[fold-const] Fix native_encode_real for HFmode constants
[official-gcc.git] / gcc / fold-const.c
blob65c75f639315d620eddfef3d8362b4902d28440a
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
43 #include "config.h"
44 #include "system.h"
45 #include "coretypes.h"
46 #include "backend.h"
47 #include "target.h"
48 #include "rtl.h"
49 #include "tree.h"
50 #include "gimple.h"
51 #include "predict.h"
52 #include "tm_p.h"
53 #include "tree-ssa-operands.h"
54 #include "optabs-query.h"
55 #include "cgraph.h"
56 #include "diagnostic-core.h"
57 #include "flags.h"
58 #include "alias.h"
59 #include "fold-const.h"
60 #include "fold-const-call.h"
61 #include "stor-layout.h"
62 #include "calls.h"
63 #include "tree-iterator.h"
64 #include "expr.h"
65 #include "intl.h"
66 #include "langhooks.h"
67 #include "tree-eh.h"
68 #include "gimplify.h"
69 #include "tree-dfa.h"
70 #include "builtins.h"
71 #include "generic-match.h"
72 #include "gimple-fold.h"
73 #include "params.h"
74 #include "tree-into-ssa.h"
75 #include "md5.h"
76 #include "case-cfn-macros.h"
77 #include "stringpool.h"
78 #include "tree-vrp.h"
79 #include "tree-ssanames.h"
80 #include "selftest.h"
82 #ifndef LOAD_EXTEND_OP
83 #define LOAD_EXTEND_OP(M) UNKNOWN
84 #endif
86 /* Nonzero if we are folding constants inside an initializer; zero
87 otherwise. */
88 int folding_initializer = 0;
90 /* The following constants represent a bit based encoding of GCC's
91 comparison operators. This encoding simplifies transformations
92 on relational comparison operators, such as AND and OR. */
93 enum comparison_code {
94 COMPCODE_FALSE = 0,
95 COMPCODE_LT = 1,
96 COMPCODE_EQ = 2,
97 COMPCODE_LE = 3,
98 COMPCODE_GT = 4,
99 COMPCODE_LTGT = 5,
100 COMPCODE_GE = 6,
101 COMPCODE_ORD = 7,
102 COMPCODE_UNORD = 8,
103 COMPCODE_UNLT = 9,
104 COMPCODE_UNEQ = 10,
105 COMPCODE_UNLE = 11,
106 COMPCODE_UNGT = 12,
107 COMPCODE_NE = 13,
108 COMPCODE_UNGE = 14,
109 COMPCODE_TRUE = 15
112 static bool negate_expr_p (tree);
113 static tree negate_expr (tree);
114 static tree split_tree (location_t, tree, tree, enum tree_code,
115 tree *, tree *, tree *, int);
116 static tree associate_trees (location_t, tree, tree, enum tree_code, tree);
117 static enum comparison_code comparison_to_compcode (enum tree_code);
118 static enum tree_code compcode_to_comparison (enum comparison_code);
119 static int operand_equal_for_comparison_p (tree, tree, tree);
120 static int twoval_comparison_p (tree, tree *, tree *, int *);
121 static tree eval_subst (location_t, tree, tree, tree, tree, tree);
122 static tree optimize_bit_field_compare (location_t, enum tree_code,
123 tree, tree, tree);
124 static int simple_operand_p (const_tree);
125 static bool simple_operand_p_2 (tree);
126 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
127 static tree range_predecessor (tree);
128 static tree range_successor (tree);
129 static tree fold_range_test (location_t, enum tree_code, tree, tree, tree);
130 static tree fold_cond_expr_with_comparison (location_t, tree, tree, tree, tree);
131 static tree unextend (tree, int, int, tree);
132 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
133 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
134 static tree fold_binary_op_with_conditional_arg (location_t,
135 enum tree_code, tree,
136 tree, tree,
137 tree, tree, int);
138 static tree fold_div_compare (location_t, enum tree_code, tree, tree, tree);
139 static bool reorder_operands_p (const_tree, const_tree);
140 static tree fold_negate_const (tree, tree);
141 static tree fold_not_const (const_tree, tree);
142 static tree fold_relational_const (enum tree_code, tree, tree, tree);
143 static tree fold_convert_const (enum tree_code, tree, tree);
144 static tree fold_view_convert_expr (tree, tree);
145 static bool vec_cst_ctor_to_array (tree, tree *);
148 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
149 Otherwise, return LOC. */
151 static location_t
152 expr_location_or (tree t, location_t loc)
154 location_t tloc = EXPR_LOCATION (t);
155 return tloc == UNKNOWN_LOCATION ? loc : tloc;
158 /* Similar to protected_set_expr_location, but never modify x in place,
159 if location can and needs to be set, unshare it. */
161 static inline tree
162 protected_set_expr_location_unshare (tree x, location_t loc)
164 if (CAN_HAVE_LOCATION_P (x)
165 && EXPR_LOCATION (x) != loc
166 && !(TREE_CODE (x) == SAVE_EXPR
167 || TREE_CODE (x) == TARGET_EXPR
168 || TREE_CODE (x) == BIND_EXPR))
170 x = copy_node (x);
171 SET_EXPR_LOCATION (x, loc);
173 return x;
176 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
177 division and returns the quotient. Otherwise returns
178 NULL_TREE. */
180 tree
181 div_if_zero_remainder (const_tree arg1, const_tree arg2)
183 widest_int quo;
185 if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2),
186 SIGNED, &quo))
187 return wide_int_to_tree (TREE_TYPE (arg1), quo);
189 return NULL_TREE;
192 /* This is nonzero if we should defer warnings about undefined
193 overflow. This facility exists because these warnings are a
194 special case. The code to estimate loop iterations does not want
195 to issue any warnings, since it works with expressions which do not
196 occur in user code. Various bits of cleanup code call fold(), but
197 only use the result if it has certain characteristics (e.g., is a
198 constant); that code only wants to issue a warning if the result is
199 used. */
201 static int fold_deferring_overflow_warnings;
203 /* If a warning about undefined overflow is deferred, this is the
204 warning. Note that this may cause us to turn two warnings into
205 one, but that is fine since it is sufficient to only give one
206 warning per expression. */
208 static const char* fold_deferred_overflow_warning;
210 /* If a warning about undefined overflow is deferred, this is the
211 level at which the warning should be emitted. */
213 static enum warn_strict_overflow_code fold_deferred_overflow_code;
215 /* Start deferring overflow warnings. We could use a stack here to
216 permit nested calls, but at present it is not necessary. */
218 void
219 fold_defer_overflow_warnings (void)
221 ++fold_deferring_overflow_warnings;
224 /* Stop deferring overflow warnings. If there is a pending warning,
225 and ISSUE is true, then issue the warning if appropriate. STMT is
226 the statement with which the warning should be associated (used for
227 location information); STMT may be NULL. CODE is the level of the
228 warning--a warn_strict_overflow_code value. This function will use
229 the smaller of CODE and the deferred code when deciding whether to
230 issue the warning. CODE may be zero to mean to always use the
231 deferred code. */
233 void
234 fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code)
236 const char *warnmsg;
237 location_t locus;
239 gcc_assert (fold_deferring_overflow_warnings > 0);
240 --fold_deferring_overflow_warnings;
241 if (fold_deferring_overflow_warnings > 0)
243 if (fold_deferred_overflow_warning != NULL
244 && code != 0
245 && code < (int) fold_deferred_overflow_code)
246 fold_deferred_overflow_code = (enum warn_strict_overflow_code) code;
247 return;
250 warnmsg = fold_deferred_overflow_warning;
251 fold_deferred_overflow_warning = NULL;
253 if (!issue || warnmsg == NULL)
254 return;
256 if (gimple_no_warning_p (stmt))
257 return;
259 /* Use the smallest code level when deciding to issue the
260 warning. */
261 if (code == 0 || code > (int) fold_deferred_overflow_code)
262 code = fold_deferred_overflow_code;
264 if (!issue_strict_overflow_warning (code))
265 return;
267 if (stmt == NULL)
268 locus = input_location;
269 else
270 locus = gimple_location (stmt);
271 warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg);
274 /* Stop deferring overflow warnings, ignoring any deferred
275 warnings. */
277 void
278 fold_undefer_and_ignore_overflow_warnings (void)
280 fold_undefer_overflow_warnings (false, NULL, 0);
283 /* Whether we are deferring overflow warnings. */
285 bool
286 fold_deferring_overflow_warnings_p (void)
288 return fold_deferring_overflow_warnings > 0;
291 /* This is called when we fold something based on the fact that signed
292 overflow is undefined. */
294 void
295 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
297 if (fold_deferring_overflow_warnings > 0)
299 if (fold_deferred_overflow_warning == NULL
300 || wc < fold_deferred_overflow_code)
302 fold_deferred_overflow_warning = gmsgid;
303 fold_deferred_overflow_code = wc;
306 else if (issue_strict_overflow_warning (wc))
307 warning (OPT_Wstrict_overflow, gmsgid);
310 /* Return true if the built-in mathematical function specified by CODE
311 is odd, i.e. -f(x) == f(-x). */
313 bool
314 negate_mathfn_p (combined_fn fn)
316 switch (fn)
318 CASE_CFN_ASIN:
319 CASE_CFN_ASINH:
320 CASE_CFN_ATAN:
321 CASE_CFN_ATANH:
322 CASE_CFN_CASIN:
323 CASE_CFN_CASINH:
324 CASE_CFN_CATAN:
325 CASE_CFN_CATANH:
326 CASE_CFN_CBRT:
327 CASE_CFN_CPROJ:
328 CASE_CFN_CSIN:
329 CASE_CFN_CSINH:
330 CASE_CFN_CTAN:
331 CASE_CFN_CTANH:
332 CASE_CFN_ERF:
333 CASE_CFN_LLROUND:
334 CASE_CFN_LROUND:
335 CASE_CFN_ROUND:
336 CASE_CFN_SIN:
337 CASE_CFN_SINH:
338 CASE_CFN_TAN:
339 CASE_CFN_TANH:
340 CASE_CFN_TRUNC:
341 return true;
343 CASE_CFN_LLRINT:
344 CASE_CFN_LRINT:
345 CASE_CFN_NEARBYINT:
346 CASE_CFN_RINT:
347 return !flag_rounding_math;
349 default:
350 break;
352 return false;
355 /* Check whether we may negate an integer constant T without causing
356 overflow. */
358 bool
359 may_negate_without_overflow_p (const_tree t)
361 tree type;
363 gcc_assert (TREE_CODE (t) == INTEGER_CST);
365 type = TREE_TYPE (t);
366 if (TYPE_UNSIGNED (type))
367 return false;
369 return !wi::only_sign_bit_p (t);
372 /* Determine whether an expression T can be cheaply negated using
373 the function negate_expr without introducing undefined overflow. */
375 static bool
376 negate_expr_p (tree t)
378 tree type;
380 if (t == 0)
381 return false;
383 type = TREE_TYPE (t);
385 STRIP_SIGN_NOPS (t);
386 switch (TREE_CODE (t))
388 case INTEGER_CST:
389 if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_WRAPS (type))
390 return true;
392 /* Check that -CST will not overflow type. */
393 return may_negate_without_overflow_p (t);
394 case BIT_NOT_EXPR:
395 return (INTEGRAL_TYPE_P (type)
396 && TYPE_OVERFLOW_WRAPS (type));
398 case FIXED_CST:
399 return true;
401 case NEGATE_EXPR:
402 return !TYPE_OVERFLOW_SANITIZED (type);
404 case REAL_CST:
405 /* We want to canonicalize to positive real constants. Pretend
406 that only negative ones can be easily negated. */
407 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
409 case COMPLEX_CST:
410 return negate_expr_p (TREE_REALPART (t))
411 && negate_expr_p (TREE_IMAGPART (t));
413 case VECTOR_CST:
415 if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type))
416 return true;
418 int count = TYPE_VECTOR_SUBPARTS (type), i;
420 for (i = 0; i < count; i++)
421 if (!negate_expr_p (VECTOR_CST_ELT (t, i)))
422 return false;
424 return true;
427 case COMPLEX_EXPR:
428 return negate_expr_p (TREE_OPERAND (t, 0))
429 && negate_expr_p (TREE_OPERAND (t, 1));
431 case CONJ_EXPR:
432 return negate_expr_p (TREE_OPERAND (t, 0));
434 case PLUS_EXPR:
435 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
436 || HONOR_SIGNED_ZEROS (element_mode (type))
437 || (INTEGRAL_TYPE_P (type)
438 && ! TYPE_OVERFLOW_WRAPS (type)))
439 return false;
440 /* -(A + B) -> (-B) - A. */
441 if (negate_expr_p (TREE_OPERAND (t, 1))
442 && reorder_operands_p (TREE_OPERAND (t, 0),
443 TREE_OPERAND (t, 1)))
444 return true;
445 /* -(A + B) -> (-A) - B. */
446 return negate_expr_p (TREE_OPERAND (t, 0));
448 case MINUS_EXPR:
449 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
450 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
451 && !HONOR_SIGNED_ZEROS (element_mode (type))
452 && (! INTEGRAL_TYPE_P (type)
453 || TYPE_OVERFLOW_WRAPS (type))
454 && reorder_operands_p (TREE_OPERAND (t, 0),
455 TREE_OPERAND (t, 1));
457 case MULT_EXPR:
458 if (TYPE_UNSIGNED (type))
459 break;
460 /* INT_MIN/n * n doesn't overflow while negating one operand it does
461 if n is a power of two. */
462 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
463 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
464 && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST
465 && ! integer_pow2p (TREE_OPERAND (t, 0)))
466 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
467 && ! integer_pow2p (TREE_OPERAND (t, 1)))))
468 break;
470 /* Fall through. */
472 case RDIV_EXPR:
473 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t))))
474 return negate_expr_p (TREE_OPERAND (t, 1))
475 || negate_expr_p (TREE_OPERAND (t, 0));
476 break;
478 case TRUNC_DIV_EXPR:
479 case ROUND_DIV_EXPR:
480 case EXACT_DIV_EXPR:
481 if (TYPE_UNSIGNED (type))
482 break;
483 if (negate_expr_p (TREE_OPERAND (t, 0)))
484 return true;
485 /* In general we can't negate B in A / B, because if A is INT_MIN and
486 B is 1, we may turn this into INT_MIN / -1 which is undefined
487 and actually traps on some architectures. */
488 if (! INTEGRAL_TYPE_P (TREE_TYPE (t))
489 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
490 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
491 && ! integer_onep (TREE_OPERAND (t, 1))))
492 return negate_expr_p (TREE_OPERAND (t, 1));
493 break;
495 case NOP_EXPR:
496 /* Negate -((double)float) as (double)(-float). */
497 if (TREE_CODE (type) == REAL_TYPE)
499 tree tem = strip_float_extensions (t);
500 if (tem != t)
501 return negate_expr_p (tem);
503 break;
505 case CALL_EXPR:
506 /* Negate -f(x) as f(-x). */
507 if (negate_mathfn_p (get_call_combined_fn (t)))
508 return negate_expr_p (CALL_EXPR_ARG (t, 0));
509 break;
511 case RSHIFT_EXPR:
512 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
513 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
515 tree op1 = TREE_OPERAND (t, 1);
516 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
517 return true;
519 break;
521 default:
522 break;
524 return false;
527 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
528 simplification is possible.
529 If negate_expr_p would return true for T, NULL_TREE will never be
530 returned. */
532 static tree
533 fold_negate_expr (location_t loc, tree t)
535 tree type = TREE_TYPE (t);
536 tree tem;
538 switch (TREE_CODE (t))
540 /* Convert - (~A) to A + 1. */
541 case BIT_NOT_EXPR:
542 if (INTEGRAL_TYPE_P (type))
543 return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0),
544 build_one_cst (type));
545 break;
547 case INTEGER_CST:
548 tem = fold_negate_const (t, type);
549 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
550 || (ANY_INTEGRAL_TYPE_P (type)
551 && !TYPE_OVERFLOW_TRAPS (type)
552 && TYPE_OVERFLOW_WRAPS (type))
553 || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0)
554 return tem;
555 break;
557 case REAL_CST:
558 tem = fold_negate_const (t, type);
559 return tem;
561 case FIXED_CST:
562 tem = fold_negate_const (t, type);
563 return tem;
565 case COMPLEX_CST:
567 tree rpart = fold_negate_expr (loc, TREE_REALPART (t));
568 tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t));
569 if (rpart && ipart)
570 return build_complex (type, rpart, ipart);
572 break;
574 case VECTOR_CST:
576 int count = TYPE_VECTOR_SUBPARTS (type), i;
577 tree *elts = XALLOCAVEC (tree, count);
579 for (i = 0; i < count; i++)
581 elts[i] = fold_negate_expr (loc, VECTOR_CST_ELT (t, i));
582 if (elts[i] == NULL_TREE)
583 return NULL_TREE;
586 return build_vector (type, elts);
589 case COMPLEX_EXPR:
590 if (negate_expr_p (t))
591 return fold_build2_loc (loc, COMPLEX_EXPR, type,
592 fold_negate_expr (loc, TREE_OPERAND (t, 0)),
593 fold_negate_expr (loc, TREE_OPERAND (t, 1)));
594 break;
596 case CONJ_EXPR:
597 if (negate_expr_p (t))
598 return fold_build1_loc (loc, CONJ_EXPR, type,
599 fold_negate_expr (loc, TREE_OPERAND (t, 0)));
600 break;
602 case NEGATE_EXPR:
603 if (!TYPE_OVERFLOW_SANITIZED (type))
604 return TREE_OPERAND (t, 0);
605 break;
607 case PLUS_EXPR:
608 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
609 && !HONOR_SIGNED_ZEROS (element_mode (type)))
611 /* -(A + B) -> (-B) - A. */
612 if (negate_expr_p (TREE_OPERAND (t, 1))
613 && reorder_operands_p (TREE_OPERAND (t, 0),
614 TREE_OPERAND (t, 1)))
616 tem = negate_expr (TREE_OPERAND (t, 1));
617 return fold_build2_loc (loc, MINUS_EXPR, type,
618 tem, TREE_OPERAND (t, 0));
621 /* -(A + B) -> (-A) - B. */
622 if (negate_expr_p (TREE_OPERAND (t, 0)))
624 tem = negate_expr (TREE_OPERAND (t, 0));
625 return fold_build2_loc (loc, MINUS_EXPR, type,
626 tem, TREE_OPERAND (t, 1));
629 break;
631 case MINUS_EXPR:
632 /* - (A - B) -> B - A */
633 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type))
634 && !HONOR_SIGNED_ZEROS (element_mode (type))
635 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
636 return fold_build2_loc (loc, MINUS_EXPR, type,
637 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
638 break;
640 case MULT_EXPR:
641 if (TYPE_UNSIGNED (type))
642 break;
644 /* Fall through. */
646 case RDIV_EXPR:
647 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type)))
649 tem = TREE_OPERAND (t, 1);
650 if (negate_expr_p (tem))
651 return fold_build2_loc (loc, TREE_CODE (t), type,
652 TREE_OPERAND (t, 0), negate_expr (tem));
653 tem = TREE_OPERAND (t, 0);
654 if (negate_expr_p (tem))
655 return fold_build2_loc (loc, TREE_CODE (t), type,
656 negate_expr (tem), TREE_OPERAND (t, 1));
658 break;
660 case TRUNC_DIV_EXPR:
661 case ROUND_DIV_EXPR:
662 case EXACT_DIV_EXPR:
663 if (TYPE_UNSIGNED (type))
664 break;
665 if (negate_expr_p (TREE_OPERAND (t, 0)))
666 return fold_build2_loc (loc, TREE_CODE (t), type,
667 negate_expr (TREE_OPERAND (t, 0)),
668 TREE_OPERAND (t, 1));
669 /* In general we can't negate B in A / B, because if A is INT_MIN and
670 B is 1, we may turn this into INT_MIN / -1 which is undefined
671 and actually traps on some architectures. */
672 if ((! INTEGRAL_TYPE_P (TREE_TYPE (t))
673 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t))
674 || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
675 && ! integer_onep (TREE_OPERAND (t, 1))))
676 && negate_expr_p (TREE_OPERAND (t, 1)))
677 return fold_build2_loc (loc, TREE_CODE (t), type,
678 TREE_OPERAND (t, 0),
679 negate_expr (TREE_OPERAND (t, 1)));
680 break;
682 case NOP_EXPR:
683 /* Convert -((double)float) into (double)(-float). */
684 if (TREE_CODE (type) == REAL_TYPE)
686 tem = strip_float_extensions (t);
687 if (tem != t && negate_expr_p (tem))
688 return fold_convert_loc (loc, type, negate_expr (tem));
690 break;
692 case CALL_EXPR:
693 /* Negate -f(x) as f(-x). */
694 if (negate_mathfn_p (get_call_combined_fn (t))
695 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
697 tree fndecl, arg;
699 fndecl = get_callee_fndecl (t);
700 arg = negate_expr (CALL_EXPR_ARG (t, 0));
701 return build_call_expr_loc (loc, fndecl, 1, arg);
703 break;
705 case RSHIFT_EXPR:
706 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
707 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
709 tree op1 = TREE_OPERAND (t, 1);
710 if (wi::eq_p (op1, TYPE_PRECISION (type) - 1))
712 tree ntype = TYPE_UNSIGNED (type)
713 ? signed_type_for (type)
714 : unsigned_type_for (type);
715 tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0));
716 temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1);
717 return fold_convert_loc (loc, type, temp);
720 break;
722 default:
723 break;
726 return NULL_TREE;
729 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
730 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
731 return NULL_TREE. */
733 static tree
734 negate_expr (tree t)
736 tree type, tem;
737 location_t loc;
739 if (t == NULL_TREE)
740 return NULL_TREE;
742 loc = EXPR_LOCATION (t);
743 type = TREE_TYPE (t);
744 STRIP_SIGN_NOPS (t);
746 tem = fold_negate_expr (loc, t);
747 if (!tem)
748 tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t);
749 return fold_convert_loc (loc, type, tem);
752 /* Split a tree IN into a constant, literal and variable parts that could be
753 combined with CODE to make IN. "constant" means an expression with
754 TREE_CONSTANT but that isn't an actual constant. CODE must be a
755 commutative arithmetic operation. Store the constant part into *CONP,
756 the literal in *LITP and return the variable part. If a part isn't
757 present, set it to null. If the tree does not decompose in this way,
758 return the entire tree as the variable part and the other parts as null.
760 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
761 case, we negate an operand that was subtracted. Except if it is a
762 literal for which we use *MINUS_LITP instead.
764 If NEGATE_P is true, we are negating all of IN, again except a literal
765 for which we use *MINUS_LITP instead. If a variable part is of pointer
766 type, it is negated after converting to TYPE. This prevents us from
767 generating illegal MINUS pointer expression. LOC is the location of
768 the converted variable part.
770 If IN is itself a literal or constant, return it as appropriate.
772 Note that we do not guarantee that any of the three values will be the
773 same type as IN, but they will have the same signedness and mode. */
775 static tree
776 split_tree (location_t loc, tree in, tree type, enum tree_code code,
777 tree *conp, tree *litp, tree *minus_litp, int negate_p)
779 tree var = 0;
781 *conp = 0;
782 *litp = 0;
783 *minus_litp = 0;
785 /* Strip any conversions that don't change the machine mode or signedness. */
786 STRIP_SIGN_NOPS (in);
788 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
789 || TREE_CODE (in) == FIXED_CST)
790 *litp = in;
791 else if (TREE_CODE (in) == code
792 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
793 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
794 /* We can associate addition and subtraction together (even
795 though the C standard doesn't say so) for integers because
796 the value is not affected. For reals, the value might be
797 affected, so we can't. */
798 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
799 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
801 tree op0 = TREE_OPERAND (in, 0);
802 tree op1 = TREE_OPERAND (in, 1);
803 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
804 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
806 /* First see if either of the operands is a literal, then a constant. */
807 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
808 || TREE_CODE (op0) == FIXED_CST)
809 *litp = op0, op0 = 0;
810 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
811 || TREE_CODE (op1) == FIXED_CST)
812 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
814 if (op0 != 0 && TREE_CONSTANT (op0))
815 *conp = op0, op0 = 0;
816 else if (op1 != 0 && TREE_CONSTANT (op1))
817 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
819 /* If we haven't dealt with either operand, this is not a case we can
820 decompose. Otherwise, VAR is either of the ones remaining, if any. */
821 if (op0 != 0 && op1 != 0)
822 var = in;
823 else if (op0 != 0)
824 var = op0;
825 else
826 var = op1, neg_var_p = neg1_p;
828 /* Now do any needed negations. */
829 if (neg_litp_p)
830 *minus_litp = *litp, *litp = 0;
831 if (neg_conp_p)
832 *conp = negate_expr (*conp);
833 if (neg_var_p && var)
835 /* Convert to TYPE before negating. */
836 var = fold_convert_loc (loc, type, var);
837 var = negate_expr (var);
840 else if (TREE_CONSTANT (in))
841 *conp = in;
842 else if (TREE_CODE (in) == BIT_NOT_EXPR
843 && code == PLUS_EXPR)
845 /* -X - 1 is folded to ~X, undo that here. Do _not_ do this
846 when IN is constant. */
847 *minus_litp = build_one_cst (TREE_TYPE (in));
848 var = negate_expr (TREE_OPERAND (in, 0));
850 else
851 var = in;
853 if (negate_p)
855 if (*litp)
856 *minus_litp = *litp, *litp = 0;
857 else if (*minus_litp)
858 *litp = *minus_litp, *minus_litp = 0;
859 *conp = negate_expr (*conp);
860 if (var)
862 /* Convert to TYPE before negating. */
863 var = fold_convert_loc (loc, type, var);
864 var = negate_expr (var);
868 return var;
871 /* Re-associate trees split by the above function. T1 and T2 are
872 either expressions to associate or null. Return the new
873 expression, if any. LOC is the location of the new expression. If
874 we build an operation, do it in TYPE and with CODE. */
876 static tree
877 associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type)
879 if (t1 == 0)
880 return t2;
881 else if (t2 == 0)
882 return t1;
884 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
885 try to fold this since we will have infinite recursion. But do
886 deal with any NEGATE_EXPRs. */
887 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
888 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
890 if (code == PLUS_EXPR)
892 if (TREE_CODE (t1) == NEGATE_EXPR)
893 return build2_loc (loc, MINUS_EXPR, type,
894 fold_convert_loc (loc, type, t2),
895 fold_convert_loc (loc, type,
896 TREE_OPERAND (t1, 0)));
897 else if (TREE_CODE (t2) == NEGATE_EXPR)
898 return build2_loc (loc, MINUS_EXPR, type,
899 fold_convert_loc (loc, type, t1),
900 fold_convert_loc (loc, type,
901 TREE_OPERAND (t2, 0)));
902 else if (integer_zerop (t2))
903 return fold_convert_loc (loc, type, t1);
905 else if (code == MINUS_EXPR)
907 if (integer_zerop (t2))
908 return fold_convert_loc (loc, type, t1);
911 return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
912 fold_convert_loc (loc, type, t2));
915 return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1),
916 fold_convert_loc (loc, type, t2));
919 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
920 for use in int_const_binop, size_binop and size_diffop. */
922 static bool
923 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
925 if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1))
926 return false;
927 if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2))
928 return false;
930 switch (code)
932 case LSHIFT_EXPR:
933 case RSHIFT_EXPR:
934 case LROTATE_EXPR:
935 case RROTATE_EXPR:
936 return true;
938 default:
939 break;
942 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
943 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
944 && TYPE_MODE (type1) == TYPE_MODE (type2);
948 /* Combine two integer constants ARG1 and ARG2 under operation CODE
949 to produce a new constant. Return NULL_TREE if we don't know how
950 to evaluate CODE at compile-time. */
952 static tree
953 int_const_binop_1 (enum tree_code code, const_tree arg1, const_tree parg2,
954 int overflowable)
956 wide_int res;
957 tree t;
958 tree type = TREE_TYPE (arg1);
959 signop sign = TYPE_SIGN (type);
960 bool overflow = false;
962 wide_int arg2 = wi::to_wide (parg2, TYPE_PRECISION (type));
964 switch (code)
966 case BIT_IOR_EXPR:
967 res = wi::bit_or (arg1, arg2);
968 break;
970 case BIT_XOR_EXPR:
971 res = wi::bit_xor (arg1, arg2);
972 break;
974 case BIT_AND_EXPR:
975 res = wi::bit_and (arg1, arg2);
976 break;
978 case RSHIFT_EXPR:
979 case LSHIFT_EXPR:
980 if (wi::neg_p (arg2))
982 arg2 = -arg2;
983 if (code == RSHIFT_EXPR)
984 code = LSHIFT_EXPR;
985 else
986 code = RSHIFT_EXPR;
989 if (code == RSHIFT_EXPR)
990 /* It's unclear from the C standard whether shifts can overflow.
991 The following code ignores overflow; perhaps a C standard
992 interpretation ruling is needed. */
993 res = wi::rshift (arg1, arg2, sign);
994 else
995 res = wi::lshift (arg1, arg2);
996 break;
998 case RROTATE_EXPR:
999 case LROTATE_EXPR:
1000 if (wi::neg_p (arg2))
1002 arg2 = -arg2;
1003 if (code == RROTATE_EXPR)
1004 code = LROTATE_EXPR;
1005 else
1006 code = RROTATE_EXPR;
1009 if (code == RROTATE_EXPR)
1010 res = wi::rrotate (arg1, arg2);
1011 else
1012 res = wi::lrotate (arg1, arg2);
1013 break;
1015 case PLUS_EXPR:
1016 res = wi::add (arg1, arg2, sign, &overflow);
1017 break;
1019 case MINUS_EXPR:
1020 res = wi::sub (arg1, arg2, sign, &overflow);
1021 break;
1023 case MULT_EXPR:
1024 res = wi::mul (arg1, arg2, sign, &overflow);
1025 break;
1027 case MULT_HIGHPART_EXPR:
1028 res = wi::mul_high (arg1, arg2, sign);
1029 break;
1031 case TRUNC_DIV_EXPR:
1032 case EXACT_DIV_EXPR:
1033 if (arg2 == 0)
1034 return NULL_TREE;
1035 res = wi::div_trunc (arg1, arg2, sign, &overflow);
1036 break;
1038 case FLOOR_DIV_EXPR:
1039 if (arg2 == 0)
1040 return NULL_TREE;
1041 res = wi::div_floor (arg1, arg2, sign, &overflow);
1042 break;
1044 case CEIL_DIV_EXPR:
1045 if (arg2 == 0)
1046 return NULL_TREE;
1047 res = wi::div_ceil (arg1, arg2, sign, &overflow);
1048 break;
1050 case ROUND_DIV_EXPR:
1051 if (arg2 == 0)
1052 return NULL_TREE;
1053 res = wi::div_round (arg1, arg2, sign, &overflow);
1054 break;
1056 case TRUNC_MOD_EXPR:
1057 if (arg2 == 0)
1058 return NULL_TREE;
1059 res = wi::mod_trunc (arg1, arg2, sign, &overflow);
1060 break;
1062 case FLOOR_MOD_EXPR:
1063 if (arg2 == 0)
1064 return NULL_TREE;
1065 res = wi::mod_floor (arg1, arg2, sign, &overflow);
1066 break;
1068 case CEIL_MOD_EXPR:
1069 if (arg2 == 0)
1070 return NULL_TREE;
1071 res = wi::mod_ceil (arg1, arg2, sign, &overflow);
1072 break;
1074 case ROUND_MOD_EXPR:
1075 if (arg2 == 0)
1076 return NULL_TREE;
1077 res = wi::mod_round (arg1, arg2, sign, &overflow);
1078 break;
1080 case MIN_EXPR:
1081 res = wi::min (arg1, arg2, sign);
1082 break;
1084 case MAX_EXPR:
1085 res = wi::max (arg1, arg2, sign);
1086 break;
1088 default:
1089 return NULL_TREE;
1092 t = force_fit_type (type, res, overflowable,
1093 (((sign == SIGNED || overflowable == -1)
1094 && overflow)
1095 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (parg2)));
1097 return t;
1100 tree
1101 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2)
1103 return int_const_binop_1 (code, arg1, arg2, 1);
1106 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1107 constant. We assume ARG1 and ARG2 have the same data type, or at least
1108 are the same kind of constant and the same machine mode. Return zero if
1109 combining the constants is not allowed in the current operating mode. */
1111 static tree
1112 const_binop (enum tree_code code, tree arg1, tree arg2)
1114 /* Sanity check for the recursive cases. */
1115 if (!arg1 || !arg2)
1116 return NULL_TREE;
1118 STRIP_NOPS (arg1);
1119 STRIP_NOPS (arg2);
1121 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST)
1123 if (code == POINTER_PLUS_EXPR)
1124 return int_const_binop (PLUS_EXPR,
1125 arg1, fold_convert (TREE_TYPE (arg1), arg2));
1127 return int_const_binop (code, arg1, arg2);
1130 if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST)
1132 machine_mode mode;
1133 REAL_VALUE_TYPE d1;
1134 REAL_VALUE_TYPE d2;
1135 REAL_VALUE_TYPE value;
1136 REAL_VALUE_TYPE result;
1137 bool inexact;
1138 tree t, type;
1140 /* The following codes are handled by real_arithmetic. */
1141 switch (code)
1143 case PLUS_EXPR:
1144 case MINUS_EXPR:
1145 case MULT_EXPR:
1146 case RDIV_EXPR:
1147 case MIN_EXPR:
1148 case MAX_EXPR:
1149 break;
1151 default:
1152 return NULL_TREE;
1155 d1 = TREE_REAL_CST (arg1);
1156 d2 = TREE_REAL_CST (arg2);
1158 type = TREE_TYPE (arg1);
1159 mode = TYPE_MODE (type);
1161 /* Don't perform operation if we honor signaling NaNs and
1162 either operand is a signaling NaN. */
1163 if (HONOR_SNANS (mode)
1164 && (REAL_VALUE_ISSIGNALING_NAN (d1)
1165 || REAL_VALUE_ISSIGNALING_NAN (d2)))
1166 return NULL_TREE;
1168 /* Don't perform operation if it would raise a division
1169 by zero exception. */
1170 if (code == RDIV_EXPR
1171 && real_equal (&d2, &dconst0)
1172 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1173 return NULL_TREE;
1175 /* If either operand is a NaN, just return it. Otherwise, set up
1176 for floating-point trap; we return an overflow. */
1177 if (REAL_VALUE_ISNAN (d1))
1179 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1180 is off. */
1181 d1.signalling = 0;
1182 t = build_real (type, d1);
1183 return t;
1185 else if (REAL_VALUE_ISNAN (d2))
1187 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1188 is off. */
1189 d2.signalling = 0;
1190 t = build_real (type, d2);
1191 return t;
1194 inexact = real_arithmetic (&value, code, &d1, &d2);
1195 real_convert (&result, mode, &value);
1197 /* Don't constant fold this floating point operation if
1198 the result has overflowed and flag_trapping_math. */
1199 if (flag_trapping_math
1200 && MODE_HAS_INFINITIES (mode)
1201 && REAL_VALUE_ISINF (result)
1202 && !REAL_VALUE_ISINF (d1)
1203 && !REAL_VALUE_ISINF (d2))
1204 return NULL_TREE;
1206 /* Don't constant fold this floating point operation if the
1207 result may dependent upon the run-time rounding mode and
1208 flag_rounding_math is set, or if GCC's software emulation
1209 is unable to accurately represent the result. */
1210 if ((flag_rounding_math
1211 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1212 && (inexact || !real_identical (&result, &value)))
1213 return NULL_TREE;
1215 t = build_real (type, result);
1217 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1218 return t;
1221 if (TREE_CODE (arg1) == FIXED_CST)
1223 FIXED_VALUE_TYPE f1;
1224 FIXED_VALUE_TYPE f2;
1225 FIXED_VALUE_TYPE result;
1226 tree t, type;
1227 int sat_p;
1228 bool overflow_p;
1230 /* The following codes are handled by fixed_arithmetic. */
1231 switch (code)
1233 case PLUS_EXPR:
1234 case MINUS_EXPR:
1235 case MULT_EXPR:
1236 case TRUNC_DIV_EXPR:
1237 if (TREE_CODE (arg2) != FIXED_CST)
1238 return NULL_TREE;
1239 f2 = TREE_FIXED_CST (arg2);
1240 break;
1242 case LSHIFT_EXPR:
1243 case RSHIFT_EXPR:
1245 if (TREE_CODE (arg2) != INTEGER_CST)
1246 return NULL_TREE;
1247 wide_int w2 = arg2;
1248 f2.data.high = w2.elt (1);
1249 f2.data.low = w2.elt (0);
1250 f2.mode = SImode;
1252 break;
1254 default:
1255 return NULL_TREE;
1258 f1 = TREE_FIXED_CST (arg1);
1259 type = TREE_TYPE (arg1);
1260 sat_p = TYPE_SATURATING (type);
1261 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1262 t = build_fixed (type, result);
1263 /* Propagate overflow flags. */
1264 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1265 TREE_OVERFLOW (t) = 1;
1266 return t;
1269 if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST)
1271 tree type = TREE_TYPE (arg1);
1272 tree r1 = TREE_REALPART (arg1);
1273 tree i1 = TREE_IMAGPART (arg1);
1274 tree r2 = TREE_REALPART (arg2);
1275 tree i2 = TREE_IMAGPART (arg2);
1276 tree real, imag;
1278 switch (code)
1280 case PLUS_EXPR:
1281 case MINUS_EXPR:
1282 real = const_binop (code, r1, r2);
1283 imag = const_binop (code, i1, i2);
1284 break;
1286 case MULT_EXPR:
1287 if (COMPLEX_FLOAT_TYPE_P (type))
1288 return do_mpc_arg2 (arg1, arg2, type,
1289 /* do_nonfinite= */ folding_initializer,
1290 mpc_mul);
1292 real = const_binop (MINUS_EXPR,
1293 const_binop (MULT_EXPR, r1, r2),
1294 const_binop (MULT_EXPR, i1, i2));
1295 imag = const_binop (PLUS_EXPR,
1296 const_binop (MULT_EXPR, r1, i2),
1297 const_binop (MULT_EXPR, i1, r2));
1298 break;
1300 case RDIV_EXPR:
1301 if (COMPLEX_FLOAT_TYPE_P (type))
1302 return do_mpc_arg2 (arg1, arg2, type,
1303 /* do_nonfinite= */ folding_initializer,
1304 mpc_div);
1305 /* Fallthru. */
1306 case TRUNC_DIV_EXPR:
1307 case CEIL_DIV_EXPR:
1308 case FLOOR_DIV_EXPR:
1309 case ROUND_DIV_EXPR:
1310 if (flag_complex_method == 0)
1312 /* Keep this algorithm in sync with
1313 tree-complex.c:expand_complex_div_straight().
1315 Expand complex division to scalars, straightforward algorithm.
1316 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1317 t = br*br + bi*bi
1319 tree magsquared
1320 = const_binop (PLUS_EXPR,
1321 const_binop (MULT_EXPR, r2, r2),
1322 const_binop (MULT_EXPR, i2, i2));
1323 tree t1
1324 = const_binop (PLUS_EXPR,
1325 const_binop (MULT_EXPR, r1, r2),
1326 const_binop (MULT_EXPR, i1, i2));
1327 tree t2
1328 = const_binop (MINUS_EXPR,
1329 const_binop (MULT_EXPR, i1, r2),
1330 const_binop (MULT_EXPR, r1, i2));
1332 real = const_binop (code, t1, magsquared);
1333 imag = const_binop (code, t2, magsquared);
1335 else
1337 /* Keep this algorithm in sync with
1338 tree-complex.c:expand_complex_div_wide().
1340 Expand complex division to scalars, modified algorithm to minimize
1341 overflow with wide input ranges. */
1342 tree compare = fold_build2 (LT_EXPR, boolean_type_node,
1343 fold_abs_const (r2, TREE_TYPE (type)),
1344 fold_abs_const (i2, TREE_TYPE (type)));
1346 if (integer_nonzerop (compare))
1348 /* In the TRUE branch, we compute
1349 ratio = br/bi;
1350 div = (br * ratio) + bi;
1351 tr = (ar * ratio) + ai;
1352 ti = (ai * ratio) - ar;
1353 tr = tr / div;
1354 ti = ti / div; */
1355 tree ratio = const_binop (code, r2, i2);
1356 tree div = const_binop (PLUS_EXPR, i2,
1357 const_binop (MULT_EXPR, r2, ratio));
1358 real = const_binop (MULT_EXPR, r1, ratio);
1359 real = const_binop (PLUS_EXPR, real, i1);
1360 real = const_binop (code, real, div);
1362 imag = const_binop (MULT_EXPR, i1, ratio);
1363 imag = const_binop (MINUS_EXPR, imag, r1);
1364 imag = const_binop (code, imag, div);
1366 else
1368 /* In the FALSE branch, we compute
1369 ratio = d/c;
1370 divisor = (d * ratio) + c;
1371 tr = (b * ratio) + a;
1372 ti = b - (a * ratio);
1373 tr = tr / div;
1374 ti = ti / div; */
1375 tree ratio = const_binop (code, i2, r2);
1376 tree div = const_binop (PLUS_EXPR, r2,
1377 const_binop (MULT_EXPR, i2, ratio));
1379 real = const_binop (MULT_EXPR, i1, ratio);
1380 real = const_binop (PLUS_EXPR, real, r1);
1381 real = const_binop (code, real, div);
1383 imag = const_binop (MULT_EXPR, r1, ratio);
1384 imag = const_binop (MINUS_EXPR, i1, imag);
1385 imag = const_binop (code, imag, div);
1388 break;
1390 default:
1391 return NULL_TREE;
1394 if (real && imag)
1395 return build_complex (type, real, imag);
1398 if (TREE_CODE (arg1) == VECTOR_CST
1399 && TREE_CODE (arg2) == VECTOR_CST)
1401 tree type = TREE_TYPE (arg1);
1402 int count = TYPE_VECTOR_SUBPARTS (type), i;
1403 tree *elts = XALLOCAVEC (tree, count);
1405 for (i = 0; i < count; i++)
1407 tree elem1 = VECTOR_CST_ELT (arg1, i);
1408 tree elem2 = VECTOR_CST_ELT (arg2, i);
1410 elts[i] = const_binop (code, elem1, elem2);
1412 /* It is possible that const_binop cannot handle the given
1413 code and return NULL_TREE */
1414 if (elts[i] == NULL_TREE)
1415 return NULL_TREE;
1418 return build_vector (type, elts);
1421 /* Shifts allow a scalar offset for a vector. */
1422 if (TREE_CODE (arg1) == VECTOR_CST
1423 && TREE_CODE (arg2) == INTEGER_CST)
1425 tree type = TREE_TYPE (arg1);
1426 int count = TYPE_VECTOR_SUBPARTS (type), i;
1427 tree *elts = XALLOCAVEC (tree, count);
1429 for (i = 0; i < count; i++)
1431 tree elem1 = VECTOR_CST_ELT (arg1, i);
1433 elts[i] = const_binop (code, elem1, arg2);
1435 /* It is possible that const_binop cannot handle the given
1436 code and return NULL_TREE. */
1437 if (elts[i] == NULL_TREE)
1438 return NULL_TREE;
1441 return build_vector (type, elts);
1443 return NULL_TREE;
1446 /* Overload that adds a TYPE parameter to be able to dispatch
1447 to fold_relational_const. */
1449 tree
1450 const_binop (enum tree_code code, tree type, tree arg1, tree arg2)
1452 if (TREE_CODE_CLASS (code) == tcc_comparison)
1453 return fold_relational_const (code, type, arg1, arg2);
1455 /* ??? Until we make the const_binop worker take the type of the
1456 result as argument put those cases that need it here. */
1457 switch (code)
1459 case COMPLEX_EXPR:
1460 if ((TREE_CODE (arg1) == REAL_CST
1461 && TREE_CODE (arg2) == REAL_CST)
1462 || (TREE_CODE (arg1) == INTEGER_CST
1463 && TREE_CODE (arg2) == INTEGER_CST))
1464 return build_complex (type, arg1, arg2);
1465 return NULL_TREE;
1467 case VEC_PACK_TRUNC_EXPR:
1468 case VEC_PACK_FIX_TRUNC_EXPR:
1470 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1471 tree *elts;
1473 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts / 2
1474 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts / 2);
1475 if (TREE_CODE (arg1) != VECTOR_CST
1476 || TREE_CODE (arg2) != VECTOR_CST)
1477 return NULL_TREE;
1479 elts = XALLOCAVEC (tree, nelts);
1480 if (!vec_cst_ctor_to_array (arg1, elts)
1481 || !vec_cst_ctor_to_array (arg2, elts + nelts / 2))
1482 return NULL_TREE;
1484 for (i = 0; i < nelts; i++)
1486 elts[i] = fold_convert_const (code == VEC_PACK_TRUNC_EXPR
1487 ? NOP_EXPR : FIX_TRUNC_EXPR,
1488 TREE_TYPE (type), elts[i]);
1489 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1490 return NULL_TREE;
1493 return build_vector (type, elts);
1496 case VEC_WIDEN_MULT_LO_EXPR:
1497 case VEC_WIDEN_MULT_HI_EXPR:
1498 case VEC_WIDEN_MULT_EVEN_EXPR:
1499 case VEC_WIDEN_MULT_ODD_EXPR:
1501 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type);
1502 unsigned int out, ofs, scale;
1503 tree *elts;
1505 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts * 2
1506 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)) == nelts * 2);
1507 if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST)
1508 return NULL_TREE;
1510 elts = XALLOCAVEC (tree, nelts * 4);
1511 if (!vec_cst_ctor_to_array (arg1, elts)
1512 || !vec_cst_ctor_to_array (arg2, elts + nelts * 2))
1513 return NULL_TREE;
1515 if (code == VEC_WIDEN_MULT_LO_EXPR)
1516 scale = 0, ofs = BYTES_BIG_ENDIAN ? nelts : 0;
1517 else if (code == VEC_WIDEN_MULT_HI_EXPR)
1518 scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : nelts;
1519 else if (code == VEC_WIDEN_MULT_EVEN_EXPR)
1520 scale = 1, ofs = 0;
1521 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1522 scale = 1, ofs = 1;
1524 for (out = 0; out < nelts; out++)
1526 unsigned int in1 = (out << scale) + ofs;
1527 unsigned int in2 = in1 + nelts * 2;
1528 tree t1, t2;
1530 t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in1]);
1531 t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), elts[in2]);
1533 if (t1 == NULL_TREE || t2 == NULL_TREE)
1534 return NULL_TREE;
1535 elts[out] = const_binop (MULT_EXPR, t1, t2);
1536 if (elts[out] == NULL_TREE || !CONSTANT_CLASS_P (elts[out]))
1537 return NULL_TREE;
1540 return build_vector (type, elts);
1543 default:;
1546 if (TREE_CODE_CLASS (code) != tcc_binary)
1547 return NULL_TREE;
1549 /* Make sure type and arg0 have the same saturating flag. */
1550 gcc_checking_assert (TYPE_SATURATING (type)
1551 == TYPE_SATURATING (TREE_TYPE (arg1)));
1553 return const_binop (code, arg1, arg2);
1556 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1557 Return zero if computing the constants is not possible. */
1559 tree
1560 const_unop (enum tree_code code, tree type, tree arg0)
1562 /* Don't perform the operation, other than NEGATE and ABS, if
1563 flag_signaling_nans is on and the operand is a signaling NaN. */
1564 if (TREE_CODE (arg0) == REAL_CST
1565 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
1566 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0))
1567 && code != NEGATE_EXPR
1568 && code != ABS_EXPR)
1569 return NULL_TREE;
1571 switch (code)
1573 CASE_CONVERT:
1574 case FLOAT_EXPR:
1575 case FIX_TRUNC_EXPR:
1576 case FIXED_CONVERT_EXPR:
1577 return fold_convert_const (code, type, arg0);
1579 case ADDR_SPACE_CONVERT_EXPR:
1580 /* If the source address is 0, and the source address space
1581 cannot have a valid object at 0, fold to dest type null. */
1582 if (integer_zerop (arg0)
1583 && !(targetm.addr_space.zero_address_valid
1584 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))))))
1585 return fold_convert_const (code, type, arg0);
1586 break;
1588 case VIEW_CONVERT_EXPR:
1589 return fold_view_convert_expr (type, arg0);
1591 case NEGATE_EXPR:
1593 /* Can't call fold_negate_const directly here as that doesn't
1594 handle all cases and we might not be able to negate some
1595 constants. */
1596 tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0);
1597 if (tem && CONSTANT_CLASS_P (tem))
1598 return tem;
1599 break;
1602 case ABS_EXPR:
1603 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
1604 return fold_abs_const (arg0, type);
1605 break;
1607 case CONJ_EXPR:
1608 if (TREE_CODE (arg0) == COMPLEX_CST)
1610 tree ipart = fold_negate_const (TREE_IMAGPART (arg0),
1611 TREE_TYPE (type));
1612 return build_complex (type, TREE_REALPART (arg0), ipart);
1614 break;
1616 case BIT_NOT_EXPR:
1617 if (TREE_CODE (arg0) == INTEGER_CST)
1618 return fold_not_const (arg0, type);
1619 /* Perform BIT_NOT_EXPR on each element individually. */
1620 else if (TREE_CODE (arg0) == VECTOR_CST)
1622 tree *elements;
1623 tree elem;
1624 unsigned count = VECTOR_CST_NELTS (arg0), i;
1626 elements = XALLOCAVEC (tree, count);
1627 for (i = 0; i < count; i++)
1629 elem = VECTOR_CST_ELT (arg0, i);
1630 elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem);
1631 if (elem == NULL_TREE)
1632 break;
1633 elements[i] = elem;
1635 if (i == count)
1636 return build_vector (type, elements);
1638 break;
1640 case TRUTH_NOT_EXPR:
1641 if (TREE_CODE (arg0) == INTEGER_CST)
1642 return constant_boolean_node (integer_zerop (arg0), type);
1643 break;
1645 case REALPART_EXPR:
1646 if (TREE_CODE (arg0) == COMPLEX_CST)
1647 return fold_convert (type, TREE_REALPART (arg0));
1648 break;
1650 case IMAGPART_EXPR:
1651 if (TREE_CODE (arg0) == COMPLEX_CST)
1652 return fold_convert (type, TREE_IMAGPART (arg0));
1653 break;
1655 case VEC_UNPACK_LO_EXPR:
1656 case VEC_UNPACK_HI_EXPR:
1657 case VEC_UNPACK_FLOAT_LO_EXPR:
1658 case VEC_UNPACK_FLOAT_HI_EXPR:
1660 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
1661 tree *elts;
1662 enum tree_code subcode;
1664 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts * 2);
1665 if (TREE_CODE (arg0) != VECTOR_CST)
1666 return NULL_TREE;
1668 elts = XALLOCAVEC (tree, nelts * 2);
1669 if (!vec_cst_ctor_to_array (arg0, elts))
1670 return NULL_TREE;
1672 if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR
1673 || code == VEC_UNPACK_FLOAT_LO_EXPR))
1674 elts += nelts;
1676 if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR)
1677 subcode = NOP_EXPR;
1678 else
1679 subcode = FLOAT_EXPR;
1681 for (i = 0; i < nelts; i++)
1683 elts[i] = fold_convert_const (subcode, TREE_TYPE (type), elts[i]);
1684 if (elts[i] == NULL_TREE || !CONSTANT_CLASS_P (elts[i]))
1685 return NULL_TREE;
1688 return build_vector (type, elts);
1691 case REDUC_MIN_EXPR:
1692 case REDUC_MAX_EXPR:
1693 case REDUC_PLUS_EXPR:
1695 unsigned int nelts, i;
1696 tree *elts;
1697 enum tree_code subcode;
1699 if (TREE_CODE (arg0) != VECTOR_CST)
1700 return NULL_TREE;
1701 nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0));
1703 elts = XALLOCAVEC (tree, nelts);
1704 if (!vec_cst_ctor_to_array (arg0, elts))
1705 return NULL_TREE;
1707 switch (code)
1709 case REDUC_MIN_EXPR: subcode = MIN_EXPR; break;
1710 case REDUC_MAX_EXPR: subcode = MAX_EXPR; break;
1711 case REDUC_PLUS_EXPR: subcode = PLUS_EXPR; break;
1712 default: gcc_unreachable ();
1715 for (i = 1; i < nelts; i++)
1717 elts[0] = const_binop (subcode, elts[0], elts[i]);
1718 if (elts[0] == NULL_TREE || !CONSTANT_CLASS_P (elts[0]))
1719 return NULL_TREE;
1722 return elts[0];
1725 default:
1726 break;
1729 return NULL_TREE;
1732 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1733 indicates which particular sizetype to create. */
1735 tree
1736 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
1738 return build_int_cst (sizetype_tab[(int) kind], number);
1741 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1742 is a tree code. The type of the result is taken from the operands.
1743 Both must be equivalent integer types, ala int_binop_types_match_p.
1744 If the operands are constant, so is the result. */
1746 tree
1747 size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1)
1749 tree type = TREE_TYPE (arg0);
1751 if (arg0 == error_mark_node || arg1 == error_mark_node)
1752 return error_mark_node;
1754 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
1755 TREE_TYPE (arg1)));
1757 /* Handle the special case of two integer constants faster. */
1758 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
1760 /* And some specific cases even faster than that. */
1761 if (code == PLUS_EXPR)
1763 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
1764 return arg1;
1765 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1766 return arg0;
1768 else if (code == MINUS_EXPR)
1770 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
1771 return arg0;
1773 else if (code == MULT_EXPR)
1775 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
1776 return arg1;
1779 /* Handle general case of two integer constants. For sizetype
1780 constant calculations we always want to know about overflow,
1781 even in the unsigned case. */
1782 return int_const_binop_1 (code, arg0, arg1, -1);
1785 return fold_build2_loc (loc, code, type, arg0, arg1);
1788 /* Given two values, either both of sizetype or both of bitsizetype,
1789 compute the difference between the two values. Return the value
1790 in signed type corresponding to the type of the operands. */
1792 tree
1793 size_diffop_loc (location_t loc, tree arg0, tree arg1)
1795 tree type = TREE_TYPE (arg0);
1796 tree ctype;
1798 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
1799 TREE_TYPE (arg1)));
1801 /* If the type is already signed, just do the simple thing. */
1802 if (!TYPE_UNSIGNED (type))
1803 return size_binop_loc (loc, MINUS_EXPR, arg0, arg1);
1805 if (type == sizetype)
1806 ctype = ssizetype;
1807 else if (type == bitsizetype)
1808 ctype = sbitsizetype;
1809 else
1810 ctype = signed_type_for (type);
1812 /* If either operand is not a constant, do the conversions to the signed
1813 type and subtract. The hardware will do the right thing with any
1814 overflow in the subtraction. */
1815 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
1816 return size_binop_loc (loc, MINUS_EXPR,
1817 fold_convert_loc (loc, ctype, arg0),
1818 fold_convert_loc (loc, ctype, arg1));
1820 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1821 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1822 overflow) and negate (which can't either). Special-case a result
1823 of zero while we're here. */
1824 if (tree_int_cst_equal (arg0, arg1))
1825 return build_int_cst (ctype, 0);
1826 else if (tree_int_cst_lt (arg1, arg0))
1827 return fold_convert_loc (loc, ctype,
1828 size_binop_loc (loc, MINUS_EXPR, arg0, arg1));
1829 else
1830 return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0),
1831 fold_convert_loc (loc, ctype,
1832 size_binop_loc (loc,
1833 MINUS_EXPR,
1834 arg1, arg0)));
1837 /* A subroutine of fold_convert_const handling conversions of an
1838 INTEGER_CST to another integer type. */
1840 static tree
1841 fold_convert_const_int_from_int (tree type, const_tree arg1)
1843 /* Given an integer constant, make new constant with new type,
1844 appropriately sign-extended or truncated. Use widest_int
1845 so that any extension is done according ARG1's type. */
1846 return force_fit_type (type, wi::to_widest (arg1),
1847 !POINTER_TYPE_P (TREE_TYPE (arg1)),
1848 TREE_OVERFLOW (arg1));
1851 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1852 to an integer type. */
1854 static tree
1855 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
1857 bool overflow = false;
1858 tree t;
1860 /* The following code implements the floating point to integer
1861 conversion rules required by the Java Language Specification,
1862 that IEEE NaNs are mapped to zero and values that overflow
1863 the target precision saturate, i.e. values greater than
1864 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
1865 are mapped to INT_MIN. These semantics are allowed by the
1866 C and C++ standards that simply state that the behavior of
1867 FP-to-integer conversion is unspecified upon overflow. */
1869 wide_int val;
1870 REAL_VALUE_TYPE r;
1871 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
1873 switch (code)
1875 case FIX_TRUNC_EXPR:
1876 real_trunc (&r, VOIDmode, &x);
1877 break;
1879 default:
1880 gcc_unreachable ();
1883 /* If R is NaN, return zero and show we have an overflow. */
1884 if (REAL_VALUE_ISNAN (r))
1886 overflow = true;
1887 val = wi::zero (TYPE_PRECISION (type));
1890 /* See if R is less than the lower bound or greater than the
1891 upper bound. */
1893 if (! overflow)
1895 tree lt = TYPE_MIN_VALUE (type);
1896 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
1897 if (real_less (&r, &l))
1899 overflow = true;
1900 val = lt;
1904 if (! overflow)
1906 tree ut = TYPE_MAX_VALUE (type);
1907 if (ut)
1909 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
1910 if (real_less (&u, &r))
1912 overflow = true;
1913 val = ut;
1918 if (! overflow)
1919 val = real_to_integer (&r, &overflow, TYPE_PRECISION (type));
1921 t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1));
1922 return t;
1925 /* A subroutine of fold_convert_const handling conversions of a
1926 FIXED_CST to an integer type. */
1928 static tree
1929 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
1931 tree t;
1932 double_int temp, temp_trunc;
1933 unsigned int mode;
1935 /* Right shift FIXED_CST to temp by fbit. */
1936 temp = TREE_FIXED_CST (arg1).data;
1937 mode = TREE_FIXED_CST (arg1).mode;
1938 if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT)
1940 temp = temp.rshift (GET_MODE_FBIT (mode),
1941 HOST_BITS_PER_DOUBLE_INT,
1942 SIGNED_FIXED_POINT_MODE_P (mode));
1944 /* Left shift temp to temp_trunc by fbit. */
1945 temp_trunc = temp.lshift (GET_MODE_FBIT (mode),
1946 HOST_BITS_PER_DOUBLE_INT,
1947 SIGNED_FIXED_POINT_MODE_P (mode));
1949 else
1951 temp = double_int_zero;
1952 temp_trunc = double_int_zero;
1955 /* If FIXED_CST is negative, we need to round the value toward 0.
1956 By checking if the fractional bits are not zero to add 1 to temp. */
1957 if (SIGNED_FIXED_POINT_MODE_P (mode)
1958 && temp_trunc.is_negative ()
1959 && TREE_FIXED_CST (arg1).data != temp_trunc)
1960 temp += double_int_one;
1962 /* Given a fixed-point constant, make new constant with new type,
1963 appropriately sign-extended or truncated. */
1964 t = force_fit_type (type, temp, -1,
1965 (temp.is_negative ()
1966 && (TYPE_UNSIGNED (type)
1967 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
1968 | TREE_OVERFLOW (arg1));
1970 return t;
1973 /* A subroutine of fold_convert_const handling conversions a REAL_CST
1974 to another floating point type. */
1976 static tree
1977 fold_convert_const_real_from_real (tree type, const_tree arg1)
1979 REAL_VALUE_TYPE value;
1980 tree t;
1982 /* Don't perform the operation if flag_signaling_nans is on
1983 and the operand is a signaling NaN. */
1984 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1)))
1985 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1)))
1986 return NULL_TREE;
1988 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
1989 t = build_real (type, value);
1991 /* If converting an infinity or NAN to a representation that doesn't
1992 have one, set the overflow bit so that we can produce some kind of
1993 error message at the appropriate point if necessary. It's not the
1994 most user-friendly message, but it's better than nothing. */
1995 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1))
1996 && !MODE_HAS_INFINITIES (TYPE_MODE (type)))
1997 TREE_OVERFLOW (t) = 1;
1998 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
1999 && !MODE_HAS_NANS (TYPE_MODE (type)))
2000 TREE_OVERFLOW (t) = 1;
2001 /* Regular overflow, conversion produced an infinity in a mode that
2002 can't represent them. */
2003 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type))
2004 && REAL_VALUE_ISINF (value)
2005 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1)))
2006 TREE_OVERFLOW (t) = 1;
2007 else
2008 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2009 return t;
2012 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2013 to a floating point type. */
2015 static tree
2016 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2018 REAL_VALUE_TYPE value;
2019 tree t;
2021 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
2022 t = build_real (type, value);
2024 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2025 return t;
2028 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2029 to another fixed-point type. */
2031 static tree
2032 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2034 FIXED_VALUE_TYPE value;
2035 tree t;
2036 bool overflow_p;
2038 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2039 TYPE_SATURATING (type));
2040 t = build_fixed (type, value);
2042 /* Propagate overflow flags. */
2043 if (overflow_p | TREE_OVERFLOW (arg1))
2044 TREE_OVERFLOW (t) = 1;
2045 return t;
2048 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2049 to a fixed-point type. */
2051 static tree
2052 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2054 FIXED_VALUE_TYPE value;
2055 tree t;
2056 bool overflow_p;
2057 double_int di;
2059 gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2);
2061 di.low = TREE_INT_CST_ELT (arg1, 0);
2062 if (TREE_INT_CST_NUNITS (arg1) == 1)
2063 di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0;
2064 else
2065 di.high = TREE_INT_CST_ELT (arg1, 1);
2067 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type), di,
2068 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2069 TYPE_SATURATING (type));
2070 t = build_fixed (type, value);
2072 /* Propagate overflow flags. */
2073 if (overflow_p | TREE_OVERFLOW (arg1))
2074 TREE_OVERFLOW (t) = 1;
2075 return t;
2078 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2079 to a fixed-point type. */
2081 static tree
2082 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2084 FIXED_VALUE_TYPE value;
2085 tree t;
2086 bool overflow_p;
2088 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2089 &TREE_REAL_CST (arg1),
2090 TYPE_SATURATING (type));
2091 t = build_fixed (type, value);
2093 /* Propagate overflow flags. */
2094 if (overflow_p | TREE_OVERFLOW (arg1))
2095 TREE_OVERFLOW (t) = 1;
2096 return t;
2099 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2100 type TYPE. If no simplification can be done return NULL_TREE. */
2102 static tree
2103 fold_convert_const (enum tree_code code, tree type, tree arg1)
2105 if (TREE_TYPE (arg1) == type)
2106 return arg1;
2108 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2109 || TREE_CODE (type) == OFFSET_TYPE)
2111 if (TREE_CODE (arg1) == INTEGER_CST)
2112 return fold_convert_const_int_from_int (type, arg1);
2113 else if (TREE_CODE (arg1) == REAL_CST)
2114 return fold_convert_const_int_from_real (code, type, arg1);
2115 else if (TREE_CODE (arg1) == FIXED_CST)
2116 return fold_convert_const_int_from_fixed (type, arg1);
2118 else if (TREE_CODE (type) == REAL_TYPE)
2120 if (TREE_CODE (arg1) == INTEGER_CST)
2121 return build_real_from_int_cst (type, arg1);
2122 else if (TREE_CODE (arg1) == REAL_CST)
2123 return fold_convert_const_real_from_real (type, arg1);
2124 else if (TREE_CODE (arg1) == FIXED_CST)
2125 return fold_convert_const_real_from_fixed (type, arg1);
2127 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2129 if (TREE_CODE (arg1) == FIXED_CST)
2130 return fold_convert_const_fixed_from_fixed (type, arg1);
2131 else if (TREE_CODE (arg1) == INTEGER_CST)
2132 return fold_convert_const_fixed_from_int (type, arg1);
2133 else if (TREE_CODE (arg1) == REAL_CST)
2134 return fold_convert_const_fixed_from_real (type, arg1);
2136 else if (TREE_CODE (type) == VECTOR_TYPE)
2138 if (TREE_CODE (arg1) == VECTOR_CST
2139 && TYPE_VECTOR_SUBPARTS (type) == VECTOR_CST_NELTS (arg1))
2141 int len = TYPE_VECTOR_SUBPARTS (type);
2142 tree elttype = TREE_TYPE (type);
2143 tree *v = XALLOCAVEC (tree, len);
2144 for (int i = 0; i < len; ++i)
2146 tree elt = VECTOR_CST_ELT (arg1, i);
2147 tree cvt = fold_convert_const (code, elttype, elt);
2148 if (cvt == NULL_TREE)
2149 return NULL_TREE;
2150 v[i] = cvt;
2152 return build_vector (type, v);
2155 return NULL_TREE;
2158 /* Construct a vector of zero elements of vector type TYPE. */
2160 static tree
2161 build_zero_vector (tree type)
2163 tree t;
2165 t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2166 return build_vector_from_val (type, t);
2169 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2171 bool
2172 fold_convertible_p (const_tree type, const_tree arg)
2174 tree orig = TREE_TYPE (arg);
2176 if (type == orig)
2177 return true;
2179 if (TREE_CODE (arg) == ERROR_MARK
2180 || TREE_CODE (type) == ERROR_MARK
2181 || TREE_CODE (orig) == ERROR_MARK)
2182 return false;
2184 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2185 return true;
2187 switch (TREE_CODE (type))
2189 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2190 case POINTER_TYPE: case REFERENCE_TYPE:
2191 case OFFSET_TYPE:
2192 return (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2193 || TREE_CODE (orig) == OFFSET_TYPE);
2195 case REAL_TYPE:
2196 case FIXED_POINT_TYPE:
2197 case VECTOR_TYPE:
2198 case VOID_TYPE:
2199 return TREE_CODE (type) == TREE_CODE (orig);
2201 default:
2202 return false;
2206 /* Convert expression ARG to type TYPE. Used by the middle-end for
2207 simple conversions in preference to calling the front-end's convert. */
2209 tree
2210 fold_convert_loc (location_t loc, tree type, tree arg)
2212 tree orig = TREE_TYPE (arg);
2213 tree tem;
2215 if (type == orig)
2216 return arg;
2218 if (TREE_CODE (arg) == ERROR_MARK
2219 || TREE_CODE (type) == ERROR_MARK
2220 || TREE_CODE (orig) == ERROR_MARK)
2221 return error_mark_node;
2223 switch (TREE_CODE (type))
2225 case POINTER_TYPE:
2226 case REFERENCE_TYPE:
2227 /* Handle conversions between pointers to different address spaces. */
2228 if (POINTER_TYPE_P (orig)
2229 && (TYPE_ADDR_SPACE (TREE_TYPE (type))
2230 != TYPE_ADDR_SPACE (TREE_TYPE (orig))))
2231 return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg);
2232 /* fall through */
2234 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2235 case OFFSET_TYPE:
2236 if (TREE_CODE (arg) == INTEGER_CST)
2238 tem = fold_convert_const (NOP_EXPR, type, arg);
2239 if (tem != NULL_TREE)
2240 return tem;
2242 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2243 || TREE_CODE (orig) == OFFSET_TYPE)
2244 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2245 if (TREE_CODE (orig) == COMPLEX_TYPE)
2246 return fold_convert_loc (loc, type,
2247 fold_build1_loc (loc, REALPART_EXPR,
2248 TREE_TYPE (orig), arg));
2249 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2250 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2251 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2253 case REAL_TYPE:
2254 if (TREE_CODE (arg) == INTEGER_CST)
2256 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2257 if (tem != NULL_TREE)
2258 return tem;
2260 else if (TREE_CODE (arg) == REAL_CST)
2262 tem = fold_convert_const (NOP_EXPR, type, arg);
2263 if (tem != NULL_TREE)
2264 return tem;
2266 else if (TREE_CODE (arg) == FIXED_CST)
2268 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2269 if (tem != NULL_TREE)
2270 return tem;
2273 switch (TREE_CODE (orig))
2275 case INTEGER_TYPE:
2276 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2277 case POINTER_TYPE: case REFERENCE_TYPE:
2278 return fold_build1_loc (loc, FLOAT_EXPR, type, arg);
2280 case REAL_TYPE:
2281 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2283 case FIXED_POINT_TYPE:
2284 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2286 case COMPLEX_TYPE:
2287 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2288 return fold_convert_loc (loc, type, tem);
2290 default:
2291 gcc_unreachable ();
2294 case FIXED_POINT_TYPE:
2295 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2296 || TREE_CODE (arg) == REAL_CST)
2298 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2299 if (tem != NULL_TREE)
2300 goto fold_convert_exit;
2303 switch (TREE_CODE (orig))
2305 case FIXED_POINT_TYPE:
2306 case INTEGER_TYPE:
2307 case ENUMERAL_TYPE:
2308 case BOOLEAN_TYPE:
2309 case REAL_TYPE:
2310 return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg);
2312 case COMPLEX_TYPE:
2313 tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2314 return fold_convert_loc (loc, type, tem);
2316 default:
2317 gcc_unreachable ();
2320 case COMPLEX_TYPE:
2321 switch (TREE_CODE (orig))
2323 case INTEGER_TYPE:
2324 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2325 case POINTER_TYPE: case REFERENCE_TYPE:
2326 case REAL_TYPE:
2327 case FIXED_POINT_TYPE:
2328 return fold_build2_loc (loc, COMPLEX_EXPR, type,
2329 fold_convert_loc (loc, TREE_TYPE (type), arg),
2330 fold_convert_loc (loc, TREE_TYPE (type),
2331 integer_zero_node));
2332 case COMPLEX_TYPE:
2334 tree rpart, ipart;
2336 if (TREE_CODE (arg) == COMPLEX_EXPR)
2338 rpart = fold_convert_loc (loc, TREE_TYPE (type),
2339 TREE_OPERAND (arg, 0));
2340 ipart = fold_convert_loc (loc, TREE_TYPE (type),
2341 TREE_OPERAND (arg, 1));
2342 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2345 arg = save_expr (arg);
2346 rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg);
2347 ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg);
2348 rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart);
2349 ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart);
2350 return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart);
2353 default:
2354 gcc_unreachable ();
2357 case VECTOR_TYPE:
2358 if (integer_zerop (arg))
2359 return build_zero_vector (type);
2360 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2361 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2362 || TREE_CODE (orig) == VECTOR_TYPE);
2363 return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg);
2365 case VOID_TYPE:
2366 tem = fold_ignored_result (arg);
2367 return fold_build1_loc (loc, NOP_EXPR, type, tem);
2369 default:
2370 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2371 return fold_build1_loc (loc, NOP_EXPR, type, arg);
2372 gcc_unreachable ();
2374 fold_convert_exit:
2375 protected_set_expr_location_unshare (tem, loc);
2376 return tem;
2379 /* Return false if expr can be assumed not to be an lvalue, true
2380 otherwise. */
2382 static bool
2383 maybe_lvalue_p (const_tree x)
2385 /* We only need to wrap lvalue tree codes. */
2386 switch (TREE_CODE (x))
2388 case VAR_DECL:
2389 case PARM_DECL:
2390 case RESULT_DECL:
2391 case LABEL_DECL:
2392 case FUNCTION_DECL:
2393 case SSA_NAME:
2395 case COMPONENT_REF:
2396 case MEM_REF:
2397 case INDIRECT_REF:
2398 case ARRAY_REF:
2399 case ARRAY_RANGE_REF:
2400 case BIT_FIELD_REF:
2401 case OBJ_TYPE_REF:
2403 case REALPART_EXPR:
2404 case IMAGPART_EXPR:
2405 case PREINCREMENT_EXPR:
2406 case PREDECREMENT_EXPR:
2407 case SAVE_EXPR:
2408 case TRY_CATCH_EXPR:
2409 case WITH_CLEANUP_EXPR:
2410 case COMPOUND_EXPR:
2411 case MODIFY_EXPR:
2412 case TARGET_EXPR:
2413 case COND_EXPR:
2414 case BIND_EXPR:
2415 break;
2417 default:
2418 /* Assume the worst for front-end tree codes. */
2419 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2420 break;
2421 return false;
2424 return true;
2427 /* Return an expr equal to X but certainly not valid as an lvalue. */
2429 tree
2430 non_lvalue_loc (location_t loc, tree x)
2432 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2433 us. */
2434 if (in_gimple_form)
2435 return x;
2437 if (! maybe_lvalue_p (x))
2438 return x;
2439 return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x);
2442 /* When pedantic, return an expr equal to X but certainly not valid as a
2443 pedantic lvalue. Otherwise, return X. */
2445 static tree
2446 pedantic_non_lvalue_loc (location_t loc, tree x)
2448 return protected_set_expr_location_unshare (x, loc);
2451 /* Given a tree comparison code, return the code that is the logical inverse.
2452 It is generally not safe to do this for floating-point comparisons, except
2453 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2454 ERROR_MARK in this case. */
2456 enum tree_code
2457 invert_tree_comparison (enum tree_code code, bool honor_nans)
2459 if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR
2460 && code != ORDERED_EXPR && code != UNORDERED_EXPR)
2461 return ERROR_MARK;
2463 switch (code)
2465 case EQ_EXPR:
2466 return NE_EXPR;
2467 case NE_EXPR:
2468 return EQ_EXPR;
2469 case GT_EXPR:
2470 return honor_nans ? UNLE_EXPR : LE_EXPR;
2471 case GE_EXPR:
2472 return honor_nans ? UNLT_EXPR : LT_EXPR;
2473 case LT_EXPR:
2474 return honor_nans ? UNGE_EXPR : GE_EXPR;
2475 case LE_EXPR:
2476 return honor_nans ? UNGT_EXPR : GT_EXPR;
2477 case LTGT_EXPR:
2478 return UNEQ_EXPR;
2479 case UNEQ_EXPR:
2480 return LTGT_EXPR;
2481 case UNGT_EXPR:
2482 return LE_EXPR;
2483 case UNGE_EXPR:
2484 return LT_EXPR;
2485 case UNLT_EXPR:
2486 return GE_EXPR;
2487 case UNLE_EXPR:
2488 return GT_EXPR;
2489 case ORDERED_EXPR:
2490 return UNORDERED_EXPR;
2491 case UNORDERED_EXPR:
2492 return ORDERED_EXPR;
2493 default:
2494 gcc_unreachable ();
2498 /* Similar, but return the comparison that results if the operands are
2499 swapped. This is safe for floating-point. */
2501 enum tree_code
2502 swap_tree_comparison (enum tree_code code)
2504 switch (code)
2506 case EQ_EXPR:
2507 case NE_EXPR:
2508 case ORDERED_EXPR:
2509 case UNORDERED_EXPR:
2510 case LTGT_EXPR:
2511 case UNEQ_EXPR:
2512 return code;
2513 case GT_EXPR:
2514 return LT_EXPR;
2515 case GE_EXPR:
2516 return LE_EXPR;
2517 case LT_EXPR:
2518 return GT_EXPR;
2519 case LE_EXPR:
2520 return GE_EXPR;
2521 case UNGT_EXPR:
2522 return UNLT_EXPR;
2523 case UNGE_EXPR:
2524 return UNLE_EXPR;
2525 case UNLT_EXPR:
2526 return UNGT_EXPR;
2527 case UNLE_EXPR:
2528 return UNGE_EXPR;
2529 default:
2530 gcc_unreachable ();
2535 /* Convert a comparison tree code from an enum tree_code representation
2536 into a compcode bit-based encoding. This function is the inverse of
2537 compcode_to_comparison. */
2539 static enum comparison_code
2540 comparison_to_compcode (enum tree_code code)
2542 switch (code)
2544 case LT_EXPR:
2545 return COMPCODE_LT;
2546 case EQ_EXPR:
2547 return COMPCODE_EQ;
2548 case LE_EXPR:
2549 return COMPCODE_LE;
2550 case GT_EXPR:
2551 return COMPCODE_GT;
2552 case NE_EXPR:
2553 return COMPCODE_NE;
2554 case GE_EXPR:
2555 return COMPCODE_GE;
2556 case ORDERED_EXPR:
2557 return COMPCODE_ORD;
2558 case UNORDERED_EXPR:
2559 return COMPCODE_UNORD;
2560 case UNLT_EXPR:
2561 return COMPCODE_UNLT;
2562 case UNEQ_EXPR:
2563 return COMPCODE_UNEQ;
2564 case UNLE_EXPR:
2565 return COMPCODE_UNLE;
2566 case UNGT_EXPR:
2567 return COMPCODE_UNGT;
2568 case LTGT_EXPR:
2569 return COMPCODE_LTGT;
2570 case UNGE_EXPR:
2571 return COMPCODE_UNGE;
2572 default:
2573 gcc_unreachable ();
2577 /* Convert a compcode bit-based encoding of a comparison operator back
2578 to GCC's enum tree_code representation. This function is the
2579 inverse of comparison_to_compcode. */
2581 static enum tree_code
2582 compcode_to_comparison (enum comparison_code code)
2584 switch (code)
2586 case COMPCODE_LT:
2587 return LT_EXPR;
2588 case COMPCODE_EQ:
2589 return EQ_EXPR;
2590 case COMPCODE_LE:
2591 return LE_EXPR;
2592 case COMPCODE_GT:
2593 return GT_EXPR;
2594 case COMPCODE_NE:
2595 return NE_EXPR;
2596 case COMPCODE_GE:
2597 return GE_EXPR;
2598 case COMPCODE_ORD:
2599 return ORDERED_EXPR;
2600 case COMPCODE_UNORD:
2601 return UNORDERED_EXPR;
2602 case COMPCODE_UNLT:
2603 return UNLT_EXPR;
2604 case COMPCODE_UNEQ:
2605 return UNEQ_EXPR;
2606 case COMPCODE_UNLE:
2607 return UNLE_EXPR;
2608 case COMPCODE_UNGT:
2609 return UNGT_EXPR;
2610 case COMPCODE_LTGT:
2611 return LTGT_EXPR;
2612 case COMPCODE_UNGE:
2613 return UNGE_EXPR;
2614 default:
2615 gcc_unreachable ();
2619 /* Return a tree for the comparison which is the combination of
2620 doing the AND or OR (depending on CODE) of the two operations LCODE
2621 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2622 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2623 if this makes the transformation invalid. */
2625 tree
2626 combine_comparisons (location_t loc,
2627 enum tree_code code, enum tree_code lcode,
2628 enum tree_code rcode, tree truth_type,
2629 tree ll_arg, tree lr_arg)
2631 bool honor_nans = HONOR_NANS (ll_arg);
2632 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2633 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2634 int compcode;
2636 switch (code)
2638 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2639 compcode = lcompcode & rcompcode;
2640 break;
2642 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2643 compcode = lcompcode | rcompcode;
2644 break;
2646 default:
2647 return NULL_TREE;
2650 if (!honor_nans)
2652 /* Eliminate unordered comparisons, as well as LTGT and ORD
2653 which are not used unless the mode has NaNs. */
2654 compcode &= ~COMPCODE_UNORD;
2655 if (compcode == COMPCODE_LTGT)
2656 compcode = COMPCODE_NE;
2657 else if (compcode == COMPCODE_ORD)
2658 compcode = COMPCODE_TRUE;
2660 else if (flag_trapping_math)
2662 /* Check that the original operation and the optimized ones will trap
2663 under the same condition. */
2664 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2665 && (lcompcode != COMPCODE_EQ)
2666 && (lcompcode != COMPCODE_ORD);
2667 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2668 && (rcompcode != COMPCODE_EQ)
2669 && (rcompcode != COMPCODE_ORD);
2670 bool trap = (compcode & COMPCODE_UNORD) == 0
2671 && (compcode != COMPCODE_EQ)
2672 && (compcode != COMPCODE_ORD);
2674 /* In a short-circuited boolean expression the LHS might be
2675 such that the RHS, if evaluated, will never trap. For
2676 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2677 if neither x nor y is NaN. (This is a mixed blessing: for
2678 example, the expression above will never trap, hence
2679 optimizing it to x < y would be invalid). */
2680 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2681 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2682 rtrap = false;
2684 /* If the comparison was short-circuited, and only the RHS
2685 trapped, we may now generate a spurious trap. */
2686 if (rtrap && !ltrap
2687 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2688 return NULL_TREE;
2690 /* If we changed the conditions that cause a trap, we lose. */
2691 if ((ltrap || rtrap) != trap)
2692 return NULL_TREE;
2695 if (compcode == COMPCODE_TRUE)
2696 return constant_boolean_node (true, truth_type);
2697 else if (compcode == COMPCODE_FALSE)
2698 return constant_boolean_node (false, truth_type);
2699 else
2701 enum tree_code tcode;
2703 tcode = compcode_to_comparison ((enum comparison_code) compcode);
2704 return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg);
2708 /* Return nonzero if two operands (typically of the same tree node)
2709 are necessarily equal. FLAGS modifies behavior as follows:
2711 If OEP_ONLY_CONST is set, only return nonzero for constants.
2712 This function tests whether the operands are indistinguishable;
2713 it does not test whether they are equal using C's == operation.
2714 The distinction is important for IEEE floating point, because
2715 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2716 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2718 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2719 even though it may hold multiple values during a function.
2720 This is because a GCC tree node guarantees that nothing else is
2721 executed between the evaluation of its "operands" (which may often
2722 be evaluated in arbitrary order). Hence if the operands themselves
2723 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2724 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2725 unset means assuming isochronic (or instantaneous) tree equivalence.
2726 Unless comparing arbitrary expression trees, such as from different
2727 statements, this flag can usually be left unset.
2729 If OEP_PURE_SAME is set, then pure functions with identical arguments
2730 are considered the same. It is used when the caller has other ways
2731 to ensure that global memory is unchanged in between.
2733 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2734 not values of expressions.
2736 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2737 any operand with side effect. This is unnecesarily conservative in the
2738 case we know that arg0 and arg1 are in disjoint code paths (such as in
2739 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2740 addresses with TREE_CONSTANT flag set so we know that &var == &var
2741 even if var is volatile. */
2744 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
2746 /* When checking, verify at the outermost operand_equal_p call that
2747 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2748 hash value. */
2749 if (flag_checking && !(flags & OEP_NO_HASH_CHECK))
2751 if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK))
2753 if (arg0 != arg1)
2755 inchash::hash hstate0 (0), hstate1 (0);
2756 inchash::add_expr (arg0, hstate0, flags | OEP_HASH_CHECK);
2757 inchash::add_expr (arg1, hstate1, flags | OEP_HASH_CHECK);
2758 hashval_t h0 = hstate0.end ();
2759 hashval_t h1 = hstate1.end ();
2760 gcc_assert (h0 == h1);
2762 return 1;
2764 else
2765 return 0;
2768 /* If either is ERROR_MARK, they aren't equal. */
2769 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK
2770 || TREE_TYPE (arg0) == error_mark_node
2771 || TREE_TYPE (arg1) == error_mark_node)
2772 return 0;
2774 /* Similar, if either does not have a type (like a released SSA name),
2775 they aren't equal. */
2776 if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1))
2777 return 0;
2779 /* We cannot consider pointers to different address space equal. */
2780 if (POINTER_TYPE_P (TREE_TYPE (arg0))
2781 && POINTER_TYPE_P (TREE_TYPE (arg1))
2782 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))
2783 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1)))))
2784 return 0;
2786 /* Check equality of integer constants before bailing out due to
2787 precision differences. */
2788 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2790 /* Address of INTEGER_CST is not defined; check that we did not forget
2791 to drop the OEP_ADDRESS_OF flags. */
2792 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2793 return tree_int_cst_equal (arg0, arg1);
2796 if (!(flags & OEP_ADDRESS_OF))
2798 /* If both types don't have the same signedness, then we can't consider
2799 them equal. We must check this before the STRIP_NOPS calls
2800 because they may change the signedness of the arguments. As pointers
2801 strictly don't have a signedness, require either two pointers or
2802 two non-pointers as well. */
2803 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
2804 || POINTER_TYPE_P (TREE_TYPE (arg0))
2805 != POINTER_TYPE_P (TREE_TYPE (arg1)))
2806 return 0;
2808 /* If both types don't have the same precision, then it is not safe
2809 to strip NOPs. */
2810 if (element_precision (TREE_TYPE (arg0))
2811 != element_precision (TREE_TYPE (arg1)))
2812 return 0;
2814 STRIP_NOPS (arg0);
2815 STRIP_NOPS (arg1);
2817 #if 0
2818 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
2819 sanity check once the issue is solved. */
2820 else
2821 /* Addresses of conversions and SSA_NAMEs (and many other things)
2822 are not defined. Check that we did not forget to drop the
2823 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
2824 gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1)
2825 && TREE_CODE (arg0) != SSA_NAME);
2826 #endif
2828 /* In case both args are comparisons but with different comparison
2829 code, try to swap the comparison operands of one arg to produce
2830 a match and compare that variant. */
2831 if (TREE_CODE (arg0) != TREE_CODE (arg1)
2832 && COMPARISON_CLASS_P (arg0)
2833 && COMPARISON_CLASS_P (arg1))
2835 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
2837 if (TREE_CODE (arg0) == swap_code)
2838 return operand_equal_p (TREE_OPERAND (arg0, 0),
2839 TREE_OPERAND (arg1, 1), flags)
2840 && operand_equal_p (TREE_OPERAND (arg0, 1),
2841 TREE_OPERAND (arg1, 0), flags);
2844 if (TREE_CODE (arg0) != TREE_CODE (arg1))
2846 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
2847 if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1))
2849 else if (flags & OEP_ADDRESS_OF)
2851 /* If we are interested in comparing addresses ignore
2852 MEM_REF wrappings of the base that can appear just for
2853 TBAA reasons. */
2854 if (TREE_CODE (arg0) == MEM_REF
2855 && DECL_P (arg1)
2856 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR
2857 && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1
2858 && integer_zerop (TREE_OPERAND (arg0, 1)))
2859 return 1;
2860 else if (TREE_CODE (arg1) == MEM_REF
2861 && DECL_P (arg0)
2862 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR
2863 && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0
2864 && integer_zerop (TREE_OPERAND (arg1, 1)))
2865 return 1;
2866 return 0;
2868 else
2869 return 0;
2872 /* When not checking adddresses, this is needed for conversions and for
2873 COMPONENT_REF. Might as well play it safe and always test this. */
2874 if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
2875 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
2876 || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1))
2877 && !(flags & OEP_ADDRESS_OF)))
2878 return 0;
2880 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
2881 We don't care about side effects in that case because the SAVE_EXPR
2882 takes care of that for us. In all other cases, two expressions are
2883 equal if they have no side effects. If we have two identical
2884 expressions with side effects that should be treated the same due
2885 to the only side effects being identical SAVE_EXPR's, that will
2886 be detected in the recursive calls below.
2887 If we are taking an invariant address of two identical objects
2888 they are necessarily equal as well. */
2889 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
2890 && (TREE_CODE (arg0) == SAVE_EXPR
2891 || (flags & OEP_MATCH_SIDE_EFFECTS)
2892 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
2893 return 1;
2895 /* Next handle constant cases, those for which we can return 1 even
2896 if ONLY_CONST is set. */
2897 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
2898 switch (TREE_CODE (arg0))
2900 case INTEGER_CST:
2901 return tree_int_cst_equal (arg0, arg1);
2903 case FIXED_CST:
2904 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
2905 TREE_FIXED_CST (arg1));
2907 case REAL_CST:
2908 if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1)))
2909 return 1;
2912 if (!HONOR_SIGNED_ZEROS (arg0))
2914 /* If we do not distinguish between signed and unsigned zero,
2915 consider them equal. */
2916 if (real_zerop (arg0) && real_zerop (arg1))
2917 return 1;
2919 return 0;
2921 case VECTOR_CST:
2923 unsigned i;
2925 if (VECTOR_CST_NELTS (arg0) != VECTOR_CST_NELTS (arg1))
2926 return 0;
2928 for (i = 0; i < VECTOR_CST_NELTS (arg0); ++i)
2930 if (!operand_equal_p (VECTOR_CST_ELT (arg0, i),
2931 VECTOR_CST_ELT (arg1, i), flags))
2932 return 0;
2934 return 1;
2937 case COMPLEX_CST:
2938 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
2939 flags)
2940 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
2941 flags));
2943 case STRING_CST:
2944 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
2945 && ! memcmp (TREE_STRING_POINTER (arg0),
2946 TREE_STRING_POINTER (arg1),
2947 TREE_STRING_LENGTH (arg0)));
2949 case ADDR_EXPR:
2950 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
2951 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
2952 flags | OEP_ADDRESS_OF
2953 | OEP_MATCH_SIDE_EFFECTS);
2954 case CONSTRUCTOR:
2955 /* In GIMPLE empty constructors are allowed in initializers of
2956 aggregates. */
2957 return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1);
2958 default:
2959 break;
2962 if (flags & OEP_ONLY_CONST)
2963 return 0;
2965 /* Define macros to test an operand from arg0 and arg1 for equality and a
2966 variant that allows null and views null as being different from any
2967 non-null value. In the latter case, if either is null, the both
2968 must be; otherwise, do the normal comparison. */
2969 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
2970 TREE_OPERAND (arg1, N), flags)
2972 #define OP_SAME_WITH_NULL(N) \
2973 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
2974 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
2976 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
2978 case tcc_unary:
2979 /* Two conversions are equal only if signedness and modes match. */
2980 switch (TREE_CODE (arg0))
2982 CASE_CONVERT:
2983 case FIX_TRUNC_EXPR:
2984 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
2985 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
2986 return 0;
2987 break;
2988 default:
2989 break;
2992 return OP_SAME (0);
2995 case tcc_comparison:
2996 case tcc_binary:
2997 if (OP_SAME (0) && OP_SAME (1))
2998 return 1;
3000 /* For commutative ops, allow the other order. */
3001 return (commutative_tree_code (TREE_CODE (arg0))
3002 && operand_equal_p (TREE_OPERAND (arg0, 0),
3003 TREE_OPERAND (arg1, 1), flags)
3004 && operand_equal_p (TREE_OPERAND (arg0, 1),
3005 TREE_OPERAND (arg1, 0), flags));
3007 case tcc_reference:
3008 /* If either of the pointer (or reference) expressions we are
3009 dereferencing contain a side effect, these cannot be equal,
3010 but their addresses can be. */
3011 if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0
3012 && (TREE_SIDE_EFFECTS (arg0)
3013 || TREE_SIDE_EFFECTS (arg1)))
3014 return 0;
3016 switch (TREE_CODE (arg0))
3018 case INDIRECT_REF:
3019 if (!(flags & OEP_ADDRESS_OF)
3020 && (TYPE_ALIGN (TREE_TYPE (arg0))
3021 != TYPE_ALIGN (TREE_TYPE (arg1))))
3022 return 0;
3023 flags &= ~OEP_ADDRESS_OF;
3024 return OP_SAME (0);
3026 case IMAGPART_EXPR:
3027 /* Require the same offset. */
3028 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3029 TYPE_SIZE (TREE_TYPE (arg1)),
3030 flags & ~OEP_ADDRESS_OF))
3031 return 0;
3033 /* Fallthru. */
3034 case REALPART_EXPR:
3035 case VIEW_CONVERT_EXPR:
3036 return OP_SAME (0);
3038 case TARGET_MEM_REF:
3039 case MEM_REF:
3040 if (!(flags & OEP_ADDRESS_OF))
3042 /* Require equal access sizes */
3043 if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1))
3044 && (!TYPE_SIZE (TREE_TYPE (arg0))
3045 || !TYPE_SIZE (TREE_TYPE (arg1))
3046 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)),
3047 TYPE_SIZE (TREE_TYPE (arg1)),
3048 flags)))
3049 return 0;
3050 /* Verify that access happens in similar types. */
3051 if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1)))
3052 return 0;
3053 /* Verify that accesses are TBAA compatible. */
3054 if (!alias_ptr_types_compatible_p
3055 (TREE_TYPE (TREE_OPERAND (arg0, 1)),
3056 TREE_TYPE (TREE_OPERAND (arg1, 1)))
3057 || (MR_DEPENDENCE_CLIQUE (arg0)
3058 != MR_DEPENDENCE_CLIQUE (arg1))
3059 || (MR_DEPENDENCE_BASE (arg0)
3060 != MR_DEPENDENCE_BASE (arg1)))
3061 return 0;
3062 /* Verify that alignment is compatible. */
3063 if (TYPE_ALIGN (TREE_TYPE (arg0))
3064 != TYPE_ALIGN (TREE_TYPE (arg1)))
3065 return 0;
3067 flags &= ~OEP_ADDRESS_OF;
3068 return (OP_SAME (0) && OP_SAME (1)
3069 /* TARGET_MEM_REF require equal extra operands. */
3070 && (TREE_CODE (arg0) != TARGET_MEM_REF
3071 || (OP_SAME_WITH_NULL (2)
3072 && OP_SAME_WITH_NULL (3)
3073 && OP_SAME_WITH_NULL (4))));
3075 case ARRAY_REF:
3076 case ARRAY_RANGE_REF:
3077 if (!OP_SAME (0))
3078 return 0;
3079 flags &= ~OEP_ADDRESS_OF;
3080 /* Compare the array index by value if it is constant first as we
3081 may have different types but same value here. */
3082 return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3083 TREE_OPERAND (arg1, 1))
3084 || OP_SAME (1))
3085 && OP_SAME_WITH_NULL (2)
3086 && OP_SAME_WITH_NULL (3)
3087 /* Compare low bound and element size as with OEP_ADDRESS_OF
3088 we have to account for the offset of the ref. */
3089 && (TREE_TYPE (TREE_OPERAND (arg0, 0))
3090 == TREE_TYPE (TREE_OPERAND (arg1, 0))
3091 || (operand_equal_p (array_ref_low_bound
3092 (CONST_CAST_TREE (arg0)),
3093 array_ref_low_bound
3094 (CONST_CAST_TREE (arg1)), flags)
3095 && operand_equal_p (array_ref_element_size
3096 (CONST_CAST_TREE (arg0)),
3097 array_ref_element_size
3098 (CONST_CAST_TREE (arg1)),
3099 flags))));
3101 case COMPONENT_REF:
3102 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3103 may be NULL when we're called to compare MEM_EXPRs. */
3104 if (!OP_SAME_WITH_NULL (0)
3105 || !OP_SAME (1))
3106 return 0;
3107 flags &= ~OEP_ADDRESS_OF;
3108 return OP_SAME_WITH_NULL (2);
3110 case BIT_FIELD_REF:
3111 if (!OP_SAME (0))
3112 return 0;
3113 flags &= ~OEP_ADDRESS_OF;
3114 return OP_SAME (1) && OP_SAME (2);
3116 default:
3117 return 0;
3120 case tcc_expression:
3121 switch (TREE_CODE (arg0))
3123 case ADDR_EXPR:
3124 /* Be sure we pass right ADDRESS_OF flag. */
3125 gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
3126 return operand_equal_p (TREE_OPERAND (arg0, 0),
3127 TREE_OPERAND (arg1, 0),
3128 flags | OEP_ADDRESS_OF);
3130 case TRUTH_NOT_EXPR:
3131 return OP_SAME (0);
3133 case TRUTH_ANDIF_EXPR:
3134 case TRUTH_ORIF_EXPR:
3135 return OP_SAME (0) && OP_SAME (1);
3137 case FMA_EXPR:
3138 case WIDEN_MULT_PLUS_EXPR:
3139 case WIDEN_MULT_MINUS_EXPR:
3140 if (!OP_SAME (2))
3141 return 0;
3142 /* The multiplcation operands are commutative. */
3143 /* FALLTHRU */
3145 case TRUTH_AND_EXPR:
3146 case TRUTH_OR_EXPR:
3147 case TRUTH_XOR_EXPR:
3148 if (OP_SAME (0) && OP_SAME (1))
3149 return 1;
3151 /* Otherwise take into account this is a commutative operation. */
3152 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3153 TREE_OPERAND (arg1, 1), flags)
3154 && operand_equal_p (TREE_OPERAND (arg0, 1),
3155 TREE_OPERAND (arg1, 0), flags));
3157 case COND_EXPR:
3158 if (! OP_SAME (1) || ! OP_SAME (2))
3159 return 0;
3160 flags &= ~OEP_ADDRESS_OF;
3161 return OP_SAME (0);
3163 case VEC_COND_EXPR:
3164 case DOT_PROD_EXPR:
3165 case BIT_INSERT_EXPR:
3166 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3168 default:
3169 return 0;
3172 case tcc_vl_exp:
3173 switch (TREE_CODE (arg0))
3175 case CALL_EXPR:
3176 if ((CALL_EXPR_FN (arg0) == NULL_TREE)
3177 != (CALL_EXPR_FN (arg1) == NULL_TREE))
3178 /* If not both CALL_EXPRs are either internal or normal function
3179 functions, then they are not equal. */
3180 return 0;
3181 else if (CALL_EXPR_FN (arg0) == NULL_TREE)
3183 /* If the CALL_EXPRs call different internal functions, then they
3184 are not equal. */
3185 if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1))
3186 return 0;
3188 else
3190 /* If the CALL_EXPRs call different functions, then they are not
3191 equal. */
3192 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3193 flags))
3194 return 0;
3197 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3199 unsigned int cef = call_expr_flags (arg0);
3200 if (flags & OEP_PURE_SAME)
3201 cef &= ECF_CONST | ECF_PURE;
3202 else
3203 cef &= ECF_CONST;
3204 if (!cef)
3205 return 0;
3208 /* Now see if all the arguments are the same. */
3210 const_call_expr_arg_iterator iter0, iter1;
3211 const_tree a0, a1;
3212 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3213 a1 = first_const_call_expr_arg (arg1, &iter1);
3214 a0 && a1;
3215 a0 = next_const_call_expr_arg (&iter0),
3216 a1 = next_const_call_expr_arg (&iter1))
3217 if (! operand_equal_p (a0, a1, flags))
3218 return 0;
3220 /* If we get here and both argument lists are exhausted
3221 then the CALL_EXPRs are equal. */
3222 return ! (a0 || a1);
3224 default:
3225 return 0;
3228 case tcc_declaration:
3229 /* Consider __builtin_sqrt equal to sqrt. */
3230 return (TREE_CODE (arg0) == FUNCTION_DECL
3231 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3232 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3233 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3235 case tcc_exceptional:
3236 if (TREE_CODE (arg0) == CONSTRUCTOR)
3238 /* In GIMPLE constructors are used only to build vectors from
3239 elements. Individual elements in the constructor must be
3240 indexed in increasing order and form an initial sequence.
3242 We make no effort to compare constructors in generic.
3243 (see sem_variable::equals in ipa-icf which can do so for
3244 constants). */
3245 if (!VECTOR_TYPE_P (TREE_TYPE (arg0))
3246 || !VECTOR_TYPE_P (TREE_TYPE (arg1)))
3247 return 0;
3249 /* Be sure that vectors constructed have the same representation.
3250 We only tested element precision and modes to match.
3251 Vectors may be BLKmode and thus also check that the number of
3252 parts match. */
3253 if (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0))
3254 != TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))
3255 return 0;
3257 vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0);
3258 vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1);
3259 unsigned int len = vec_safe_length (v0);
3261 if (len != vec_safe_length (v1))
3262 return 0;
3264 for (unsigned int i = 0; i < len; i++)
3266 constructor_elt *c0 = &(*v0)[i];
3267 constructor_elt *c1 = &(*v1)[i];
3269 if (!operand_equal_p (c0->value, c1->value, flags)
3270 /* In GIMPLE the indexes can be either NULL or matching i.
3271 Double check this so we won't get false
3272 positives for GENERIC. */
3273 || (c0->index
3274 && (TREE_CODE (c0->index) != INTEGER_CST
3275 || !compare_tree_int (c0->index, i)))
3276 || (c1->index
3277 && (TREE_CODE (c1->index) != INTEGER_CST
3278 || !compare_tree_int (c1->index, i))))
3279 return 0;
3281 return 1;
3283 return 0;
3285 default:
3286 return 0;
3289 #undef OP_SAME
3290 #undef OP_SAME_WITH_NULL
3293 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3294 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3296 When in doubt, return 0. */
3298 static int
3299 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3301 int unsignedp1, unsignedpo;
3302 tree primarg0, primarg1, primother;
3303 unsigned int correct_width;
3305 if (operand_equal_p (arg0, arg1, 0))
3306 return 1;
3308 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3309 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3310 return 0;
3312 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3313 and see if the inner values are the same. This removes any
3314 signedness comparison, which doesn't matter here. */
3315 primarg0 = arg0, primarg1 = arg1;
3316 STRIP_NOPS (primarg0);
3317 STRIP_NOPS (primarg1);
3318 if (operand_equal_p (primarg0, primarg1, 0))
3319 return 1;
3321 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3322 actual comparison operand, ARG0.
3324 First throw away any conversions to wider types
3325 already present in the operands. */
3327 primarg1 = get_narrower (arg1, &unsignedp1);
3328 primother = get_narrower (other, &unsignedpo);
3330 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3331 if (unsignedp1 == unsignedpo
3332 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3333 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3335 tree type = TREE_TYPE (arg0);
3337 /* Make sure shorter operand is extended the right way
3338 to match the longer operand. */
3339 primarg1 = fold_convert (signed_or_unsigned_type_for
3340 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3342 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3343 return 1;
3346 return 0;
3349 /* See if ARG is an expression that is either a comparison or is performing
3350 arithmetic on comparisons. The comparisons must only be comparing
3351 two different values, which will be stored in *CVAL1 and *CVAL2; if
3352 they are nonzero it means that some operands have already been found.
3353 No variables may be used anywhere else in the expression except in the
3354 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3355 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3357 If this is true, return 1. Otherwise, return zero. */
3359 static int
3360 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3362 enum tree_code code = TREE_CODE (arg);
3363 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3365 /* We can handle some of the tcc_expression cases here. */
3366 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3367 tclass = tcc_unary;
3368 else if (tclass == tcc_expression
3369 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3370 || code == COMPOUND_EXPR))
3371 tclass = tcc_binary;
3373 else if (tclass == tcc_expression && code == SAVE_EXPR
3374 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3376 /* If we've already found a CVAL1 or CVAL2, this expression is
3377 two complex to handle. */
3378 if (*cval1 || *cval2)
3379 return 0;
3381 tclass = tcc_unary;
3382 *save_p = 1;
3385 switch (tclass)
3387 case tcc_unary:
3388 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3390 case tcc_binary:
3391 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3392 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3393 cval1, cval2, save_p));
3395 case tcc_constant:
3396 return 1;
3398 case tcc_expression:
3399 if (code == COND_EXPR)
3400 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3401 cval1, cval2, save_p)
3402 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3403 cval1, cval2, save_p)
3404 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3405 cval1, cval2, save_p));
3406 return 0;
3408 case tcc_comparison:
3409 /* First see if we can handle the first operand, then the second. For
3410 the second operand, we know *CVAL1 can't be zero. It must be that
3411 one side of the comparison is each of the values; test for the
3412 case where this isn't true by failing if the two operands
3413 are the same. */
3415 if (operand_equal_p (TREE_OPERAND (arg, 0),
3416 TREE_OPERAND (arg, 1), 0))
3417 return 0;
3419 if (*cval1 == 0)
3420 *cval1 = TREE_OPERAND (arg, 0);
3421 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3423 else if (*cval2 == 0)
3424 *cval2 = TREE_OPERAND (arg, 0);
3425 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3427 else
3428 return 0;
3430 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3432 else if (*cval2 == 0)
3433 *cval2 = TREE_OPERAND (arg, 1);
3434 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3436 else
3437 return 0;
3439 return 1;
3441 default:
3442 return 0;
3446 /* ARG is a tree that is known to contain just arithmetic operations and
3447 comparisons. Evaluate the operations in the tree substituting NEW0 for
3448 any occurrence of OLD0 as an operand of a comparison and likewise for
3449 NEW1 and OLD1. */
3451 static tree
3452 eval_subst (location_t loc, tree arg, tree old0, tree new0,
3453 tree old1, tree new1)
3455 tree type = TREE_TYPE (arg);
3456 enum tree_code code = TREE_CODE (arg);
3457 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3459 /* We can handle some of the tcc_expression cases here. */
3460 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3461 tclass = tcc_unary;
3462 else if (tclass == tcc_expression
3463 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3464 tclass = tcc_binary;
3466 switch (tclass)
3468 case tcc_unary:
3469 return fold_build1_loc (loc, code, type,
3470 eval_subst (loc, TREE_OPERAND (arg, 0),
3471 old0, new0, old1, new1));
3473 case tcc_binary:
3474 return fold_build2_loc (loc, code, type,
3475 eval_subst (loc, TREE_OPERAND (arg, 0),
3476 old0, new0, old1, new1),
3477 eval_subst (loc, TREE_OPERAND (arg, 1),
3478 old0, new0, old1, new1));
3480 case tcc_expression:
3481 switch (code)
3483 case SAVE_EXPR:
3484 return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0,
3485 old1, new1);
3487 case COMPOUND_EXPR:
3488 return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0,
3489 old1, new1);
3491 case COND_EXPR:
3492 return fold_build3_loc (loc, code, type,
3493 eval_subst (loc, TREE_OPERAND (arg, 0),
3494 old0, new0, old1, new1),
3495 eval_subst (loc, TREE_OPERAND (arg, 1),
3496 old0, new0, old1, new1),
3497 eval_subst (loc, TREE_OPERAND (arg, 2),
3498 old0, new0, old1, new1));
3499 default:
3500 break;
3502 /* Fall through - ??? */
3504 case tcc_comparison:
3506 tree arg0 = TREE_OPERAND (arg, 0);
3507 tree arg1 = TREE_OPERAND (arg, 1);
3509 /* We need to check both for exact equality and tree equality. The
3510 former will be true if the operand has a side-effect. In that
3511 case, we know the operand occurred exactly once. */
3513 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3514 arg0 = new0;
3515 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3516 arg0 = new1;
3518 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3519 arg1 = new0;
3520 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3521 arg1 = new1;
3523 return fold_build2_loc (loc, code, type, arg0, arg1);
3526 default:
3527 return arg;
3531 /* Return a tree for the case when the result of an expression is RESULT
3532 converted to TYPE and OMITTED was previously an operand of the expression
3533 but is now not needed (e.g., we folded OMITTED * 0).
3535 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3536 the conversion of RESULT to TYPE. */
3538 tree
3539 omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted)
3541 tree t = fold_convert_loc (loc, type, result);
3543 /* If the resulting operand is an empty statement, just return the omitted
3544 statement casted to void. */
3545 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3546 return build1_loc (loc, NOP_EXPR, void_type_node,
3547 fold_ignored_result (omitted));
3549 if (TREE_SIDE_EFFECTS (omitted))
3550 return build2_loc (loc, COMPOUND_EXPR, type,
3551 fold_ignored_result (omitted), t);
3553 return non_lvalue_loc (loc, t);
3556 /* Return a tree for the case when the result of an expression is RESULT
3557 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3558 of the expression but are now not needed.
3560 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3561 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3562 evaluated before OMITTED2. Otherwise, if neither has side effects,
3563 just do the conversion of RESULT to TYPE. */
3565 tree
3566 omit_two_operands_loc (location_t loc, tree type, tree result,
3567 tree omitted1, tree omitted2)
3569 tree t = fold_convert_loc (loc, type, result);
3571 if (TREE_SIDE_EFFECTS (omitted2))
3572 t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t);
3573 if (TREE_SIDE_EFFECTS (omitted1))
3574 t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t);
3576 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t;
3580 /* Return a simplified tree node for the truth-negation of ARG. This
3581 never alters ARG itself. We assume that ARG is an operation that
3582 returns a truth value (0 or 1).
3584 FIXME: one would think we would fold the result, but it causes
3585 problems with the dominator optimizer. */
3587 static tree
3588 fold_truth_not_expr (location_t loc, tree arg)
3590 tree type = TREE_TYPE (arg);
3591 enum tree_code code = TREE_CODE (arg);
3592 location_t loc1, loc2;
3594 /* If this is a comparison, we can simply invert it, except for
3595 floating-point non-equality comparisons, in which case we just
3596 enclose a TRUTH_NOT_EXPR around what we have. */
3598 if (TREE_CODE_CLASS (code) == tcc_comparison)
3600 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3601 if (FLOAT_TYPE_P (op_type)
3602 && flag_trapping_math
3603 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3604 && code != NE_EXPR && code != EQ_EXPR)
3605 return NULL_TREE;
3607 code = invert_tree_comparison (code, HONOR_NANS (op_type));
3608 if (code == ERROR_MARK)
3609 return NULL_TREE;
3611 tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0),
3612 TREE_OPERAND (arg, 1));
3613 if (TREE_NO_WARNING (arg))
3614 TREE_NO_WARNING (ret) = 1;
3615 return ret;
3618 switch (code)
3620 case INTEGER_CST:
3621 return constant_boolean_node (integer_zerop (arg), type);
3623 case TRUTH_AND_EXPR:
3624 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3625 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3626 return build2_loc (loc, TRUTH_OR_EXPR, type,
3627 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3628 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3630 case TRUTH_OR_EXPR:
3631 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3632 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3633 return build2_loc (loc, TRUTH_AND_EXPR, type,
3634 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3635 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3637 case TRUTH_XOR_EXPR:
3638 /* Here we can invert either operand. We invert the first operand
3639 unless the second operand is a TRUTH_NOT_EXPR in which case our
3640 result is the XOR of the first operand with the inside of the
3641 negation of the second operand. */
3643 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3644 return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3645 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3646 else
3647 return build2_loc (loc, TRUTH_XOR_EXPR, type,
3648 invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)),
3649 TREE_OPERAND (arg, 1));
3651 case TRUTH_ANDIF_EXPR:
3652 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3653 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3654 return build2_loc (loc, TRUTH_ORIF_EXPR, type,
3655 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3656 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3658 case TRUTH_ORIF_EXPR:
3659 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3660 loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3661 return build2_loc (loc, TRUTH_ANDIF_EXPR, type,
3662 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)),
3663 invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1)));
3665 case TRUTH_NOT_EXPR:
3666 return TREE_OPERAND (arg, 0);
3668 case COND_EXPR:
3670 tree arg1 = TREE_OPERAND (arg, 1);
3671 tree arg2 = TREE_OPERAND (arg, 2);
3673 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3674 loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc);
3676 /* A COND_EXPR may have a throw as one operand, which
3677 then has void type. Just leave void operands
3678 as they are. */
3679 return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0),
3680 VOID_TYPE_P (TREE_TYPE (arg1))
3681 ? arg1 : invert_truthvalue_loc (loc1, arg1),
3682 VOID_TYPE_P (TREE_TYPE (arg2))
3683 ? arg2 : invert_truthvalue_loc (loc2, arg2));
3686 case COMPOUND_EXPR:
3687 loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc);
3688 return build2_loc (loc, COMPOUND_EXPR, type,
3689 TREE_OPERAND (arg, 0),
3690 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1)));
3692 case NON_LVALUE_EXPR:
3693 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3694 return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0));
3696 CASE_CONVERT:
3697 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3698 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3700 /* fall through */
3702 case FLOAT_EXPR:
3703 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3704 return build1_loc (loc, TREE_CODE (arg), type,
3705 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3707 case BIT_AND_EXPR:
3708 if (!integer_onep (TREE_OPERAND (arg, 1)))
3709 return NULL_TREE;
3710 return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0));
3712 case SAVE_EXPR:
3713 return build1_loc (loc, TRUTH_NOT_EXPR, type, arg);
3715 case CLEANUP_POINT_EXPR:
3716 loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc);
3717 return build1_loc (loc, CLEANUP_POINT_EXPR, type,
3718 invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)));
3720 default:
3721 return NULL_TREE;
3725 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3726 assume that ARG is an operation that returns a truth value (0 or 1
3727 for scalars, 0 or -1 for vectors). Return the folded expression if
3728 folding is successful. Otherwise, return NULL_TREE. */
3730 static tree
3731 fold_invert_truthvalue (location_t loc, tree arg)
3733 tree type = TREE_TYPE (arg);
3734 return fold_unary_loc (loc, VECTOR_TYPE_P (type)
3735 ? BIT_NOT_EXPR
3736 : TRUTH_NOT_EXPR,
3737 type, arg);
3740 /* Return a simplified tree node for the truth-negation of ARG. This
3741 never alters ARG itself. We assume that ARG is an operation that
3742 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3744 tree
3745 invert_truthvalue_loc (location_t loc, tree arg)
3747 if (TREE_CODE (arg) == ERROR_MARK)
3748 return arg;
3750 tree type = TREE_TYPE (arg);
3751 return fold_build1_loc (loc, VECTOR_TYPE_P (type)
3752 ? BIT_NOT_EXPR
3753 : TRUTH_NOT_EXPR,
3754 type, arg);
3757 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3758 with code CODE. This optimization is unsafe. */
3759 static tree
3760 distribute_real_division (location_t loc, enum tree_code code, tree type,
3761 tree arg0, tree arg1)
3763 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3764 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3766 /* (A / C) +- (B / C) -> (A +- B) / C. */
3767 if (mul0 == mul1
3768 && operand_equal_p (TREE_OPERAND (arg0, 1),
3769 TREE_OPERAND (arg1, 1), 0))
3770 return fold_build2_loc (loc, mul0 ? MULT_EXPR : RDIV_EXPR, type,
3771 fold_build2_loc (loc, code, type,
3772 TREE_OPERAND (arg0, 0),
3773 TREE_OPERAND (arg1, 0)),
3774 TREE_OPERAND (arg0, 1));
3776 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3777 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3778 TREE_OPERAND (arg1, 0), 0)
3779 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3780 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3782 REAL_VALUE_TYPE r0, r1;
3783 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3784 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3785 if (!mul0)
3786 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3787 if (!mul1)
3788 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3789 real_arithmetic (&r0, code, &r0, &r1);
3790 return fold_build2_loc (loc, MULT_EXPR, type,
3791 TREE_OPERAND (arg0, 0),
3792 build_real (type, r0));
3795 return NULL_TREE;
3798 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3799 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3800 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3801 is the original memory reference used to preserve the alias set of
3802 the access. */
3804 static tree
3805 make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type,
3806 HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
3807 int unsignedp, int reversep)
3809 tree result, bftype;
3811 if (get_alias_set (inner) != get_alias_set (orig_inner))
3812 inner = fold_build2 (MEM_REF, TREE_TYPE (inner),
3813 build_fold_addr_expr (inner),
3814 build_int_cst
3815 (reference_alias_ptr_type (orig_inner), 0));
3817 if (bitpos == 0 && !reversep)
3819 tree size = TYPE_SIZE (TREE_TYPE (inner));
3820 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3821 || POINTER_TYPE_P (TREE_TYPE (inner)))
3822 && tree_fits_shwi_p (size)
3823 && tree_to_shwi (size) == bitsize)
3824 return fold_convert_loc (loc, type, inner);
3827 bftype = type;
3828 if (TYPE_PRECISION (bftype) != bitsize
3829 || TYPE_UNSIGNED (bftype) == !unsignedp)
3830 bftype = build_nonstandard_integer_type (bitsize, 0);
3832 result = build3_loc (loc, BIT_FIELD_REF, bftype, inner,
3833 size_int (bitsize), bitsize_int (bitpos));
3834 REF_REVERSE_STORAGE_ORDER (result) = reversep;
3836 if (bftype != type)
3837 result = fold_convert_loc (loc, type, result);
3839 return result;
3842 /* Optimize a bit-field compare.
3844 There are two cases: First is a compare against a constant and the
3845 second is a comparison of two items where the fields are at the same
3846 bit position relative to the start of a chunk (byte, halfword, word)
3847 large enough to contain it. In these cases we can avoid the shift
3848 implicit in bitfield extractions.
3850 For constants, we emit a compare of the shifted constant with the
3851 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3852 compared. For two fields at the same position, we do the ANDs with the
3853 similar mask and compare the result of the ANDs.
3855 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3856 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3857 are the left and right operands of the comparison, respectively.
3859 If the optimization described above can be done, we return the resulting
3860 tree. Otherwise we return zero. */
3862 static tree
3863 optimize_bit_field_compare (location_t loc, enum tree_code code,
3864 tree compare_type, tree lhs, tree rhs)
3866 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3867 tree type = TREE_TYPE (lhs);
3868 tree unsigned_type;
3869 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3870 machine_mode lmode, rmode, nmode;
3871 int lunsignedp, runsignedp;
3872 int lreversep, rreversep;
3873 int lvolatilep = 0, rvolatilep = 0;
3874 tree linner, rinner = NULL_TREE;
3875 tree mask;
3876 tree offset;
3878 /* Get all the information about the extractions being done. If the bit size
3879 if the same as the size of the underlying object, we aren't doing an
3880 extraction at all and so can do nothing. We also don't want to
3881 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3882 then will no longer be able to replace it. */
3883 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3884 &lunsignedp, &lreversep, &lvolatilep);
3885 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3886 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR || lvolatilep)
3887 return 0;
3889 if (const_p)
3890 rreversep = lreversep;
3891 else
3893 /* If this is not a constant, we can only do something if bit positions,
3894 sizes, signedness and storage order are the same. */
3895 rinner
3896 = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3897 &runsignedp, &rreversep, &rvolatilep);
3899 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3900 || lunsignedp != runsignedp || lreversep != rreversep || offset != 0
3901 || TREE_CODE (rinner) == PLACEHOLDER_EXPR || rvolatilep)
3902 return 0;
3905 /* Honor the C++ memory model and mimic what RTL expansion does. */
3906 unsigned HOST_WIDE_INT bitstart = 0;
3907 unsigned HOST_WIDE_INT bitend = 0;
3908 if (TREE_CODE (lhs) == COMPONENT_REF)
3910 get_bit_range (&bitstart, &bitend, lhs, &lbitpos, &offset);
3911 if (offset != NULL_TREE)
3912 return 0;
3915 /* See if we can find a mode to refer to this field. We should be able to,
3916 but fail if we can't. */
3917 nmode = get_best_mode (lbitsize, lbitpos, bitstart, bitend,
3918 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3919 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3920 TYPE_ALIGN (TREE_TYPE (rinner))),
3921 word_mode, false);
3922 if (nmode == VOIDmode)
3923 return 0;
3925 /* Set signed and unsigned types of the precision of this mode for the
3926 shifts below. */
3927 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3929 /* Compute the bit position and size for the new reference and our offset
3930 within it. If the new reference is the same size as the original, we
3931 won't optimize anything, so return zero. */
3932 nbitsize = GET_MODE_BITSIZE (nmode);
3933 nbitpos = lbitpos & ~ (nbitsize - 1);
3934 lbitpos -= nbitpos;
3935 if (nbitsize == lbitsize)
3936 return 0;
3938 if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3939 lbitpos = nbitsize - lbitsize - lbitpos;
3941 /* Make the mask to be used against the extracted field. */
3942 mask = build_int_cst_type (unsigned_type, -1);
3943 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize));
3944 mask = const_binop (RSHIFT_EXPR, mask,
3945 size_int (nbitsize - lbitsize - lbitpos));
3947 if (! const_p)
3948 /* If not comparing with constant, just rework the comparison
3949 and return. */
3950 return fold_build2_loc (loc, code, compare_type,
3951 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3952 make_bit_field_ref (loc, linner, lhs,
3953 unsigned_type,
3954 nbitsize, nbitpos,
3955 1, lreversep),
3956 mask),
3957 fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
3958 make_bit_field_ref (loc, rinner, rhs,
3959 unsigned_type,
3960 nbitsize, nbitpos,
3961 1, rreversep),
3962 mask));
3964 /* Otherwise, we are handling the constant case. See if the constant is too
3965 big for the field. Warn and return a tree for 0 (false) if so. We do
3966 this not only for its own sake, but to avoid having to test for this
3967 error case below. If we didn't, we might generate wrong code.
3969 For unsigned fields, the constant shifted right by the field length should
3970 be all zero. For signed fields, the high-order bits should agree with
3971 the sign bit. */
3973 if (lunsignedp)
3975 if (wi::lrshift (rhs, lbitsize) != 0)
3977 warning (0, "comparison is always %d due to width of bit-field",
3978 code == NE_EXPR);
3979 return constant_boolean_node (code == NE_EXPR, compare_type);
3982 else
3984 wide_int tem = wi::arshift (rhs, lbitsize - 1);
3985 if (tem != 0 && tem != -1)
3987 warning (0, "comparison is always %d due to width of bit-field",
3988 code == NE_EXPR);
3989 return constant_boolean_node (code == NE_EXPR, compare_type);
3993 /* Single-bit compares should always be against zero. */
3994 if (lbitsize == 1 && ! integer_zerop (rhs))
3996 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
3997 rhs = build_int_cst (type, 0);
4000 /* Make a new bitfield reference, shift the constant over the
4001 appropriate number of bits and mask it with the computed mask
4002 (in case this was a signed field). If we changed it, make a new one. */
4003 lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type,
4004 nbitsize, nbitpos, 1, lreversep);
4006 rhs = const_binop (BIT_AND_EXPR,
4007 const_binop (LSHIFT_EXPR,
4008 fold_convert_loc (loc, unsigned_type, rhs),
4009 size_int (lbitpos)),
4010 mask);
4012 lhs = build2_loc (loc, code, compare_type,
4013 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs);
4014 return lhs;
4017 /* Subroutine for fold_truth_andor_1: decode a field reference.
4019 If EXP is a comparison reference, we return the innermost reference.
4021 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4022 set to the starting bit number.
4024 If the innermost field can be completely contained in a mode-sized
4025 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4027 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4028 otherwise it is not changed.
4030 *PUNSIGNEDP is set to the signedness of the field.
4032 *PREVERSEP is set to the storage order of the field.
4034 *PMASK is set to the mask used. This is either contained in a
4035 BIT_AND_EXPR or derived from the width of the field.
4037 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4039 Return 0 if this is not a component reference or is one that we can't
4040 do anything with. */
4042 static tree
4043 decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize,
4044 HOST_WIDE_INT *pbitpos, machine_mode *pmode,
4045 int *punsignedp, int *preversep, int *pvolatilep,
4046 tree *pmask, tree *pand_mask)
4048 tree exp = *exp_;
4049 tree outer_type = 0;
4050 tree and_mask = 0;
4051 tree mask, inner, offset;
4052 tree unsigned_type;
4053 unsigned int precision;
4055 /* All the optimizations using this function assume integer fields.
4056 There are problems with FP fields since the type_for_size call
4057 below can fail for, e.g., XFmode. */
4058 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4059 return 0;
4061 /* We are interested in the bare arrangement of bits, so strip everything
4062 that doesn't affect the machine mode. However, record the type of the
4063 outermost expression if it may matter below. */
4064 if (CONVERT_EXPR_P (exp)
4065 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4066 outer_type = TREE_TYPE (exp);
4067 STRIP_NOPS (exp);
4069 if (TREE_CODE (exp) == BIT_AND_EXPR)
4071 and_mask = TREE_OPERAND (exp, 1);
4072 exp = TREE_OPERAND (exp, 0);
4073 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4074 if (TREE_CODE (and_mask) != INTEGER_CST)
4075 return 0;
4078 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
4079 punsignedp, preversep, pvolatilep);
4080 if ((inner == exp && and_mask == 0)
4081 || *pbitsize < 0 || offset != 0
4082 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
4083 return 0;
4085 *exp_ = exp;
4087 /* If the number of bits in the reference is the same as the bitsize of
4088 the outer type, then the outer type gives the signedness. Otherwise
4089 (in case of a small bitfield) the signedness is unchanged. */
4090 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4091 *punsignedp = TYPE_UNSIGNED (outer_type);
4093 /* Compute the mask to access the bitfield. */
4094 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4095 precision = TYPE_PRECISION (unsigned_type);
4097 mask = build_int_cst_type (unsigned_type, -1);
4099 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4100 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize));
4102 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4103 if (and_mask != 0)
4104 mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type,
4105 fold_convert_loc (loc, unsigned_type, and_mask), mask);
4107 *pmask = mask;
4108 *pand_mask = and_mask;
4109 return inner;
4112 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4113 bit positions and MASK is SIGNED. */
4115 static int
4116 all_ones_mask_p (const_tree mask, unsigned int size)
4118 tree type = TREE_TYPE (mask);
4119 unsigned int precision = TYPE_PRECISION (type);
4121 /* If this function returns true when the type of the mask is
4122 UNSIGNED, then there will be errors. In particular see
4123 gcc.c-torture/execute/990326-1.c. There does not appear to be
4124 any documentation paper trail as to why this is so. But the pre
4125 wide-int worked with that restriction and it has been preserved
4126 here. */
4127 if (size > precision || TYPE_SIGN (type) == UNSIGNED)
4128 return false;
4130 return wi::mask (size, false, precision) == mask;
4133 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4134 represents the sign bit of EXP's type. If EXP represents a sign
4135 or zero extension, also test VAL against the unextended type.
4136 The return value is the (sub)expression whose sign bit is VAL,
4137 or NULL_TREE otherwise. */
4139 tree
4140 sign_bit_p (tree exp, const_tree val)
4142 int width;
4143 tree t;
4145 /* Tree EXP must have an integral type. */
4146 t = TREE_TYPE (exp);
4147 if (! INTEGRAL_TYPE_P (t))
4148 return NULL_TREE;
4150 /* Tree VAL must be an integer constant. */
4151 if (TREE_CODE (val) != INTEGER_CST
4152 || TREE_OVERFLOW (val))
4153 return NULL_TREE;
4155 width = TYPE_PRECISION (t);
4156 if (wi::only_sign_bit_p (val, width))
4157 return exp;
4159 /* Handle extension from a narrower type. */
4160 if (TREE_CODE (exp) == NOP_EXPR
4161 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4162 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4164 return NULL_TREE;
4167 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4168 to be evaluated unconditionally. */
4170 static int
4171 simple_operand_p (const_tree exp)
4173 /* Strip any conversions that don't change the machine mode. */
4174 STRIP_NOPS (exp);
4176 return (CONSTANT_CLASS_P (exp)
4177 || TREE_CODE (exp) == SSA_NAME
4178 || (DECL_P (exp)
4179 && ! TREE_ADDRESSABLE (exp)
4180 && ! TREE_THIS_VOLATILE (exp)
4181 && ! DECL_NONLOCAL (exp)
4182 /* Don't regard global variables as simple. They may be
4183 allocated in ways unknown to the compiler (shared memory,
4184 #pragma weak, etc). */
4185 && ! TREE_PUBLIC (exp)
4186 && ! DECL_EXTERNAL (exp)
4187 /* Weakrefs are not safe to be read, since they can be NULL.
4188 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4189 have DECL_WEAK flag set. */
4190 && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp))
4191 /* Loading a static variable is unduly expensive, but global
4192 registers aren't expensive. */
4193 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4196 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4197 to be evaluated unconditionally.
4198 I addition to simple_operand_p, we assume that comparisons, conversions,
4199 and logic-not operations are simple, if their operands are simple, too. */
4201 static bool
4202 simple_operand_p_2 (tree exp)
4204 enum tree_code code;
4206 if (TREE_SIDE_EFFECTS (exp)
4207 || tree_could_trap_p (exp))
4208 return false;
4210 while (CONVERT_EXPR_P (exp))
4211 exp = TREE_OPERAND (exp, 0);
4213 code = TREE_CODE (exp);
4215 if (TREE_CODE_CLASS (code) == tcc_comparison)
4216 return (simple_operand_p (TREE_OPERAND (exp, 0))
4217 && simple_operand_p (TREE_OPERAND (exp, 1)));
4219 if (code == TRUTH_NOT_EXPR)
4220 return simple_operand_p_2 (TREE_OPERAND (exp, 0));
4222 return simple_operand_p (exp);
4226 /* The following functions are subroutines to fold_range_test and allow it to
4227 try to change a logical combination of comparisons into a range test.
4229 For example, both
4230 X == 2 || X == 3 || X == 4 || X == 5
4232 X >= 2 && X <= 5
4233 are converted to
4234 (unsigned) (X - 2) <= 3
4236 We describe each set of comparisons as being either inside or outside
4237 a range, using a variable named like IN_P, and then describe the
4238 range with a lower and upper bound. If one of the bounds is omitted,
4239 it represents either the highest or lowest value of the type.
4241 In the comments below, we represent a range by two numbers in brackets
4242 preceded by a "+" to designate being inside that range, or a "-" to
4243 designate being outside that range, so the condition can be inverted by
4244 flipping the prefix. An omitted bound is represented by a "-". For
4245 example, "- [-, 10]" means being outside the range starting at the lowest
4246 possible value and ending at 10, in other words, being greater than 10.
4247 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4248 always false.
4250 We set up things so that the missing bounds are handled in a consistent
4251 manner so neither a missing bound nor "true" and "false" need to be
4252 handled using a special case. */
4254 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4255 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4256 and UPPER1_P are nonzero if the respective argument is an upper bound
4257 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4258 must be specified for a comparison. ARG1 will be converted to ARG0's
4259 type if both are specified. */
4261 static tree
4262 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4263 tree arg1, int upper1_p)
4265 tree tem;
4266 int result;
4267 int sgn0, sgn1;
4269 /* If neither arg represents infinity, do the normal operation.
4270 Else, if not a comparison, return infinity. Else handle the special
4271 comparison rules. Note that most of the cases below won't occur, but
4272 are handled for consistency. */
4274 if (arg0 != 0 && arg1 != 0)
4276 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4277 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4278 STRIP_NOPS (tem);
4279 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4282 if (TREE_CODE_CLASS (code) != tcc_comparison)
4283 return 0;
4285 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4286 for neither. In real maths, we cannot assume open ended ranges are
4287 the same. But, this is computer arithmetic, where numbers are finite.
4288 We can therefore make the transformation of any unbounded range with
4289 the value Z, Z being greater than any representable number. This permits
4290 us to treat unbounded ranges as equal. */
4291 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4292 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4293 switch (code)
4295 case EQ_EXPR:
4296 result = sgn0 == sgn1;
4297 break;
4298 case NE_EXPR:
4299 result = sgn0 != sgn1;
4300 break;
4301 case LT_EXPR:
4302 result = sgn0 < sgn1;
4303 break;
4304 case LE_EXPR:
4305 result = sgn0 <= sgn1;
4306 break;
4307 case GT_EXPR:
4308 result = sgn0 > sgn1;
4309 break;
4310 case GE_EXPR:
4311 result = sgn0 >= sgn1;
4312 break;
4313 default:
4314 gcc_unreachable ();
4317 return constant_boolean_node (result, type);
4320 /* Helper routine for make_range. Perform one step for it, return
4321 new expression if the loop should continue or NULL_TREE if it should
4322 stop. */
4324 tree
4325 make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1,
4326 tree exp_type, tree *p_low, tree *p_high, int *p_in_p,
4327 bool *strict_overflow_p)
4329 tree arg0_type = TREE_TYPE (arg0);
4330 tree n_low, n_high, low = *p_low, high = *p_high;
4331 int in_p = *p_in_p, n_in_p;
4333 switch (code)
4335 case TRUTH_NOT_EXPR:
4336 /* We can only do something if the range is testing for zero. */
4337 if (low == NULL_TREE || high == NULL_TREE
4338 || ! integer_zerop (low) || ! integer_zerop (high))
4339 return NULL_TREE;
4340 *p_in_p = ! in_p;
4341 return arg0;
4343 case EQ_EXPR: case NE_EXPR:
4344 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4345 /* We can only do something if the range is testing for zero
4346 and if the second operand is an integer constant. Note that
4347 saying something is "in" the range we make is done by
4348 complementing IN_P since it will set in the initial case of
4349 being not equal to zero; "out" is leaving it alone. */
4350 if (low == NULL_TREE || high == NULL_TREE
4351 || ! integer_zerop (low) || ! integer_zerop (high)
4352 || TREE_CODE (arg1) != INTEGER_CST)
4353 return NULL_TREE;
4355 switch (code)
4357 case NE_EXPR: /* - [c, c] */
4358 low = high = arg1;
4359 break;
4360 case EQ_EXPR: /* + [c, c] */
4361 in_p = ! in_p, low = high = arg1;
4362 break;
4363 case GT_EXPR: /* - [-, c] */
4364 low = 0, high = arg1;
4365 break;
4366 case GE_EXPR: /* + [c, -] */
4367 in_p = ! in_p, low = arg1, high = 0;
4368 break;
4369 case LT_EXPR: /* - [c, -] */
4370 low = arg1, high = 0;
4371 break;
4372 case LE_EXPR: /* + [-, c] */
4373 in_p = ! in_p, low = 0, high = arg1;
4374 break;
4375 default:
4376 gcc_unreachable ();
4379 /* If this is an unsigned comparison, we also know that EXP is
4380 greater than or equal to zero. We base the range tests we make
4381 on that fact, so we record it here so we can parse existing
4382 range tests. We test arg0_type since often the return type
4383 of, e.g. EQ_EXPR, is boolean. */
4384 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4386 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4387 in_p, low, high, 1,
4388 build_int_cst (arg0_type, 0),
4389 NULL_TREE))
4390 return NULL_TREE;
4392 in_p = n_in_p, low = n_low, high = n_high;
4394 /* If the high bound is missing, but we have a nonzero low
4395 bound, reverse the range so it goes from zero to the low bound
4396 minus 1. */
4397 if (high == 0 && low && ! integer_zerop (low))
4399 in_p = ! in_p;
4400 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4401 build_int_cst (TREE_TYPE (low), 1), 0);
4402 low = build_int_cst (arg0_type, 0);
4406 *p_low = low;
4407 *p_high = high;
4408 *p_in_p = in_p;
4409 return arg0;
4411 case NEGATE_EXPR:
4412 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4413 low and high are non-NULL, then normalize will DTRT. */
4414 if (!TYPE_UNSIGNED (arg0_type)
4415 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4417 if (low == NULL_TREE)
4418 low = TYPE_MIN_VALUE (arg0_type);
4419 if (high == NULL_TREE)
4420 high = TYPE_MAX_VALUE (arg0_type);
4423 /* (-x) IN [a,b] -> x in [-b, -a] */
4424 n_low = range_binop (MINUS_EXPR, exp_type,
4425 build_int_cst (exp_type, 0),
4426 0, high, 1);
4427 n_high = range_binop (MINUS_EXPR, exp_type,
4428 build_int_cst (exp_type, 0),
4429 0, low, 0);
4430 if (n_high != 0 && TREE_OVERFLOW (n_high))
4431 return NULL_TREE;
4432 goto normalize;
4434 case BIT_NOT_EXPR:
4435 /* ~ X -> -X - 1 */
4436 return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0),
4437 build_int_cst (exp_type, 1));
4439 case PLUS_EXPR:
4440 case MINUS_EXPR:
4441 if (TREE_CODE (arg1) != INTEGER_CST)
4442 return NULL_TREE;
4444 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4445 move a constant to the other side. */
4446 if (!TYPE_UNSIGNED (arg0_type)
4447 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4448 return NULL_TREE;
4450 /* If EXP is signed, any overflow in the computation is undefined,
4451 so we don't worry about it so long as our computations on
4452 the bounds don't overflow. For unsigned, overflow is defined
4453 and this is exactly the right thing. */
4454 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4455 arg0_type, low, 0, arg1, 0);
4456 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4457 arg0_type, high, 1, arg1, 0);
4458 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4459 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4460 return NULL_TREE;
4462 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4463 *strict_overflow_p = true;
4465 normalize:
4466 /* Check for an unsigned range which has wrapped around the maximum
4467 value thus making n_high < n_low, and normalize it. */
4468 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4470 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4471 build_int_cst (TREE_TYPE (n_high), 1), 0);
4472 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4473 build_int_cst (TREE_TYPE (n_low), 1), 0);
4475 /* If the range is of the form +/- [ x+1, x ], we won't
4476 be able to normalize it. But then, it represents the
4477 whole range or the empty set, so make it
4478 +/- [ -, - ]. */
4479 if (tree_int_cst_equal (n_low, low)
4480 && tree_int_cst_equal (n_high, high))
4481 low = high = 0;
4482 else
4483 in_p = ! in_p;
4485 else
4486 low = n_low, high = n_high;
4488 *p_low = low;
4489 *p_high = high;
4490 *p_in_p = in_p;
4491 return arg0;
4493 CASE_CONVERT:
4494 case NON_LVALUE_EXPR:
4495 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4496 return NULL_TREE;
4498 if (! INTEGRAL_TYPE_P (arg0_type)
4499 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4500 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4501 return NULL_TREE;
4503 n_low = low, n_high = high;
4505 if (n_low != 0)
4506 n_low = fold_convert_loc (loc, arg0_type, n_low);
4508 if (n_high != 0)
4509 n_high = fold_convert_loc (loc, arg0_type, n_high);
4511 /* If we're converting arg0 from an unsigned type, to exp,
4512 a signed type, we will be doing the comparison as unsigned.
4513 The tests above have already verified that LOW and HIGH
4514 are both positive.
4516 So we have to ensure that we will handle large unsigned
4517 values the same way that the current signed bounds treat
4518 negative values. */
4520 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4522 tree high_positive;
4523 tree equiv_type;
4524 /* For fixed-point modes, we need to pass the saturating flag
4525 as the 2nd parameter. */
4526 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4527 equiv_type
4528 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type),
4529 TYPE_SATURATING (arg0_type));
4530 else
4531 equiv_type
4532 = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1);
4534 /* A range without an upper bound is, naturally, unbounded.
4535 Since convert would have cropped a very large value, use
4536 the max value for the destination type. */
4537 high_positive
4538 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4539 : TYPE_MAX_VALUE (arg0_type);
4541 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4542 high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type,
4543 fold_convert_loc (loc, arg0_type,
4544 high_positive),
4545 build_int_cst (arg0_type, 1));
4547 /* If the low bound is specified, "and" the range with the
4548 range for which the original unsigned value will be
4549 positive. */
4550 if (low != 0)
4552 if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high,
4553 1, fold_convert_loc (loc, arg0_type,
4554 integer_zero_node),
4555 high_positive))
4556 return NULL_TREE;
4558 in_p = (n_in_p == in_p);
4560 else
4562 /* Otherwise, "or" the range with the range of the input
4563 that will be interpreted as negative. */
4564 if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high,
4565 1, fold_convert_loc (loc, arg0_type,
4566 integer_zero_node),
4567 high_positive))
4568 return NULL_TREE;
4570 in_p = (in_p != n_in_p);
4574 *p_low = n_low;
4575 *p_high = n_high;
4576 *p_in_p = in_p;
4577 return arg0;
4579 default:
4580 return NULL_TREE;
4584 /* Given EXP, a logical expression, set the range it is testing into
4585 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4586 actually being tested. *PLOW and *PHIGH will be made of the same
4587 type as the returned expression. If EXP is not a comparison, we
4588 will most likely not be returning a useful value and range. Set
4589 *STRICT_OVERFLOW_P to true if the return value is only valid
4590 because signed overflow is undefined; otherwise, do not change
4591 *STRICT_OVERFLOW_P. */
4593 tree
4594 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4595 bool *strict_overflow_p)
4597 enum tree_code code;
4598 tree arg0, arg1 = NULL_TREE;
4599 tree exp_type, nexp;
4600 int in_p;
4601 tree low, high;
4602 location_t loc = EXPR_LOCATION (exp);
4604 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4605 and see if we can refine the range. Some of the cases below may not
4606 happen, but it doesn't seem worth worrying about this. We "continue"
4607 the outer loop when we've changed something; otherwise we "break"
4608 the switch, which will "break" the while. */
4610 in_p = 0;
4611 low = high = build_int_cst (TREE_TYPE (exp), 0);
4613 while (1)
4615 code = TREE_CODE (exp);
4616 exp_type = TREE_TYPE (exp);
4617 arg0 = NULL_TREE;
4619 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4621 if (TREE_OPERAND_LENGTH (exp) > 0)
4622 arg0 = TREE_OPERAND (exp, 0);
4623 if (TREE_CODE_CLASS (code) == tcc_binary
4624 || TREE_CODE_CLASS (code) == tcc_comparison
4625 || (TREE_CODE_CLASS (code) == tcc_expression
4626 && TREE_OPERAND_LENGTH (exp) > 1))
4627 arg1 = TREE_OPERAND (exp, 1);
4629 if (arg0 == NULL_TREE)
4630 break;
4632 nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low,
4633 &high, &in_p, strict_overflow_p);
4634 if (nexp == NULL_TREE)
4635 break;
4636 exp = nexp;
4639 /* If EXP is a constant, we can evaluate whether this is true or false. */
4640 if (TREE_CODE (exp) == INTEGER_CST)
4642 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4643 exp, 0, low, 0))
4644 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4645 exp, 1, high, 1)));
4646 low = high = 0;
4647 exp = 0;
4650 *pin_p = in_p, *plow = low, *phigh = high;
4651 return exp;
4654 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4655 type, TYPE, return an expression to test if EXP is in (or out of, depending
4656 on IN_P) the range. Return 0 if the test couldn't be created. */
4658 tree
4659 build_range_check (location_t loc, tree type, tree exp, int in_p,
4660 tree low, tree high)
4662 tree etype = TREE_TYPE (exp), value;
4664 /* Disable this optimization for function pointer expressions
4665 on targets that require function pointer canonicalization. */
4666 if (targetm.have_canonicalize_funcptr_for_compare ()
4667 && TREE_CODE (etype) == POINTER_TYPE
4668 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4669 return NULL_TREE;
4671 if (! in_p)
4673 value = build_range_check (loc, type, exp, 1, low, high);
4674 if (value != 0)
4675 return invert_truthvalue_loc (loc, value);
4677 return 0;
4680 if (low == 0 && high == 0)
4681 return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp);
4683 if (low == 0)
4684 return fold_build2_loc (loc, LE_EXPR, type, exp,
4685 fold_convert_loc (loc, etype, high));
4687 if (high == 0)
4688 return fold_build2_loc (loc, GE_EXPR, type, exp,
4689 fold_convert_loc (loc, etype, low));
4691 if (operand_equal_p (low, high, 0))
4692 return fold_build2_loc (loc, EQ_EXPR, type, exp,
4693 fold_convert_loc (loc, etype, low));
4695 if (integer_zerop (low))
4697 if (! TYPE_UNSIGNED (etype))
4699 etype = unsigned_type_for (etype);
4700 high = fold_convert_loc (loc, etype, high);
4701 exp = fold_convert_loc (loc, etype, exp);
4703 return build_range_check (loc, type, exp, 1, 0, high);
4706 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4707 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4709 int prec = TYPE_PRECISION (etype);
4711 if (wi::mask (prec - 1, false, prec) == high)
4713 if (TYPE_UNSIGNED (etype))
4715 tree signed_etype = signed_type_for (etype);
4716 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4717 etype
4718 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4719 else
4720 etype = signed_etype;
4721 exp = fold_convert_loc (loc, etype, exp);
4723 return fold_build2_loc (loc, GT_EXPR, type, exp,
4724 build_int_cst (etype, 0));
4728 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4729 This requires wrap-around arithmetics for the type of the expression.
4730 First make sure that arithmetics in this type is valid, then make sure
4731 that it wraps around. */
4732 if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE)
4733 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4734 TYPE_UNSIGNED (etype));
4736 if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_OVERFLOW_WRAPS (etype))
4738 tree utype, minv, maxv;
4740 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4741 for the type in question, as we rely on this here. */
4742 utype = unsigned_type_for (etype);
4743 maxv = fold_convert_loc (loc, utype, TYPE_MAX_VALUE (etype));
4744 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4745 build_int_cst (TREE_TYPE (maxv), 1), 1);
4746 minv = fold_convert_loc (loc, utype, TYPE_MIN_VALUE (etype));
4748 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4749 minv, 1, maxv, 1)))
4750 etype = utype;
4751 else
4752 return 0;
4755 high = fold_convert_loc (loc, etype, high);
4756 low = fold_convert_loc (loc, etype, low);
4757 exp = fold_convert_loc (loc, etype, exp);
4759 value = const_binop (MINUS_EXPR, high, low);
4762 if (POINTER_TYPE_P (etype))
4764 if (value != 0 && !TREE_OVERFLOW (value))
4766 low = fold_build1_loc (loc, NEGATE_EXPR, TREE_TYPE (low), low);
4767 return build_range_check (loc, type,
4768 fold_build_pointer_plus_loc (loc, exp, low),
4769 1, build_int_cst (etype, 0), value);
4771 return 0;
4774 if (value != 0 && !TREE_OVERFLOW (value))
4775 return build_range_check (loc, type,
4776 fold_build2_loc (loc, MINUS_EXPR, etype, exp, low),
4777 1, build_int_cst (etype, 0), value);
4779 return 0;
4782 /* Return the predecessor of VAL in its type, handling the infinite case. */
4784 static tree
4785 range_predecessor (tree val)
4787 tree type = TREE_TYPE (val);
4789 if (INTEGRAL_TYPE_P (type)
4790 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4791 return 0;
4792 else
4793 return range_binop (MINUS_EXPR, NULL_TREE, val, 0,
4794 build_int_cst (TREE_TYPE (val), 1), 0);
4797 /* Return the successor of VAL in its type, handling the infinite case. */
4799 static tree
4800 range_successor (tree val)
4802 tree type = TREE_TYPE (val);
4804 if (INTEGRAL_TYPE_P (type)
4805 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4806 return 0;
4807 else
4808 return range_binop (PLUS_EXPR, NULL_TREE, val, 0,
4809 build_int_cst (TREE_TYPE (val), 1), 0);
4812 /* Given two ranges, see if we can merge them into one. Return 1 if we
4813 can, 0 if we can't. Set the output range into the specified parameters. */
4815 bool
4816 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4817 tree high0, int in1_p, tree low1, tree high1)
4819 int no_overlap;
4820 int subset;
4821 int temp;
4822 tree tem;
4823 int in_p;
4824 tree low, high;
4825 int lowequal = ((low0 == 0 && low1 == 0)
4826 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4827 low0, 0, low1, 0)));
4828 int highequal = ((high0 == 0 && high1 == 0)
4829 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4830 high0, 1, high1, 1)));
4832 /* Make range 0 be the range that starts first, or ends last if they
4833 start at the same value. Swap them if it isn't. */
4834 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4835 low0, 0, low1, 0))
4836 || (lowequal
4837 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4838 high1, 1, high0, 1))))
4840 temp = in0_p, in0_p = in1_p, in1_p = temp;
4841 tem = low0, low0 = low1, low1 = tem;
4842 tem = high0, high0 = high1, high1 = tem;
4845 /* Now flag two cases, whether the ranges are disjoint or whether the
4846 second range is totally subsumed in the first. Note that the tests
4847 below are simplified by the ones above. */
4848 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4849 high0, 1, low1, 0));
4850 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4851 high1, 1, high0, 1));
4853 /* We now have four cases, depending on whether we are including or
4854 excluding the two ranges. */
4855 if (in0_p && in1_p)
4857 /* If they don't overlap, the result is false. If the second range
4858 is a subset it is the result. Otherwise, the range is from the start
4859 of the second to the end of the first. */
4860 if (no_overlap)
4861 in_p = 0, low = high = 0;
4862 else if (subset)
4863 in_p = 1, low = low1, high = high1;
4864 else
4865 in_p = 1, low = low1, high = high0;
4868 else if (in0_p && ! in1_p)
4870 /* If they don't overlap, the result is the first range. If they are
4871 equal, the result is false. If the second range is a subset of the
4872 first, and the ranges begin at the same place, we go from just after
4873 the end of the second range to the end of the first. If the second
4874 range is not a subset of the first, or if it is a subset and both
4875 ranges end at the same place, the range starts at the start of the
4876 first range and ends just before the second range.
4877 Otherwise, we can't describe this as a single range. */
4878 if (no_overlap)
4879 in_p = 1, low = low0, high = high0;
4880 else if (lowequal && highequal)
4881 in_p = 0, low = high = 0;
4882 else if (subset && lowequal)
4884 low = range_successor (high1);
4885 high = high0;
4886 in_p = 1;
4887 if (low == 0)
4889 /* We are in the weird situation where high0 > high1 but
4890 high1 has no successor. Punt. */
4891 return 0;
4894 else if (! subset || highequal)
4896 low = low0;
4897 high = range_predecessor (low1);
4898 in_p = 1;
4899 if (high == 0)
4901 /* low0 < low1 but low1 has no predecessor. Punt. */
4902 return 0;
4905 else
4906 return 0;
4909 else if (! in0_p && in1_p)
4911 /* If they don't overlap, the result is the second range. If the second
4912 is a subset of the first, the result is false. Otherwise,
4913 the range starts just after the first range and ends at the
4914 end of the second. */
4915 if (no_overlap)
4916 in_p = 1, low = low1, high = high1;
4917 else if (subset || highequal)
4918 in_p = 0, low = high = 0;
4919 else
4921 low = range_successor (high0);
4922 high = high1;
4923 in_p = 1;
4924 if (low == 0)
4926 /* high1 > high0 but high0 has no successor. Punt. */
4927 return 0;
4932 else
4934 /* The case where we are excluding both ranges. Here the complex case
4935 is if they don't overlap. In that case, the only time we have a
4936 range is if they are adjacent. If the second is a subset of the
4937 first, the result is the first. Otherwise, the range to exclude
4938 starts at the beginning of the first range and ends at the end of the
4939 second. */
4940 if (no_overlap)
4942 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4943 range_successor (high0),
4944 1, low1, 0)))
4945 in_p = 0, low = low0, high = high1;
4946 else
4948 /* Canonicalize - [min, x] into - [-, x]. */
4949 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4950 switch (TREE_CODE (TREE_TYPE (low0)))
4952 case ENUMERAL_TYPE:
4953 if (TYPE_PRECISION (TREE_TYPE (low0))
4954 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4955 break;
4956 /* FALLTHROUGH */
4957 case INTEGER_TYPE:
4958 if (tree_int_cst_equal (low0,
4959 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4960 low0 = 0;
4961 break;
4962 case POINTER_TYPE:
4963 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4964 && integer_zerop (low0))
4965 low0 = 0;
4966 break;
4967 default:
4968 break;
4971 /* Canonicalize - [x, max] into - [x, -]. */
4972 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4973 switch (TREE_CODE (TREE_TYPE (high1)))
4975 case ENUMERAL_TYPE:
4976 if (TYPE_PRECISION (TREE_TYPE (high1))
4977 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
4978 break;
4979 /* FALLTHROUGH */
4980 case INTEGER_TYPE:
4981 if (tree_int_cst_equal (high1,
4982 TYPE_MAX_VALUE (TREE_TYPE (high1))))
4983 high1 = 0;
4984 break;
4985 case POINTER_TYPE:
4986 if (TYPE_UNSIGNED (TREE_TYPE (high1))
4987 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
4988 high1, 1,
4989 build_int_cst (TREE_TYPE (high1), 1),
4990 1)))
4991 high1 = 0;
4992 break;
4993 default:
4994 break;
4997 /* The ranges might be also adjacent between the maximum and
4998 minimum values of the given type. For
4999 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5000 return + [x + 1, y - 1]. */
5001 if (low0 == 0 && high1 == 0)
5003 low = range_successor (high0);
5004 high = range_predecessor (low1);
5005 if (low == 0 || high == 0)
5006 return 0;
5008 in_p = 1;
5010 else
5011 return 0;
5014 else if (subset)
5015 in_p = 0, low = low0, high = high0;
5016 else
5017 in_p = 0, low = low0, high = high1;
5020 *pin_p = in_p, *plow = low, *phigh = high;
5021 return 1;
5025 /* Subroutine of fold, looking inside expressions of the form
5026 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5027 of the COND_EXPR. This function is being used also to optimize
5028 A op B ? C : A, by reversing the comparison first.
5030 Return a folded expression whose code is not a COND_EXPR
5031 anymore, or NULL_TREE if no folding opportunity is found. */
5033 static tree
5034 fold_cond_expr_with_comparison (location_t loc, tree type,
5035 tree arg0, tree arg1, tree arg2)
5037 enum tree_code comp_code = TREE_CODE (arg0);
5038 tree arg00 = TREE_OPERAND (arg0, 0);
5039 tree arg01 = TREE_OPERAND (arg0, 1);
5040 tree arg1_type = TREE_TYPE (arg1);
5041 tree tem;
5043 STRIP_NOPS (arg1);
5044 STRIP_NOPS (arg2);
5046 /* If we have A op 0 ? A : -A, consider applying the following
5047 transformations:
5049 A == 0? A : -A same as -A
5050 A != 0? A : -A same as A
5051 A >= 0? A : -A same as abs (A)
5052 A > 0? A : -A same as abs (A)
5053 A <= 0? A : -A same as -abs (A)
5054 A < 0? A : -A same as -abs (A)
5056 None of these transformations work for modes with signed
5057 zeros. If A is +/-0, the first two transformations will
5058 change the sign of the result (from +0 to -0, or vice
5059 versa). The last four will fix the sign of the result,
5060 even though the original expressions could be positive or
5061 negative, depending on the sign of A.
5063 Note that all these transformations are correct if A is
5064 NaN, since the two alternatives (A and -A) are also NaNs. */
5065 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5066 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5067 ? real_zerop (arg01)
5068 : integer_zerop (arg01))
5069 && ((TREE_CODE (arg2) == NEGATE_EXPR
5070 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5071 /* In the case that A is of the form X-Y, '-A' (arg2) may
5072 have already been folded to Y-X, check for that. */
5073 || (TREE_CODE (arg1) == MINUS_EXPR
5074 && TREE_CODE (arg2) == MINUS_EXPR
5075 && operand_equal_p (TREE_OPERAND (arg1, 0),
5076 TREE_OPERAND (arg2, 1), 0)
5077 && operand_equal_p (TREE_OPERAND (arg1, 1),
5078 TREE_OPERAND (arg2, 0), 0))))
5079 switch (comp_code)
5081 case EQ_EXPR:
5082 case UNEQ_EXPR:
5083 tem = fold_convert_loc (loc, arg1_type, arg1);
5084 return pedantic_non_lvalue_loc (loc,
5085 fold_convert_loc (loc, type,
5086 negate_expr (tem)));
5087 case NE_EXPR:
5088 case LTGT_EXPR:
5089 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
5090 case UNGE_EXPR:
5091 case UNGT_EXPR:
5092 if (flag_trapping_math)
5093 break;
5094 /* Fall through. */
5095 case GE_EXPR:
5096 case GT_EXPR:
5097 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5098 break;
5099 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5100 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5101 case UNLE_EXPR:
5102 case UNLT_EXPR:
5103 if (flag_trapping_math)
5104 break;
5105 /* FALLTHRU */
5106 case LE_EXPR:
5107 case LT_EXPR:
5108 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5109 break;
5110 tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1);
5111 return negate_expr (fold_convert_loc (loc, type, tem));
5112 default:
5113 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5114 break;
5117 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5118 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5119 both transformations are correct when A is NaN: A != 0
5120 is then true, and A == 0 is false. */
5122 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5123 && integer_zerop (arg01) && integer_zerop (arg2))
5125 if (comp_code == NE_EXPR)
5126 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
5127 else if (comp_code == EQ_EXPR)
5128 return build_zero_cst (type);
5131 /* Try some transformations of A op B ? A : B.
5133 A == B? A : B same as B
5134 A != B? A : B same as A
5135 A >= B? A : B same as max (A, B)
5136 A > B? A : B same as max (B, A)
5137 A <= B? A : B same as min (A, B)
5138 A < B? A : B same as min (B, A)
5140 As above, these transformations don't work in the presence
5141 of signed zeros. For example, if A and B are zeros of
5142 opposite sign, the first two transformations will change
5143 the sign of the result. In the last four, the original
5144 expressions give different results for (A=+0, B=-0) and
5145 (A=-0, B=+0), but the transformed expressions do not.
5147 The first two transformations are correct if either A or B
5148 is a NaN. In the first transformation, the condition will
5149 be false, and B will indeed be chosen. In the case of the
5150 second transformation, the condition A != B will be true,
5151 and A will be chosen.
5153 The conversions to max() and min() are not correct if B is
5154 a number and A is not. The conditions in the original
5155 expressions will be false, so all four give B. The min()
5156 and max() versions would give a NaN instead. */
5157 if (!HONOR_SIGNED_ZEROS (element_mode (type))
5158 && operand_equal_for_comparison_p (arg01, arg2, arg00)
5159 /* Avoid these transformations if the COND_EXPR may be used
5160 as an lvalue in the C++ front-end. PR c++/19199. */
5161 && (in_gimple_form
5162 || VECTOR_TYPE_P (type)
5163 || (! lang_GNU_CXX ()
5164 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5165 || ! maybe_lvalue_p (arg1)
5166 || ! maybe_lvalue_p (arg2)))
5168 tree comp_op0 = arg00;
5169 tree comp_op1 = arg01;
5170 tree comp_type = TREE_TYPE (comp_op0);
5172 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
5173 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
5175 comp_type = type;
5176 comp_op0 = arg1;
5177 comp_op1 = arg2;
5180 switch (comp_code)
5182 case EQ_EXPR:
5183 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg2));
5184 case NE_EXPR:
5185 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
5186 case LE_EXPR:
5187 case LT_EXPR:
5188 case UNLE_EXPR:
5189 case UNLT_EXPR:
5190 /* In C++ a ?: expression can be an lvalue, so put the
5191 operand which will be used if they are equal first
5192 so that we can convert this back to the
5193 corresponding COND_EXPR. */
5194 if (!HONOR_NANS (arg1))
5196 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5197 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5198 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5199 ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1)
5200 : fold_build2_loc (loc, MIN_EXPR, comp_type,
5201 comp_op1, comp_op0);
5202 return pedantic_non_lvalue_loc (loc,
5203 fold_convert_loc (loc, type, tem));
5205 break;
5206 case GE_EXPR:
5207 case GT_EXPR:
5208 case UNGE_EXPR:
5209 case UNGT_EXPR:
5210 if (!HONOR_NANS (arg1))
5212 comp_op0 = fold_convert_loc (loc, comp_type, comp_op0);
5213 comp_op1 = fold_convert_loc (loc, comp_type, comp_op1);
5214 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5215 ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1)
5216 : fold_build2_loc (loc, MAX_EXPR, comp_type,
5217 comp_op1, comp_op0);
5218 return pedantic_non_lvalue_loc (loc,
5219 fold_convert_loc (loc, type, tem));
5221 break;
5222 case UNEQ_EXPR:
5223 if (!HONOR_NANS (arg1))
5224 return pedantic_non_lvalue_loc (loc,
5225 fold_convert_loc (loc, type, arg2));
5226 break;
5227 case LTGT_EXPR:
5228 if (!HONOR_NANS (arg1))
5229 return pedantic_non_lvalue_loc (loc,
5230 fold_convert_loc (loc, type, arg1));
5231 break;
5232 default:
5233 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5234 break;
5238 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5239 we might still be able to simplify this. For example,
5240 if C1 is one less or one more than C2, this might have started
5241 out as a MIN or MAX and been transformed by this function.
5242 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5244 if (INTEGRAL_TYPE_P (type)
5245 && TREE_CODE (arg01) == INTEGER_CST
5246 && TREE_CODE (arg2) == INTEGER_CST)
5247 switch (comp_code)
5249 case EQ_EXPR:
5250 if (TREE_CODE (arg1) == INTEGER_CST)
5251 break;
5252 /* We can replace A with C1 in this case. */
5253 arg1 = fold_convert_loc (loc, type, arg01);
5254 return fold_build3_loc (loc, COND_EXPR, type, arg0, arg1, arg2);
5256 case LT_EXPR:
5257 /* If C1 is C2 + 1, this is min(A, C2), but use ARG00's type for
5258 MIN_EXPR, to preserve the signedness of the comparison. */
5259 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5260 OEP_ONLY_CONST)
5261 && operand_equal_p (arg01,
5262 const_binop (PLUS_EXPR, arg2,
5263 build_int_cst (type, 1)),
5264 OEP_ONLY_CONST))
5266 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5267 fold_convert_loc (loc, TREE_TYPE (arg00),
5268 arg2));
5269 return pedantic_non_lvalue_loc (loc,
5270 fold_convert_loc (loc, type, tem));
5272 break;
5274 case LE_EXPR:
5275 /* If C1 is C2 - 1, this is min(A, C2), with the same care
5276 as above. */
5277 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5278 OEP_ONLY_CONST)
5279 && operand_equal_p (arg01,
5280 const_binop (MINUS_EXPR, arg2,
5281 build_int_cst (type, 1)),
5282 OEP_ONLY_CONST))
5284 tem = fold_build2_loc (loc, MIN_EXPR, TREE_TYPE (arg00), arg00,
5285 fold_convert_loc (loc, TREE_TYPE (arg00),
5286 arg2));
5287 return pedantic_non_lvalue_loc (loc,
5288 fold_convert_loc (loc, type, tem));
5290 break;
5292 case GT_EXPR:
5293 /* If C1 is C2 - 1, this is max(A, C2), but use ARG00's type for
5294 MAX_EXPR, to preserve the signedness of the comparison. */
5295 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5296 OEP_ONLY_CONST)
5297 && operand_equal_p (arg01,
5298 const_binop (MINUS_EXPR, arg2,
5299 build_int_cst (type, 1)),
5300 OEP_ONLY_CONST))
5302 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5303 fold_convert_loc (loc, TREE_TYPE (arg00),
5304 arg2));
5305 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5307 break;
5309 case GE_EXPR:
5310 /* If C1 is C2 + 1, this is max(A, C2), with the same care as above. */
5311 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5312 OEP_ONLY_CONST)
5313 && operand_equal_p (arg01,
5314 const_binop (PLUS_EXPR, arg2,
5315 build_int_cst (type, 1)),
5316 OEP_ONLY_CONST))
5318 tem = fold_build2_loc (loc, MAX_EXPR, TREE_TYPE (arg00), arg00,
5319 fold_convert_loc (loc, TREE_TYPE (arg00),
5320 arg2));
5321 return pedantic_non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
5323 break;
5324 case NE_EXPR:
5325 break;
5326 default:
5327 gcc_unreachable ();
5330 return NULL_TREE;
5335 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5336 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5337 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5338 false) >= 2)
5339 #endif
5341 /* EXP is some logical combination of boolean tests. See if we can
5342 merge it into some range test. Return the new tree if so. */
5344 static tree
5345 fold_range_test (location_t loc, enum tree_code code, tree type,
5346 tree op0, tree op1)
5348 int or_op = (code == TRUTH_ORIF_EXPR
5349 || code == TRUTH_OR_EXPR);
5350 int in0_p, in1_p, in_p;
5351 tree low0, low1, low, high0, high1, high;
5352 bool strict_overflow_p = false;
5353 tree tem, lhs, rhs;
5354 const char * const warnmsg = G_("assuming signed overflow does not occur "
5355 "when simplifying range test");
5357 if (!INTEGRAL_TYPE_P (type))
5358 return 0;
5360 lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5361 rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5363 /* If this is an OR operation, invert both sides; we will invert
5364 again at the end. */
5365 if (or_op)
5366 in0_p = ! in0_p, in1_p = ! in1_p;
5368 /* If both expressions are the same, if we can merge the ranges, and we
5369 can build the range test, return it or it inverted. If one of the
5370 ranges is always true or always false, consider it to be the same
5371 expression as the other. */
5372 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5373 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5374 in1_p, low1, high1)
5375 && 0 != (tem = (build_range_check (loc, type,
5376 lhs != 0 ? lhs
5377 : rhs != 0 ? rhs : integer_zero_node,
5378 in_p, low, high))))
5380 if (strict_overflow_p)
5381 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5382 return or_op ? invert_truthvalue_loc (loc, tem) : tem;
5385 /* On machines where the branch cost is expensive, if this is a
5386 short-circuited branch and the underlying object on both sides
5387 is the same, make a non-short-circuit operation. */
5388 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5389 && lhs != 0 && rhs != 0
5390 && (code == TRUTH_ANDIF_EXPR
5391 || code == TRUTH_ORIF_EXPR)
5392 && operand_equal_p (lhs, rhs, 0))
5394 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5395 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5396 which cases we can't do this. */
5397 if (simple_operand_p (lhs))
5398 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5399 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5400 type, op0, op1);
5402 else if (!lang_hooks.decls.global_bindings_p ()
5403 && !CONTAINS_PLACEHOLDER_P (lhs))
5405 tree common = save_expr (lhs);
5407 if (0 != (lhs = build_range_check (loc, type, common,
5408 or_op ? ! in0_p : in0_p,
5409 low0, high0))
5410 && (0 != (rhs = build_range_check (loc, type, common,
5411 or_op ? ! in1_p : in1_p,
5412 low1, high1))))
5414 if (strict_overflow_p)
5415 fold_overflow_warning (warnmsg,
5416 WARN_STRICT_OVERFLOW_COMPARISON);
5417 return build2_loc (loc, code == TRUTH_ANDIF_EXPR
5418 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5419 type, lhs, rhs);
5424 return 0;
5427 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5428 bit value. Arrange things so the extra bits will be set to zero if and
5429 only if C is signed-extended to its full width. If MASK is nonzero,
5430 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5432 static tree
5433 unextend (tree c, int p, int unsignedp, tree mask)
5435 tree type = TREE_TYPE (c);
5436 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5437 tree temp;
5439 if (p == modesize || unsignedp)
5440 return c;
5442 /* We work by getting just the sign bit into the low-order bit, then
5443 into the high-order bit, then sign-extend. We then XOR that value
5444 with C. */
5445 temp = build_int_cst (TREE_TYPE (c), wi::extract_uhwi (c, p - 1, 1));
5447 /* We must use a signed type in order to get an arithmetic right shift.
5448 However, we must also avoid introducing accidental overflows, so that
5449 a subsequent call to integer_zerop will work. Hence we must
5450 do the type conversion here. At this point, the constant is either
5451 zero or one, and the conversion to a signed type can never overflow.
5452 We could get an overflow if this conversion is done anywhere else. */
5453 if (TYPE_UNSIGNED (type))
5454 temp = fold_convert (signed_type_for (type), temp);
5456 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1));
5457 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1));
5458 if (mask != 0)
5459 temp = const_binop (BIT_AND_EXPR, temp,
5460 fold_convert (TREE_TYPE (c), mask));
5461 /* If necessary, convert the type back to match the type of C. */
5462 if (TYPE_UNSIGNED (type))
5463 temp = fold_convert (type, temp);
5465 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp));
5468 /* For an expression that has the form
5469 (A && B) || ~B
5471 (A || B) && ~B,
5472 we can drop one of the inner expressions and simplify to
5473 A || ~B
5475 A && ~B
5476 LOC is the location of the resulting expression. OP is the inner
5477 logical operation; the left-hand side in the examples above, while CMPOP
5478 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5479 removing a condition that guards another, as in
5480 (A != NULL && A->...) || A == NULL
5481 which we must not transform. If RHS_ONLY is true, only eliminate the
5482 right-most operand of the inner logical operation. */
5484 static tree
5485 merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop,
5486 bool rhs_only)
5488 tree type = TREE_TYPE (cmpop);
5489 enum tree_code code = TREE_CODE (cmpop);
5490 enum tree_code truthop_code = TREE_CODE (op);
5491 tree lhs = TREE_OPERAND (op, 0);
5492 tree rhs = TREE_OPERAND (op, 1);
5493 tree orig_lhs = lhs, orig_rhs = rhs;
5494 enum tree_code rhs_code = TREE_CODE (rhs);
5495 enum tree_code lhs_code = TREE_CODE (lhs);
5496 enum tree_code inv_code;
5498 if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop))
5499 return NULL_TREE;
5501 if (TREE_CODE_CLASS (code) != tcc_comparison)
5502 return NULL_TREE;
5504 if (rhs_code == truthop_code)
5506 tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only);
5507 if (newrhs != NULL_TREE)
5509 rhs = newrhs;
5510 rhs_code = TREE_CODE (rhs);
5513 if (lhs_code == truthop_code && !rhs_only)
5515 tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false);
5516 if (newlhs != NULL_TREE)
5518 lhs = newlhs;
5519 lhs_code = TREE_CODE (lhs);
5523 inv_code = invert_tree_comparison (code, HONOR_NANS (type));
5524 if (inv_code == rhs_code
5525 && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0)
5526 && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0))
5527 return lhs;
5528 if (!rhs_only && inv_code == lhs_code
5529 && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0)
5530 && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0))
5531 return rhs;
5532 if (rhs != orig_rhs || lhs != orig_lhs)
5533 return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop),
5534 lhs, rhs);
5535 return NULL_TREE;
5538 /* Find ways of folding logical expressions of LHS and RHS:
5539 Try to merge two comparisons to the same innermost item.
5540 Look for range tests like "ch >= '0' && ch <= '9'".
5541 Look for combinations of simple terms on machines with expensive branches
5542 and evaluate the RHS unconditionally.
5544 For example, if we have p->a == 2 && p->b == 4 and we can make an
5545 object large enough to span both A and B, we can do this with a comparison
5546 against the object ANDed with the a mask.
5548 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5549 operations to do this with one comparison.
5551 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5552 function and the one above.
5554 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5555 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5557 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5558 two operands.
5560 We return the simplified tree or 0 if no optimization is possible. */
5562 static tree
5563 fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type,
5564 tree lhs, tree rhs)
5566 /* If this is the "or" of two comparisons, we can do something if
5567 the comparisons are NE_EXPR. If this is the "and", we can do something
5568 if the comparisons are EQ_EXPR. I.e.,
5569 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5571 WANTED_CODE is this operation code. For single bit fields, we can
5572 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5573 comparison for one-bit fields. */
5575 enum tree_code wanted_code;
5576 enum tree_code lcode, rcode;
5577 tree ll_arg, lr_arg, rl_arg, rr_arg;
5578 tree ll_inner, lr_inner, rl_inner, rr_inner;
5579 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5580 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5581 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5582 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5583 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5584 int ll_reversep, lr_reversep, rl_reversep, rr_reversep;
5585 machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5586 machine_mode lnmode, rnmode;
5587 tree ll_mask, lr_mask, rl_mask, rr_mask;
5588 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5589 tree l_const, r_const;
5590 tree lntype, rntype, result;
5591 HOST_WIDE_INT first_bit, end_bit;
5592 int volatilep;
5594 /* Start by getting the comparison codes. Fail if anything is volatile.
5595 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5596 it were surrounded with a NE_EXPR. */
5598 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5599 return 0;
5601 lcode = TREE_CODE (lhs);
5602 rcode = TREE_CODE (rhs);
5604 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5606 lhs = build2 (NE_EXPR, truth_type, lhs,
5607 build_int_cst (TREE_TYPE (lhs), 0));
5608 lcode = NE_EXPR;
5611 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5613 rhs = build2 (NE_EXPR, truth_type, rhs,
5614 build_int_cst (TREE_TYPE (rhs), 0));
5615 rcode = NE_EXPR;
5618 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5619 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5620 return 0;
5622 ll_arg = TREE_OPERAND (lhs, 0);
5623 lr_arg = TREE_OPERAND (lhs, 1);
5624 rl_arg = TREE_OPERAND (rhs, 0);
5625 rr_arg = TREE_OPERAND (rhs, 1);
5627 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5628 if (simple_operand_p (ll_arg)
5629 && simple_operand_p (lr_arg))
5631 if (operand_equal_p (ll_arg, rl_arg, 0)
5632 && operand_equal_p (lr_arg, rr_arg, 0))
5634 result = combine_comparisons (loc, code, lcode, rcode,
5635 truth_type, ll_arg, lr_arg);
5636 if (result)
5637 return result;
5639 else if (operand_equal_p (ll_arg, rr_arg, 0)
5640 && operand_equal_p (lr_arg, rl_arg, 0))
5642 result = combine_comparisons (loc, code, lcode,
5643 swap_tree_comparison (rcode),
5644 truth_type, ll_arg, lr_arg);
5645 if (result)
5646 return result;
5650 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5651 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5653 /* If the RHS can be evaluated unconditionally and its operands are
5654 simple, it wins to evaluate the RHS unconditionally on machines
5655 with expensive branches. In this case, this isn't a comparison
5656 that can be merged. */
5658 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5659 false) >= 2
5660 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5661 && simple_operand_p (rl_arg)
5662 && simple_operand_p (rr_arg))
5664 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5665 if (code == TRUTH_OR_EXPR
5666 && lcode == NE_EXPR && integer_zerop (lr_arg)
5667 && rcode == NE_EXPR && integer_zerop (rr_arg)
5668 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5669 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5670 return build2_loc (loc, NE_EXPR, truth_type,
5671 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5672 ll_arg, rl_arg),
5673 build_int_cst (TREE_TYPE (ll_arg), 0));
5675 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5676 if (code == TRUTH_AND_EXPR
5677 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5678 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5679 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5680 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5681 return build2_loc (loc, EQ_EXPR, truth_type,
5682 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5683 ll_arg, rl_arg),
5684 build_int_cst (TREE_TYPE (ll_arg), 0));
5687 /* See if the comparisons can be merged. Then get all the parameters for
5688 each side. */
5690 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5691 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5692 return 0;
5694 ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0;
5695 volatilep = 0;
5696 ll_inner = decode_field_reference (loc, &ll_arg,
5697 &ll_bitsize, &ll_bitpos, &ll_mode,
5698 &ll_unsignedp, &ll_reversep, &volatilep,
5699 &ll_mask, &ll_and_mask);
5700 lr_inner = decode_field_reference (loc, &lr_arg,
5701 &lr_bitsize, &lr_bitpos, &lr_mode,
5702 &lr_unsignedp, &lr_reversep, &volatilep,
5703 &lr_mask, &lr_and_mask);
5704 rl_inner = decode_field_reference (loc, &rl_arg,
5705 &rl_bitsize, &rl_bitpos, &rl_mode,
5706 &rl_unsignedp, &rl_reversep, &volatilep,
5707 &rl_mask, &rl_and_mask);
5708 rr_inner = decode_field_reference (loc, &rr_arg,
5709 &rr_bitsize, &rr_bitpos, &rr_mode,
5710 &rr_unsignedp, &rr_reversep, &volatilep,
5711 &rr_mask, &rr_and_mask);
5713 /* It must be true that the inner operation on the lhs of each
5714 comparison must be the same if we are to be able to do anything.
5715 Then see if we have constants. If not, the same must be true for
5716 the rhs's. */
5717 if (volatilep
5718 || ll_reversep != rl_reversep
5719 || ll_inner == 0 || rl_inner == 0
5720 || ! operand_equal_p (ll_inner, rl_inner, 0))
5721 return 0;
5723 if (TREE_CODE (lr_arg) == INTEGER_CST
5724 && TREE_CODE (rr_arg) == INTEGER_CST)
5726 l_const = lr_arg, r_const = rr_arg;
5727 lr_reversep = ll_reversep;
5729 else if (lr_reversep != rr_reversep
5730 || lr_inner == 0 || rr_inner == 0
5731 || ! operand_equal_p (lr_inner, rr_inner, 0))
5732 return 0;
5733 else
5734 l_const = r_const = 0;
5736 /* If either comparison code is not correct for our logical operation,
5737 fail. However, we can convert a one-bit comparison against zero into
5738 the opposite comparison against that bit being set in the field. */
5740 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5741 if (lcode != wanted_code)
5743 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5745 /* Make the left operand unsigned, since we are only interested
5746 in the value of one bit. Otherwise we are doing the wrong
5747 thing below. */
5748 ll_unsignedp = 1;
5749 l_const = ll_mask;
5751 else
5752 return 0;
5755 /* This is analogous to the code for l_const above. */
5756 if (rcode != wanted_code)
5758 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5760 rl_unsignedp = 1;
5761 r_const = rl_mask;
5763 else
5764 return 0;
5767 /* See if we can find a mode that contains both fields being compared on
5768 the left. If we can't, fail. Otherwise, update all constants and masks
5769 to be relative to a field of that size. */
5770 first_bit = MIN (ll_bitpos, rl_bitpos);
5771 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5772 lnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5773 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5774 volatilep);
5775 if (lnmode == VOIDmode)
5776 return 0;
5778 lnbitsize = GET_MODE_BITSIZE (lnmode);
5779 lnbitpos = first_bit & ~ (lnbitsize - 1);
5780 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5781 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5783 if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5785 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5786 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5789 ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask),
5790 size_int (xll_bitpos));
5791 rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask),
5792 size_int (xrl_bitpos));
5794 if (l_const)
5796 l_const = fold_convert_loc (loc, lntype, l_const);
5797 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5798 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos));
5799 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5800 fold_build1_loc (loc, BIT_NOT_EXPR,
5801 lntype, ll_mask))))
5803 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5805 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5808 if (r_const)
5810 r_const = fold_convert_loc (loc, lntype, r_const);
5811 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5812 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos));
5813 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5814 fold_build1_loc (loc, BIT_NOT_EXPR,
5815 lntype, rl_mask))))
5817 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5819 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5823 /* If the right sides are not constant, do the same for it. Also,
5824 disallow this optimization if a size or signedness mismatch occurs
5825 between the left and right sides. */
5826 if (l_const == 0)
5828 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5829 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5830 /* Make sure the two fields on the right
5831 correspond to the left without being swapped. */
5832 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5833 return 0;
5835 first_bit = MIN (lr_bitpos, rr_bitpos);
5836 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5837 rnmode = get_best_mode (end_bit - first_bit, first_bit, 0, 0,
5838 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5839 volatilep);
5840 if (rnmode == VOIDmode)
5841 return 0;
5843 rnbitsize = GET_MODE_BITSIZE (rnmode);
5844 rnbitpos = first_bit & ~ (rnbitsize - 1);
5845 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5846 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5848 if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
5850 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5851 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5854 lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5855 rntype, lr_mask),
5856 size_int (xlr_bitpos));
5857 rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc,
5858 rntype, rr_mask),
5859 size_int (xrr_bitpos));
5861 /* Make a mask that corresponds to both fields being compared.
5862 Do this for both items being compared. If the operands are the
5863 same size and the bits being compared are in the same position
5864 then we can do this by masking both and comparing the masked
5865 results. */
5866 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5867 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask);
5868 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5870 lhs = make_bit_field_ref (loc, ll_inner, ll_arg,
5871 lntype, lnbitsize, lnbitpos,
5872 ll_unsignedp || rl_unsignedp, ll_reversep);
5873 if (! all_ones_mask_p (ll_mask, lnbitsize))
5874 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5876 rhs = make_bit_field_ref (loc, lr_inner, lr_arg,
5877 rntype, rnbitsize, rnbitpos,
5878 lr_unsignedp || rr_unsignedp, lr_reversep);
5879 if (! all_ones_mask_p (lr_mask, rnbitsize))
5880 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5882 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5885 /* There is still another way we can do something: If both pairs of
5886 fields being compared are adjacent, we may be able to make a wider
5887 field containing them both.
5889 Note that we still must mask the lhs/rhs expressions. Furthermore,
5890 the mask must be shifted to account for the shift done by
5891 make_bit_field_ref. */
5892 if ((ll_bitsize + ll_bitpos == rl_bitpos
5893 && lr_bitsize + lr_bitpos == rr_bitpos)
5894 || (ll_bitpos == rl_bitpos + rl_bitsize
5895 && lr_bitpos == rr_bitpos + rr_bitsize))
5897 tree type;
5899 lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype,
5900 ll_bitsize + rl_bitsize,
5901 MIN (ll_bitpos, rl_bitpos),
5902 ll_unsignedp, ll_reversep);
5903 rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype,
5904 lr_bitsize + rr_bitsize,
5905 MIN (lr_bitpos, rr_bitpos),
5906 lr_unsignedp, lr_reversep);
5908 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5909 size_int (MIN (xll_bitpos, xrl_bitpos)));
5910 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5911 size_int (MIN (xlr_bitpos, xrr_bitpos)));
5913 /* Convert to the smaller type before masking out unwanted bits. */
5914 type = lntype;
5915 if (lntype != rntype)
5917 if (lnbitsize > rnbitsize)
5919 lhs = fold_convert_loc (loc, rntype, lhs);
5920 ll_mask = fold_convert_loc (loc, rntype, ll_mask);
5921 type = rntype;
5923 else if (lnbitsize < rnbitsize)
5925 rhs = fold_convert_loc (loc, lntype, rhs);
5926 lr_mask = fold_convert_loc (loc, lntype, lr_mask);
5927 type = lntype;
5931 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5932 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5934 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5935 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5937 return build2_loc (loc, wanted_code, truth_type, lhs, rhs);
5940 return 0;
5943 /* Handle the case of comparisons with constants. If there is something in
5944 common between the masks, those bits of the constants must be the same.
5945 If not, the condition is always false. Test for this to avoid generating
5946 incorrect code below. */
5947 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask);
5948 if (! integer_zerop (result)
5949 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const),
5950 const_binop (BIT_AND_EXPR, result, r_const)) != 1)
5952 if (wanted_code == NE_EXPR)
5954 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5955 return constant_boolean_node (true, truth_type);
5957 else
5959 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5960 return constant_boolean_node (false, truth_type);
5964 /* Construct the expression we will return. First get the component
5965 reference we will make. Unless the mask is all ones the width of
5966 that field, perform the mask operation. Then compare with the
5967 merged constant. */
5968 result = make_bit_field_ref (loc, ll_inner, ll_arg,
5969 lntype, lnbitsize, lnbitpos,
5970 ll_unsignedp || rl_unsignedp, ll_reversep);
5972 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask);
5973 if (! all_ones_mask_p (ll_mask, lnbitsize))
5974 result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask);
5976 return build2_loc (loc, wanted_code, truth_type, result,
5977 const_binop (BIT_IOR_EXPR, l_const, r_const));
5980 /* T is an integer expression that is being multiplied, divided, or taken a
5981 modulus (CODE says which and what kind of divide or modulus) by a
5982 constant C. See if we can eliminate that operation by folding it with
5983 other operations already in T. WIDE_TYPE, if non-null, is a type that
5984 should be used for the computation if wider than our type.
5986 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
5987 (X * 2) + (Y * 4). We must, however, be assured that either the original
5988 expression would not overflow or that overflow is undefined for the type
5989 in the language in question.
5991 If we return a non-null expression, it is an equivalent form of the
5992 original computation, but need not be in the original type.
5994 We set *STRICT_OVERFLOW_P to true if the return values depends on
5995 signed overflow being undefined. Otherwise we do not change
5996 *STRICT_OVERFLOW_P. */
5998 static tree
5999 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
6000 bool *strict_overflow_p)
6002 /* To avoid exponential search depth, refuse to allow recursion past
6003 three levels. Beyond that (1) it's highly unlikely that we'll find
6004 something interesting and (2) we've probably processed it before
6005 when we built the inner expression. */
6007 static int depth;
6008 tree ret;
6010 if (depth > 3)
6011 return NULL;
6013 depth++;
6014 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6015 depth--;
6017 return ret;
6020 static tree
6021 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6022 bool *strict_overflow_p)
6024 tree type = TREE_TYPE (t);
6025 enum tree_code tcode = TREE_CODE (t);
6026 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
6027 > GET_MODE_SIZE (TYPE_MODE (type)))
6028 ? wide_type : type);
6029 tree t1, t2;
6030 int same_p = tcode == code;
6031 tree op0 = NULL_TREE, op1 = NULL_TREE;
6032 bool sub_strict_overflow_p;
6034 /* Don't deal with constants of zero here; they confuse the code below. */
6035 if (integer_zerop (c))
6036 return NULL_TREE;
6038 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6039 op0 = TREE_OPERAND (t, 0);
6041 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6042 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6044 /* Note that we need not handle conditional operations here since fold
6045 already handles those cases. So just do arithmetic here. */
6046 switch (tcode)
6048 case INTEGER_CST:
6049 /* For a constant, we can always simplify if we are a multiply
6050 or (for divide and modulus) if it is a multiple of our constant. */
6051 if (code == MULT_EXPR
6052 || wi::multiple_of_p (t, c, TYPE_SIGN (type)))
6054 tree tem = const_binop (code, fold_convert (ctype, t),
6055 fold_convert (ctype, c));
6056 /* If the multiplication overflowed, we lost information on it.
6057 See PR68142 and PR69845. */
6058 if (TREE_OVERFLOW (tem))
6059 return NULL_TREE;
6060 return tem;
6062 break;
6064 CASE_CONVERT: case NON_LVALUE_EXPR:
6065 /* If op0 is an expression ... */
6066 if ((COMPARISON_CLASS_P (op0)
6067 || UNARY_CLASS_P (op0)
6068 || BINARY_CLASS_P (op0)
6069 || VL_EXP_CLASS_P (op0)
6070 || EXPRESSION_CLASS_P (op0))
6071 /* ... and has wrapping overflow, and its type is smaller
6072 than ctype, then we cannot pass through as widening. */
6073 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6074 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
6075 && (TYPE_PRECISION (ctype)
6076 > TYPE_PRECISION (TREE_TYPE (op0))))
6077 /* ... or this is a truncation (t is narrower than op0),
6078 then we cannot pass through this narrowing. */
6079 || (TYPE_PRECISION (type)
6080 < TYPE_PRECISION (TREE_TYPE (op0)))
6081 /* ... or signedness changes for division or modulus,
6082 then we cannot pass through this conversion. */
6083 || (code != MULT_EXPR
6084 && (TYPE_UNSIGNED (ctype)
6085 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6086 /* ... or has undefined overflow while the converted to
6087 type has not, we cannot do the operation in the inner type
6088 as that would introduce undefined overflow. */
6089 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0))
6090 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
6091 && !TYPE_OVERFLOW_UNDEFINED (type))))
6092 break;
6094 /* Pass the constant down and see if we can make a simplification. If
6095 we can, replace this expression with the inner simplification for
6096 possible later conversion to our or some other type. */
6097 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6098 && TREE_CODE (t2) == INTEGER_CST
6099 && !TREE_OVERFLOW (t2)
6100 && (0 != (t1 = extract_muldiv (op0, t2, code,
6101 code == MULT_EXPR
6102 ? ctype : NULL_TREE,
6103 strict_overflow_p))))
6104 return t1;
6105 break;
6107 case ABS_EXPR:
6108 /* If widening the type changes it from signed to unsigned, then we
6109 must avoid building ABS_EXPR itself as unsigned. */
6110 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6112 tree cstype = (*signed_type_for) (ctype);
6113 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6114 != 0)
6116 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6117 return fold_convert (ctype, t1);
6119 break;
6121 /* If the constant is negative, we cannot simplify this. */
6122 if (tree_int_cst_sgn (c) == -1)
6123 break;
6124 /* FALLTHROUGH */
6125 case NEGATE_EXPR:
6126 /* For division and modulus, type can't be unsigned, as e.g.
6127 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6128 For signed types, even with wrapping overflow, this is fine. */
6129 if (code != MULT_EXPR && TYPE_UNSIGNED (type))
6130 break;
6131 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6132 != 0)
6133 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6134 break;
6136 case MIN_EXPR: case MAX_EXPR:
6137 /* If widening the type changes the signedness, then we can't perform
6138 this optimization as that changes the result. */
6139 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6140 break;
6142 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6143 sub_strict_overflow_p = false;
6144 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6145 &sub_strict_overflow_p)) != 0
6146 && (t2 = extract_muldiv (op1, c, code, wide_type,
6147 &sub_strict_overflow_p)) != 0)
6149 if (tree_int_cst_sgn (c) < 0)
6150 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6151 if (sub_strict_overflow_p)
6152 *strict_overflow_p = true;
6153 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6154 fold_convert (ctype, t2));
6156 break;
6158 case LSHIFT_EXPR: case RSHIFT_EXPR:
6159 /* If the second operand is constant, this is a multiplication
6160 or floor division, by a power of two, so we can treat it that
6161 way unless the multiplier or divisor overflows. Signed
6162 left-shift overflow is implementation-defined rather than
6163 undefined in C90, so do not convert signed left shift into
6164 multiplication. */
6165 if (TREE_CODE (op1) == INTEGER_CST
6166 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6167 /* const_binop may not detect overflow correctly,
6168 so check for it explicitly here. */
6169 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
6170 && 0 != (t1 = fold_convert (ctype,
6171 const_binop (LSHIFT_EXPR,
6172 size_one_node,
6173 op1)))
6174 && !TREE_OVERFLOW (t1))
6175 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6176 ? MULT_EXPR : FLOOR_DIV_EXPR,
6177 ctype,
6178 fold_convert (ctype, op0),
6179 t1),
6180 c, code, wide_type, strict_overflow_p);
6181 break;
6183 case PLUS_EXPR: case MINUS_EXPR:
6184 /* See if we can eliminate the operation on both sides. If we can, we
6185 can return a new PLUS or MINUS. If we can't, the only remaining
6186 cases where we can do anything are if the second operand is a
6187 constant. */
6188 sub_strict_overflow_p = false;
6189 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6190 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6191 if (t1 != 0 && t2 != 0
6192 && (code == MULT_EXPR
6193 /* If not multiplication, we can only do this if both operands
6194 are divisible by c. */
6195 || (multiple_of_p (ctype, op0, c)
6196 && multiple_of_p (ctype, op1, c))))
6198 if (sub_strict_overflow_p)
6199 *strict_overflow_p = true;
6200 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6201 fold_convert (ctype, t2));
6204 /* If this was a subtraction, negate OP1 and set it to be an addition.
6205 This simplifies the logic below. */
6206 if (tcode == MINUS_EXPR)
6208 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6209 /* If OP1 was not easily negatable, the constant may be OP0. */
6210 if (TREE_CODE (op0) == INTEGER_CST)
6212 std::swap (op0, op1);
6213 std::swap (t1, t2);
6217 if (TREE_CODE (op1) != INTEGER_CST)
6218 break;
6220 /* If either OP1 or C are negative, this optimization is not safe for
6221 some of the division and remainder types while for others we need
6222 to change the code. */
6223 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6225 if (code == CEIL_DIV_EXPR)
6226 code = FLOOR_DIV_EXPR;
6227 else if (code == FLOOR_DIV_EXPR)
6228 code = CEIL_DIV_EXPR;
6229 else if (code != MULT_EXPR
6230 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6231 break;
6234 /* If it's a multiply or a division/modulus operation of a multiple
6235 of our constant, do the operation and verify it doesn't overflow. */
6236 if (code == MULT_EXPR
6237 || wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6239 op1 = const_binop (code, fold_convert (ctype, op1),
6240 fold_convert (ctype, c));
6241 /* We allow the constant to overflow with wrapping semantics. */
6242 if (op1 == 0
6243 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6244 break;
6246 else
6247 break;
6249 /* If we have an unsigned type, we cannot widen the operation since it
6250 will change the result if the original computation overflowed. */
6251 if (TYPE_UNSIGNED (ctype) && ctype != type)
6252 break;
6254 /* If we were able to eliminate our operation from the first side,
6255 apply our operation to the second side and reform the PLUS. */
6256 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6257 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6259 /* The last case is if we are a multiply. In that case, we can
6260 apply the distributive law to commute the multiply and addition
6261 if the multiplication of the constants doesn't overflow
6262 and overflow is defined. With undefined overflow
6263 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6264 if (code == MULT_EXPR && TYPE_OVERFLOW_WRAPS (ctype))
6265 return fold_build2 (tcode, ctype,
6266 fold_build2 (code, ctype,
6267 fold_convert (ctype, op0),
6268 fold_convert (ctype, c)),
6269 op1);
6271 break;
6273 case MULT_EXPR:
6274 /* We have a special case here if we are doing something like
6275 (C * 8) % 4 since we know that's zero. */
6276 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6277 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6278 /* If the multiplication can overflow we cannot optimize this. */
6279 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6280 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6281 && wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6283 *strict_overflow_p = true;
6284 return omit_one_operand (type, integer_zero_node, op0);
6287 /* ... fall through ... */
6289 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6290 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6291 /* If we can extract our operation from the LHS, do so and return a
6292 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6293 do something only if the second operand is a constant. */
6294 if (same_p
6295 && (t1 = extract_muldiv (op0, c, code, wide_type,
6296 strict_overflow_p)) != 0)
6297 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6298 fold_convert (ctype, op1));
6299 else if (tcode == MULT_EXPR && code == MULT_EXPR
6300 && (t1 = extract_muldiv (op1, c, code, wide_type,
6301 strict_overflow_p)) != 0)
6302 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6303 fold_convert (ctype, t1));
6304 else if (TREE_CODE (op1) != INTEGER_CST)
6305 return 0;
6307 /* If these are the same operation types, we can associate them
6308 assuming no overflow. */
6309 if (tcode == code)
6311 bool overflow_p = false;
6312 bool overflow_mul_p;
6313 signop sign = TYPE_SIGN (ctype);
6314 unsigned prec = TYPE_PRECISION (ctype);
6315 wide_int mul = wi::mul (wi::to_wide (op1, prec),
6316 wi::to_wide (c, prec),
6317 sign, &overflow_mul_p);
6318 overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1);
6319 if (overflow_mul_p
6320 && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED))
6321 overflow_p = true;
6322 if (!overflow_p)
6323 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6324 wide_int_to_tree (ctype, mul));
6327 /* If these operations "cancel" each other, we have the main
6328 optimizations of this pass, which occur when either constant is a
6329 multiple of the other, in which case we replace this with either an
6330 operation or CODE or TCODE.
6332 If we have an unsigned type, we cannot do this since it will change
6333 the result if the original computation overflowed. */
6334 if (TYPE_OVERFLOW_UNDEFINED (ctype)
6335 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6336 || (tcode == MULT_EXPR
6337 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6338 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6339 && code != MULT_EXPR)))
6341 if (wi::multiple_of_p (op1, c, TYPE_SIGN (type)))
6343 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6344 *strict_overflow_p = true;
6345 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6346 fold_convert (ctype,
6347 const_binop (TRUNC_DIV_EXPR,
6348 op1, c)));
6350 else if (wi::multiple_of_p (c, op1, TYPE_SIGN (type)))
6352 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6353 *strict_overflow_p = true;
6354 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6355 fold_convert (ctype,
6356 const_binop (TRUNC_DIV_EXPR,
6357 c, op1)));
6360 break;
6362 default:
6363 break;
6366 return 0;
6369 /* Return a node which has the indicated constant VALUE (either 0 or
6370 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6371 and is of the indicated TYPE. */
6373 tree
6374 constant_boolean_node (bool value, tree type)
6376 if (type == integer_type_node)
6377 return value ? integer_one_node : integer_zero_node;
6378 else if (type == boolean_type_node)
6379 return value ? boolean_true_node : boolean_false_node;
6380 else if (TREE_CODE (type) == VECTOR_TYPE)
6381 return build_vector_from_val (type,
6382 build_int_cst (TREE_TYPE (type),
6383 value ? -1 : 0));
6384 else
6385 return fold_convert (type, value ? integer_one_node : integer_zero_node);
6389 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6390 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6391 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6392 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6393 COND is the first argument to CODE; otherwise (as in the example
6394 given here), it is the second argument. TYPE is the type of the
6395 original expression. Return NULL_TREE if no simplification is
6396 possible. */
6398 static tree
6399 fold_binary_op_with_conditional_arg (location_t loc,
6400 enum tree_code code,
6401 tree type, tree op0, tree op1,
6402 tree cond, tree arg, int cond_first_p)
6404 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6405 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6406 tree test, true_value, false_value;
6407 tree lhs = NULL_TREE;
6408 tree rhs = NULL_TREE;
6409 enum tree_code cond_code = COND_EXPR;
6411 if (TREE_CODE (cond) == COND_EXPR
6412 || TREE_CODE (cond) == VEC_COND_EXPR)
6414 test = TREE_OPERAND (cond, 0);
6415 true_value = TREE_OPERAND (cond, 1);
6416 false_value = TREE_OPERAND (cond, 2);
6417 /* If this operand throws an expression, then it does not make
6418 sense to try to perform a logical or arithmetic operation
6419 involving it. */
6420 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6421 lhs = true_value;
6422 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6423 rhs = false_value;
6425 else if (!(TREE_CODE (type) != VECTOR_TYPE
6426 && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE))
6428 tree testtype = TREE_TYPE (cond);
6429 test = cond;
6430 true_value = constant_boolean_node (true, testtype);
6431 false_value = constant_boolean_node (false, testtype);
6433 else
6434 /* Detect the case of mixing vector and scalar types - bail out. */
6435 return NULL_TREE;
6437 if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE)
6438 cond_code = VEC_COND_EXPR;
6440 /* This transformation is only worthwhile if we don't have to wrap ARG
6441 in a SAVE_EXPR and the operation can be simplified without recursing
6442 on at least one of the branches once its pushed inside the COND_EXPR. */
6443 if (!TREE_CONSTANT (arg)
6444 && (TREE_SIDE_EFFECTS (arg)
6445 || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR
6446 || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value)))
6447 return NULL_TREE;
6449 arg = fold_convert_loc (loc, arg_type, arg);
6450 if (lhs == 0)
6452 true_value = fold_convert_loc (loc, cond_type, true_value);
6453 if (cond_first_p)
6454 lhs = fold_build2_loc (loc, code, type, true_value, arg);
6455 else
6456 lhs = fold_build2_loc (loc, code, type, arg, true_value);
6458 if (rhs == 0)
6460 false_value = fold_convert_loc (loc, cond_type, false_value);
6461 if (cond_first_p)
6462 rhs = fold_build2_loc (loc, code, type, false_value, arg);
6463 else
6464 rhs = fold_build2_loc (loc, code, type, arg, false_value);
6467 /* Check that we have simplified at least one of the branches. */
6468 if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs))
6469 return NULL_TREE;
6471 return fold_build3_loc (loc, cond_code, type, test, lhs, rhs);
6475 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6477 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6478 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6479 ADDEND is the same as X.
6481 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6482 and finite. The problematic cases are when X is zero, and its mode
6483 has signed zeros. In the case of rounding towards -infinity,
6484 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6485 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6487 bool
6488 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6490 if (!real_zerop (addend))
6491 return false;
6493 /* Don't allow the fold with -fsignaling-nans. */
6494 if (HONOR_SNANS (element_mode (type)))
6495 return false;
6497 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6498 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
6499 return true;
6501 /* In a vector or complex, we would need to check the sign of all zeros. */
6502 if (TREE_CODE (addend) != REAL_CST)
6503 return false;
6505 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6506 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6507 negate = !negate;
6509 /* The mode has signed zeros, and we have to honor their sign.
6510 In this situation, there is only one case we can return true for.
6511 X - 0 is the same as X unless rounding towards -infinity is
6512 supported. */
6513 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type));
6516 /* Subroutine of fold() that optimizes comparisons of a division by
6517 a nonzero integer constant against an integer constant, i.e.
6518 X/C1 op C2.
6520 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6521 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6522 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6524 The function returns the constant folded tree if a simplification
6525 can be made, and NULL_TREE otherwise. */
6527 static tree
6528 fold_div_compare (location_t loc,
6529 enum tree_code code, tree type, tree arg0, tree arg1)
6531 tree prod, tmp, hi, lo;
6532 tree arg00 = TREE_OPERAND (arg0, 0);
6533 tree arg01 = TREE_OPERAND (arg0, 1);
6534 signop sign = TYPE_SIGN (TREE_TYPE (arg0));
6535 bool neg_overflow = false;
6536 bool overflow;
6538 /* We have to do this the hard way to detect unsigned overflow.
6539 prod = int_const_binop (MULT_EXPR, arg01, arg1); */
6540 wide_int val = wi::mul (arg01, arg1, sign, &overflow);
6541 prod = force_fit_type (TREE_TYPE (arg00), val, -1, overflow);
6542 neg_overflow = false;
6544 if (sign == UNSIGNED)
6546 tmp = int_const_binop (MINUS_EXPR, arg01,
6547 build_int_cst (TREE_TYPE (arg01), 1));
6548 lo = prod;
6550 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6551 val = wi::add (prod, tmp, sign, &overflow);
6552 hi = force_fit_type (TREE_TYPE (arg00), val,
6553 -1, overflow | TREE_OVERFLOW (prod));
6555 else if (tree_int_cst_sgn (arg01) >= 0)
6557 tmp = int_const_binop (MINUS_EXPR, arg01,
6558 build_int_cst (TREE_TYPE (arg01), 1));
6559 switch (tree_int_cst_sgn (arg1))
6561 case -1:
6562 neg_overflow = true;
6563 lo = int_const_binop (MINUS_EXPR, prod, tmp);
6564 hi = prod;
6565 break;
6567 case 0:
6568 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6569 hi = tmp;
6570 break;
6572 case 1:
6573 hi = int_const_binop (PLUS_EXPR, prod, tmp);
6574 lo = prod;
6575 break;
6577 default:
6578 gcc_unreachable ();
6581 else
6583 /* A negative divisor reverses the relational operators. */
6584 code = swap_tree_comparison (code);
6586 tmp = int_const_binop (PLUS_EXPR, arg01,
6587 build_int_cst (TREE_TYPE (arg01), 1));
6588 switch (tree_int_cst_sgn (arg1))
6590 case -1:
6591 hi = int_const_binop (MINUS_EXPR, prod, tmp);
6592 lo = prod;
6593 break;
6595 case 0:
6596 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6597 lo = tmp;
6598 break;
6600 case 1:
6601 neg_overflow = true;
6602 lo = int_const_binop (PLUS_EXPR, prod, tmp);
6603 hi = prod;
6604 break;
6606 default:
6607 gcc_unreachable ();
6611 switch (code)
6613 case EQ_EXPR:
6614 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6615 return omit_one_operand_loc (loc, type, integer_zero_node, arg00);
6616 if (TREE_OVERFLOW (hi))
6617 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6618 if (TREE_OVERFLOW (lo))
6619 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6620 return build_range_check (loc, type, arg00, 1, lo, hi);
6622 case NE_EXPR:
6623 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6624 return omit_one_operand_loc (loc, type, integer_one_node, arg00);
6625 if (TREE_OVERFLOW (hi))
6626 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6627 if (TREE_OVERFLOW (lo))
6628 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6629 return build_range_check (loc, type, arg00, 0, lo, hi);
6631 case LT_EXPR:
6632 if (TREE_OVERFLOW (lo))
6634 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6635 return omit_one_operand_loc (loc, type, tmp, arg00);
6637 return fold_build2_loc (loc, LT_EXPR, type, arg00, lo);
6639 case LE_EXPR:
6640 if (TREE_OVERFLOW (hi))
6642 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6643 return omit_one_operand_loc (loc, type, tmp, arg00);
6645 return fold_build2_loc (loc, LE_EXPR, type, arg00, hi);
6647 case GT_EXPR:
6648 if (TREE_OVERFLOW (hi))
6650 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6651 return omit_one_operand_loc (loc, type, tmp, arg00);
6653 return fold_build2_loc (loc, GT_EXPR, type, arg00, hi);
6655 case GE_EXPR:
6656 if (TREE_OVERFLOW (lo))
6658 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6659 return omit_one_operand_loc (loc, type, tmp, arg00);
6661 return fold_build2_loc (loc, GE_EXPR, type, arg00, lo);
6663 default:
6664 break;
6667 return NULL_TREE;
6671 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6672 equality/inequality test, then return a simplified form of the test
6673 using a sign testing. Otherwise return NULL. TYPE is the desired
6674 result type. */
6676 static tree
6677 fold_single_bit_test_into_sign_test (location_t loc,
6678 enum tree_code code, tree arg0, tree arg1,
6679 tree result_type)
6681 /* If this is testing a single bit, we can optimize the test. */
6682 if ((code == NE_EXPR || code == EQ_EXPR)
6683 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6684 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6686 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6687 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6688 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6690 if (arg00 != NULL_TREE
6691 /* This is only a win if casting to a signed type is cheap,
6692 i.e. when arg00's type is not a partial mode. */
6693 && TYPE_PRECISION (TREE_TYPE (arg00))
6694 == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (arg00))))
6696 tree stype = signed_type_for (TREE_TYPE (arg00));
6697 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6698 result_type,
6699 fold_convert_loc (loc, stype, arg00),
6700 build_int_cst (stype, 0));
6704 return NULL_TREE;
6707 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6708 equality/inequality test, then return a simplified form of
6709 the test using shifts and logical operations. Otherwise return
6710 NULL. TYPE is the desired result type. */
6712 tree
6713 fold_single_bit_test (location_t loc, enum tree_code code,
6714 tree arg0, tree arg1, tree result_type)
6716 /* If this is testing a single bit, we can optimize the test. */
6717 if ((code == NE_EXPR || code == EQ_EXPR)
6718 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6719 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6721 tree inner = TREE_OPERAND (arg0, 0);
6722 tree type = TREE_TYPE (arg0);
6723 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6724 machine_mode operand_mode = TYPE_MODE (type);
6725 int ops_unsigned;
6726 tree signed_type, unsigned_type, intermediate_type;
6727 tree tem, one;
6729 /* First, see if we can fold the single bit test into a sign-bit
6730 test. */
6731 tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1,
6732 result_type);
6733 if (tem)
6734 return tem;
6736 /* Otherwise we have (A & C) != 0 where C is a single bit,
6737 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6738 Similarly for (A & C) == 0. */
6740 /* If INNER is a right shift of a constant and it plus BITNUM does
6741 not overflow, adjust BITNUM and INNER. */
6742 if (TREE_CODE (inner) == RSHIFT_EXPR
6743 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6744 && bitnum < TYPE_PRECISION (type)
6745 && wi::ltu_p (TREE_OPERAND (inner, 1),
6746 TYPE_PRECISION (type) - bitnum))
6748 bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1));
6749 inner = TREE_OPERAND (inner, 0);
6752 /* If we are going to be able to omit the AND below, we must do our
6753 operations as unsigned. If we must use the AND, we have a choice.
6754 Normally unsigned is faster, but for some machines signed is. */
6755 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6756 && !flag_syntax_only) ? 0 : 1;
6758 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6759 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6760 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6761 inner = fold_convert_loc (loc, intermediate_type, inner);
6763 if (bitnum != 0)
6764 inner = build2 (RSHIFT_EXPR, intermediate_type,
6765 inner, size_int (bitnum));
6767 one = build_int_cst (intermediate_type, 1);
6769 if (code == EQ_EXPR)
6770 inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one);
6772 /* Put the AND last so it can combine with more things. */
6773 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6775 /* Make sure to return the proper type. */
6776 inner = fold_convert_loc (loc, result_type, inner);
6778 return inner;
6780 return NULL_TREE;
6783 /* Check whether we are allowed to reorder operands arg0 and arg1,
6784 such that the evaluation of arg1 occurs before arg0. */
6786 static bool
6787 reorder_operands_p (const_tree arg0, const_tree arg1)
6789 if (! flag_evaluation_order)
6790 return true;
6791 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6792 return true;
6793 return ! TREE_SIDE_EFFECTS (arg0)
6794 && ! TREE_SIDE_EFFECTS (arg1);
6797 /* Test whether it is preferable two swap two operands, ARG0 and
6798 ARG1, for example because ARG0 is an integer constant and ARG1
6799 isn't. If REORDER is true, only recommend swapping if we can
6800 evaluate the operands in reverse order. */
6802 bool
6803 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6805 if (CONSTANT_CLASS_P (arg1))
6806 return 0;
6807 if (CONSTANT_CLASS_P (arg0))
6808 return 1;
6810 STRIP_NOPS (arg0);
6811 STRIP_NOPS (arg1);
6813 if (TREE_CONSTANT (arg1))
6814 return 0;
6815 if (TREE_CONSTANT (arg0))
6816 return 1;
6818 if (reorder && flag_evaluation_order
6819 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
6820 return 0;
6822 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6823 for commutative and comparison operators. Ensuring a canonical
6824 form allows the optimizers to find additional redundancies without
6825 having to explicitly check for both orderings. */
6826 if (TREE_CODE (arg0) == SSA_NAME
6827 && TREE_CODE (arg1) == SSA_NAME
6828 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
6829 return 1;
6831 /* Put SSA_NAMEs last. */
6832 if (TREE_CODE (arg1) == SSA_NAME)
6833 return 0;
6834 if (TREE_CODE (arg0) == SSA_NAME)
6835 return 1;
6837 /* Put variables last. */
6838 if (DECL_P (arg1))
6839 return 0;
6840 if (DECL_P (arg0))
6841 return 1;
6843 return 0;
6847 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6848 means A >= Y && A != MAX, but in this case we know that
6849 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6851 static tree
6852 fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound)
6854 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
6856 if (TREE_CODE (bound) == LT_EXPR)
6857 a = TREE_OPERAND (bound, 0);
6858 else if (TREE_CODE (bound) == GT_EXPR)
6859 a = TREE_OPERAND (bound, 1);
6860 else
6861 return NULL_TREE;
6863 typea = TREE_TYPE (a);
6864 if (!INTEGRAL_TYPE_P (typea)
6865 && !POINTER_TYPE_P (typea))
6866 return NULL_TREE;
6868 if (TREE_CODE (ineq) == LT_EXPR)
6870 a1 = TREE_OPERAND (ineq, 1);
6871 y = TREE_OPERAND (ineq, 0);
6873 else if (TREE_CODE (ineq) == GT_EXPR)
6875 a1 = TREE_OPERAND (ineq, 0);
6876 y = TREE_OPERAND (ineq, 1);
6878 else
6879 return NULL_TREE;
6881 if (TREE_TYPE (a1) != typea)
6882 return NULL_TREE;
6884 if (POINTER_TYPE_P (typea))
6886 /* Convert the pointer types into integer before taking the difference. */
6887 tree ta = fold_convert_loc (loc, ssizetype, a);
6888 tree ta1 = fold_convert_loc (loc, ssizetype, a1);
6889 diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta);
6891 else
6892 diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a);
6894 if (!diff || !integer_onep (diff))
6895 return NULL_TREE;
6897 return fold_build2_loc (loc, GE_EXPR, type, a, y);
6900 /* Fold a sum or difference of at least one multiplication.
6901 Returns the folded tree or NULL if no simplification could be made. */
6903 static tree
6904 fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type,
6905 tree arg0, tree arg1)
6907 tree arg00, arg01, arg10, arg11;
6908 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
6910 /* (A * C) +- (B * C) -> (A+-B) * C.
6911 (A * C) +- A -> A * (C+-1).
6912 We are most concerned about the case where C is a constant,
6913 but other combinations show up during loop reduction. Since
6914 it is not difficult, try all four possibilities. */
6916 if (TREE_CODE (arg0) == MULT_EXPR)
6918 arg00 = TREE_OPERAND (arg0, 0);
6919 arg01 = TREE_OPERAND (arg0, 1);
6921 else if (TREE_CODE (arg0) == INTEGER_CST)
6923 arg00 = build_one_cst (type);
6924 arg01 = arg0;
6926 else
6928 /* We cannot generate constant 1 for fract. */
6929 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6930 return NULL_TREE;
6931 arg00 = arg0;
6932 arg01 = build_one_cst (type);
6934 if (TREE_CODE (arg1) == MULT_EXPR)
6936 arg10 = TREE_OPERAND (arg1, 0);
6937 arg11 = TREE_OPERAND (arg1, 1);
6939 else if (TREE_CODE (arg1) == INTEGER_CST)
6941 arg10 = build_one_cst (type);
6942 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
6943 the purpose of this canonicalization. */
6944 if (wi::neg_p (arg1, TYPE_SIGN (TREE_TYPE (arg1)))
6945 && negate_expr_p (arg1)
6946 && code == PLUS_EXPR)
6948 arg11 = negate_expr (arg1);
6949 code = MINUS_EXPR;
6951 else
6952 arg11 = arg1;
6954 else
6956 /* We cannot generate constant 1 for fract. */
6957 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
6958 return NULL_TREE;
6959 arg10 = arg1;
6960 arg11 = build_one_cst (type);
6962 same = NULL_TREE;
6964 if (operand_equal_p (arg01, arg11, 0))
6965 same = arg01, alt0 = arg00, alt1 = arg10;
6966 else if (operand_equal_p (arg00, arg10, 0))
6967 same = arg00, alt0 = arg01, alt1 = arg11;
6968 else if (operand_equal_p (arg00, arg11, 0))
6969 same = arg00, alt0 = arg01, alt1 = arg10;
6970 else if (operand_equal_p (arg01, arg10, 0))
6971 same = arg01, alt0 = arg00, alt1 = arg11;
6973 /* No identical multiplicands; see if we can find a common
6974 power-of-two factor in non-power-of-two multiplies. This
6975 can help in multi-dimensional array access. */
6976 else if (tree_fits_shwi_p (arg01)
6977 && tree_fits_shwi_p (arg11))
6979 HOST_WIDE_INT int01, int11, tmp;
6980 bool swap = false;
6981 tree maybe_same;
6982 int01 = tree_to_shwi (arg01);
6983 int11 = tree_to_shwi (arg11);
6985 /* Move min of absolute values to int11. */
6986 if (absu_hwi (int01) < absu_hwi (int11))
6988 tmp = int01, int01 = int11, int11 = tmp;
6989 alt0 = arg00, arg00 = arg10, arg10 = alt0;
6990 maybe_same = arg01;
6991 swap = true;
6993 else
6994 maybe_same = arg11;
6996 if (exact_log2 (absu_hwi (int11)) > 0 && int01 % int11 == 0
6997 /* The remainder should not be a constant, otherwise we
6998 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
6999 increased the number of multiplications necessary. */
7000 && TREE_CODE (arg10) != INTEGER_CST)
7002 alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00,
7003 build_int_cst (TREE_TYPE (arg00),
7004 int01 / int11));
7005 alt1 = arg10;
7006 same = maybe_same;
7007 if (swap)
7008 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7012 if (same)
7013 return fold_build2_loc (loc, MULT_EXPR, type,
7014 fold_build2_loc (loc, code, type,
7015 fold_convert_loc (loc, type, alt0),
7016 fold_convert_loc (loc, type, alt1)),
7017 fold_convert_loc (loc, type, same));
7019 return NULL_TREE;
7022 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7023 specified by EXPR into the buffer PTR of length LEN bytes.
7024 Return the number of bytes placed in the buffer, or zero
7025 upon failure. */
7027 static int
7028 native_encode_int (const_tree expr, unsigned char *ptr, int len, int off)
7030 tree type = TREE_TYPE (expr);
7031 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7032 int byte, offset, word, words;
7033 unsigned char value;
7035 if ((off == -1 && total_bytes > len)
7036 || off >= total_bytes)
7037 return 0;
7038 if (off == -1)
7039 off = 0;
7040 words = total_bytes / UNITS_PER_WORD;
7042 for (byte = 0; byte < total_bytes; byte++)
7044 int bitpos = byte * BITS_PER_UNIT;
7045 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7046 number of bytes. */
7047 value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT);
7049 if (total_bytes > UNITS_PER_WORD)
7051 word = byte / UNITS_PER_WORD;
7052 if (WORDS_BIG_ENDIAN)
7053 word = (words - 1) - word;
7054 offset = word * UNITS_PER_WORD;
7055 if (BYTES_BIG_ENDIAN)
7056 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7057 else
7058 offset += byte % UNITS_PER_WORD;
7060 else
7061 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7062 if (offset >= off
7063 && offset - off < len)
7064 ptr[offset - off] = value;
7066 return MIN (len, total_bytes - off);
7070 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7071 specified by EXPR into the buffer PTR of length LEN bytes.
7072 Return the number of bytes placed in the buffer, or zero
7073 upon failure. */
7075 static int
7076 native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off)
7078 tree type = TREE_TYPE (expr);
7079 machine_mode mode = TYPE_MODE (type);
7080 int total_bytes = GET_MODE_SIZE (mode);
7081 FIXED_VALUE_TYPE value;
7082 tree i_value, i_type;
7084 if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7085 return 0;
7087 i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1);
7089 if (NULL_TREE == i_type
7090 || TYPE_PRECISION (i_type) != total_bytes)
7091 return 0;
7093 value = TREE_FIXED_CST (expr);
7094 i_value = double_int_to_tree (i_type, value.data);
7096 return native_encode_int (i_value, ptr, len, off);
7100 /* Subroutine of native_encode_expr. Encode the REAL_CST
7101 specified by EXPR into the buffer PTR of length LEN bytes.
7102 Return the number of bytes placed in the buffer, or zero
7103 upon failure. */
7105 static int
7106 native_encode_real (const_tree expr, unsigned char *ptr, int len, int off)
7108 tree type = TREE_TYPE (expr);
7109 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7110 int byte, offset, word, words, bitpos;
7111 unsigned char value;
7113 /* There are always 32 bits in each long, no matter the size of
7114 the hosts long. We handle floating point representations with
7115 up to 192 bits. */
7116 long tmp[6];
7118 if ((off == -1 && total_bytes > len)
7119 || off >= total_bytes)
7120 return 0;
7121 if (off == -1)
7122 off = 0;
7123 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7125 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7127 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7128 bitpos += BITS_PER_UNIT)
7130 byte = (bitpos / BITS_PER_UNIT) & 3;
7131 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7133 if (UNITS_PER_WORD < 4)
7135 word = byte / UNITS_PER_WORD;
7136 if (WORDS_BIG_ENDIAN)
7137 word = (words - 1) - word;
7138 offset = word * UNITS_PER_WORD;
7139 if (BYTES_BIG_ENDIAN)
7140 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7141 else
7142 offset += byte % UNITS_PER_WORD;
7144 else
7146 offset = byte;
7147 if (BYTES_BIG_ENDIAN)
7149 /* Reverse bytes within each long, or within the entire float
7150 if it's smaller than a long (for HFmode). */
7151 offset = MIN (3, total_bytes - 1) - offset;
7152 gcc_assert (offset >= 0);
7155 offset = offset + ((bitpos / BITS_PER_UNIT) & ~3);
7156 if (offset >= off
7157 && offset - off < len)
7158 ptr[offset - off] = value;
7160 return MIN (len, total_bytes - off);
7163 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7164 specified by EXPR into the buffer PTR of length LEN bytes.
7165 Return the number of bytes placed in the buffer, or zero
7166 upon failure. */
7168 static int
7169 native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off)
7171 int rsize, isize;
7172 tree part;
7174 part = TREE_REALPART (expr);
7175 rsize = native_encode_expr (part, ptr, len, off);
7176 if (off == -1
7177 && rsize == 0)
7178 return 0;
7179 part = TREE_IMAGPART (expr);
7180 if (off != -1)
7181 off = MAX (0, off - GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (part))));
7182 isize = native_encode_expr (part, ptr+rsize, len-rsize, off);
7183 if (off == -1
7184 && isize != rsize)
7185 return 0;
7186 return rsize + isize;
7190 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7191 specified by EXPR into the buffer PTR of length LEN bytes.
7192 Return the number of bytes placed in the buffer, or zero
7193 upon failure. */
7195 static int
7196 native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off)
7198 unsigned i, count;
7199 int size, offset;
7200 tree itype, elem;
7202 offset = 0;
7203 count = VECTOR_CST_NELTS (expr);
7204 itype = TREE_TYPE (TREE_TYPE (expr));
7205 size = GET_MODE_SIZE (TYPE_MODE (itype));
7206 for (i = 0; i < count; i++)
7208 if (off >= size)
7210 off -= size;
7211 continue;
7213 elem = VECTOR_CST_ELT (expr, i);
7214 int res = native_encode_expr (elem, ptr+offset, len-offset, off);
7215 if ((off == -1 && res != size)
7216 || res == 0)
7217 return 0;
7218 offset += res;
7219 if (offset >= len)
7220 return offset;
7221 if (off != -1)
7222 off = 0;
7224 return offset;
7228 /* Subroutine of native_encode_expr. Encode the STRING_CST
7229 specified by EXPR into the buffer PTR of length LEN bytes.
7230 Return the number of bytes placed in the buffer, or zero
7231 upon failure. */
7233 static int
7234 native_encode_string (const_tree expr, unsigned char *ptr, int len, int off)
7236 tree type = TREE_TYPE (expr);
7237 HOST_WIDE_INT total_bytes;
7239 if (TREE_CODE (type) != ARRAY_TYPE
7240 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7241 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7242 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type)))
7243 return 0;
7244 total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (type));
7245 if ((off == -1 && total_bytes > len)
7246 || off >= total_bytes)
7247 return 0;
7248 if (off == -1)
7249 off = 0;
7250 if (TREE_STRING_LENGTH (expr) - off < MIN (total_bytes, len))
7252 int written = 0;
7253 if (off < TREE_STRING_LENGTH (expr))
7255 written = MIN (len, TREE_STRING_LENGTH (expr) - off);
7256 memcpy (ptr, TREE_STRING_POINTER (expr) + off, written);
7258 memset (ptr + written, 0,
7259 MIN (total_bytes - written, len - written));
7261 else
7262 memcpy (ptr, TREE_STRING_POINTER (expr) + off, MIN (total_bytes, len));
7263 return MIN (total_bytes - off, len);
7267 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7268 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7269 buffer PTR of length LEN bytes. If OFF is not -1 then start
7270 the encoding at byte offset OFF and encode at most LEN bytes.
7271 Return the number of bytes placed in the buffer, or zero upon failure. */
7274 native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off)
7276 /* We don't support starting at negative offset and -1 is special. */
7277 if (off < -1)
7278 return 0;
7280 switch (TREE_CODE (expr))
7282 case INTEGER_CST:
7283 return native_encode_int (expr, ptr, len, off);
7285 case REAL_CST:
7286 return native_encode_real (expr, ptr, len, off);
7288 case FIXED_CST:
7289 return native_encode_fixed (expr, ptr, len, off);
7291 case COMPLEX_CST:
7292 return native_encode_complex (expr, ptr, len, off);
7294 case VECTOR_CST:
7295 return native_encode_vector (expr, ptr, len, off);
7297 case STRING_CST:
7298 return native_encode_string (expr, ptr, len, off);
7300 default:
7301 return 0;
7306 /* Subroutine of native_interpret_expr. Interpret the contents of
7307 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7308 If the buffer cannot be interpreted, return NULL_TREE. */
7310 static tree
7311 native_interpret_int (tree type, const unsigned char *ptr, int len)
7313 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7315 if (total_bytes > len
7316 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7317 return NULL_TREE;
7319 wide_int result = wi::from_buffer (ptr, total_bytes);
7321 return wide_int_to_tree (type, result);
7325 /* Subroutine of native_interpret_expr. Interpret the contents of
7326 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7327 If the buffer cannot be interpreted, return NULL_TREE. */
7329 static tree
7330 native_interpret_fixed (tree type, const unsigned char *ptr, int len)
7332 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7333 double_int result;
7334 FIXED_VALUE_TYPE fixed_value;
7336 if (total_bytes > len
7337 || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT)
7338 return NULL_TREE;
7340 result = double_int::from_buffer (ptr, total_bytes);
7341 fixed_value = fixed_from_double_int (result, TYPE_MODE (type));
7343 return build_fixed (type, fixed_value);
7347 /* Subroutine of native_interpret_expr. Interpret the contents of
7348 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7349 If the buffer cannot be interpreted, return NULL_TREE. */
7351 static tree
7352 native_interpret_real (tree type, const unsigned char *ptr, int len)
7354 machine_mode mode = TYPE_MODE (type);
7355 int total_bytes = GET_MODE_SIZE (mode);
7356 unsigned char value;
7357 /* There are always 32 bits in each long, no matter the size of
7358 the hosts long. We handle floating point representations with
7359 up to 192 bits. */
7360 REAL_VALUE_TYPE r;
7361 long tmp[6];
7363 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7364 if (total_bytes > len || total_bytes > 24)
7365 return NULL_TREE;
7366 int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7368 memset (tmp, 0, sizeof (tmp));
7369 for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7370 bitpos += BITS_PER_UNIT)
7372 /* Both OFFSET and BYTE index within a long;
7373 bitpos indexes the whole float. */
7374 int offset, byte = (bitpos / BITS_PER_UNIT) & 3;
7375 if (UNITS_PER_WORD < 4)
7377 int word = byte / UNITS_PER_WORD;
7378 if (WORDS_BIG_ENDIAN)
7379 word = (words - 1) - word;
7380 offset = word * UNITS_PER_WORD;
7381 if (BYTES_BIG_ENDIAN)
7382 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7383 else
7384 offset += byte % UNITS_PER_WORD;
7386 else
7388 offset = byte;
7389 if (BYTES_BIG_ENDIAN)
7391 /* Reverse bytes within each long, or within the entire float
7392 if it's smaller than a long (for HFmode). */
7393 offset = MIN (3, total_bytes - 1) - offset;
7394 gcc_assert (offset >= 0);
7397 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7399 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7402 real_from_target (&r, tmp, mode);
7403 return build_real (type, r);
7407 /* Subroutine of native_interpret_expr. Interpret the contents of
7408 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7409 If the buffer cannot be interpreted, return NULL_TREE. */
7411 static tree
7412 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7414 tree etype, rpart, ipart;
7415 int size;
7417 etype = TREE_TYPE (type);
7418 size = GET_MODE_SIZE (TYPE_MODE (etype));
7419 if (size * 2 > len)
7420 return NULL_TREE;
7421 rpart = native_interpret_expr (etype, ptr, size);
7422 if (!rpart)
7423 return NULL_TREE;
7424 ipart = native_interpret_expr (etype, ptr+size, size);
7425 if (!ipart)
7426 return NULL_TREE;
7427 return build_complex (type, rpart, ipart);
7431 /* Subroutine of native_interpret_expr. Interpret the contents of
7432 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7433 If the buffer cannot be interpreted, return NULL_TREE. */
7435 static tree
7436 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7438 tree etype, elem;
7439 int i, size, count;
7440 tree *elements;
7442 etype = TREE_TYPE (type);
7443 size = GET_MODE_SIZE (TYPE_MODE (etype));
7444 count = TYPE_VECTOR_SUBPARTS (type);
7445 if (size * count > len)
7446 return NULL_TREE;
7448 elements = XALLOCAVEC (tree, count);
7449 for (i = count - 1; i >= 0; i--)
7451 elem = native_interpret_expr (etype, ptr+(i*size), size);
7452 if (!elem)
7453 return NULL_TREE;
7454 elements[i] = elem;
7456 return build_vector (type, elements);
7460 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7461 the buffer PTR of length LEN as a constant of type TYPE. For
7462 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7463 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7464 return NULL_TREE. */
7466 tree
7467 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7469 switch (TREE_CODE (type))
7471 case INTEGER_TYPE:
7472 case ENUMERAL_TYPE:
7473 case BOOLEAN_TYPE:
7474 case POINTER_TYPE:
7475 case REFERENCE_TYPE:
7476 return native_interpret_int (type, ptr, len);
7478 case REAL_TYPE:
7479 return native_interpret_real (type, ptr, len);
7481 case FIXED_POINT_TYPE:
7482 return native_interpret_fixed (type, ptr, len);
7484 case COMPLEX_TYPE:
7485 return native_interpret_complex (type, ptr, len);
7487 case VECTOR_TYPE:
7488 return native_interpret_vector (type, ptr, len);
7490 default:
7491 return NULL_TREE;
7495 /* Returns true if we can interpret the contents of a native encoding
7496 as TYPE. */
7498 static bool
7499 can_native_interpret_type_p (tree type)
7501 switch (TREE_CODE (type))
7503 case INTEGER_TYPE:
7504 case ENUMERAL_TYPE:
7505 case BOOLEAN_TYPE:
7506 case POINTER_TYPE:
7507 case REFERENCE_TYPE:
7508 case FIXED_POINT_TYPE:
7509 case REAL_TYPE:
7510 case COMPLEX_TYPE:
7511 case VECTOR_TYPE:
7512 return true;
7513 default:
7514 return false;
7518 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7519 TYPE at compile-time. If we're unable to perform the conversion
7520 return NULL_TREE. */
7522 static tree
7523 fold_view_convert_expr (tree type, tree expr)
7525 /* We support up to 512-bit values (for V8DFmode). */
7526 unsigned char buffer[64];
7527 int len;
7529 /* Check that the host and target are sane. */
7530 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7531 return NULL_TREE;
7533 len = native_encode_expr (expr, buffer, sizeof (buffer));
7534 if (len == 0)
7535 return NULL_TREE;
7537 return native_interpret_expr (type, buffer, len);
7540 /* Build an expression for the address of T. Folds away INDIRECT_REF
7541 to avoid confusing the gimplify process. */
7543 tree
7544 build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype)
7546 /* The size of the object is not relevant when talking about its address. */
7547 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7548 t = TREE_OPERAND (t, 0);
7550 if (TREE_CODE (t) == INDIRECT_REF)
7552 t = TREE_OPERAND (t, 0);
7554 if (TREE_TYPE (t) != ptrtype)
7555 t = build1_loc (loc, NOP_EXPR, ptrtype, t);
7557 else if (TREE_CODE (t) == MEM_REF
7558 && integer_zerop (TREE_OPERAND (t, 1)))
7559 return TREE_OPERAND (t, 0);
7560 else if (TREE_CODE (t) == MEM_REF
7561 && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST)
7562 return fold_binary (POINTER_PLUS_EXPR, ptrtype,
7563 TREE_OPERAND (t, 0),
7564 convert_to_ptrofftype (TREE_OPERAND (t, 1)));
7565 else if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
7567 t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0));
7569 if (TREE_TYPE (t) != ptrtype)
7570 t = fold_convert_loc (loc, ptrtype, t);
7572 else
7573 t = build1_loc (loc, ADDR_EXPR, ptrtype, t);
7575 return t;
7578 /* Build an expression for the address of T. */
7580 tree
7581 build_fold_addr_expr_loc (location_t loc, tree t)
7583 tree ptrtype = build_pointer_type (TREE_TYPE (t));
7585 return build_fold_addr_expr_with_type_loc (loc, t, ptrtype);
7588 /* Fold a unary expression of code CODE and type TYPE with operand
7589 OP0. Return the folded expression if folding is successful.
7590 Otherwise, return NULL_TREE. */
7592 tree
7593 fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0)
7595 tree tem;
7596 tree arg0;
7597 enum tree_code_class kind = TREE_CODE_CLASS (code);
7599 gcc_assert (IS_EXPR_CODE_CLASS (kind)
7600 && TREE_CODE_LENGTH (code) == 1);
7602 arg0 = op0;
7603 if (arg0)
7605 if (CONVERT_EXPR_CODE_P (code)
7606 || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR)
7608 /* Don't use STRIP_NOPS, because signedness of argument type
7609 matters. */
7610 STRIP_SIGN_NOPS (arg0);
7612 else
7614 /* Strip any conversions that don't change the mode. This
7615 is safe for every expression, except for a comparison
7616 expression because its signedness is derived from its
7617 operands.
7619 Note that this is done as an internal manipulation within
7620 the constant folder, in order to find the simplest
7621 representation of the arguments so that their form can be
7622 studied. In any cases, the appropriate type conversions
7623 should be put back in the tree that will get out of the
7624 constant folder. */
7625 STRIP_NOPS (arg0);
7628 if (CONSTANT_CLASS_P (arg0))
7630 tree tem = const_unop (code, type, arg0);
7631 if (tem)
7633 if (TREE_TYPE (tem) != type)
7634 tem = fold_convert_loc (loc, type, tem);
7635 return tem;
7640 tem = generic_simplify (loc, code, type, op0);
7641 if (tem)
7642 return tem;
7644 if (TREE_CODE_CLASS (code) == tcc_unary)
7646 if (TREE_CODE (arg0) == COMPOUND_EXPR)
7647 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
7648 fold_build1_loc (loc, code, type,
7649 fold_convert_loc (loc, TREE_TYPE (op0),
7650 TREE_OPERAND (arg0, 1))));
7651 else if (TREE_CODE (arg0) == COND_EXPR)
7653 tree arg01 = TREE_OPERAND (arg0, 1);
7654 tree arg02 = TREE_OPERAND (arg0, 2);
7655 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
7656 arg01 = fold_build1_loc (loc, code, type,
7657 fold_convert_loc (loc,
7658 TREE_TYPE (op0), arg01));
7659 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
7660 arg02 = fold_build1_loc (loc, code, type,
7661 fold_convert_loc (loc,
7662 TREE_TYPE (op0), arg02));
7663 tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0),
7664 arg01, arg02);
7666 /* If this was a conversion, and all we did was to move into
7667 inside the COND_EXPR, bring it back out. But leave it if
7668 it is a conversion from integer to integer and the
7669 result precision is no wider than a word since such a
7670 conversion is cheap and may be optimized away by combine,
7671 while it couldn't if it were outside the COND_EXPR. Then return
7672 so we don't get into an infinite recursion loop taking the
7673 conversion out and then back in. */
7675 if ((CONVERT_EXPR_CODE_P (code)
7676 || code == NON_LVALUE_EXPR)
7677 && TREE_CODE (tem) == COND_EXPR
7678 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
7679 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
7680 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
7681 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
7682 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
7683 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
7684 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7685 && (INTEGRAL_TYPE_P
7686 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
7687 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
7688 || flag_syntax_only))
7689 tem = build1_loc (loc, code, type,
7690 build3 (COND_EXPR,
7691 TREE_TYPE (TREE_OPERAND
7692 (TREE_OPERAND (tem, 1), 0)),
7693 TREE_OPERAND (tem, 0),
7694 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
7695 TREE_OPERAND (TREE_OPERAND (tem, 2),
7696 0)));
7697 return tem;
7701 switch (code)
7703 case NON_LVALUE_EXPR:
7704 if (!maybe_lvalue_p (op0))
7705 return fold_convert_loc (loc, type, op0);
7706 return NULL_TREE;
7708 CASE_CONVERT:
7709 case FLOAT_EXPR:
7710 case FIX_TRUNC_EXPR:
7711 if (COMPARISON_CLASS_P (op0))
7713 /* If we have (type) (a CMP b) and type is an integral type, return
7714 new expression involving the new type. Canonicalize
7715 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7716 non-integral type.
7717 Do not fold the result as that would not simplify further, also
7718 folding again results in recursions. */
7719 if (TREE_CODE (type) == BOOLEAN_TYPE)
7720 return build2_loc (loc, TREE_CODE (op0), type,
7721 TREE_OPERAND (op0, 0),
7722 TREE_OPERAND (op0, 1));
7723 else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type)
7724 && TREE_CODE (type) != VECTOR_TYPE)
7725 return build3_loc (loc, COND_EXPR, type, op0,
7726 constant_boolean_node (true, type),
7727 constant_boolean_node (false, type));
7730 /* Handle (T *)&A.B.C for A being of type T and B and C
7731 living at offset zero. This occurs frequently in
7732 C++ upcasting and then accessing the base. */
7733 if (TREE_CODE (op0) == ADDR_EXPR
7734 && POINTER_TYPE_P (type)
7735 && handled_component_p (TREE_OPERAND (op0, 0)))
7737 HOST_WIDE_INT bitsize, bitpos;
7738 tree offset;
7739 machine_mode mode;
7740 int unsignedp, reversep, volatilep;
7741 tree base
7742 = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos,
7743 &offset, &mode, &unsignedp, &reversep,
7744 &volatilep);
7745 /* If the reference was to a (constant) zero offset, we can use
7746 the address of the base if it has the same base type
7747 as the result type and the pointer type is unqualified. */
7748 if (! offset && bitpos == 0
7749 && (TYPE_MAIN_VARIANT (TREE_TYPE (type))
7750 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
7751 && TYPE_QUALS (type) == TYPE_UNQUALIFIED)
7752 return fold_convert_loc (loc, type,
7753 build_fold_addr_expr_loc (loc, base));
7756 if (TREE_CODE (op0) == MODIFY_EXPR
7757 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
7758 /* Detect assigning a bitfield. */
7759 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
7760 && DECL_BIT_FIELD
7761 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
7763 /* Don't leave an assignment inside a conversion
7764 unless assigning a bitfield. */
7765 tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1));
7766 /* First do the assignment, then return converted constant. */
7767 tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
7768 TREE_NO_WARNING (tem) = 1;
7769 TREE_USED (tem) = 1;
7770 return tem;
7773 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7774 constants (if x has signed type, the sign bit cannot be set
7775 in c). This folds extension into the BIT_AND_EXPR.
7776 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7777 very likely don't have maximal range for their precision and this
7778 transformation effectively doesn't preserve non-maximal ranges. */
7779 if (TREE_CODE (type) == INTEGER_TYPE
7780 && TREE_CODE (op0) == BIT_AND_EXPR
7781 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST)
7783 tree and_expr = op0;
7784 tree and0 = TREE_OPERAND (and_expr, 0);
7785 tree and1 = TREE_OPERAND (and_expr, 1);
7786 int change = 0;
7788 if (TYPE_UNSIGNED (TREE_TYPE (and_expr))
7789 || (TYPE_PRECISION (type)
7790 <= TYPE_PRECISION (TREE_TYPE (and_expr))))
7791 change = 1;
7792 else if (TYPE_PRECISION (TREE_TYPE (and1))
7793 <= HOST_BITS_PER_WIDE_INT
7794 && tree_fits_uhwi_p (and1))
7796 unsigned HOST_WIDE_INT cst;
7798 cst = tree_to_uhwi (and1);
7799 cst &= HOST_WIDE_INT_M1U
7800 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
7801 change = (cst == 0);
7802 if (change
7803 && !flag_syntax_only
7804 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
7805 == ZERO_EXTEND))
7807 tree uns = unsigned_type_for (TREE_TYPE (and0));
7808 and0 = fold_convert_loc (loc, uns, and0);
7809 and1 = fold_convert_loc (loc, uns, and1);
7812 if (change)
7814 tem = force_fit_type (type, wi::to_widest (and1), 0,
7815 TREE_OVERFLOW (and1));
7816 return fold_build2_loc (loc, BIT_AND_EXPR, type,
7817 fold_convert_loc (loc, type, and0), tem);
7821 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
7822 cast (T1)X will fold away. We assume that this happens when X itself
7823 is a cast. */
7824 if (POINTER_TYPE_P (type)
7825 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
7826 && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0)))
7828 tree arg00 = TREE_OPERAND (arg0, 0);
7829 tree arg01 = TREE_OPERAND (arg0, 1);
7831 return fold_build_pointer_plus_loc
7832 (loc, fold_convert_loc (loc, type, arg00), arg01);
7835 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
7836 of the same precision, and X is an integer type not narrower than
7837 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
7838 if (INTEGRAL_TYPE_P (type)
7839 && TREE_CODE (op0) == BIT_NOT_EXPR
7840 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7841 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
7842 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
7844 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
7845 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
7846 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
7847 return fold_build1_loc (loc, BIT_NOT_EXPR, type,
7848 fold_convert_loc (loc, type, tem));
7851 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
7852 type of X and Y (integer types only). */
7853 if (INTEGRAL_TYPE_P (type)
7854 && TREE_CODE (op0) == MULT_EXPR
7855 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7856 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
7858 /* Be careful not to introduce new overflows. */
7859 tree mult_type;
7860 if (TYPE_OVERFLOW_WRAPS (type))
7861 mult_type = type;
7862 else
7863 mult_type = unsigned_type_for (type);
7865 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
7867 tem = fold_build2_loc (loc, MULT_EXPR, mult_type,
7868 fold_convert_loc (loc, mult_type,
7869 TREE_OPERAND (op0, 0)),
7870 fold_convert_loc (loc, mult_type,
7871 TREE_OPERAND (op0, 1)));
7872 return fold_convert_loc (loc, type, tem);
7876 return NULL_TREE;
7878 case VIEW_CONVERT_EXPR:
7879 if (TREE_CODE (op0) == MEM_REF)
7881 if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type))
7882 type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0)));
7883 tem = fold_build2_loc (loc, MEM_REF, type,
7884 TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1));
7885 REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0);
7886 return tem;
7889 return NULL_TREE;
7891 case NEGATE_EXPR:
7892 tem = fold_negate_expr (loc, arg0);
7893 if (tem)
7894 return fold_convert_loc (loc, type, tem);
7895 return NULL_TREE;
7897 case ABS_EXPR:
7898 /* Convert fabs((double)float) into (double)fabsf(float). */
7899 if (TREE_CODE (arg0) == NOP_EXPR
7900 && TREE_CODE (type) == REAL_TYPE)
7902 tree targ0 = strip_float_extensions (arg0);
7903 if (targ0 != arg0)
7904 return fold_convert_loc (loc, type,
7905 fold_build1_loc (loc, ABS_EXPR,
7906 TREE_TYPE (targ0),
7907 targ0));
7909 return NULL_TREE;
7911 case BIT_NOT_EXPR:
7912 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
7913 if (TREE_CODE (arg0) == BIT_XOR_EXPR
7914 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7915 fold_convert_loc (loc, type,
7916 TREE_OPERAND (arg0, 0)))))
7917 return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem,
7918 fold_convert_loc (loc, type,
7919 TREE_OPERAND (arg0, 1)));
7920 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
7921 && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type,
7922 fold_convert_loc (loc, type,
7923 TREE_OPERAND (arg0, 1)))))
7924 return fold_build2_loc (loc, BIT_XOR_EXPR, type,
7925 fold_convert_loc (loc, type,
7926 TREE_OPERAND (arg0, 0)), tem);
7928 return NULL_TREE;
7930 case TRUTH_NOT_EXPR:
7931 /* Note that the operand of this must be an int
7932 and its values must be 0 or 1.
7933 ("true" is a fixed value perhaps depending on the language,
7934 but we don't handle values other than 1 correctly yet.) */
7935 tem = fold_truth_not_expr (loc, arg0);
7936 if (!tem)
7937 return NULL_TREE;
7938 return fold_convert_loc (loc, type, tem);
7940 case INDIRECT_REF:
7941 /* Fold *&X to X if X is an lvalue. */
7942 if (TREE_CODE (op0) == ADDR_EXPR)
7944 tree op00 = TREE_OPERAND (op0, 0);
7945 if ((TREE_CODE (op00) == VAR_DECL
7946 || TREE_CODE (op00) == PARM_DECL
7947 || TREE_CODE (op00) == RESULT_DECL)
7948 && !TREE_READONLY (op00))
7949 return op00;
7951 return NULL_TREE;
7953 default:
7954 return NULL_TREE;
7955 } /* switch (code) */
7959 /* If the operation was a conversion do _not_ mark a resulting constant
7960 with TREE_OVERFLOW if the original constant was not. These conversions
7961 have implementation defined behavior and retaining the TREE_OVERFLOW
7962 flag here would confuse later passes such as VRP. */
7963 tree
7964 fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code,
7965 tree type, tree op0)
7967 tree res = fold_unary_loc (loc, code, type, op0);
7968 if (res
7969 && TREE_CODE (res) == INTEGER_CST
7970 && TREE_CODE (op0) == INTEGER_CST
7971 && CONVERT_EXPR_CODE_P (code))
7972 TREE_OVERFLOW (res) = TREE_OVERFLOW (op0);
7974 return res;
7977 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
7978 operands OP0 and OP1. LOC is the location of the resulting expression.
7979 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
7980 Return the folded expression if folding is successful. Otherwise,
7981 return NULL_TREE. */
7982 static tree
7983 fold_truth_andor (location_t loc, enum tree_code code, tree type,
7984 tree arg0, tree arg1, tree op0, tree op1)
7986 tree tem;
7988 /* We only do these simplifications if we are optimizing. */
7989 if (!optimize)
7990 return NULL_TREE;
7992 /* Check for things like (A || B) && (A || C). We can convert this
7993 to A || (B && C). Note that either operator can be any of the four
7994 truth and/or operations and the transformation will still be
7995 valid. Also note that we only care about order for the
7996 ANDIF and ORIF operators. If B contains side effects, this
7997 might change the truth-value of A. */
7998 if (TREE_CODE (arg0) == TREE_CODE (arg1)
7999 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
8000 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
8001 || TREE_CODE (arg0) == TRUTH_AND_EXPR
8002 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
8003 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
8005 tree a00 = TREE_OPERAND (arg0, 0);
8006 tree a01 = TREE_OPERAND (arg0, 1);
8007 tree a10 = TREE_OPERAND (arg1, 0);
8008 tree a11 = TREE_OPERAND (arg1, 1);
8009 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
8010 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
8011 && (code == TRUTH_AND_EXPR
8012 || code == TRUTH_OR_EXPR));
8014 if (operand_equal_p (a00, a10, 0))
8015 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8016 fold_build2_loc (loc, code, type, a01, a11));
8017 else if (commutative && operand_equal_p (a00, a11, 0))
8018 return fold_build2_loc (loc, TREE_CODE (arg0), type, a00,
8019 fold_build2_loc (loc, code, type, a01, a10));
8020 else if (commutative && operand_equal_p (a01, a10, 0))
8021 return fold_build2_loc (loc, TREE_CODE (arg0), type, a01,
8022 fold_build2_loc (loc, code, type, a00, a11));
8024 /* This case if tricky because we must either have commutative
8025 operators or else A10 must not have side-effects. */
8027 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
8028 && operand_equal_p (a01, a11, 0))
8029 return fold_build2_loc (loc, TREE_CODE (arg0), type,
8030 fold_build2_loc (loc, code, type, a00, a10),
8031 a01);
8034 /* See if we can build a range comparison. */
8035 if (0 != (tem = fold_range_test (loc, code, type, op0, op1)))
8036 return tem;
8038 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR)
8039 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR))
8041 tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true);
8042 if (tem)
8043 return fold_build2_loc (loc, code, type, tem, arg1);
8046 if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR)
8047 || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR))
8049 tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false);
8050 if (tem)
8051 return fold_build2_loc (loc, code, type, arg0, tem);
8054 /* Check for the possibility of merging component references. If our
8055 lhs is another similar operation, try to merge its rhs with our
8056 rhs. Then try to merge our lhs and rhs. */
8057 if (TREE_CODE (arg0) == code
8058 && 0 != (tem = fold_truth_andor_1 (loc, code, type,
8059 TREE_OPERAND (arg0, 1), arg1)))
8060 return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem);
8062 if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0)
8063 return tem;
8065 if (LOGICAL_OP_NON_SHORT_CIRCUIT
8066 && (code == TRUTH_AND_EXPR
8067 || code == TRUTH_ANDIF_EXPR
8068 || code == TRUTH_OR_EXPR
8069 || code == TRUTH_ORIF_EXPR))
8071 enum tree_code ncode, icode;
8073 ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR)
8074 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR;
8075 icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR;
8077 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8078 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8079 We don't want to pack more than two leafs to a non-IF AND/OR
8080 expression.
8081 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8082 equal to IF-CODE, then we don't want to add right-hand operand.
8083 If the inner right-hand side of left-hand operand has
8084 side-effects, or isn't simple, then we can't add to it,
8085 as otherwise we might destroy if-sequence. */
8086 if (TREE_CODE (arg0) == icode
8087 && simple_operand_p_2 (arg1)
8088 /* Needed for sequence points to handle trappings, and
8089 side-effects. */
8090 && simple_operand_p_2 (TREE_OPERAND (arg0, 1)))
8092 tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1),
8093 arg1);
8094 return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0),
8095 tem);
8097 /* Same as abouve but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8098 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8099 else if (TREE_CODE (arg1) == icode
8100 && simple_operand_p_2 (arg0)
8101 /* Needed for sequence points to handle trappings, and
8102 side-effects. */
8103 && simple_operand_p_2 (TREE_OPERAND (arg1, 0)))
8105 tem = fold_build2_loc (loc, ncode, type,
8106 arg0, TREE_OPERAND (arg1, 0));
8107 return fold_build2_loc (loc, icode, type, tem,
8108 TREE_OPERAND (arg1, 1));
8110 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8111 into (A OR B).
8112 For sequence point consistancy, we need to check for trapping,
8113 and side-effects. */
8114 else if (code == icode && simple_operand_p_2 (arg0)
8115 && simple_operand_p_2 (arg1))
8116 return fold_build2_loc (loc, ncode, type, arg0, arg1);
8119 return NULL_TREE;
8122 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8123 by changing CODE to reduce the magnitude of constants involved in
8124 ARG0 of the comparison.
8125 Returns a canonicalized comparison tree if a simplification was
8126 possible, otherwise returns NULL_TREE.
8127 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8128 valid if signed overflow is undefined. */
8130 static tree
8131 maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type,
8132 tree arg0, tree arg1,
8133 bool *strict_overflow_p)
8135 enum tree_code code0 = TREE_CODE (arg0);
8136 tree t, cst0 = NULL_TREE;
8137 int sgn0;
8139 /* Match A +- CST code arg1. We can change this only if overflow
8140 is undefined. */
8141 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8142 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))
8143 /* In principle pointers also have undefined overflow behavior,
8144 but that causes problems elsewhere. */
8145 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8146 && (code0 == MINUS_EXPR
8147 || code0 == PLUS_EXPR)
8148 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST))
8149 return NULL_TREE;
8151 /* Identify the constant in arg0 and its sign. */
8152 cst0 = TREE_OPERAND (arg0, 1);
8153 sgn0 = tree_int_cst_sgn (cst0);
8155 /* Overflowed constants and zero will cause problems. */
8156 if (integer_zerop (cst0)
8157 || TREE_OVERFLOW (cst0))
8158 return NULL_TREE;
8160 /* See if we can reduce the magnitude of the constant in
8161 arg0 by changing the comparison code. */
8162 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8163 if (code == LT_EXPR
8164 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8165 code = LE_EXPR;
8166 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8167 else if (code == GT_EXPR
8168 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8169 code = GE_EXPR;
8170 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8171 else if (code == LE_EXPR
8172 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8173 code = LT_EXPR;
8174 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8175 else if (code == GE_EXPR
8176 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8177 code = GT_EXPR;
8178 else
8179 return NULL_TREE;
8180 *strict_overflow_p = true;
8182 /* Now build the constant reduced in magnitude. But not if that
8183 would produce one outside of its types range. */
8184 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8185 && ((sgn0 == 1
8186 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8187 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8188 || (sgn0 == -1
8189 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8190 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8191 return NULL_TREE;
8193 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8194 cst0, build_int_cst (TREE_TYPE (cst0), 1));
8195 t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8196 t = fold_convert (TREE_TYPE (arg1), t);
8198 return fold_build2_loc (loc, code, type, t, arg1);
8201 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8202 overflow further. Try to decrease the magnitude of constants involved
8203 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8204 and put sole constants at the second argument position.
8205 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8207 static tree
8208 maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type,
8209 tree arg0, tree arg1)
8211 tree t;
8212 bool strict_overflow_p;
8213 const char * const warnmsg = G_("assuming signed overflow does not occur "
8214 "when reducing constant in comparison");
8216 /* Try canonicalization by simplifying arg0. */
8217 strict_overflow_p = false;
8218 t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1,
8219 &strict_overflow_p);
8220 if (t)
8222 if (strict_overflow_p)
8223 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8224 return t;
8227 /* Try canonicalization by simplifying arg1 using the swapped
8228 comparison. */
8229 code = swap_tree_comparison (code);
8230 strict_overflow_p = false;
8231 t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0,
8232 &strict_overflow_p);
8233 if (t && strict_overflow_p)
8234 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8235 return t;
8238 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8239 space. This is used to avoid issuing overflow warnings for
8240 expressions like &p->x which can not wrap. */
8242 static bool
8243 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8245 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8246 return true;
8248 if (bitpos < 0)
8249 return true;
8251 wide_int wi_offset;
8252 int precision = TYPE_PRECISION (TREE_TYPE (base));
8253 if (offset == NULL_TREE)
8254 wi_offset = wi::zero (precision);
8255 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8256 return true;
8257 else
8258 wi_offset = offset;
8260 bool overflow;
8261 wide_int units = wi::shwi (bitpos / BITS_PER_UNIT, precision);
8262 wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow);
8263 if (overflow)
8264 return true;
8266 if (!wi::fits_uhwi_p (total))
8267 return true;
8269 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8270 if (size <= 0)
8271 return true;
8273 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8274 array. */
8275 if (TREE_CODE (base) == ADDR_EXPR)
8277 HOST_WIDE_INT base_size;
8279 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8280 if (base_size > 0 && size < base_size)
8281 size = base_size;
8284 return total.to_uhwi () > (unsigned HOST_WIDE_INT) size;
8287 /* Return a positive integer when the symbol DECL is known to have
8288 a nonzero address, zero when it's known not to (e.g., it's a weak
8289 symbol), and a negative integer when the symbol is not yet in the
8290 symbol table and so whether or not its address is zero is unknown. */
8291 static int
8292 maybe_nonzero_address (tree decl)
8294 if (DECL_P (decl) && decl_in_symtab_p (decl))
8295 if (struct symtab_node *symbol = symtab_node::get_create (decl))
8296 return symbol->nonzero_address ();
8298 return -1;
8301 /* Subroutine of fold_binary. This routine performs all of the
8302 transformations that are common to the equality/inequality
8303 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8304 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8305 fold_binary should call fold_binary. Fold a comparison with
8306 tree code CODE and type TYPE with operands OP0 and OP1. Return
8307 the folded comparison or NULL_TREE. */
8309 static tree
8310 fold_comparison (location_t loc, enum tree_code code, tree type,
8311 tree op0, tree op1)
8313 const bool equality_code = (code == EQ_EXPR || code == NE_EXPR);
8314 tree arg0, arg1, tem;
8316 arg0 = op0;
8317 arg1 = op1;
8319 STRIP_SIGN_NOPS (arg0);
8320 STRIP_SIGN_NOPS (arg1);
8322 /* For comparisons of pointers we can decompose it to a compile time
8323 comparison of the base objects and the offsets into the object.
8324 This requires at least one operand being an ADDR_EXPR or a
8325 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8326 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8327 && (TREE_CODE (arg0) == ADDR_EXPR
8328 || TREE_CODE (arg1) == ADDR_EXPR
8329 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8330 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8332 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8333 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8334 machine_mode mode;
8335 int volatilep, reversep, unsignedp;
8336 bool indirect_base0 = false, indirect_base1 = false;
8338 /* Get base and offset for the access. Strip ADDR_EXPR for
8339 get_inner_reference, but put it back by stripping INDIRECT_REF
8340 off the base object if possible. indirect_baseN will be true
8341 if baseN is not an address but refers to the object itself. */
8342 base0 = arg0;
8343 if (TREE_CODE (arg0) == ADDR_EXPR)
8345 base0
8346 = get_inner_reference (TREE_OPERAND (arg0, 0),
8347 &bitsize, &bitpos0, &offset0, &mode,
8348 &unsignedp, &reversep, &volatilep);
8349 if (TREE_CODE (base0) == INDIRECT_REF)
8350 base0 = TREE_OPERAND (base0, 0);
8351 else
8352 indirect_base0 = true;
8354 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
8356 base0 = TREE_OPERAND (arg0, 0);
8357 STRIP_SIGN_NOPS (base0);
8358 if (TREE_CODE (base0) == ADDR_EXPR)
8360 base0
8361 = get_inner_reference (TREE_OPERAND (base0, 0),
8362 &bitsize, &bitpos0, &offset0, &mode,
8363 &unsignedp, &reversep, &volatilep);
8364 if (TREE_CODE (base0) == INDIRECT_REF)
8365 base0 = TREE_OPERAND (base0, 0);
8366 else
8367 indirect_base0 = true;
8369 if (offset0 == NULL_TREE || integer_zerop (offset0))
8370 offset0 = TREE_OPERAND (arg0, 1);
8371 else
8372 offset0 = size_binop (PLUS_EXPR, offset0,
8373 TREE_OPERAND (arg0, 1));
8374 if (TREE_CODE (offset0) == INTEGER_CST)
8376 offset_int tem = wi::sext (wi::to_offset (offset0),
8377 TYPE_PRECISION (sizetype));
8378 tem <<= LOG2_BITS_PER_UNIT;
8379 tem += bitpos0;
8380 if (wi::fits_shwi_p (tem))
8382 bitpos0 = tem.to_shwi ();
8383 offset0 = NULL_TREE;
8388 base1 = arg1;
8389 if (TREE_CODE (arg1) == ADDR_EXPR)
8391 base1
8392 = get_inner_reference (TREE_OPERAND (arg1, 0),
8393 &bitsize, &bitpos1, &offset1, &mode,
8394 &unsignedp, &reversep, &volatilep);
8395 if (TREE_CODE (base1) == INDIRECT_REF)
8396 base1 = TREE_OPERAND (base1, 0);
8397 else
8398 indirect_base1 = true;
8400 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
8402 base1 = TREE_OPERAND (arg1, 0);
8403 STRIP_SIGN_NOPS (base1);
8404 if (TREE_CODE (base1) == ADDR_EXPR)
8406 base1
8407 = get_inner_reference (TREE_OPERAND (base1, 0),
8408 &bitsize, &bitpos1, &offset1, &mode,
8409 &unsignedp, &reversep, &volatilep);
8410 if (TREE_CODE (base1) == INDIRECT_REF)
8411 base1 = TREE_OPERAND (base1, 0);
8412 else
8413 indirect_base1 = true;
8415 if (offset1 == NULL_TREE || integer_zerop (offset1))
8416 offset1 = TREE_OPERAND (arg1, 1);
8417 else
8418 offset1 = size_binop (PLUS_EXPR, offset1,
8419 TREE_OPERAND (arg1, 1));
8420 if (TREE_CODE (offset1) == INTEGER_CST)
8422 offset_int tem = wi::sext (wi::to_offset (offset1),
8423 TYPE_PRECISION (sizetype));
8424 tem <<= LOG2_BITS_PER_UNIT;
8425 tem += bitpos1;
8426 if (wi::fits_shwi_p (tem))
8428 bitpos1 = tem.to_shwi ();
8429 offset1 = NULL_TREE;
8434 /* If we have equivalent bases we might be able to simplify. */
8435 if (indirect_base0 == indirect_base1
8436 && operand_equal_p (base0, base1,
8437 indirect_base0 ? OEP_ADDRESS_OF : 0))
8439 /* We can fold this expression to a constant if the non-constant
8440 offset parts are equal. */
8441 if ((offset0 == offset1
8442 || (offset0 && offset1
8443 && operand_equal_p (offset0, offset1, 0)))
8444 && (equality_code
8445 || (indirect_base0
8446 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8447 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8450 if (!equality_code
8451 && bitpos0 != bitpos1
8452 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8453 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8454 fold_overflow_warning (("assuming pointer wraparound does not "
8455 "occur when comparing P +- C1 with "
8456 "P +- C2"),
8457 WARN_STRICT_OVERFLOW_CONDITIONAL);
8459 switch (code)
8461 case EQ_EXPR:
8462 return constant_boolean_node (bitpos0 == bitpos1, type);
8463 case NE_EXPR:
8464 return constant_boolean_node (bitpos0 != bitpos1, type);
8465 case LT_EXPR:
8466 return constant_boolean_node (bitpos0 < bitpos1, type);
8467 case LE_EXPR:
8468 return constant_boolean_node (bitpos0 <= bitpos1, type);
8469 case GE_EXPR:
8470 return constant_boolean_node (bitpos0 >= bitpos1, type);
8471 case GT_EXPR:
8472 return constant_boolean_node (bitpos0 > bitpos1, type);
8473 default:;
8476 /* We can simplify the comparison to a comparison of the variable
8477 offset parts if the constant offset parts are equal.
8478 Be careful to use signed sizetype here because otherwise we
8479 mess with array offsets in the wrong way. This is possible
8480 because pointer arithmetic is restricted to retain within an
8481 object and overflow on pointer differences is undefined as of
8482 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8483 else if (bitpos0 == bitpos1
8484 && (equality_code
8485 || (indirect_base0
8486 && (DECL_P (base0) || CONSTANT_CLASS_P (base0)))
8487 || POINTER_TYPE_OVERFLOW_UNDEFINED))
8489 /* By converting to signed sizetype we cover middle-end pointer
8490 arithmetic which operates on unsigned pointer types of size
8491 type size and ARRAY_REF offsets which are properly sign or
8492 zero extended from their type in case it is narrower than
8493 sizetype. */
8494 if (offset0 == NULL_TREE)
8495 offset0 = build_int_cst (ssizetype, 0);
8496 else
8497 offset0 = fold_convert_loc (loc, ssizetype, offset0);
8498 if (offset1 == NULL_TREE)
8499 offset1 = build_int_cst (ssizetype, 0);
8500 else
8501 offset1 = fold_convert_loc (loc, ssizetype, offset1);
8503 if (!equality_code
8504 && (pointer_may_wrap_p (base0, offset0, bitpos0)
8505 || pointer_may_wrap_p (base1, offset1, bitpos1)))
8506 fold_overflow_warning (("assuming pointer wraparound does not "
8507 "occur when comparing P +- C1 with "
8508 "P +- C2"),
8509 WARN_STRICT_OVERFLOW_COMPARISON);
8511 return fold_build2_loc (loc, code, type, offset0, offset1);
8514 /* For equal offsets we can simplify to a comparison of the
8515 base addresses. */
8516 else if (bitpos0 == bitpos1
8517 && (indirect_base0
8518 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
8519 && (indirect_base1
8520 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
8521 && ((offset0 == offset1)
8522 || (offset0 && offset1
8523 && operand_equal_p (offset0, offset1, 0))))
8525 if (indirect_base0)
8526 base0 = build_fold_addr_expr_loc (loc, base0);
8527 if (indirect_base1)
8528 base1 = build_fold_addr_expr_loc (loc, base1);
8529 return fold_build2_loc (loc, code, type, base0, base1);
8531 /* Comparison between an ordinary (non-weak) symbol and a null
8532 pointer can be eliminated since such symbols must have a non
8533 null address. In C, relational expressions between pointers
8534 to objects and null pointers are undefined. The results
8535 below follow the C++ rules with the additional property that
8536 every object pointer compares greater than a null pointer.
8538 else if (DECL_P (base0)
8539 && maybe_nonzero_address (base0) > 0
8540 /* Avoid folding references to struct members at offset 0 to
8541 prevent tests like '&ptr->firstmember == 0' from getting
8542 eliminated. When ptr is null, although the -> expression
8543 is strictly speaking invalid, GCC retains it as a matter
8544 of QoI. See PR c/44555. */
8545 && (offset0 == NULL_TREE && bitpos0 != 0)
8546 /* The caller guarantees that when one of the arguments is
8547 constant (i.e., null in this case) it is second. */
8548 && integer_zerop (arg1))
8550 switch (code)
8552 case EQ_EXPR:
8553 case LE_EXPR:
8554 case LT_EXPR:
8555 return constant_boolean_node (false, type);
8556 case GE_EXPR:
8557 case GT_EXPR:
8558 case NE_EXPR:
8559 return constant_boolean_node (true, type);
8560 default:
8561 gcc_unreachable ();
8566 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8567 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8568 the resulting offset is smaller in absolute value than the
8569 original one and has the same sign. */
8570 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0))
8571 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8572 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8573 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8574 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
8575 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
8576 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
8577 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
8579 tree const1 = TREE_OPERAND (arg0, 1);
8580 tree const2 = TREE_OPERAND (arg1, 1);
8581 tree variable1 = TREE_OPERAND (arg0, 0);
8582 tree variable2 = TREE_OPERAND (arg1, 0);
8583 tree cst;
8584 const char * const warnmsg = G_("assuming signed overflow does not "
8585 "occur when combining constants around "
8586 "a comparison");
8588 /* Put the constant on the side where it doesn't overflow and is
8589 of lower absolute value and of same sign than before. */
8590 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8591 ? MINUS_EXPR : PLUS_EXPR,
8592 const2, const1);
8593 if (!TREE_OVERFLOW (cst)
8594 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2)
8595 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2))
8597 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8598 return fold_build2_loc (loc, code, type,
8599 variable1,
8600 fold_build2_loc (loc, TREE_CODE (arg1),
8601 TREE_TYPE (arg1),
8602 variable2, cst));
8605 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
8606 ? MINUS_EXPR : PLUS_EXPR,
8607 const1, const2);
8608 if (!TREE_OVERFLOW (cst)
8609 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1)
8610 && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1))
8612 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
8613 return fold_build2_loc (loc, code, type,
8614 fold_build2_loc (loc, TREE_CODE (arg0),
8615 TREE_TYPE (arg0),
8616 variable1, cst),
8617 variable2);
8621 tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1);
8622 if (tem)
8623 return tem;
8625 /* If we are comparing an expression that just has comparisons
8626 of two integer values, arithmetic expressions of those comparisons,
8627 and constants, we can simplify it. There are only three cases
8628 to check: the two values can either be equal, the first can be
8629 greater, or the second can be greater. Fold the expression for
8630 those three values. Since each value must be 0 or 1, we have
8631 eight possibilities, each of which corresponds to the constant 0
8632 or 1 or one of the six possible comparisons.
8634 This handles common cases like (a > b) == 0 but also handles
8635 expressions like ((x > y) - (y > x)) > 0, which supposedly
8636 occur in macroized code. */
8638 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
8640 tree cval1 = 0, cval2 = 0;
8641 int save_p = 0;
8643 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
8644 /* Don't handle degenerate cases here; they should already
8645 have been handled anyway. */
8646 && cval1 != 0 && cval2 != 0
8647 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
8648 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
8649 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
8650 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
8651 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
8652 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
8653 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
8655 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
8656 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
8658 /* We can't just pass T to eval_subst in case cval1 or cval2
8659 was the same as ARG1. */
8661 tree high_result
8662 = fold_build2_loc (loc, code, type,
8663 eval_subst (loc, arg0, cval1, maxval,
8664 cval2, minval),
8665 arg1);
8666 tree equal_result
8667 = fold_build2_loc (loc, code, type,
8668 eval_subst (loc, arg0, cval1, maxval,
8669 cval2, maxval),
8670 arg1);
8671 tree low_result
8672 = fold_build2_loc (loc, code, type,
8673 eval_subst (loc, arg0, cval1, minval,
8674 cval2, maxval),
8675 arg1);
8677 /* All three of these results should be 0 or 1. Confirm they are.
8678 Then use those values to select the proper code to use. */
8680 if (TREE_CODE (high_result) == INTEGER_CST
8681 && TREE_CODE (equal_result) == INTEGER_CST
8682 && TREE_CODE (low_result) == INTEGER_CST)
8684 /* Make a 3-bit mask with the high-order bit being the
8685 value for `>', the next for '=', and the low for '<'. */
8686 switch ((integer_onep (high_result) * 4)
8687 + (integer_onep (equal_result) * 2)
8688 + integer_onep (low_result))
8690 case 0:
8691 /* Always false. */
8692 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
8693 case 1:
8694 code = LT_EXPR;
8695 break;
8696 case 2:
8697 code = EQ_EXPR;
8698 break;
8699 case 3:
8700 code = LE_EXPR;
8701 break;
8702 case 4:
8703 code = GT_EXPR;
8704 break;
8705 case 5:
8706 code = NE_EXPR;
8707 break;
8708 case 6:
8709 code = GE_EXPR;
8710 break;
8711 case 7:
8712 /* Always true. */
8713 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
8716 if (save_p)
8718 tem = save_expr (build2 (code, type, cval1, cval2));
8719 SET_EXPR_LOCATION (tem, loc);
8720 return tem;
8722 return fold_build2_loc (loc, code, type, cval1, cval2);
8727 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
8728 into a single range test. */
8729 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
8730 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
8731 && TREE_CODE (arg1) == INTEGER_CST
8732 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8733 && !integer_zerop (TREE_OPERAND (arg0, 1))
8734 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8735 && !TREE_OVERFLOW (arg1))
8737 tem = fold_div_compare (loc, code, type, arg0, arg1);
8738 if (tem != NULL_TREE)
8739 return tem;
8742 return NULL_TREE;
8746 /* Subroutine of fold_binary. Optimize complex multiplications of the
8747 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8748 argument EXPR represents the expression "z" of type TYPE. */
8750 static tree
8751 fold_mult_zconjz (location_t loc, tree type, tree expr)
8753 tree itype = TREE_TYPE (type);
8754 tree rpart, ipart, tem;
8756 if (TREE_CODE (expr) == COMPLEX_EXPR)
8758 rpart = TREE_OPERAND (expr, 0);
8759 ipart = TREE_OPERAND (expr, 1);
8761 else if (TREE_CODE (expr) == COMPLEX_CST)
8763 rpart = TREE_REALPART (expr);
8764 ipart = TREE_IMAGPART (expr);
8766 else
8768 expr = save_expr (expr);
8769 rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr);
8770 ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr);
8773 rpart = save_expr (rpart);
8774 ipart = save_expr (ipart);
8775 tem = fold_build2_loc (loc, PLUS_EXPR, itype,
8776 fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart),
8777 fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart));
8778 return fold_build2_loc (loc, COMPLEX_EXPR, type, tem,
8779 build_zero_cst (itype));
8783 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8784 CONSTRUCTOR ARG into array ELTS and return true if successful. */
8786 static bool
8787 vec_cst_ctor_to_array (tree arg, tree *elts)
8789 unsigned int nelts = TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg)), i;
8791 if (TREE_CODE (arg) == VECTOR_CST)
8793 for (i = 0; i < VECTOR_CST_NELTS (arg); ++i)
8794 elts[i] = VECTOR_CST_ELT (arg, i);
8796 else if (TREE_CODE (arg) == CONSTRUCTOR)
8798 constructor_elt *elt;
8800 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt)
8801 if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE)
8802 return false;
8803 else
8804 elts[i] = elt->value;
8806 else
8807 return false;
8808 for (; i < nelts; i++)
8809 elts[i]
8810 = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node);
8811 return true;
8814 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
8815 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
8816 NULL_TREE otherwise. */
8818 static tree
8819 fold_vec_perm (tree type, tree arg0, tree arg1, const unsigned char *sel)
8821 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
8822 tree *elts;
8823 bool need_ctor = false;
8825 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)) == nelts
8826 && TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)) == nelts);
8827 if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type)
8828 || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type))
8829 return NULL_TREE;
8831 elts = XALLOCAVEC (tree, nelts * 3);
8832 if (!vec_cst_ctor_to_array (arg0, elts)
8833 || !vec_cst_ctor_to_array (arg1, elts + nelts))
8834 return NULL_TREE;
8836 for (i = 0; i < nelts; i++)
8838 if (!CONSTANT_CLASS_P (elts[sel[i]]))
8839 need_ctor = true;
8840 elts[i + 2 * nelts] = unshare_expr (elts[sel[i]]);
8843 if (need_ctor)
8845 vec<constructor_elt, va_gc> *v;
8846 vec_alloc (v, nelts);
8847 for (i = 0; i < nelts; i++)
8848 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[2 * nelts + i]);
8849 return build_constructor (type, v);
8851 else
8852 return build_vector (type, &elts[2 * nelts]);
8855 /* Try to fold a pointer difference of type TYPE two address expressions of
8856 array references AREF0 and AREF1 using location LOC. Return a
8857 simplified expression for the difference or NULL_TREE. */
8859 static tree
8860 fold_addr_of_array_ref_difference (location_t loc, tree type,
8861 tree aref0, tree aref1)
8863 tree base0 = TREE_OPERAND (aref0, 0);
8864 tree base1 = TREE_OPERAND (aref1, 0);
8865 tree base_offset = build_int_cst (type, 0);
8867 /* If the bases are array references as well, recurse. If the bases
8868 are pointer indirections compute the difference of the pointers.
8869 If the bases are equal, we are set. */
8870 if ((TREE_CODE (base0) == ARRAY_REF
8871 && TREE_CODE (base1) == ARRAY_REF
8872 && (base_offset
8873 = fold_addr_of_array_ref_difference (loc, type, base0, base1)))
8874 || (INDIRECT_REF_P (base0)
8875 && INDIRECT_REF_P (base1)
8876 && (base_offset
8877 = fold_binary_loc (loc, MINUS_EXPR, type,
8878 fold_convert (type, TREE_OPERAND (base0, 0)),
8879 fold_convert (type,
8880 TREE_OPERAND (base1, 0)))))
8881 || operand_equal_p (base0, base1, OEP_ADDRESS_OF))
8883 tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1));
8884 tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1));
8885 tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0));
8886 tree diff = build2 (MINUS_EXPR, type, op0, op1);
8887 return fold_build2_loc (loc, PLUS_EXPR, type,
8888 base_offset,
8889 fold_build2_loc (loc, MULT_EXPR, type,
8890 diff, esz));
8892 return NULL_TREE;
8895 /* If the real or vector real constant CST of type TYPE has an exact
8896 inverse, return it, else return NULL. */
8898 tree
8899 exact_inverse (tree type, tree cst)
8901 REAL_VALUE_TYPE r;
8902 tree unit_type, *elts;
8903 machine_mode mode;
8904 unsigned vec_nelts, i;
8906 switch (TREE_CODE (cst))
8908 case REAL_CST:
8909 r = TREE_REAL_CST (cst);
8911 if (exact_real_inverse (TYPE_MODE (type), &r))
8912 return build_real (type, r);
8914 return NULL_TREE;
8916 case VECTOR_CST:
8917 vec_nelts = VECTOR_CST_NELTS (cst);
8918 elts = XALLOCAVEC (tree, vec_nelts);
8919 unit_type = TREE_TYPE (type);
8920 mode = TYPE_MODE (unit_type);
8922 for (i = 0; i < vec_nelts; i++)
8924 r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i));
8925 if (!exact_real_inverse (mode, &r))
8926 return NULL_TREE;
8927 elts[i] = build_real (unit_type, r);
8930 return build_vector (type, elts);
8932 default:
8933 return NULL_TREE;
8937 /* Mask out the tz least significant bits of X of type TYPE where
8938 tz is the number of trailing zeroes in Y. */
8939 static wide_int
8940 mask_with_tz (tree type, const wide_int &x, const wide_int &y)
8942 int tz = wi::ctz (y);
8943 if (tz > 0)
8944 return wi::mask (tz, true, TYPE_PRECISION (type)) & x;
8945 return x;
8948 /* Return true when T is an address and is known to be nonzero.
8949 For floating point we further ensure that T is not denormal.
8950 Similar logic is present in nonzero_address in rtlanal.h.
8952 If the return value is based on the assumption that signed overflow
8953 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
8954 change *STRICT_OVERFLOW_P. */
8956 static bool
8957 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
8959 tree type = TREE_TYPE (t);
8960 enum tree_code code;
8962 /* Doing something useful for floating point would need more work. */
8963 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
8964 return false;
8966 code = TREE_CODE (t);
8967 switch (TREE_CODE_CLASS (code))
8969 case tcc_unary:
8970 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8971 strict_overflow_p);
8972 case tcc_binary:
8973 case tcc_comparison:
8974 return tree_binary_nonzero_warnv_p (code, type,
8975 TREE_OPERAND (t, 0),
8976 TREE_OPERAND (t, 1),
8977 strict_overflow_p);
8978 case tcc_constant:
8979 case tcc_declaration:
8980 case tcc_reference:
8981 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
8983 default:
8984 break;
8987 switch (code)
8989 case TRUTH_NOT_EXPR:
8990 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
8991 strict_overflow_p);
8993 case TRUTH_AND_EXPR:
8994 case TRUTH_OR_EXPR:
8995 case TRUTH_XOR_EXPR:
8996 return tree_binary_nonzero_warnv_p (code, type,
8997 TREE_OPERAND (t, 0),
8998 TREE_OPERAND (t, 1),
8999 strict_overflow_p);
9001 case COND_EXPR:
9002 case CONSTRUCTOR:
9003 case OBJ_TYPE_REF:
9004 case ASSERT_EXPR:
9005 case ADDR_EXPR:
9006 case WITH_SIZE_EXPR:
9007 case SSA_NAME:
9008 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
9010 case COMPOUND_EXPR:
9011 case MODIFY_EXPR:
9012 case BIND_EXPR:
9013 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
9014 strict_overflow_p);
9016 case SAVE_EXPR:
9017 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
9018 strict_overflow_p);
9020 case CALL_EXPR:
9022 tree fndecl = get_callee_fndecl (t);
9023 if (!fndecl) return false;
9024 if (flag_delete_null_pointer_checks && !flag_check_new
9025 && DECL_IS_OPERATOR_NEW (fndecl)
9026 && !TREE_NOTHROW (fndecl))
9027 return true;
9028 if (flag_delete_null_pointer_checks
9029 && lookup_attribute ("returns_nonnull",
9030 TYPE_ATTRIBUTES (TREE_TYPE (fndecl))))
9031 return true;
9032 return alloca_call_p (t);
9035 default:
9036 break;
9038 return false;
9041 /* Return true when T is an address and is known to be nonzero.
9042 Handle warnings about undefined signed overflow. */
9044 static bool
9045 tree_expr_nonzero_p (tree t)
9047 bool ret, strict_overflow_p;
9049 strict_overflow_p = false;
9050 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
9051 if (strict_overflow_p)
9052 fold_overflow_warning (("assuming signed overflow does not occur when "
9053 "determining that expression is always "
9054 "non-zero"),
9055 WARN_STRICT_OVERFLOW_MISC);
9056 return ret;
9059 /* Return true if T is known not to be equal to an integer W. */
9061 bool
9062 expr_not_equal_to (tree t, const wide_int &w)
9064 wide_int min, max, nz;
9065 value_range_type rtype;
9066 switch (TREE_CODE (t))
9068 case INTEGER_CST:
9069 return wi::ne_p (t, w);
9071 case SSA_NAME:
9072 if (!INTEGRAL_TYPE_P (TREE_TYPE (t)))
9073 return false;
9074 rtype = get_range_info (t, &min, &max);
9075 if (rtype == VR_RANGE)
9077 if (wi::lt_p (max, w, TYPE_SIGN (TREE_TYPE (t))))
9078 return true;
9079 if (wi::lt_p (w, min, TYPE_SIGN (TREE_TYPE (t))))
9080 return true;
9082 else if (rtype == VR_ANTI_RANGE
9083 && wi::le_p (min, w, TYPE_SIGN (TREE_TYPE (t)))
9084 && wi::le_p (w, max, TYPE_SIGN (TREE_TYPE (t))))
9085 return true;
9086 /* If T has some known zero bits and W has any of those bits set,
9087 then T is known not to be equal to W. */
9088 if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)),
9089 TYPE_PRECISION (TREE_TYPE (t))), 0))
9090 return true;
9091 return false;
9093 default:
9094 return false;
9098 /* Fold a binary expression of code CODE and type TYPE with operands
9099 OP0 and OP1. LOC is the location of the resulting expression.
9100 Return the folded expression if folding is successful. Otherwise,
9101 return NULL_TREE. */
9103 tree
9104 fold_binary_loc (location_t loc,
9105 enum tree_code code, tree type, tree op0, tree op1)
9107 enum tree_code_class kind = TREE_CODE_CLASS (code);
9108 tree arg0, arg1, tem;
9109 tree t1 = NULL_TREE;
9110 bool strict_overflow_p;
9111 unsigned int prec;
9113 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9114 && TREE_CODE_LENGTH (code) == 2
9115 && op0 != NULL_TREE
9116 && op1 != NULL_TREE);
9118 arg0 = op0;
9119 arg1 = op1;
9121 /* Strip any conversions that don't change the mode. This is
9122 safe for every expression, except for a comparison expression
9123 because its signedness is derived from its operands. So, in
9124 the latter case, only strip conversions that don't change the
9125 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9126 preserved.
9128 Note that this is done as an internal manipulation within the
9129 constant folder, in order to find the simplest representation
9130 of the arguments so that their form can be studied. In any
9131 cases, the appropriate type conversions should be put back in
9132 the tree that will get out of the constant folder. */
9134 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9136 STRIP_SIGN_NOPS (arg0);
9137 STRIP_SIGN_NOPS (arg1);
9139 else
9141 STRIP_NOPS (arg0);
9142 STRIP_NOPS (arg1);
9145 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9146 constant but we can't do arithmetic on them. */
9147 if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1))
9149 tem = const_binop (code, type, arg0, arg1);
9150 if (tem != NULL_TREE)
9152 if (TREE_TYPE (tem) != type)
9153 tem = fold_convert_loc (loc, type, tem);
9154 return tem;
9158 /* If this is a commutative operation, and ARG0 is a constant, move it
9159 to ARG1 to reduce the number of tests below. */
9160 if (commutative_tree_code (code)
9161 && tree_swap_operands_p (arg0, arg1, true))
9162 return fold_build2_loc (loc, code, type, op1, op0);
9164 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9165 to ARG1 to reduce the number of tests below. */
9166 if (kind == tcc_comparison
9167 && tree_swap_operands_p (arg0, arg1, true))
9168 return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0);
9170 tem = generic_simplify (loc, code, type, op0, op1);
9171 if (tem)
9172 return tem;
9174 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9176 First check for cases where an arithmetic operation is applied to a
9177 compound, conditional, or comparison operation. Push the arithmetic
9178 operation inside the compound or conditional to see if any folding
9179 can then be done. Convert comparison to conditional for this purpose.
9180 The also optimizes non-constant cases that used to be done in
9181 expand_expr.
9183 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9184 one of the operands is a comparison and the other is a comparison, a
9185 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9186 code below would make the expression more complex. Change it to a
9187 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9188 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9190 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9191 || code == EQ_EXPR || code == NE_EXPR)
9192 && TREE_CODE (type) != VECTOR_TYPE
9193 && ((truth_value_p (TREE_CODE (arg0))
9194 && (truth_value_p (TREE_CODE (arg1))
9195 || (TREE_CODE (arg1) == BIT_AND_EXPR
9196 && integer_onep (TREE_OPERAND (arg1, 1)))))
9197 || (truth_value_p (TREE_CODE (arg1))
9198 && (truth_value_p (TREE_CODE (arg0))
9199 || (TREE_CODE (arg0) == BIT_AND_EXPR
9200 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9202 tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9203 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9204 : TRUTH_XOR_EXPR,
9205 boolean_type_node,
9206 fold_convert_loc (loc, boolean_type_node, arg0),
9207 fold_convert_loc (loc, boolean_type_node, arg1));
9209 if (code == EQ_EXPR)
9210 tem = invert_truthvalue_loc (loc, tem);
9212 return fold_convert_loc (loc, type, tem);
9215 if (TREE_CODE_CLASS (code) == tcc_binary
9216 || TREE_CODE_CLASS (code) == tcc_comparison)
9218 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9220 tem = fold_build2_loc (loc, code, type,
9221 fold_convert_loc (loc, TREE_TYPE (op0),
9222 TREE_OPERAND (arg0, 1)), op1);
9223 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9224 tem);
9226 if (TREE_CODE (arg1) == COMPOUND_EXPR
9227 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9229 tem = fold_build2_loc (loc, code, type, op0,
9230 fold_convert_loc (loc, TREE_TYPE (op1),
9231 TREE_OPERAND (arg1, 1)));
9232 return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9233 tem);
9236 if (TREE_CODE (arg0) == COND_EXPR
9237 || TREE_CODE (arg0) == VEC_COND_EXPR
9238 || COMPARISON_CLASS_P (arg0))
9240 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9241 arg0, arg1,
9242 /*cond_first_p=*/1);
9243 if (tem != NULL_TREE)
9244 return tem;
9247 if (TREE_CODE (arg1) == COND_EXPR
9248 || TREE_CODE (arg1) == VEC_COND_EXPR
9249 || COMPARISON_CLASS_P (arg1))
9251 tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1,
9252 arg1, arg0,
9253 /*cond_first_p=*/0);
9254 if (tem != NULL_TREE)
9255 return tem;
9259 switch (code)
9261 case MEM_REF:
9262 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9263 if (TREE_CODE (arg0) == ADDR_EXPR
9264 && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF)
9266 tree iref = TREE_OPERAND (arg0, 0);
9267 return fold_build2 (MEM_REF, type,
9268 TREE_OPERAND (iref, 0),
9269 int_const_binop (PLUS_EXPR, arg1,
9270 TREE_OPERAND (iref, 1)));
9273 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9274 if (TREE_CODE (arg0) == ADDR_EXPR
9275 && handled_component_p (TREE_OPERAND (arg0, 0)))
9277 tree base;
9278 HOST_WIDE_INT coffset;
9279 base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0),
9280 &coffset);
9281 if (!base)
9282 return NULL_TREE;
9283 return fold_build2 (MEM_REF, type,
9284 build_fold_addr_expr (base),
9285 int_const_binop (PLUS_EXPR, arg1,
9286 size_int (coffset)));
9289 return NULL_TREE;
9291 case POINTER_PLUS_EXPR:
9292 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9293 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9294 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9295 return fold_convert_loc (loc, type,
9296 fold_build2_loc (loc, PLUS_EXPR, sizetype,
9297 fold_convert_loc (loc, sizetype,
9298 arg1),
9299 fold_convert_loc (loc, sizetype,
9300 arg0)));
9302 return NULL_TREE;
9304 case PLUS_EXPR:
9305 if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type))
9307 /* X + (X / CST) * -CST is X % CST. */
9308 if (TREE_CODE (arg1) == MULT_EXPR
9309 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9310 && operand_equal_p (arg0,
9311 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9313 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9314 tree cst1 = TREE_OPERAND (arg1, 1);
9315 tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1),
9316 cst1, cst0);
9317 if (sum && integer_zerop (sum))
9318 return fold_convert_loc (loc, type,
9319 fold_build2_loc (loc, TRUNC_MOD_EXPR,
9320 TREE_TYPE (arg0), arg0,
9321 cst0));
9325 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9326 one. Make sure the type is not saturating and has the signedness of
9327 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9328 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9329 if ((TREE_CODE (arg0) == MULT_EXPR
9330 || TREE_CODE (arg1) == MULT_EXPR)
9331 && !TYPE_SATURATING (type)
9332 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9333 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9334 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9336 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9337 if (tem)
9338 return tem;
9341 if (! FLOAT_TYPE_P (type))
9343 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9344 (plus (plus (mult) (mult)) (foo)) so that we can
9345 take advantage of the factoring cases below. */
9346 if (ANY_INTEGRAL_TYPE_P (type)
9347 && TYPE_OVERFLOW_WRAPS (type)
9348 && (((TREE_CODE (arg0) == PLUS_EXPR
9349 || TREE_CODE (arg0) == MINUS_EXPR)
9350 && TREE_CODE (arg1) == MULT_EXPR)
9351 || ((TREE_CODE (arg1) == PLUS_EXPR
9352 || TREE_CODE (arg1) == MINUS_EXPR)
9353 && TREE_CODE (arg0) == MULT_EXPR)))
9355 tree parg0, parg1, parg, marg;
9356 enum tree_code pcode;
9358 if (TREE_CODE (arg1) == MULT_EXPR)
9359 parg = arg0, marg = arg1;
9360 else
9361 parg = arg1, marg = arg0;
9362 pcode = TREE_CODE (parg);
9363 parg0 = TREE_OPERAND (parg, 0);
9364 parg1 = TREE_OPERAND (parg, 1);
9365 STRIP_NOPS (parg0);
9366 STRIP_NOPS (parg1);
9368 if (TREE_CODE (parg0) == MULT_EXPR
9369 && TREE_CODE (parg1) != MULT_EXPR)
9370 return fold_build2_loc (loc, pcode, type,
9371 fold_build2_loc (loc, PLUS_EXPR, type,
9372 fold_convert_loc (loc, type,
9373 parg0),
9374 fold_convert_loc (loc, type,
9375 marg)),
9376 fold_convert_loc (loc, type, parg1));
9377 if (TREE_CODE (parg0) != MULT_EXPR
9378 && TREE_CODE (parg1) == MULT_EXPR)
9379 return
9380 fold_build2_loc (loc, PLUS_EXPR, type,
9381 fold_convert_loc (loc, type, parg0),
9382 fold_build2_loc (loc, pcode, type,
9383 fold_convert_loc (loc, type, marg),
9384 fold_convert_loc (loc, type,
9385 parg1)));
9388 else
9390 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9391 to __complex__ ( x, y ). This is not the same for SNaNs or
9392 if signed zeros are involved. */
9393 if (!HONOR_SNANS (element_mode (arg0))
9394 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9395 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9397 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9398 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9399 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9400 bool arg0rz = false, arg0iz = false;
9401 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9402 || (arg0i && (arg0iz = real_zerop (arg0i))))
9404 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9405 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9406 if (arg0rz && arg1i && real_zerop (arg1i))
9408 tree rp = arg1r ? arg1r
9409 : build1 (REALPART_EXPR, rtype, arg1);
9410 tree ip = arg0i ? arg0i
9411 : build1 (IMAGPART_EXPR, rtype, arg0);
9412 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9414 else if (arg0iz && arg1r && real_zerop (arg1r))
9416 tree rp = arg0r ? arg0r
9417 : build1 (REALPART_EXPR, rtype, arg0);
9418 tree ip = arg1i ? arg1i
9419 : build1 (IMAGPART_EXPR, rtype, arg1);
9420 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9425 if (flag_unsafe_math_optimizations
9426 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9427 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9428 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9429 return tem;
9431 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9432 We associate floats only if the user has specified
9433 -fassociative-math. */
9434 if (flag_associative_math
9435 && TREE_CODE (arg1) == PLUS_EXPR
9436 && TREE_CODE (arg0) != MULT_EXPR)
9438 tree tree10 = TREE_OPERAND (arg1, 0);
9439 tree tree11 = TREE_OPERAND (arg1, 1);
9440 if (TREE_CODE (tree11) == MULT_EXPR
9441 && TREE_CODE (tree10) == MULT_EXPR)
9443 tree tree0;
9444 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10);
9445 return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11);
9448 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9449 We associate floats only if the user has specified
9450 -fassociative-math. */
9451 if (flag_associative_math
9452 && TREE_CODE (arg0) == PLUS_EXPR
9453 && TREE_CODE (arg1) != MULT_EXPR)
9455 tree tree00 = TREE_OPERAND (arg0, 0);
9456 tree tree01 = TREE_OPERAND (arg0, 1);
9457 if (TREE_CODE (tree01) == MULT_EXPR
9458 && TREE_CODE (tree00) == MULT_EXPR)
9460 tree tree0;
9461 tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1);
9462 return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0);
9467 bit_rotate:
9468 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9469 is a rotate of A by C1 bits. */
9470 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9471 is a rotate of A by B bits. */
9473 enum tree_code code0, code1;
9474 tree rtype;
9475 code0 = TREE_CODE (arg0);
9476 code1 = TREE_CODE (arg1);
9477 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
9478 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
9479 && operand_equal_p (TREE_OPERAND (arg0, 0),
9480 TREE_OPERAND (arg1, 0), 0)
9481 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
9482 TYPE_UNSIGNED (rtype))
9483 /* Only create rotates in complete modes. Other cases are not
9484 expanded properly. */
9485 && (element_precision (rtype)
9486 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype))))
9488 tree tree01, tree11;
9489 enum tree_code code01, code11;
9491 tree01 = TREE_OPERAND (arg0, 1);
9492 tree11 = TREE_OPERAND (arg1, 1);
9493 STRIP_NOPS (tree01);
9494 STRIP_NOPS (tree11);
9495 code01 = TREE_CODE (tree01);
9496 code11 = TREE_CODE (tree11);
9497 if (code01 == INTEGER_CST
9498 && code11 == INTEGER_CST
9499 && (wi::to_widest (tree01) + wi::to_widest (tree11)
9500 == element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
9502 tem = build2_loc (loc, LROTATE_EXPR,
9503 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9504 TREE_OPERAND (arg0, 0),
9505 code0 == LSHIFT_EXPR
9506 ? TREE_OPERAND (arg0, 1)
9507 : TREE_OPERAND (arg1, 1));
9508 return fold_convert_loc (loc, type, tem);
9510 else if (code11 == MINUS_EXPR)
9512 tree tree110, tree111;
9513 tree110 = TREE_OPERAND (tree11, 0);
9514 tree111 = TREE_OPERAND (tree11, 1);
9515 STRIP_NOPS (tree110);
9516 STRIP_NOPS (tree111);
9517 if (TREE_CODE (tree110) == INTEGER_CST
9518 && 0 == compare_tree_int (tree110,
9519 element_precision
9520 (TREE_TYPE (TREE_OPERAND
9521 (arg0, 0))))
9522 && operand_equal_p (tree01, tree111, 0))
9523 return
9524 fold_convert_loc (loc, type,
9525 build2 ((code0 == LSHIFT_EXPR
9526 ? LROTATE_EXPR
9527 : RROTATE_EXPR),
9528 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9529 TREE_OPERAND (arg0, 0),
9530 TREE_OPERAND (arg0, 1)));
9532 else if (code01 == MINUS_EXPR)
9534 tree tree010, tree011;
9535 tree010 = TREE_OPERAND (tree01, 0);
9536 tree011 = TREE_OPERAND (tree01, 1);
9537 STRIP_NOPS (tree010);
9538 STRIP_NOPS (tree011);
9539 if (TREE_CODE (tree010) == INTEGER_CST
9540 && 0 == compare_tree_int (tree010,
9541 element_precision
9542 (TREE_TYPE (TREE_OPERAND
9543 (arg0, 0))))
9544 && operand_equal_p (tree11, tree011, 0))
9545 return fold_convert_loc
9546 (loc, type,
9547 build2 ((code0 != LSHIFT_EXPR
9548 ? LROTATE_EXPR
9549 : RROTATE_EXPR),
9550 TREE_TYPE (TREE_OPERAND (arg0, 0)),
9551 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1)));
9556 associate:
9557 /* In most languages, can't associate operations on floats through
9558 parentheses. Rather than remember where the parentheses were, we
9559 don't associate floats at all, unless the user has specified
9560 -fassociative-math.
9561 And, we need to make sure type is not saturating. */
9563 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
9564 && !TYPE_SATURATING (type))
9566 tree var0, con0, lit0, minus_lit0;
9567 tree var1, con1, lit1, minus_lit1;
9568 tree atype = type;
9569 bool ok = true;
9571 /* Split both trees into variables, constants, and literals. Then
9572 associate each group together, the constants with literals,
9573 then the result with variables. This increases the chances of
9574 literals being recombined later and of generating relocatable
9575 expressions for the sum of a constant and literal. */
9576 var0 = split_tree (loc, arg0, type, code,
9577 &con0, &lit0, &minus_lit0, 0);
9578 var1 = split_tree (loc, arg1, type, code,
9579 &con1, &lit1, &minus_lit1, code == MINUS_EXPR);
9581 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9582 if (code == MINUS_EXPR)
9583 code = PLUS_EXPR;
9585 /* With undefined overflow prefer doing association in a type
9586 which wraps on overflow, if that is one of the operand types. */
9587 if ((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9588 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
9590 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
9591 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
9592 atype = TREE_TYPE (arg0);
9593 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9594 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1)))
9595 atype = TREE_TYPE (arg1);
9596 gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type));
9599 /* With undefined overflow we can only associate constants with one
9600 variable, and constants whose association doesn't overflow. */
9601 if ((POINTER_TYPE_P (atype) && POINTER_TYPE_OVERFLOW_UNDEFINED)
9602 || (INTEGRAL_TYPE_P (atype) && !TYPE_OVERFLOW_WRAPS (atype)))
9604 if (var0 && var1)
9606 tree tmp0 = var0;
9607 tree tmp1 = var1;
9608 bool one_neg = false;
9610 if (TREE_CODE (tmp0) == NEGATE_EXPR)
9612 tmp0 = TREE_OPERAND (tmp0, 0);
9613 one_neg = !one_neg;
9615 if (CONVERT_EXPR_P (tmp0)
9616 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9617 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0)))
9618 <= TYPE_PRECISION (atype)))
9619 tmp0 = TREE_OPERAND (tmp0, 0);
9620 if (TREE_CODE (tmp1) == NEGATE_EXPR)
9622 tmp1 = TREE_OPERAND (tmp1, 0);
9623 one_neg = !one_neg;
9625 if (CONVERT_EXPR_P (tmp1)
9626 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9627 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0)))
9628 <= TYPE_PRECISION (atype)))
9629 tmp1 = TREE_OPERAND (tmp1, 0);
9630 /* The only case we can still associate with two variables
9631 is if they cancel out. */
9632 if (!one_neg
9633 || !operand_equal_p (tmp0, tmp1, 0))
9634 ok = false;
9638 /* Only do something if we found more than two objects. Otherwise,
9639 nothing has changed and we risk infinite recursion. */
9640 if (ok
9641 && (2 < ((var0 != 0) + (var1 != 0)
9642 + (con0 != 0) + (con1 != 0)
9643 + (lit0 != 0) + (lit1 != 0)
9644 + (minus_lit0 != 0) + (minus_lit1 != 0))))
9646 bool any_overflows = false;
9647 if (lit0) any_overflows |= TREE_OVERFLOW (lit0);
9648 if (lit1) any_overflows |= TREE_OVERFLOW (lit1);
9649 if (minus_lit0) any_overflows |= TREE_OVERFLOW (minus_lit0);
9650 if (minus_lit1) any_overflows |= TREE_OVERFLOW (minus_lit1);
9651 var0 = associate_trees (loc, var0, var1, code, atype);
9652 con0 = associate_trees (loc, con0, con1, code, atype);
9653 lit0 = associate_trees (loc, lit0, lit1, code, atype);
9654 minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1,
9655 code, atype);
9657 /* Preserve the MINUS_EXPR if the negative part of the literal is
9658 greater than the positive part. Otherwise, the multiplicative
9659 folding code (i.e extract_muldiv) may be fooled in case
9660 unsigned constants are subtracted, like in the following
9661 example: ((X*2 + 4) - 8U)/2. */
9662 if (minus_lit0 && lit0)
9664 if (TREE_CODE (lit0) == INTEGER_CST
9665 && TREE_CODE (minus_lit0) == INTEGER_CST
9666 && tree_int_cst_lt (lit0, minus_lit0))
9668 minus_lit0 = associate_trees (loc, minus_lit0, lit0,
9669 MINUS_EXPR, atype);
9670 lit0 = 0;
9672 else
9674 lit0 = associate_trees (loc, lit0, minus_lit0,
9675 MINUS_EXPR, atype);
9676 minus_lit0 = 0;
9680 /* Don't introduce overflows through reassociation. */
9681 if (!any_overflows
9682 && ((lit0 && TREE_OVERFLOW_P (lit0))
9683 || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))))
9684 return NULL_TREE;
9686 if (minus_lit0)
9688 if (con0 == 0)
9689 return
9690 fold_convert_loc (loc, type,
9691 associate_trees (loc, var0, minus_lit0,
9692 MINUS_EXPR, atype));
9693 else
9695 con0 = associate_trees (loc, con0, minus_lit0,
9696 MINUS_EXPR, atype);
9697 return
9698 fold_convert_loc (loc, type,
9699 associate_trees (loc, var0, con0,
9700 PLUS_EXPR, atype));
9704 con0 = associate_trees (loc, con0, lit0, code, atype);
9705 return
9706 fold_convert_loc (loc, type, associate_trees (loc, var0, con0,
9707 code, atype));
9711 return NULL_TREE;
9713 case MINUS_EXPR:
9714 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9715 if (TREE_CODE (arg0) == NEGATE_EXPR
9716 && negate_expr_p (op1)
9717 && reorder_operands_p (arg0, arg1))
9718 return fold_build2_loc (loc, MINUS_EXPR, type,
9719 negate_expr (op1),
9720 fold_convert_loc (loc, type,
9721 TREE_OPERAND (arg0, 0)));
9723 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
9724 __complex__ ( x, -y ). This is not the same for SNaNs or if
9725 signed zeros are involved. */
9726 if (!HONOR_SNANS (element_mode (arg0))
9727 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9728 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
9730 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9731 tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0);
9732 tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0);
9733 bool arg0rz = false, arg0iz = false;
9734 if ((arg0r && (arg0rz = real_zerop (arg0r)))
9735 || (arg0i && (arg0iz = real_zerop (arg0i))))
9737 tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1);
9738 tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1);
9739 if (arg0rz && arg1i && real_zerop (arg1i))
9741 tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9742 arg1r ? arg1r
9743 : build1 (REALPART_EXPR, rtype, arg1));
9744 tree ip = arg0i ? arg0i
9745 : build1 (IMAGPART_EXPR, rtype, arg0);
9746 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9748 else if (arg0iz && arg1r && real_zerop (arg1r))
9750 tree rp = arg0r ? arg0r
9751 : build1 (REALPART_EXPR, rtype, arg0);
9752 tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype,
9753 arg1i ? arg1i
9754 : build1 (IMAGPART_EXPR, rtype, arg1));
9755 return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip);
9760 /* A - B -> A + (-B) if B is easily negatable. */
9761 if (negate_expr_p (op1)
9762 && ! TYPE_OVERFLOW_SANITIZED (type)
9763 && ((FLOAT_TYPE_P (type)
9764 /* Avoid this transformation if B is a positive REAL_CST. */
9765 && (TREE_CODE (op1) != REAL_CST
9766 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1))))
9767 || INTEGRAL_TYPE_P (type)))
9768 return fold_build2_loc (loc, PLUS_EXPR, type,
9769 fold_convert_loc (loc, type, arg0),
9770 negate_expr (op1));
9772 /* Fold &a[i] - &a[j] to i-j. */
9773 if (TREE_CODE (arg0) == ADDR_EXPR
9774 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
9775 && TREE_CODE (arg1) == ADDR_EXPR
9776 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
9778 tree tem = fold_addr_of_array_ref_difference (loc, type,
9779 TREE_OPERAND (arg0, 0),
9780 TREE_OPERAND (arg1, 0));
9781 if (tem)
9782 return tem;
9785 if (FLOAT_TYPE_P (type)
9786 && flag_unsafe_math_optimizations
9787 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
9788 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
9789 && (tem = distribute_real_division (loc, code, type, arg0, arg1)))
9790 return tem;
9792 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
9793 one. Make sure the type is not saturating and has the signedness of
9794 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9795 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9796 if ((TREE_CODE (arg0) == MULT_EXPR
9797 || TREE_CODE (arg1) == MULT_EXPR)
9798 && !TYPE_SATURATING (type)
9799 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0))
9800 && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1))
9801 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9803 tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1);
9804 if (tem)
9805 return tem;
9808 goto associate;
9810 case MULT_EXPR:
9811 if (! FLOAT_TYPE_P (type))
9813 /* Transform x * -C into -x * C if x is easily negatable. */
9814 if (TREE_CODE (op1) == INTEGER_CST
9815 && tree_int_cst_sgn (op1) == -1
9816 && negate_expr_p (op0)
9817 && (tem = negate_expr (op1)) != op1
9818 && ! TREE_OVERFLOW (tem))
9819 return fold_build2_loc (loc, MULT_EXPR, type,
9820 fold_convert_loc (loc, type,
9821 negate_expr (op0)), tem);
9823 strict_overflow_p = false;
9824 if (TREE_CODE (arg1) == INTEGER_CST
9825 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
9826 &strict_overflow_p)))
9828 if (strict_overflow_p)
9829 fold_overflow_warning (("assuming signed overflow does not "
9830 "occur when simplifying "
9831 "multiplication"),
9832 WARN_STRICT_OVERFLOW_MISC);
9833 return fold_convert_loc (loc, type, tem);
9836 /* Optimize z * conj(z) for integer complex numbers. */
9837 if (TREE_CODE (arg0) == CONJ_EXPR
9838 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9839 return fold_mult_zconjz (loc, type, arg1);
9840 if (TREE_CODE (arg1) == CONJ_EXPR
9841 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9842 return fold_mult_zconjz (loc, type, arg0);
9844 else
9846 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
9847 This is not the same for NaNs or if signed zeros are
9848 involved. */
9849 if (!HONOR_NANS (arg0)
9850 && !HONOR_SIGNED_ZEROS (element_mode (arg0))
9851 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
9852 && TREE_CODE (arg1) == COMPLEX_CST
9853 && real_zerop (TREE_REALPART (arg1)))
9855 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
9856 if (real_onep (TREE_IMAGPART (arg1)))
9857 return
9858 fold_build2_loc (loc, COMPLEX_EXPR, type,
9859 negate_expr (fold_build1_loc (loc, IMAGPART_EXPR,
9860 rtype, arg0)),
9861 fold_build1_loc (loc, REALPART_EXPR, rtype, arg0));
9862 else if (real_minus_onep (TREE_IMAGPART (arg1)))
9863 return
9864 fold_build2_loc (loc, COMPLEX_EXPR, type,
9865 fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0),
9866 negate_expr (fold_build1_loc (loc, REALPART_EXPR,
9867 rtype, arg0)));
9870 /* Optimize z * conj(z) for floating point complex numbers.
9871 Guarded by flag_unsafe_math_optimizations as non-finite
9872 imaginary components don't produce scalar results. */
9873 if (flag_unsafe_math_optimizations
9874 && TREE_CODE (arg0) == CONJ_EXPR
9875 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
9876 return fold_mult_zconjz (loc, type, arg1);
9877 if (flag_unsafe_math_optimizations
9878 && TREE_CODE (arg1) == CONJ_EXPR
9879 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
9880 return fold_mult_zconjz (loc, type, arg0);
9882 goto associate;
9884 case BIT_IOR_EXPR:
9885 /* Canonicalize (X & C1) | C2. */
9886 if (TREE_CODE (arg0) == BIT_AND_EXPR
9887 && TREE_CODE (arg1) == INTEGER_CST
9888 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9890 int width = TYPE_PRECISION (type), w;
9891 wide_int c1 = TREE_OPERAND (arg0, 1);
9892 wide_int c2 = arg1;
9894 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
9895 if ((c1 & c2) == c1)
9896 return omit_one_operand_loc (loc, type, arg1,
9897 TREE_OPERAND (arg0, 0));
9899 wide_int msk = wi::mask (width, false,
9900 TYPE_PRECISION (TREE_TYPE (arg1)));
9902 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
9903 if (msk.and_not (c1 | c2) == 0)
9904 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
9905 TREE_OPERAND (arg0, 0), arg1);
9907 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
9908 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
9909 mode which allows further optimizations. */
9910 c1 &= msk;
9911 c2 &= msk;
9912 wide_int c3 = c1.and_not (c2);
9913 for (w = BITS_PER_UNIT; w <= width; w <<= 1)
9915 wide_int mask = wi::mask (w, false,
9916 TYPE_PRECISION (type));
9917 if (((c1 | c2) & mask) == mask && c1.and_not (mask) == 0)
9919 c3 = mask;
9920 break;
9924 if (c3 != c1)
9925 return fold_build2_loc (loc, BIT_IOR_EXPR, type,
9926 fold_build2_loc (loc, BIT_AND_EXPR, type,
9927 TREE_OPERAND (arg0, 0),
9928 wide_int_to_tree (type,
9929 c3)),
9930 arg1);
9933 /* See if this can be simplified into a rotate first. If that
9934 is unsuccessful continue in the association code. */
9935 goto bit_rotate;
9937 case BIT_XOR_EXPR:
9938 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
9939 if (TREE_CODE (arg0) == BIT_AND_EXPR
9940 && INTEGRAL_TYPE_P (type)
9941 && integer_onep (TREE_OPERAND (arg0, 1))
9942 && integer_onep (arg1))
9943 return fold_build2_loc (loc, EQ_EXPR, type, arg0,
9944 build_zero_cst (TREE_TYPE (arg0)));
9946 /* See if this can be simplified into a rotate first. If that
9947 is unsuccessful continue in the association code. */
9948 goto bit_rotate;
9950 case BIT_AND_EXPR:
9951 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
9952 if (TREE_CODE (arg0) == BIT_XOR_EXPR
9953 && INTEGRAL_TYPE_P (type)
9954 && integer_onep (TREE_OPERAND (arg0, 1))
9955 && integer_onep (arg1))
9957 tree tem2;
9958 tem = TREE_OPERAND (arg0, 0);
9959 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9960 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9961 tem, tem2);
9962 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9963 build_zero_cst (TREE_TYPE (tem)));
9965 /* Fold ~X & 1 as (X & 1) == 0. */
9966 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9967 && INTEGRAL_TYPE_P (type)
9968 && integer_onep (arg1))
9970 tree tem2;
9971 tem = TREE_OPERAND (arg0, 0);
9972 tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1);
9973 tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem),
9974 tem, tem2);
9975 return fold_build2_loc (loc, EQ_EXPR, type, tem2,
9976 build_zero_cst (TREE_TYPE (tem)));
9978 /* Fold !X & 1 as X == 0. */
9979 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
9980 && integer_onep (arg1))
9982 tem = TREE_OPERAND (arg0, 0);
9983 return fold_build2_loc (loc, EQ_EXPR, type, tem,
9984 build_zero_cst (TREE_TYPE (tem)));
9987 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
9988 multiple of 1 << CST. */
9989 if (TREE_CODE (arg1) == INTEGER_CST)
9991 wide_int cst1 = arg1;
9992 wide_int ncst1 = -cst1;
9993 if ((cst1 & ncst1) == ncst1
9994 && multiple_of_p (type, arg0,
9995 wide_int_to_tree (TREE_TYPE (arg1), ncst1)))
9996 return fold_convert_loc (loc, type, arg0);
9999 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10000 bits from CST2. */
10001 if (TREE_CODE (arg1) == INTEGER_CST
10002 && TREE_CODE (arg0) == MULT_EXPR
10003 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10005 wide_int warg1 = arg1;
10006 wide_int masked = mask_with_tz (type, warg1, TREE_OPERAND (arg0, 1));
10008 if (masked == 0)
10009 return omit_two_operands_loc (loc, type, build_zero_cst (type),
10010 arg0, arg1);
10011 else if (masked != warg1)
10013 /* Avoid the transform if arg1 is a mask of some
10014 mode which allows further optimizations. */
10015 int pop = wi::popcount (warg1);
10016 if (!(pop >= BITS_PER_UNIT
10017 && pow2p_hwi (pop)
10018 && wi::mask (pop, false, warg1.get_precision ()) == warg1))
10019 return fold_build2_loc (loc, code, type, op0,
10020 wide_int_to_tree (type, masked));
10024 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
10025 ((A & N) + B) & M -> (A + B) & M
10026 Similarly if (N & M) == 0,
10027 ((A | N) + B) & M -> (A + B) & M
10028 and for - instead of + (or unary - instead of +)
10029 and/or ^ instead of |.
10030 If B is constant and (B & M) == 0, fold into A & M. */
10031 if (TREE_CODE (arg1) == INTEGER_CST)
10033 wide_int cst1 = arg1;
10034 if ((~cst1 != 0) && (cst1 & (cst1 + 1)) == 0
10035 && INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10036 && (TREE_CODE (arg0) == PLUS_EXPR
10037 || TREE_CODE (arg0) == MINUS_EXPR
10038 || TREE_CODE (arg0) == NEGATE_EXPR)
10039 && (TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))
10040 || TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE))
10042 tree pmop[2];
10043 int which = 0;
10044 wide_int cst0;
10046 /* Now we know that arg0 is (C + D) or (C - D) or
10047 -C and arg1 (M) is == (1LL << cst) - 1.
10048 Store C into PMOP[0] and D into PMOP[1]. */
10049 pmop[0] = TREE_OPERAND (arg0, 0);
10050 pmop[1] = NULL;
10051 if (TREE_CODE (arg0) != NEGATE_EXPR)
10053 pmop[1] = TREE_OPERAND (arg0, 1);
10054 which = 1;
10057 if ((wi::max_value (TREE_TYPE (arg0)) & cst1) != cst1)
10058 which = -1;
10060 for (; which >= 0; which--)
10061 switch (TREE_CODE (pmop[which]))
10063 case BIT_AND_EXPR:
10064 case BIT_IOR_EXPR:
10065 case BIT_XOR_EXPR:
10066 if (TREE_CODE (TREE_OPERAND (pmop[which], 1))
10067 != INTEGER_CST)
10068 break;
10069 cst0 = TREE_OPERAND (pmop[which], 1);
10070 cst0 &= cst1;
10071 if (TREE_CODE (pmop[which]) == BIT_AND_EXPR)
10073 if (cst0 != cst1)
10074 break;
10076 else if (cst0 != 0)
10077 break;
10078 /* If C or D is of the form (A & N) where
10079 (N & M) == M, or of the form (A | N) or
10080 (A ^ N) where (N & M) == 0, replace it with A. */
10081 pmop[which] = TREE_OPERAND (pmop[which], 0);
10082 break;
10083 case INTEGER_CST:
10084 /* If C or D is a N where (N & M) == 0, it can be
10085 omitted (assumed 0). */
10086 if ((TREE_CODE (arg0) == PLUS_EXPR
10087 || (TREE_CODE (arg0) == MINUS_EXPR && which == 0))
10088 && (cst1 & pmop[which]) == 0)
10089 pmop[which] = NULL;
10090 break;
10091 default:
10092 break;
10095 /* Only build anything new if we optimized one or both arguments
10096 above. */
10097 if (pmop[0] != TREE_OPERAND (arg0, 0)
10098 || (TREE_CODE (arg0) != NEGATE_EXPR
10099 && pmop[1] != TREE_OPERAND (arg0, 1)))
10101 tree utype = TREE_TYPE (arg0);
10102 if (! TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0)))
10104 /* Perform the operations in a type that has defined
10105 overflow behavior. */
10106 utype = unsigned_type_for (TREE_TYPE (arg0));
10107 if (pmop[0] != NULL)
10108 pmop[0] = fold_convert_loc (loc, utype, pmop[0]);
10109 if (pmop[1] != NULL)
10110 pmop[1] = fold_convert_loc (loc, utype, pmop[1]);
10113 if (TREE_CODE (arg0) == NEGATE_EXPR)
10114 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[0]);
10115 else if (TREE_CODE (arg0) == PLUS_EXPR)
10117 if (pmop[0] != NULL && pmop[1] != NULL)
10118 tem = fold_build2_loc (loc, PLUS_EXPR, utype,
10119 pmop[0], pmop[1]);
10120 else if (pmop[0] != NULL)
10121 tem = pmop[0];
10122 else if (pmop[1] != NULL)
10123 tem = pmop[1];
10124 else
10125 return build_int_cst (type, 0);
10127 else if (pmop[0] == NULL)
10128 tem = fold_build1_loc (loc, NEGATE_EXPR, utype, pmop[1]);
10129 else
10130 tem = fold_build2_loc (loc, MINUS_EXPR, utype,
10131 pmop[0], pmop[1]);
10132 /* TEM is now the new binary +, - or unary - replacement. */
10133 tem = fold_build2_loc (loc, BIT_AND_EXPR, utype, tem,
10134 fold_convert_loc (loc, utype, arg1));
10135 return fold_convert_loc (loc, type, tem);
10140 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10141 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
10142 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
10144 prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0)));
10146 wide_int mask = wide_int::from (arg1, prec, UNSIGNED);
10147 if (mask == -1)
10148 return
10149 fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10152 goto associate;
10154 case RDIV_EXPR:
10155 /* Don't touch a floating-point divide by zero unless the mode
10156 of the constant can represent infinity. */
10157 if (TREE_CODE (arg1) == REAL_CST
10158 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
10159 && real_zerop (arg1))
10160 return NULL_TREE;
10162 /* (-A) / (-B) -> A / B */
10163 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10164 return fold_build2_loc (loc, RDIV_EXPR, type,
10165 TREE_OPERAND (arg0, 0),
10166 negate_expr (arg1));
10167 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10168 return fold_build2_loc (loc, RDIV_EXPR, type,
10169 negate_expr (arg0),
10170 TREE_OPERAND (arg1, 0));
10171 return NULL_TREE;
10173 case TRUNC_DIV_EXPR:
10174 /* Fall through */
10176 case FLOOR_DIV_EXPR:
10177 /* Simplify A / (B << N) where A and B are positive and B is
10178 a power of 2, to A >> (N + log2(B)). */
10179 strict_overflow_p = false;
10180 if (TREE_CODE (arg1) == LSHIFT_EXPR
10181 && (TYPE_UNSIGNED (type)
10182 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
10184 tree sval = TREE_OPERAND (arg1, 0);
10185 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
10187 tree sh_cnt = TREE_OPERAND (arg1, 1);
10188 tree pow2 = build_int_cst (TREE_TYPE (sh_cnt),
10189 wi::exact_log2 (sval));
10191 if (strict_overflow_p)
10192 fold_overflow_warning (("assuming signed overflow does not "
10193 "occur when simplifying A / (B << N)"),
10194 WARN_STRICT_OVERFLOW_MISC);
10196 sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt),
10197 sh_cnt, pow2);
10198 return fold_build2_loc (loc, RSHIFT_EXPR, type,
10199 fold_convert_loc (loc, type, arg0), sh_cnt);
10203 /* Fall through */
10205 case ROUND_DIV_EXPR:
10206 case CEIL_DIV_EXPR:
10207 case EXACT_DIV_EXPR:
10208 if (integer_zerop (arg1))
10209 return NULL_TREE;
10211 /* Convert -A / -B to A / B when the type is signed and overflow is
10212 undefined. */
10213 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10214 && TREE_CODE (arg0) == NEGATE_EXPR
10215 && negate_expr_p (op1))
10217 if (INTEGRAL_TYPE_P (type))
10218 fold_overflow_warning (("assuming signed overflow does not occur "
10219 "when distributing negation across "
10220 "division"),
10221 WARN_STRICT_OVERFLOW_MISC);
10222 return fold_build2_loc (loc, code, type,
10223 fold_convert_loc (loc, type,
10224 TREE_OPERAND (arg0, 0)),
10225 negate_expr (op1));
10227 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
10228 && TREE_CODE (arg1) == NEGATE_EXPR
10229 && negate_expr_p (op0))
10231 if (INTEGRAL_TYPE_P (type))
10232 fold_overflow_warning (("assuming signed overflow does not occur "
10233 "when distributing negation across "
10234 "division"),
10235 WARN_STRICT_OVERFLOW_MISC);
10236 return fold_build2_loc (loc, code, type,
10237 negate_expr (op0),
10238 fold_convert_loc (loc, type,
10239 TREE_OPERAND (arg1, 0)));
10242 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10243 operation, EXACT_DIV_EXPR.
10245 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10246 At one time others generated faster code, it's not clear if they do
10247 after the last round to changes to the DIV code in expmed.c. */
10248 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
10249 && multiple_of_p (type, arg0, arg1))
10250 return fold_build2_loc (loc, EXACT_DIV_EXPR, type,
10251 fold_convert (type, arg0),
10252 fold_convert (type, arg1));
10254 strict_overflow_p = false;
10255 if (TREE_CODE (arg1) == INTEGER_CST
10256 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10257 &strict_overflow_p)))
10259 if (strict_overflow_p)
10260 fold_overflow_warning (("assuming signed overflow does not occur "
10261 "when simplifying division"),
10262 WARN_STRICT_OVERFLOW_MISC);
10263 return fold_convert_loc (loc, type, tem);
10266 return NULL_TREE;
10268 case CEIL_MOD_EXPR:
10269 case FLOOR_MOD_EXPR:
10270 case ROUND_MOD_EXPR:
10271 case TRUNC_MOD_EXPR:
10272 strict_overflow_p = false;
10273 if (TREE_CODE (arg1) == INTEGER_CST
10274 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10275 &strict_overflow_p)))
10277 if (strict_overflow_p)
10278 fold_overflow_warning (("assuming signed overflow does not occur "
10279 "when simplifying modulus"),
10280 WARN_STRICT_OVERFLOW_MISC);
10281 return fold_convert_loc (loc, type, tem);
10284 return NULL_TREE;
10286 case LROTATE_EXPR:
10287 case RROTATE_EXPR:
10288 case RSHIFT_EXPR:
10289 case LSHIFT_EXPR:
10290 /* Since negative shift count is not well-defined,
10291 don't try to compute it in the compiler. */
10292 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
10293 return NULL_TREE;
10295 prec = element_precision (type);
10297 /* If we have a rotate of a bit operation with the rotate count and
10298 the second operand of the bit operation both constant,
10299 permute the two operations. */
10300 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10301 && (TREE_CODE (arg0) == BIT_AND_EXPR
10302 || TREE_CODE (arg0) == BIT_IOR_EXPR
10303 || TREE_CODE (arg0) == BIT_XOR_EXPR)
10304 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10306 tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10307 tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10308 return fold_build2_loc (loc, TREE_CODE (arg0), type,
10309 fold_build2_loc (loc, code, type,
10310 arg00, arg1),
10311 fold_build2_loc (loc, code, type,
10312 arg01, arg1));
10315 /* Two consecutive rotates adding up to the some integer
10316 multiple of the precision of the type can be ignored. */
10317 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
10318 && TREE_CODE (arg0) == RROTATE_EXPR
10319 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10320 && wi::umod_trunc (wi::add (arg1, TREE_OPERAND (arg0, 1)),
10321 prec) == 0)
10322 return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10324 return NULL_TREE;
10326 case MIN_EXPR:
10327 case MAX_EXPR:
10328 goto associate;
10330 case TRUTH_ANDIF_EXPR:
10331 /* Note that the operands of this must be ints
10332 and their values must be 0 or 1.
10333 ("true" is a fixed value perhaps depending on the language.) */
10334 /* If first arg is constant zero, return it. */
10335 if (integer_zerop (arg0))
10336 return fold_convert_loc (loc, type, arg0);
10337 /* FALLTHRU */
10338 case TRUTH_AND_EXPR:
10339 /* If either arg is constant true, drop it. */
10340 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10341 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10342 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
10343 /* Preserve sequence points. */
10344 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10345 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10346 /* If second arg is constant zero, result is zero, but first arg
10347 must be evaluated. */
10348 if (integer_zerop (arg1))
10349 return omit_one_operand_loc (loc, type, arg1, arg0);
10350 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10351 case will be handled here. */
10352 if (integer_zerop (arg0))
10353 return omit_one_operand_loc (loc, type, arg0, arg1);
10355 /* !X && X is always false. */
10356 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10357 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10358 return omit_one_operand_loc (loc, type, integer_zero_node, arg1);
10359 /* X && !X is always false. */
10360 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10361 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10362 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10364 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10365 means A >= Y && A != MAX, but in this case we know that
10366 A < X <= MAX. */
10368 if (!TREE_SIDE_EFFECTS (arg0)
10369 && !TREE_SIDE_EFFECTS (arg1))
10371 tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1);
10372 if (tem && !operand_equal_p (tem, arg0, 0))
10373 return fold_build2_loc (loc, code, type, tem, arg1);
10375 tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0);
10376 if (tem && !operand_equal_p (tem, arg1, 0))
10377 return fold_build2_loc (loc, code, type, arg0, tem);
10380 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10381 != NULL_TREE)
10382 return tem;
10384 return NULL_TREE;
10386 case TRUTH_ORIF_EXPR:
10387 /* Note that the operands of this must be ints
10388 and their values must be 0 or true.
10389 ("true" is a fixed value perhaps depending on the language.) */
10390 /* If first arg is constant true, return it. */
10391 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10392 return fold_convert_loc (loc, type, arg0);
10393 /* FALLTHRU */
10394 case TRUTH_OR_EXPR:
10395 /* If either arg is constant zero, drop it. */
10396 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
10397 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1));
10398 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
10399 /* Preserve sequence points. */
10400 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
10401 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10402 /* If second arg is constant true, result is true, but we must
10403 evaluate first arg. */
10404 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
10405 return omit_one_operand_loc (loc, type, arg1, arg0);
10406 /* Likewise for first arg, but note this only occurs here for
10407 TRUTH_OR_EXPR. */
10408 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
10409 return omit_one_operand_loc (loc, type, arg0, arg1);
10411 /* !X || X is always true. */
10412 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10413 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10414 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10415 /* X || !X is always true. */
10416 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10417 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10418 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10420 /* (X && !Y) || (!X && Y) is X ^ Y */
10421 if (TREE_CODE (arg0) == TRUTH_AND_EXPR
10422 && TREE_CODE (arg1) == TRUTH_AND_EXPR)
10424 tree a0, a1, l0, l1, n0, n1;
10426 a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0));
10427 a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1));
10429 l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0));
10430 l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1));
10432 n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0);
10433 n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1);
10435 if ((operand_equal_p (n0, a0, 0)
10436 && operand_equal_p (n1, a1, 0))
10437 || (operand_equal_p (n0, a1, 0)
10438 && operand_equal_p (n1, a0, 0)))
10439 return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1);
10442 if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1))
10443 != NULL_TREE)
10444 return tem;
10446 return NULL_TREE;
10448 case TRUTH_XOR_EXPR:
10449 /* If the second arg is constant zero, drop it. */
10450 if (integer_zerop (arg1))
10451 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10452 /* If the second arg is constant true, this is a logical inversion. */
10453 if (integer_onep (arg1))
10455 tem = invert_truthvalue_loc (loc, arg0);
10456 return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem));
10458 /* Identical arguments cancel to zero. */
10459 if (operand_equal_p (arg0, arg1, 0))
10460 return omit_one_operand_loc (loc, type, integer_zero_node, arg0);
10462 /* !X ^ X is always true. */
10463 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
10464 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10465 return omit_one_operand_loc (loc, type, integer_one_node, arg1);
10467 /* X ^ !X is always true. */
10468 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
10469 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10470 return omit_one_operand_loc (loc, type, integer_one_node, arg0);
10472 return NULL_TREE;
10474 case EQ_EXPR:
10475 case NE_EXPR:
10476 STRIP_NOPS (arg0);
10477 STRIP_NOPS (arg1);
10479 tem = fold_comparison (loc, code, type, op0, op1);
10480 if (tem != NULL_TREE)
10481 return tem;
10483 /* bool_var != 1 becomes !bool_var. */
10484 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
10485 && code == NE_EXPR)
10486 return fold_convert_loc (loc, type,
10487 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10488 TREE_TYPE (arg0), arg0));
10490 /* bool_var == 0 becomes !bool_var. */
10491 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
10492 && code == EQ_EXPR)
10493 return fold_convert_loc (loc, type,
10494 fold_build1_loc (loc, TRUTH_NOT_EXPR,
10495 TREE_TYPE (arg0), arg0));
10497 /* !exp != 0 becomes !exp */
10498 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1)
10499 && code == NE_EXPR)
10500 return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0));
10502 /* Transform comparisons of the form X +- Y CMP X to Y CMP 0. */
10503 if ((TREE_CODE (arg0) == PLUS_EXPR
10504 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
10505 || TREE_CODE (arg0) == MINUS_EXPR)
10506 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10507 0)),
10508 arg1, 0)
10509 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
10510 || POINTER_TYPE_P (TREE_TYPE (arg0))))
10512 tree val = TREE_OPERAND (arg0, 1);
10513 val = fold_build2_loc (loc, code, type, val,
10514 build_int_cst (TREE_TYPE (val), 0));
10515 return omit_two_operands_loc (loc, type, val,
10516 TREE_OPERAND (arg0, 0), arg1);
10519 /* Transform comparisons of the form X CMP X +- Y to Y CMP 0. */
10520 if ((TREE_CODE (arg1) == PLUS_EXPR
10521 || TREE_CODE (arg1) == POINTER_PLUS_EXPR
10522 || TREE_CODE (arg1) == MINUS_EXPR)
10523 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10524 0)),
10525 arg0, 0)
10526 && (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
10527 || POINTER_TYPE_P (TREE_TYPE (arg1))))
10529 tree val = TREE_OPERAND (arg1, 1);
10530 val = fold_build2_loc (loc, code, type, val,
10531 build_int_cst (TREE_TYPE (val), 0));
10532 return omit_two_operands_loc (loc, type, val,
10533 TREE_OPERAND (arg1, 0), arg0);
10536 /* Transform comparisons of the form C - X CMP X if C % 2 == 1. */
10537 if (TREE_CODE (arg0) == MINUS_EXPR
10538 && TREE_CODE (TREE_OPERAND (arg0, 0)) == INTEGER_CST
10539 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg0,
10540 1)),
10541 arg1, 0)
10542 && wi::extract_uhwi (TREE_OPERAND (arg0, 0), 0, 1) == 1)
10543 return omit_two_operands_loc (loc, type,
10544 code == NE_EXPR
10545 ? boolean_true_node : boolean_false_node,
10546 TREE_OPERAND (arg0, 1), arg1);
10548 /* Transform comparisons of the form X CMP C - X if C % 2 == 1. */
10549 if (TREE_CODE (arg1) == MINUS_EXPR
10550 && TREE_CODE (TREE_OPERAND (arg1, 0)) == INTEGER_CST
10551 && operand_equal_p (tree_strip_nop_conversions (TREE_OPERAND (arg1,
10552 1)),
10553 arg0, 0)
10554 && wi::extract_uhwi (TREE_OPERAND (arg1, 0), 0, 1) == 1)
10555 return omit_two_operands_loc (loc, type,
10556 code == NE_EXPR
10557 ? boolean_true_node : boolean_false_node,
10558 TREE_OPERAND (arg1, 1), arg0);
10560 /* If this is an EQ or NE comparison with zero and ARG0 is
10561 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10562 two operations, but the latter can be done in one less insn
10563 on machines that have only two-operand insns or on which a
10564 constant cannot be the first operand. */
10565 if (TREE_CODE (arg0) == BIT_AND_EXPR
10566 && integer_zerop (arg1))
10568 tree arg00 = TREE_OPERAND (arg0, 0);
10569 tree arg01 = TREE_OPERAND (arg0, 1);
10570 if (TREE_CODE (arg00) == LSHIFT_EXPR
10571 && integer_onep (TREE_OPERAND (arg00, 0)))
10573 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00),
10574 arg01, TREE_OPERAND (arg00, 1));
10575 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10576 build_int_cst (TREE_TYPE (arg0), 1));
10577 return fold_build2_loc (loc, code, type,
10578 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10579 arg1);
10581 else if (TREE_CODE (arg01) == LSHIFT_EXPR
10582 && integer_onep (TREE_OPERAND (arg01, 0)))
10584 tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01),
10585 arg00, TREE_OPERAND (arg01, 1));
10586 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem,
10587 build_int_cst (TREE_TYPE (arg0), 1));
10588 return fold_build2_loc (loc, code, type,
10589 fold_convert_loc (loc, TREE_TYPE (arg1), tem),
10590 arg1);
10594 /* If this is an NE or EQ comparison of zero against the result of a
10595 signed MOD operation whose second operand is a power of 2, make
10596 the MOD operation unsigned since it is simpler and equivalent. */
10597 if (integer_zerop (arg1)
10598 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
10599 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
10600 || TREE_CODE (arg0) == CEIL_MOD_EXPR
10601 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
10602 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
10603 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10605 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
10606 tree newmod = fold_build2_loc (loc, TREE_CODE (arg0), newtype,
10607 fold_convert_loc (loc, newtype,
10608 TREE_OPERAND (arg0, 0)),
10609 fold_convert_loc (loc, newtype,
10610 TREE_OPERAND (arg0, 1)));
10612 return fold_build2_loc (loc, code, type, newmod,
10613 fold_convert_loc (loc, newtype, arg1));
10616 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10617 C1 is a valid shift constant, and C2 is a power of two, i.e.
10618 a single bit. */
10619 if (TREE_CODE (arg0) == BIT_AND_EXPR
10620 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
10621 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
10622 == INTEGER_CST
10623 && integer_pow2p (TREE_OPERAND (arg0, 1))
10624 && integer_zerop (arg1))
10626 tree itype = TREE_TYPE (arg0);
10627 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
10628 prec = TYPE_PRECISION (itype);
10630 /* Check for a valid shift count. */
10631 if (wi::ltu_p (arg001, prec))
10633 tree arg01 = TREE_OPERAND (arg0, 1);
10634 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10635 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
10636 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10637 can be rewritten as (X & (C2 << C1)) != 0. */
10638 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
10640 tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, arg01, arg001);
10641 tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, arg000, tem);
10642 return fold_build2_loc (loc, code, type, tem,
10643 fold_convert_loc (loc, itype, arg1));
10645 /* Otherwise, for signed (arithmetic) shifts,
10646 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10647 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10648 else if (!TYPE_UNSIGNED (itype))
10649 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
10650 arg000, build_int_cst (itype, 0));
10651 /* Otherwise, of unsigned (logical) shifts,
10652 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10653 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10654 else
10655 return omit_one_operand_loc (loc, type,
10656 code == EQ_EXPR ? integer_one_node
10657 : integer_zero_node,
10658 arg000);
10662 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
10663 Similarly for NE_EXPR. */
10664 if (TREE_CODE (arg0) == BIT_AND_EXPR
10665 && TREE_CODE (arg1) == INTEGER_CST
10666 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10668 tree notc = fold_build1_loc (loc, BIT_NOT_EXPR,
10669 TREE_TYPE (TREE_OPERAND (arg0, 1)),
10670 TREE_OPERAND (arg0, 1));
10671 tree dandnotc
10672 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10673 fold_convert_loc (loc, TREE_TYPE (arg0), arg1),
10674 notc);
10675 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
10676 if (integer_nonzerop (dandnotc))
10677 return omit_one_operand_loc (loc, type, rslt, arg0);
10680 /* If this is a comparison of a field, we may be able to simplify it. */
10681 if ((TREE_CODE (arg0) == COMPONENT_REF
10682 || TREE_CODE (arg0) == BIT_FIELD_REF)
10683 /* Handle the constant case even without -O
10684 to make sure the warnings are given. */
10685 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
10687 t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1);
10688 if (t1)
10689 return t1;
10692 /* Optimize comparisons of strlen vs zero to a compare of the
10693 first character of the string vs zero. To wit,
10694 strlen(ptr) == 0 => *ptr == 0
10695 strlen(ptr) != 0 => *ptr != 0
10696 Other cases should reduce to one of these two (or a constant)
10697 due to the return value of strlen being unsigned. */
10698 if (TREE_CODE (arg0) == CALL_EXPR
10699 && integer_zerop (arg1))
10701 tree fndecl = get_callee_fndecl (arg0);
10703 if (fndecl
10704 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
10705 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
10706 && call_expr_nargs (arg0) == 1
10707 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
10709 tree iref = build_fold_indirect_ref_loc (loc,
10710 CALL_EXPR_ARG (arg0, 0));
10711 return fold_build2_loc (loc, code, type, iref,
10712 build_int_cst (TREE_TYPE (iref), 0));
10716 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10717 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10718 if (TREE_CODE (arg0) == RSHIFT_EXPR
10719 && integer_zerop (arg1)
10720 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10722 tree arg00 = TREE_OPERAND (arg0, 0);
10723 tree arg01 = TREE_OPERAND (arg0, 1);
10724 tree itype = TREE_TYPE (arg00);
10725 if (wi::eq_p (arg01, element_precision (itype) - 1))
10727 if (TYPE_UNSIGNED (itype))
10729 itype = signed_type_for (itype);
10730 arg00 = fold_convert_loc (loc, itype, arg00);
10732 return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR,
10733 type, arg00, build_zero_cst (itype));
10737 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10738 (X & C) == 0 when C is a single bit. */
10739 if (TREE_CODE (arg0) == BIT_AND_EXPR
10740 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
10741 && integer_zerop (arg1)
10742 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10744 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0),
10745 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
10746 TREE_OPERAND (arg0, 1));
10747 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
10748 type, tem,
10749 fold_convert_loc (loc, TREE_TYPE (arg0),
10750 arg1));
10753 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10754 constant C is a power of two, i.e. a single bit. */
10755 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10756 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
10757 && integer_zerop (arg1)
10758 && integer_pow2p (TREE_OPERAND (arg0, 1))
10759 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10760 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10762 tree arg00 = TREE_OPERAND (arg0, 0);
10763 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10764 arg00, build_int_cst (TREE_TYPE (arg00), 0));
10767 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10768 when is C is a power of two, i.e. a single bit. */
10769 if (TREE_CODE (arg0) == BIT_AND_EXPR
10770 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
10771 && integer_zerop (arg1)
10772 && integer_pow2p (TREE_OPERAND (arg0, 1))
10773 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
10774 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
10776 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
10777 tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000),
10778 arg000, TREE_OPERAND (arg0, 1));
10779 return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
10780 tem, build_int_cst (TREE_TYPE (tem), 0));
10783 if (integer_zerop (arg1)
10784 && tree_expr_nonzero_p (arg0))
10786 tree res = constant_boolean_node (code==NE_EXPR, type);
10787 return omit_one_operand_loc (loc, type, res, arg0);
10790 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10791 if (TREE_CODE (arg0) == BIT_AND_EXPR
10792 && TREE_CODE (arg1) == BIT_AND_EXPR)
10794 tree arg00 = TREE_OPERAND (arg0, 0);
10795 tree arg01 = TREE_OPERAND (arg0, 1);
10796 tree arg10 = TREE_OPERAND (arg1, 0);
10797 tree arg11 = TREE_OPERAND (arg1, 1);
10798 tree itype = TREE_TYPE (arg0);
10800 if (operand_equal_p (arg01, arg11, 0))
10801 return fold_build2_loc (loc, code, type,
10802 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10803 fold_build2_loc (loc,
10804 BIT_XOR_EXPR, itype,
10805 arg00, arg10),
10806 arg01),
10807 build_zero_cst (itype));
10809 if (operand_equal_p (arg01, arg10, 0))
10810 return fold_build2_loc (loc, code, type,
10811 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10812 fold_build2_loc (loc,
10813 BIT_XOR_EXPR, itype,
10814 arg00, arg11),
10815 arg01),
10816 build_zero_cst (itype));
10818 if (operand_equal_p (arg00, arg11, 0))
10819 return fold_build2_loc (loc, code, type,
10820 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10821 fold_build2_loc (loc,
10822 BIT_XOR_EXPR, itype,
10823 arg01, arg10),
10824 arg00),
10825 build_zero_cst (itype));
10827 if (operand_equal_p (arg00, arg10, 0))
10828 return fold_build2_loc (loc, code, type,
10829 fold_build2_loc (loc, BIT_AND_EXPR, itype,
10830 fold_build2_loc (loc,
10831 BIT_XOR_EXPR, itype,
10832 arg01, arg11),
10833 arg00),
10834 build_zero_cst (itype));
10837 if (TREE_CODE (arg0) == BIT_XOR_EXPR
10838 && TREE_CODE (arg1) == BIT_XOR_EXPR)
10840 tree arg00 = TREE_OPERAND (arg0, 0);
10841 tree arg01 = TREE_OPERAND (arg0, 1);
10842 tree arg10 = TREE_OPERAND (arg1, 0);
10843 tree arg11 = TREE_OPERAND (arg1, 1);
10844 tree itype = TREE_TYPE (arg0);
10846 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10847 operand_equal_p guarantees no side-effects so we don't need
10848 to use omit_one_operand on Z. */
10849 if (operand_equal_p (arg01, arg11, 0))
10850 return fold_build2_loc (loc, code, type, arg00,
10851 fold_convert_loc (loc, TREE_TYPE (arg00),
10852 arg10));
10853 if (operand_equal_p (arg01, arg10, 0))
10854 return fold_build2_loc (loc, code, type, arg00,
10855 fold_convert_loc (loc, TREE_TYPE (arg00),
10856 arg11));
10857 if (operand_equal_p (arg00, arg11, 0))
10858 return fold_build2_loc (loc, code, type, arg01,
10859 fold_convert_loc (loc, TREE_TYPE (arg01),
10860 arg10));
10861 if (operand_equal_p (arg00, arg10, 0))
10862 return fold_build2_loc (loc, code, type, arg01,
10863 fold_convert_loc (loc, TREE_TYPE (arg01),
10864 arg11));
10866 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10867 if (TREE_CODE (arg01) == INTEGER_CST
10868 && TREE_CODE (arg11) == INTEGER_CST)
10870 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01,
10871 fold_convert_loc (loc, itype, arg11));
10872 tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem);
10873 return fold_build2_loc (loc, code, type, tem,
10874 fold_convert_loc (loc, itype, arg10));
10878 /* Attempt to simplify equality/inequality comparisons of complex
10879 values. Only lower the comparison if the result is known or
10880 can be simplified to a single scalar comparison. */
10881 if ((TREE_CODE (arg0) == COMPLEX_EXPR
10882 || TREE_CODE (arg0) == COMPLEX_CST)
10883 && (TREE_CODE (arg1) == COMPLEX_EXPR
10884 || TREE_CODE (arg1) == COMPLEX_CST))
10886 tree real0, imag0, real1, imag1;
10887 tree rcond, icond;
10889 if (TREE_CODE (arg0) == COMPLEX_EXPR)
10891 real0 = TREE_OPERAND (arg0, 0);
10892 imag0 = TREE_OPERAND (arg0, 1);
10894 else
10896 real0 = TREE_REALPART (arg0);
10897 imag0 = TREE_IMAGPART (arg0);
10900 if (TREE_CODE (arg1) == COMPLEX_EXPR)
10902 real1 = TREE_OPERAND (arg1, 0);
10903 imag1 = TREE_OPERAND (arg1, 1);
10905 else
10907 real1 = TREE_REALPART (arg1);
10908 imag1 = TREE_IMAGPART (arg1);
10911 rcond = fold_binary_loc (loc, code, type, real0, real1);
10912 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
10914 if (integer_zerop (rcond))
10916 if (code == EQ_EXPR)
10917 return omit_two_operands_loc (loc, type, boolean_false_node,
10918 imag0, imag1);
10919 return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1);
10921 else
10923 if (code == NE_EXPR)
10924 return omit_two_operands_loc (loc, type, boolean_true_node,
10925 imag0, imag1);
10926 return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1);
10930 icond = fold_binary_loc (loc, code, type, imag0, imag1);
10931 if (icond && TREE_CODE (icond) == INTEGER_CST)
10933 if (integer_zerop (icond))
10935 if (code == EQ_EXPR)
10936 return omit_two_operands_loc (loc, type, boolean_false_node,
10937 real0, real1);
10938 return fold_build2_loc (loc, NE_EXPR, type, real0, real1);
10940 else
10942 if (code == NE_EXPR)
10943 return omit_two_operands_loc (loc, type, boolean_true_node,
10944 real0, real1);
10945 return fold_build2_loc (loc, EQ_EXPR, type, real0, real1);
10950 return NULL_TREE;
10952 case LT_EXPR:
10953 case GT_EXPR:
10954 case LE_EXPR:
10955 case GE_EXPR:
10956 tem = fold_comparison (loc, code, type, op0, op1);
10957 if (tem != NULL_TREE)
10958 return tem;
10960 /* Transform comparisons of the form X +- C CMP X. */
10961 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
10962 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10963 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
10964 && !HONOR_SNANS (arg0))
10965 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10966 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
10968 tree arg01 = TREE_OPERAND (arg0, 1);
10969 enum tree_code code0 = TREE_CODE (arg0);
10970 int is_positive;
10972 if (TREE_CODE (arg01) == REAL_CST)
10973 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
10974 else
10975 is_positive = tree_int_cst_sgn (arg01);
10977 /* (X - c) > X becomes false. */
10978 if (code == GT_EXPR
10979 && ((code0 == MINUS_EXPR && is_positive >= 0)
10980 || (code0 == PLUS_EXPR && is_positive <= 0)))
10982 if (TREE_CODE (arg01) == INTEGER_CST
10983 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10984 fold_overflow_warning (("assuming signed overflow does not "
10985 "occur when assuming that (X - c) > X "
10986 "is always false"),
10987 WARN_STRICT_OVERFLOW_ALL);
10988 return constant_boolean_node (0, type);
10991 /* Likewise (X + c) < X becomes false. */
10992 if (code == LT_EXPR
10993 && ((code0 == PLUS_EXPR && is_positive >= 0)
10994 || (code0 == MINUS_EXPR && is_positive <= 0)))
10996 if (TREE_CODE (arg01) == INTEGER_CST
10997 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
10998 fold_overflow_warning (("assuming signed overflow does not "
10999 "occur when assuming that "
11000 "(X + c) < X is always false"),
11001 WARN_STRICT_OVERFLOW_ALL);
11002 return constant_boolean_node (0, type);
11005 /* Convert (X - c) <= X to true. */
11006 if (!HONOR_NANS (arg1)
11007 && code == LE_EXPR
11008 && ((code0 == MINUS_EXPR && is_positive >= 0)
11009 || (code0 == PLUS_EXPR && is_positive <= 0)))
11011 if (TREE_CODE (arg01) == INTEGER_CST
11012 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11013 fold_overflow_warning (("assuming signed overflow does not "
11014 "occur when assuming that "
11015 "(X - c) <= X is always true"),
11016 WARN_STRICT_OVERFLOW_ALL);
11017 return constant_boolean_node (1, type);
11020 /* Convert (X + c) >= X to true. */
11021 if (!HONOR_NANS (arg1)
11022 && code == GE_EXPR
11023 && ((code0 == PLUS_EXPR && is_positive >= 0)
11024 || (code0 == MINUS_EXPR && is_positive <= 0)))
11026 if (TREE_CODE (arg01) == INTEGER_CST
11027 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11028 fold_overflow_warning (("assuming signed overflow does not "
11029 "occur when assuming that "
11030 "(X + c) >= X is always true"),
11031 WARN_STRICT_OVERFLOW_ALL);
11032 return constant_boolean_node (1, type);
11035 if (TREE_CODE (arg01) == INTEGER_CST)
11037 /* Convert X + c > X and X - c < X to true for integers. */
11038 if (code == GT_EXPR
11039 && ((code0 == PLUS_EXPR && is_positive > 0)
11040 || (code0 == MINUS_EXPR && is_positive < 0)))
11042 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11043 fold_overflow_warning (("assuming signed overflow does "
11044 "not occur when assuming that "
11045 "(X + c) > X is always true"),
11046 WARN_STRICT_OVERFLOW_ALL);
11047 return constant_boolean_node (1, type);
11050 if (code == LT_EXPR
11051 && ((code0 == MINUS_EXPR && is_positive > 0)
11052 || (code0 == PLUS_EXPR && is_positive < 0)))
11054 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11055 fold_overflow_warning (("assuming signed overflow does "
11056 "not occur when assuming that "
11057 "(X - c) < X is always true"),
11058 WARN_STRICT_OVERFLOW_ALL);
11059 return constant_boolean_node (1, type);
11062 /* Convert X + c <= X and X - c >= X to false for integers. */
11063 if (code == LE_EXPR
11064 && ((code0 == PLUS_EXPR && is_positive > 0)
11065 || (code0 == MINUS_EXPR && is_positive < 0)))
11067 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11068 fold_overflow_warning (("assuming signed overflow does "
11069 "not occur when assuming that "
11070 "(X + c) <= X is always false"),
11071 WARN_STRICT_OVERFLOW_ALL);
11072 return constant_boolean_node (0, type);
11075 if (code == GE_EXPR
11076 && ((code0 == MINUS_EXPR && is_positive > 0)
11077 || (code0 == PLUS_EXPR && is_positive < 0)))
11079 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
11080 fold_overflow_warning (("assuming signed overflow does "
11081 "not occur when assuming that "
11082 "(X - c) >= X is always false"),
11083 WARN_STRICT_OVERFLOW_ALL);
11084 return constant_boolean_node (0, type);
11089 /* If we are comparing an ABS_EXPR with a constant, we can
11090 convert all the cases into explicit comparisons, but they may
11091 well not be faster than doing the ABS and one comparison.
11092 But ABS (X) <= C is a range comparison, which becomes a subtraction
11093 and a comparison, and is probably faster. */
11094 if (code == LE_EXPR
11095 && TREE_CODE (arg1) == INTEGER_CST
11096 && TREE_CODE (arg0) == ABS_EXPR
11097 && ! TREE_SIDE_EFFECTS (arg0)
11098 && (0 != (tem = negate_expr (arg1)))
11099 && TREE_CODE (tem) == INTEGER_CST
11100 && !TREE_OVERFLOW (tem))
11101 return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type,
11102 build2 (GE_EXPR, type,
11103 TREE_OPERAND (arg0, 0), tem),
11104 build2 (LE_EXPR, type,
11105 TREE_OPERAND (arg0, 0), arg1));
11107 /* Convert ABS_EXPR<x> >= 0 to true. */
11108 strict_overflow_p = false;
11109 if (code == GE_EXPR
11110 && (integer_zerop (arg1)
11111 || (! HONOR_NANS (arg0)
11112 && real_zerop (arg1)))
11113 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11115 if (strict_overflow_p)
11116 fold_overflow_warning (("assuming signed overflow does not occur "
11117 "when simplifying comparison of "
11118 "absolute value and zero"),
11119 WARN_STRICT_OVERFLOW_CONDITIONAL);
11120 return omit_one_operand_loc (loc, type,
11121 constant_boolean_node (true, type),
11122 arg0);
11125 /* Convert ABS_EXPR<x> < 0 to false. */
11126 strict_overflow_p = false;
11127 if (code == LT_EXPR
11128 && (integer_zerop (arg1) || real_zerop (arg1))
11129 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
11131 if (strict_overflow_p)
11132 fold_overflow_warning (("assuming signed overflow does not occur "
11133 "when simplifying comparison of "
11134 "absolute value and zero"),
11135 WARN_STRICT_OVERFLOW_CONDITIONAL);
11136 return omit_one_operand_loc (loc, type,
11137 constant_boolean_node (false, type),
11138 arg0);
11141 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11142 and similarly for >= into !=. */
11143 if ((code == LT_EXPR || code == GE_EXPR)
11144 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11145 && TREE_CODE (arg1) == LSHIFT_EXPR
11146 && integer_onep (TREE_OPERAND (arg1, 0)))
11147 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11148 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11149 TREE_OPERAND (arg1, 1)),
11150 build_zero_cst (TREE_TYPE (arg0)));
11152 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11153 otherwise Y might be >= # of bits in X's type and thus e.g.
11154 (unsigned char) (1 << Y) for Y 15 might be 0.
11155 If the cast is widening, then 1 << Y should have unsigned type,
11156 otherwise if Y is number of bits in the signed shift type minus 1,
11157 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11158 31 might be 0xffffffff80000000. */
11159 if ((code == LT_EXPR || code == GE_EXPR)
11160 && TYPE_UNSIGNED (TREE_TYPE (arg0))
11161 && CONVERT_EXPR_P (arg1)
11162 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
11163 && (element_precision (TREE_TYPE (arg1))
11164 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))
11165 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0)))
11166 || (element_precision (TREE_TYPE (arg1))
11167 == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))))
11168 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
11170 tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
11171 TREE_OPERAND (TREE_OPERAND (arg1, 0), 1));
11172 return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
11173 fold_convert_loc (loc, TREE_TYPE (arg0), tem),
11174 build_zero_cst (TREE_TYPE (arg0)));
11177 return NULL_TREE;
11179 case UNORDERED_EXPR:
11180 case ORDERED_EXPR:
11181 case UNLT_EXPR:
11182 case UNLE_EXPR:
11183 case UNGT_EXPR:
11184 case UNGE_EXPR:
11185 case UNEQ_EXPR:
11186 case LTGT_EXPR:
11187 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11189 tree targ0 = strip_float_extensions (arg0);
11190 tree targ1 = strip_float_extensions (arg1);
11191 tree newtype = TREE_TYPE (targ0);
11193 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
11194 newtype = TREE_TYPE (targ1);
11196 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
11197 return fold_build2_loc (loc, code, type,
11198 fold_convert_loc (loc, newtype, targ0),
11199 fold_convert_loc (loc, newtype, targ1));
11202 return NULL_TREE;
11204 case COMPOUND_EXPR:
11205 /* When pedantic, a compound expression can be neither an lvalue
11206 nor an integer constant expression. */
11207 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
11208 return NULL_TREE;
11209 /* Don't let (0, 0) be null pointer constant. */
11210 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
11211 : fold_convert_loc (loc, type, arg1);
11212 return pedantic_non_lvalue_loc (loc, tem);
11214 case ASSERT_EXPR:
11215 /* An ASSERT_EXPR should never be passed to fold_binary. */
11216 gcc_unreachable ();
11218 default:
11219 return NULL_TREE;
11220 } /* switch (code) */
11223 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11224 a LABEL_EXPR; otherwise return NULL_TREE. Do not check the subtrees
11225 of GOTO_EXPR. */
11227 static tree
11228 contains_label_1 (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
11230 switch (TREE_CODE (*tp))
11232 case LABEL_EXPR:
11233 return *tp;
11235 case GOTO_EXPR:
11236 *walk_subtrees = 0;
11238 /* fall through */
11240 default:
11241 return NULL_TREE;
11245 /* Return whether the sub-tree ST contains a label which is accessible from
11246 outside the sub-tree. */
11248 static bool
11249 contains_label_p (tree st)
11251 return
11252 (walk_tree_without_duplicates (&st, contains_label_1 , NULL) != NULL_TREE);
11255 /* Fold a ternary expression of code CODE and type TYPE with operands
11256 OP0, OP1, and OP2. Return the folded expression if folding is
11257 successful. Otherwise, return NULL_TREE. */
11259 tree
11260 fold_ternary_loc (location_t loc, enum tree_code code, tree type,
11261 tree op0, tree op1, tree op2)
11263 tree tem;
11264 tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE;
11265 enum tree_code_class kind = TREE_CODE_CLASS (code);
11267 gcc_assert (IS_EXPR_CODE_CLASS (kind)
11268 && TREE_CODE_LENGTH (code) == 3);
11270 /* If this is a commutative operation, and OP0 is a constant, move it
11271 to OP1 to reduce the number of tests below. */
11272 if (commutative_ternary_tree_code (code)
11273 && tree_swap_operands_p (op0, op1, true))
11274 return fold_build3_loc (loc, code, type, op1, op0, op2);
11276 tem = generic_simplify (loc, code, type, op0, op1, op2);
11277 if (tem)
11278 return tem;
11280 /* Strip any conversions that don't change the mode. This is safe
11281 for every expression, except for a comparison expression because
11282 its signedness is derived from its operands. So, in the latter
11283 case, only strip conversions that don't change the signedness.
11285 Note that this is done as an internal manipulation within the
11286 constant folder, in order to find the simplest representation of
11287 the arguments so that their form can be studied. In any cases,
11288 the appropriate type conversions should be put back in the tree
11289 that will get out of the constant folder. */
11290 if (op0)
11292 arg0 = op0;
11293 STRIP_NOPS (arg0);
11296 if (op1)
11298 arg1 = op1;
11299 STRIP_NOPS (arg1);
11302 if (op2)
11304 arg2 = op2;
11305 STRIP_NOPS (arg2);
11308 switch (code)
11310 case COMPONENT_REF:
11311 if (TREE_CODE (arg0) == CONSTRUCTOR
11312 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
11314 unsigned HOST_WIDE_INT idx;
11315 tree field, value;
11316 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
11317 if (field == arg1)
11318 return value;
11320 return NULL_TREE;
11322 case COND_EXPR:
11323 case VEC_COND_EXPR:
11324 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11325 so all simple results must be passed through pedantic_non_lvalue. */
11326 if (TREE_CODE (arg0) == INTEGER_CST)
11328 tree unused_op = integer_zerop (arg0) ? op1 : op2;
11329 tem = integer_zerop (arg0) ? op2 : op1;
11330 /* Only optimize constant conditions when the selected branch
11331 has the same type as the COND_EXPR. This avoids optimizing
11332 away "c ? x : throw", where the throw has a void type.
11333 Avoid throwing away that operand which contains label. */
11334 if ((!TREE_SIDE_EFFECTS (unused_op)
11335 || !contains_label_p (unused_op))
11336 && (! VOID_TYPE_P (TREE_TYPE (tem))
11337 || VOID_TYPE_P (type)))
11338 return pedantic_non_lvalue_loc (loc, tem);
11339 return NULL_TREE;
11341 else if (TREE_CODE (arg0) == VECTOR_CST)
11343 if ((TREE_CODE (arg1) == VECTOR_CST
11344 || TREE_CODE (arg1) == CONSTRUCTOR)
11345 && (TREE_CODE (arg2) == VECTOR_CST
11346 || TREE_CODE (arg2) == CONSTRUCTOR))
11348 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i;
11349 unsigned char *sel = XALLOCAVEC (unsigned char, nelts);
11350 gcc_assert (nelts == VECTOR_CST_NELTS (arg0));
11351 for (i = 0; i < nelts; i++)
11353 tree val = VECTOR_CST_ELT (arg0, i);
11354 if (integer_all_onesp (val))
11355 sel[i] = i;
11356 else if (integer_zerop (val))
11357 sel[i] = nelts + i;
11358 else /* Currently unreachable. */
11359 return NULL_TREE;
11361 tree t = fold_vec_perm (type, arg1, arg2, sel);
11362 if (t != NULL_TREE)
11363 return t;
11367 /* If we have A op B ? A : C, we may be able to convert this to a
11368 simpler expression, depending on the operation and the values
11369 of B and C. Signed zeros prevent all of these transformations,
11370 for reasons given above each one.
11372 Also try swapping the arguments and inverting the conditional. */
11373 if (COMPARISON_CLASS_P (arg0)
11374 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11375 arg1, TREE_OPERAND (arg0, 1))
11376 && !HONOR_SIGNED_ZEROS (element_mode (arg1)))
11378 tem = fold_cond_expr_with_comparison (loc, type, arg0, op1, op2);
11379 if (tem)
11380 return tem;
11383 if (COMPARISON_CLASS_P (arg0)
11384 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
11385 op2,
11386 TREE_OPERAND (arg0, 1))
11387 && !HONOR_SIGNED_ZEROS (element_mode (op2)))
11389 location_t loc0 = expr_location_or (arg0, loc);
11390 tem = fold_invert_truthvalue (loc0, arg0);
11391 if (tem && COMPARISON_CLASS_P (tem))
11393 tem = fold_cond_expr_with_comparison (loc, type, tem, op2, op1);
11394 if (tem)
11395 return tem;
11399 /* If the second operand is simpler than the third, swap them
11400 since that produces better jump optimization results. */
11401 if (truth_value_p (TREE_CODE (arg0))
11402 && tree_swap_operands_p (op1, op2, false))
11404 location_t loc0 = expr_location_or (arg0, loc);
11405 /* See if this can be inverted. If it can't, possibly because
11406 it was a floating-point inequality comparison, don't do
11407 anything. */
11408 tem = fold_invert_truthvalue (loc0, arg0);
11409 if (tem)
11410 return fold_build3_loc (loc, code, type, tem, op2, op1);
11413 /* Convert A ? 1 : 0 to simply A. */
11414 if ((code == VEC_COND_EXPR ? integer_all_onesp (op1)
11415 : (integer_onep (op1)
11416 && !VECTOR_TYPE_P (type)))
11417 && integer_zerop (op2)
11418 /* If we try to convert OP0 to our type, the
11419 call to fold will try to move the conversion inside
11420 a COND, which will recurse. In that case, the COND_EXPR
11421 is probably the best choice, so leave it alone. */
11422 && type == TREE_TYPE (arg0))
11423 return pedantic_non_lvalue_loc (loc, arg0);
11425 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11426 over COND_EXPR in cases such as floating point comparisons. */
11427 if (integer_zerop (op1)
11428 && code == COND_EXPR
11429 && integer_onep (op2)
11430 && !VECTOR_TYPE_P (type)
11431 && truth_value_p (TREE_CODE (arg0)))
11432 return pedantic_non_lvalue_loc (loc,
11433 fold_convert_loc (loc, type,
11434 invert_truthvalue_loc (loc,
11435 arg0)));
11437 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11438 if (TREE_CODE (arg0) == LT_EXPR
11439 && integer_zerop (TREE_OPERAND (arg0, 1))
11440 && integer_zerop (op2)
11441 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
11443 /* sign_bit_p looks through both zero and sign extensions,
11444 but for this optimization only sign extensions are
11445 usable. */
11446 tree tem2 = TREE_OPERAND (arg0, 0);
11447 while (tem != tem2)
11449 if (TREE_CODE (tem2) != NOP_EXPR
11450 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0))))
11452 tem = NULL_TREE;
11453 break;
11455 tem2 = TREE_OPERAND (tem2, 0);
11457 /* sign_bit_p only checks ARG1 bits within A's precision.
11458 If <sign bit of A> has wider type than A, bits outside
11459 of A's precision in <sign bit of A> need to be checked.
11460 If they are all 0, this optimization needs to be done
11461 in unsigned A's type, if they are all 1 in signed A's type,
11462 otherwise this can't be done. */
11463 if (tem
11464 && TYPE_PRECISION (TREE_TYPE (tem))
11465 < TYPE_PRECISION (TREE_TYPE (arg1))
11466 && TYPE_PRECISION (TREE_TYPE (tem))
11467 < TYPE_PRECISION (type))
11469 int inner_width, outer_width;
11470 tree tem_type;
11472 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
11473 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
11474 if (outer_width > TYPE_PRECISION (type))
11475 outer_width = TYPE_PRECISION (type);
11477 wide_int mask = wi::shifted_mask
11478 (inner_width, outer_width - inner_width, false,
11479 TYPE_PRECISION (TREE_TYPE (arg1)));
11481 wide_int common = mask & arg1;
11482 if (common == mask)
11484 tem_type = signed_type_for (TREE_TYPE (tem));
11485 tem = fold_convert_loc (loc, tem_type, tem);
11487 else if (common == 0)
11489 tem_type = unsigned_type_for (TREE_TYPE (tem));
11490 tem = fold_convert_loc (loc, tem_type, tem);
11492 else
11493 tem = NULL;
11496 if (tem)
11497 return
11498 fold_convert_loc (loc, type,
11499 fold_build2_loc (loc, BIT_AND_EXPR,
11500 TREE_TYPE (tem), tem,
11501 fold_convert_loc (loc,
11502 TREE_TYPE (tem),
11503 arg1)));
11506 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11507 already handled above. */
11508 if (TREE_CODE (arg0) == BIT_AND_EXPR
11509 && integer_onep (TREE_OPERAND (arg0, 1))
11510 && integer_zerop (op2)
11511 && integer_pow2p (arg1))
11513 tree tem = TREE_OPERAND (arg0, 0);
11514 STRIP_NOPS (tem);
11515 if (TREE_CODE (tem) == RSHIFT_EXPR
11516 && tree_fits_uhwi_p (TREE_OPERAND (tem, 1))
11517 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
11518 tree_to_uhwi (TREE_OPERAND (tem, 1)))
11519 return fold_build2_loc (loc, BIT_AND_EXPR, type,
11520 TREE_OPERAND (tem, 0), arg1);
11523 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11524 is probably obsolete because the first operand should be a
11525 truth value (that's why we have the two cases above), but let's
11526 leave it in until we can confirm this for all front-ends. */
11527 if (integer_zerop (op2)
11528 && TREE_CODE (arg0) == NE_EXPR
11529 && integer_zerop (TREE_OPERAND (arg0, 1))
11530 && integer_pow2p (arg1)
11531 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
11532 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
11533 arg1, OEP_ONLY_CONST))
11534 return pedantic_non_lvalue_loc (loc,
11535 fold_convert_loc (loc, type,
11536 TREE_OPERAND (arg0, 0)));
11538 /* Disable the transformations below for vectors, since
11539 fold_binary_op_with_conditional_arg may undo them immediately,
11540 yielding an infinite loop. */
11541 if (code == VEC_COND_EXPR)
11542 return NULL_TREE;
11544 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11545 if (integer_zerop (op2)
11546 && truth_value_p (TREE_CODE (arg0))
11547 && truth_value_p (TREE_CODE (arg1))
11548 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11549 return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR
11550 : TRUTH_ANDIF_EXPR,
11551 type, fold_convert_loc (loc, type, arg0), arg1);
11553 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11554 if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2)
11555 && truth_value_p (TREE_CODE (arg0))
11556 && truth_value_p (TREE_CODE (arg1))
11557 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11559 location_t loc0 = expr_location_or (arg0, loc);
11560 /* Only perform transformation if ARG0 is easily inverted. */
11561 tem = fold_invert_truthvalue (loc0, arg0);
11562 if (tem)
11563 return fold_build2_loc (loc, code == VEC_COND_EXPR
11564 ? BIT_IOR_EXPR
11565 : TRUTH_ORIF_EXPR,
11566 type, fold_convert_loc (loc, type, tem),
11567 arg1);
11570 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11571 if (integer_zerop (arg1)
11572 && truth_value_p (TREE_CODE (arg0))
11573 && truth_value_p (TREE_CODE (op2))
11574 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11576 location_t loc0 = expr_location_or (arg0, loc);
11577 /* Only perform transformation if ARG0 is easily inverted. */
11578 tem = fold_invert_truthvalue (loc0, arg0);
11579 if (tem)
11580 return fold_build2_loc (loc, code == VEC_COND_EXPR
11581 ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR,
11582 type, fold_convert_loc (loc, type, tem),
11583 op2);
11586 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11587 if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1)
11588 && truth_value_p (TREE_CODE (arg0))
11589 && truth_value_p (TREE_CODE (op2))
11590 && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type)))
11591 return fold_build2_loc (loc, code == VEC_COND_EXPR
11592 ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR,
11593 type, fold_convert_loc (loc, type, arg0), op2);
11595 return NULL_TREE;
11597 case CALL_EXPR:
11598 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11599 of fold_ternary on them. */
11600 gcc_unreachable ();
11602 case BIT_FIELD_REF:
11603 if (TREE_CODE (arg0) == VECTOR_CST
11604 && (type == TREE_TYPE (TREE_TYPE (arg0))
11605 || (TREE_CODE (type) == VECTOR_TYPE
11606 && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))))
11608 tree eltype = TREE_TYPE (TREE_TYPE (arg0));
11609 unsigned HOST_WIDE_INT width = tree_to_uhwi (TYPE_SIZE (eltype));
11610 unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1);
11611 unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2);
11613 if (n != 0
11614 && (idx % width) == 0
11615 && (n % width) == 0
11616 && ((idx + n) / width) <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
11618 idx = idx / width;
11619 n = n / width;
11621 if (TREE_CODE (arg0) == VECTOR_CST)
11623 if (n == 1)
11624 return VECTOR_CST_ELT (arg0, idx);
11626 tree *vals = XALLOCAVEC (tree, n);
11627 for (unsigned i = 0; i < n; ++i)
11628 vals[i] = VECTOR_CST_ELT (arg0, idx + i);
11629 return build_vector (type, vals);
11634 /* On constants we can use native encode/interpret to constant
11635 fold (nearly) all BIT_FIELD_REFs. */
11636 if (CONSTANT_CLASS_P (arg0)
11637 && can_native_interpret_type_p (type)
11638 && BITS_PER_UNIT == 8)
11640 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11641 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1);
11642 /* Limit us to a reasonable amount of work. To relax the
11643 other limitations we need bit-shifting of the buffer
11644 and rounding up the size. */
11645 if (bitpos % BITS_PER_UNIT == 0
11646 && bitsize % BITS_PER_UNIT == 0
11647 && bitsize <= MAX_BITSIZE_MODE_ANY_MODE)
11649 unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
11650 unsigned HOST_WIDE_INT len
11651 = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT,
11652 bitpos / BITS_PER_UNIT);
11653 if (len > 0
11654 && len * BITS_PER_UNIT >= bitsize)
11656 tree v = native_interpret_expr (type, b,
11657 bitsize / BITS_PER_UNIT);
11658 if (v)
11659 return v;
11664 return NULL_TREE;
11666 case FMA_EXPR:
11667 /* For integers we can decompose the FMA if possible. */
11668 if (TREE_CODE (arg0) == INTEGER_CST
11669 && TREE_CODE (arg1) == INTEGER_CST)
11670 return fold_build2_loc (loc, PLUS_EXPR, type,
11671 const_binop (MULT_EXPR, arg0, arg1), arg2);
11672 if (integer_zerop (arg2))
11673 return fold_build2_loc (loc, MULT_EXPR, type, arg0, arg1);
11675 return fold_fma (loc, type, arg0, arg1, arg2);
11677 case VEC_PERM_EXPR:
11678 if (TREE_CODE (arg2) == VECTOR_CST)
11680 unsigned int nelts = TYPE_VECTOR_SUBPARTS (type), i, mask, mask2;
11681 unsigned char *sel = XALLOCAVEC (unsigned char, 2 * nelts);
11682 unsigned char *sel2 = sel + nelts;
11683 bool need_mask_canon = false;
11684 bool need_mask_canon2 = false;
11685 bool all_in_vec0 = true;
11686 bool all_in_vec1 = true;
11687 bool maybe_identity = true;
11688 bool single_arg = (op0 == op1);
11689 bool changed = false;
11691 mask2 = 2 * nelts - 1;
11692 mask = single_arg ? (nelts - 1) : mask2;
11693 gcc_assert (nelts == VECTOR_CST_NELTS (arg2));
11694 for (i = 0; i < nelts; i++)
11696 tree val = VECTOR_CST_ELT (arg2, i);
11697 if (TREE_CODE (val) != INTEGER_CST)
11698 return NULL_TREE;
11700 /* Make sure that the perm value is in an acceptable
11701 range. */
11702 wide_int t = val;
11703 need_mask_canon |= wi::gtu_p (t, mask);
11704 need_mask_canon2 |= wi::gtu_p (t, mask2);
11705 sel[i] = t.to_uhwi () & mask;
11706 sel2[i] = t.to_uhwi () & mask2;
11708 if (sel[i] < nelts)
11709 all_in_vec1 = false;
11710 else
11711 all_in_vec0 = false;
11713 if ((sel[i] & (nelts-1)) != i)
11714 maybe_identity = false;
11717 if (maybe_identity)
11719 if (all_in_vec0)
11720 return op0;
11721 if (all_in_vec1)
11722 return op1;
11725 if (all_in_vec0)
11726 op1 = op0;
11727 else if (all_in_vec1)
11729 op0 = op1;
11730 for (i = 0; i < nelts; i++)
11731 sel[i] -= nelts;
11732 need_mask_canon = true;
11735 if ((TREE_CODE (op0) == VECTOR_CST
11736 || TREE_CODE (op0) == CONSTRUCTOR)
11737 && (TREE_CODE (op1) == VECTOR_CST
11738 || TREE_CODE (op1) == CONSTRUCTOR))
11740 tree t = fold_vec_perm (type, op0, op1, sel);
11741 if (t != NULL_TREE)
11742 return t;
11745 if (op0 == op1 && !single_arg)
11746 changed = true;
11748 /* Some targets are deficient and fail to expand a single
11749 argument permutation while still allowing an equivalent
11750 2-argument version. */
11751 if (need_mask_canon && arg2 == op2
11752 && !can_vec_perm_p (TYPE_MODE (type), false, sel)
11753 && can_vec_perm_p (TYPE_MODE (type), false, sel2))
11755 need_mask_canon = need_mask_canon2;
11756 sel = sel2;
11759 if (need_mask_canon && arg2 == op2)
11761 tree *tsel = XALLOCAVEC (tree, nelts);
11762 tree eltype = TREE_TYPE (TREE_TYPE (arg2));
11763 for (i = 0; i < nelts; i++)
11764 tsel[i] = build_int_cst (eltype, sel[i]);
11765 op2 = build_vector (TREE_TYPE (arg2), tsel);
11766 changed = true;
11769 if (changed)
11770 return build3_loc (loc, VEC_PERM_EXPR, type, op0, op1, op2);
11772 return NULL_TREE;
11774 case BIT_INSERT_EXPR:
11775 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11776 if (TREE_CODE (arg0) == INTEGER_CST
11777 && TREE_CODE (arg1) == INTEGER_CST)
11779 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11780 unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1));
11781 wide_int tem = wi::bit_and (arg0,
11782 wi::shifted_mask (bitpos, bitsize, true,
11783 TYPE_PRECISION (type)));
11784 wide_int tem2
11785 = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)),
11786 bitsize), bitpos);
11787 return wide_int_to_tree (type, wi::bit_or (tem, tem2));
11789 else if (TREE_CODE (arg0) == VECTOR_CST
11790 && CONSTANT_CLASS_P (arg1)
11791 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)),
11792 TREE_TYPE (arg1)))
11794 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2);
11795 unsigned HOST_WIDE_INT elsize
11796 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1)));
11797 if (bitpos % elsize == 0)
11799 unsigned k = bitpos / elsize;
11800 if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0))
11801 return arg0;
11802 else
11804 tree *elts = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (type));
11805 memcpy (elts, VECTOR_CST_ELTS (arg0),
11806 sizeof (tree) * TYPE_VECTOR_SUBPARTS (type));
11807 elts[k] = arg1;
11808 return build_vector (type, elts);
11812 return NULL_TREE;
11814 default:
11815 return NULL_TREE;
11816 } /* switch (code) */
11819 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11820 of an array (or vector). */
11822 tree
11823 get_array_ctor_element_at_index (tree ctor, offset_int access_index)
11825 tree index_type = NULL_TREE;
11826 offset_int low_bound = 0;
11828 if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE)
11830 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor));
11831 if (domain_type && TYPE_MIN_VALUE (domain_type))
11833 /* Static constructors for variably sized objects makes no sense. */
11834 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST);
11835 index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type));
11836 low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type));
11840 if (index_type)
11841 access_index = wi::ext (access_index, TYPE_PRECISION (index_type),
11842 TYPE_SIGN (index_type));
11844 offset_int index = low_bound - 1;
11845 if (index_type)
11846 index = wi::ext (index, TYPE_PRECISION (index_type),
11847 TYPE_SIGN (index_type));
11849 offset_int max_index;
11850 unsigned HOST_WIDE_INT cnt;
11851 tree cfield, cval;
11853 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval)
11855 /* Array constructor might explicitly set index, or specify a range,
11856 or leave index NULL meaning that it is next index after previous
11857 one. */
11858 if (cfield)
11860 if (TREE_CODE (cfield) == INTEGER_CST)
11861 max_index = index = wi::to_offset (cfield);
11862 else
11864 gcc_assert (TREE_CODE (cfield) == RANGE_EXPR);
11865 index = wi::to_offset (TREE_OPERAND (cfield, 0));
11866 max_index = wi::to_offset (TREE_OPERAND (cfield, 1));
11869 else
11871 index += 1;
11872 if (index_type)
11873 index = wi::ext (index, TYPE_PRECISION (index_type),
11874 TYPE_SIGN (index_type));
11875 max_index = index;
11878 /* Do we have match? */
11879 if (wi::cmpu (access_index, index) >= 0
11880 && wi::cmpu (access_index, max_index) <= 0)
11881 return cval;
11883 return NULL_TREE;
11886 /* Perform constant folding and related simplification of EXPR.
11887 The related simplifications include x*1 => x, x*0 => 0, etc.,
11888 and application of the associative law.
11889 NOP_EXPR conversions may be removed freely (as long as we
11890 are careful not to change the type of the overall expression).
11891 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11892 but we can constant-fold them if they have constant operands. */
11894 #ifdef ENABLE_FOLD_CHECKING
11895 # define fold(x) fold_1 (x)
11896 static tree fold_1 (tree);
11897 static
11898 #endif
11899 tree
11900 fold (tree expr)
11902 const tree t = expr;
11903 enum tree_code code = TREE_CODE (t);
11904 enum tree_code_class kind = TREE_CODE_CLASS (code);
11905 tree tem;
11906 location_t loc = EXPR_LOCATION (expr);
11908 /* Return right away if a constant. */
11909 if (kind == tcc_constant)
11910 return t;
11912 /* CALL_EXPR-like objects with variable numbers of operands are
11913 treated specially. */
11914 if (kind == tcc_vl_exp)
11916 if (code == CALL_EXPR)
11918 tem = fold_call_expr (loc, expr, false);
11919 return tem ? tem : expr;
11921 return expr;
11924 if (IS_EXPR_CODE_CLASS (kind))
11926 tree type = TREE_TYPE (t);
11927 tree op0, op1, op2;
11929 switch (TREE_CODE_LENGTH (code))
11931 case 1:
11932 op0 = TREE_OPERAND (t, 0);
11933 tem = fold_unary_loc (loc, code, type, op0);
11934 return tem ? tem : expr;
11935 case 2:
11936 op0 = TREE_OPERAND (t, 0);
11937 op1 = TREE_OPERAND (t, 1);
11938 tem = fold_binary_loc (loc, code, type, op0, op1);
11939 return tem ? tem : expr;
11940 case 3:
11941 op0 = TREE_OPERAND (t, 0);
11942 op1 = TREE_OPERAND (t, 1);
11943 op2 = TREE_OPERAND (t, 2);
11944 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
11945 return tem ? tem : expr;
11946 default:
11947 break;
11951 switch (code)
11953 case ARRAY_REF:
11955 tree op0 = TREE_OPERAND (t, 0);
11956 tree op1 = TREE_OPERAND (t, 1);
11958 if (TREE_CODE (op1) == INTEGER_CST
11959 && TREE_CODE (op0) == CONSTRUCTOR
11960 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
11962 tree val = get_array_ctor_element_at_index (op0,
11963 wi::to_offset (op1));
11964 if (val)
11965 return val;
11968 return t;
11971 /* Return a VECTOR_CST if possible. */
11972 case CONSTRUCTOR:
11974 tree type = TREE_TYPE (t);
11975 if (TREE_CODE (type) != VECTOR_TYPE)
11976 return t;
11978 unsigned i;
11979 tree val;
11980 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val)
11981 if (! CONSTANT_CLASS_P (val))
11982 return t;
11984 return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t));
11987 case CONST_DECL:
11988 return fold (DECL_INITIAL (t));
11990 default:
11991 return t;
11992 } /* switch (code) */
11995 #ifdef ENABLE_FOLD_CHECKING
11996 #undef fold
11998 static void fold_checksum_tree (const_tree, struct md5_ctx *,
11999 hash_table<nofree_ptr_hash<const tree_node> > *);
12000 static void fold_check_failed (const_tree, const_tree);
12001 void print_fold_checksum (const_tree);
12003 /* When --enable-checking=fold, compute a digest of expr before
12004 and after actual fold call to see if fold did not accidentally
12005 change original expr. */
12007 tree
12008 fold (tree expr)
12010 tree ret;
12011 struct md5_ctx ctx;
12012 unsigned char checksum_before[16], checksum_after[16];
12013 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12015 md5_init_ctx (&ctx);
12016 fold_checksum_tree (expr, &ctx, &ht);
12017 md5_finish_ctx (&ctx, checksum_before);
12018 ht.empty ();
12020 ret = fold_1 (expr);
12022 md5_init_ctx (&ctx);
12023 fold_checksum_tree (expr, &ctx, &ht);
12024 md5_finish_ctx (&ctx, checksum_after);
12026 if (memcmp (checksum_before, checksum_after, 16))
12027 fold_check_failed (expr, ret);
12029 return ret;
12032 void
12033 print_fold_checksum (const_tree expr)
12035 struct md5_ctx ctx;
12036 unsigned char checksum[16], cnt;
12037 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12039 md5_init_ctx (&ctx);
12040 fold_checksum_tree (expr, &ctx, &ht);
12041 md5_finish_ctx (&ctx, checksum);
12042 for (cnt = 0; cnt < 16; ++cnt)
12043 fprintf (stderr, "%02x", checksum[cnt]);
12044 putc ('\n', stderr);
12047 static void
12048 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
12050 internal_error ("fold check: original tree changed by fold");
12053 static void
12054 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx,
12055 hash_table<nofree_ptr_hash <const tree_node> > *ht)
12057 const tree_node **slot;
12058 enum tree_code code;
12059 union tree_node buf;
12060 int i, len;
12062 recursive_label:
12063 if (expr == NULL)
12064 return;
12065 slot = ht->find_slot (expr, INSERT);
12066 if (*slot != NULL)
12067 return;
12068 *slot = expr;
12069 code = TREE_CODE (expr);
12070 if (TREE_CODE_CLASS (code) == tcc_declaration
12071 && HAS_DECL_ASSEMBLER_NAME_P (expr))
12073 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12074 memcpy ((char *) &buf, expr, tree_size (expr));
12075 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
12076 buf.decl_with_vis.symtab_node = NULL;
12077 expr = (tree) &buf;
12079 else if (TREE_CODE_CLASS (code) == tcc_type
12080 && (TYPE_POINTER_TO (expr)
12081 || TYPE_REFERENCE_TO (expr)
12082 || TYPE_CACHED_VALUES_P (expr)
12083 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
12084 || TYPE_NEXT_VARIANT (expr)
12085 || TYPE_ALIAS_SET_KNOWN_P (expr)))
12087 /* Allow these fields to be modified. */
12088 tree tmp;
12089 memcpy ((char *) &buf, expr, tree_size (expr));
12090 expr = tmp = (tree) &buf;
12091 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
12092 TYPE_POINTER_TO (tmp) = NULL;
12093 TYPE_REFERENCE_TO (tmp) = NULL;
12094 TYPE_NEXT_VARIANT (tmp) = NULL;
12095 TYPE_ALIAS_SET (tmp) = -1;
12096 if (TYPE_CACHED_VALUES_P (tmp))
12098 TYPE_CACHED_VALUES_P (tmp) = 0;
12099 TYPE_CACHED_VALUES (tmp) = NULL;
12102 md5_process_bytes (expr, tree_size (expr), ctx);
12103 if (CODE_CONTAINS_STRUCT (code, TS_TYPED))
12104 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
12105 if (TREE_CODE_CLASS (code) != tcc_type
12106 && TREE_CODE_CLASS (code) != tcc_declaration
12107 && code != TREE_LIST
12108 && code != SSA_NAME
12109 && CODE_CONTAINS_STRUCT (code, TS_COMMON))
12110 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
12111 switch (TREE_CODE_CLASS (code))
12113 case tcc_constant:
12114 switch (code)
12116 case STRING_CST:
12117 md5_process_bytes (TREE_STRING_POINTER (expr),
12118 TREE_STRING_LENGTH (expr), ctx);
12119 break;
12120 case COMPLEX_CST:
12121 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
12122 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
12123 break;
12124 case VECTOR_CST:
12125 for (i = 0; i < (int) VECTOR_CST_NELTS (expr); ++i)
12126 fold_checksum_tree (VECTOR_CST_ELT (expr, i), ctx, ht);
12127 break;
12128 default:
12129 break;
12131 break;
12132 case tcc_exceptional:
12133 switch (code)
12135 case TREE_LIST:
12136 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
12137 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
12138 expr = TREE_CHAIN (expr);
12139 goto recursive_label;
12140 break;
12141 case TREE_VEC:
12142 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
12143 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
12144 break;
12145 default:
12146 break;
12148 break;
12149 case tcc_expression:
12150 case tcc_reference:
12151 case tcc_comparison:
12152 case tcc_unary:
12153 case tcc_binary:
12154 case tcc_statement:
12155 case tcc_vl_exp:
12156 len = TREE_OPERAND_LENGTH (expr);
12157 for (i = 0; i < len; ++i)
12158 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
12159 break;
12160 case tcc_declaration:
12161 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
12162 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
12163 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
12165 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
12166 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
12167 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
12168 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
12169 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
12172 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
12174 if (TREE_CODE (expr) == FUNCTION_DECL)
12176 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
12177 fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht);
12179 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
12181 break;
12182 case tcc_type:
12183 if (TREE_CODE (expr) == ENUMERAL_TYPE)
12184 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
12185 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
12186 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
12187 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
12188 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
12189 if (INTEGRAL_TYPE_P (expr)
12190 || SCALAR_FLOAT_TYPE_P (expr))
12192 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
12193 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
12195 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
12196 if (TREE_CODE (expr) == RECORD_TYPE
12197 || TREE_CODE (expr) == UNION_TYPE
12198 || TREE_CODE (expr) == QUAL_UNION_TYPE)
12199 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
12200 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
12201 break;
12202 default:
12203 break;
12207 /* Helper function for outputting the checksum of a tree T. When
12208 debugging with gdb, you can "define mynext" to be "next" followed
12209 by "call debug_fold_checksum (op0)", then just trace down till the
12210 outputs differ. */
12212 DEBUG_FUNCTION void
12213 debug_fold_checksum (const_tree t)
12215 int i;
12216 unsigned char checksum[16];
12217 struct md5_ctx ctx;
12218 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12220 md5_init_ctx (&ctx);
12221 fold_checksum_tree (t, &ctx, &ht);
12222 md5_finish_ctx (&ctx, checksum);
12223 ht.empty ();
12225 for (i = 0; i < 16; i++)
12226 fprintf (stderr, "%d ", checksum[i]);
12228 fprintf (stderr, "\n");
12231 #endif
12233 /* Fold a unary tree expression with code CODE of type TYPE with an
12234 operand OP0. LOC is the location of the resulting expression.
12235 Return a folded expression if successful. Otherwise, return a tree
12236 expression with code CODE of type TYPE with an operand OP0. */
12238 tree
12239 fold_build1_stat_loc (location_t loc,
12240 enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
12242 tree tem;
12243 #ifdef ENABLE_FOLD_CHECKING
12244 unsigned char checksum_before[16], checksum_after[16];
12245 struct md5_ctx ctx;
12246 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12248 md5_init_ctx (&ctx);
12249 fold_checksum_tree (op0, &ctx, &ht);
12250 md5_finish_ctx (&ctx, checksum_before);
12251 ht.empty ();
12252 #endif
12254 tem = fold_unary_loc (loc, code, type, op0);
12255 if (!tem)
12256 tem = build1_stat_loc (loc, code, type, op0 PASS_MEM_STAT);
12258 #ifdef ENABLE_FOLD_CHECKING
12259 md5_init_ctx (&ctx);
12260 fold_checksum_tree (op0, &ctx, &ht);
12261 md5_finish_ctx (&ctx, checksum_after);
12263 if (memcmp (checksum_before, checksum_after, 16))
12264 fold_check_failed (op0, tem);
12265 #endif
12266 return tem;
12269 /* Fold a binary tree expression with code CODE of type TYPE with
12270 operands OP0 and OP1. LOC is the location of the resulting
12271 expression. Return a folded expression if successful. Otherwise,
12272 return a tree expression with code CODE of type TYPE with operands
12273 OP0 and OP1. */
12275 tree
12276 fold_build2_stat_loc (location_t loc,
12277 enum tree_code code, tree type, tree op0, tree op1
12278 MEM_STAT_DECL)
12280 tree tem;
12281 #ifdef ENABLE_FOLD_CHECKING
12282 unsigned char checksum_before_op0[16],
12283 checksum_before_op1[16],
12284 checksum_after_op0[16],
12285 checksum_after_op1[16];
12286 struct md5_ctx ctx;
12287 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12289 md5_init_ctx (&ctx);
12290 fold_checksum_tree (op0, &ctx, &ht);
12291 md5_finish_ctx (&ctx, checksum_before_op0);
12292 ht.empty ();
12294 md5_init_ctx (&ctx);
12295 fold_checksum_tree (op1, &ctx, &ht);
12296 md5_finish_ctx (&ctx, checksum_before_op1);
12297 ht.empty ();
12298 #endif
12300 tem = fold_binary_loc (loc, code, type, op0, op1);
12301 if (!tem)
12302 tem = build2_stat_loc (loc, code, type, op0, op1 PASS_MEM_STAT);
12304 #ifdef ENABLE_FOLD_CHECKING
12305 md5_init_ctx (&ctx);
12306 fold_checksum_tree (op0, &ctx, &ht);
12307 md5_finish_ctx (&ctx, checksum_after_op0);
12308 ht.empty ();
12310 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12311 fold_check_failed (op0, tem);
12313 md5_init_ctx (&ctx);
12314 fold_checksum_tree (op1, &ctx, &ht);
12315 md5_finish_ctx (&ctx, checksum_after_op1);
12317 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12318 fold_check_failed (op1, tem);
12319 #endif
12320 return tem;
12323 /* Fold a ternary tree expression with code CODE of type TYPE with
12324 operands OP0, OP1, and OP2. Return a folded expression if
12325 successful. Otherwise, return a tree expression with code CODE of
12326 type TYPE with operands OP0, OP1, and OP2. */
12328 tree
12329 fold_build3_stat_loc (location_t loc, enum tree_code code, tree type,
12330 tree op0, tree op1, tree op2 MEM_STAT_DECL)
12332 tree tem;
12333 #ifdef ENABLE_FOLD_CHECKING
12334 unsigned char checksum_before_op0[16],
12335 checksum_before_op1[16],
12336 checksum_before_op2[16],
12337 checksum_after_op0[16],
12338 checksum_after_op1[16],
12339 checksum_after_op2[16];
12340 struct md5_ctx ctx;
12341 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12343 md5_init_ctx (&ctx);
12344 fold_checksum_tree (op0, &ctx, &ht);
12345 md5_finish_ctx (&ctx, checksum_before_op0);
12346 ht.empty ();
12348 md5_init_ctx (&ctx);
12349 fold_checksum_tree (op1, &ctx, &ht);
12350 md5_finish_ctx (&ctx, checksum_before_op1);
12351 ht.empty ();
12353 md5_init_ctx (&ctx);
12354 fold_checksum_tree (op2, &ctx, &ht);
12355 md5_finish_ctx (&ctx, checksum_before_op2);
12356 ht.empty ();
12357 #endif
12359 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
12360 tem = fold_ternary_loc (loc, code, type, op0, op1, op2);
12361 if (!tem)
12362 tem = build3_stat_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT);
12364 #ifdef ENABLE_FOLD_CHECKING
12365 md5_init_ctx (&ctx);
12366 fold_checksum_tree (op0, &ctx, &ht);
12367 md5_finish_ctx (&ctx, checksum_after_op0);
12368 ht.empty ();
12370 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
12371 fold_check_failed (op0, tem);
12373 md5_init_ctx (&ctx);
12374 fold_checksum_tree (op1, &ctx, &ht);
12375 md5_finish_ctx (&ctx, checksum_after_op1);
12376 ht.empty ();
12378 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
12379 fold_check_failed (op1, tem);
12381 md5_init_ctx (&ctx);
12382 fold_checksum_tree (op2, &ctx, &ht);
12383 md5_finish_ctx (&ctx, checksum_after_op2);
12385 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
12386 fold_check_failed (op2, tem);
12387 #endif
12388 return tem;
12391 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12392 arguments in ARGARRAY, and a null static chain.
12393 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12394 of type TYPE from the given operands as constructed by build_call_array. */
12396 tree
12397 fold_build_call_array_loc (location_t loc, tree type, tree fn,
12398 int nargs, tree *argarray)
12400 tree tem;
12401 #ifdef ENABLE_FOLD_CHECKING
12402 unsigned char checksum_before_fn[16],
12403 checksum_before_arglist[16],
12404 checksum_after_fn[16],
12405 checksum_after_arglist[16];
12406 struct md5_ctx ctx;
12407 hash_table<nofree_ptr_hash<const tree_node> > ht (32);
12408 int i;
12410 md5_init_ctx (&ctx);
12411 fold_checksum_tree (fn, &ctx, &ht);
12412 md5_finish_ctx (&ctx, checksum_before_fn);
12413 ht.empty ();
12415 md5_init_ctx (&ctx);
12416 for (i = 0; i < nargs; i++)
12417 fold_checksum_tree (argarray[i], &ctx, &ht);
12418 md5_finish_ctx (&ctx, checksum_before_arglist);
12419 ht.empty ();
12420 #endif
12422 tem = fold_builtin_call_array (loc, type, fn, nargs, argarray);
12423 if (!tem)
12424 tem = build_call_array_loc (loc, type, fn, nargs, argarray);
12426 #ifdef ENABLE_FOLD_CHECKING
12427 md5_init_ctx (&ctx);
12428 fold_checksum_tree (fn, &ctx, &ht);
12429 md5_finish_ctx (&ctx, checksum_after_fn);
12430 ht.empty ();
12432 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
12433 fold_check_failed (fn, tem);
12435 md5_init_ctx (&ctx);
12436 for (i = 0; i < nargs; i++)
12437 fold_checksum_tree (argarray[i], &ctx, &ht);
12438 md5_finish_ctx (&ctx, checksum_after_arglist);
12440 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
12441 fold_check_failed (NULL_TREE, tem);
12442 #endif
12443 return tem;
12446 /* Perform constant folding and related simplification of initializer
12447 expression EXPR. These behave identically to "fold_buildN" but ignore
12448 potential run-time traps and exceptions that fold must preserve. */
12450 #define START_FOLD_INIT \
12451 int saved_signaling_nans = flag_signaling_nans;\
12452 int saved_trapping_math = flag_trapping_math;\
12453 int saved_rounding_math = flag_rounding_math;\
12454 int saved_trapv = flag_trapv;\
12455 int saved_folding_initializer = folding_initializer;\
12456 flag_signaling_nans = 0;\
12457 flag_trapping_math = 0;\
12458 flag_rounding_math = 0;\
12459 flag_trapv = 0;\
12460 folding_initializer = 1;
12462 #define END_FOLD_INIT \
12463 flag_signaling_nans = saved_signaling_nans;\
12464 flag_trapping_math = saved_trapping_math;\
12465 flag_rounding_math = saved_rounding_math;\
12466 flag_trapv = saved_trapv;\
12467 folding_initializer = saved_folding_initializer;
12469 tree
12470 fold_build1_initializer_loc (location_t loc, enum tree_code code,
12471 tree type, tree op)
12473 tree result;
12474 START_FOLD_INIT;
12476 result = fold_build1_loc (loc, code, type, op);
12478 END_FOLD_INIT;
12479 return result;
12482 tree
12483 fold_build2_initializer_loc (location_t loc, enum tree_code code,
12484 tree type, tree op0, tree op1)
12486 tree result;
12487 START_FOLD_INIT;
12489 result = fold_build2_loc (loc, code, type, op0, op1);
12491 END_FOLD_INIT;
12492 return result;
12495 tree
12496 fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn,
12497 int nargs, tree *argarray)
12499 tree result;
12500 START_FOLD_INIT;
12502 result = fold_build_call_array_loc (loc, type, fn, nargs, argarray);
12504 END_FOLD_INIT;
12505 return result;
12508 #undef START_FOLD_INIT
12509 #undef END_FOLD_INIT
12511 /* Determine if first argument is a multiple of second argument. Return 0 if
12512 it is not, or we cannot easily determined it to be.
12514 An example of the sort of thing we care about (at this point; this routine
12515 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12516 fold cases do now) is discovering that
12518 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12520 is a multiple of
12522 SAVE_EXPR (J * 8)
12524 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12526 This code also handles discovering that
12528 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12530 is a multiple of 8 so we don't have to worry about dealing with a
12531 possible remainder.
12533 Note that we *look* inside a SAVE_EXPR only to determine how it was
12534 calculated; it is not safe for fold to do much of anything else with the
12535 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12536 at run time. For example, the latter example above *cannot* be implemented
12537 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12538 evaluation time of the original SAVE_EXPR is not necessarily the same at
12539 the time the new expression is evaluated. The only optimization of this
12540 sort that would be valid is changing
12542 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12544 divided by 8 to
12546 SAVE_EXPR (I) * SAVE_EXPR (J)
12548 (where the same SAVE_EXPR (J) is used in the original and the
12549 transformed version). */
12552 multiple_of_p (tree type, const_tree top, const_tree bottom)
12554 gimple *stmt;
12555 tree t1, op1, op2;
12557 if (operand_equal_p (top, bottom, 0))
12558 return 1;
12560 if (TREE_CODE (type) != INTEGER_TYPE)
12561 return 0;
12563 switch (TREE_CODE (top))
12565 case BIT_AND_EXPR:
12566 /* Bitwise and provides a power of two multiple. If the mask is
12567 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12568 if (!integer_pow2p (bottom))
12569 return 0;
12570 /* FALLTHRU */
12572 case MULT_EXPR:
12573 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12574 || multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12576 case MINUS_EXPR:
12577 /* It is impossible to prove if op0 - op1 is multiple of bottom
12578 precisely, so be conservative here checking if both op0 and op1
12579 are multiple of bottom. Note we check the second operand first
12580 since it's usually simpler. */
12581 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12582 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12584 case PLUS_EXPR:
12585 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12586 as op0 - 3 if the expression has unsigned type. For example,
12587 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12588 op1 = TREE_OPERAND (top, 1);
12589 if (TYPE_UNSIGNED (type)
12590 && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1))
12591 op1 = fold_build1 (NEGATE_EXPR, type, op1);
12592 return (multiple_of_p (type, op1, bottom)
12593 && multiple_of_p (type, TREE_OPERAND (top, 0), bottom));
12595 case LSHIFT_EXPR:
12596 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
12598 op1 = TREE_OPERAND (top, 1);
12599 /* const_binop may not detect overflow correctly,
12600 so check for it explicitly here. */
12601 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), op1)
12602 && 0 != (t1 = fold_convert (type,
12603 const_binop (LSHIFT_EXPR,
12604 size_one_node,
12605 op1)))
12606 && !TREE_OVERFLOW (t1))
12607 return multiple_of_p (type, t1, bottom);
12609 return 0;
12611 case NOP_EXPR:
12612 /* Can't handle conversions from non-integral or wider integral type. */
12613 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
12614 || (TYPE_PRECISION (type)
12615 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
12616 return 0;
12618 /* fall through */
12620 case SAVE_EXPR:
12621 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
12623 case COND_EXPR:
12624 return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom)
12625 && multiple_of_p (type, TREE_OPERAND (top, 2), bottom));
12627 case INTEGER_CST:
12628 if (TREE_CODE (bottom) != INTEGER_CST
12629 || integer_zerop (bottom)
12630 || (TYPE_UNSIGNED (type)
12631 && (tree_int_cst_sgn (top) < 0
12632 || tree_int_cst_sgn (bottom) < 0)))
12633 return 0;
12634 return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom),
12635 SIGNED);
12637 case SSA_NAME:
12638 if (TREE_CODE (bottom) == INTEGER_CST
12639 && (stmt = SSA_NAME_DEF_STMT (top)) != NULL
12640 && gimple_code (stmt) == GIMPLE_ASSIGN)
12642 enum tree_code code = gimple_assign_rhs_code (stmt);
12644 /* Check for special cases to see if top is defined as multiple
12645 of bottom:
12647 top = (X & ~(bottom - 1) ; bottom is power of 2
12651 Y = X % bottom
12652 top = X - Y. */
12653 if (code == BIT_AND_EXPR
12654 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12655 && TREE_CODE (op2) == INTEGER_CST
12656 && integer_pow2p (bottom)
12657 && wi::multiple_of_p (wi::to_widest (op2),
12658 wi::to_widest (bottom), UNSIGNED))
12659 return 1;
12661 op1 = gimple_assign_rhs1 (stmt);
12662 if (code == MINUS_EXPR
12663 && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE
12664 && TREE_CODE (op2) == SSA_NAME
12665 && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL
12666 && gimple_code (stmt) == GIMPLE_ASSIGN
12667 && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR
12668 && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0)
12669 && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0))
12670 return 1;
12673 /* fall through */
12675 default:
12676 return 0;
12680 #define tree_expr_nonnegative_warnv_p(X, Y) \
12681 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12683 #define RECURSE(X) \
12684 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12686 /* Return true if CODE or TYPE is known to be non-negative. */
12688 static bool
12689 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
12691 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
12692 && truth_value_p (code))
12693 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12694 have a signed:1 type (where the value is -1 and 0). */
12695 return true;
12696 return false;
12699 /* Return true if (CODE OP0) is known to be non-negative. If the return
12700 value is based on the assumption that signed overflow is undefined,
12701 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12702 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12704 bool
12705 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12706 bool *strict_overflow_p, int depth)
12708 if (TYPE_UNSIGNED (type))
12709 return true;
12711 switch (code)
12713 case ABS_EXPR:
12714 /* We can't return 1 if flag_wrapv is set because
12715 ABS_EXPR<INT_MIN> = INT_MIN. */
12716 if (!ANY_INTEGRAL_TYPE_P (type))
12717 return true;
12718 if (TYPE_OVERFLOW_UNDEFINED (type))
12720 *strict_overflow_p = true;
12721 return true;
12723 break;
12725 case NON_LVALUE_EXPR:
12726 case FLOAT_EXPR:
12727 case FIX_TRUNC_EXPR:
12728 return RECURSE (op0);
12730 CASE_CONVERT:
12732 tree inner_type = TREE_TYPE (op0);
12733 tree outer_type = type;
12735 if (TREE_CODE (outer_type) == REAL_TYPE)
12737 if (TREE_CODE (inner_type) == REAL_TYPE)
12738 return RECURSE (op0);
12739 if (INTEGRAL_TYPE_P (inner_type))
12741 if (TYPE_UNSIGNED (inner_type))
12742 return true;
12743 return RECURSE (op0);
12746 else if (INTEGRAL_TYPE_P (outer_type))
12748 if (TREE_CODE (inner_type) == REAL_TYPE)
12749 return RECURSE (op0);
12750 if (INTEGRAL_TYPE_P (inner_type))
12751 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
12752 && TYPE_UNSIGNED (inner_type);
12755 break;
12757 default:
12758 return tree_simple_nonnegative_warnv_p (code, type);
12761 /* We don't know sign of `t', so be conservative and return false. */
12762 return false;
12765 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12766 value is based on the assumption that signed overflow is undefined,
12767 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12768 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12770 bool
12771 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
12772 tree op1, bool *strict_overflow_p,
12773 int depth)
12775 if (TYPE_UNSIGNED (type))
12776 return true;
12778 switch (code)
12780 case POINTER_PLUS_EXPR:
12781 case PLUS_EXPR:
12782 if (FLOAT_TYPE_P (type))
12783 return RECURSE (op0) && RECURSE (op1);
12785 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12786 both unsigned and at least 2 bits shorter than the result. */
12787 if (TREE_CODE (type) == INTEGER_TYPE
12788 && TREE_CODE (op0) == NOP_EXPR
12789 && TREE_CODE (op1) == NOP_EXPR)
12791 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
12792 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
12793 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
12794 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
12796 unsigned int prec = MAX (TYPE_PRECISION (inner1),
12797 TYPE_PRECISION (inner2)) + 1;
12798 return prec < TYPE_PRECISION (type);
12801 break;
12803 case MULT_EXPR:
12804 if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
12806 /* x * x is always non-negative for floating point x
12807 or without overflow. */
12808 if (operand_equal_p (op0, op1, 0)
12809 || (RECURSE (op0) && RECURSE (op1)))
12811 if (ANY_INTEGRAL_TYPE_P (type)
12812 && TYPE_OVERFLOW_UNDEFINED (type))
12813 *strict_overflow_p = true;
12814 return true;
12818 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12819 both unsigned and their total bits is shorter than the result. */
12820 if (TREE_CODE (type) == INTEGER_TYPE
12821 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
12822 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
12824 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
12825 ? TREE_TYPE (TREE_OPERAND (op0, 0))
12826 : TREE_TYPE (op0);
12827 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
12828 ? TREE_TYPE (TREE_OPERAND (op1, 0))
12829 : TREE_TYPE (op1);
12831 bool unsigned0 = TYPE_UNSIGNED (inner0);
12832 bool unsigned1 = TYPE_UNSIGNED (inner1);
12834 if (TREE_CODE (op0) == INTEGER_CST)
12835 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
12837 if (TREE_CODE (op1) == INTEGER_CST)
12838 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
12840 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
12841 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
12843 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
12844 ? tree_int_cst_min_precision (op0, UNSIGNED)
12845 : TYPE_PRECISION (inner0);
12847 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
12848 ? tree_int_cst_min_precision (op1, UNSIGNED)
12849 : TYPE_PRECISION (inner1);
12851 return precision0 + precision1 < TYPE_PRECISION (type);
12854 return false;
12856 case BIT_AND_EXPR:
12857 case MAX_EXPR:
12858 return RECURSE (op0) || RECURSE (op1);
12860 case BIT_IOR_EXPR:
12861 case BIT_XOR_EXPR:
12862 case MIN_EXPR:
12863 case RDIV_EXPR:
12864 case TRUNC_DIV_EXPR:
12865 case CEIL_DIV_EXPR:
12866 case FLOOR_DIV_EXPR:
12867 case ROUND_DIV_EXPR:
12868 return RECURSE (op0) && RECURSE (op1);
12870 case TRUNC_MOD_EXPR:
12871 return RECURSE (op0);
12873 case FLOOR_MOD_EXPR:
12874 return RECURSE (op1);
12876 case CEIL_MOD_EXPR:
12877 case ROUND_MOD_EXPR:
12878 default:
12879 return tree_simple_nonnegative_warnv_p (code, type);
12882 /* We don't know sign of `t', so be conservative and return false. */
12883 return false;
12886 /* Return true if T is known to be non-negative. If the return
12887 value is based on the assumption that signed overflow is undefined,
12888 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12889 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12891 bool
12892 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
12894 if (TYPE_UNSIGNED (TREE_TYPE (t)))
12895 return true;
12897 switch (TREE_CODE (t))
12899 case INTEGER_CST:
12900 return tree_int_cst_sgn (t) >= 0;
12902 case REAL_CST:
12903 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
12905 case FIXED_CST:
12906 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
12908 case COND_EXPR:
12909 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
12911 case SSA_NAME:
12912 /* Limit the depth of recursion to avoid quadratic behavior.
12913 This is expected to catch almost all occurrences in practice.
12914 If this code misses important cases that unbounded recursion
12915 would not, passes that need this information could be revised
12916 to provide it through dataflow propagation. */
12917 return (!name_registered_for_update_p (t)
12918 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
12919 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t),
12920 strict_overflow_p, depth));
12922 default:
12923 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
12927 /* Return true if T is known to be non-negative. If the return
12928 value is based on the assumption that signed overflow is undefined,
12929 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12930 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12932 bool
12933 tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1,
12934 bool *strict_overflow_p, int depth)
12936 switch (fn)
12938 CASE_CFN_ACOS:
12939 CASE_CFN_ACOSH:
12940 CASE_CFN_CABS:
12941 CASE_CFN_COSH:
12942 CASE_CFN_ERFC:
12943 CASE_CFN_EXP:
12944 CASE_CFN_EXP10:
12945 CASE_CFN_EXP2:
12946 CASE_CFN_FABS:
12947 CASE_CFN_FDIM:
12948 CASE_CFN_HYPOT:
12949 CASE_CFN_POW10:
12950 CASE_CFN_FFS:
12951 CASE_CFN_PARITY:
12952 CASE_CFN_POPCOUNT:
12953 CASE_CFN_CLZ:
12954 CASE_CFN_CLRSB:
12955 case CFN_BUILT_IN_BSWAP32:
12956 case CFN_BUILT_IN_BSWAP64:
12957 /* Always true. */
12958 return true;
12960 CASE_CFN_SQRT:
12961 /* sqrt(-0.0) is -0.0. */
12962 if (!HONOR_SIGNED_ZEROS (element_mode (type)))
12963 return true;
12964 return RECURSE (arg0);
12966 CASE_CFN_ASINH:
12967 CASE_CFN_ATAN:
12968 CASE_CFN_ATANH:
12969 CASE_CFN_CBRT:
12970 CASE_CFN_CEIL:
12971 CASE_CFN_ERF:
12972 CASE_CFN_EXPM1:
12973 CASE_CFN_FLOOR:
12974 CASE_CFN_FMOD:
12975 CASE_CFN_FREXP:
12976 CASE_CFN_ICEIL:
12977 CASE_CFN_IFLOOR:
12978 CASE_CFN_IRINT:
12979 CASE_CFN_IROUND:
12980 CASE_CFN_LCEIL:
12981 CASE_CFN_LDEXP:
12982 CASE_CFN_LFLOOR:
12983 CASE_CFN_LLCEIL:
12984 CASE_CFN_LLFLOOR:
12985 CASE_CFN_LLRINT:
12986 CASE_CFN_LLROUND:
12987 CASE_CFN_LRINT:
12988 CASE_CFN_LROUND:
12989 CASE_CFN_MODF:
12990 CASE_CFN_NEARBYINT:
12991 CASE_CFN_RINT:
12992 CASE_CFN_ROUND:
12993 CASE_CFN_SCALB:
12994 CASE_CFN_SCALBLN:
12995 CASE_CFN_SCALBN:
12996 CASE_CFN_SIGNBIT:
12997 CASE_CFN_SIGNIFICAND:
12998 CASE_CFN_SINH:
12999 CASE_CFN_TANH:
13000 CASE_CFN_TRUNC:
13001 /* True if the 1st argument is nonnegative. */
13002 return RECURSE (arg0);
13004 CASE_CFN_FMAX:
13005 /* True if the 1st OR 2nd arguments are nonnegative. */
13006 return RECURSE (arg0) || RECURSE (arg1);
13008 CASE_CFN_FMIN:
13009 /* True if the 1st AND 2nd arguments are nonnegative. */
13010 return RECURSE (arg0) && RECURSE (arg1);
13012 CASE_CFN_COPYSIGN:
13013 /* True if the 2nd argument is nonnegative. */
13014 return RECURSE (arg1);
13016 CASE_CFN_POWI:
13017 /* True if the 1st argument is nonnegative or the second
13018 argument is an even integer. */
13019 if (TREE_CODE (arg1) == INTEGER_CST
13020 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
13021 return true;
13022 return RECURSE (arg0);
13024 CASE_CFN_POW:
13025 /* True if the 1st argument is nonnegative or the second
13026 argument is an even integer valued real. */
13027 if (TREE_CODE (arg1) == REAL_CST)
13029 REAL_VALUE_TYPE c;
13030 HOST_WIDE_INT n;
13032 c = TREE_REAL_CST (arg1);
13033 n = real_to_integer (&c);
13034 if ((n & 1) == 0)
13036 REAL_VALUE_TYPE cint;
13037 real_from_integer (&cint, VOIDmode, n, SIGNED);
13038 if (real_identical (&c, &cint))
13039 return true;
13042 return RECURSE (arg0);
13044 default:
13045 break;
13047 return tree_simple_nonnegative_warnv_p (CALL_EXPR, type);
13050 /* Return true if T is known to be non-negative. If the return
13051 value is based on the assumption that signed overflow is undefined,
13052 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13053 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13055 static bool
13056 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13058 enum tree_code code = TREE_CODE (t);
13059 if (TYPE_UNSIGNED (TREE_TYPE (t)))
13060 return true;
13062 switch (code)
13064 case TARGET_EXPR:
13066 tree temp = TARGET_EXPR_SLOT (t);
13067 t = TARGET_EXPR_INITIAL (t);
13069 /* If the initializer is non-void, then it's a normal expression
13070 that will be assigned to the slot. */
13071 if (!VOID_TYPE_P (t))
13072 return RECURSE (t);
13074 /* Otherwise, the initializer sets the slot in some way. One common
13075 way is an assignment statement at the end of the initializer. */
13076 while (1)
13078 if (TREE_CODE (t) == BIND_EXPR)
13079 t = expr_last (BIND_EXPR_BODY (t));
13080 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
13081 || TREE_CODE (t) == TRY_CATCH_EXPR)
13082 t = expr_last (TREE_OPERAND (t, 0));
13083 else if (TREE_CODE (t) == STATEMENT_LIST)
13084 t = expr_last (t);
13085 else
13086 break;
13088 if (TREE_CODE (t) == MODIFY_EXPR
13089 && TREE_OPERAND (t, 0) == temp)
13090 return RECURSE (TREE_OPERAND (t, 1));
13092 return false;
13095 case CALL_EXPR:
13097 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
13098 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
13100 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
13101 get_call_combined_fn (t),
13102 arg0,
13103 arg1,
13104 strict_overflow_p, depth);
13106 case COMPOUND_EXPR:
13107 case MODIFY_EXPR:
13108 return RECURSE (TREE_OPERAND (t, 1));
13110 case BIND_EXPR:
13111 return RECURSE (expr_last (TREE_OPERAND (t, 1)));
13113 case SAVE_EXPR:
13114 return RECURSE (TREE_OPERAND (t, 0));
13116 default:
13117 return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t));
13121 #undef RECURSE
13122 #undef tree_expr_nonnegative_warnv_p
13124 /* Return true if T is known to be non-negative. If the return
13125 value is based on the assumption that signed overflow is undefined,
13126 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13127 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13129 bool
13130 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth)
13132 enum tree_code code;
13133 if (t == error_mark_node)
13134 return false;
13136 code = TREE_CODE (t);
13137 switch (TREE_CODE_CLASS (code))
13139 case tcc_binary:
13140 case tcc_comparison:
13141 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13142 TREE_TYPE (t),
13143 TREE_OPERAND (t, 0),
13144 TREE_OPERAND (t, 1),
13145 strict_overflow_p, depth);
13147 case tcc_unary:
13148 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13149 TREE_TYPE (t),
13150 TREE_OPERAND (t, 0),
13151 strict_overflow_p, depth);
13153 case tcc_constant:
13154 case tcc_declaration:
13155 case tcc_reference:
13156 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13158 default:
13159 break;
13162 switch (code)
13164 case TRUTH_AND_EXPR:
13165 case TRUTH_OR_EXPR:
13166 case TRUTH_XOR_EXPR:
13167 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
13168 TREE_TYPE (t),
13169 TREE_OPERAND (t, 0),
13170 TREE_OPERAND (t, 1),
13171 strict_overflow_p, depth);
13172 case TRUTH_NOT_EXPR:
13173 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
13174 TREE_TYPE (t),
13175 TREE_OPERAND (t, 0),
13176 strict_overflow_p, depth);
13178 case COND_EXPR:
13179 case CONSTRUCTOR:
13180 case OBJ_TYPE_REF:
13181 case ASSERT_EXPR:
13182 case ADDR_EXPR:
13183 case WITH_SIZE_EXPR:
13184 case SSA_NAME:
13185 return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth);
13187 default:
13188 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth);
13192 /* Return true if `t' is known to be non-negative. Handle warnings
13193 about undefined signed overflow. */
13195 bool
13196 tree_expr_nonnegative_p (tree t)
13198 bool ret, strict_overflow_p;
13200 strict_overflow_p = false;
13201 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
13202 if (strict_overflow_p)
13203 fold_overflow_warning (("assuming signed overflow does not occur when "
13204 "determining that expression is always "
13205 "non-negative"),
13206 WARN_STRICT_OVERFLOW_MISC);
13207 return ret;
13211 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13212 For floating point we further ensure that T is not denormal.
13213 Similar logic is present in nonzero_address in rtlanal.h.
13215 If the return value is based on the assumption that signed overflow
13216 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13217 change *STRICT_OVERFLOW_P. */
13219 bool
13220 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
13221 bool *strict_overflow_p)
13223 switch (code)
13225 case ABS_EXPR:
13226 return tree_expr_nonzero_warnv_p (op0,
13227 strict_overflow_p);
13229 case NOP_EXPR:
13231 tree inner_type = TREE_TYPE (op0);
13232 tree outer_type = type;
13234 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
13235 && tree_expr_nonzero_warnv_p (op0,
13236 strict_overflow_p));
13238 break;
13240 case NON_LVALUE_EXPR:
13241 return tree_expr_nonzero_warnv_p (op0,
13242 strict_overflow_p);
13244 default:
13245 break;
13248 return false;
13251 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13252 For floating point we further ensure that T is not denormal.
13253 Similar logic is present in nonzero_address in rtlanal.h.
13255 If the return value is based on the assumption that signed overflow
13256 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13257 change *STRICT_OVERFLOW_P. */
13259 bool
13260 tree_binary_nonzero_warnv_p (enum tree_code code,
13261 tree type,
13262 tree op0,
13263 tree op1, bool *strict_overflow_p)
13265 bool sub_strict_overflow_p;
13266 switch (code)
13268 case POINTER_PLUS_EXPR:
13269 case PLUS_EXPR:
13270 if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type))
13272 /* With the presence of negative values it is hard
13273 to say something. */
13274 sub_strict_overflow_p = false;
13275 if (!tree_expr_nonnegative_warnv_p (op0,
13276 &sub_strict_overflow_p)
13277 || !tree_expr_nonnegative_warnv_p (op1,
13278 &sub_strict_overflow_p))
13279 return false;
13280 /* One of operands must be positive and the other non-negative. */
13281 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13282 overflows, on a twos-complement machine the sum of two
13283 nonnegative numbers can never be zero. */
13284 return (tree_expr_nonzero_warnv_p (op0,
13285 strict_overflow_p)
13286 || tree_expr_nonzero_warnv_p (op1,
13287 strict_overflow_p));
13289 break;
13291 case MULT_EXPR:
13292 if (TYPE_OVERFLOW_UNDEFINED (type))
13294 if (tree_expr_nonzero_warnv_p (op0,
13295 strict_overflow_p)
13296 && tree_expr_nonzero_warnv_p (op1,
13297 strict_overflow_p))
13299 *strict_overflow_p = true;
13300 return true;
13303 break;
13305 case MIN_EXPR:
13306 sub_strict_overflow_p = false;
13307 if (tree_expr_nonzero_warnv_p (op0,
13308 &sub_strict_overflow_p)
13309 && tree_expr_nonzero_warnv_p (op1,
13310 &sub_strict_overflow_p))
13312 if (sub_strict_overflow_p)
13313 *strict_overflow_p = true;
13315 break;
13317 case MAX_EXPR:
13318 sub_strict_overflow_p = false;
13319 if (tree_expr_nonzero_warnv_p (op0,
13320 &sub_strict_overflow_p))
13322 if (sub_strict_overflow_p)
13323 *strict_overflow_p = true;
13325 /* When both operands are nonzero, then MAX must be too. */
13326 if (tree_expr_nonzero_warnv_p (op1,
13327 strict_overflow_p))
13328 return true;
13330 /* MAX where operand 0 is positive is positive. */
13331 return tree_expr_nonnegative_warnv_p (op0,
13332 strict_overflow_p);
13334 /* MAX where operand 1 is positive is positive. */
13335 else if (tree_expr_nonzero_warnv_p (op1,
13336 &sub_strict_overflow_p)
13337 && tree_expr_nonnegative_warnv_p (op1,
13338 &sub_strict_overflow_p))
13340 if (sub_strict_overflow_p)
13341 *strict_overflow_p = true;
13342 return true;
13344 break;
13346 case BIT_IOR_EXPR:
13347 return (tree_expr_nonzero_warnv_p (op1,
13348 strict_overflow_p)
13349 || tree_expr_nonzero_warnv_p (op0,
13350 strict_overflow_p));
13352 default:
13353 break;
13356 return false;
13359 /* Return true when T is an address and is known to be nonzero.
13360 For floating point we further ensure that T is not denormal.
13361 Similar logic is present in nonzero_address in rtlanal.h.
13363 If the return value is based on the assumption that signed overflow
13364 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13365 change *STRICT_OVERFLOW_P. */
13367 bool
13368 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
13370 bool sub_strict_overflow_p;
13371 switch (TREE_CODE (t))
13373 case INTEGER_CST:
13374 return !integer_zerop (t);
13376 case ADDR_EXPR:
13378 tree base = TREE_OPERAND (t, 0);
13380 if (!DECL_P (base))
13381 base = get_base_address (base);
13383 if (base && TREE_CODE (base) == TARGET_EXPR)
13384 base = TARGET_EXPR_SLOT (base);
13386 if (!base)
13387 return false;
13389 /* For objects in symbol table check if we know they are non-zero.
13390 Don't do anything for variables and functions before symtab is built;
13391 it is quite possible that they will be declared weak later. */
13392 int nonzero_addr = maybe_nonzero_address (base);
13393 if (nonzero_addr >= 0)
13394 return nonzero_addr;
13396 /* Function local objects are never NULL. */
13397 if (DECL_P (base)
13398 && (DECL_CONTEXT (base)
13399 && TREE_CODE (DECL_CONTEXT (base)) == FUNCTION_DECL
13400 && auto_var_in_fn_p (base, DECL_CONTEXT (base))))
13401 return true;
13403 /* Constants are never weak. */
13404 if (CONSTANT_CLASS_P (base))
13405 return true;
13407 return false;
13410 case COND_EXPR:
13411 sub_strict_overflow_p = false;
13412 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
13413 &sub_strict_overflow_p)
13414 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
13415 &sub_strict_overflow_p))
13417 if (sub_strict_overflow_p)
13418 *strict_overflow_p = true;
13419 return true;
13421 break;
13423 default:
13424 break;
13426 return false;
13429 #define integer_valued_real_p(X) \
13430 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13432 #define RECURSE(X) \
13433 ((integer_valued_real_p) (X, depth + 1))
13435 /* Return true if the floating point result of (CODE OP0) has an
13436 integer value. We also allow +Inf, -Inf and NaN to be considered
13437 integer values. Return false for signaling NaN.
13439 DEPTH is the current nesting depth of the query. */
13441 bool
13442 integer_valued_real_unary_p (tree_code code, tree op0, int depth)
13444 switch (code)
13446 case FLOAT_EXPR:
13447 return true;
13449 case ABS_EXPR:
13450 return RECURSE (op0);
13452 CASE_CONVERT:
13454 tree type = TREE_TYPE (op0);
13455 if (TREE_CODE (type) == INTEGER_TYPE)
13456 return true;
13457 if (TREE_CODE (type) == REAL_TYPE)
13458 return RECURSE (op0);
13459 break;
13462 default:
13463 break;
13465 return false;
13468 /* Return true if the floating point result of (CODE OP0 OP1) has an
13469 integer value. We also allow +Inf, -Inf and NaN to be considered
13470 integer values. Return false for signaling NaN.
13472 DEPTH is the current nesting depth of the query. */
13474 bool
13475 integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth)
13477 switch (code)
13479 case PLUS_EXPR:
13480 case MINUS_EXPR:
13481 case MULT_EXPR:
13482 case MIN_EXPR:
13483 case MAX_EXPR:
13484 return RECURSE (op0) && RECURSE (op1);
13486 default:
13487 break;
13489 return false;
13492 /* Return true if the floating point result of calling FNDECL with arguments
13493 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13494 considered integer values. Return false for signaling NaN. If FNDECL
13495 takes fewer than 2 arguments, the remaining ARGn are null.
13497 DEPTH is the current nesting depth of the query. */
13499 bool
13500 integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth)
13502 switch (fn)
13504 CASE_CFN_CEIL:
13505 CASE_CFN_FLOOR:
13506 CASE_CFN_NEARBYINT:
13507 CASE_CFN_RINT:
13508 CASE_CFN_ROUND:
13509 CASE_CFN_TRUNC:
13510 return true;
13512 CASE_CFN_FMIN:
13513 CASE_CFN_FMAX:
13514 return RECURSE (arg0) && RECURSE (arg1);
13516 default:
13517 break;
13519 return false;
13522 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13523 has an integer value. We also allow +Inf, -Inf and NaN to be
13524 considered integer values. Return false for signaling NaN.
13526 DEPTH is the current nesting depth of the query. */
13528 bool
13529 integer_valued_real_single_p (tree t, int depth)
13531 switch (TREE_CODE (t))
13533 case REAL_CST:
13534 return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t)));
13536 case COND_EXPR:
13537 return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2));
13539 case SSA_NAME:
13540 /* Limit the depth of recursion to avoid quadratic behavior.
13541 This is expected to catch almost all occurrences in practice.
13542 If this code misses important cases that unbounded recursion
13543 would not, passes that need this information could be revised
13544 to provide it through dataflow propagation. */
13545 return (!name_registered_for_update_p (t)
13546 && depth < PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH)
13547 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t),
13548 depth));
13550 default:
13551 break;
13553 return false;
13556 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13557 has an integer value. We also allow +Inf, -Inf and NaN to be
13558 considered integer values. Return false for signaling NaN.
13560 DEPTH is the current nesting depth of the query. */
13562 static bool
13563 integer_valued_real_invalid_p (tree t, int depth)
13565 switch (TREE_CODE (t))
13567 case COMPOUND_EXPR:
13568 case MODIFY_EXPR:
13569 case BIND_EXPR:
13570 return RECURSE (TREE_OPERAND (t, 1));
13572 case SAVE_EXPR:
13573 return RECURSE (TREE_OPERAND (t, 0));
13575 default:
13576 break;
13578 return false;
13581 #undef RECURSE
13582 #undef integer_valued_real_p
13584 /* Return true if the floating point expression T has an integer value.
13585 We also allow +Inf, -Inf and NaN to be considered integer values.
13586 Return false for signaling NaN.
13588 DEPTH is the current nesting depth of the query. */
13590 bool
13591 integer_valued_real_p (tree t, int depth)
13593 if (t == error_mark_node)
13594 return false;
13596 tree_code code = TREE_CODE (t);
13597 switch (TREE_CODE_CLASS (code))
13599 case tcc_binary:
13600 case tcc_comparison:
13601 return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0),
13602 TREE_OPERAND (t, 1), depth);
13604 case tcc_unary:
13605 return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth);
13607 case tcc_constant:
13608 case tcc_declaration:
13609 case tcc_reference:
13610 return integer_valued_real_single_p (t, depth);
13612 default:
13613 break;
13616 switch (code)
13618 case COND_EXPR:
13619 case SSA_NAME:
13620 return integer_valued_real_single_p (t, depth);
13622 case CALL_EXPR:
13624 tree arg0 = (call_expr_nargs (t) > 0
13625 ? CALL_EXPR_ARG (t, 0)
13626 : NULL_TREE);
13627 tree arg1 = (call_expr_nargs (t) > 1
13628 ? CALL_EXPR_ARG (t, 1)
13629 : NULL_TREE);
13630 return integer_valued_real_call_p (get_call_combined_fn (t),
13631 arg0, arg1, depth);
13634 default:
13635 return integer_valued_real_invalid_p (t, depth);
13639 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13640 attempt to fold the expression to a constant without modifying TYPE,
13641 OP0 or OP1.
13643 If the expression could be simplified to a constant, then return
13644 the constant. If the expression would not be simplified to a
13645 constant, then return NULL_TREE. */
13647 tree
13648 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
13650 tree tem = fold_binary (code, type, op0, op1);
13651 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13654 /* Given the components of a unary expression CODE, TYPE and OP0,
13655 attempt to fold the expression to a constant without modifying
13656 TYPE or OP0.
13658 If the expression could be simplified to a constant, then return
13659 the constant. If the expression would not be simplified to a
13660 constant, then return NULL_TREE. */
13662 tree
13663 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
13665 tree tem = fold_unary (code, type, op0);
13666 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
13669 /* If EXP represents referencing an element in a constant string
13670 (either via pointer arithmetic or array indexing), return the
13671 tree representing the value accessed, otherwise return NULL. */
13673 tree
13674 fold_read_from_constant_string (tree exp)
13676 if ((TREE_CODE (exp) == INDIRECT_REF
13677 || TREE_CODE (exp) == ARRAY_REF)
13678 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
13680 tree exp1 = TREE_OPERAND (exp, 0);
13681 tree index;
13682 tree string;
13683 location_t loc = EXPR_LOCATION (exp);
13685 if (TREE_CODE (exp) == INDIRECT_REF)
13686 string = string_constant (exp1, &index);
13687 else
13689 tree low_bound = array_ref_low_bound (exp);
13690 index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1));
13692 /* Optimize the special-case of a zero lower bound.
13694 We convert the low_bound to sizetype to avoid some problems
13695 with constant folding. (E.g. suppose the lower bound is 1,
13696 and its mode is QI. Without the conversion,l (ARRAY
13697 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13698 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13699 if (! integer_zerop (low_bound))
13700 index = size_diffop_loc (loc, index,
13701 fold_convert_loc (loc, sizetype, low_bound));
13703 string = exp1;
13706 if (string
13707 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
13708 && TREE_CODE (string) == STRING_CST
13709 && TREE_CODE (index) == INTEGER_CST
13710 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
13711 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
13712 == MODE_INT)
13713 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
13714 return build_int_cst_type (TREE_TYPE (exp),
13715 (TREE_STRING_POINTER (string)
13716 [TREE_INT_CST_LOW (index)]));
13718 return NULL;
13721 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13722 an integer constant, real, or fixed-point constant.
13724 TYPE is the type of the result. */
13726 static tree
13727 fold_negate_const (tree arg0, tree type)
13729 tree t = NULL_TREE;
13731 switch (TREE_CODE (arg0))
13733 case INTEGER_CST:
13735 bool overflow;
13736 wide_int val = wi::neg (arg0, &overflow);
13737 t = force_fit_type (type, val, 1,
13738 (overflow | TREE_OVERFLOW (arg0))
13739 && !TYPE_UNSIGNED (type));
13740 break;
13743 case REAL_CST:
13744 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13745 break;
13747 case FIXED_CST:
13749 FIXED_VALUE_TYPE f;
13750 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
13751 &(TREE_FIXED_CST (arg0)), NULL,
13752 TYPE_SATURATING (type));
13753 t = build_fixed (type, f);
13754 /* Propagate overflow flags. */
13755 if (overflow_p | TREE_OVERFLOW (arg0))
13756 TREE_OVERFLOW (t) = 1;
13757 break;
13760 default:
13761 gcc_unreachable ();
13764 return t;
13767 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13768 an integer constant or real constant.
13770 TYPE is the type of the result. */
13772 tree
13773 fold_abs_const (tree arg0, tree type)
13775 tree t = NULL_TREE;
13777 switch (TREE_CODE (arg0))
13779 case INTEGER_CST:
13781 /* If the value is unsigned or non-negative, then the absolute value
13782 is the same as the ordinary value. */
13783 if (!wi::neg_p (arg0, TYPE_SIGN (type)))
13784 t = arg0;
13786 /* If the value is negative, then the absolute value is
13787 its negation. */
13788 else
13790 bool overflow;
13791 wide_int val = wi::neg (arg0, &overflow);
13792 t = force_fit_type (type, val, -1,
13793 overflow | TREE_OVERFLOW (arg0));
13796 break;
13798 case REAL_CST:
13799 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
13800 t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0)));
13801 else
13802 t = arg0;
13803 break;
13805 default:
13806 gcc_unreachable ();
13809 return t;
13812 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13813 constant. TYPE is the type of the result. */
13815 static tree
13816 fold_not_const (const_tree arg0, tree type)
13818 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
13820 return force_fit_type (type, wi::bit_not (arg0), 0, TREE_OVERFLOW (arg0));
13823 /* Given CODE, a relational operator, the target type, TYPE and two
13824 constant operands OP0 and OP1, return the result of the
13825 relational operation. If the result is not a compile time
13826 constant, then return NULL_TREE. */
13828 static tree
13829 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
13831 int result, invert;
13833 /* From here on, the only cases we handle are when the result is
13834 known to be a constant. */
13836 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
13838 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
13839 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
13841 /* Handle the cases where either operand is a NaN. */
13842 if (real_isnan (c0) || real_isnan (c1))
13844 switch (code)
13846 case EQ_EXPR:
13847 case ORDERED_EXPR:
13848 result = 0;
13849 break;
13851 case NE_EXPR:
13852 case UNORDERED_EXPR:
13853 case UNLT_EXPR:
13854 case UNLE_EXPR:
13855 case UNGT_EXPR:
13856 case UNGE_EXPR:
13857 case UNEQ_EXPR:
13858 result = 1;
13859 break;
13861 case LT_EXPR:
13862 case LE_EXPR:
13863 case GT_EXPR:
13864 case GE_EXPR:
13865 case LTGT_EXPR:
13866 if (flag_trapping_math)
13867 return NULL_TREE;
13868 result = 0;
13869 break;
13871 default:
13872 gcc_unreachable ();
13875 return constant_boolean_node (result, type);
13878 return constant_boolean_node (real_compare (code, c0, c1), type);
13881 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
13883 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
13884 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
13885 return constant_boolean_node (fixed_compare (code, c0, c1), type);
13888 /* Handle equality/inequality of complex constants. */
13889 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
13891 tree rcond = fold_relational_const (code, type,
13892 TREE_REALPART (op0),
13893 TREE_REALPART (op1));
13894 tree icond = fold_relational_const (code, type,
13895 TREE_IMAGPART (op0),
13896 TREE_IMAGPART (op1));
13897 if (code == EQ_EXPR)
13898 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
13899 else if (code == NE_EXPR)
13900 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
13901 else
13902 return NULL_TREE;
13905 if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST)
13907 if (!VECTOR_TYPE_P (type))
13909 /* Have vector comparison with scalar boolean result. */
13910 gcc_assert ((code == EQ_EXPR || code == NE_EXPR)
13911 && VECTOR_CST_NELTS (op0) == VECTOR_CST_NELTS (op1));
13912 for (unsigned i = 0; i < VECTOR_CST_NELTS (op0); i++)
13914 tree elem0 = VECTOR_CST_ELT (op0, i);
13915 tree elem1 = VECTOR_CST_ELT (op1, i);
13916 tree tmp = fold_relational_const (code, type, elem0, elem1);
13917 if (tmp == NULL_TREE)
13918 return NULL_TREE;
13919 if (integer_zerop (tmp))
13920 return constant_boolean_node (false, type);
13922 return constant_boolean_node (true, type);
13924 unsigned count = VECTOR_CST_NELTS (op0);
13925 tree *elts = XALLOCAVEC (tree, count);
13926 gcc_assert (VECTOR_CST_NELTS (op1) == count
13927 && TYPE_VECTOR_SUBPARTS (type) == count);
13929 for (unsigned i = 0; i < count; i++)
13931 tree elem_type = TREE_TYPE (type);
13932 tree elem0 = VECTOR_CST_ELT (op0, i);
13933 tree elem1 = VECTOR_CST_ELT (op1, i);
13935 tree tem = fold_relational_const (code, elem_type,
13936 elem0, elem1);
13938 if (tem == NULL_TREE)
13939 return NULL_TREE;
13941 elts[i] = build_int_cst (elem_type, integer_zerop (tem) ? 0 : -1);
13944 return build_vector (type, elts);
13947 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
13949 To compute GT, swap the arguments and do LT.
13950 To compute GE, do LT and invert the result.
13951 To compute LE, swap the arguments, do LT and invert the result.
13952 To compute NE, do EQ and invert the result.
13954 Therefore, the code below must handle only EQ and LT. */
13956 if (code == LE_EXPR || code == GT_EXPR)
13958 std::swap (op0, op1);
13959 code = swap_tree_comparison (code);
13962 /* Note that it is safe to invert for real values here because we
13963 have already handled the one case that it matters. */
13965 invert = 0;
13966 if (code == NE_EXPR || code == GE_EXPR)
13968 invert = 1;
13969 code = invert_tree_comparison (code, false);
13972 /* Compute a result for LT or EQ if args permit;
13973 Otherwise return T. */
13974 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
13976 if (code == EQ_EXPR)
13977 result = tree_int_cst_equal (op0, op1);
13978 else
13979 result = tree_int_cst_lt (op0, op1);
13981 else
13982 return NULL_TREE;
13984 if (invert)
13985 result ^= 1;
13986 return constant_boolean_node (result, type);
13989 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
13990 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
13991 itself. */
13993 tree
13994 fold_build_cleanup_point_expr (tree type, tree expr)
13996 /* If the expression does not have side effects then we don't have to wrap
13997 it with a cleanup point expression. */
13998 if (!TREE_SIDE_EFFECTS (expr))
13999 return expr;
14001 /* If the expression is a return, check to see if the expression inside the
14002 return has no side effects or the right hand side of the modify expression
14003 inside the return. If either don't have side effects set we don't need to
14004 wrap the expression in a cleanup point expression. Note we don't check the
14005 left hand side of the modify because it should always be a return decl. */
14006 if (TREE_CODE (expr) == RETURN_EXPR)
14008 tree op = TREE_OPERAND (expr, 0);
14009 if (!op || !TREE_SIDE_EFFECTS (op))
14010 return expr;
14011 op = TREE_OPERAND (op, 1);
14012 if (!TREE_SIDE_EFFECTS (op))
14013 return expr;
14016 return build1 (CLEANUP_POINT_EXPR, type, expr);
14019 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14020 of an indirection through OP0, or NULL_TREE if no simplification is
14021 possible. */
14023 tree
14024 fold_indirect_ref_1 (location_t loc, tree type, tree op0)
14026 tree sub = op0;
14027 tree subtype;
14029 STRIP_NOPS (sub);
14030 subtype = TREE_TYPE (sub);
14031 if (!POINTER_TYPE_P (subtype))
14032 return NULL_TREE;
14034 if (TREE_CODE (sub) == ADDR_EXPR)
14036 tree op = TREE_OPERAND (sub, 0);
14037 tree optype = TREE_TYPE (op);
14038 /* *&CONST_DECL -> to the value of the const decl. */
14039 if (TREE_CODE (op) == CONST_DECL)
14040 return DECL_INITIAL (op);
14041 /* *&p => p; make sure to handle *&"str"[cst] here. */
14042 if (type == optype)
14044 tree fop = fold_read_from_constant_string (op);
14045 if (fop)
14046 return fop;
14047 else
14048 return op;
14050 /* *(foo *)&fooarray => fooarray[0] */
14051 else if (TREE_CODE (optype) == ARRAY_TYPE
14052 && type == TREE_TYPE (optype)
14053 && (!in_gimple_form
14054 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14056 tree type_domain = TYPE_DOMAIN (optype);
14057 tree min_val = size_zero_node;
14058 if (type_domain && TYPE_MIN_VALUE (type_domain))
14059 min_val = TYPE_MIN_VALUE (type_domain);
14060 if (in_gimple_form
14061 && TREE_CODE (min_val) != INTEGER_CST)
14062 return NULL_TREE;
14063 return build4_loc (loc, ARRAY_REF, type, op, min_val,
14064 NULL_TREE, NULL_TREE);
14066 /* *(foo *)&complexfoo => __real__ complexfoo */
14067 else if (TREE_CODE (optype) == COMPLEX_TYPE
14068 && type == TREE_TYPE (optype))
14069 return fold_build1_loc (loc, REALPART_EXPR, type, op);
14070 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14071 else if (TREE_CODE (optype) == VECTOR_TYPE
14072 && type == TREE_TYPE (optype))
14074 tree part_width = TYPE_SIZE (type);
14075 tree index = bitsize_int (0);
14076 return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, index);
14080 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
14081 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
14083 tree op00 = TREE_OPERAND (sub, 0);
14084 tree op01 = TREE_OPERAND (sub, 1);
14086 STRIP_NOPS (op00);
14087 if (TREE_CODE (op00) == ADDR_EXPR)
14089 tree op00type;
14090 op00 = TREE_OPERAND (op00, 0);
14091 op00type = TREE_TYPE (op00);
14093 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14094 if (TREE_CODE (op00type) == VECTOR_TYPE
14095 && type == TREE_TYPE (op00type))
14097 tree part_width = TYPE_SIZE (type);
14098 unsigned HOST_WIDE_INT max_offset
14099 = (tree_to_uhwi (part_width) / BITS_PER_UNIT
14100 * TYPE_VECTOR_SUBPARTS (op00type));
14101 if (tree_int_cst_sign_bit (op01) == 0
14102 && compare_tree_int (op01, max_offset) == -1)
14104 unsigned HOST_WIDE_INT offset = tree_to_uhwi (op01);
14105 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
14106 tree index = bitsize_int (indexi);
14107 return fold_build3_loc (loc,
14108 BIT_FIELD_REF, type, op00,
14109 part_width, index);
14112 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14113 else if (TREE_CODE (op00type) == COMPLEX_TYPE
14114 && type == TREE_TYPE (op00type))
14116 tree size = TYPE_SIZE_UNIT (type);
14117 if (tree_int_cst_equal (size, op01))
14118 return fold_build1_loc (loc, IMAGPART_EXPR, type, op00);
14120 /* ((foo *)&fooarray)[1] => fooarray[1] */
14121 else if (TREE_CODE (op00type) == ARRAY_TYPE
14122 && type == TREE_TYPE (op00type))
14124 tree type_domain = TYPE_DOMAIN (op00type);
14125 tree min_val = size_zero_node;
14126 if (type_domain && TYPE_MIN_VALUE (type_domain))
14127 min_val = TYPE_MIN_VALUE (type_domain);
14128 op01 = size_binop_loc (loc, EXACT_DIV_EXPR, op01,
14129 TYPE_SIZE_UNIT (type));
14130 op01 = size_binop_loc (loc, PLUS_EXPR, op01, min_val);
14131 return build4_loc (loc, ARRAY_REF, type, op00, op01,
14132 NULL_TREE, NULL_TREE);
14137 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14138 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
14139 && type == TREE_TYPE (TREE_TYPE (subtype))
14140 && (!in_gimple_form
14141 || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST))
14143 tree type_domain;
14144 tree min_val = size_zero_node;
14145 sub = build_fold_indirect_ref_loc (loc, sub);
14146 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
14147 if (type_domain && TYPE_MIN_VALUE (type_domain))
14148 min_val = TYPE_MIN_VALUE (type_domain);
14149 if (in_gimple_form
14150 && TREE_CODE (min_val) != INTEGER_CST)
14151 return NULL_TREE;
14152 return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE,
14153 NULL_TREE);
14156 return NULL_TREE;
14159 /* Builds an expression for an indirection through T, simplifying some
14160 cases. */
14162 tree
14163 build_fold_indirect_ref_loc (location_t loc, tree t)
14165 tree type = TREE_TYPE (TREE_TYPE (t));
14166 tree sub = fold_indirect_ref_1 (loc, type, t);
14168 if (sub)
14169 return sub;
14171 return build1_loc (loc, INDIRECT_REF, type, t);
14174 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14176 tree
14177 fold_indirect_ref_loc (location_t loc, tree t)
14179 tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0));
14181 if (sub)
14182 return sub;
14183 else
14184 return t;
14187 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14188 whose result is ignored. The type of the returned tree need not be
14189 the same as the original expression. */
14191 tree
14192 fold_ignored_result (tree t)
14194 if (!TREE_SIDE_EFFECTS (t))
14195 return integer_zero_node;
14197 for (;;)
14198 switch (TREE_CODE_CLASS (TREE_CODE (t)))
14200 case tcc_unary:
14201 t = TREE_OPERAND (t, 0);
14202 break;
14204 case tcc_binary:
14205 case tcc_comparison:
14206 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14207 t = TREE_OPERAND (t, 0);
14208 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
14209 t = TREE_OPERAND (t, 1);
14210 else
14211 return t;
14212 break;
14214 case tcc_expression:
14215 switch (TREE_CODE (t))
14217 case COMPOUND_EXPR:
14218 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
14219 return t;
14220 t = TREE_OPERAND (t, 0);
14221 break;
14223 case COND_EXPR:
14224 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
14225 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
14226 return t;
14227 t = TREE_OPERAND (t, 0);
14228 break;
14230 default:
14231 return t;
14233 break;
14235 default:
14236 return t;
14240 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14242 tree
14243 round_up_loc (location_t loc, tree value, unsigned int divisor)
14245 tree div = NULL_TREE;
14247 if (divisor == 1)
14248 return value;
14250 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14251 have to do anything. Only do this when we are not given a const,
14252 because in that case, this check is more expensive than just
14253 doing it. */
14254 if (TREE_CODE (value) != INTEGER_CST)
14256 div = build_int_cst (TREE_TYPE (value), divisor);
14258 if (multiple_of_p (TREE_TYPE (value), value, div))
14259 return value;
14262 /* If divisor is a power of two, simplify this to bit manipulation. */
14263 if (pow2_or_zerop (divisor))
14265 if (TREE_CODE (value) == INTEGER_CST)
14267 wide_int val = value;
14268 bool overflow_p;
14270 if ((val & (divisor - 1)) == 0)
14271 return value;
14273 overflow_p = TREE_OVERFLOW (value);
14274 val += divisor - 1;
14275 val &= - (int) divisor;
14276 if (val == 0)
14277 overflow_p = true;
14279 return force_fit_type (TREE_TYPE (value), val, -1, overflow_p);
14281 else
14283 tree t;
14285 t = build_int_cst (TREE_TYPE (value), divisor - 1);
14286 value = size_binop_loc (loc, PLUS_EXPR, value, t);
14287 t = build_int_cst (TREE_TYPE (value), - (int) divisor);
14288 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14291 else
14293 if (!div)
14294 div = build_int_cst (TREE_TYPE (value), divisor);
14295 value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div);
14296 value = size_binop_loc (loc, MULT_EXPR, value, div);
14299 return value;
14302 /* Likewise, but round down. */
14304 tree
14305 round_down_loc (location_t loc, tree value, int divisor)
14307 tree div = NULL_TREE;
14309 gcc_assert (divisor > 0);
14310 if (divisor == 1)
14311 return value;
14313 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14314 have to do anything. Only do this when we are not given a const,
14315 because in that case, this check is more expensive than just
14316 doing it. */
14317 if (TREE_CODE (value) != INTEGER_CST)
14319 div = build_int_cst (TREE_TYPE (value), divisor);
14321 if (multiple_of_p (TREE_TYPE (value), value, div))
14322 return value;
14325 /* If divisor is a power of two, simplify this to bit manipulation. */
14326 if (pow2_or_zerop (divisor))
14328 tree t;
14330 t = build_int_cst (TREE_TYPE (value), -divisor);
14331 value = size_binop_loc (loc, BIT_AND_EXPR, value, t);
14333 else
14335 if (!div)
14336 div = build_int_cst (TREE_TYPE (value), divisor);
14337 value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div);
14338 value = size_binop_loc (loc, MULT_EXPR, value, div);
14341 return value;
14344 /* Returns the pointer to the base of the object addressed by EXP and
14345 extracts the information about the offset of the access, storing it
14346 to PBITPOS and POFFSET. */
14348 static tree
14349 split_address_to_core_and_offset (tree exp,
14350 HOST_WIDE_INT *pbitpos, tree *poffset)
14352 tree core;
14353 machine_mode mode;
14354 int unsignedp, reversep, volatilep;
14355 HOST_WIDE_INT bitsize;
14356 location_t loc = EXPR_LOCATION (exp);
14358 if (TREE_CODE (exp) == ADDR_EXPR)
14360 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
14361 poffset, &mode, &unsignedp, &reversep,
14362 &volatilep);
14363 core = build_fold_addr_expr_loc (loc, core);
14365 else
14367 core = exp;
14368 *pbitpos = 0;
14369 *poffset = NULL_TREE;
14372 return core;
14375 /* Returns true if addresses of E1 and E2 differ by a constant, false
14376 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14378 bool
14379 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
14381 tree core1, core2;
14382 HOST_WIDE_INT bitpos1, bitpos2;
14383 tree toffset1, toffset2, tdiff, type;
14385 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
14386 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
14388 if (bitpos1 % BITS_PER_UNIT != 0
14389 || bitpos2 % BITS_PER_UNIT != 0
14390 || !operand_equal_p (core1, core2, 0))
14391 return false;
14393 if (toffset1 && toffset2)
14395 type = TREE_TYPE (toffset1);
14396 if (type != TREE_TYPE (toffset2))
14397 toffset2 = fold_convert (type, toffset2);
14399 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
14400 if (!cst_and_fits_in_hwi (tdiff))
14401 return false;
14403 *diff = int_cst_value (tdiff);
14405 else if (toffset1 || toffset2)
14407 /* If only one of the offsets is non-constant, the difference cannot
14408 be a constant. */
14409 return false;
14411 else
14412 *diff = 0;
14414 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
14415 return true;
14418 /* Return OFF converted to a pointer offset type suitable as offset for
14419 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14420 tree
14421 convert_to_ptrofftype_loc (location_t loc, tree off)
14423 return fold_convert_loc (loc, sizetype, off);
14426 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14427 tree
14428 fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off)
14430 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14431 ptr, convert_to_ptrofftype_loc (loc, off));
14434 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14435 tree
14436 fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off)
14438 return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr),
14439 ptr, size_int (off));
14442 /* Return a char pointer for a C string if it is a string constant
14443 or sum of string constant and integer constant. */
14445 const char *
14446 c_getstr (tree src)
14448 tree offset_node;
14450 src = string_constant (src, &offset_node);
14451 if (src == 0)
14452 return 0;
14454 if (offset_node == 0)
14455 return TREE_STRING_POINTER (src);
14456 else if (!tree_fits_uhwi_p (offset_node)
14457 || compare_tree_int (offset_node, TREE_STRING_LENGTH (src) - 1) > 0)
14458 return 0;
14460 return TREE_STRING_POINTER (src) + tree_to_uhwi (offset_node);
14463 #if CHECKING_P
14465 namespace selftest {
14467 /* Helper functions for writing tests of folding trees. */
14469 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14471 static void
14472 assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs,
14473 tree constant)
14475 ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs));
14478 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14479 wrapping WRAPPED_EXPR. */
14481 static void
14482 assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs,
14483 tree wrapped_expr)
14485 tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs);
14486 ASSERT_NE (wrapped_expr, result);
14487 ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result));
14488 ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0));
14491 /* Verify that various arithmetic binary operations are folded
14492 correctly. */
14494 static void
14495 test_arithmetic_folding ()
14497 tree type = integer_type_node;
14498 tree x = create_tmp_var_raw (type, "x");
14499 tree zero = build_zero_cst (type);
14500 tree one = build_int_cst (type, 1);
14502 /* Addition. */
14503 /* 1 <-- (0 + 1) */
14504 assert_binop_folds_to_const (zero, PLUS_EXPR, one,
14505 one);
14506 assert_binop_folds_to_const (one, PLUS_EXPR, zero,
14507 one);
14509 /* (nonlvalue)x <-- (x + 0) */
14510 assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero,
14513 /* Subtraction. */
14514 /* 0 <-- (x - x) */
14515 assert_binop_folds_to_const (x, MINUS_EXPR, x,
14516 zero);
14517 assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero,
14520 /* Multiplication. */
14521 /* 0 <-- (x * 0) */
14522 assert_binop_folds_to_const (x, MULT_EXPR, zero,
14523 zero);
14525 /* (nonlvalue)x <-- (x * 1) */
14526 assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one,
14530 /* Verify that various binary operations on vectors are folded
14531 correctly. */
14533 static void
14534 test_vector_folding ()
14536 tree inner_type = integer_type_node;
14537 tree type = build_vector_type (inner_type, 4);
14538 tree zero = build_zero_cst (type);
14539 tree one = build_one_cst (type);
14541 /* Verify equality tests that return a scalar boolean result. */
14542 tree res_type = boolean_type_node;
14543 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one)));
14544 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero)));
14545 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one)));
14546 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one)));
14549 /* Run all of the selftests within this file. */
14551 void
14552 fold_const_c_tests ()
14554 test_arithmetic_folding ();
14555 test_vector_folding ();
14558 } // namespace selftest
14560 #endif /* CHECKING_P */