P (type
))
8001 return CLASSTYPE_EMPTY_P (type
);
8004 /* Returns true if TYPE contains no actual data, just various
8005 possible combinations of empty classes and possibly a vptr. */
8008 is_really_empty_class (tree type
)
8010 if (CLASS_TYPE_P (type
))
8017 /* CLASSTYPE_EMPTY_P isn't set properly until the class is actually laid
8018 out, but we'd like to be able to check this before then. */
8019 if (COMPLETE_TYPE_P (type
) && is_empty_class (type
))
8022 for (binfo
= TYPE_BINFO (type
), i
= 0;
8023 BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
8024 if (!is_really_empty_class (BINFO_TYPE (base_binfo
)))
8026 for (field
= TYPE_FIELDS (type
); field
; field
= DECL_CHAIN (field
))
8027 if (TREE_CODE (field
) == FIELD_DECL
8028 && !DECL_ARTIFICIAL (field
)
8029 && !is_really_empty_class (TREE_TYPE (field
)))
8033 else if (TREE_CODE (type
) == ARRAY_TYPE
)
8034 return is_really_empty_class (TREE_TYPE (type
));
8038 /* Note that NAME was looked up while the current class was being
8039 defined and that the result of that lookup was DECL. */
8042 maybe_note_name_used_in_class (tree name
, tree decl
)
8044 splay_tree names_used
;
8046 /* If we're not defining a class, there's nothing to do. */
8047 if (!(innermost_scope_kind() == sk_class
8048 && TYPE_BEING_DEFINED (current_class_type
)
8049 && !LAMBDA_TYPE_P (current_class_type
)))
8052 /* If there's already a binding for this NAME, then we don't have
8053 anything to worry about. */
8054 if (lookup_member (current_class_type
, name
,
8055 /*protect=*/0, /*want_type=*/false, tf_warning_or_error
))
8058 if (!current_class_stack
[current_class_depth
- 1].names_used
)
8059 current_class_stack
[current_class_depth
- 1].names_used
8060 = splay_tree_new (splay_tree_compare_pointers
, 0, 0);
8061 names_used
= current_class_stack
[current_class_depth
- 1].names_used
;
8063 splay_tree_insert (names_used
,
8064 (splay_tree_key
) name
,
8065 (splay_tree_value
) decl
);
8068 /* Note that NAME was declared (as DECL) in the current class. Check
8069 to see that the declaration is valid. */
8072 note_name_declared_in_class (tree name
, tree decl
)
8074 splay_tree names_used
;
8077 /* Look to see if we ever used this name. */
8079 = current_class_stack
[current_class_depth
- 1].names_used
;
8082 /* The C language allows members to be declared with a type of the same
8083 name, and the C++ standard says this diagnostic is not required. So
8084 allow it in extern "C" blocks unless predantic is specified.
8085 Allow it in all cases if -ms-extensions is specified. */
8086 if ((!pedantic
&& current_lang_name
== lang_name_c
)
8087 || flag_ms_extensions
)
8089 n
= splay_tree_lookup (names_used
, (splay_tree_key
) name
);
8092 /* [basic.scope.class]
8094 A name N used in a class S shall refer to the same declaration
8095 in its context and when re-evaluated in the completed scope of
8097 permerror (input_location
, "declaration of %q#D", decl
);
8098 permerror (input_location
, "changes meaning of %qD from %q+#D",
8099 DECL_NAME (OVL_CURRENT (decl
)), (tree
) n
->value
);
8103 /* Returns the VAR_DECL for the complete vtable associated with BINFO.
8104 Secondary vtables are merged with primary vtables; this function
8105 will return the VAR_DECL for the primary vtable. */
8108 get_vtbl_decl_for_binfo (tree binfo
)
8112 decl
= BINFO_VTABLE (binfo
);
8113 if (decl
&& TREE_CODE (decl
) == POINTER_PLUS_EXPR
)
8115 gcc_assert (TREE_CODE (TREE_OPERAND (decl
, 0)) == ADDR_EXPR
);
8116 decl
= TREE_OPERAND (TREE_OPERAND (decl
, 0), 0);
8119 gcc_assert (VAR_P (decl
));
8124 /* Returns the binfo for the primary base of BINFO. If the resulting
8125 BINFO is a virtual base, and it is inherited elsewhere in the
8126 hierarchy, then the returned binfo might not be the primary base of
8127 BINFO in the complete object. Check BINFO_PRIMARY_P or
8128 BINFO_LOST_PRIMARY_P to be sure. */
8131 get_primary_binfo (tree binfo
)
8135 primary_base
= CLASSTYPE_PRIMARY_BINFO (BINFO_TYPE (binfo
));
8139 return copied_binfo (primary_base
, binfo
);
8142 /* If INDENTED_P is zero, indent to INDENT. Return nonzero. */
8145 maybe_indent_hierarchy (FILE * stream
, int indent
, int indented_p
)
8148 fprintf (stream
, "%*s", indent
, "");
8152 /* Dump the offsets of all the bases rooted at BINFO to STREAM.
8153 INDENT should be zero when called from the top level; it is
8154 incremented recursively. IGO indicates the next expected BINFO in
8155 inheritance graph ordering. */
8158 dump_class_hierarchy_r (FILE *stream
,
8168 indented
= maybe_indent_hierarchy (stream
, indent
, 0);
8169 fprintf (stream
, "%s (0x" HOST_WIDE_INT_PRINT_HEX
") ",
8170 type_as_string (BINFO_TYPE (binfo
), TFF_PLAIN_IDENTIFIER
),
8171 (HOST_WIDE_INT
) (uintptr_t) binfo
);
8174 fprintf (stream
, "alternative-path\n");
8177 igo
= TREE_CHAIN (binfo
);
8179 fprintf (stream
, HOST_WIDE_INT_PRINT_DEC
,
8180 tree_to_shwi (BINFO_OFFSET (binfo
)));
8181 if (is_empty_class (BINFO_TYPE (binfo
)))
8182 fprintf (stream
, " empty");
8183 else if (CLASSTYPE_NEARLY_EMPTY_P (BINFO_TYPE (binfo
)))
8184 fprintf (stream
, " nearly-empty");
8185 if (BINFO_VIRTUAL_P (binfo
))
8186 fprintf (stream
, " virtual");
8187 fprintf (stream
, "\n");
8190 if (BINFO_PRIMARY_P (binfo
))
8192 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
8193 fprintf (stream
, " primary-for %s (0x" HOST_WIDE_INT_PRINT_HEX
")",
8194 type_as_string (BINFO_TYPE (BINFO_INHERITANCE_CHAIN (binfo
)),
8195 TFF_PLAIN_IDENTIFIER
),
8196 (HOST_WIDE_INT
) (uintptr_t) BINFO_INHERITANCE_CHAIN (binfo
));
8198 if (BINFO_LOST_PRIMARY_P (binfo
))
8200 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
8201 fprintf (stream
, " lost-primary");
8204 fprintf (stream
, "\n");
8206 if (!(flags
& TDF_SLIM
))
8210 if (BINFO_SUBVTT_INDEX (binfo
))
8212 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
8213 fprintf (stream
, " subvttidx=%s",
8214 expr_as_string (BINFO_SUBVTT_INDEX (binfo
),
8215 TFF_PLAIN_IDENTIFIER
));
8217 if (BINFO_VPTR_INDEX (binfo
))
8219 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
8220 fprintf (stream
, " vptridx=%s",
8221 expr_as_string (BINFO_VPTR_INDEX (binfo
),
8222 TFF_PLAIN_IDENTIFIER
));
8224 if (BINFO_VPTR_FIELD (binfo
))
8226 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
8227 fprintf (stream
, " vbaseoffset=%s",
8228 expr_as_string (BINFO_VPTR_FIELD (binfo
),
8229 TFF_PLAIN_IDENTIFIER
));
8231 if (BINFO_VTABLE (binfo
))
8233 indented
= maybe_indent_hierarchy (stream
, indent
+ 3, indented
);
8234 fprintf (stream
, " vptr=%s",
8235 expr_as_string (BINFO_VTABLE (binfo
),
8236 TFF_PLAIN_IDENTIFIER
));
8240 fprintf (stream
, "\n");
8243 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); i
++)
8244 igo
= dump_class_hierarchy_r (stream
, flags
, base_binfo
, igo
, indent
+ 2);
8249 /* Dump the BINFO hierarchy for T. */
8252 dump_class_hierarchy_1 (FILE *stream
, int flags
, tree t
)
8254 fprintf (stream
, "Class %s\n", type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
8255 fprintf (stream
, " size=%lu align=%lu\n",
8256 (unsigned long)(tree_to_shwi (TYPE_SIZE (t
)) / BITS_PER_UNIT
),
8257 (unsigned long)(TYPE_ALIGN (t
) / BITS_PER_UNIT
));
8258 fprintf (stream
, " base size=%lu base align=%lu\n",
8259 (unsigned long)(tree_to_shwi (TYPE_SIZE (CLASSTYPE_AS_BASE (t
)))
8261 (unsigned long)(TYPE_ALIGN (CLASSTYPE_AS_BASE (t
))
8263 dump_class_hierarchy_r (stream
, flags
, TYPE_BINFO (t
), TYPE_BINFO (t
), 0);
8264 fprintf (stream
, "\n");
8267 /* Debug interface to hierarchy dumping. */
8270 debug_class (tree t
)
8272 dump_class_hierarchy_1 (stderr
, TDF_SLIM
, t
);
8276 dump_class_hierarchy (tree t
)
8279 FILE *stream
= get_dump_info (TDI_class
, &flags
);
8283 dump_class_hierarchy_1 (stream
, flags
, t
);
8288 dump_array (FILE * stream
, tree decl
)
8291 unsigned HOST_WIDE_INT ix
;
8293 tree size
= TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (decl
)));
8295 elt
= (tree_to_shwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (decl
))))
8297 fprintf (stream
, "%s:", decl_as_string (decl
, TFF_PLAIN_IDENTIFIER
));
8298 fprintf (stream
, " %s entries",
8299 expr_as_string (size_binop (PLUS_EXPR
, size
, size_one_node
),
8300 TFF_PLAIN_IDENTIFIER
));
8301 fprintf (stream
, "\n");
8303 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (DECL_INITIAL (decl
)),
8305 fprintf (stream
, "%-4ld %s\n", (long)(ix
* elt
),
8306 expr_as_string (value
, TFF_PLAIN_IDENTIFIER
));
8310 dump_vtable (tree t
, tree binfo
, tree vtable
)
8313 FILE *stream
= get_dump_info (TDI_class
, &flags
);
8318 if (!(flags
& TDF_SLIM
))
8320 int ctor_vtbl_p
= TYPE_BINFO (t
) != binfo
;
8322 fprintf (stream
, "%s for %s",
8323 ctor_vtbl_p
? "Construction vtable" : "Vtable",
8324 type_as_string (BINFO_TYPE (binfo
), TFF_PLAIN_IDENTIFIER
));
8327 if (!BINFO_VIRTUAL_P (binfo
))
8328 fprintf (stream
, " (0x" HOST_WIDE_INT_PRINT_HEX
" instance)",
8329 (HOST_WIDE_INT
) (uintptr_t) binfo
);
8330 fprintf (stream
, " in %s", type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
8332 fprintf (stream
, "\n");
8333 dump_array (stream
, vtable
);
8334 fprintf (stream
, "\n");
8339 dump_vtt (tree t
, tree vtt
)
8342 FILE *stream
= get_dump_info (TDI_class
, &flags
);
8347 if (!(flags
& TDF_SLIM
))
8349 fprintf (stream
, "VTT for %s\n",
8350 type_as_string (t
, TFF_PLAIN_IDENTIFIER
));
8351 dump_array (stream
, vtt
);
8352 fprintf (stream
, "\n");
8356 /* Dump a function or thunk and its thunkees. */
8359 dump_thunk (FILE *stream
, int indent
, tree thunk
)
8361 static const char spaces
[] = " ";
8362 tree name
= DECL_NAME (thunk
);
8365 fprintf (stream
, "%.*s%p %s %s", indent
, spaces
,
8367 !DECL_THUNK_P (thunk
) ? "function"
8368 : DECL_THIS_THUNK_P (thunk
) ? "this-thunk" : "covariant-thunk",
8369 name
? IDENTIFIER_POINTER (name
) : "<unset>");
8370 if (DECL_THUNK_P (thunk
))
8372 HOST_WIDE_INT fixed_adjust
= THUNK_FIXED_OFFSET (thunk
);
8373 tree virtual_adjust
= THUNK_VIRTUAL_OFFSET (thunk
);
8375 fprintf (stream
, " fixed=" HOST_WIDE_INT_PRINT_DEC
, fixed_adjust
);
8376 if (!virtual_adjust
)
8378 else if (DECL_THIS_THUNK_P (thunk
))
8379 fprintf (stream
, " vcall=" HOST_WIDE_INT_PRINT_DEC
,
8380 tree_to_shwi (virtual_adjust
));
8382 fprintf (stream
, " vbase=" HOST_WIDE_INT_PRINT_DEC
"(%s)",
8383 tree_to_shwi (BINFO_VPTR_FIELD (virtual_adjust
)),
8384 type_as_string (BINFO_TYPE (virtual_adjust
), TFF_SCOPE
));
8385 if (THUNK_ALIAS (thunk
))
8386 fprintf (stream
, " alias to %p", (void *)THUNK_ALIAS (thunk
));
8388 fprintf (stream
, "\n");
8389 for (thunks
= DECL_THUNKS (thunk
); thunks
; thunks
= TREE_CHAIN (thunks
))
8390 dump_thunk (stream
, indent
+ 2, thunks
);
8393 /* Dump the thunks for FN. */
8396 debug_thunks (tree fn
)
8398 dump_thunk (stderr
, 0, fn
);
8401 /* Virtual function table initialization. */
8403 /* Create all the necessary vtables for T and its base classes. */
8406 finish_vtbls (tree t
)
8409 vec
<constructor_elt
, va_gc
> *v
= NULL
;
8410 tree vtable
= BINFO_VTABLE (TYPE_BINFO (t
));
8412 /* We lay out the primary and secondary vtables in one contiguous
8413 vtable. The primary vtable is first, followed by the non-virtual
8414 secondary vtables in inheritance graph order. */
8415 accumulate_vtbl_inits (TYPE_BINFO (t
), TYPE_BINFO (t
), TYPE_BINFO (t
),
8418 /* Then come the virtual bases, also in inheritance graph order. */
8419 for (vbase
= TYPE_BINFO (t
); vbase
; vbase
= TREE_CHAIN (vbase
))
8421 if (!BINFO_VIRTUAL_P (vbase
))
8423 accumulate_vtbl_inits (vbase
, vbase
, TYPE_BINFO (t
), vtable
, t
, &v
);
8426 if (BINFO_VTABLE (TYPE_BINFO (t
)))
8427 initialize_vtable (TYPE_BINFO (t
), v
);
8430 /* Initialize the vtable for BINFO with the INITS. */
8433 initialize_vtable (tree binfo
, vec
<constructor_elt
, va_gc
> *inits
)
8437 layout_vtable_decl (binfo
, vec_safe_length (inits
));
8438 decl
= get_vtbl_decl_for_binfo (binfo
);
8439 initialize_artificial_var (decl
, inits
);
8440 dump_vtable (BINFO_TYPE (binfo
), binfo
, decl
);
8443 /* Build the VTT (virtual table table) for T.
8444 A class requires a VTT if it has virtual bases.
8447 1 - primary virtual pointer for complete object T
8448 2 - secondary VTTs for each direct non-virtual base of T which requires a
8450 3 - secondary virtual pointers for each direct or indirect base of T which
8451 has virtual bases or is reachable via a virtual path from T.
8452 4 - secondary VTTs for each direct or indirect virtual base of T.
8454 Secondary VTTs look like complete object VTTs without part 4. */
8462 vec
<constructor_elt
, va_gc
> *inits
;
8464 /* Build up the initializers for the VTT. */
8466 index
= size_zero_node
;
8467 build_vtt_inits (TYPE_BINFO (t
), t
, &inits
, &index
);
8469 /* If we didn't need a VTT, we're done. */
8473 /* Figure out the type of the VTT. */
8474 type
= build_array_of_n_type (const_ptr_type_node
,
8477 /* Now, build the VTT object itself. */
8478 vtt
= build_vtable (t
, mangle_vtt_for_type (t
), type
);
8479 initialize_artificial_var (vtt
, inits
);
8480 /* Add the VTT to the vtables list. */
8481 DECL_CHAIN (vtt
) = DECL_CHAIN (CLASSTYPE_VTABLES (t
));
8482 DECL_CHAIN (CLASSTYPE_VTABLES (t
)) = vtt
;
8487 /* When building a secondary VTT, BINFO_VTABLE is set to a TREE_LIST with
8488 PURPOSE the RTTI_BINFO, VALUE the real vtable pointer for this binfo,
8489 and CHAIN the vtable pointer for this binfo after construction is
8490 complete. VALUE can also be another BINFO, in which case we recurse. */
8493 binfo_ctor_vtable (tree binfo
)
8499 vt
= BINFO_VTABLE (binfo
);
8500 if (TREE_CODE (vt
) == TREE_LIST
)
8501 vt
= TREE_VALUE (vt
);
8502 if (TREE_CODE (vt
) == TREE_BINFO
)
8511 /* Data for secondary VTT initialization. */
8512 typedef struct secondary_vptr_vtt_init_data_s
8514 /* Is this the primary VTT? */
8517 /* Current index into the VTT. */
8520 /* Vector of initializers built up. */
8521 vec
<constructor_elt
, va_gc
> *inits
;
8523 /* The type being constructed by this secondary VTT. */
8524 tree type_being_constructed
;
8525 } secondary_vptr_vtt_init_data
;
8527 /* Recursively build the VTT-initializer for BINFO (which is in the
8528 hierarchy dominated by T). INITS points to the end of the initializer
8529 list to date. INDEX is the VTT index where the next element will be
8530 replaced. Iff BINFO is the binfo for T, this is the top level VTT (i.e.
8531 not a subvtt for some base of T). When that is so, we emit the sub-VTTs
8532 for virtual bases of T. When it is not so, we build the constructor
8533 vtables for the BINFO-in-T variant. */
8536 build_vtt_inits (tree binfo
, tree t
, vec
<constructor_elt
, va_gc
> **inits
,
8542 secondary_vptr_vtt_init_data data
;
8543 int top_level_p
= SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
);
8545 /* We only need VTTs for subobjects with virtual bases. */
8546 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)))
8549 /* We need to use a construction vtable if this is not the primary
8553 build_ctor_vtbl_group (binfo
, t
);
8555 /* Record the offset in the VTT where this sub-VTT can be found. */
8556 BINFO_SUBVTT_INDEX (binfo
) = *index
;
8559 /* Add the address of the primary vtable for the complete object. */
8560 init
= binfo_ctor_vtable (binfo
);
8561 CONSTRUCTOR_APPEND_ELT (*inits
, NULL_TREE
, init
);
8564 gcc_assert (!BINFO_VPTR_INDEX (binfo
));
8565 BINFO_VPTR_INDEX (binfo
) = *index
;
8567 *index
= size_binop (PLUS_EXPR
, *index
, TYPE_SIZE_UNIT (ptr_type_node
));
8569 /* Recursively add the secondary VTTs for non-virtual bases. */
8570 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, b
); ++i
)
8571 if (!BINFO_VIRTUAL_P (b
))
8572 build_vtt_inits (b
, t
, inits
, index
);
8574 /* Add secondary virtual pointers for all subobjects of BINFO with
8575 either virtual bases or reachable along a virtual path, except
8576 subobjects that are non-virtual primary bases. */
8577 data
.top_level_p
= top_level_p
;
8578 data
.index
= *index
;
8579 data
.inits
= *inits
;
8580 data
.type_being_constructed
= BINFO_TYPE (binfo
);
8582 dfs_walk_once (binfo
, dfs_build_secondary_vptr_vtt_inits
, NULL
, &data
);
8584 *index
= data
.index
;
8586 /* data.inits might have grown as we added secondary virtual pointers.
8587 Make sure our caller knows about the new vector. */
8588 *inits
= data
.inits
;
8591 /* Add the secondary VTTs for virtual bases in inheritance graph
8593 for (b
= TYPE_BINFO (BINFO_TYPE (binfo
)); b
; b
= TREE_CHAIN (b
))
8595 if (!BINFO_VIRTUAL_P (b
))
8598 build_vtt_inits (b
, t
, inits
, index
);
8601 /* Remove the ctor vtables we created. */
8602 dfs_walk_all (binfo
, dfs_fixup_binfo_vtbls
, NULL
, binfo
);
8605 /* Called from build_vtt_inits via dfs_walk. BINFO is the binfo for the base
8606 in most derived. DATA is a SECONDARY_VPTR_VTT_INIT_DATA structure. */
8609 dfs_build_secondary_vptr_vtt_inits (tree binfo
, void *data_
)
8611 secondary_vptr_vtt_init_data
*data
= (secondary_vptr_vtt_init_data
*)data_
;
8613 /* We don't care about bases that don't have vtables. */
8614 if (!TYPE_VFIELD (BINFO_TYPE (binfo
)))
8615 return dfs_skip_bases
;
8617 /* We're only interested in proper subobjects of the type being
8619 if (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), data
->type_being_constructed
))
8622 /* We're only interested in bases with virtual bases or reachable
8623 via a virtual path from the type being constructed. */
8624 if (!(CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
))
8625 || binfo_via_virtual (binfo
, data
->type_being_constructed
)))
8626 return dfs_skip_bases
;
8628 /* We're not interested in non-virtual primary bases. */
8629 if (!BINFO_VIRTUAL_P (binfo
) && BINFO_PRIMARY_P (binfo
))
8632 /* Record the index where this secondary vptr can be found. */
8633 if (data
->top_level_p
)
8635 gcc_assert (!BINFO_VPTR_INDEX (binfo
));
8636 BINFO_VPTR_INDEX (binfo
) = data
->index
;
8638 if (BINFO_VIRTUAL_P (binfo
))
8640 /* It's a primary virtual base, and this is not a
8641 construction vtable. Find the base this is primary of in
8642 the inheritance graph, and use that base's vtable
8644 while (BINFO_PRIMARY_P (binfo
))
8645 binfo
= BINFO_INHERITANCE_CHAIN (binfo
);
8649 /* Add the initializer for the secondary vptr itself. */
8650 CONSTRUCTOR_APPEND_ELT (data
->inits
, NULL_TREE
, binfo_ctor_vtable (binfo
));
8652 /* Advance the vtt index. */
8653 data
->index
= size_binop (PLUS_EXPR
, data
->index
,
8654 TYPE_SIZE_UNIT (ptr_type_node
));
8659 /* Called from build_vtt_inits via dfs_walk. After building
8660 constructor vtables and generating the sub-vtt from them, we need
8661 to restore the BINFO_VTABLES that were scribbled on. DATA is the
8662 binfo of the base whose sub vtt was generated. */
8665 dfs_fixup_binfo_vtbls (tree binfo
, void* data
)
8667 tree vtable
= BINFO_VTABLE (binfo
);
8669 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
8670 /* If this class has no vtable, none of its bases do. */
8671 return dfs_skip_bases
;
8674 /* This might be a primary base, so have no vtable in this
8678 /* If we scribbled the construction vtable vptr into BINFO, clear it
8680 if (TREE_CODE (vtable
) == TREE_LIST
8681 && (TREE_PURPOSE (vtable
) == (tree
) data
))
8682 BINFO_VTABLE (binfo
) = TREE_CHAIN (vtable
);
8687 /* Build the construction vtable group for BINFO which is in the
8688 hierarchy dominated by T. */
8691 build_ctor_vtbl_group (tree binfo
, tree t
)
8697 vec
<constructor_elt
, va_gc
> *v
;
8699 /* See if we've already created this construction vtable group. */
8700 id
= mangle_ctor_vtbl_for_type (t
, binfo
);
8701 if (IDENTIFIER_GLOBAL_VALUE (id
))
8704 gcc_assert (!SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
));
8705 /* Build a version of VTBL (with the wrong type) for use in
8706 constructing the addresses of secondary vtables in the
8707 construction vtable group. */
8708 vtbl
= build_vtable (t
, id
, ptr_type_node
);
8709 DECL_CONSTRUCTION_VTABLE_P (vtbl
) = 1;
8710 /* Don't export construction vtables from shared libraries. Even on
8711 targets that don't support hidden visibility, this tells
8712 can_refer_decl_in_current_unit_p not to assume that it's safe to
8713 access from a different compilation unit (bz 54314). */
8714 DECL_VISIBILITY (vtbl
) = VISIBILITY_HIDDEN
;
8715 DECL_VISIBILITY_SPECIFIED (vtbl
) = true;
8718 accumulate_vtbl_inits (binfo
, TYPE_BINFO (TREE_TYPE (binfo
)),
8719 binfo
, vtbl
, t
, &v
);
8721 /* Add the vtables for each of our virtual bases using the vbase in T
8723 for (vbase
= TYPE_BINFO (BINFO_TYPE (binfo
));
8725 vbase
= TREE_CHAIN (vbase
))
8729 if (!BINFO_VIRTUAL_P (vbase
))
8731 b
= copied_binfo (vbase
, binfo
);
8733 accumulate_vtbl_inits (b
, vbase
, binfo
, vtbl
, t
, &v
);
8736 /* Figure out the type of the construction vtable. */
8737 type
= build_array_of_n_type (vtable_entry_type
, v
->length ());
8739 TREE_TYPE (vtbl
) = type
;
8740 DECL_SIZE (vtbl
) = DECL_SIZE_UNIT (vtbl
) = NULL_TREE
;
8741 layout_decl (vtbl
, 0);
8743 /* Initialize the construction vtable. */
8744 CLASSTYPE_VTABLES (t
) = chainon (CLASSTYPE_VTABLES (t
), vtbl
);
8745 initialize_artificial_var (vtbl
, v
);
8746 dump_vtable (t
, binfo
, vtbl
);
8749 /* Add the vtbl initializers for BINFO (and its bases other than
8750 non-virtual primaries) to the list of INITS. BINFO is in the
8751 hierarchy dominated by T. RTTI_BINFO is the binfo within T of
8752 the constructor the vtbl inits should be accumulated for. (If this
8753 is the complete object vtbl then RTTI_BINFO will be TYPE_BINFO (T).)
8754 ORIG_BINFO is the binfo for this object within BINFO_TYPE (RTTI_BINFO).
8755 BINFO is the active base equivalent of ORIG_BINFO in the inheritance
8756 graph of T. Both BINFO and ORIG_BINFO will have the same BINFO_TYPE,
8757 but are not necessarily the same in terms of layout. */
8760 accumulate_vtbl_inits (tree binfo
,
8765 vec
<constructor_elt
, va_gc
> **inits
)
8769 int ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
8771 gcc_assert (SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), BINFO_TYPE (orig_binfo
)));
8773 /* If it doesn't have a vptr, we don't do anything. */
8774 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo
)))
8777 /* If we're building a construction vtable, we're not interested in
8778 subobjects that don't require construction vtables. */
8780 && !CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
))
8781 && !binfo_via_virtual (orig_binfo
, BINFO_TYPE (rtti_binfo
)))
8784 /* Build the initializers for the BINFO-in-T vtable. */
8785 dfs_accumulate_vtbl_inits (binfo
, orig_binfo
, rtti_binfo
, vtbl
, t
, inits
);
8787 /* Walk the BINFO and its bases. We walk in preorder so that as we
8788 initialize each vtable we can figure out at what offset the
8789 secondary vtable lies from the primary vtable. We can't use
8790 dfs_walk here because we need to iterate through bases of BINFO
8791 and RTTI_BINFO simultaneously. */
8792 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
8794 /* Skip virtual bases. */
8795 if (BINFO_VIRTUAL_P (base_binfo
))
8797 accumulate_vtbl_inits (base_binfo
,
8798 BINFO_BASE_BINFO (orig_binfo
, i
),
8799 rtti_binfo
, vtbl
, t
,
8804 /* Called from accumulate_vtbl_inits. Adds the initializers for the
8805 BINFO vtable to L. */
8808 dfs_accumulate_vtbl_inits (tree binfo
,
8813 vec
<constructor_elt
, va_gc
> **l
)
8815 tree vtbl
= NULL_TREE
;
8816 int ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
8820 && BINFO_VIRTUAL_P (orig_binfo
) && BINFO_PRIMARY_P (orig_binfo
))
8822 /* In the hierarchy of BINFO_TYPE (RTTI_BINFO), this is a
8823 primary virtual base. If it is not the same primary in
8824 the hierarchy of T, we'll need to generate a ctor vtable
8825 for it, to place at its location in T. If it is the same
8826 primary, we still need a VTT entry for the vtable, but it
8827 should point to the ctor vtable for the base it is a
8828 primary for within the sub-hierarchy of RTTI_BINFO.
8830 There are three possible cases:
8832 1) We are in the same place.
8833 2) We are a primary base within a lost primary virtual base of
8835 3) We are primary to something not a base of RTTI_BINFO. */
8838 tree last
= NULL_TREE
;
8840 /* First, look through the bases we are primary to for RTTI_BINFO
8841 or a virtual base. */
8843 while (BINFO_PRIMARY_P (b
))
8845 b
= BINFO_INHERITANCE_CHAIN (b
);
8847 if (BINFO_VIRTUAL_P (b
) || b
== rtti_binfo
)
8850 /* If we run out of primary links, keep looking down our
8851 inheritance chain; we might be an indirect primary. */
8852 for (b
= last
; b
; b
= BINFO_INHERITANCE_CHAIN (b
))
8853 if (BINFO_VIRTUAL_P (b
) || b
== rtti_binfo
)
8857 /* If we found RTTI_BINFO, this is case 1. If we found a virtual
8858 base B and it is a base of RTTI_BINFO, this is case 2. In
8859 either case, we share our vtable with LAST, i.e. the
8860 derived-most base within B of which we are a primary. */
8862 || (b
&& binfo_for_vbase (BINFO_TYPE (b
), BINFO_TYPE (rtti_binfo
))))
8863 /* Just set our BINFO_VTABLE to point to LAST, as we may not have
8864 set LAST's BINFO_VTABLE yet. We'll extract the actual vptr in
8865 binfo_ctor_vtable after everything's been set up. */
8868 /* Otherwise, this is case 3 and we get our own. */
8870 else if (!BINFO_NEW_VTABLE_MARKED (orig_binfo
))
8873 n_inits
= vec_safe_length (*l
);
8880 /* Add the initializer for this vtable. */
8881 build_vtbl_initializer (binfo
, orig_binfo
, t
, rtti_binfo
,
8882 &non_fn_entries
, l
);
8884 /* Figure out the position to which the VPTR should point. */
8885 vtbl
= build1 (ADDR_EXPR
, vtbl_ptr_type_node
, orig_vtbl
);
8886 index
= size_binop (MULT_EXPR
,
8887 TYPE_SIZE_UNIT (vtable_entry_type
),
8888 size_int (non_fn_entries
+ n_inits
));
8889 vtbl
= fold_build_pointer_plus (vtbl
, index
);
8893 /* For a construction vtable, we can't overwrite BINFO_VTABLE.
8894 So, we make a TREE_LIST. Later, dfs_fixup_binfo_vtbls will
8895 straighten this out. */
8896 BINFO_VTABLE (binfo
) = tree_cons (rtti_binfo
, vtbl
, BINFO_VTABLE (binfo
));
8897 else if (BINFO_PRIMARY_P (binfo
) && BINFO_VIRTUAL_P (binfo
))
8898 /* Throw away any unneeded intializers. */
8899 (*l
)->truncate (n_inits
);
8901 /* For an ordinary vtable, set BINFO_VTABLE. */
8902 BINFO_VTABLE (binfo
) = vtbl
;
8905 static GTY(()) tree abort_fndecl_addr
;
8907 /* Construct the initializer for BINFO's virtual function table. BINFO
8908 is part of the hierarchy dominated by T. If we're building a
8909 construction vtable, the ORIG_BINFO is the binfo we should use to
8910 find the actual function pointers to put in the vtable - but they
8911 can be overridden on the path to most-derived in the graph that
8912 ORIG_BINFO belongs. Otherwise,
8913 ORIG_BINFO should be the same as BINFO. The RTTI_BINFO is the
8914 BINFO that should be indicated by the RTTI information in the
8915 vtable; it will be a base class of T, rather than T itself, if we
8916 are building a construction vtable.
8918 The value returned is a TREE_LIST suitable for wrapping in a
8919 CONSTRUCTOR to use as the DECL_INITIAL for a vtable. If
8920 NON_FN_ENTRIES_P is not NULL, *NON_FN_ENTRIES_P is set to the
8921 number of non-function entries in the vtable.
8923 It might seem that this function should never be called with a
8924 BINFO for which BINFO_PRIMARY_P holds, the vtable for such a
8925 base is always subsumed by a derived class vtable. However, when
8926 we are building construction vtables, we do build vtables for
8927 primary bases; we need these while the primary base is being
8931 build_vtbl_initializer (tree binfo
,
8935 int* non_fn_entries_p
,
8936 vec
<constructor_elt
, va_gc
> **inits
)
8942 vec
<tree
, va_gc
> *vbases
;
8945 /* Initialize VID. */
8946 memset (&vid
, 0, sizeof (vid
));
8949 vid
.rtti_binfo
= rtti_binfo
;
8950 vid
.primary_vtbl_p
= SAME_BINFO_TYPE_P (BINFO_TYPE (binfo
), t
);
8951 vid
.ctor_vtbl_p
= !SAME_BINFO_TYPE_P (BINFO_TYPE (rtti_binfo
), t
);
8952 vid
.generate_vcall_entries
= true;
8953 /* The first vbase or vcall offset is at index -3 in the vtable. */
8954 vid
.index
= ssize_int(-3 * TARGET_VTABLE_DATA_ENTRY_DISTANCE
);
8956 /* Add entries to the vtable for RTTI. */
8957 build_rtti_vtbl_entries (binfo
, &vid
);
8959 /* Create an array for keeping track of the functions we've
8960 processed. When we see multiple functions with the same
8961 signature, we share the vcall offsets. */
8962 vec_alloc (vid
.fns
, 32);
8963 /* Add the vcall and vbase offset entries. */
8964 build_vcall_and_vbase_vtbl_entries (binfo
, &vid
);
8966 /* Clear BINFO_VTABLE_PATH_MARKED; it's set by
8967 build_vbase_offset_vtbl_entries. */
8968 for (vbases
= CLASSTYPE_VBASECLASSES (t
), ix
= 0;
8969 vec_safe_iterate (vbases
, ix
, &vbinfo
); ix
++)
8970 BINFO_VTABLE_PATH_MARKED (vbinfo
) = 0;
8972 /* If the target requires padding between data entries, add that now. */
8973 if (TARGET_VTABLE_DATA_ENTRY_DISTANCE
> 1)
8975 int n_entries
= vec_safe_length (vid
.inits
);
8977 vec_safe_grow (vid
.inits
, TARGET_VTABLE_DATA_ENTRY_DISTANCE
* n_entries
);
8979 /* Move data entries into their new positions and add padding
8980 after the new positions. Iterate backwards so we don't
8981 overwrite entries that we would need to process later. */
8982 for (ix
= n_entries
- 1;
8983 vid
.inits
->iterate (ix
, &e
);
8987 int new_position
= (TARGET_VTABLE_DATA_ENTRY_DISTANCE
* ix
8988 + (TARGET_VTABLE_DATA_ENTRY_DISTANCE
- 1));
8990 (*vid
.inits
)[new_position
] = *e
;
8992 for (j
= 1; j
< TARGET_VTABLE_DATA_ENTRY_DISTANCE
; ++j
)
8994 constructor_elt
*f
= &(*vid
.inits
)[new_position
- j
];
8995 f
->index
= NULL_TREE
;
8996 f
->value
= build1 (NOP_EXPR
, vtable_entry_type
,
9002 if (non_fn_entries_p
)
9003 *non_fn_entries_p
= vec_safe_length (vid
.inits
);
9005 /* The initializers for virtual functions were built up in reverse
9006 order. Straighten them out and add them to the running list in one
9008 jx
= vec_safe_length (*inits
);
9009 vec_safe_grow (*inits
, jx
+ vid
.inits
->length ());
9011 for (ix
= vid
.inits
->length () - 1;
9012 vid
.inits
->iterate (ix
, &e
);
9016 /* Go through all the ordinary virtual functions, building up
9018 for (v
= BINFO_VIRTUALS (orig_binfo
); v
; v
= TREE_CHAIN (v
))
9022 tree fn
, fn_original
;
9023 tree init
= NULL_TREE
;
9027 if (DECL_THUNK_P (fn
))
9029 if (!DECL_NAME (fn
))
9031 if (THUNK_ALIAS (fn
))
9033 fn
= THUNK_ALIAS (fn
);
9036 fn_original
= THUNK_TARGET (fn
);
9039 /* If the only definition of this function signature along our
9040 primary base chain is from a lost primary, this vtable slot will
9041 never be used, so just zero it out. This is important to avoid
9042 requiring extra thunks which cannot be generated with the function.
9044 We first check this in update_vtable_entry_for_fn, so we handle
9045 restored primary bases properly; we also need to do it here so we
9046 zero out unused slots in ctor vtables, rather than filling them
9047 with erroneous values (though harmless, apart from relocation
9049 if (BV_LOST_PRIMARY (v
))
9050 init
= size_zero_node
;
9054 /* Pull the offset for `this', and the function to call, out of
9056 delta
= BV_DELTA (v
);
9057 vcall_index
= BV_VCALL_INDEX (v
);
9059 gcc_assert (TREE_CODE (delta
) == INTEGER_CST
);
9060 gcc_assert (TREE_CODE (fn
) == FUNCTION_DECL
);
9062 /* You can't call an abstract virtual function; it's abstract.
9063 So, we replace these functions with __pure_virtual. */
9064 if (DECL_PURE_VIRTUAL_P (fn_original
))
9067 if (!TARGET_VTABLE_USES_DESCRIPTORS
)
9069 if (abort_fndecl_addr
== NULL
)
9071 = fold_convert (vfunc_ptr_type_node
,
9072 build_fold_addr_expr (fn
));
9073 init
= abort_fndecl_addr
;
9076 /* Likewise for deleted virtuals. */
9077 else if (DECL_DELETED_FN (fn_original
))
9079 fn
= get_identifier ("__cxa_deleted_virtual");
9080 if (!get_global_value_if_present (fn
, &fn
))
9081 fn
= push_library_fn (fn
, (build_function_type_list
9082 (void_type_node
, NULL_TREE
)),
9083 NULL_TREE
, ECF_NORETURN
);
9084 if (!TARGET_VTABLE_USES_DESCRIPTORS
)
9085 init
= fold_convert (vfunc_ptr_type_node
,
9086 build_fold_addr_expr (fn
));
9090 if (!integer_zerop (delta
) || vcall_index
)
9092 fn
= make_thunk (fn
, /*this_adjusting=*/1, delta
, vcall_index
);
9093 if (!DECL_NAME (fn
))
9096 /* Take the address of the function, considering it to be of an
9097 appropriate generic type. */
9098 if (!TARGET_VTABLE_USES_DESCRIPTORS
)
9099 init
= fold_convert (vfunc_ptr_type_node
,
9100 build_fold_addr_expr (fn
));
9101 /* Don't refer to a virtual destructor from a constructor
9102 vtable or a vtable for an abstract class, since destroying
9103 an object under construction is undefined behavior and we
9104 don't want it to be considered a candidate for speculative
9105 devirtualization. But do create the thunk for ABI
9107 if (DECL_DESTRUCTOR_P (fn_original
)
9108 && (CLASSTYPE_PURE_VIRTUALS (DECL_CONTEXT (fn_original
))
9109 || orig_binfo
!= binfo
))
9110 init
= size_zero_node
;
9114 /* And add it to the chain of initializers. */
9115 if (TARGET_VTABLE_USES_DESCRIPTORS
)
9118 if (init
== size_zero_node
)
9119 for (i
= 0; i
< TARGET_VTABLE_USES_DESCRIPTORS
; ++i
)
9120 CONSTRUCTOR_APPEND_ELT (*inits
, NULL_TREE
, init
);
9122 for (i
= 0; i
< TARGET_VTABLE_USES_DESCRIPTORS
; ++i
)
9124 tree fdesc
= build2 (FDESC_EXPR
, vfunc_ptr_type_node
,
9125 fn
, build_int_cst (NULL_TREE
, i
));
9126 TREE_CONSTANT (fdesc
) = 1;
9128 CONSTRUCTOR_APPEND_ELT (*inits
, NULL_TREE
, fdesc
);
9132 CONSTRUCTOR_APPEND_ELT (*inits
, NULL_TREE
, init
);
9136 /* Adds to vid->inits the initializers for the vbase and vcall
9137 offsets in BINFO, which is in the hierarchy dominated by T. */
9140 build_vcall_and_vbase_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
9144 /* If this is a derived class, we must first create entries
9145 corresponding to the primary base class. */
9146 b
= get_primary_binfo (binfo
);
9148 build_vcall_and_vbase_vtbl_entries (b
, vid
);
9150 /* Add the vbase entries for this base. */
9151 build_vbase_offset_vtbl_entries (binfo
, vid
);
9152 /* Add the vcall entries for this base. */
9153 build_vcall_offset_vtbl_entries (binfo
, vid
);
9156 /* Returns the initializers for the vbase offset entries in the vtable
9157 for BINFO (which is part of the class hierarchy dominated by T), in
9158 reverse order. VBASE_OFFSET_INDEX gives the vtable index
9159 where the next vbase offset will go. */
9162 build_vbase_offset_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
9166 tree non_primary_binfo
;
9168 /* If there are no virtual baseclasses, then there is nothing to
9170 if (!CLASSTYPE_VBASECLASSES (BINFO_TYPE (binfo
)))
9175 /* We might be a primary base class. Go up the inheritance hierarchy
9176 until we find the most derived class of which we are a primary base:
9177 it is the offset of that which we need to use. */
9178 non_primary_binfo
= binfo
;
9179 while (BINFO_INHERITANCE_CHAIN (non_primary_binfo
))
9183 /* If we have reached a virtual base, then it must be a primary
9184 base (possibly multi-level) of vid->binfo, or we wouldn't
9185 have called build_vcall_and_vbase_vtbl_entries for it. But it
9186 might be a lost primary, so just skip down to vid->binfo. */
9187 if (BINFO_VIRTUAL_P (non_primary_binfo
))
9189 non_primary_binfo
= vid
->binfo
;
9193 b
= BINFO_INHERITANCE_CHAIN (non_primary_binfo
);
9194 if (get_primary_binfo (b
) != non_primary_binfo
)
9196 non_primary_binfo
= b
;
9199 /* Go through the virtual bases, adding the offsets. */
9200 for (vbase
= TYPE_BINFO (BINFO_TYPE (binfo
));
9202 vbase
= TREE_CHAIN (vbase
))
9207 if (!BINFO_VIRTUAL_P (vbase
))
9210 /* Find the instance of this virtual base in the complete
9212 b
= copied_binfo (vbase
, binfo
);
9214 /* If we've already got an offset for this virtual base, we
9215 don't need another one. */
9216 if (BINFO_VTABLE_PATH_MARKED (b
))
9218 BINFO_VTABLE_PATH_MARKED (b
) = 1;
9220 /* Figure out where we can find this vbase offset. */
9221 delta
= size_binop (MULT_EXPR
,
9224 TYPE_SIZE_UNIT (vtable_entry_type
)));
9225 if (vid
->primary_vtbl_p
)
9226 BINFO_VPTR_FIELD (b
) = delta
;
9228 if (binfo
!= TYPE_BINFO (t
))
9229 /* The vbase offset had better be the same. */
9230 gcc_assert (tree_int_cst_equal (delta
, BINFO_VPTR_FIELD (vbase
)));
9232 /* The next vbase will come at a more negative offset. */
9233 vid
->index
= size_binop (MINUS_EXPR
, vid
->index
,
9234 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE
));
9236 /* The initializer is the delta from BINFO to this virtual base.
9237 The vbase offsets go in reverse inheritance-graph order, and
9238 we are walking in inheritance graph order so these end up in
9240 delta
= size_diffop_loc (input_location
,
9241 BINFO_OFFSET (b
), BINFO_OFFSET (non_primary_binfo
));
9243 CONSTRUCTOR_APPEND_ELT (vid
->inits
, NULL_TREE
,
9244 fold_build1_loc (input_location
, NOP_EXPR
,
9245 vtable_entry_type
, delta
));
9249 /* Adds the initializers for the vcall offset entries in the vtable
9250 for BINFO (which is part of the class hierarchy dominated by VID->DERIVED)
9254 build_vcall_offset_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
9256 /* We only need these entries if this base is a virtual base. We
9257 compute the indices -- but do not add to the vtable -- when
9258 building the main vtable for a class. */
9259 if (binfo
== TYPE_BINFO (vid
->derived
)
9260 || (BINFO_VIRTUAL_P (binfo
)
9261 /* If BINFO is RTTI_BINFO, then (since BINFO does not
9262 correspond to VID->DERIVED), we are building a primary
9263 construction virtual table. Since this is a primary
9264 virtual table, we do not need the vcall offsets for
9266 && binfo
!= vid
->rtti_binfo
))
9268 /* We need a vcall offset for each of the virtual functions in this
9269 vtable. For example:
9271 class A { virtual void f (); };
9272 class B1 : virtual public A { virtual void f (); };
9273 class B2 : virtual public A { virtual void f (); };
9274 class C: public B1, public B2 { virtual void f (); };
9276 A C object has a primary base of B1, which has a primary base of A. A
9277 C also has a secondary base of B2, which no longer has a primary base
9278 of A. So the B2-in-C construction vtable needs a secondary vtable for
9279 A, which will adjust the A* to a B2* to call f. We have no way of
9280 knowing what (or even whether) this offset will be when we define B2,
9281 so we store this "vcall offset" in the A sub-vtable and look it up in
9282 a "virtual thunk" for B2::f.
9284 We need entries for all the functions in our primary vtable and
9285 in our non-virtual bases' secondary vtables. */
9287 /* If we are just computing the vcall indices -- but do not need
9288 the actual entries -- not that. */
9289 if (!BINFO_VIRTUAL_P (binfo
))
9290 vid
->generate_vcall_entries
= false;
9291 /* Now, walk through the non-virtual bases, adding vcall offsets. */
9292 add_vcall_offset_vtbl_entries_r (binfo
, vid
);
9296 /* Build vcall offsets, starting with those for BINFO. */
9299 add_vcall_offset_vtbl_entries_r (tree binfo
, vtbl_init_data
* vid
)
9305 /* Don't walk into virtual bases -- except, of course, for the
9306 virtual base for which we are building vcall offsets. Any
9307 primary virtual base will have already had its offsets generated
9308 through the recursion in build_vcall_and_vbase_vtbl_entries. */
9309 if (BINFO_VIRTUAL_P (binfo
) && vid
->vbase
!= binfo
)
9312 /* If BINFO has a primary base, process it first. */
9313 primary_binfo
= get_primary_binfo (binfo
);
9315 add_vcall_offset_vtbl_entries_r (primary_binfo
, vid
);
9317 /* Add BINFO itself to the list. */
9318 add_vcall_offset_vtbl_entries_1 (binfo
, vid
);
9320 /* Scan the non-primary bases of BINFO. */
9321 for (i
= 0; BINFO_BASE_ITERATE (binfo
, i
, base_binfo
); ++i
)
9322 if (base_binfo
!= primary_binfo
)
9323 add_vcall_offset_vtbl_entries_r (base_binfo
, vid
);
9326 /* Called from build_vcall_offset_vtbl_entries_r. */
9329 add_vcall_offset_vtbl_entries_1 (tree binfo
, vtbl_init_data
* vid
)
9331 /* Make entries for the rest of the virtuals. */
9334 /* The ABI requires that the methods be processed in declaration
9336 for (orig_fn
= TYPE_METHODS (BINFO_TYPE (binfo
));
9338 orig_fn
= DECL_CHAIN (orig_fn
))
9339 if (TREE_CODE (orig_fn
) == FUNCTION_DECL
&& DECL_VINDEX (orig_fn
))
9340 add_vcall_offset (orig_fn
, binfo
, vid
);
9343 /* Add a vcall offset entry for ORIG_FN to the vtable. */
9346 add_vcall_offset (tree orig_fn
, tree binfo
, vtbl_init_data
*vid
)
9352 /* If there is already an entry for a function with the same
9353 signature as FN, then we do not need a second vcall offset.
9354 Check the list of functions already present in the derived
9356 FOR_EACH_VEC_SAFE_ELT (vid
->fns
, i
, derived_entry
)
9358 if (same_signature_p (derived_entry
, orig_fn
)
9359 /* We only use one vcall offset for virtual destructors,
9360 even though there are two virtual table entries. */
9361 || (DECL_DESTRUCTOR_P (derived_entry
)
9362 && DECL_DESTRUCTOR_P (orig_fn
)))
9366 /* If we are building these vcall offsets as part of building
9367 the vtable for the most derived class, remember the vcall
9369 if (vid
->binfo
== TYPE_BINFO (vid
->derived
))
9371 tree_pair_s elt
= {orig_fn
, vid
->index
};
9372 vec_safe_push (CLASSTYPE_VCALL_INDICES (vid
->derived
), elt
);
9375 /* The next vcall offset will be found at a more negative
9377 vid
->index
= size_binop (MINUS_EXPR
, vid
->index
,
9378 ssize_int (TARGET_VTABLE_DATA_ENTRY_DISTANCE
));
9380 /* Keep track of this function. */
9381 vec_safe_push (vid
->fns
, orig_fn
);
9383 if (vid
->generate_vcall_entries
)
9388 /* Find the overriding function. */
9389 fn
= find_final_overrider (vid
->rtti_binfo
, binfo
, orig_fn
);
9390 if (fn
== error_mark_node
)
9391 vcall_offset
= build_zero_cst (vtable_entry_type
);
9394 base
= TREE_VALUE (fn
);
9396 /* The vbase we're working on is a primary base of
9397 vid->binfo. But it might be a lost primary, so its
9398 BINFO_OFFSET might be wrong, so we just use the
9399 BINFO_OFFSET from vid->binfo. */
9400 vcall_offset
= size_diffop_loc (input_location
,
9401 BINFO_OFFSET (base
),
9402 BINFO_OFFSET (vid
->binfo
));
9403 vcall_offset
= fold_build1_loc (input_location
,
9404 NOP_EXPR
, vtable_entry_type
,
9407 /* Add the initializer to the vtable. */
9408 CONSTRUCTOR_APPEND_ELT (vid
->inits
, NULL_TREE
, vcall_offset
);
9412 /* Return vtbl initializers for the RTTI entries corresponding to the
9413 BINFO's vtable. The RTTI entries should indicate the object given
9414 by VID->rtti_binfo. */
9417 build_rtti_vtbl_entries (tree binfo
, vtbl_init_data
* vid
)
9425 t
= BINFO_TYPE (vid
->rtti_binfo
);
9427 /* To find the complete object, we will first convert to our most
9428 primary base, and then add the offset in the vtbl to that value. */
9430 while (CLASSTYPE_HAS_PRIMARY_BASE_P (BINFO_TYPE (b
))
9431 && !BINFO_LOST_PRIMARY_P (b
))
9435 primary_base
= get_primary_binfo (b
);
9436 gcc_assert (BINFO_PRIMARY_P (primary_base
)
9437 && BINFO_INHERITANCE_CHAIN (primary_base
) == b
);
9440 offset
= size_diffop_loc (input_location
,
9441 BINFO_OFFSET (vid
->rtti_binfo
), BINFO_OFFSET (b
));
9443 /* The second entry is the address of the typeinfo object. */
9445 decl
= build_address (get_tinfo_decl (t
));
9447 decl
= integer_zero_node
;
9449 /* Convert the declaration to a type that can be stored in the
9451 init
= build_nop (vfunc_ptr_type_node
, decl
);
9452 CONSTRUCTOR_APPEND_ELT (vid
->inits
, NULL_TREE
, init
);
9454 /* Add the offset-to-top entry. It comes earlier in the vtable than
9455 the typeinfo entry. Convert the offset to look like a
9456 function pointer, so that we can put it in the vtable. */
9457 init
= build_nop (vfunc_ptr_type_node
, offset
);
9458 CONSTRUCTOR_APPEND_ELT (vid
->inits
, NULL_TREE
, init
);
9461 /* TRUE iff TYPE is uniquely derived from PARENT. Ignores
9465 uniquely_derived_from_p (tree parent
, tree type
)
9467 tree base
= lookup_base (type
, parent
, ba_unique
, NULL
, tf_none
);
9468 return base
&& base
!= error_mark_node
;
9471 /* TRUE iff TYPE is publicly & uniquely derived from PARENT. */
9474 publicly_uniquely_derived_p (tree parent
, tree type
)
9476 tree base
= lookup_base (type
, parent
, ba_ignore_scope
| ba_check
,
9478 return base
&& base
!= error_mark_node
;
9481 /* CTX1 and CTX2 are declaration contexts. Return the innermost common
9482 class between them, if any. */
9485 common_enclosing_class (tree ctx1
, tree ctx2
)
9487 if (!TYPE_P (ctx1
) || !TYPE_P (ctx2
))
9489 gcc_assert (ctx1
== TYPE_MAIN_VARIANT (ctx1
)
9490 && ctx2
== TYPE_MAIN_VARIANT (ctx2
));
9493 for (tree t
= ctx1
; TYPE_P (t
); t
= TYPE_CONTEXT (t
))
9494 TYPE_MARKED_P (t
) = true;
9495 tree found
= NULL_TREE
;
9496 for (tree t
= ctx2
; TYPE_P (t
); t
= TYPE_CONTEXT (t
))
9497 if (TYPE_MARKED_P (t
))
9502 for (tree t
= ctx1
; TYPE_P (t
); t
= TYPE_CONTEXT (t
))
9503 TYPE_MARKED_P (t
) = false;
9507 #include "gt-cp-class.h"