1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /*@@ This file should be rewritten to use an arbitrary precision
21 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
22 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
23 @@ The routines that translate from the ap rep should
24 @@ warn if precision et. al. is lost.
25 @@ This would also make life easier when this technology is used
26 @@ for cross-compilers. */
28 /* The entry points in this file are fold, size_int_wide and size_binop.
30 fold takes a tree as argument and returns a simplified tree.
32 size_binop takes a tree code for an arithmetic operation
33 and two operands that are trees, and produces a tree for the
34 result, assuming the type comes from `sizetype'.
36 size_int takes an integer value, and creates a tree constant
37 with type from `sizetype'.
39 Note: Since the folders get called on non-gimple code as well as
40 gimple code, we need to handle GIMPLE tuples as well as their
41 corresponding tree equivalents. */
45 #include "coretypes.h"
54 #include "tree-ssa-operands.h"
55 #include "optabs-query.h"
57 #include "diagnostic-core.h"
60 #include "fold-const.h"
61 #include "fold-const-call.h"
62 #include "stor-layout.h"
64 #include "tree-iterator.h"
67 #include "langhooks.h"
72 #include "generic-match.h"
73 #include "gimple-fold.h"
75 #include "tree-into-ssa.h"
77 #include "case-cfn-macros.h"
78 #include "stringpool.h"
80 #include "tree-ssanames.h"
82 #include "stringpool.h"
84 #include "tree-vector-builder.h"
85 #include "vec-perm-indices.h"
87 /* Nonzero if we are folding constants inside an initializer; zero
89 int folding_initializer
= 0;
91 /* The following constants represent a bit based encoding of GCC's
92 comparison operators. This encoding simplifies transformations
93 on relational comparison operators, such as AND and OR. */
94 enum comparison_code
{
113 static bool negate_expr_p (tree
);
114 static tree
negate_expr (tree
);
115 static tree
associate_trees (location_t
, tree
, tree
, enum tree_code
, tree
);
116 static enum comparison_code
comparison_to_compcode (enum tree_code
);
117 static enum tree_code
compcode_to_comparison (enum comparison_code
);
118 static int twoval_comparison_p (tree
, tree
*, tree
*);
119 static tree
eval_subst (location_t
, tree
, tree
, tree
, tree
, tree
);
120 static tree
optimize_bit_field_compare (location_t
, enum tree_code
,
122 static int simple_operand_p (const_tree
);
123 static bool simple_operand_p_2 (tree
);
124 static tree
range_binop (enum tree_code
, tree
, tree
, int, tree
, int);
125 static tree
range_predecessor (tree
);
126 static tree
range_successor (tree
);
127 static tree
fold_range_test (location_t
, enum tree_code
, tree
, tree
, tree
);
128 static tree
fold_cond_expr_with_comparison (location_t
, tree
, tree
, tree
, tree
);
129 static tree
unextend (tree
, int, int, tree
);
130 static tree
extract_muldiv (tree
, tree
, enum tree_code
, tree
, bool *);
131 static tree
extract_muldiv_1 (tree
, tree
, enum tree_code
, tree
, bool *);
132 static tree
fold_binary_op_with_conditional_arg (location_t
,
133 enum tree_code
, tree
,
136 static tree
fold_negate_const (tree
, tree
);
137 static tree
fold_not_const (const_tree
, tree
);
138 static tree
fold_relational_const (enum tree_code
, tree
, tree
, tree
);
139 static tree
fold_convert_const (enum tree_code
, tree
, tree
);
140 static tree
fold_view_convert_expr (tree
, tree
);
141 static tree
fold_negate_expr (location_t
, tree
);
144 /* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION.
145 Otherwise, return LOC. */
148 expr_location_or (tree t
, location_t loc
)
150 location_t tloc
= EXPR_LOCATION (t
);
151 return tloc
== UNKNOWN_LOCATION
? loc
: tloc
;
154 /* Similar to protected_set_expr_location, but never modify x in place,
155 if location can and needs to be set, unshare it. */
158 protected_set_expr_location_unshare (tree x
, location_t loc
)
160 if (CAN_HAVE_LOCATION_P (x
)
161 && EXPR_LOCATION (x
) != loc
162 && !(TREE_CODE (x
) == SAVE_EXPR
163 || TREE_CODE (x
) == TARGET_EXPR
164 || TREE_CODE (x
) == BIND_EXPR
))
167 SET_EXPR_LOCATION (x
, loc
);
172 /* If ARG2 divides ARG1 with zero remainder, carries out the exact
173 division and returns the quotient. Otherwise returns
177 div_if_zero_remainder (const_tree arg1
, const_tree arg2
)
181 if (wi::multiple_of_p (wi::to_widest (arg1
), wi::to_widest (arg2
),
183 return wide_int_to_tree (TREE_TYPE (arg1
), quo
);
188 /* This is nonzero if we should defer warnings about undefined
189 overflow. This facility exists because these warnings are a
190 special case. The code to estimate loop iterations does not want
191 to issue any warnings, since it works with expressions which do not
192 occur in user code. Various bits of cleanup code call fold(), but
193 only use the result if it has certain characteristics (e.g., is a
194 constant); that code only wants to issue a warning if the result is
197 static int fold_deferring_overflow_warnings
;
199 /* If a warning about undefined overflow is deferred, this is the
200 warning. Note that this may cause us to turn two warnings into
201 one, but that is fine since it is sufficient to only give one
202 warning per expression. */
204 static const char* fold_deferred_overflow_warning
;
206 /* If a warning about undefined overflow is deferred, this is the
207 level at which the warning should be emitted. */
209 static enum warn_strict_overflow_code fold_deferred_overflow_code
;
211 /* Start deferring overflow warnings. We could use a stack here to
212 permit nested calls, but at present it is not necessary. */
215 fold_defer_overflow_warnings (void)
217 ++fold_deferring_overflow_warnings
;
220 /* Stop deferring overflow warnings. If there is a pending warning,
221 and ISSUE is true, then issue the warning if appropriate. STMT is
222 the statement with which the warning should be associated (used for
223 location information); STMT may be NULL. CODE is the level of the
224 warning--a warn_strict_overflow_code value. This function will use
225 the smaller of CODE and the deferred code when deciding whether to
226 issue the warning. CODE may be zero to mean to always use the
230 fold_undefer_overflow_warnings (bool issue
, const gimple
*stmt
, int code
)
235 gcc_assert (fold_deferring_overflow_warnings
> 0);
236 --fold_deferring_overflow_warnings
;
237 if (fold_deferring_overflow_warnings
> 0)
239 if (fold_deferred_overflow_warning
!= NULL
241 && code
< (int) fold_deferred_overflow_code
)
242 fold_deferred_overflow_code
= (enum warn_strict_overflow_code
) code
;
246 warnmsg
= fold_deferred_overflow_warning
;
247 fold_deferred_overflow_warning
= NULL
;
249 if (!issue
|| warnmsg
== NULL
)
252 if (gimple_no_warning_p (stmt
))
255 /* Use the smallest code level when deciding to issue the
257 if (code
== 0 || code
> (int) fold_deferred_overflow_code
)
258 code
= fold_deferred_overflow_code
;
260 if (!issue_strict_overflow_warning (code
))
264 locus
= input_location
;
266 locus
= gimple_location (stmt
);
267 warning_at (locus
, OPT_Wstrict_overflow
, "%s", warnmsg
);
270 /* Stop deferring overflow warnings, ignoring any deferred
274 fold_undefer_and_ignore_overflow_warnings (void)
276 fold_undefer_overflow_warnings (false, NULL
, 0);
279 /* Whether we are deferring overflow warnings. */
282 fold_deferring_overflow_warnings_p (void)
284 return fold_deferring_overflow_warnings
> 0;
287 /* This is called when we fold something based on the fact that signed
288 overflow is undefined. */
291 fold_overflow_warning (const char* gmsgid
, enum warn_strict_overflow_code wc
)
293 if (fold_deferring_overflow_warnings
> 0)
295 if (fold_deferred_overflow_warning
== NULL
296 || wc
< fold_deferred_overflow_code
)
298 fold_deferred_overflow_warning
= gmsgid
;
299 fold_deferred_overflow_code
= wc
;
302 else if (issue_strict_overflow_warning (wc
))
303 warning (OPT_Wstrict_overflow
, gmsgid
);
306 /* Return true if the built-in mathematical function specified by CODE
307 is odd, i.e. -f(x) == f(-x). */
310 negate_mathfn_p (combined_fn fn
)
343 return !flag_rounding_math
;
351 /* Check whether we may negate an integer constant T without causing
355 may_negate_without_overflow_p (const_tree t
)
359 gcc_assert (TREE_CODE (t
) == INTEGER_CST
);
361 type
= TREE_TYPE (t
);
362 if (TYPE_UNSIGNED (type
))
365 return !wi::only_sign_bit_p (wi::to_wide (t
));
368 /* Determine whether an expression T can be cheaply negated using
369 the function negate_expr without introducing undefined overflow. */
372 negate_expr_p (tree t
)
379 type
= TREE_TYPE (t
);
382 switch (TREE_CODE (t
))
385 if (INTEGRAL_TYPE_P (type
) && TYPE_UNSIGNED (type
))
388 /* Check that -CST will not overflow type. */
389 return may_negate_without_overflow_p (t
);
391 return (INTEGRAL_TYPE_P (type
)
392 && TYPE_OVERFLOW_WRAPS (type
));
398 return !TYPE_OVERFLOW_SANITIZED (type
);
401 /* We want to canonicalize to positive real constants. Pretend
402 that only negative ones can be easily negated. */
403 return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
406 return negate_expr_p (TREE_REALPART (t
))
407 && negate_expr_p (TREE_IMAGPART (t
));
411 if (FLOAT_TYPE_P (TREE_TYPE (type
)) || TYPE_OVERFLOW_WRAPS (type
))
414 /* Steps don't prevent negation. */
415 unsigned int count
= vector_cst_encoded_nelts (t
);
416 for (unsigned int i
= 0; i
< count
; ++i
)
417 if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t
, i
)))
424 return negate_expr_p (TREE_OPERAND (t
, 0))
425 && negate_expr_p (TREE_OPERAND (t
, 1));
428 return negate_expr_p (TREE_OPERAND (t
, 0));
431 if (HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
432 || HONOR_SIGNED_ZEROS (element_mode (type
))
433 || (ANY_INTEGRAL_TYPE_P (type
)
434 && ! TYPE_OVERFLOW_WRAPS (type
)))
436 /* -(A + B) -> (-B) - A. */
437 if (negate_expr_p (TREE_OPERAND (t
, 1)))
439 /* -(A + B) -> (-A) - B. */
440 return negate_expr_p (TREE_OPERAND (t
, 0));
443 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
444 return !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
445 && !HONOR_SIGNED_ZEROS (element_mode (type
))
446 && (! ANY_INTEGRAL_TYPE_P (type
)
447 || TYPE_OVERFLOW_WRAPS (type
));
450 if (TYPE_UNSIGNED (type
))
452 /* INT_MIN/n * n doesn't overflow while negating one operand it does
453 if n is a (negative) power of two. */
454 if (INTEGRAL_TYPE_P (TREE_TYPE (t
))
455 && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
456 && ! ((TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
458 (wi::abs (wi::to_wide (TREE_OPERAND (t
, 0))))) != 1)
459 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
461 (wi::abs (wi::to_wide (TREE_OPERAND (t
, 1))))) != 1)))
467 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (TREE_TYPE (t
))))
468 return negate_expr_p (TREE_OPERAND (t
, 1))
469 || negate_expr_p (TREE_OPERAND (t
, 0));
475 if (TYPE_UNSIGNED (type
))
477 /* In general we can't negate A in A / B, because if A is INT_MIN and
478 B is not 1 we change the sign of the result. */
479 if (TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
480 && negate_expr_p (TREE_OPERAND (t
, 0)))
482 /* In general we can't negate B in A / B, because if A is INT_MIN and
483 B is 1, we may turn this into INT_MIN / -1 which is undefined
484 and actually traps on some architectures. */
485 if (! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t
))
486 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
487 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
488 && ! integer_onep (TREE_OPERAND (t
, 1))))
489 return negate_expr_p (TREE_OPERAND (t
, 1));
493 /* Negate -((double)float) as (double)(-float). */
494 if (TREE_CODE (type
) == REAL_TYPE
)
496 tree tem
= strip_float_extensions (t
);
498 return negate_expr_p (tem
);
503 /* Negate -f(x) as f(-x). */
504 if (negate_mathfn_p (get_call_combined_fn (t
)))
505 return negate_expr_p (CALL_EXPR_ARG (t
, 0));
509 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
510 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
512 tree op1
= TREE_OPERAND (t
, 1);
513 if (wi::to_wide (op1
) == TYPE_PRECISION (type
) - 1)
524 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
525 simplification is possible.
526 If negate_expr_p would return true for T, NULL_TREE will never be
530 fold_negate_expr_1 (location_t loc
, tree t
)
532 tree type
= TREE_TYPE (t
);
535 switch (TREE_CODE (t
))
537 /* Convert - (~A) to A + 1. */
539 if (INTEGRAL_TYPE_P (type
))
540 return fold_build2_loc (loc
, PLUS_EXPR
, type
, TREE_OPERAND (t
, 0),
541 build_one_cst (type
));
545 tem
= fold_negate_const (t
, type
);
546 if (TREE_OVERFLOW (tem
) == TREE_OVERFLOW (t
)
547 || (ANY_INTEGRAL_TYPE_P (type
)
548 && !TYPE_OVERFLOW_TRAPS (type
)
549 && TYPE_OVERFLOW_WRAPS (type
))
550 || (flag_sanitize
& SANITIZE_SI_OVERFLOW
) == 0)
557 tem
= fold_negate_const (t
, type
);
562 tree rpart
= fold_negate_expr (loc
, TREE_REALPART (t
));
563 tree ipart
= fold_negate_expr (loc
, TREE_IMAGPART (t
));
565 return build_complex (type
, rpart
, ipart
);
571 tree_vector_builder elts
;
572 elts
.new_unary_operation (type
, t
, true);
573 unsigned int count
= elts
.encoded_nelts ();
574 for (unsigned int i
= 0; i
< count
; ++i
)
576 tree elt
= fold_negate_expr (loc
, VECTOR_CST_ELT (t
, i
));
577 if (elt
== NULL_TREE
)
579 elts
.quick_push (elt
);
582 return elts
.build ();
586 if (negate_expr_p (t
))
587 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
588 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)),
589 fold_negate_expr (loc
, TREE_OPERAND (t
, 1)));
593 if (negate_expr_p (t
))
594 return fold_build1_loc (loc
, CONJ_EXPR
, type
,
595 fold_negate_expr (loc
, TREE_OPERAND (t
, 0)));
599 if (!TYPE_OVERFLOW_SANITIZED (type
))
600 return TREE_OPERAND (t
, 0);
604 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
605 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
607 /* -(A + B) -> (-B) - A. */
608 if (negate_expr_p (TREE_OPERAND (t
, 1)))
610 tem
= negate_expr (TREE_OPERAND (t
, 1));
611 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
612 tem
, TREE_OPERAND (t
, 0));
615 /* -(A + B) -> (-A) - B. */
616 if (negate_expr_p (TREE_OPERAND (t
, 0)))
618 tem
= negate_expr (TREE_OPERAND (t
, 0));
619 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
620 tem
, TREE_OPERAND (t
, 1));
626 /* - (A - B) -> B - A */
627 if (!HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
))
628 && !HONOR_SIGNED_ZEROS (element_mode (type
)))
629 return fold_build2_loc (loc
, MINUS_EXPR
, type
,
630 TREE_OPERAND (t
, 1), TREE_OPERAND (t
, 0));
634 if (TYPE_UNSIGNED (type
))
640 if (! HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
)))
642 tem
= TREE_OPERAND (t
, 1);
643 if (negate_expr_p (tem
))
644 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
645 TREE_OPERAND (t
, 0), negate_expr (tem
));
646 tem
= TREE_OPERAND (t
, 0);
647 if (negate_expr_p (tem
))
648 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
649 negate_expr (tem
), TREE_OPERAND (t
, 1));
656 if (TYPE_UNSIGNED (type
))
658 /* In general we can't negate A in A / B, because if A is INT_MIN and
659 B is not 1 we change the sign of the result. */
660 if (TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
661 && negate_expr_p (TREE_OPERAND (t
, 0)))
662 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
663 negate_expr (TREE_OPERAND (t
, 0)),
664 TREE_OPERAND (t
, 1));
665 /* In general we can't negate B in A / B, because if A is INT_MIN and
666 B is 1, we may turn this into INT_MIN / -1 which is undefined
667 and actually traps on some architectures. */
668 if ((! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t
))
669 || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t
))
670 || (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
671 && ! integer_onep (TREE_OPERAND (t
, 1))))
672 && negate_expr_p (TREE_OPERAND (t
, 1)))
673 return fold_build2_loc (loc
, TREE_CODE (t
), type
,
675 negate_expr (TREE_OPERAND (t
, 1)));
679 /* Convert -((double)float) into (double)(-float). */
680 if (TREE_CODE (type
) == REAL_TYPE
)
682 tem
= strip_float_extensions (t
);
683 if (tem
!= t
&& negate_expr_p (tem
))
684 return fold_convert_loc (loc
, type
, negate_expr (tem
));
689 /* Negate -f(x) as f(-x). */
690 if (negate_mathfn_p (get_call_combined_fn (t
))
691 && negate_expr_p (CALL_EXPR_ARG (t
, 0)))
695 fndecl
= get_callee_fndecl (t
);
696 arg
= negate_expr (CALL_EXPR_ARG (t
, 0));
697 return build_call_expr_loc (loc
, fndecl
, 1, arg
);
702 /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */
703 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
705 tree op1
= TREE_OPERAND (t
, 1);
706 if (wi::to_wide (op1
) == TYPE_PRECISION (type
) - 1)
708 tree ntype
= TYPE_UNSIGNED (type
)
709 ? signed_type_for (type
)
710 : unsigned_type_for (type
);
711 tree temp
= fold_convert_loc (loc
, ntype
, TREE_OPERAND (t
, 0));
712 temp
= fold_build2_loc (loc
, RSHIFT_EXPR
, ntype
, temp
, op1
);
713 return fold_convert_loc (loc
, type
, temp
);
725 /* A wrapper for fold_negate_expr_1. */
728 fold_negate_expr (location_t loc
, tree t
)
730 tree type
= TREE_TYPE (t
);
732 tree tem
= fold_negate_expr_1 (loc
, t
);
733 if (tem
== NULL_TREE
)
735 return fold_convert_loc (loc
, type
, tem
);
738 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T cannot be
739 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
751 loc
= EXPR_LOCATION (t
);
752 type
= TREE_TYPE (t
);
755 tem
= fold_negate_expr (loc
, t
);
757 tem
= build1_loc (loc
, NEGATE_EXPR
, TREE_TYPE (t
), t
);
758 return fold_convert_loc (loc
, type
, tem
);
761 /* Split a tree IN into a constant, literal and variable parts that could be
762 combined with CODE to make IN. "constant" means an expression with
763 TREE_CONSTANT but that isn't an actual constant. CODE must be a
764 commutative arithmetic operation. Store the constant part into *CONP,
765 the literal in *LITP and return the variable part. If a part isn't
766 present, set it to null. If the tree does not decompose in this way,
767 return the entire tree as the variable part and the other parts as null.
769 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
770 case, we negate an operand that was subtracted. Except if it is a
771 literal for which we use *MINUS_LITP instead.
773 If NEGATE_P is true, we are negating all of IN, again except a literal
774 for which we use *MINUS_LITP instead. If a variable part is of pointer
775 type, it is negated after converting to TYPE. This prevents us from
776 generating illegal MINUS pointer expression. LOC is the location of
777 the converted variable part.
779 If IN is itself a literal or constant, return it as appropriate.
781 Note that we do not guarantee that any of the three values will be the
782 same type as IN, but they will have the same signedness and mode. */
785 split_tree (tree in
, tree type
, enum tree_code code
,
786 tree
*minus_varp
, tree
*conp
, tree
*minus_conp
,
787 tree
*litp
, tree
*minus_litp
, int negate_p
)
796 /* Strip any conversions that don't change the machine mode or signedness. */
797 STRIP_SIGN_NOPS (in
);
799 if (TREE_CODE (in
) == INTEGER_CST
|| TREE_CODE (in
) == REAL_CST
800 || TREE_CODE (in
) == FIXED_CST
)
802 else if (TREE_CODE (in
) == code
803 || ((! FLOAT_TYPE_P (TREE_TYPE (in
)) || flag_associative_math
)
804 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in
))
805 /* We can associate addition and subtraction together (even
806 though the C standard doesn't say so) for integers because
807 the value is not affected. For reals, the value might be
808 affected, so we can't. */
809 && ((code
== PLUS_EXPR
&& TREE_CODE (in
) == POINTER_PLUS_EXPR
)
810 || (code
== PLUS_EXPR
&& TREE_CODE (in
) == MINUS_EXPR
)
811 || (code
== MINUS_EXPR
812 && (TREE_CODE (in
) == PLUS_EXPR
813 || TREE_CODE (in
) == POINTER_PLUS_EXPR
)))))
815 tree op0
= TREE_OPERAND (in
, 0);
816 tree op1
= TREE_OPERAND (in
, 1);
817 int neg1_p
= TREE_CODE (in
) == MINUS_EXPR
;
818 int neg_litp_p
= 0, neg_conp_p
= 0, neg_var_p
= 0;
820 /* First see if either of the operands is a literal, then a constant. */
821 if (TREE_CODE (op0
) == INTEGER_CST
|| TREE_CODE (op0
) == REAL_CST
822 || TREE_CODE (op0
) == FIXED_CST
)
823 *litp
= op0
, op0
= 0;
824 else if (TREE_CODE (op1
) == INTEGER_CST
|| TREE_CODE (op1
) == REAL_CST
825 || TREE_CODE (op1
) == FIXED_CST
)
826 *litp
= op1
, neg_litp_p
= neg1_p
, op1
= 0;
828 if (op0
!= 0 && TREE_CONSTANT (op0
))
829 *conp
= op0
, op0
= 0;
830 else if (op1
!= 0 && TREE_CONSTANT (op1
))
831 *conp
= op1
, neg_conp_p
= neg1_p
, op1
= 0;
833 /* If we haven't dealt with either operand, this is not a case we can
834 decompose. Otherwise, VAR is either of the ones remaining, if any. */
835 if (op0
!= 0 && op1
!= 0)
840 var
= op1
, neg_var_p
= neg1_p
;
842 /* Now do any needed negations. */
844 *minus_litp
= *litp
, *litp
= 0;
845 if (neg_conp_p
&& *conp
)
846 *minus_conp
= *conp
, *conp
= 0;
847 if (neg_var_p
&& var
)
848 *minus_varp
= var
, var
= 0;
850 else if (TREE_CONSTANT (in
))
852 else if (TREE_CODE (in
) == BIT_NOT_EXPR
853 && code
== PLUS_EXPR
)
855 /* -1 - X is folded to ~X, undo that here. Do _not_ do this
856 when IN is constant. */
857 *litp
= build_minus_one_cst (type
);
858 *minus_varp
= TREE_OPERAND (in
, 0);
866 *minus_litp
= *litp
, *litp
= 0;
867 else if (*minus_litp
)
868 *litp
= *minus_litp
, *minus_litp
= 0;
870 *minus_conp
= *conp
, *conp
= 0;
871 else if (*minus_conp
)
872 *conp
= *minus_conp
, *minus_conp
= 0;
874 *minus_varp
= var
, var
= 0;
875 else if (*minus_varp
)
876 var
= *minus_varp
, *minus_varp
= 0;
880 && TREE_OVERFLOW_P (*litp
))
881 *litp
= drop_tree_overflow (*litp
);
883 && TREE_OVERFLOW_P (*minus_litp
))
884 *minus_litp
= drop_tree_overflow (*minus_litp
);
889 /* Re-associate trees split by the above function. T1 and T2 are
890 either expressions to associate or null. Return the new
891 expression, if any. LOC is the location of the new expression. If
892 we build an operation, do it in TYPE and with CODE. */
895 associate_trees (location_t loc
, tree t1
, tree t2
, enum tree_code code
, tree type
)
899 gcc_assert (t2
== 0 || code
!= MINUS_EXPR
);
905 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
906 try to fold this since we will have infinite recursion. But do
907 deal with any NEGATE_EXPRs. */
908 if (TREE_CODE (t1
) == code
|| TREE_CODE (t2
) == code
909 || TREE_CODE (t1
) == PLUS_EXPR
|| TREE_CODE (t2
) == PLUS_EXPR
910 || TREE_CODE (t1
) == MINUS_EXPR
|| TREE_CODE (t2
) == MINUS_EXPR
)
912 if (code
== PLUS_EXPR
)
914 if (TREE_CODE (t1
) == NEGATE_EXPR
)
915 return build2_loc (loc
, MINUS_EXPR
, type
,
916 fold_convert_loc (loc
, type
, t2
),
917 fold_convert_loc (loc
, type
,
918 TREE_OPERAND (t1
, 0)));
919 else if (TREE_CODE (t2
) == NEGATE_EXPR
)
920 return build2_loc (loc
, MINUS_EXPR
, type
,
921 fold_convert_loc (loc
, type
, t1
),
922 fold_convert_loc (loc
, type
,
923 TREE_OPERAND (t2
, 0)));
924 else if (integer_zerop (t2
))
925 return fold_convert_loc (loc
, type
, t1
);
927 else if (code
== MINUS_EXPR
)
929 if (integer_zerop (t2
))
930 return fold_convert_loc (loc
, type
, t1
);
933 return build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
934 fold_convert_loc (loc
, type
, t2
));
937 return fold_build2_loc (loc
, code
, type
, fold_convert_loc (loc
, type
, t1
),
938 fold_convert_loc (loc
, type
, t2
));
941 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
942 for use in int_const_binop, size_binop and size_diffop. */
945 int_binop_types_match_p (enum tree_code code
, const_tree type1
, const_tree type2
)
947 if (!INTEGRAL_TYPE_P (type1
) && !POINTER_TYPE_P (type1
))
949 if (!INTEGRAL_TYPE_P (type2
) && !POINTER_TYPE_P (type2
))
964 return TYPE_UNSIGNED (type1
) == TYPE_UNSIGNED (type2
)
965 && TYPE_PRECISION (type1
) == TYPE_PRECISION (type2
)
966 && TYPE_MODE (type1
) == TYPE_MODE (type2
);
969 /* Combine two wide ints ARG1 and ARG2 under operation CODE to produce
970 a new constant in RES. Return FALSE if we don't know how to
971 evaluate CODE at compile-time. */
974 wide_int_binop (wide_int
&res
,
975 enum tree_code code
, const wide_int
&arg1
, const wide_int
&arg2
,
976 signop sign
, wi::overflow_type
*overflow
)
979 *overflow
= wi::OVF_NONE
;
983 res
= wi::bit_or (arg1
, arg2
);
987 res
= wi::bit_xor (arg1
, arg2
);
991 res
= wi::bit_and (arg1
, arg2
);
996 if (wi::neg_p (arg2
))
999 if (code
== RSHIFT_EXPR
)
1007 if (code
== RSHIFT_EXPR
)
1008 /* It's unclear from the C standard whether shifts can overflow.
1009 The following code ignores overflow; perhaps a C standard
1010 interpretation ruling is needed. */
1011 res
= wi::rshift (arg1
, tmp
, sign
);
1013 res
= wi::lshift (arg1
, tmp
);
1018 if (wi::neg_p (arg2
))
1021 if (code
== RROTATE_EXPR
)
1022 code
= LROTATE_EXPR
;
1024 code
= RROTATE_EXPR
;
1029 if (code
== RROTATE_EXPR
)
1030 res
= wi::rrotate (arg1
, tmp
);
1032 res
= wi::lrotate (arg1
, tmp
);
1036 res
= wi::add (arg1
, arg2
, sign
, overflow
);
1040 res
= wi::sub (arg1
, arg2
, sign
, overflow
);
1044 res
= wi::mul (arg1
, arg2
, sign
, overflow
);
1047 case MULT_HIGHPART_EXPR
:
1048 res
= wi::mul_high (arg1
, arg2
, sign
);
1051 case TRUNC_DIV_EXPR
:
1052 case EXACT_DIV_EXPR
:
1055 res
= wi::div_trunc (arg1
, arg2
, sign
, overflow
);
1058 case FLOOR_DIV_EXPR
:
1061 res
= wi::div_floor (arg1
, arg2
, sign
, overflow
);
1067 res
= wi::div_ceil (arg1
, arg2
, sign
, overflow
);
1070 case ROUND_DIV_EXPR
:
1073 res
= wi::div_round (arg1
, arg2
, sign
, overflow
);
1076 case TRUNC_MOD_EXPR
:
1079 res
= wi::mod_trunc (arg1
, arg2
, sign
, overflow
);
1082 case FLOOR_MOD_EXPR
:
1085 res
= wi::mod_floor (arg1
, arg2
, sign
, overflow
);
1091 res
= wi::mod_ceil (arg1
, arg2
, sign
, overflow
);
1094 case ROUND_MOD_EXPR
:
1097 res
= wi::mod_round (arg1
, arg2
, sign
, overflow
);
1101 res
= wi::min (arg1
, arg2
, sign
);
1105 res
= wi::max (arg1
, arg2
, sign
);
1114 /* Combine two poly int's ARG1 and ARG2 under operation CODE to
1115 produce a new constant in RES. Return FALSE if we don't know how
1116 to evaluate CODE at compile-time. */
1119 poly_int_binop (poly_wide_int
&res
, enum tree_code code
,
1120 const_tree arg1
, const_tree arg2
,
1121 signop sign
, wi::overflow_type
*overflow
)
1123 gcc_assert (NUM_POLY_INT_COEFFS
!= 1);
1124 gcc_assert (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
));
1128 res
= wi::add (wi::to_poly_wide (arg1
),
1129 wi::to_poly_wide (arg2
), sign
, overflow
);
1133 res
= wi::sub (wi::to_poly_wide (arg1
),
1134 wi::to_poly_wide (arg2
), sign
, overflow
);
1138 if (TREE_CODE (arg2
) == INTEGER_CST
)
1139 res
= wi::mul (wi::to_poly_wide (arg1
),
1140 wi::to_wide (arg2
), sign
, overflow
);
1141 else if (TREE_CODE (arg1
) == INTEGER_CST
)
1142 res
= wi::mul (wi::to_poly_wide (arg2
),
1143 wi::to_wide (arg1
), sign
, overflow
);
1149 if (TREE_CODE (arg2
) == INTEGER_CST
)
1150 res
= wi::to_poly_wide (arg1
) << wi::to_wide (arg2
);
1156 if (TREE_CODE (arg2
) != INTEGER_CST
1157 || !can_ior_p (wi::to_poly_wide (arg1
), wi::to_wide (arg2
),
1168 /* Combine two integer constants ARG1 and ARG2 under operation CODE to
1169 produce a new constant. Return NULL_TREE if we don't know how to
1170 evaluate CODE at compile-time. */
1173 int_const_binop (enum tree_code code
, const_tree arg1
, const_tree arg2
,
1176 bool success
= false;
1177 poly_wide_int poly_res
;
1178 tree type
= TREE_TYPE (arg1
);
1179 signop sign
= TYPE_SIGN (type
);
1180 wi::overflow_type overflow
= wi::OVF_NONE
;
1182 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg2
) == INTEGER_CST
)
1184 wide_int warg1
= wi::to_wide (arg1
), res
;
1185 wide_int warg2
= wi::to_wide (arg2
, TYPE_PRECISION (type
));
1186 success
= wide_int_binop (res
, code
, warg1
, warg2
, sign
, &overflow
);
1189 else if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1190 success
= poly_int_binop (poly_res
, code
, arg1
, arg2
, sign
, &overflow
);
1192 return force_fit_type (type
, poly_res
, overflowable
,
1193 (((sign
== SIGNED
|| overflowable
== -1)
1195 | TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
)));
1199 /* Return true if binary operation OP distributes over addition in operand
1200 OPNO, with the other operand being held constant. OPNO counts from 1. */
1203 distributes_over_addition_p (tree_code op
, int opno
)
1220 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1221 constant. We assume ARG1 and ARG2 have the same data type, or at least
1222 are the same kind of constant and the same machine mode. Return zero if
1223 combining the constants is not allowed in the current operating mode. */
1226 const_binop (enum tree_code code
, tree arg1
, tree arg2
)
1228 /* Sanity check for the recursive cases. */
1235 if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1237 if (code
== POINTER_PLUS_EXPR
)
1238 return int_const_binop (PLUS_EXPR
,
1239 arg1
, fold_convert (TREE_TYPE (arg1
), arg2
));
1241 return int_const_binop (code
, arg1
, arg2
);
1244 if (TREE_CODE (arg1
) == REAL_CST
&& TREE_CODE (arg2
) == REAL_CST
)
1249 REAL_VALUE_TYPE value
;
1250 REAL_VALUE_TYPE result
;
1254 /* The following codes are handled by real_arithmetic. */
1269 d1
= TREE_REAL_CST (arg1
);
1270 d2
= TREE_REAL_CST (arg2
);
1272 type
= TREE_TYPE (arg1
);
1273 mode
= TYPE_MODE (type
);
1275 /* Don't perform operation if we honor signaling NaNs and
1276 either operand is a signaling NaN. */
1277 if (HONOR_SNANS (mode
)
1278 && (REAL_VALUE_ISSIGNALING_NAN (d1
)
1279 || REAL_VALUE_ISSIGNALING_NAN (d2
)))
1282 /* Don't perform operation if it would raise a division
1283 by zero exception. */
1284 if (code
== RDIV_EXPR
1285 && real_equal (&d2
, &dconst0
)
1286 && (flag_trapping_math
|| ! MODE_HAS_INFINITIES (mode
)))
1289 /* If either operand is a NaN, just return it. Otherwise, set up
1290 for floating-point trap; we return an overflow. */
1291 if (REAL_VALUE_ISNAN (d1
))
1293 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1296 t
= build_real (type
, d1
);
1299 else if (REAL_VALUE_ISNAN (d2
))
1301 /* Make resulting NaN value to be qNaN when flag_signaling_nans
1304 t
= build_real (type
, d2
);
1308 inexact
= real_arithmetic (&value
, code
, &d1
, &d2
);
1309 real_convert (&result
, mode
, &value
);
1311 /* Don't constant fold this floating point operation if
1312 the result has overflowed and flag_trapping_math. */
1313 if (flag_trapping_math
1314 && MODE_HAS_INFINITIES (mode
)
1315 && REAL_VALUE_ISINF (result
)
1316 && !REAL_VALUE_ISINF (d1
)
1317 && !REAL_VALUE_ISINF (d2
))
1320 /* Don't constant fold this floating point operation if the
1321 result may dependent upon the run-time rounding mode and
1322 flag_rounding_math is set, or if GCC's software emulation
1323 is unable to accurately represent the result. */
1324 if ((flag_rounding_math
1325 || (MODE_COMPOSITE_P (mode
) && !flag_unsafe_math_optimizations
))
1326 && (inexact
|| !real_identical (&result
, &value
)))
1329 t
= build_real (type
, result
);
1331 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
);
1335 if (TREE_CODE (arg1
) == FIXED_CST
)
1337 FIXED_VALUE_TYPE f1
;
1338 FIXED_VALUE_TYPE f2
;
1339 FIXED_VALUE_TYPE result
;
1344 /* The following codes are handled by fixed_arithmetic. */
1350 case TRUNC_DIV_EXPR
:
1351 if (TREE_CODE (arg2
) != FIXED_CST
)
1353 f2
= TREE_FIXED_CST (arg2
);
1359 if (TREE_CODE (arg2
) != INTEGER_CST
)
1361 wi::tree_to_wide_ref w2
= wi::to_wide (arg2
);
1362 f2
.data
.high
= w2
.elt (1);
1363 f2
.data
.low
= w2
.ulow ();
1372 f1
= TREE_FIXED_CST (arg1
);
1373 type
= TREE_TYPE (arg1
);
1374 sat_p
= TYPE_SATURATING (type
);
1375 overflow_p
= fixed_arithmetic (&result
, code
, &f1
, &f2
, sat_p
);
1376 t
= build_fixed (type
, result
);
1377 /* Propagate overflow flags. */
1378 if (overflow_p
| TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
))
1379 TREE_OVERFLOW (t
) = 1;
1383 if (TREE_CODE (arg1
) == COMPLEX_CST
&& TREE_CODE (arg2
) == COMPLEX_CST
)
1385 tree type
= TREE_TYPE (arg1
);
1386 tree r1
= TREE_REALPART (arg1
);
1387 tree i1
= TREE_IMAGPART (arg1
);
1388 tree r2
= TREE_REALPART (arg2
);
1389 tree i2
= TREE_IMAGPART (arg2
);
1396 real
= const_binop (code
, r1
, r2
);
1397 imag
= const_binop (code
, i1
, i2
);
1401 if (COMPLEX_FLOAT_TYPE_P (type
))
1402 return do_mpc_arg2 (arg1
, arg2
, type
,
1403 /* do_nonfinite= */ folding_initializer
,
1406 real
= const_binop (MINUS_EXPR
,
1407 const_binop (MULT_EXPR
, r1
, r2
),
1408 const_binop (MULT_EXPR
, i1
, i2
));
1409 imag
= const_binop (PLUS_EXPR
,
1410 const_binop (MULT_EXPR
, r1
, i2
),
1411 const_binop (MULT_EXPR
, i1
, r2
));
1415 if (COMPLEX_FLOAT_TYPE_P (type
))
1416 return do_mpc_arg2 (arg1
, arg2
, type
,
1417 /* do_nonfinite= */ folding_initializer
,
1420 case TRUNC_DIV_EXPR
:
1422 case FLOOR_DIV_EXPR
:
1423 case ROUND_DIV_EXPR
:
1424 if (flag_complex_method
== 0)
1426 /* Keep this algorithm in sync with
1427 tree-complex.c:expand_complex_div_straight().
1429 Expand complex division to scalars, straightforward algorithm.
1430 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1434 = const_binop (PLUS_EXPR
,
1435 const_binop (MULT_EXPR
, r2
, r2
),
1436 const_binop (MULT_EXPR
, i2
, i2
));
1438 = const_binop (PLUS_EXPR
,
1439 const_binop (MULT_EXPR
, r1
, r2
),
1440 const_binop (MULT_EXPR
, i1
, i2
));
1442 = const_binop (MINUS_EXPR
,
1443 const_binop (MULT_EXPR
, i1
, r2
),
1444 const_binop (MULT_EXPR
, r1
, i2
));
1446 real
= const_binop (code
, t1
, magsquared
);
1447 imag
= const_binop (code
, t2
, magsquared
);
1451 /* Keep this algorithm in sync with
1452 tree-complex.c:expand_complex_div_wide().
1454 Expand complex division to scalars, modified algorithm to minimize
1455 overflow with wide input ranges. */
1456 tree compare
= fold_build2 (LT_EXPR
, boolean_type_node
,
1457 fold_abs_const (r2
, TREE_TYPE (type
)),
1458 fold_abs_const (i2
, TREE_TYPE (type
)));
1460 if (integer_nonzerop (compare
))
1462 /* In the TRUE branch, we compute
1464 div = (br * ratio) + bi;
1465 tr = (ar * ratio) + ai;
1466 ti = (ai * ratio) - ar;
1469 tree ratio
= const_binop (code
, r2
, i2
);
1470 tree div
= const_binop (PLUS_EXPR
, i2
,
1471 const_binop (MULT_EXPR
, r2
, ratio
));
1472 real
= const_binop (MULT_EXPR
, r1
, ratio
);
1473 real
= const_binop (PLUS_EXPR
, real
, i1
);
1474 real
= const_binop (code
, real
, div
);
1476 imag
= const_binop (MULT_EXPR
, i1
, ratio
);
1477 imag
= const_binop (MINUS_EXPR
, imag
, r1
);
1478 imag
= const_binop (code
, imag
, div
);
1482 /* In the FALSE branch, we compute
1484 divisor = (d * ratio) + c;
1485 tr = (b * ratio) + a;
1486 ti = b - (a * ratio);
1489 tree ratio
= const_binop (code
, i2
, r2
);
1490 tree div
= const_binop (PLUS_EXPR
, r2
,
1491 const_binop (MULT_EXPR
, i2
, ratio
));
1493 real
= const_binop (MULT_EXPR
, i1
, ratio
);
1494 real
= const_binop (PLUS_EXPR
, real
, r1
);
1495 real
= const_binop (code
, real
, div
);
1497 imag
= const_binop (MULT_EXPR
, r1
, ratio
);
1498 imag
= const_binop (MINUS_EXPR
, i1
, imag
);
1499 imag
= const_binop (code
, imag
, div
);
1509 return build_complex (type
, real
, imag
);
1512 if (TREE_CODE (arg1
) == VECTOR_CST
1513 && TREE_CODE (arg2
) == VECTOR_CST
1514 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)),
1515 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2
))))
1517 tree type
= TREE_TYPE (arg1
);
1519 if (VECTOR_CST_STEPPED_P (arg1
)
1520 && VECTOR_CST_STEPPED_P (arg2
))
1521 /* We can operate directly on the encoding if:
1523 a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1
1525 (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1)
1527 Addition and subtraction are the supported operators
1528 for which this is true. */
1529 step_ok_p
= (code
== PLUS_EXPR
|| code
== MINUS_EXPR
);
1530 else if (VECTOR_CST_STEPPED_P (arg1
))
1531 /* We can operate directly on stepped encodings if:
1535 (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c)
1537 which is true if (x -> x op c) distributes over addition. */
1538 step_ok_p
= distributes_over_addition_p (code
, 1);
1540 /* Similarly in reverse. */
1541 step_ok_p
= distributes_over_addition_p (code
, 2);
1542 tree_vector_builder elts
;
1543 if (!elts
.new_binary_operation (type
, arg1
, arg2
, step_ok_p
))
1545 unsigned int count
= elts
.encoded_nelts ();
1546 for (unsigned int i
= 0; i
< count
; ++i
)
1548 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1549 tree elem2
= VECTOR_CST_ELT (arg2
, i
);
1551 tree elt
= const_binop (code
, elem1
, elem2
);
1553 /* It is possible that const_binop cannot handle the given
1554 code and return NULL_TREE */
1555 if (elt
== NULL_TREE
)
1557 elts
.quick_push (elt
);
1560 return elts
.build ();
1563 /* Shifts allow a scalar offset for a vector. */
1564 if (TREE_CODE (arg1
) == VECTOR_CST
1565 && TREE_CODE (arg2
) == INTEGER_CST
)
1567 tree type
= TREE_TYPE (arg1
);
1568 bool step_ok_p
= distributes_over_addition_p (code
, 1);
1569 tree_vector_builder elts
;
1570 if (!elts
.new_unary_operation (type
, arg1
, step_ok_p
))
1572 unsigned int count
= elts
.encoded_nelts ();
1573 for (unsigned int i
= 0; i
< count
; ++i
)
1575 tree elem1
= VECTOR_CST_ELT (arg1
, i
);
1577 tree elt
= const_binop (code
, elem1
, arg2
);
1579 /* It is possible that const_binop cannot handle the given
1580 code and return NULL_TREE. */
1581 if (elt
== NULL_TREE
)
1583 elts
.quick_push (elt
);
1586 return elts
.build ();
1591 /* Overload that adds a TYPE parameter to be able to dispatch
1592 to fold_relational_const. */
1595 const_binop (enum tree_code code
, tree type
, tree arg1
, tree arg2
)
1597 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
1598 return fold_relational_const (code
, type
, arg1
, arg2
);
1600 /* ??? Until we make the const_binop worker take the type of the
1601 result as argument put those cases that need it here. */
1604 case VEC_SERIES_EXPR
:
1605 if (CONSTANT_CLASS_P (arg1
)
1606 && CONSTANT_CLASS_P (arg2
))
1607 return build_vec_series (type
, arg1
, arg2
);
1611 if ((TREE_CODE (arg1
) == REAL_CST
1612 && TREE_CODE (arg2
) == REAL_CST
)
1613 || (TREE_CODE (arg1
) == INTEGER_CST
1614 && TREE_CODE (arg2
) == INTEGER_CST
))
1615 return build_complex (type
, arg1
, arg2
);
1618 case POINTER_DIFF_EXPR
:
1619 if (poly_int_tree_p (arg1
) && poly_int_tree_p (arg2
))
1621 poly_offset_int res
= (wi::to_poly_offset (arg1
)
1622 - wi::to_poly_offset (arg2
));
1623 return force_fit_type (type
, res
, 1,
1624 TREE_OVERFLOW (arg1
) | TREE_OVERFLOW (arg2
));
1628 case VEC_PACK_TRUNC_EXPR
:
1629 case VEC_PACK_FIX_TRUNC_EXPR
:
1630 case VEC_PACK_FLOAT_EXPR
:
1632 unsigned int HOST_WIDE_INT out_nelts
, in_nelts
, i
;
1634 if (TREE_CODE (arg1
) != VECTOR_CST
1635 || TREE_CODE (arg2
) != VECTOR_CST
)
1638 if (!VECTOR_CST_NELTS (arg1
).is_constant (&in_nelts
))
1641 out_nelts
= in_nelts
* 2;
1642 gcc_assert (known_eq (in_nelts
, VECTOR_CST_NELTS (arg2
))
1643 && known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1645 tree_vector_builder
elts (type
, out_nelts
, 1);
1646 for (i
= 0; i
< out_nelts
; i
++)
1648 tree elt
= (i
< in_nelts
1649 ? VECTOR_CST_ELT (arg1
, i
)
1650 : VECTOR_CST_ELT (arg2
, i
- in_nelts
));
1651 elt
= fold_convert_const (code
== VEC_PACK_TRUNC_EXPR
1653 : code
== VEC_PACK_FLOAT_EXPR
1654 ? FLOAT_EXPR
: FIX_TRUNC_EXPR
,
1655 TREE_TYPE (type
), elt
);
1656 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1658 elts
.quick_push (elt
);
1661 return elts
.build ();
1664 case VEC_WIDEN_MULT_LO_EXPR
:
1665 case VEC_WIDEN_MULT_HI_EXPR
:
1666 case VEC_WIDEN_MULT_EVEN_EXPR
:
1667 case VEC_WIDEN_MULT_ODD_EXPR
:
1669 unsigned HOST_WIDE_INT out_nelts
, in_nelts
, out
, ofs
, scale
;
1671 if (TREE_CODE (arg1
) != VECTOR_CST
|| TREE_CODE (arg2
) != VECTOR_CST
)
1674 if (!VECTOR_CST_NELTS (arg1
).is_constant (&in_nelts
))
1676 out_nelts
= in_nelts
/ 2;
1677 gcc_assert (known_eq (in_nelts
, VECTOR_CST_NELTS (arg2
))
1678 && known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1680 if (code
== VEC_WIDEN_MULT_LO_EXPR
)
1681 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? out_nelts
: 0;
1682 else if (code
== VEC_WIDEN_MULT_HI_EXPR
)
1683 scale
= 0, ofs
= BYTES_BIG_ENDIAN
? 0 : out_nelts
;
1684 else if (code
== VEC_WIDEN_MULT_EVEN_EXPR
)
1686 else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */
1689 tree_vector_builder
elts (type
, out_nelts
, 1);
1690 for (out
= 0; out
< out_nelts
; out
++)
1692 unsigned int in
= (out
<< scale
) + ofs
;
1693 tree t1
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
),
1694 VECTOR_CST_ELT (arg1
, in
));
1695 tree t2
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
),
1696 VECTOR_CST_ELT (arg2
, in
));
1698 if (t1
== NULL_TREE
|| t2
== NULL_TREE
)
1700 tree elt
= const_binop (MULT_EXPR
, t1
, t2
);
1701 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1703 elts
.quick_push (elt
);
1706 return elts
.build ();
1712 if (TREE_CODE_CLASS (code
) != tcc_binary
)
1715 /* Make sure type and arg0 have the same saturating flag. */
1716 gcc_checking_assert (TYPE_SATURATING (type
)
1717 == TYPE_SATURATING (TREE_TYPE (arg1
)));
1719 return const_binop (code
, arg1
, arg2
);
1722 /* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant.
1723 Return zero if computing the constants is not possible. */
1726 const_unop (enum tree_code code
, tree type
, tree arg0
)
1728 /* Don't perform the operation, other than NEGATE and ABS, if
1729 flag_signaling_nans is on and the operand is a signaling NaN. */
1730 if (TREE_CODE (arg0
) == REAL_CST
1731 && HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0
)))
1732 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0
))
1733 && code
!= NEGATE_EXPR
1735 && code
!= ABSU_EXPR
)
1742 case FIX_TRUNC_EXPR
:
1743 case FIXED_CONVERT_EXPR
:
1744 return fold_convert_const (code
, type
, arg0
);
1746 case ADDR_SPACE_CONVERT_EXPR
:
1747 /* If the source address is 0, and the source address space
1748 cannot have a valid object at 0, fold to dest type null. */
1749 if (integer_zerop (arg0
)
1750 && !(targetm
.addr_space
.zero_address_valid
1751 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
))))))
1752 return fold_convert_const (code
, type
, arg0
);
1755 case VIEW_CONVERT_EXPR
:
1756 return fold_view_convert_expr (type
, arg0
);
1760 /* Can't call fold_negate_const directly here as that doesn't
1761 handle all cases and we might not be able to negate some
1763 tree tem
= fold_negate_expr (UNKNOWN_LOCATION
, arg0
);
1764 if (tem
&& CONSTANT_CLASS_P (tem
))
1771 if (TREE_CODE (arg0
) == INTEGER_CST
|| TREE_CODE (arg0
) == REAL_CST
)
1772 return fold_abs_const (arg0
, type
);
1776 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1778 tree ipart
= fold_negate_const (TREE_IMAGPART (arg0
),
1780 return build_complex (type
, TREE_REALPART (arg0
), ipart
);
1785 if (TREE_CODE (arg0
) == INTEGER_CST
)
1786 return fold_not_const (arg0
, type
);
1787 else if (POLY_INT_CST_P (arg0
))
1788 return wide_int_to_tree (type
, -poly_int_cst_value (arg0
));
1789 /* Perform BIT_NOT_EXPR on each element individually. */
1790 else if (TREE_CODE (arg0
) == VECTOR_CST
)
1794 /* This can cope with stepped encodings because ~x == -1 - x. */
1795 tree_vector_builder elements
;
1796 elements
.new_unary_operation (type
, arg0
, true);
1797 unsigned int i
, count
= elements
.encoded_nelts ();
1798 for (i
= 0; i
< count
; ++i
)
1800 elem
= VECTOR_CST_ELT (arg0
, i
);
1801 elem
= const_unop (BIT_NOT_EXPR
, TREE_TYPE (type
), elem
);
1802 if (elem
== NULL_TREE
)
1804 elements
.quick_push (elem
);
1807 return elements
.build ();
1811 case TRUTH_NOT_EXPR
:
1812 if (TREE_CODE (arg0
) == INTEGER_CST
)
1813 return constant_boolean_node (integer_zerop (arg0
), type
);
1817 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1818 return fold_convert (type
, TREE_REALPART (arg0
));
1822 if (TREE_CODE (arg0
) == COMPLEX_CST
)
1823 return fold_convert (type
, TREE_IMAGPART (arg0
));
1826 case VEC_UNPACK_LO_EXPR
:
1827 case VEC_UNPACK_HI_EXPR
:
1828 case VEC_UNPACK_FLOAT_LO_EXPR
:
1829 case VEC_UNPACK_FLOAT_HI_EXPR
:
1830 case VEC_UNPACK_FIX_TRUNC_LO_EXPR
:
1831 case VEC_UNPACK_FIX_TRUNC_HI_EXPR
:
1833 unsigned HOST_WIDE_INT out_nelts
, in_nelts
, i
;
1834 enum tree_code subcode
;
1836 if (TREE_CODE (arg0
) != VECTOR_CST
)
1839 if (!VECTOR_CST_NELTS (arg0
).is_constant (&in_nelts
))
1841 out_nelts
= in_nelts
/ 2;
1842 gcc_assert (known_eq (out_nelts
, TYPE_VECTOR_SUBPARTS (type
)));
1844 unsigned int offset
= 0;
1845 if ((!BYTES_BIG_ENDIAN
) ^ (code
== VEC_UNPACK_LO_EXPR
1846 || code
== VEC_UNPACK_FLOAT_LO_EXPR
1847 || code
== VEC_UNPACK_FIX_TRUNC_LO_EXPR
))
1850 if (code
== VEC_UNPACK_LO_EXPR
|| code
== VEC_UNPACK_HI_EXPR
)
1852 else if (code
== VEC_UNPACK_FLOAT_LO_EXPR
1853 || code
== VEC_UNPACK_FLOAT_HI_EXPR
)
1854 subcode
= FLOAT_EXPR
;
1856 subcode
= FIX_TRUNC_EXPR
;
1858 tree_vector_builder
elts (type
, out_nelts
, 1);
1859 for (i
= 0; i
< out_nelts
; i
++)
1861 tree elt
= fold_convert_const (subcode
, TREE_TYPE (type
),
1862 VECTOR_CST_ELT (arg0
, i
+ offset
));
1863 if (elt
== NULL_TREE
|| !CONSTANT_CLASS_P (elt
))
1865 elts
.quick_push (elt
);
1868 return elts
.build ();
1871 case VEC_DUPLICATE_EXPR
:
1872 if (CONSTANT_CLASS_P (arg0
))
1873 return build_vector_from_val (type
, arg0
);
1883 /* Create a sizetype INT_CST node with NUMBER sign extended. KIND
1884 indicates which particular sizetype to create. */
1887 size_int_kind (poly_int64 number
, enum size_type_kind kind
)
1889 return build_int_cst (sizetype_tab
[(int) kind
], number
);
1892 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
1893 is a tree code. The type of the result is taken from the operands.
1894 Both must be equivalent integer types, ala int_binop_types_match_p.
1895 If the operands are constant, so is the result. */
1898 size_binop_loc (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
)
1900 tree type
= TREE_TYPE (arg0
);
1902 if (arg0
== error_mark_node
|| arg1
== error_mark_node
)
1903 return error_mark_node
;
1905 gcc_assert (int_binop_types_match_p (code
, TREE_TYPE (arg0
),
1908 /* Handle the special case of two poly_int constants faster. */
1909 if (poly_int_tree_p (arg0
) && poly_int_tree_p (arg1
))
1911 /* And some specific cases even faster than that. */
1912 if (code
== PLUS_EXPR
)
1914 if (integer_zerop (arg0
)
1915 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0
)))
1917 if (integer_zerop (arg1
)
1918 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1
)))
1921 else if (code
== MINUS_EXPR
)
1923 if (integer_zerop (arg1
)
1924 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1
)))
1927 else if (code
== MULT_EXPR
)
1929 if (integer_onep (arg0
)
1930 && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0
)))
1934 /* Handle general case of two integer constants. For sizetype
1935 constant calculations we always want to know about overflow,
1936 even in the unsigned case. */
1937 tree res
= int_const_binop (code
, arg0
, arg1
, -1);
1938 if (res
!= NULL_TREE
)
1942 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
1945 /* Given two values, either both of sizetype or both of bitsizetype,
1946 compute the difference between the two values. Return the value
1947 in signed type corresponding to the type of the operands. */
1950 size_diffop_loc (location_t loc
, tree arg0
, tree arg1
)
1952 tree type
= TREE_TYPE (arg0
);
1955 gcc_assert (int_binop_types_match_p (MINUS_EXPR
, TREE_TYPE (arg0
),
1958 /* If the type is already signed, just do the simple thing. */
1959 if (!TYPE_UNSIGNED (type
))
1960 return size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
);
1962 if (type
== sizetype
)
1964 else if (type
== bitsizetype
)
1965 ctype
= sbitsizetype
;
1967 ctype
= signed_type_for (type
);
1969 /* If either operand is not a constant, do the conversions to the signed
1970 type and subtract. The hardware will do the right thing with any
1971 overflow in the subtraction. */
1972 if (TREE_CODE (arg0
) != INTEGER_CST
|| TREE_CODE (arg1
) != INTEGER_CST
)
1973 return size_binop_loc (loc
, MINUS_EXPR
,
1974 fold_convert_loc (loc
, ctype
, arg0
),
1975 fold_convert_loc (loc
, ctype
, arg1
));
1977 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
1978 Otherwise, subtract the other way, convert to CTYPE (we know that can't
1979 overflow) and negate (which can't either). Special-case a result
1980 of zero while we're here. */
1981 if (tree_int_cst_equal (arg0
, arg1
))
1982 return build_int_cst (ctype
, 0);
1983 else if (tree_int_cst_lt (arg1
, arg0
))
1984 return fold_convert_loc (loc
, ctype
,
1985 size_binop_loc (loc
, MINUS_EXPR
, arg0
, arg1
));
1987 return size_binop_loc (loc
, MINUS_EXPR
, build_int_cst (ctype
, 0),
1988 fold_convert_loc (loc
, ctype
,
1989 size_binop_loc (loc
,
1994 /* A subroutine of fold_convert_const handling conversions of an
1995 INTEGER_CST to another integer type. */
1998 fold_convert_const_int_from_int (tree type
, const_tree arg1
)
2000 /* Given an integer constant, make new constant with new type,
2001 appropriately sign-extended or truncated. Use widest_int
2002 so that any extension is done according ARG1's type. */
2003 return force_fit_type (type
, wi::to_widest (arg1
),
2004 !POINTER_TYPE_P (TREE_TYPE (arg1
)),
2005 TREE_OVERFLOW (arg1
));
2008 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2009 to an integer type. */
2012 fold_convert_const_int_from_real (enum tree_code code
, tree type
, const_tree arg1
)
2014 bool overflow
= false;
2017 /* The following code implements the floating point to integer
2018 conversion rules required by the Java Language Specification,
2019 that IEEE NaNs are mapped to zero and values that overflow
2020 the target precision saturate, i.e. values greater than
2021 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2022 are mapped to INT_MIN. These semantics are allowed by the
2023 C and C++ standards that simply state that the behavior of
2024 FP-to-integer conversion is unspecified upon overflow. */
2028 REAL_VALUE_TYPE x
= TREE_REAL_CST (arg1
);
2032 case FIX_TRUNC_EXPR
:
2033 real_trunc (&r
, VOIDmode
, &x
);
2040 /* If R is NaN, return zero and show we have an overflow. */
2041 if (REAL_VALUE_ISNAN (r
))
2044 val
= wi::zero (TYPE_PRECISION (type
));
2047 /* See if R is less than the lower bound or greater than the
2052 tree lt
= TYPE_MIN_VALUE (type
);
2053 REAL_VALUE_TYPE l
= real_value_from_int_cst (NULL_TREE
, lt
);
2054 if (real_less (&r
, &l
))
2057 val
= wi::to_wide (lt
);
2063 tree ut
= TYPE_MAX_VALUE (type
);
2066 REAL_VALUE_TYPE u
= real_value_from_int_cst (NULL_TREE
, ut
);
2067 if (real_less (&u
, &r
))
2070 val
= wi::to_wide (ut
);
2076 val
= real_to_integer (&r
, &overflow
, TYPE_PRECISION (type
));
2078 t
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (arg1
));
2082 /* A subroutine of fold_convert_const handling conversions of a
2083 FIXED_CST to an integer type. */
2086 fold_convert_const_int_from_fixed (tree type
, const_tree arg1
)
2089 double_int temp
, temp_trunc
;
2092 /* Right shift FIXED_CST to temp by fbit. */
2093 temp
= TREE_FIXED_CST (arg1
).data
;
2094 mode
= TREE_FIXED_CST (arg1
).mode
;
2095 if (GET_MODE_FBIT (mode
) < HOST_BITS_PER_DOUBLE_INT
)
2097 temp
= temp
.rshift (GET_MODE_FBIT (mode
),
2098 HOST_BITS_PER_DOUBLE_INT
,
2099 SIGNED_FIXED_POINT_MODE_P (mode
));
2101 /* Left shift temp to temp_trunc by fbit. */
2102 temp_trunc
= temp
.lshift (GET_MODE_FBIT (mode
),
2103 HOST_BITS_PER_DOUBLE_INT
,
2104 SIGNED_FIXED_POINT_MODE_P (mode
));
2108 temp
= double_int_zero
;
2109 temp_trunc
= double_int_zero
;
2112 /* If FIXED_CST is negative, we need to round the value toward 0.
2113 By checking if the fractional bits are not zero to add 1 to temp. */
2114 if (SIGNED_FIXED_POINT_MODE_P (mode
)
2115 && temp_trunc
.is_negative ()
2116 && TREE_FIXED_CST (arg1
).data
!= temp_trunc
)
2117 temp
+= double_int_one
;
2119 /* Given a fixed-point constant, make new constant with new type,
2120 appropriately sign-extended or truncated. */
2121 t
= force_fit_type (type
, temp
, -1,
2122 (temp
.is_negative ()
2123 && (TYPE_UNSIGNED (type
)
2124 < TYPE_UNSIGNED (TREE_TYPE (arg1
))))
2125 | TREE_OVERFLOW (arg1
));
2130 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2131 to another floating point type. */
2134 fold_convert_const_real_from_real (tree type
, const_tree arg1
)
2136 REAL_VALUE_TYPE value
;
2139 /* Don't perform the operation if flag_signaling_nans is on
2140 and the operand is a signaling NaN. */
2141 if (HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1
)))
2142 && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1
)))
2145 real_convert (&value
, TYPE_MODE (type
), &TREE_REAL_CST (arg1
));
2146 t
= build_real (type
, value
);
2148 /* If converting an infinity or NAN to a representation that doesn't
2149 have one, set the overflow bit so that we can produce some kind of
2150 error message at the appropriate point if necessary. It's not the
2151 most user-friendly message, but it's better than nothing. */
2152 if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1
))
2153 && !MODE_HAS_INFINITIES (TYPE_MODE (type
)))
2154 TREE_OVERFLOW (t
) = 1;
2155 else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1
))
2156 && !MODE_HAS_NANS (TYPE_MODE (type
)))
2157 TREE_OVERFLOW (t
) = 1;
2158 /* Regular overflow, conversion produced an infinity in a mode that
2159 can't represent them. */
2160 else if (!MODE_HAS_INFINITIES (TYPE_MODE (type
))
2161 && REAL_VALUE_ISINF (value
)
2162 && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1
)))
2163 TREE_OVERFLOW (t
) = 1;
2165 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2169 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2170 to a floating point type. */
2173 fold_convert_const_real_from_fixed (tree type
, const_tree arg1
)
2175 REAL_VALUE_TYPE value
;
2178 real_convert_from_fixed (&value
, SCALAR_FLOAT_TYPE_MODE (type
),
2179 &TREE_FIXED_CST (arg1
));
2180 t
= build_real (type
, value
);
2182 TREE_OVERFLOW (t
) = TREE_OVERFLOW (arg1
);
2186 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2187 to another fixed-point type. */
2190 fold_convert_const_fixed_from_fixed (tree type
, const_tree arg1
)
2192 FIXED_VALUE_TYPE value
;
2196 overflow_p
= fixed_convert (&value
, SCALAR_TYPE_MODE (type
),
2197 &TREE_FIXED_CST (arg1
), TYPE_SATURATING (type
));
2198 t
= build_fixed (type
, value
);
2200 /* Propagate overflow flags. */
2201 if (overflow_p
| TREE_OVERFLOW (arg1
))
2202 TREE_OVERFLOW (t
) = 1;
2206 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2207 to a fixed-point type. */
2210 fold_convert_const_fixed_from_int (tree type
, const_tree arg1
)
2212 FIXED_VALUE_TYPE value
;
2217 gcc_assert (TREE_INT_CST_NUNITS (arg1
) <= 2);
2219 di
.low
= TREE_INT_CST_ELT (arg1
, 0);
2220 if (TREE_INT_CST_NUNITS (arg1
) == 1)
2221 di
.high
= (HOST_WIDE_INT
) di
.low
< 0 ? HOST_WIDE_INT_M1
: 0;
2223 di
.high
= TREE_INT_CST_ELT (arg1
, 1);
2225 overflow_p
= fixed_convert_from_int (&value
, SCALAR_TYPE_MODE (type
), di
,
2226 TYPE_UNSIGNED (TREE_TYPE (arg1
)),
2227 TYPE_SATURATING (type
));
2228 t
= build_fixed (type
, value
);
2230 /* Propagate overflow flags. */
2231 if (overflow_p
| TREE_OVERFLOW (arg1
))
2232 TREE_OVERFLOW (t
) = 1;
2236 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2237 to a fixed-point type. */
2240 fold_convert_const_fixed_from_real (tree type
, const_tree arg1
)
2242 FIXED_VALUE_TYPE value
;
2246 overflow_p
= fixed_convert_from_real (&value
, SCALAR_TYPE_MODE (type
),
2247 &TREE_REAL_CST (arg1
),
2248 TYPE_SATURATING (type
));
2249 t
= build_fixed (type
, value
);
2251 /* Propagate overflow flags. */
2252 if (overflow_p
| TREE_OVERFLOW (arg1
))
2253 TREE_OVERFLOW (t
) = 1;
2257 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2258 type TYPE. If no simplification can be done return NULL_TREE. */
2261 fold_convert_const (enum tree_code code
, tree type
, tree arg1
)
2263 tree arg_type
= TREE_TYPE (arg1
);
2264 if (arg_type
== type
)
2267 /* We can't widen types, since the runtime value could overflow the
2268 original type before being extended to the new type. */
2269 if (POLY_INT_CST_P (arg1
)
2270 && (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
))
2271 && TYPE_PRECISION (type
) <= TYPE_PRECISION (arg_type
))
2272 return build_poly_int_cst (type
,
2273 poly_wide_int::from (poly_int_cst_value (arg1
),
2274 TYPE_PRECISION (type
),
2275 TYPE_SIGN (arg_type
)));
2277 if (POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
)
2278 || TREE_CODE (type
) == OFFSET_TYPE
)
2280 if (TREE_CODE (arg1
) == INTEGER_CST
)
2281 return fold_convert_const_int_from_int (type
, arg1
);
2282 else if (TREE_CODE (arg1
) == REAL_CST
)
2283 return fold_convert_const_int_from_real (code
, type
, arg1
);
2284 else if (TREE_CODE (arg1
) == FIXED_CST
)
2285 return fold_convert_const_int_from_fixed (type
, arg1
);
2287 else if (TREE_CODE (type
) == REAL_TYPE
)
2289 if (TREE_CODE (arg1
) == INTEGER_CST
)
2290 return build_real_from_int_cst (type
, arg1
);
2291 else if (TREE_CODE (arg1
) == REAL_CST
)
2292 return fold_convert_const_real_from_real (type
, arg1
);
2293 else if (TREE_CODE (arg1
) == FIXED_CST
)
2294 return fold_convert_const_real_from_fixed (type
, arg1
);
2296 else if (TREE_CODE (type
) == FIXED_POINT_TYPE
)
2298 if (TREE_CODE (arg1
) == FIXED_CST
)
2299 return fold_convert_const_fixed_from_fixed (type
, arg1
);
2300 else if (TREE_CODE (arg1
) == INTEGER_CST
)
2301 return fold_convert_const_fixed_from_int (type
, arg1
);
2302 else if (TREE_CODE (arg1
) == REAL_CST
)
2303 return fold_convert_const_fixed_from_real (type
, arg1
);
2305 else if (TREE_CODE (type
) == VECTOR_TYPE
)
2307 if (TREE_CODE (arg1
) == VECTOR_CST
2308 && known_eq (TYPE_VECTOR_SUBPARTS (type
), VECTOR_CST_NELTS (arg1
)))
2310 tree elttype
= TREE_TYPE (type
);
2311 tree arg1_elttype
= TREE_TYPE (TREE_TYPE (arg1
));
2312 /* We can't handle steps directly when extending, since the
2313 values need to wrap at the original precision first. */
2315 = (INTEGRAL_TYPE_P (elttype
)
2316 && INTEGRAL_TYPE_P (arg1_elttype
)
2317 && TYPE_PRECISION (elttype
) <= TYPE_PRECISION (arg1_elttype
));
2318 tree_vector_builder v
;
2319 if (!v
.new_unary_operation (type
, arg1
, step_ok_p
))
2321 unsigned int len
= v
.encoded_nelts ();
2322 for (unsigned int i
= 0; i
< len
; ++i
)
2324 tree elt
= VECTOR_CST_ELT (arg1
, i
);
2325 tree cvt
= fold_convert_const (code
, elttype
, elt
);
2326 if (cvt
== NULL_TREE
)
2336 /* Construct a vector of zero elements of vector type TYPE. */
2339 build_zero_vector (tree type
)
2343 t
= fold_convert_const (NOP_EXPR
, TREE_TYPE (type
), integer_zero_node
);
2344 return build_vector_from_val (type
, t
);
2347 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2350 fold_convertible_p (const_tree type
, const_tree arg
)
2352 tree orig
= TREE_TYPE (arg
);
2357 if (TREE_CODE (arg
) == ERROR_MARK
2358 || TREE_CODE (type
) == ERROR_MARK
2359 || TREE_CODE (orig
) == ERROR_MARK
)
2362 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2365 switch (TREE_CODE (type
))
2367 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2368 case POINTER_TYPE
: case REFERENCE_TYPE
:
2370 return (INTEGRAL_TYPE_P (orig
)
2371 || (POINTER_TYPE_P (orig
)
2372 && TYPE_PRECISION (type
) <= TYPE_PRECISION (orig
))
2373 || TREE_CODE (orig
) == OFFSET_TYPE
);
2376 case FIXED_POINT_TYPE
:
2379 return TREE_CODE (type
) == TREE_CODE (orig
);
2386 /* Convert expression ARG to type TYPE. Used by the middle-end for
2387 simple conversions in preference to calling the front-end's convert. */
2390 fold_convert_loc (location_t loc
, tree type
, tree arg
)
2392 tree orig
= TREE_TYPE (arg
);
2398 if (TREE_CODE (arg
) == ERROR_MARK
2399 || TREE_CODE (type
) == ERROR_MARK
2400 || TREE_CODE (orig
) == ERROR_MARK
)
2401 return error_mark_node
;
2403 switch (TREE_CODE (type
))
2406 case REFERENCE_TYPE
:
2407 /* Handle conversions between pointers to different address spaces. */
2408 if (POINTER_TYPE_P (orig
)
2409 && (TYPE_ADDR_SPACE (TREE_TYPE (type
))
2410 != TYPE_ADDR_SPACE (TREE_TYPE (orig
))))
2411 return fold_build1_loc (loc
, ADDR_SPACE_CONVERT_EXPR
, type
, arg
);
2414 case INTEGER_TYPE
: case ENUMERAL_TYPE
: case BOOLEAN_TYPE
:
2416 if (TREE_CODE (arg
) == INTEGER_CST
)
2418 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2419 if (tem
!= NULL_TREE
)
2422 if (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2423 || TREE_CODE (orig
) == OFFSET_TYPE
)
2424 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2425 if (TREE_CODE (orig
) == COMPLEX_TYPE
)
2426 return fold_convert_loc (loc
, type
,
2427 fold_build1_loc (loc
, REALPART_EXPR
,
2428 TREE_TYPE (orig
), arg
));
2429 gcc_assert (TREE_CODE (orig
) == VECTOR_TYPE
2430 && tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2431 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2434 if (TREE_CODE (arg
) == INTEGER_CST
)
2436 tem
= fold_convert_const (FLOAT_EXPR
, type
, arg
);
2437 if (tem
!= NULL_TREE
)
2440 else if (TREE_CODE (arg
) == REAL_CST
)
2442 tem
= fold_convert_const (NOP_EXPR
, type
, arg
);
2443 if (tem
!= NULL_TREE
)
2446 else if (TREE_CODE (arg
) == FIXED_CST
)
2448 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2449 if (tem
!= NULL_TREE
)
2453 switch (TREE_CODE (orig
))
2456 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2457 case POINTER_TYPE
: case REFERENCE_TYPE
:
2458 return fold_build1_loc (loc
, FLOAT_EXPR
, type
, arg
);
2461 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2463 case FIXED_POINT_TYPE
:
2464 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2467 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2468 return fold_convert_loc (loc
, type
, tem
);
2474 case FIXED_POINT_TYPE
:
2475 if (TREE_CODE (arg
) == FIXED_CST
|| TREE_CODE (arg
) == INTEGER_CST
2476 || TREE_CODE (arg
) == REAL_CST
)
2478 tem
= fold_convert_const (FIXED_CONVERT_EXPR
, type
, arg
);
2479 if (tem
!= NULL_TREE
)
2480 goto fold_convert_exit
;
2483 switch (TREE_CODE (orig
))
2485 case FIXED_POINT_TYPE
:
2490 return fold_build1_loc (loc
, FIXED_CONVERT_EXPR
, type
, arg
);
2493 tem
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2494 return fold_convert_loc (loc
, type
, tem
);
2501 switch (TREE_CODE (orig
))
2504 case BOOLEAN_TYPE
: case ENUMERAL_TYPE
:
2505 case POINTER_TYPE
: case REFERENCE_TYPE
:
2507 case FIXED_POINT_TYPE
:
2508 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
2509 fold_convert_loc (loc
, TREE_TYPE (type
), arg
),
2510 fold_convert_loc (loc
, TREE_TYPE (type
),
2511 integer_zero_node
));
2516 if (TREE_CODE (arg
) == COMPLEX_EXPR
)
2518 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2519 TREE_OPERAND (arg
, 0));
2520 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
),
2521 TREE_OPERAND (arg
, 1));
2522 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2525 arg
= save_expr (arg
);
2526 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, TREE_TYPE (orig
), arg
);
2527 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, TREE_TYPE (orig
), arg
);
2528 rpart
= fold_convert_loc (loc
, TREE_TYPE (type
), rpart
);
2529 ipart
= fold_convert_loc (loc
, TREE_TYPE (type
), ipart
);
2530 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rpart
, ipart
);
2538 if (integer_zerop (arg
))
2539 return build_zero_vector (type
);
2540 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (orig
)));
2541 gcc_assert (INTEGRAL_TYPE_P (orig
) || POINTER_TYPE_P (orig
)
2542 || TREE_CODE (orig
) == VECTOR_TYPE
);
2543 return fold_build1_loc (loc
, VIEW_CONVERT_EXPR
, type
, arg
);
2546 tem
= fold_ignored_result (arg
);
2547 return fold_build1_loc (loc
, NOP_EXPR
, type
, tem
);
2550 if (TYPE_MAIN_VARIANT (type
) == TYPE_MAIN_VARIANT (orig
))
2551 return fold_build1_loc (loc
, NOP_EXPR
, type
, arg
);
2555 protected_set_expr_location_unshare (tem
, loc
);
2559 /* Return false if expr can be assumed not to be an lvalue, true
2563 maybe_lvalue_p (const_tree x
)
2565 /* We only need to wrap lvalue tree codes. */
2566 switch (TREE_CODE (x
))
2579 case ARRAY_RANGE_REF
:
2585 case PREINCREMENT_EXPR
:
2586 case PREDECREMENT_EXPR
:
2588 case TRY_CATCH_EXPR
:
2589 case WITH_CLEANUP_EXPR
:
2598 /* Assume the worst for front-end tree codes. */
2599 if ((int)TREE_CODE (x
) >= NUM_TREE_CODES
)
2607 /* Return an expr equal to X but certainly not valid as an lvalue. */
2610 non_lvalue_loc (location_t loc
, tree x
)
2612 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2617 if (! maybe_lvalue_p (x
))
2619 return build1_loc (loc
, NON_LVALUE_EXPR
, TREE_TYPE (x
), x
);
2622 /* When pedantic, return an expr equal to X but certainly not valid as a
2623 pedantic lvalue. Otherwise, return X. */
2626 pedantic_non_lvalue_loc (location_t loc
, tree x
)
2628 return protected_set_expr_location_unshare (x
, loc
);
2631 /* Given a tree comparison code, return the code that is the logical inverse.
2632 It is generally not safe to do this for floating-point comparisons, except
2633 for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return
2634 ERROR_MARK in this case. */
2637 invert_tree_comparison (enum tree_code code
, bool honor_nans
)
2639 if (honor_nans
&& flag_trapping_math
&& code
!= EQ_EXPR
&& code
!= NE_EXPR
2640 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
)
2650 return honor_nans
? UNLE_EXPR
: LE_EXPR
;
2652 return honor_nans
? UNLT_EXPR
: LT_EXPR
;
2654 return honor_nans
? UNGE_EXPR
: GE_EXPR
;
2656 return honor_nans
? UNGT_EXPR
: GT_EXPR
;
2670 return UNORDERED_EXPR
;
2671 case UNORDERED_EXPR
:
2672 return ORDERED_EXPR
;
2678 /* Similar, but return the comparison that results if the operands are
2679 swapped. This is safe for floating-point. */
2682 swap_tree_comparison (enum tree_code code
)
2689 case UNORDERED_EXPR
:
2715 /* Convert a comparison tree code from an enum tree_code representation
2716 into a compcode bit-based encoding. This function is the inverse of
2717 compcode_to_comparison. */
2719 static enum comparison_code
2720 comparison_to_compcode (enum tree_code code
)
2737 return COMPCODE_ORD
;
2738 case UNORDERED_EXPR
:
2739 return COMPCODE_UNORD
;
2741 return COMPCODE_UNLT
;
2743 return COMPCODE_UNEQ
;
2745 return COMPCODE_UNLE
;
2747 return COMPCODE_UNGT
;
2749 return COMPCODE_LTGT
;
2751 return COMPCODE_UNGE
;
2757 /* Convert a compcode bit-based encoding of a comparison operator back
2758 to GCC's enum tree_code representation. This function is the
2759 inverse of comparison_to_compcode. */
2761 static enum tree_code
2762 compcode_to_comparison (enum comparison_code code
)
2779 return ORDERED_EXPR
;
2780 case COMPCODE_UNORD
:
2781 return UNORDERED_EXPR
;
2799 /* Return true if COND1 tests the opposite condition of COND2. */
2802 inverse_conditions_p (const_tree cond1
, const_tree cond2
)
2804 return (COMPARISON_CLASS_P (cond1
)
2805 && COMPARISON_CLASS_P (cond2
)
2806 && (invert_tree_comparison
2808 HONOR_NANS (TREE_OPERAND (cond1
, 0))) == TREE_CODE (cond2
))
2809 && operand_equal_p (TREE_OPERAND (cond1
, 0),
2810 TREE_OPERAND (cond2
, 0), 0)
2811 && operand_equal_p (TREE_OPERAND (cond1
, 1),
2812 TREE_OPERAND (cond2
, 1), 0));
2815 /* Return a tree for the comparison which is the combination of
2816 doing the AND or OR (depending on CODE) of the two operations LCODE
2817 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2818 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2819 if this makes the transformation invalid. */
2822 combine_comparisons (location_t loc
,
2823 enum tree_code code
, enum tree_code lcode
,
2824 enum tree_code rcode
, tree truth_type
,
2825 tree ll_arg
, tree lr_arg
)
2827 bool honor_nans
= HONOR_NANS (ll_arg
);
2828 enum comparison_code lcompcode
= comparison_to_compcode (lcode
);
2829 enum comparison_code rcompcode
= comparison_to_compcode (rcode
);
2834 case TRUTH_AND_EXPR
: case TRUTH_ANDIF_EXPR
:
2835 compcode
= lcompcode
& rcompcode
;
2838 case TRUTH_OR_EXPR
: case TRUTH_ORIF_EXPR
:
2839 compcode
= lcompcode
| rcompcode
;
2848 /* Eliminate unordered comparisons, as well as LTGT and ORD
2849 which are not used unless the mode has NaNs. */
2850 compcode
&= ~COMPCODE_UNORD
;
2851 if (compcode
== COMPCODE_LTGT
)
2852 compcode
= COMPCODE_NE
;
2853 else if (compcode
== COMPCODE_ORD
)
2854 compcode
= COMPCODE_TRUE
;
2856 else if (flag_trapping_math
)
2858 /* Check that the original operation and the optimized ones will trap
2859 under the same condition. */
2860 bool ltrap
= (lcompcode
& COMPCODE_UNORD
) == 0
2861 && (lcompcode
!= COMPCODE_EQ
)
2862 && (lcompcode
!= COMPCODE_ORD
);
2863 bool rtrap
= (rcompcode
& COMPCODE_UNORD
) == 0
2864 && (rcompcode
!= COMPCODE_EQ
)
2865 && (rcompcode
!= COMPCODE_ORD
);
2866 bool trap
= (compcode
& COMPCODE_UNORD
) == 0
2867 && (compcode
!= COMPCODE_EQ
)
2868 && (compcode
!= COMPCODE_ORD
);
2870 /* In a short-circuited boolean expression the LHS might be
2871 such that the RHS, if evaluated, will never trap. For
2872 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2873 if neither x nor y is NaN. (This is a mixed blessing: for
2874 example, the expression above will never trap, hence
2875 optimizing it to x < y would be invalid). */
2876 if ((code
== TRUTH_ORIF_EXPR
&& (lcompcode
& COMPCODE_UNORD
))
2877 || (code
== TRUTH_ANDIF_EXPR
&& !(lcompcode
& COMPCODE_UNORD
)))
2880 /* If the comparison was short-circuited, and only the RHS
2881 trapped, we may now generate a spurious trap. */
2883 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
2886 /* If we changed the conditions that cause a trap, we lose. */
2887 if ((ltrap
|| rtrap
) != trap
)
2891 if (compcode
== COMPCODE_TRUE
)
2892 return constant_boolean_node (true, truth_type
);
2893 else if (compcode
== COMPCODE_FALSE
)
2894 return constant_boolean_node (false, truth_type
);
2897 enum tree_code tcode
;
2899 tcode
= compcode_to_comparison ((enum comparison_code
) compcode
);
2900 return fold_build2_loc (loc
, tcode
, truth_type
, ll_arg
, lr_arg
);
2904 /* Return nonzero if two operands (typically of the same tree node)
2905 are necessarily equal. FLAGS modifies behavior as follows:
2907 If OEP_ONLY_CONST is set, only return nonzero for constants.
2908 This function tests whether the operands are indistinguishable;
2909 it does not test whether they are equal using C's == operation.
2910 The distinction is important for IEEE floating point, because
2911 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2912 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2914 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2915 even though it may hold multiple values during a function.
2916 This is because a GCC tree node guarantees that nothing else is
2917 executed between the evaluation of its "operands" (which may often
2918 be evaluated in arbitrary order). Hence if the operands themselves
2919 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
2920 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
2921 unset means assuming isochronic (or instantaneous) tree equivalence.
2922 Unless comparing arbitrary expression trees, such as from different
2923 statements, this flag can usually be left unset.
2925 If OEP_PURE_SAME is set, then pure functions with identical arguments
2926 are considered the same. It is used when the caller has other ways
2927 to ensure that global memory is unchanged in between.
2929 If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects,
2930 not values of expressions.
2932 If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects
2933 such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs.
2935 Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on
2936 any operand with side effect. This is unnecesarily conservative in the
2937 case we know that arg0 and arg1 are in disjoint code paths (such as in
2938 ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing
2939 addresses with TREE_CONSTANT flag set so we know that &var == &var
2940 even if var is volatile. */
2943 operand_equal_p (const_tree arg0
, const_tree arg1
, unsigned int flags
)
2945 STRIP_ANY_LOCATION_WRAPPER (arg0
);
2946 STRIP_ANY_LOCATION_WRAPPER (arg1
);
2948 /* When checking, verify at the outermost operand_equal_p call that
2949 if operand_equal_p returns non-zero then ARG0 and ARG1 has the same
2951 if (flag_checking
&& !(flags
& OEP_NO_HASH_CHECK
))
2953 if (operand_equal_p (arg0
, arg1
, flags
| OEP_NO_HASH_CHECK
))
2957 inchash::hash
hstate0 (0), hstate1 (0);
2958 inchash::add_expr (arg0
, hstate0
, flags
| OEP_HASH_CHECK
);
2959 inchash::add_expr (arg1
, hstate1
, flags
| OEP_HASH_CHECK
);
2960 hashval_t h0
= hstate0
.end ();
2961 hashval_t h1
= hstate1
.end ();
2962 gcc_assert (h0
== h1
);
2970 /* If either is ERROR_MARK, they aren't equal. */
2971 if (TREE_CODE (arg0
) == ERROR_MARK
|| TREE_CODE (arg1
) == ERROR_MARK
2972 || TREE_TYPE (arg0
) == error_mark_node
2973 || TREE_TYPE (arg1
) == error_mark_node
)
2976 /* Similar, if either does not have a type (like a released SSA name),
2977 they aren't equal. */
2978 if (!TREE_TYPE (arg0
) || !TREE_TYPE (arg1
))
2981 /* We cannot consider pointers to different address space equal. */
2982 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
2983 && POINTER_TYPE_P (TREE_TYPE (arg1
))
2984 && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0
)))
2985 != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1
)))))
2988 /* Check equality of integer constants before bailing out due to
2989 precision differences. */
2990 if (TREE_CODE (arg0
) == INTEGER_CST
&& TREE_CODE (arg1
) == INTEGER_CST
)
2992 /* Address of INTEGER_CST is not defined; check that we did not forget
2993 to drop the OEP_ADDRESS_OF flags. */
2994 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
2995 return tree_int_cst_equal (arg0
, arg1
);
2998 if (!(flags
& OEP_ADDRESS_OF
))
3000 /* If both types don't have the same signedness, then we can't consider
3001 them equal. We must check this before the STRIP_NOPS calls
3002 because they may change the signedness of the arguments. As pointers
3003 strictly don't have a signedness, require either two pointers or
3004 two non-pointers as well. */
3005 if (TYPE_UNSIGNED (TREE_TYPE (arg0
)) != TYPE_UNSIGNED (TREE_TYPE (arg1
))
3006 || POINTER_TYPE_P (TREE_TYPE (arg0
))
3007 != POINTER_TYPE_P (TREE_TYPE (arg1
)))
3010 /* If both types don't have the same precision, then it is not safe
3012 if (element_precision (TREE_TYPE (arg0
))
3013 != element_precision (TREE_TYPE (arg1
)))
3020 /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the
3021 sanity check once the issue is solved. */
3023 /* Addresses of conversions and SSA_NAMEs (and many other things)
3024 are not defined. Check that we did not forget to drop the
3025 OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */
3026 gcc_checking_assert (!CONVERT_EXPR_P (arg0
) && !CONVERT_EXPR_P (arg1
)
3027 && TREE_CODE (arg0
) != SSA_NAME
);
3030 /* In case both args are comparisons but with different comparison
3031 code, try to swap the comparison operands of one arg to produce
3032 a match and compare that variant. */
3033 if (TREE_CODE (arg0
) != TREE_CODE (arg1
)
3034 && COMPARISON_CLASS_P (arg0
)
3035 && COMPARISON_CLASS_P (arg1
))
3037 enum tree_code swap_code
= swap_tree_comparison (TREE_CODE (arg1
));
3039 if (TREE_CODE (arg0
) == swap_code
)
3040 return operand_equal_p (TREE_OPERAND (arg0
, 0),
3041 TREE_OPERAND (arg1
, 1), flags
)
3042 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3043 TREE_OPERAND (arg1
, 0), flags
);
3046 if (TREE_CODE (arg0
) != TREE_CODE (arg1
))
3048 /* NOP_EXPR and CONVERT_EXPR are considered equal. */
3049 if (CONVERT_EXPR_P (arg0
) && CONVERT_EXPR_P (arg1
))
3051 else if (flags
& OEP_ADDRESS_OF
)
3053 /* If we are interested in comparing addresses ignore
3054 MEM_REF wrappings of the base that can appear just for
3056 if (TREE_CODE (arg0
) == MEM_REF
3058 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ADDR_EXPR
3059 && TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0) == arg1
3060 && integer_zerop (TREE_OPERAND (arg0
, 1)))
3062 else if (TREE_CODE (arg1
) == MEM_REF
3064 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ADDR_EXPR
3065 && TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0) == arg0
3066 && integer_zerop (TREE_OPERAND (arg1
, 1)))
3074 /* When not checking adddresses, this is needed for conversions and for
3075 COMPONENT_REF. Might as well play it safe and always test this. */
3076 if (TREE_CODE (TREE_TYPE (arg0
)) == ERROR_MARK
3077 || TREE_CODE (TREE_TYPE (arg1
)) == ERROR_MARK
3078 || (TYPE_MODE (TREE_TYPE (arg0
)) != TYPE_MODE (TREE_TYPE (arg1
))
3079 && !(flags
& OEP_ADDRESS_OF
)))
3082 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3083 We don't care about side effects in that case because the SAVE_EXPR
3084 takes care of that for us. In all other cases, two expressions are
3085 equal if they have no side effects. If we have two identical
3086 expressions with side effects that should be treated the same due
3087 to the only side effects being identical SAVE_EXPR's, that will
3088 be detected in the recursive calls below.
3089 If we are taking an invariant address of two identical objects
3090 they are necessarily equal as well. */
3091 if (arg0
== arg1
&& ! (flags
& OEP_ONLY_CONST
)
3092 && (TREE_CODE (arg0
) == SAVE_EXPR
3093 || (flags
& OEP_MATCH_SIDE_EFFECTS
)
3094 || (! TREE_SIDE_EFFECTS (arg0
) && ! TREE_SIDE_EFFECTS (arg1
))))
3097 /* Next handle constant cases, those for which we can return 1 even
3098 if ONLY_CONST is set. */
3099 if (TREE_CONSTANT (arg0
) && TREE_CONSTANT (arg1
))
3100 switch (TREE_CODE (arg0
))
3103 return tree_int_cst_equal (arg0
, arg1
);
3106 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0
),
3107 TREE_FIXED_CST (arg1
));
3110 if (real_identical (&TREE_REAL_CST (arg0
), &TREE_REAL_CST (arg1
)))
3114 if (!HONOR_SIGNED_ZEROS (arg0
))
3116 /* If we do not distinguish between signed and unsigned zero,
3117 consider them equal. */
3118 if (real_zerop (arg0
) && real_zerop (arg1
))
3125 if (VECTOR_CST_LOG2_NPATTERNS (arg0
)
3126 != VECTOR_CST_LOG2_NPATTERNS (arg1
))
3129 if (VECTOR_CST_NELTS_PER_PATTERN (arg0
)
3130 != VECTOR_CST_NELTS_PER_PATTERN (arg1
))
3133 unsigned int count
= vector_cst_encoded_nelts (arg0
);
3134 for (unsigned int i
= 0; i
< count
; ++i
)
3135 if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0
, i
),
3136 VECTOR_CST_ENCODED_ELT (arg1
, i
), flags
))
3142 return (operand_equal_p (TREE_REALPART (arg0
), TREE_REALPART (arg1
),
3144 && operand_equal_p (TREE_IMAGPART (arg0
), TREE_IMAGPART (arg1
),
3148 return (TREE_STRING_LENGTH (arg0
) == TREE_STRING_LENGTH (arg1
)
3149 && ! memcmp (TREE_STRING_POINTER (arg0
),
3150 TREE_STRING_POINTER (arg1
),
3151 TREE_STRING_LENGTH (arg0
)));
3154 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3155 return operand_equal_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg1
, 0),
3156 flags
| OEP_ADDRESS_OF
3157 | OEP_MATCH_SIDE_EFFECTS
);
3159 /* In GIMPLE empty constructors are allowed in initializers of
3161 return !CONSTRUCTOR_NELTS (arg0
) && !CONSTRUCTOR_NELTS (arg1
);
3166 if (flags
& OEP_ONLY_CONST
)
3169 /* Define macros to test an operand from arg0 and arg1 for equality and a
3170 variant that allows null and views null as being different from any
3171 non-null value. In the latter case, if either is null, the both
3172 must be; otherwise, do the normal comparison. */
3173 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3174 TREE_OPERAND (arg1, N), flags)
3176 #define OP_SAME_WITH_NULL(N) \
3177 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3178 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3180 switch (TREE_CODE_CLASS (TREE_CODE (arg0
)))
3183 /* Two conversions are equal only if signedness and modes match. */
3184 switch (TREE_CODE (arg0
))
3187 case FIX_TRUNC_EXPR
:
3188 if (TYPE_UNSIGNED (TREE_TYPE (arg0
))
3189 != TYPE_UNSIGNED (TREE_TYPE (arg1
)))
3199 case tcc_comparison
:
3201 if (OP_SAME (0) && OP_SAME (1))
3204 /* For commutative ops, allow the other order. */
3205 return (commutative_tree_code (TREE_CODE (arg0
))
3206 && operand_equal_p (TREE_OPERAND (arg0
, 0),
3207 TREE_OPERAND (arg1
, 1), flags
)
3208 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3209 TREE_OPERAND (arg1
, 0), flags
));
3212 /* If either of the pointer (or reference) expressions we are
3213 dereferencing contain a side effect, these cannot be equal,
3214 but their addresses can be. */
3215 if ((flags
& OEP_MATCH_SIDE_EFFECTS
) == 0
3216 && (TREE_SIDE_EFFECTS (arg0
)
3217 || TREE_SIDE_EFFECTS (arg1
)))
3220 switch (TREE_CODE (arg0
))
3223 if (!(flags
& OEP_ADDRESS_OF
)
3224 && (TYPE_ALIGN (TREE_TYPE (arg0
))
3225 != TYPE_ALIGN (TREE_TYPE (arg1
))))
3227 flags
&= ~OEP_ADDRESS_OF
;
3231 /* Require the same offset. */
3232 if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3233 TYPE_SIZE (TREE_TYPE (arg1
)),
3234 flags
& ~OEP_ADDRESS_OF
))
3239 case VIEW_CONVERT_EXPR
:
3242 case TARGET_MEM_REF
:
3244 if (!(flags
& OEP_ADDRESS_OF
))
3246 /* Require equal access sizes */
3247 if (TYPE_SIZE (TREE_TYPE (arg0
)) != TYPE_SIZE (TREE_TYPE (arg1
))
3248 && (!TYPE_SIZE (TREE_TYPE (arg0
))
3249 || !TYPE_SIZE (TREE_TYPE (arg1
))
3250 || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0
)),
3251 TYPE_SIZE (TREE_TYPE (arg1
)),
3254 /* Verify that access happens in similar types. */
3255 if (!types_compatible_p (TREE_TYPE (arg0
), TREE_TYPE (arg1
)))
3257 /* Verify that accesses are TBAA compatible. */
3258 if (!alias_ptr_types_compatible_p
3259 (TREE_TYPE (TREE_OPERAND (arg0
, 1)),
3260 TREE_TYPE (TREE_OPERAND (arg1
, 1)))
3261 || (MR_DEPENDENCE_CLIQUE (arg0
)
3262 != MR_DEPENDENCE_CLIQUE (arg1
))
3263 || (MR_DEPENDENCE_BASE (arg0
)
3264 != MR_DEPENDENCE_BASE (arg1
)))
3266 /* Verify that alignment is compatible. */
3267 if (TYPE_ALIGN (TREE_TYPE (arg0
))
3268 != TYPE_ALIGN (TREE_TYPE (arg1
)))
3271 flags
&= ~OEP_ADDRESS_OF
;
3272 return (OP_SAME (0) && OP_SAME (1)
3273 /* TARGET_MEM_REF require equal extra operands. */
3274 && (TREE_CODE (arg0
) != TARGET_MEM_REF
3275 || (OP_SAME_WITH_NULL (2)
3276 && OP_SAME_WITH_NULL (3)
3277 && OP_SAME_WITH_NULL (4))));
3280 case ARRAY_RANGE_REF
:
3283 flags
&= ~OEP_ADDRESS_OF
;
3284 /* Compare the array index by value if it is constant first as we
3285 may have different types but same value here. */
3286 return ((tree_int_cst_equal (TREE_OPERAND (arg0
, 1),
3287 TREE_OPERAND (arg1
, 1))
3289 && OP_SAME_WITH_NULL (2)
3290 && OP_SAME_WITH_NULL (3)
3291 /* Compare low bound and element size as with OEP_ADDRESS_OF
3292 we have to account for the offset of the ref. */
3293 && (TREE_TYPE (TREE_OPERAND (arg0
, 0))
3294 == TREE_TYPE (TREE_OPERAND (arg1
, 0))
3295 || (operand_equal_p (array_ref_low_bound
3296 (CONST_CAST_TREE (arg0
)),
3298 (CONST_CAST_TREE (arg1
)), flags
)
3299 && operand_equal_p (array_ref_element_size
3300 (CONST_CAST_TREE (arg0
)),
3301 array_ref_element_size
3302 (CONST_CAST_TREE (arg1
)),
3306 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3307 may be NULL when we're called to compare MEM_EXPRs. */
3308 if (!OP_SAME_WITH_NULL (0)
3311 flags
&= ~OEP_ADDRESS_OF
;
3312 return OP_SAME_WITH_NULL (2);
3317 flags
&= ~OEP_ADDRESS_OF
;
3318 return OP_SAME (1) && OP_SAME (2);
3324 case tcc_expression
:
3325 switch (TREE_CODE (arg0
))
3328 /* Be sure we pass right ADDRESS_OF flag. */
3329 gcc_checking_assert (!(flags
& OEP_ADDRESS_OF
));
3330 return operand_equal_p (TREE_OPERAND (arg0
, 0),
3331 TREE_OPERAND (arg1
, 0),
3332 flags
| OEP_ADDRESS_OF
);
3334 case TRUTH_NOT_EXPR
:
3337 case TRUTH_ANDIF_EXPR
:
3338 case TRUTH_ORIF_EXPR
:
3339 return OP_SAME (0) && OP_SAME (1);
3341 case WIDEN_MULT_PLUS_EXPR
:
3342 case WIDEN_MULT_MINUS_EXPR
:
3345 /* The multiplcation operands are commutative. */
3348 case TRUTH_AND_EXPR
:
3350 case TRUTH_XOR_EXPR
:
3351 if (OP_SAME (0) && OP_SAME (1))
3354 /* Otherwise take into account this is a commutative operation. */
3355 return (operand_equal_p (TREE_OPERAND (arg0
, 0),
3356 TREE_OPERAND (arg1
, 1), flags
)
3357 && operand_equal_p (TREE_OPERAND (arg0
, 1),
3358 TREE_OPERAND (arg1
, 0), flags
));
3361 if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2))
3363 flags
&= ~OEP_ADDRESS_OF
;
3366 case BIT_INSERT_EXPR
:
3367 /* BIT_INSERT_EXPR has an implict operand as the type precision
3368 of op1. Need to check to make sure they are the same. */
3369 if (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
3370 && TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
3371 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0
, 1)))
3372 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 1))))
3378 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3383 case PREDECREMENT_EXPR
:
3384 case PREINCREMENT_EXPR
:
3385 case POSTDECREMENT_EXPR
:
3386 case POSTINCREMENT_EXPR
:
3387 if (flags
& OEP_LEXICOGRAPHIC
)
3388 return OP_SAME (0) && OP_SAME (1);
3391 case CLEANUP_POINT_EXPR
:
3394 if (flags
& OEP_LEXICOGRAPHIC
)
3403 switch (TREE_CODE (arg0
))
3406 if ((CALL_EXPR_FN (arg0
) == NULL_TREE
)
3407 != (CALL_EXPR_FN (arg1
) == NULL_TREE
))
3408 /* If not both CALL_EXPRs are either internal or normal function
3409 functions, then they are not equal. */
3411 else if (CALL_EXPR_FN (arg0
) == NULL_TREE
)
3413 /* If the CALL_EXPRs call different internal functions, then they
3415 if (CALL_EXPR_IFN (arg0
) != CALL_EXPR_IFN (arg1
))
3420 /* If the CALL_EXPRs call different functions, then they are not
3422 if (! operand_equal_p (CALL_EXPR_FN (arg0
), CALL_EXPR_FN (arg1
),
3427 /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */
3429 unsigned int cef
= call_expr_flags (arg0
);
3430 if (flags
& OEP_PURE_SAME
)
3431 cef
&= ECF_CONST
| ECF_PURE
;
3434 if (!cef
&& !(flags
& OEP_LEXICOGRAPHIC
))
3438 /* Now see if all the arguments are the same. */
3440 const_call_expr_arg_iterator iter0
, iter1
;
3442 for (a0
= first_const_call_expr_arg (arg0
, &iter0
),
3443 a1
= first_const_call_expr_arg (arg1
, &iter1
);
3445 a0
= next_const_call_expr_arg (&iter0
),
3446 a1
= next_const_call_expr_arg (&iter1
))
3447 if (! operand_equal_p (a0
, a1
, flags
))
3450 /* If we get here and both argument lists are exhausted
3451 then the CALL_EXPRs are equal. */
3452 return ! (a0
|| a1
);
3458 case tcc_declaration
:
3459 /* Consider __builtin_sqrt equal to sqrt. */
3460 return (TREE_CODE (arg0
) == FUNCTION_DECL
3461 && fndecl_built_in_p (arg0
) && fndecl_built_in_p (arg1
)
3462 && DECL_BUILT_IN_CLASS (arg0
) == DECL_BUILT_IN_CLASS (arg1
)
3463 && DECL_FUNCTION_CODE (arg0
) == DECL_FUNCTION_CODE (arg1
));
3465 case tcc_exceptional
:
3466 if (TREE_CODE (arg0
) == CONSTRUCTOR
)
3468 /* In GIMPLE constructors are used only to build vectors from
3469 elements. Individual elements in the constructor must be
3470 indexed in increasing order and form an initial sequence.
3472 We make no effort to compare constructors in generic.
3473 (see sem_variable::equals in ipa-icf which can do so for
3475 if (!VECTOR_TYPE_P (TREE_TYPE (arg0
))
3476 || !VECTOR_TYPE_P (TREE_TYPE (arg1
)))
3479 /* Be sure that vectors constructed have the same representation.
3480 We only tested element precision and modes to match.
3481 Vectors may be BLKmode and thus also check that the number of
3483 if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)),
3484 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
))))
3487 vec
<constructor_elt
, va_gc
> *v0
= CONSTRUCTOR_ELTS (arg0
);
3488 vec
<constructor_elt
, va_gc
> *v1
= CONSTRUCTOR_ELTS (arg1
);
3489 unsigned int len
= vec_safe_length (v0
);
3491 if (len
!= vec_safe_length (v1
))
3494 for (unsigned int i
= 0; i
< len
; i
++)
3496 constructor_elt
*c0
= &(*v0
)[i
];
3497 constructor_elt
*c1
= &(*v1
)[i
];
3499 if (!operand_equal_p (c0
->value
, c1
->value
, flags
)
3500 /* In GIMPLE the indexes can be either NULL or matching i.
3501 Double check this so we won't get false
3502 positives for GENERIC. */
3504 && (TREE_CODE (c0
->index
) != INTEGER_CST
3505 || !compare_tree_int (c0
->index
, i
)))
3507 && (TREE_CODE (c1
->index
) != INTEGER_CST
3508 || !compare_tree_int (c1
->index
, i
))))
3513 else if (TREE_CODE (arg0
) == STATEMENT_LIST
3514 && (flags
& OEP_LEXICOGRAPHIC
))
3516 /* Compare the STATEMENT_LISTs. */
3517 tree_stmt_iterator tsi1
, tsi2
;
3518 tree body1
= CONST_CAST_TREE (arg0
);
3519 tree body2
= CONST_CAST_TREE (arg1
);
3520 for (tsi1
= tsi_start (body1
), tsi2
= tsi_start (body2
); ;
3521 tsi_next (&tsi1
), tsi_next (&tsi2
))
3523 /* The lists don't have the same number of statements. */
3524 if (tsi_end_p (tsi1
) ^ tsi_end_p (tsi2
))
3526 if (tsi_end_p (tsi1
) && tsi_end_p (tsi2
))
3528 if (!operand_equal_p (tsi_stmt (tsi1
), tsi_stmt (tsi2
),
3529 flags
& (OEP_LEXICOGRAPHIC
3530 | OEP_NO_HASH_CHECK
)))
3537 switch (TREE_CODE (arg0
))
3540 if (flags
& OEP_LEXICOGRAPHIC
)
3541 return OP_SAME_WITH_NULL (0);
3543 case DEBUG_BEGIN_STMT
:
3544 if (flags
& OEP_LEXICOGRAPHIC
)
3556 #undef OP_SAME_WITH_NULL
3559 /* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1
3560 with a different signedness or a narrower precision. */
3563 operand_equal_for_comparison_p (tree arg0
, tree arg1
)
3565 if (operand_equal_p (arg0
, arg1
, 0))
3568 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
3569 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1
)))
3572 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3573 and see if the inner values are the same. This removes any
3574 signedness comparison, which doesn't matter here. */
3579 if (operand_equal_p (op0
, op1
, 0))
3582 /* Discard a single widening conversion from ARG1 and see if the inner
3583 value is the same as ARG0. */
3584 if (CONVERT_EXPR_P (arg1
)
3585 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
3586 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
3587 < TYPE_PRECISION (TREE_TYPE (arg1
))
3588 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
3594 /* See if ARG is an expression that is either a comparison or is performing
3595 arithmetic on comparisons. The comparisons must only be comparing
3596 two different values, which will be stored in *CVAL1 and *CVAL2; if
3597 they are nonzero it means that some operands have already been found.
3598 No variables may be used anywhere else in the expression except in the
3601 If this is true, return 1. Otherwise, return zero. */
3604 twoval_comparison_p (tree arg
, tree
*cval1
, tree
*cval2
)
3606 enum tree_code code
= TREE_CODE (arg
);
3607 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3609 /* We can handle some of the tcc_expression cases here. */
3610 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3612 else if (tclass
== tcc_expression
3613 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
3614 || code
== COMPOUND_EXPR
))
3615 tclass
= tcc_binary
;
3620 return twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
);
3623 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
)
3624 && twoval_comparison_p (TREE_OPERAND (arg
, 1), cval1
, cval2
));
3629 case tcc_expression
:
3630 if (code
== COND_EXPR
)
3631 return (twoval_comparison_p (TREE_OPERAND (arg
, 0), cval1
, cval2
)
3632 && twoval_comparison_p (TREE_OPERAND (arg
, 1), cval1
, cval2
)
3633 && twoval_comparison_p (TREE_OPERAND (arg
, 2), cval1
, cval2
));
3636 case tcc_comparison
:
3637 /* First see if we can handle the first operand, then the second. For
3638 the second operand, we know *CVAL1 can't be zero. It must be that
3639 one side of the comparison is each of the values; test for the
3640 case where this isn't true by failing if the two operands
3643 if (operand_equal_p (TREE_OPERAND (arg
, 0),
3644 TREE_OPERAND (arg
, 1), 0))
3648 *cval1
= TREE_OPERAND (arg
, 0);
3649 else if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 0), 0))
3651 else if (*cval2
== 0)
3652 *cval2
= TREE_OPERAND (arg
, 0);
3653 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 0), 0))
3658 if (operand_equal_p (*cval1
, TREE_OPERAND (arg
, 1), 0))
3660 else if (*cval2
== 0)
3661 *cval2
= TREE_OPERAND (arg
, 1);
3662 else if (operand_equal_p (*cval2
, TREE_OPERAND (arg
, 1), 0))
3674 /* ARG is a tree that is known to contain just arithmetic operations and
3675 comparisons. Evaluate the operations in the tree substituting NEW0 for
3676 any occurrence of OLD0 as an operand of a comparison and likewise for
3680 eval_subst (location_t loc
, tree arg
, tree old0
, tree new0
,
3681 tree old1
, tree new1
)
3683 tree type
= TREE_TYPE (arg
);
3684 enum tree_code code
= TREE_CODE (arg
);
3685 enum tree_code_class tclass
= TREE_CODE_CLASS (code
);
3687 /* We can handle some of the tcc_expression cases here. */
3688 if (tclass
== tcc_expression
&& code
== TRUTH_NOT_EXPR
)
3690 else if (tclass
== tcc_expression
3691 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
))
3692 tclass
= tcc_binary
;
3697 return fold_build1_loc (loc
, code
, type
,
3698 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3699 old0
, new0
, old1
, new1
));
3702 return fold_build2_loc (loc
, code
, type
,
3703 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3704 old0
, new0
, old1
, new1
),
3705 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3706 old0
, new0
, old1
, new1
));
3708 case tcc_expression
:
3712 return eval_subst (loc
, TREE_OPERAND (arg
, 0), old0
, new0
,
3716 return eval_subst (loc
, TREE_OPERAND (arg
, 1), old0
, new0
,
3720 return fold_build3_loc (loc
, code
, type
,
3721 eval_subst (loc
, TREE_OPERAND (arg
, 0),
3722 old0
, new0
, old1
, new1
),
3723 eval_subst (loc
, TREE_OPERAND (arg
, 1),
3724 old0
, new0
, old1
, new1
),
3725 eval_subst (loc
, TREE_OPERAND (arg
, 2),
3726 old0
, new0
, old1
, new1
));
3730 /* Fall through - ??? */
3732 case tcc_comparison
:
3734 tree arg0
= TREE_OPERAND (arg
, 0);
3735 tree arg1
= TREE_OPERAND (arg
, 1);
3737 /* We need to check both for exact equality and tree equality. The
3738 former will be true if the operand has a side-effect. In that
3739 case, we know the operand occurred exactly once. */
3741 if (arg0
== old0
|| operand_equal_p (arg0
, old0
, 0))
3743 else if (arg0
== old1
|| operand_equal_p (arg0
, old1
, 0))
3746 if (arg1
== old0
|| operand_equal_p (arg1
, old0
, 0))
3748 else if (arg1
== old1
|| operand_equal_p (arg1
, old1
, 0))
3751 return fold_build2_loc (loc
, code
, type
, arg0
, arg1
);
3759 /* Return a tree for the case when the result of an expression is RESULT
3760 converted to TYPE and OMITTED was previously an operand of the expression
3761 but is now not needed (e.g., we folded OMITTED * 0).
3763 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3764 the conversion of RESULT to TYPE. */
3767 omit_one_operand_loc (location_t loc
, tree type
, tree result
, tree omitted
)
3769 tree t
= fold_convert_loc (loc
, type
, result
);
3771 /* If the resulting operand is an empty statement, just return the omitted
3772 statement casted to void. */
3773 if (IS_EMPTY_STMT (t
) && TREE_SIDE_EFFECTS (omitted
))
3774 return build1_loc (loc
, NOP_EXPR
, void_type_node
,
3775 fold_ignored_result (omitted
));
3777 if (TREE_SIDE_EFFECTS (omitted
))
3778 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3779 fold_ignored_result (omitted
), t
);
3781 return non_lvalue_loc (loc
, t
);
3784 /* Return a tree for the case when the result of an expression is RESULT
3785 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3786 of the expression but are now not needed.
3788 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3789 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3790 evaluated before OMITTED2. Otherwise, if neither has side effects,
3791 just do the conversion of RESULT to TYPE. */
3794 omit_two_operands_loc (location_t loc
, tree type
, tree result
,
3795 tree omitted1
, tree omitted2
)
3797 tree t
= fold_convert_loc (loc
, type
, result
);
3799 if (TREE_SIDE_EFFECTS (omitted2
))
3800 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted2
, t
);
3801 if (TREE_SIDE_EFFECTS (omitted1
))
3802 t
= build2_loc (loc
, COMPOUND_EXPR
, type
, omitted1
, t
);
3804 return TREE_CODE (t
) != COMPOUND_EXPR
? non_lvalue_loc (loc
, t
) : t
;
3808 /* Return a simplified tree node for the truth-negation of ARG. This
3809 never alters ARG itself. We assume that ARG is an operation that
3810 returns a truth value (0 or 1).
3812 FIXME: one would think we would fold the result, but it causes
3813 problems with the dominator optimizer. */
3816 fold_truth_not_expr (location_t loc
, tree arg
)
3818 tree type
= TREE_TYPE (arg
);
3819 enum tree_code code
= TREE_CODE (arg
);
3820 location_t loc1
, loc2
;
3822 /* If this is a comparison, we can simply invert it, except for
3823 floating-point non-equality comparisons, in which case we just
3824 enclose a TRUTH_NOT_EXPR around what we have. */
3826 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
3828 tree op_type
= TREE_TYPE (TREE_OPERAND (arg
, 0));
3829 if (FLOAT_TYPE_P (op_type
)
3830 && flag_trapping_math
3831 && code
!= ORDERED_EXPR
&& code
!= UNORDERED_EXPR
3832 && code
!= NE_EXPR
&& code
!= EQ_EXPR
)
3835 code
= invert_tree_comparison (code
, HONOR_NANS (op_type
));
3836 if (code
== ERROR_MARK
)
3839 tree ret
= build2_loc (loc
, code
, type
, TREE_OPERAND (arg
, 0),
3840 TREE_OPERAND (arg
, 1));
3841 if (TREE_NO_WARNING (arg
))
3842 TREE_NO_WARNING (ret
) = 1;
3849 return constant_boolean_node (integer_zerop (arg
), type
);
3851 case TRUTH_AND_EXPR
:
3852 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3853 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3854 return build2_loc (loc
, TRUTH_OR_EXPR
, type
,
3855 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3856 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3859 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3860 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3861 return build2_loc (loc
, TRUTH_AND_EXPR
, type
,
3862 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3863 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3865 case TRUTH_XOR_EXPR
:
3866 /* Here we can invert either operand. We invert the first operand
3867 unless the second operand is a TRUTH_NOT_EXPR in which case our
3868 result is the XOR of the first operand with the inside of the
3869 negation of the second operand. */
3871 if (TREE_CODE (TREE_OPERAND (arg
, 1)) == TRUTH_NOT_EXPR
)
3872 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
, TREE_OPERAND (arg
, 0),
3873 TREE_OPERAND (TREE_OPERAND (arg
, 1), 0));
3875 return build2_loc (loc
, TRUTH_XOR_EXPR
, type
,
3876 invert_truthvalue_loc (loc
, TREE_OPERAND (arg
, 0)),
3877 TREE_OPERAND (arg
, 1));
3879 case TRUTH_ANDIF_EXPR
:
3880 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3881 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3882 return build2_loc (loc
, TRUTH_ORIF_EXPR
, type
,
3883 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3884 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3886 case TRUTH_ORIF_EXPR
:
3887 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3888 loc2
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3889 return build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
3890 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)),
3891 invert_truthvalue_loc (loc2
, TREE_OPERAND (arg
, 1)));
3893 case TRUTH_NOT_EXPR
:
3894 return TREE_OPERAND (arg
, 0);
3898 tree arg1
= TREE_OPERAND (arg
, 1);
3899 tree arg2
= TREE_OPERAND (arg
, 2);
3901 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3902 loc2
= expr_location_or (TREE_OPERAND (arg
, 2), loc
);
3904 /* A COND_EXPR may have a throw as one operand, which
3905 then has void type. Just leave void operands
3907 return build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg
, 0),
3908 VOID_TYPE_P (TREE_TYPE (arg1
))
3909 ? arg1
: invert_truthvalue_loc (loc1
, arg1
),
3910 VOID_TYPE_P (TREE_TYPE (arg2
))
3911 ? arg2
: invert_truthvalue_loc (loc2
, arg2
));
3915 loc1
= expr_location_or (TREE_OPERAND (arg
, 1), loc
);
3916 return build2_loc (loc
, COMPOUND_EXPR
, type
,
3917 TREE_OPERAND (arg
, 0),
3918 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 1)));
3920 case NON_LVALUE_EXPR
:
3921 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3922 return invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0));
3925 if (TREE_CODE (TREE_TYPE (arg
)) == BOOLEAN_TYPE
)
3926 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3931 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3932 return build1_loc (loc
, TREE_CODE (arg
), type
,
3933 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3936 if (!integer_onep (TREE_OPERAND (arg
, 1)))
3938 return build2_loc (loc
, EQ_EXPR
, type
, arg
, build_int_cst (type
, 0));
3941 return build1_loc (loc
, TRUTH_NOT_EXPR
, type
, arg
);
3943 case CLEANUP_POINT_EXPR
:
3944 loc1
= expr_location_or (TREE_OPERAND (arg
, 0), loc
);
3945 return build1_loc (loc
, CLEANUP_POINT_EXPR
, type
,
3946 invert_truthvalue_loc (loc1
, TREE_OPERAND (arg
, 0)));
3953 /* Fold the truth-negation of ARG. This never alters ARG itself. We
3954 assume that ARG is an operation that returns a truth value (0 or 1
3955 for scalars, 0 or -1 for vectors). Return the folded expression if
3956 folding is successful. Otherwise, return NULL_TREE. */
3959 fold_invert_truthvalue (location_t loc
, tree arg
)
3961 tree type
= TREE_TYPE (arg
);
3962 return fold_unary_loc (loc
, VECTOR_TYPE_P (type
)
3968 /* Return a simplified tree node for the truth-negation of ARG. This
3969 never alters ARG itself. We assume that ARG is an operation that
3970 returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */
3973 invert_truthvalue_loc (location_t loc
, tree arg
)
3975 if (TREE_CODE (arg
) == ERROR_MARK
)
3978 tree type
= TREE_TYPE (arg
);
3979 return fold_build1_loc (loc
, VECTOR_TYPE_P (type
)
3985 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3986 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero
3987 and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER
3988 is the original memory reference used to preserve the alias set of
3992 make_bit_field_ref (location_t loc
, tree inner
, tree orig_inner
, tree type
,
3993 HOST_WIDE_INT bitsize
, poly_int64 bitpos
,
3994 int unsignedp
, int reversep
)
3996 tree result
, bftype
;
3998 /* Attempt not to lose the access path if possible. */
3999 if (TREE_CODE (orig_inner
) == COMPONENT_REF
)
4001 tree ninner
= TREE_OPERAND (orig_inner
, 0);
4003 poly_int64 nbitsize
, nbitpos
;
4005 int nunsignedp
, nreversep
, nvolatilep
= 0;
4006 tree base
= get_inner_reference (ninner
, &nbitsize
, &nbitpos
,
4007 &noffset
, &nmode
, &nunsignedp
,
4008 &nreversep
, &nvolatilep
);
4010 && noffset
== NULL_TREE
4011 && known_subrange_p (bitpos
, bitsize
, nbitpos
, nbitsize
)
4021 alias_set_type iset
= get_alias_set (orig_inner
);
4022 if (iset
== 0 && get_alias_set (inner
) != iset
)
4023 inner
= fold_build2 (MEM_REF
, TREE_TYPE (inner
),
4024 build_fold_addr_expr (inner
),
4025 build_int_cst (ptr_type_node
, 0));
4027 if (known_eq (bitpos
, 0) && !reversep
)
4029 tree size
= TYPE_SIZE (TREE_TYPE (inner
));
4030 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner
))
4031 || POINTER_TYPE_P (TREE_TYPE (inner
)))
4032 && tree_fits_shwi_p (size
)
4033 && tree_to_shwi (size
) == bitsize
)
4034 return fold_convert_loc (loc
, type
, inner
);
4038 if (TYPE_PRECISION (bftype
) != bitsize
4039 || TYPE_UNSIGNED (bftype
) == !unsignedp
)
4040 bftype
= build_nonstandard_integer_type (bitsize
, 0);
4042 result
= build3_loc (loc
, BIT_FIELD_REF
, bftype
, inner
,
4043 bitsize_int (bitsize
), bitsize_int (bitpos
));
4044 REF_REVERSE_STORAGE_ORDER (result
) = reversep
;
4047 result
= fold_convert_loc (loc
, type
, result
);
4052 /* Optimize a bit-field compare.
4054 There are two cases: First is a compare against a constant and the
4055 second is a comparison of two items where the fields are at the same
4056 bit position relative to the start of a chunk (byte, halfword, word)
4057 large enough to contain it. In these cases we can avoid the shift
4058 implicit in bitfield extractions.
4060 For constants, we emit a compare of the shifted constant with the
4061 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
4062 compared. For two fields at the same position, we do the ANDs with the
4063 similar mask and compare the result of the ANDs.
4065 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
4066 COMPARE_TYPE is the type of the comparison, and LHS and RHS
4067 are the left and right operands of the comparison, respectively.
4069 If the optimization described above can be done, we return the resulting
4070 tree. Otherwise we return zero. */
4073 optimize_bit_field_compare (location_t loc
, enum tree_code code
,
4074 tree compare_type
, tree lhs
, tree rhs
)
4076 poly_int64 plbitpos
, plbitsize
, rbitpos
, rbitsize
;
4077 HOST_WIDE_INT lbitpos
, lbitsize
, nbitpos
, nbitsize
;
4078 tree type
= TREE_TYPE (lhs
);
4080 int const_p
= TREE_CODE (rhs
) == INTEGER_CST
;
4081 machine_mode lmode
, rmode
;
4082 scalar_int_mode nmode
;
4083 int lunsignedp
, runsignedp
;
4084 int lreversep
, rreversep
;
4085 int lvolatilep
= 0, rvolatilep
= 0;
4086 tree linner
, rinner
= NULL_TREE
;
4090 /* Get all the information about the extractions being done. If the bit size
4091 is the same as the size of the underlying object, we aren't doing an
4092 extraction at all and so can do nothing. We also don't want to
4093 do anything if the inner expression is a PLACEHOLDER_EXPR since we
4094 then will no longer be able to replace it. */
4095 linner
= get_inner_reference (lhs
, &plbitsize
, &plbitpos
, &offset
, &lmode
,
4096 &lunsignedp
, &lreversep
, &lvolatilep
);
4098 || !known_size_p (plbitsize
)
4099 || !plbitsize
.is_constant (&lbitsize
)
4100 || !plbitpos
.is_constant (&lbitpos
)
4101 || known_eq (lbitsize
, GET_MODE_BITSIZE (lmode
))
4103 || TREE_CODE (linner
) == PLACEHOLDER_EXPR
4108 rreversep
= lreversep
;
4111 /* If this is not a constant, we can only do something if bit positions,
4112 sizes, signedness and storage order are the same. */
4114 = get_inner_reference (rhs
, &rbitsize
, &rbitpos
, &offset
, &rmode
,
4115 &runsignedp
, &rreversep
, &rvolatilep
);
4118 || maybe_ne (lbitpos
, rbitpos
)
4119 || maybe_ne (lbitsize
, rbitsize
)
4120 || lunsignedp
!= runsignedp
4121 || lreversep
!= rreversep
4123 || TREE_CODE (rinner
) == PLACEHOLDER_EXPR
4128 /* Honor the C++ memory model and mimic what RTL expansion does. */
4129 poly_uint64 bitstart
= 0;
4130 poly_uint64 bitend
= 0;
4131 if (TREE_CODE (lhs
) == COMPONENT_REF
)
4133 get_bit_range (&bitstart
, &bitend
, lhs
, &plbitpos
, &offset
);
4134 if (!plbitpos
.is_constant (&lbitpos
) || offset
!= NULL_TREE
)
4138 /* See if we can find a mode to refer to this field. We should be able to,
4139 but fail if we can't. */
4140 if (!get_best_mode (lbitsize
, lbitpos
, bitstart
, bitend
,
4141 const_p
? TYPE_ALIGN (TREE_TYPE (linner
))
4142 : MIN (TYPE_ALIGN (TREE_TYPE (linner
)),
4143 TYPE_ALIGN (TREE_TYPE (rinner
))),
4144 BITS_PER_WORD
, false, &nmode
))
4147 /* Set signed and unsigned types of the precision of this mode for the
4149 unsigned_type
= lang_hooks
.types
.type_for_mode (nmode
, 1);
4151 /* Compute the bit position and size for the new reference and our offset
4152 within it. If the new reference is the same size as the original, we
4153 won't optimize anything, so return zero. */
4154 nbitsize
= GET_MODE_BITSIZE (nmode
);
4155 nbitpos
= lbitpos
& ~ (nbitsize
- 1);
4157 if (nbitsize
== lbitsize
)
4160 if (lreversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
4161 lbitpos
= nbitsize
- lbitsize
- lbitpos
;
4163 /* Make the mask to be used against the extracted field. */
4164 mask
= build_int_cst_type (unsigned_type
, -1);
4165 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (nbitsize
- lbitsize
));
4166 mask
= const_binop (RSHIFT_EXPR
, mask
,
4167 size_int (nbitsize
- lbitsize
- lbitpos
));
4174 /* If not comparing with constant, just rework the comparison
4176 tree t1
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4177 nbitsize
, nbitpos
, 1, lreversep
);
4178 t1
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
, t1
, mask
);
4179 tree t2
= make_bit_field_ref (loc
, rinner
, rhs
, unsigned_type
,
4180 nbitsize
, nbitpos
, 1, rreversep
);
4181 t2
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
, t2
, mask
);
4182 return fold_build2_loc (loc
, code
, compare_type
, t1
, t2
);
4185 /* Otherwise, we are handling the constant case. See if the constant is too
4186 big for the field. Warn and return a tree for 0 (false) if so. We do
4187 this not only for its own sake, but to avoid having to test for this
4188 error case below. If we didn't, we might generate wrong code.
4190 For unsigned fields, the constant shifted right by the field length should
4191 be all zero. For signed fields, the high-order bits should agree with
4196 if (wi::lrshift (wi::to_wide (rhs
), lbitsize
) != 0)
4198 warning (0, "comparison is always %d due to width of bit-field",
4200 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4205 wide_int tem
= wi::arshift (wi::to_wide (rhs
), lbitsize
- 1);
4206 if (tem
!= 0 && tem
!= -1)
4208 warning (0, "comparison is always %d due to width of bit-field",
4210 return constant_boolean_node (code
== NE_EXPR
, compare_type
);
4217 /* Single-bit compares should always be against zero. */
4218 if (lbitsize
== 1 && ! integer_zerop (rhs
))
4220 code
= code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
;
4221 rhs
= build_int_cst (type
, 0);
4224 /* Make a new bitfield reference, shift the constant over the
4225 appropriate number of bits and mask it with the computed mask
4226 (in case this was a signed field). If we changed it, make a new one. */
4227 lhs
= make_bit_field_ref (loc
, linner
, lhs
, unsigned_type
,
4228 nbitsize
, nbitpos
, 1, lreversep
);
4230 rhs
= const_binop (BIT_AND_EXPR
,
4231 const_binop (LSHIFT_EXPR
,
4232 fold_convert_loc (loc
, unsigned_type
, rhs
),
4233 size_int (lbitpos
)),
4236 lhs
= build2_loc (loc
, code
, compare_type
,
4237 build2 (BIT_AND_EXPR
, unsigned_type
, lhs
, mask
), rhs
);
4241 /* Subroutine for fold_truth_andor_1: decode a field reference.
4243 If EXP is a comparison reference, we return the innermost reference.
4245 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4246 set to the starting bit number.
4248 If the innermost field can be completely contained in a mode-sized
4249 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4251 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4252 otherwise it is not changed.
4254 *PUNSIGNEDP is set to the signedness of the field.
4256 *PREVERSEP is set to the storage order of the field.
4258 *PMASK is set to the mask used. This is either contained in a
4259 BIT_AND_EXPR or derived from the width of the field.
4261 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4263 Return 0 if this is not a component reference or is one that we can't
4264 do anything with. */
4267 decode_field_reference (location_t loc
, tree
*exp_
, HOST_WIDE_INT
*pbitsize
,
4268 HOST_WIDE_INT
*pbitpos
, machine_mode
*pmode
,
4269 int *punsignedp
, int *preversep
, int *pvolatilep
,
4270 tree
*pmask
, tree
*pand_mask
)
4273 tree outer_type
= 0;
4275 tree mask
, inner
, offset
;
4277 unsigned int precision
;
4279 /* All the optimizations using this function assume integer fields.
4280 There are problems with FP fields since the type_for_size call
4281 below can fail for, e.g., XFmode. */
4282 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp
)))
4285 /* We are interested in the bare arrangement of bits, so strip everything
4286 that doesn't affect the machine mode. However, record the type of the
4287 outermost expression if it may matter below. */
4288 if (CONVERT_EXPR_P (exp
)
4289 || TREE_CODE (exp
) == NON_LVALUE_EXPR
)
4290 outer_type
= TREE_TYPE (exp
);
4293 if (TREE_CODE (exp
) == BIT_AND_EXPR
)
4295 and_mask
= TREE_OPERAND (exp
, 1);
4296 exp
= TREE_OPERAND (exp
, 0);
4297 STRIP_NOPS (exp
); STRIP_NOPS (and_mask
);
4298 if (TREE_CODE (and_mask
) != INTEGER_CST
)
4302 poly_int64 poly_bitsize
, poly_bitpos
;
4303 inner
= get_inner_reference (exp
, &poly_bitsize
, &poly_bitpos
, &offset
,
4304 pmode
, punsignedp
, preversep
, pvolatilep
);
4305 if ((inner
== exp
&& and_mask
== 0)
4306 || !poly_bitsize
.is_constant (pbitsize
)
4307 || !poly_bitpos
.is_constant (pbitpos
)
4310 || TREE_CODE (inner
) == PLACEHOLDER_EXPR
4311 /* Reject out-of-bound accesses (PR79731). */
4312 || (! AGGREGATE_TYPE_P (TREE_TYPE (inner
))
4313 && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner
)),
4314 *pbitpos
+ *pbitsize
) < 0))
4317 unsigned_type
= lang_hooks
.types
.type_for_size (*pbitsize
, 1);
4318 if (unsigned_type
== NULL_TREE
)
4323 /* If the number of bits in the reference is the same as the bitsize of
4324 the outer type, then the outer type gives the signedness. Otherwise
4325 (in case of a small bitfield) the signedness is unchanged. */
4326 if (outer_type
&& *pbitsize
== TYPE_PRECISION (outer_type
))
4327 *punsignedp
= TYPE_UNSIGNED (outer_type
);
4329 /* Compute the mask to access the bitfield. */
4330 precision
= TYPE_PRECISION (unsigned_type
);
4332 mask
= build_int_cst_type (unsigned_type
, -1);
4334 mask
= const_binop (LSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4335 mask
= const_binop (RSHIFT_EXPR
, mask
, size_int (precision
- *pbitsize
));
4337 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4339 mask
= fold_build2_loc (loc
, BIT_AND_EXPR
, unsigned_type
,
4340 fold_convert_loc (loc
, unsigned_type
, and_mask
), mask
);
4343 *pand_mask
= and_mask
;
4347 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4348 bit positions and MASK is SIGNED. */
4351 all_ones_mask_p (const_tree mask
, unsigned int size
)
4353 tree type
= TREE_TYPE (mask
);
4354 unsigned int precision
= TYPE_PRECISION (type
);
4356 /* If this function returns true when the type of the mask is
4357 UNSIGNED, then there will be errors. In particular see
4358 gcc.c-torture/execute/990326-1.c. There does not appear to be
4359 any documentation paper trail as to why this is so. But the pre
4360 wide-int worked with that restriction and it has been preserved
4362 if (size
> precision
|| TYPE_SIGN (type
) == UNSIGNED
)
4365 return wi::mask (size
, false, precision
) == wi::to_wide (mask
);
4368 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4369 represents the sign bit of EXP's type. If EXP represents a sign
4370 or zero extension, also test VAL against the unextended type.
4371 The return value is the (sub)expression whose sign bit is VAL,
4372 or NULL_TREE otherwise. */
4375 sign_bit_p (tree exp
, const_tree val
)
4380 /* Tree EXP must have an integral type. */
4381 t
= TREE_TYPE (exp
);
4382 if (! INTEGRAL_TYPE_P (t
))
4385 /* Tree VAL must be an integer constant. */
4386 if (TREE_CODE (val
) != INTEGER_CST
4387 || TREE_OVERFLOW (val
))
4390 width
= TYPE_PRECISION (t
);
4391 if (wi::only_sign_bit_p (wi::to_wide (val
), width
))
4394 /* Handle extension from a narrower type. */
4395 if (TREE_CODE (exp
) == NOP_EXPR
4396 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp
, 0))) < width
)
4397 return sign_bit_p (TREE_OPERAND (exp
, 0), val
);
4402 /* Subroutine for fold_truth_andor_1: determine if an operand is simple enough
4403 to be evaluated unconditionally. */
4406 simple_operand_p (const_tree exp
)
4408 /* Strip any conversions that don't change the machine mode. */
4411 return (CONSTANT_CLASS_P (exp
)
4412 || TREE_CODE (exp
) == SSA_NAME
4414 && ! TREE_ADDRESSABLE (exp
)
4415 && ! TREE_THIS_VOLATILE (exp
)
4416 && ! DECL_NONLOCAL (exp
)
4417 /* Don't regard global variables as simple. They may be
4418 allocated in ways unknown to the compiler (shared memory,
4419 #pragma weak, etc). */
4420 && ! TREE_PUBLIC (exp
)
4421 && ! DECL_EXTERNAL (exp
)
4422 /* Weakrefs are not safe to be read, since they can be NULL.
4423 They are !TREE_PUBLIC && !DECL_EXTERNAL but still
4424 have DECL_WEAK flag set. */
4425 && (! VAR_OR_FUNCTION_DECL_P (exp
) || ! DECL_WEAK (exp
))
4426 /* Loading a static variable is unduly expensive, but global
4427 registers aren't expensive. */
4428 && (! TREE_STATIC (exp
) || DECL_REGISTER (exp
))));
4431 /* Subroutine for fold_truth_andor: determine if an operand is simple enough
4432 to be evaluated unconditionally.
4433 I addition to simple_operand_p, we assume that comparisons, conversions,
4434 and logic-not operations are simple, if their operands are simple, too. */
4437 simple_operand_p_2 (tree exp
)
4439 enum tree_code code
;
4441 if (TREE_SIDE_EFFECTS (exp
)
4442 || tree_could_trap_p (exp
))
4445 while (CONVERT_EXPR_P (exp
))
4446 exp
= TREE_OPERAND (exp
, 0);
4448 code
= TREE_CODE (exp
);
4450 if (TREE_CODE_CLASS (code
) == tcc_comparison
)
4451 return (simple_operand_p (TREE_OPERAND (exp
, 0))
4452 && simple_operand_p (TREE_OPERAND (exp
, 1)));
4454 if (code
== TRUTH_NOT_EXPR
)
4455 return simple_operand_p_2 (TREE_OPERAND (exp
, 0));
4457 return simple_operand_p (exp
);
4461 /* The following functions are subroutines to fold_range_test and allow it to
4462 try to change a logical combination of comparisons into a range test.
4465 X == 2 || X == 3 || X == 4 || X == 5
4469 (unsigned) (X - 2) <= 3
4471 We describe each set of comparisons as being either inside or outside
4472 a range, using a variable named like IN_P, and then describe the
4473 range with a lower and upper bound. If one of the bounds is omitted,
4474 it represents either the highest or lowest value of the type.
4476 In the comments below, we represent a range by two numbers in brackets
4477 preceded by a "+" to designate being inside that range, or a "-" to
4478 designate being outside that range, so the condition can be inverted by
4479 flipping the prefix. An omitted bound is represented by a "-". For
4480 example, "- [-, 10]" means being outside the range starting at the lowest
4481 possible value and ending at 10, in other words, being greater than 10.
4482 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4485 We set up things so that the missing bounds are handled in a consistent
4486 manner so neither a missing bound nor "true" and "false" need to be
4487 handled using a special case. */
4489 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4490 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4491 and UPPER1_P are nonzero if the respective argument is an upper bound
4492 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4493 must be specified for a comparison. ARG1 will be converted to ARG0's
4494 type if both are specified. */
4497 range_binop (enum tree_code code
, tree type
, tree arg0
, int upper0_p
,
4498 tree arg1
, int upper1_p
)
4504 /* If neither arg represents infinity, do the normal operation.
4505 Else, if not a comparison, return infinity. Else handle the special
4506 comparison rules. Note that most of the cases below won't occur, but
4507 are handled for consistency. */
4509 if (arg0
!= 0 && arg1
!= 0)
4511 tem
= fold_build2 (code
, type
!= 0 ? type
: TREE_TYPE (arg0
),
4512 arg0
, fold_convert (TREE_TYPE (arg0
), arg1
));
4514 return TREE_CODE (tem
) == INTEGER_CST
? tem
: 0;
4517 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
4520 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4521 for neither. In real maths, we cannot assume open ended ranges are
4522 the same. But, this is computer arithmetic, where numbers are finite.
4523 We can therefore make the transformation of any unbounded range with
4524 the value Z, Z being greater than any representable number. This permits
4525 us to treat unbounded ranges as equal. */
4526 sgn0
= arg0
!= 0 ? 0 : (upper0_p
? 1 : -1);
4527 sgn1
= arg1
!= 0 ? 0 : (upper1_p
? 1 : -1);
4531 result
= sgn0
== sgn1
;
4534 result
= sgn0
!= sgn1
;
4537 result
= sgn0
< sgn1
;
4540 result
= sgn0
<= sgn1
;
4543 result
= sgn0
> sgn1
;
4546 result
= sgn0
>= sgn1
;
4552 return constant_boolean_node (result
, type
);
4555 /* Helper routine for make_range. Perform one step for it, return
4556 new expression if the loop should continue or NULL_TREE if it should
4560 make_range_step (location_t loc
, enum tree_code code
, tree arg0
, tree arg1
,
4561 tree exp_type
, tree
*p_low
, tree
*p_high
, int *p_in_p
,
4562 bool *strict_overflow_p
)
4564 tree arg0_type
= TREE_TYPE (arg0
);
4565 tree n_low
, n_high
, low
= *p_low
, high
= *p_high
;
4566 int in_p
= *p_in_p
, n_in_p
;
4570 case TRUTH_NOT_EXPR
:
4571 /* We can only do something if the range is testing for zero. */
4572 if (low
== NULL_TREE
|| high
== NULL_TREE
4573 || ! integer_zerop (low
) || ! integer_zerop (high
))
4578 case EQ_EXPR
: case NE_EXPR
:
4579 case LT_EXPR
: case LE_EXPR
: case GE_EXPR
: case GT_EXPR
:
4580 /* We can only do something if the range is testing for zero
4581 and if the second operand is an integer constant. Note that
4582 saying something is "in" the range we make is done by
4583 complementing IN_P since it will set in the initial case of
4584 being not equal to zero; "out" is leaving it alone. */
4585 if (low
== NULL_TREE
|| high
== NULL_TREE
4586 || ! integer_zerop (low
) || ! integer_zerop (high
)
4587 || TREE_CODE (arg1
) != INTEGER_CST
)
4592 case NE_EXPR
: /* - [c, c] */
4595 case EQ_EXPR
: /* + [c, c] */
4596 in_p
= ! in_p
, low
= high
= arg1
;
4598 case GT_EXPR
: /* - [-, c] */
4599 low
= 0, high
= arg1
;
4601 case GE_EXPR
: /* + [c, -] */
4602 in_p
= ! in_p
, low
= arg1
, high
= 0;
4604 case LT_EXPR
: /* - [c, -] */
4605 low
= arg1
, high
= 0;
4607 case LE_EXPR
: /* + [-, c] */
4608 in_p
= ! in_p
, low
= 0, high
= arg1
;
4614 /* If this is an unsigned comparison, we also know that EXP is
4615 greater than or equal to zero. We base the range tests we make
4616 on that fact, so we record it here so we can parse existing
4617 range tests. We test arg0_type since often the return type
4618 of, e.g. EQ_EXPR, is boolean. */
4619 if (TYPE_UNSIGNED (arg0_type
) && (low
== 0 || high
== 0))
4621 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
,
4623 build_int_cst (arg0_type
, 0),
4627 in_p
= n_in_p
, low
= n_low
, high
= n_high
;
4629 /* If the high bound is missing, but we have a nonzero low
4630 bound, reverse the range so it goes from zero to the low bound
4632 if (high
== 0 && low
&& ! integer_zerop (low
))
4635 high
= range_binop (MINUS_EXPR
, NULL_TREE
, low
, 0,
4636 build_int_cst (TREE_TYPE (low
), 1), 0);
4637 low
= build_int_cst (arg0_type
, 0);
4647 /* If flag_wrapv and ARG0_TYPE is signed, make sure
4648 low and high are non-NULL, then normalize will DTRT. */
4649 if (!TYPE_UNSIGNED (arg0_type
)
4650 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4652 if (low
== NULL_TREE
)
4653 low
= TYPE_MIN_VALUE (arg0_type
);
4654 if (high
== NULL_TREE
)
4655 high
= TYPE_MAX_VALUE (arg0_type
);
4658 /* (-x) IN [a,b] -> x in [-b, -a] */
4659 n_low
= range_binop (MINUS_EXPR
, exp_type
,
4660 build_int_cst (exp_type
, 0),
4662 n_high
= range_binop (MINUS_EXPR
, exp_type
,
4663 build_int_cst (exp_type
, 0),
4665 if (n_high
!= 0 && TREE_OVERFLOW (n_high
))
4671 return build2_loc (loc
, MINUS_EXPR
, exp_type
, negate_expr (arg0
),
4672 build_int_cst (exp_type
, 1));
4676 if (TREE_CODE (arg1
) != INTEGER_CST
)
4679 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4680 move a constant to the other side. */
4681 if (!TYPE_UNSIGNED (arg0_type
)
4682 && !TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4685 /* If EXP is signed, any overflow in the computation is undefined,
4686 so we don't worry about it so long as our computations on
4687 the bounds don't overflow. For unsigned, overflow is defined
4688 and this is exactly the right thing. */
4689 n_low
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4690 arg0_type
, low
, 0, arg1
, 0);
4691 n_high
= range_binop (code
== MINUS_EXPR
? PLUS_EXPR
: MINUS_EXPR
,
4692 arg0_type
, high
, 1, arg1
, 0);
4693 if ((n_low
!= 0 && TREE_OVERFLOW (n_low
))
4694 || (n_high
!= 0 && TREE_OVERFLOW (n_high
)))
4697 if (TYPE_OVERFLOW_UNDEFINED (arg0_type
))
4698 *strict_overflow_p
= true;
4701 /* Check for an unsigned range which has wrapped around the maximum
4702 value thus making n_high < n_low, and normalize it. */
4703 if (n_low
&& n_high
&& tree_int_cst_lt (n_high
, n_low
))
4705 low
= range_binop (PLUS_EXPR
, arg0_type
, n_high
, 0,
4706 build_int_cst (TREE_TYPE (n_high
), 1), 0);
4707 high
= range_binop (MINUS_EXPR
, arg0_type
, n_low
, 0,
4708 build_int_cst (TREE_TYPE (n_low
), 1), 0);
4710 /* If the range is of the form +/- [ x+1, x ], we won't
4711 be able to normalize it. But then, it represents the
4712 whole range or the empty set, so make it
4714 if (tree_int_cst_equal (n_low
, low
)
4715 && tree_int_cst_equal (n_high
, high
))
4721 low
= n_low
, high
= n_high
;
4729 case NON_LVALUE_EXPR
:
4730 if (TYPE_PRECISION (arg0_type
) > TYPE_PRECISION (exp_type
))
4733 if (! INTEGRAL_TYPE_P (arg0_type
)
4734 || (low
!= 0 && ! int_fits_type_p (low
, arg0_type
))
4735 || (high
!= 0 && ! int_fits_type_p (high
, arg0_type
)))
4738 n_low
= low
, n_high
= high
;
4741 n_low
= fold_convert_loc (loc
, arg0_type
, n_low
);
4744 n_high
= fold_convert_loc (loc
, arg0_type
, n_high
);
4746 /* If we're converting arg0 from an unsigned type, to exp,
4747 a signed type, we will be doing the comparison as unsigned.
4748 The tests above have already verified that LOW and HIGH
4751 So we have to ensure that we will handle large unsigned
4752 values the same way that the current signed bounds treat
4755 if (!TYPE_UNSIGNED (exp_type
) && TYPE_UNSIGNED (arg0_type
))
4759 /* For fixed-point modes, we need to pass the saturating flag
4760 as the 2nd parameter. */
4761 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type
)))
4763 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
),
4764 TYPE_SATURATING (arg0_type
));
4767 = lang_hooks
.types
.type_for_mode (TYPE_MODE (arg0_type
), 1);
4769 /* A range without an upper bound is, naturally, unbounded.
4770 Since convert would have cropped a very large value, use
4771 the max value for the destination type. */
4773 = TYPE_MAX_VALUE (equiv_type
) ? TYPE_MAX_VALUE (equiv_type
)
4774 : TYPE_MAX_VALUE (arg0_type
);
4776 if (TYPE_PRECISION (exp_type
) == TYPE_PRECISION (arg0_type
))
4777 high_positive
= fold_build2_loc (loc
, RSHIFT_EXPR
, arg0_type
,
4778 fold_convert_loc (loc
, arg0_type
,
4780 build_int_cst (arg0_type
, 1));
4782 /* If the low bound is specified, "and" the range with the
4783 range for which the original unsigned value will be
4787 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 1, n_low
, n_high
,
4788 1, fold_convert_loc (loc
, arg0_type
,
4793 in_p
= (n_in_p
== in_p
);
4797 /* Otherwise, "or" the range with the range of the input
4798 that will be interpreted as negative. */
4799 if (! merge_ranges (&n_in_p
, &n_low
, &n_high
, 0, n_low
, n_high
,
4800 1, fold_convert_loc (loc
, arg0_type
,
4805 in_p
= (in_p
!= n_in_p
);
4819 /* Given EXP, a logical expression, set the range it is testing into
4820 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4821 actually being tested. *PLOW and *PHIGH will be made of the same
4822 type as the returned expression. If EXP is not a comparison, we
4823 will most likely not be returning a useful value and range. Set
4824 *STRICT_OVERFLOW_P to true if the return value is only valid
4825 because signed overflow is undefined; otherwise, do not change
4826 *STRICT_OVERFLOW_P. */
4829 make_range (tree exp
, int *pin_p
, tree
*plow
, tree
*phigh
,
4830 bool *strict_overflow_p
)
4832 enum tree_code code
;
4833 tree arg0
, arg1
= NULL_TREE
;
4834 tree exp_type
, nexp
;
4837 location_t loc
= EXPR_LOCATION (exp
);
4839 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4840 and see if we can refine the range. Some of the cases below may not
4841 happen, but it doesn't seem worth worrying about this. We "continue"
4842 the outer loop when we've changed something; otherwise we "break"
4843 the switch, which will "break" the while. */
4846 low
= high
= build_int_cst (TREE_TYPE (exp
), 0);
4850 code
= TREE_CODE (exp
);
4851 exp_type
= TREE_TYPE (exp
);
4854 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code
)))
4856 if (TREE_OPERAND_LENGTH (exp
) > 0)
4857 arg0
= TREE_OPERAND (exp
, 0);
4858 if (TREE_CODE_CLASS (code
) == tcc_binary
4859 || TREE_CODE_CLASS (code
) == tcc_comparison
4860 || (TREE_CODE_CLASS (code
) == tcc_expression
4861 && TREE_OPERAND_LENGTH (exp
) > 1))
4862 arg1
= TREE_OPERAND (exp
, 1);
4864 if (arg0
== NULL_TREE
)
4867 nexp
= make_range_step (loc
, code
, arg0
, arg1
, exp_type
, &low
,
4868 &high
, &in_p
, strict_overflow_p
);
4869 if (nexp
== NULL_TREE
)
4874 /* If EXP is a constant, we can evaluate whether this is true or false. */
4875 if (TREE_CODE (exp
) == INTEGER_CST
)
4877 in_p
= in_p
== (integer_onep (range_binop (GE_EXPR
, integer_type_node
,
4879 && integer_onep (range_binop (LE_EXPR
, integer_type_node
,
4885 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
4889 /* Returns TRUE if [LOW, HIGH] range check can be optimized to
4890 a bitwise check i.e. when
4891 LOW == 0xXX...X00...0
4892 HIGH == 0xXX...X11...1
4893 Return corresponding mask in MASK and stem in VALUE. */
4896 maskable_range_p (const_tree low
, const_tree high
, tree type
, tree
*mask
,
4899 if (TREE_CODE (low
) != INTEGER_CST
4900 || TREE_CODE (high
) != INTEGER_CST
)
4903 unsigned prec
= TYPE_PRECISION (type
);
4904 wide_int lo
= wi::to_wide (low
, prec
);
4905 wide_int hi
= wi::to_wide (high
, prec
);
4907 wide_int end_mask
= lo
^ hi
;
4908 if ((end_mask
& (end_mask
+ 1)) != 0
4909 || (lo
& end_mask
) != 0)
4912 wide_int stem_mask
= ~end_mask
;
4913 wide_int stem
= lo
& stem_mask
;
4914 if (stem
!= (hi
& stem_mask
))
4917 *mask
= wide_int_to_tree (type
, stem_mask
);
4918 *value
= wide_int_to_tree (type
, stem
);
4923 /* Helper routine for build_range_check and match.pd. Return the type to
4924 perform the check or NULL if it shouldn't be optimized. */
4927 range_check_type (tree etype
)
4929 /* First make sure that arithmetics in this type is valid, then make sure
4930 that it wraps around. */
4931 if (TREE_CODE (etype
) == ENUMERAL_TYPE
|| TREE_CODE (etype
) == BOOLEAN_TYPE
)
4932 etype
= lang_hooks
.types
.type_for_size (TYPE_PRECISION (etype
),
4933 TYPE_UNSIGNED (etype
));
4935 if (TREE_CODE (etype
) == INTEGER_TYPE
&& !TYPE_OVERFLOW_WRAPS (etype
))
4937 tree utype
, minv
, maxv
;
4939 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4940 for the type in question, as we rely on this here. */
4941 utype
= unsigned_type_for (etype
);
4942 maxv
= fold_convert (utype
, TYPE_MAX_VALUE (etype
));
4943 maxv
= range_binop (PLUS_EXPR
, NULL_TREE
, maxv
, 1,
4944 build_int_cst (TREE_TYPE (maxv
), 1), 1);
4945 minv
= fold_convert (utype
, TYPE_MIN_VALUE (etype
));
4947 if (integer_zerop (range_binop (NE_EXPR
, integer_type_node
,
4956 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4957 type, TYPE, return an expression to test if EXP is in (or out of, depending
4958 on IN_P) the range. Return 0 if the test couldn't be created. */
4961 build_range_check (location_t loc
, tree type
, tree exp
, int in_p
,
4962 tree low
, tree high
)
4964 tree etype
= TREE_TYPE (exp
), mask
, value
;
4966 /* Disable this optimization for function pointer expressions
4967 on targets that require function pointer canonicalization. */
4968 if (targetm
.have_canonicalize_funcptr_for_compare ()
4969 && POINTER_TYPE_P (etype
)
4970 && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (etype
)))
4975 value
= build_range_check (loc
, type
, exp
, 1, low
, high
);
4977 return invert_truthvalue_loc (loc
, value
);
4982 if (low
== 0 && high
== 0)
4983 return omit_one_operand_loc (loc
, type
, build_int_cst (type
, 1), exp
);
4986 return fold_build2_loc (loc
, LE_EXPR
, type
, exp
,
4987 fold_convert_loc (loc
, etype
, high
));
4990 return fold_build2_loc (loc
, GE_EXPR
, type
, exp
,
4991 fold_convert_loc (loc
, etype
, low
));
4993 if (operand_equal_p (low
, high
, 0))
4994 return fold_build2_loc (loc
, EQ_EXPR
, type
, exp
,
4995 fold_convert_loc (loc
, etype
, low
));
4997 if (TREE_CODE (exp
) == BIT_AND_EXPR
4998 && maskable_range_p (low
, high
, etype
, &mask
, &value
))
4999 return fold_build2_loc (loc
, EQ_EXPR
, type
,
5000 fold_build2_loc (loc
, BIT_AND_EXPR
, etype
,
5004 if (integer_zerop (low
))
5006 if (! TYPE_UNSIGNED (etype
))
5008 etype
= unsigned_type_for (etype
);
5009 high
= fold_convert_loc (loc
, etype
, high
);
5010 exp
= fold_convert_loc (loc
, etype
, exp
);
5012 return build_range_check (loc
, type
, exp
, 1, 0, high
);
5015 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
5016 if (integer_onep (low
) && TREE_CODE (high
) == INTEGER_CST
)
5018 int prec
= TYPE_PRECISION (etype
);
5020 if (wi::mask
<widest_int
> (prec
- 1, false) == wi::to_widest (high
))
5022 if (TYPE_UNSIGNED (etype
))
5024 tree signed_etype
= signed_type_for (etype
);
5025 if (TYPE_PRECISION (signed_etype
) != TYPE_PRECISION (etype
))
5027 = build_nonstandard_integer_type (TYPE_PRECISION (etype
), 0);
5029 etype
= signed_etype
;
5030 exp
= fold_convert_loc (loc
, etype
, exp
);
5032 return fold_build2_loc (loc
, GT_EXPR
, type
, exp
,
5033 build_int_cst (etype
, 0));
5037 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
5038 This requires wrap-around arithmetics for the type of the expression. */
5039 etype
= range_check_type (etype
);
5040 if (etype
== NULL_TREE
)
5043 if (POINTER_TYPE_P (etype
))
5044 etype
= unsigned_type_for (etype
);
5046 high
= fold_convert_loc (loc
, etype
, high
);
5047 low
= fold_convert_loc (loc
, etype
, low
);
5048 exp
= fold_convert_loc (loc
, etype
, exp
);
5050 value
= const_binop (MINUS_EXPR
, high
, low
);
5052 if (value
!= 0 && !TREE_OVERFLOW (value
))
5053 return build_range_check (loc
, type
,
5054 fold_build2_loc (loc
, MINUS_EXPR
, etype
, exp
, low
),
5055 1, build_int_cst (etype
, 0), value
);
5060 /* Return the predecessor of VAL in its type, handling the infinite case. */
5063 range_predecessor (tree val
)
5065 tree type
= TREE_TYPE (val
);
5067 if (INTEGRAL_TYPE_P (type
)
5068 && operand_equal_p (val
, TYPE_MIN_VALUE (type
), 0))
5071 return range_binop (MINUS_EXPR
, NULL_TREE
, val
, 0,
5072 build_int_cst (TREE_TYPE (val
), 1), 0);
5075 /* Return the successor of VAL in its type, handling the infinite case. */
5078 range_successor (tree val
)
5080 tree type
= TREE_TYPE (val
);
5082 if (INTEGRAL_TYPE_P (type
)
5083 && operand_equal_p (val
, TYPE_MAX_VALUE (type
), 0))
5086 return range_binop (PLUS_EXPR
, NULL_TREE
, val
, 0,
5087 build_int_cst (TREE_TYPE (val
), 1), 0);
5090 /* Given two ranges, see if we can merge them into one. Return 1 if we
5091 can, 0 if we can't. Set the output range into the specified parameters. */
5094 merge_ranges (int *pin_p
, tree
*plow
, tree
*phigh
, int in0_p
, tree low0
,
5095 tree high0
, int in1_p
, tree low1
, tree high1
)
5103 int lowequal
= ((low0
== 0 && low1
== 0)
5104 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5105 low0
, 0, low1
, 0)));
5106 int highequal
= ((high0
== 0 && high1
== 0)
5107 || integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5108 high0
, 1, high1
, 1)));
5110 /* Make range 0 be the range that starts first, or ends last if they
5111 start at the same value. Swap them if it isn't. */
5112 if (integer_onep (range_binop (GT_EXPR
, integer_type_node
,
5115 && integer_onep (range_binop (GT_EXPR
, integer_type_node
,
5116 high1
, 1, high0
, 1))))
5118 temp
= in0_p
, in0_p
= in1_p
, in1_p
= temp
;
5119 tem
= low0
, low0
= low1
, low1
= tem
;
5120 tem
= high0
, high0
= high1
, high1
= tem
;
5123 /* If the second range is != high1 where high1 is the type maximum of
5124 the type, try first merging with < high1 range. */
5127 && TREE_CODE (low1
) == INTEGER_CST
5128 && (TREE_CODE (TREE_TYPE (low1
)) == INTEGER_TYPE
5129 || (TREE_CODE (TREE_TYPE (low1
)) == ENUMERAL_TYPE
5130 && known_eq (TYPE_PRECISION (TREE_TYPE (low1
)),
5131 GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low1
))))))
5132 && operand_equal_p (low1
, high1
, 0))
5134 if (tree_int_cst_equal (low1
, TYPE_MAX_VALUE (TREE_TYPE (low1
)))
5135 && merge_ranges (pin_p
, plow
, phigh
, in0_p
, low0
, high0
,
5136 !in1_p
, NULL_TREE
, range_predecessor (low1
)))
5138 /* Similarly for the second range != low1 where low1 is the type minimum
5139 of the type, try first merging with > low1 range. */
5140 if (tree_int_cst_equal (low1
, TYPE_MIN_VALUE (TREE_TYPE (low1
)))
5141 && merge_ranges (pin_p
, plow
, phigh
, in0_p
, low0
, high0
,
5142 !in1_p
, range_successor (low1
), NULL_TREE
))
5146 /* Now flag two cases, whether the ranges are disjoint or whether the
5147 second range is totally subsumed in the first. Note that the tests
5148 below are simplified by the ones above. */
5149 no_overlap
= integer_onep (range_binop (LT_EXPR
, integer_type_node
,
5150 high0
, 1, low1
, 0));
5151 subset
= integer_onep (range_binop (LE_EXPR
, integer_type_node
,
5152 high1
, 1, high0
, 1));
5154 /* We now have four cases, depending on whether we are including or
5155 excluding the two ranges. */
5158 /* If they don't overlap, the result is false. If the second range
5159 is a subset it is the result. Otherwise, the range is from the start
5160 of the second to the end of the first. */
5162 in_p
= 0, low
= high
= 0;
5164 in_p
= 1, low
= low1
, high
= high1
;
5166 in_p
= 1, low
= low1
, high
= high0
;
5169 else if (in0_p
&& ! in1_p
)
5171 /* If they don't overlap, the result is the first range. If they are
5172 equal, the result is false. If the second range is a subset of the
5173 first, and the ranges begin at the same place, we go from just after
5174 the end of the second range to the end of the first. If the second
5175 range is not a subset of the first, or if it is a subset and both
5176 ranges end at the same place, the range starts at the start of the
5177 first range and ends just before the second range.
5178 Otherwise, we can't describe this as a single range. */
5180 in_p
= 1, low
= low0
, high
= high0
;
5181 else if (lowequal
&& highequal
)
5182 in_p
= 0, low
= high
= 0;
5183 else if (subset
&& lowequal
)
5185 low
= range_successor (high1
);
5190 /* We are in the weird situation where high0 > high1 but
5191 high1 has no successor. Punt. */
5195 else if (! subset
|| highequal
)
5198 high
= range_predecessor (low1
);
5202 /* low0 < low1 but low1 has no predecessor. Punt. */
5210 else if (! in0_p
&& in1_p
)
5212 /* If they don't overlap, the result is the second range. If the second
5213 is a subset of the first, the result is false. Otherwise,
5214 the range starts just after the first range and ends at the
5215 end of the second. */
5217 in_p
= 1, low
= low1
, high
= high1
;
5218 else if (subset
|| highequal
)
5219 in_p
= 0, low
= high
= 0;
5222 low
= range_successor (high0
);
5227 /* high1 > high0 but high0 has no successor. Punt. */
5235 /* The case where we are excluding both ranges. Here the complex case
5236 is if they don't overlap. In that case, the only time we have a
5237 range is if they are adjacent. If the second is a subset of the
5238 first, the result is the first. Otherwise, the range to exclude
5239 starts at the beginning of the first range and ends at the end of the
5243 if (integer_onep (range_binop (EQ_EXPR
, integer_type_node
,
5244 range_successor (high0
),
5246 in_p
= 0, low
= low0
, high
= high1
;
5249 /* Canonicalize - [min, x] into - [-, x]. */
5250 if (low0
&& TREE_CODE (low0
) == INTEGER_CST
)
5251 switch (TREE_CODE (TREE_TYPE (low0
)))
5254 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0
)),
5256 (TYPE_MODE (TREE_TYPE (low0
)))))
5260 if (tree_int_cst_equal (low0
,
5261 TYPE_MIN_VALUE (TREE_TYPE (low0
))))
5265 if (TYPE_UNSIGNED (TREE_TYPE (low0
))
5266 && integer_zerop (low0
))
5273 /* Canonicalize - [x, max] into - [x, -]. */
5274 if (high1
&& TREE_CODE (high1
) == INTEGER_CST
)
5275 switch (TREE_CODE (TREE_TYPE (high1
)))
5278 if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1
)),
5280 (TYPE_MODE (TREE_TYPE (high1
)))))
5284 if (tree_int_cst_equal (high1
,
5285 TYPE_MAX_VALUE (TREE_TYPE (high1
))))
5289 if (TYPE_UNSIGNED (TREE_TYPE (high1
))
5290 && integer_zerop (range_binop (PLUS_EXPR
, NULL_TREE
,
5292 build_int_cst (TREE_TYPE (high1
), 1),
5300 /* The ranges might be also adjacent between the maximum and
5301 minimum values of the given type. For
5302 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5303 return + [x + 1, y - 1]. */
5304 if (low0
== 0 && high1
== 0)
5306 low
= range_successor (high0
);
5307 high
= range_predecessor (low1
);
5308 if (low
== 0 || high
== 0)
5318 in_p
= 0, low
= low0
, high
= high0
;
5320 in_p
= 0, low
= low0
, high
= high1
;
5323 *pin_p
= in_p
, *plow
= low
, *phigh
= high
;
5328 /* Subroutine of fold, looking inside expressions of the form
5329 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5330 of the COND_EXPR. This function is being used also to optimize
5331 A op B ? C : A, by reversing the comparison first.
5333 Return a folded expression whose code is not a COND_EXPR
5334 anymore, or NULL_TREE if no folding opportunity is found. */
5337 fold_cond_expr_with_comparison (location_t loc
, tree type
,
5338 tree arg0
, tree arg1
, tree arg2
)
5340 enum tree_code comp_code
= TREE_CODE (arg0
);
5341 tree arg00
= TREE_OPERAND (arg0
, 0);
5342 tree arg01
= TREE_OPERAND (arg0
, 1);
5343 tree arg1_type
= TREE_TYPE (arg1
);
5349 /* If we have A op 0 ? A : -A, consider applying the following
5352 A == 0? A : -A same as -A
5353 A != 0? A : -A same as A
5354 A >= 0? A : -A same as abs (A)
5355 A > 0? A : -A same as abs (A)
5356 A <= 0? A : -A same as -abs (A)
5357 A < 0? A : -A same as -abs (A)
5359 None of these transformations work for modes with signed
5360 zeros. If A is +/-0, the first two transformations will
5361 change the sign of the result (from +0 to -0, or vice
5362 versa). The last four will fix the sign of the result,
5363 even though the original expressions could be positive or
5364 negative, depending on the sign of A.
5366 Note that all these transformations are correct if A is
5367 NaN, since the two alternatives (A and -A) are also NaNs. */
5368 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5369 && (FLOAT_TYPE_P (TREE_TYPE (arg01
))
5370 ? real_zerop (arg01
)
5371 : integer_zerop (arg01
))
5372 && ((TREE_CODE (arg2
) == NEGATE_EXPR
5373 && operand_equal_p (TREE_OPERAND (arg2
, 0), arg1
, 0))
5374 /* In the case that A is of the form X-Y, '-A' (arg2) may
5375 have already been folded to Y-X, check for that. */
5376 || (TREE_CODE (arg1
) == MINUS_EXPR
5377 && TREE_CODE (arg2
) == MINUS_EXPR
5378 && operand_equal_p (TREE_OPERAND (arg1
, 0),
5379 TREE_OPERAND (arg2
, 1), 0)
5380 && operand_equal_p (TREE_OPERAND (arg1
, 1),
5381 TREE_OPERAND (arg2
, 0), 0))))
5386 tem
= fold_convert_loc (loc
, arg1_type
, arg1
);
5387 return fold_convert_loc (loc
, type
, negate_expr (tem
));
5390 return fold_convert_loc (loc
, type
, arg1
);
5393 if (flag_trapping_math
)
5398 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5400 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5401 return fold_convert_loc (loc
, type
, tem
);
5404 if (flag_trapping_math
)
5409 if (TYPE_UNSIGNED (TREE_TYPE (arg1
)))
5411 tem
= fold_build1_loc (loc
, ABS_EXPR
, TREE_TYPE (arg1
), arg1
);
5412 return negate_expr (fold_convert_loc (loc
, type
, tem
));
5414 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5418 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5419 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5420 both transformations are correct when A is NaN: A != 0
5421 is then true, and A == 0 is false. */
5423 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5424 && integer_zerop (arg01
) && integer_zerop (arg2
))
5426 if (comp_code
== NE_EXPR
)
5427 return fold_convert_loc (loc
, type
, arg1
);
5428 else if (comp_code
== EQ_EXPR
)
5429 return build_zero_cst (type
);
5432 /* Try some transformations of A op B ? A : B.
5434 A == B? A : B same as B
5435 A != B? A : B same as A
5436 A >= B? A : B same as max (A, B)
5437 A > B? A : B same as max (B, A)
5438 A <= B? A : B same as min (A, B)
5439 A < B? A : B same as min (B, A)
5441 As above, these transformations don't work in the presence
5442 of signed zeros. For example, if A and B are zeros of
5443 opposite sign, the first two transformations will change
5444 the sign of the result. In the last four, the original
5445 expressions give different results for (A=+0, B=-0) and
5446 (A=-0, B=+0), but the transformed expressions do not.
5448 The first two transformations are correct if either A or B
5449 is a NaN. In the first transformation, the condition will
5450 be false, and B will indeed be chosen. In the case of the
5451 second transformation, the condition A != B will be true,
5452 and A will be chosen.
5454 The conversions to max() and min() are not correct if B is
5455 a number and A is not. The conditions in the original
5456 expressions will be false, so all four give B. The min()
5457 and max() versions would give a NaN instead. */
5458 if (!HONOR_SIGNED_ZEROS (element_mode (type
))
5459 && operand_equal_for_comparison_p (arg01
, arg2
)
5460 /* Avoid these transformations if the COND_EXPR may be used
5461 as an lvalue in the C++ front-end. PR c++/19199. */
5463 || VECTOR_TYPE_P (type
)
5464 || (! lang_GNU_CXX ()
5465 && strcmp (lang_hooks
.name
, "GNU Objective-C++") != 0)
5466 || ! maybe_lvalue_p (arg1
)
5467 || ! maybe_lvalue_p (arg2
)))
5469 tree comp_op0
= arg00
;
5470 tree comp_op1
= arg01
;
5471 tree comp_type
= TREE_TYPE (comp_op0
);
5476 return fold_convert_loc (loc
, type
, arg2
);
5478 return fold_convert_loc (loc
, type
, arg1
);
5483 /* In C++ a ?: expression can be an lvalue, so put the
5484 operand which will be used if they are equal first
5485 so that we can convert this back to the
5486 corresponding COND_EXPR. */
5487 if (!HONOR_NANS (arg1
))
5489 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5490 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5491 tem
= (comp_code
== LE_EXPR
|| comp_code
== UNLE_EXPR
)
5492 ? fold_build2_loc (loc
, MIN_EXPR
, comp_type
, comp_op0
, comp_op1
)
5493 : fold_build2_loc (loc
, MIN_EXPR
, comp_type
,
5494 comp_op1
, comp_op0
);
5495 return fold_convert_loc (loc
, type
, tem
);
5502 if (!HONOR_NANS (arg1
))
5504 comp_op0
= fold_convert_loc (loc
, comp_type
, comp_op0
);
5505 comp_op1
= fold_convert_loc (loc
, comp_type
, comp_op1
);
5506 tem
= (comp_code
== GE_EXPR
|| comp_code
== UNGE_EXPR
)
5507 ? fold_build2_loc (loc
, MAX_EXPR
, comp_type
, comp_op0
, comp_op1
)
5508 : fold_build2_loc (loc
, MAX_EXPR
, comp_type
,
5509 comp_op1
, comp_op0
);
5510 return fold_convert_loc (loc
, type
, tem
);
5514 if (!HONOR_NANS (arg1
))
5515 return fold_convert_loc (loc
, type
, arg2
);
5518 if (!HONOR_NANS (arg1
))
5519 return fold_convert_loc (loc
, type
, arg1
);
5522 gcc_assert (TREE_CODE_CLASS (comp_code
) == tcc_comparison
);
5532 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5533 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5534 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5538 /* EXP is some logical combination of boolean tests. See if we can
5539 merge it into some range test. Return the new tree if so. */
5542 fold_range_test (location_t loc
, enum tree_code code
, tree type
,
5545 int or_op
= (code
== TRUTH_ORIF_EXPR
5546 || code
== TRUTH_OR_EXPR
);
5547 int in0_p
, in1_p
, in_p
;
5548 tree low0
, low1
, low
, high0
, high1
, high
;
5549 bool strict_overflow_p
= false;
5551 const char * const warnmsg
= G_("assuming signed overflow does not occur "
5552 "when simplifying range test");
5554 if (!INTEGRAL_TYPE_P (type
))
5557 lhs
= make_range (op0
, &in0_p
, &low0
, &high0
, &strict_overflow_p
);
5558 rhs
= make_range (op1
, &in1_p
, &low1
, &high1
, &strict_overflow_p
);
5560 /* If this is an OR operation, invert both sides; we will invert
5561 again at the end. */
5563 in0_p
= ! in0_p
, in1_p
= ! in1_p
;
5565 /* If both expressions are the same, if we can merge the ranges, and we
5566 can build the range test, return it or it inverted. If one of the
5567 ranges is always true or always false, consider it to be the same
5568 expression as the other. */
5569 if ((lhs
== 0 || rhs
== 0 || operand_equal_p (lhs
, rhs
, 0))
5570 && merge_ranges (&in_p
, &low
, &high
, in0_p
, low0
, high0
,
5572 && (tem
= (build_range_check (loc
, type
,
5574 : rhs
!= 0 ? rhs
: integer_zero_node
,
5575 in_p
, low
, high
))) != 0)
5577 if (strict_overflow_p
)
5578 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
5579 return or_op
? invert_truthvalue_loc (loc
, tem
) : tem
;
5582 /* On machines where the branch cost is expensive, if this is a
5583 short-circuited branch and the underlying object on both sides
5584 is the same, make a non-short-circuit operation. */
5585 bool logical_op_non_short_circuit
= LOGICAL_OP_NON_SHORT_CIRCUIT
;
5586 if (PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT
) != -1)
5587 logical_op_non_short_circuit
5588 = PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT
);
5589 if (logical_op_non_short_circuit
5590 && !flag_sanitize_coverage
5591 && lhs
!= 0 && rhs
!= 0
5592 && (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_ORIF_EXPR
)
5593 && operand_equal_p (lhs
, rhs
, 0))
5595 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5596 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5597 which cases we can't do this. */
5598 if (simple_operand_p (lhs
))
5599 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5600 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5603 else if (!lang_hooks
.decls
.global_bindings_p ()
5604 && !CONTAINS_PLACEHOLDER_P (lhs
))
5606 tree common
= save_expr (lhs
);
5608 if ((lhs
= build_range_check (loc
, type
, common
,
5609 or_op
? ! in0_p
: in0_p
,
5611 && (rhs
= build_range_check (loc
, type
, common
,
5612 or_op
? ! in1_p
: in1_p
,
5615 if (strict_overflow_p
)
5616 fold_overflow_warning (warnmsg
,
5617 WARN_STRICT_OVERFLOW_COMPARISON
);
5618 return build2_loc (loc
, code
== TRUTH_ANDIF_EXPR
5619 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
,
5628 /* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P
5629 bit value. Arrange things so the extra bits will be set to zero if and
5630 only if C is signed-extended to its full width. If MASK is nonzero,
5631 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5634 unextend (tree c
, int p
, int unsignedp
, tree mask
)
5636 tree type
= TREE_TYPE (c
);
5637 int modesize
= GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type
));
5640 if (p
== modesize
|| unsignedp
)
5643 /* We work by getting just the sign bit into the low-order bit, then
5644 into the high-order bit, then sign-extend. We then XOR that value
5646 temp
= build_int_cst (TREE_TYPE (c
),
5647 wi::extract_uhwi (wi::to_wide (c
), p
- 1, 1));
5649 /* We must use a signed type in order to get an arithmetic right shift.
5650 However, we must also avoid introducing accidental overflows, so that
5651 a subsequent call to integer_zerop will work. Hence we must
5652 do the type conversion here. At this point, the constant is either
5653 zero or one, and the conversion to a signed type can never overflow.
5654 We could get an overflow if this conversion is done anywhere else. */
5655 if (TYPE_UNSIGNED (type
))
5656 temp
= fold_convert (signed_type_for (type
), temp
);
5658 temp
= const_binop (LSHIFT_EXPR
, temp
, size_int (modesize
- 1));
5659 temp
= const_binop (RSHIFT_EXPR
, temp
, size_int (modesize
- p
- 1));
5661 temp
= const_binop (BIT_AND_EXPR
, temp
,
5662 fold_convert (TREE_TYPE (c
), mask
));
5663 /* If necessary, convert the type back to match the type of C. */
5664 if (TYPE_UNSIGNED (type
))
5665 temp
= fold_convert (type
, temp
);
5667 return fold_convert (type
, const_binop (BIT_XOR_EXPR
, c
, temp
));
5670 /* For an expression that has the form
5674 we can drop one of the inner expressions and simplify to
5678 LOC is the location of the resulting expression. OP is the inner
5679 logical operation; the left-hand side in the examples above, while CMPOP
5680 is the right-hand side. RHS_ONLY is used to prevent us from accidentally
5681 removing a condition that guards another, as in
5682 (A != NULL && A->...) || A == NULL
5683 which we must not transform. If RHS_ONLY is true, only eliminate the
5684 right-most operand of the inner logical operation. */
5687 merge_truthop_with_opposite_arm (location_t loc
, tree op
, tree cmpop
,
5690 tree type
= TREE_TYPE (cmpop
);
5691 enum tree_code code
= TREE_CODE (cmpop
);
5692 enum tree_code truthop_code
= TREE_CODE (op
);
5693 tree lhs
= TREE_OPERAND (op
, 0);
5694 tree rhs
= TREE_OPERAND (op
, 1);
5695 tree orig_lhs
= lhs
, orig_rhs
= rhs
;
5696 enum tree_code rhs_code
= TREE_CODE (rhs
);
5697 enum tree_code lhs_code
= TREE_CODE (lhs
);
5698 enum tree_code inv_code
;
5700 if (TREE_SIDE_EFFECTS (op
) || TREE_SIDE_EFFECTS (cmpop
))
5703 if (TREE_CODE_CLASS (code
) != tcc_comparison
)
5706 if (rhs_code
== truthop_code
)
5708 tree newrhs
= merge_truthop_with_opposite_arm (loc
, rhs
, cmpop
, rhs_only
);
5709 if (newrhs
!= NULL_TREE
)
5712 rhs_code
= TREE_CODE (rhs
);
5715 if (lhs_code
== truthop_code
&& !rhs_only
)
5717 tree newlhs
= merge_truthop_with_opposite_arm (loc
, lhs
, cmpop
, false);
5718 if (newlhs
!= NULL_TREE
)
5721 lhs_code
= TREE_CODE (lhs
);
5725 inv_code
= invert_tree_comparison (code
, HONOR_NANS (type
));
5726 if (inv_code
== rhs_code
5727 && operand_equal_p (TREE_OPERAND (rhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5728 && operand_equal_p (TREE_OPERAND (rhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5730 if (!rhs_only
&& inv_code
== lhs_code
5731 && operand_equal_p (TREE_OPERAND (lhs
, 0), TREE_OPERAND (cmpop
, 0), 0)
5732 && operand_equal_p (TREE_OPERAND (lhs
, 1), TREE_OPERAND (cmpop
, 1), 0))
5734 if (rhs
!= orig_rhs
|| lhs
!= orig_lhs
)
5735 return fold_build2_loc (loc
, truthop_code
, TREE_TYPE (cmpop
),
5740 /* Find ways of folding logical expressions of LHS and RHS:
5741 Try to merge two comparisons to the same innermost item.
5742 Look for range tests like "ch >= '0' && ch <= '9'".
5743 Look for combinations of simple terms on machines with expensive branches
5744 and evaluate the RHS unconditionally.
5746 For example, if we have p->a == 2 && p->b == 4 and we can make an
5747 object large enough to span both A and B, we can do this with a comparison
5748 against the object ANDed with the a mask.
5750 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5751 operations to do this with one comparison.
5753 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5754 function and the one above.
5756 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5757 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5759 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5762 We return the simplified tree or 0 if no optimization is possible. */
5765 fold_truth_andor_1 (location_t loc
, enum tree_code code
, tree truth_type
,
5768 /* If this is the "or" of two comparisons, we can do something if
5769 the comparisons are NE_EXPR. If this is the "and", we can do something
5770 if the comparisons are EQ_EXPR. I.e.,
5771 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5773 WANTED_CODE is this operation code. For single bit fields, we can
5774 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5775 comparison for one-bit fields. */
5777 enum tree_code wanted_code
;
5778 enum tree_code lcode
, rcode
;
5779 tree ll_arg
, lr_arg
, rl_arg
, rr_arg
;
5780 tree ll_inner
, lr_inner
, rl_inner
, rr_inner
;
5781 HOST_WIDE_INT ll_bitsize
, ll_bitpos
, lr_bitsize
, lr_bitpos
;
5782 HOST_WIDE_INT rl_bitsize
, rl_bitpos
, rr_bitsize
, rr_bitpos
;
5783 HOST_WIDE_INT xll_bitpos
, xlr_bitpos
, xrl_bitpos
, xrr_bitpos
;
5784 HOST_WIDE_INT lnbitsize
, lnbitpos
, rnbitsize
, rnbitpos
;
5785 int ll_unsignedp
, lr_unsignedp
, rl_unsignedp
, rr_unsignedp
;
5786 int ll_reversep
, lr_reversep
, rl_reversep
, rr_reversep
;
5787 machine_mode ll_mode
, lr_mode
, rl_mode
, rr_mode
;
5788 scalar_int_mode lnmode
, rnmode
;
5789 tree ll_mask
, lr_mask
, rl_mask
, rr_mask
;
5790 tree ll_and_mask
, lr_and_mask
, rl_and_mask
, rr_and_mask
;
5791 tree l_const
, r_const
;
5792 tree lntype
, rntype
, result
;
5793 HOST_WIDE_INT first_bit
, end_bit
;
5796 /* Start by getting the comparison codes. Fail if anything is volatile.
5797 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5798 it were surrounded with a NE_EXPR. */
5800 if (TREE_SIDE_EFFECTS (lhs
) || TREE_SIDE_EFFECTS (rhs
))
5803 lcode
= TREE_CODE (lhs
);
5804 rcode
= TREE_CODE (rhs
);
5806 if (lcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (lhs
, 1)))
5808 lhs
= build2 (NE_EXPR
, truth_type
, lhs
,
5809 build_int_cst (TREE_TYPE (lhs
), 0));
5813 if (rcode
== BIT_AND_EXPR
&& integer_onep (TREE_OPERAND (rhs
, 1)))
5815 rhs
= build2 (NE_EXPR
, truth_type
, rhs
,
5816 build_int_cst (TREE_TYPE (rhs
), 0));
5820 if (TREE_CODE_CLASS (lcode
) != tcc_comparison
5821 || TREE_CODE_CLASS (rcode
) != tcc_comparison
)
5824 ll_arg
= TREE_OPERAND (lhs
, 0);
5825 lr_arg
= TREE_OPERAND (lhs
, 1);
5826 rl_arg
= TREE_OPERAND (rhs
, 0);
5827 rr_arg
= TREE_OPERAND (rhs
, 1);
5829 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5830 if (simple_operand_p (ll_arg
)
5831 && simple_operand_p (lr_arg
))
5833 if (operand_equal_p (ll_arg
, rl_arg
, 0)
5834 && operand_equal_p (lr_arg
, rr_arg
, 0))
5836 result
= combine_comparisons (loc
, code
, lcode
, rcode
,
5837 truth_type
, ll_arg
, lr_arg
);
5841 else if (operand_equal_p (ll_arg
, rr_arg
, 0)
5842 && operand_equal_p (lr_arg
, rl_arg
, 0))
5844 result
= combine_comparisons (loc
, code
, lcode
,
5845 swap_tree_comparison (rcode
),
5846 truth_type
, ll_arg
, lr_arg
);
5852 code
= ((code
== TRUTH_AND_EXPR
|| code
== TRUTH_ANDIF_EXPR
)
5853 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
);
5855 /* If the RHS can be evaluated unconditionally and its operands are
5856 simple, it wins to evaluate the RHS unconditionally on machines
5857 with expensive branches. In this case, this isn't a comparison
5858 that can be merged. */
5860 if (BRANCH_COST (optimize_function_for_speed_p (cfun
),
5862 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg
))
5863 && simple_operand_p (rl_arg
)
5864 && simple_operand_p (rr_arg
))
5866 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5867 if (code
== TRUTH_OR_EXPR
5868 && lcode
== NE_EXPR
&& integer_zerop (lr_arg
)
5869 && rcode
== NE_EXPR
&& integer_zerop (rr_arg
)
5870 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5871 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5872 return build2_loc (loc
, NE_EXPR
, truth_type
,
5873 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5875 build_int_cst (TREE_TYPE (ll_arg
), 0));
5877 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5878 if (code
== TRUTH_AND_EXPR
5879 && lcode
== EQ_EXPR
&& integer_zerop (lr_arg
)
5880 && rcode
== EQ_EXPR
&& integer_zerop (rr_arg
)
5881 && TREE_TYPE (ll_arg
) == TREE_TYPE (rl_arg
)
5882 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg
)))
5883 return build2_loc (loc
, EQ_EXPR
, truth_type
,
5884 build2 (BIT_IOR_EXPR
, TREE_TYPE (ll_arg
),
5886 build_int_cst (TREE_TYPE (ll_arg
), 0));
5889 /* See if the comparisons can be merged. Then get all the parameters for
5892 if ((lcode
!= EQ_EXPR
&& lcode
!= NE_EXPR
)
5893 || (rcode
!= EQ_EXPR
&& rcode
!= NE_EXPR
))
5896 ll_reversep
= lr_reversep
= rl_reversep
= rr_reversep
= 0;
5898 ll_inner
= decode_field_reference (loc
, &ll_arg
,
5899 &ll_bitsize
, &ll_bitpos
, &ll_mode
,
5900 &ll_unsignedp
, &ll_reversep
, &volatilep
,
5901 &ll_mask
, &ll_and_mask
);
5902 lr_inner
= decode_field_reference (loc
, &lr_arg
,
5903 &lr_bitsize
, &lr_bitpos
, &lr_mode
,
5904 &lr_unsignedp
, &lr_reversep
, &volatilep
,
5905 &lr_mask
, &lr_and_mask
);
5906 rl_inner
= decode_field_reference (loc
, &rl_arg
,
5907 &rl_bitsize
, &rl_bitpos
, &rl_mode
,
5908 &rl_unsignedp
, &rl_reversep
, &volatilep
,
5909 &rl_mask
, &rl_and_mask
);
5910 rr_inner
= decode_field_reference (loc
, &rr_arg
,
5911 &rr_bitsize
, &rr_bitpos
, &rr_mode
,
5912 &rr_unsignedp
, &rr_reversep
, &volatilep
,
5913 &rr_mask
, &rr_and_mask
);
5915 /* It must be true that the inner operation on the lhs of each
5916 comparison must be the same if we are to be able to do anything.
5917 Then see if we have constants. If not, the same must be true for
5920 || ll_reversep
!= rl_reversep
5921 || ll_inner
== 0 || rl_inner
== 0
5922 || ! operand_equal_p (ll_inner
, rl_inner
, 0))
5925 if (TREE_CODE (lr_arg
) == INTEGER_CST
5926 && TREE_CODE (rr_arg
) == INTEGER_CST
)
5928 l_const
= lr_arg
, r_const
= rr_arg
;
5929 lr_reversep
= ll_reversep
;
5931 else if (lr_reversep
!= rr_reversep
5932 || lr_inner
== 0 || rr_inner
== 0
5933 || ! operand_equal_p (lr_inner
, rr_inner
, 0))
5936 l_const
= r_const
= 0;
5938 /* If either comparison code is not correct for our logical operation,
5939 fail. However, we can convert a one-bit comparison against zero into
5940 the opposite comparison against that bit being set in the field. */
5942 wanted_code
= (code
== TRUTH_AND_EXPR
? EQ_EXPR
: NE_EXPR
);
5943 if (lcode
!= wanted_code
)
5945 if (l_const
&& integer_zerop (l_const
) && integer_pow2p (ll_mask
))
5947 /* Make the left operand unsigned, since we are only interested
5948 in the value of one bit. Otherwise we are doing the wrong
5957 /* This is analogous to the code for l_const above. */
5958 if (rcode
!= wanted_code
)
5960 if (r_const
&& integer_zerop (r_const
) && integer_pow2p (rl_mask
))
5969 /* See if we can find a mode that contains both fields being compared on
5970 the left. If we can't, fail. Otherwise, update all constants and masks
5971 to be relative to a field of that size. */
5972 first_bit
= MIN (ll_bitpos
, rl_bitpos
);
5973 end_bit
= MAX (ll_bitpos
+ ll_bitsize
, rl_bitpos
+ rl_bitsize
);
5974 if (!get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
5975 TYPE_ALIGN (TREE_TYPE (ll_inner
)), BITS_PER_WORD
,
5976 volatilep
, &lnmode
))
5979 lnbitsize
= GET_MODE_BITSIZE (lnmode
);
5980 lnbitpos
= first_bit
& ~ (lnbitsize
- 1);
5981 lntype
= lang_hooks
.types
.type_for_size (lnbitsize
, 1);
5982 xll_bitpos
= ll_bitpos
- lnbitpos
, xrl_bitpos
= rl_bitpos
- lnbitpos
;
5984 if (ll_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
5986 xll_bitpos
= lnbitsize
- xll_bitpos
- ll_bitsize
;
5987 xrl_bitpos
= lnbitsize
- xrl_bitpos
- rl_bitsize
;
5990 ll_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, ll_mask
),
5991 size_int (xll_bitpos
));
5992 rl_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
, lntype
, rl_mask
),
5993 size_int (xrl_bitpos
));
5997 l_const
= fold_convert_loc (loc
, lntype
, l_const
);
5998 l_const
= unextend (l_const
, ll_bitsize
, ll_unsignedp
, ll_and_mask
);
5999 l_const
= const_binop (LSHIFT_EXPR
, l_const
, size_int (xll_bitpos
));
6000 if (! integer_zerop (const_binop (BIT_AND_EXPR
, l_const
,
6001 fold_build1_loc (loc
, BIT_NOT_EXPR
,
6004 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
6006 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
6011 r_const
= fold_convert_loc (loc
, lntype
, r_const
);
6012 r_const
= unextend (r_const
, rl_bitsize
, rl_unsignedp
, rl_and_mask
);
6013 r_const
= const_binop (LSHIFT_EXPR
, r_const
, size_int (xrl_bitpos
));
6014 if (! integer_zerop (const_binop (BIT_AND_EXPR
, r_const
,
6015 fold_build1_loc (loc
, BIT_NOT_EXPR
,
6018 warning (0, "comparison is always %d", wanted_code
== NE_EXPR
);
6020 return constant_boolean_node (wanted_code
== NE_EXPR
, truth_type
);
6024 /* If the right sides are not constant, do the same for it. Also,
6025 disallow this optimization if a size, signedness or storage order
6026 mismatch occurs between the left and right sides. */
6029 if (ll_bitsize
!= lr_bitsize
|| rl_bitsize
!= rr_bitsize
6030 || ll_unsignedp
!= lr_unsignedp
|| rl_unsignedp
!= rr_unsignedp
6031 || ll_reversep
!= lr_reversep
6032 /* Make sure the two fields on the right
6033 correspond to the left without being swapped. */
6034 || ll_bitpos
- rl_bitpos
!= lr_bitpos
- rr_bitpos
)
6037 first_bit
= MIN (lr_bitpos
, rr_bitpos
);
6038 end_bit
= MAX (lr_bitpos
+ lr_bitsize
, rr_bitpos
+ rr_bitsize
);
6039 if (!get_best_mode (end_bit
- first_bit
, first_bit
, 0, 0,
6040 TYPE_ALIGN (TREE_TYPE (lr_inner
)), BITS_PER_WORD
,
6041 volatilep
, &rnmode
))
6044 rnbitsize
= GET_MODE_BITSIZE (rnmode
);
6045 rnbitpos
= first_bit
& ~ (rnbitsize
- 1);
6046 rntype
= lang_hooks
.types
.type_for_size (rnbitsize
, 1);
6047 xlr_bitpos
= lr_bitpos
- rnbitpos
, xrr_bitpos
= rr_bitpos
- rnbitpos
;
6049 if (lr_reversep
? !BYTES_BIG_ENDIAN
: BYTES_BIG_ENDIAN
)
6051 xlr_bitpos
= rnbitsize
- xlr_bitpos
- lr_bitsize
;
6052 xrr_bitpos
= rnbitsize
- xrr_bitpos
- rr_bitsize
;
6055 lr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
6057 size_int (xlr_bitpos
));
6058 rr_mask
= const_binop (LSHIFT_EXPR
, fold_convert_loc (loc
,
6060 size_int (xrr_bitpos
));
6062 /* Make a mask that corresponds to both fields being compared.
6063 Do this for both items being compared. If the operands are the
6064 same size and the bits being compared are in the same position
6065 then we can do this by masking both and comparing the masked
6067 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
6068 lr_mask
= const_binop (BIT_IOR_EXPR
, lr_mask
, rr_mask
);
6069 if (lnbitsize
== rnbitsize
6070 && xll_bitpos
== xlr_bitpos
6074 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
6075 lntype
, lnbitsize
, lnbitpos
,
6076 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
6077 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
6078 lhs
= build2 (BIT_AND_EXPR
, lntype
, lhs
, ll_mask
);
6080 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
,
6081 rntype
, rnbitsize
, rnbitpos
,
6082 lr_unsignedp
|| rr_unsignedp
, lr_reversep
);
6083 if (! all_ones_mask_p (lr_mask
, rnbitsize
))
6084 rhs
= build2 (BIT_AND_EXPR
, rntype
, rhs
, lr_mask
);
6086 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
6089 /* There is still another way we can do something: If both pairs of
6090 fields being compared are adjacent, we may be able to make a wider
6091 field containing them both.
6093 Note that we still must mask the lhs/rhs expressions. Furthermore,
6094 the mask must be shifted to account for the shift done by
6095 make_bit_field_ref. */
6096 if (((ll_bitsize
+ ll_bitpos
== rl_bitpos
6097 && lr_bitsize
+ lr_bitpos
== rr_bitpos
)
6098 || (ll_bitpos
== rl_bitpos
+ rl_bitsize
6099 && lr_bitpos
== rr_bitpos
+ rr_bitsize
))
6107 lhs
= make_bit_field_ref (loc
, ll_inner
, ll_arg
, lntype
,
6108 ll_bitsize
+ rl_bitsize
,
6109 MIN (ll_bitpos
, rl_bitpos
),
6110 ll_unsignedp
, ll_reversep
);
6111 rhs
= make_bit_field_ref (loc
, lr_inner
, lr_arg
, rntype
,
6112 lr_bitsize
+ rr_bitsize
,
6113 MIN (lr_bitpos
, rr_bitpos
),
6114 lr_unsignedp
, lr_reversep
);
6116 ll_mask
= const_binop (RSHIFT_EXPR
, ll_mask
,
6117 size_int (MIN (xll_bitpos
, xrl_bitpos
)));
6118 lr_mask
= const_binop (RSHIFT_EXPR
, lr_mask
,
6119 size_int (MIN (xlr_bitpos
, xrr_bitpos
)));
6121 /* Convert to the smaller type before masking out unwanted bits. */
6123 if (lntype
!= rntype
)
6125 if (lnbitsize
> rnbitsize
)
6127 lhs
= fold_convert_loc (loc
, rntype
, lhs
);
6128 ll_mask
= fold_convert_loc (loc
, rntype
, ll_mask
);
6131 else if (lnbitsize
< rnbitsize
)
6133 rhs
= fold_convert_loc (loc
, lntype
, rhs
);
6134 lr_mask
= fold_convert_loc (loc
, lntype
, lr_mask
);
6139 if (! all_ones_mask_p (ll_mask
, ll_bitsize
+ rl_bitsize
))
6140 lhs
= build2 (BIT_AND_EXPR
, type
, lhs
, ll_mask
);
6142 if (! all_ones_mask_p (lr_mask
, lr_bitsize
+ rr_bitsize
))
6143 rhs
= build2 (BIT_AND_EXPR
, type
, rhs
, lr_mask
);
6145 return build2_loc (loc
, wanted_code
, truth_type
, lhs
, rhs
);
6151 /* Handle the case of comparisons with constants. If there is something in
6152 common between the masks, those bits of the constants must be the same.
6153 If not, the condition is always false. Test for this to avoid generating
6154 incorrect code below. */
6155 result
= const_binop (BIT_AND_EXPR
, ll_mask
, rl_mask
);
6156 if (! integer_zerop (result
)
6157 && simple_cst_equal (const_binop (BIT_AND_EXPR
, result
, l_const
),
6158 const_binop (BIT_AND_EXPR
, result
, r_const
)) != 1)
6160 if (wanted_code
== NE_EXPR
)
6162 warning (0, "%<or%> of unmatched not-equal tests is always 1");
6163 return constant_boolean_node (true, truth_type
);
6167 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
6168 return constant_boolean_node (false, truth_type
);
6175 /* Construct the expression we will return. First get the component
6176 reference we will make. Unless the mask is all ones the width of
6177 that field, perform the mask operation. Then compare with the
6179 result
= make_bit_field_ref (loc
, ll_inner
, ll_arg
,
6180 lntype
, lnbitsize
, lnbitpos
,
6181 ll_unsignedp
|| rl_unsignedp
, ll_reversep
);
6183 ll_mask
= const_binop (BIT_IOR_EXPR
, ll_mask
, rl_mask
);
6184 if (! all_ones_mask_p (ll_mask
, lnbitsize
))
6185 result
= build2_loc (loc
, BIT_AND_EXPR
, lntype
, result
, ll_mask
);
6187 return build2_loc (loc
, wanted_code
, truth_type
, result
,
6188 const_binop (BIT_IOR_EXPR
, l_const
, r_const
));
6191 /* T is an integer expression that is being multiplied, divided, or taken a
6192 modulus (CODE says which and what kind of divide or modulus) by a
6193 constant C. See if we can eliminate that operation by folding it with
6194 other operations already in T. WIDE_TYPE, if non-null, is a type that
6195 should be used for the computation if wider than our type.
6197 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6198 (X * 2) + (Y * 4). We must, however, be assured that either the original
6199 expression would not overflow or that overflow is undefined for the type
6200 in the language in question.
6202 If we return a non-null expression, it is an equivalent form of the
6203 original computation, but need not be in the original type.
6205 We set *STRICT_OVERFLOW_P to true if the return values depends on
6206 signed overflow being undefined. Otherwise we do not change
6207 *STRICT_OVERFLOW_P. */
6210 extract_muldiv (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6211 bool *strict_overflow_p
)
6213 /* To avoid exponential search depth, refuse to allow recursion past
6214 three levels. Beyond that (1) it's highly unlikely that we'll find
6215 something interesting and (2) we've probably processed it before
6216 when we built the inner expression. */
6225 ret
= extract_muldiv_1 (t
, c
, code
, wide_type
, strict_overflow_p
);
6232 extract_muldiv_1 (tree t
, tree c
, enum tree_code code
, tree wide_type
,
6233 bool *strict_overflow_p
)
6235 tree type
= TREE_TYPE (t
);
6236 enum tree_code tcode
= TREE_CODE (t
);
6237 tree ctype
= (wide_type
!= 0
6238 && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type
))
6239 > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
)))
6240 ? wide_type
: type
);
6242 int same_p
= tcode
== code
;
6243 tree op0
= NULL_TREE
, op1
= NULL_TREE
;
6244 bool sub_strict_overflow_p
;
6246 /* Don't deal with constants of zero here; they confuse the code below. */
6247 if (integer_zerop (c
))
6250 if (TREE_CODE_CLASS (tcode
) == tcc_unary
)
6251 op0
= TREE_OPERAND (t
, 0);
6253 if (TREE_CODE_CLASS (tcode
) == tcc_binary
)
6254 op0
= TREE_OPERAND (t
, 0), op1
= TREE_OPERAND (t
, 1);
6256 /* Note that we need not handle conditional operations here since fold
6257 already handles those cases. So just do arithmetic here. */
6261 /* For a constant, we can always simplify if we are a multiply
6262 or (for divide and modulus) if it is a multiple of our constant. */
6263 if (code
== MULT_EXPR
6264 || wi::multiple_of_p (wi::to_wide (t
), wi::to_wide (c
),
6267 tree tem
= const_binop (code
, fold_convert (ctype
, t
),
6268 fold_convert (ctype
, c
));
6269 /* If the multiplication overflowed, we lost information on it.
6270 See PR68142 and PR69845. */
6271 if (TREE_OVERFLOW (tem
))
6277 CASE_CONVERT
: case NON_LVALUE_EXPR
:
6278 /* If op0 is an expression ... */
6279 if ((COMPARISON_CLASS_P (op0
)
6280 || UNARY_CLASS_P (op0
)
6281 || BINARY_CLASS_P (op0
)
6282 || VL_EXP_CLASS_P (op0
)
6283 || EXPRESSION_CLASS_P (op0
))
6284 /* ... and has wrapping overflow, and its type is smaller
6285 than ctype, then we cannot pass through as widening. */
6286 && (((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6287 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0
)))
6288 && (TYPE_PRECISION (ctype
)
6289 > TYPE_PRECISION (TREE_TYPE (op0
))))
6290 /* ... or this is a truncation (t is narrower than op0),
6291 then we cannot pass through this narrowing. */
6292 || (TYPE_PRECISION (type
)
6293 < TYPE_PRECISION (TREE_TYPE (op0
)))
6294 /* ... or signedness changes for division or modulus,
6295 then we cannot pass through this conversion. */
6296 || (code
!= MULT_EXPR
6297 && (TYPE_UNSIGNED (ctype
)
6298 != TYPE_UNSIGNED (TREE_TYPE (op0
))))
6299 /* ... or has undefined overflow while the converted to
6300 type has not, we cannot do the operation in the inner type
6301 as that would introduce undefined overflow. */
6302 || ((ANY_INTEGRAL_TYPE_P (TREE_TYPE (op0
))
6303 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0
)))
6304 && !TYPE_OVERFLOW_UNDEFINED (type
))))
6307 /* Pass the constant down and see if we can make a simplification. If
6308 we can, replace this expression with the inner simplification for
6309 possible later conversion to our or some other type. */
6310 if ((t2
= fold_convert (TREE_TYPE (op0
), c
)) != 0
6311 && TREE_CODE (t2
) == INTEGER_CST
6312 && !TREE_OVERFLOW (t2
)
6313 && (t1
= extract_muldiv (op0
, t2
, code
,
6314 code
== MULT_EXPR
? ctype
: NULL_TREE
,
6315 strict_overflow_p
)) != 0)
6320 /* If widening the type changes it from signed to unsigned, then we
6321 must avoid building ABS_EXPR itself as unsigned. */
6322 if (TYPE_UNSIGNED (ctype
) && !TYPE_UNSIGNED (type
))
6324 tree cstype
= (*signed_type_for
) (ctype
);
6325 if ((t1
= extract_muldiv (op0
, c
, code
, cstype
, strict_overflow_p
))
6328 t1
= fold_build1 (tcode
, cstype
, fold_convert (cstype
, t1
));
6329 return fold_convert (ctype
, t1
);
6333 /* If the constant is negative, we cannot simplify this. */
6334 if (tree_int_cst_sgn (c
) == -1)
6338 /* For division and modulus, type can't be unsigned, as e.g.
6339 (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2.
6340 For signed types, even with wrapping overflow, this is fine. */
6341 if (code
!= MULT_EXPR
&& TYPE_UNSIGNED (type
))
6343 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
, strict_overflow_p
))
6345 return fold_build1 (tcode
, ctype
, fold_convert (ctype
, t1
));
6348 case MIN_EXPR
: case MAX_EXPR
:
6349 /* If widening the type changes the signedness, then we can't perform
6350 this optimization as that changes the result. */
6351 if (TYPE_UNSIGNED (ctype
) != TYPE_UNSIGNED (type
))
6354 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6355 sub_strict_overflow_p
= false;
6356 if ((t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6357 &sub_strict_overflow_p
)) != 0
6358 && (t2
= extract_muldiv (op1
, c
, code
, wide_type
,
6359 &sub_strict_overflow_p
)) != 0)
6361 if (tree_int_cst_sgn (c
) < 0)
6362 tcode
= (tcode
== MIN_EXPR
? MAX_EXPR
: MIN_EXPR
);
6363 if (sub_strict_overflow_p
)
6364 *strict_overflow_p
= true;
6365 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6366 fold_convert (ctype
, t2
));
6370 case LSHIFT_EXPR
: case RSHIFT_EXPR
:
6371 /* If the second operand is constant, this is a multiplication
6372 or floor division, by a power of two, so we can treat it that
6373 way unless the multiplier or divisor overflows. Signed
6374 left-shift overflow is implementation-defined rather than
6375 undefined in C90, so do not convert signed left shift into
6377 if (TREE_CODE (op1
) == INTEGER_CST
6378 && (tcode
== RSHIFT_EXPR
|| TYPE_UNSIGNED (TREE_TYPE (op0
)))
6379 /* const_binop may not detect overflow correctly,
6380 so check for it explicitly here. */
6381 && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)),
6383 && (t1
= fold_convert (ctype
,
6384 const_binop (LSHIFT_EXPR
, size_one_node
,
6386 && !TREE_OVERFLOW (t1
))
6387 return extract_muldiv (build2 (tcode
== LSHIFT_EXPR
6388 ? MULT_EXPR
: FLOOR_DIV_EXPR
,
6390 fold_convert (ctype
, op0
),
6392 c
, code
, wide_type
, strict_overflow_p
);
6395 case PLUS_EXPR
: case MINUS_EXPR
:
6396 /* See if we can eliminate the operation on both sides. If we can, we
6397 can return a new PLUS or MINUS. If we can't, the only remaining
6398 cases where we can do anything are if the second operand is a
6400 sub_strict_overflow_p
= false;
6401 t1
= extract_muldiv (op0
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6402 t2
= extract_muldiv (op1
, c
, code
, wide_type
, &sub_strict_overflow_p
);
6403 if (t1
!= 0 && t2
!= 0
6404 && TYPE_OVERFLOW_WRAPS (ctype
)
6405 && (code
== MULT_EXPR
6406 /* If not multiplication, we can only do this if both operands
6407 are divisible by c. */
6408 || (multiple_of_p (ctype
, op0
, c
)
6409 && multiple_of_p (ctype
, op1
, c
))))
6411 if (sub_strict_overflow_p
)
6412 *strict_overflow_p
= true;
6413 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6414 fold_convert (ctype
, t2
));
6417 /* If this was a subtraction, negate OP1 and set it to be an addition.
6418 This simplifies the logic below. */
6419 if (tcode
== MINUS_EXPR
)
6421 tcode
= PLUS_EXPR
, op1
= negate_expr (op1
);
6422 /* If OP1 was not easily negatable, the constant may be OP0. */
6423 if (TREE_CODE (op0
) == INTEGER_CST
)
6425 std::swap (op0
, op1
);
6430 if (TREE_CODE (op1
) != INTEGER_CST
)
6433 /* If either OP1 or C are negative, this optimization is not safe for
6434 some of the division and remainder types while for others we need
6435 to change the code. */
6436 if (tree_int_cst_sgn (op1
) < 0 || tree_int_cst_sgn (c
) < 0)
6438 if (code
== CEIL_DIV_EXPR
)
6439 code
= FLOOR_DIV_EXPR
;
6440 else if (code
== FLOOR_DIV_EXPR
)
6441 code
= CEIL_DIV_EXPR
;
6442 else if (code
!= MULT_EXPR
6443 && code
!= CEIL_MOD_EXPR
&& code
!= FLOOR_MOD_EXPR
)
6447 /* If it's a multiply or a division/modulus operation of a multiple
6448 of our constant, do the operation and verify it doesn't overflow. */
6449 if (code
== MULT_EXPR
6450 || wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6453 op1
= const_binop (code
, fold_convert (ctype
, op1
),
6454 fold_convert (ctype
, c
));
6455 /* We allow the constant to overflow with wrapping semantics. */
6457 || (TREE_OVERFLOW (op1
) && !TYPE_OVERFLOW_WRAPS (ctype
)))
6463 /* If we have an unsigned type, we cannot widen the operation since it
6464 will change the result if the original computation overflowed. */
6465 if (TYPE_UNSIGNED (ctype
) && ctype
!= type
)
6468 /* The last case is if we are a multiply. In that case, we can
6469 apply the distributive law to commute the multiply and addition
6470 if the multiplication of the constants doesn't overflow
6471 and overflow is defined. With undefined overflow
6472 op0 * c might overflow, while (op0 + orig_op1) * c doesn't. */
6473 if (code
== MULT_EXPR
&& TYPE_OVERFLOW_WRAPS (ctype
))
6474 return fold_build2 (tcode
, ctype
,
6475 fold_build2 (code
, ctype
,
6476 fold_convert (ctype
, op0
),
6477 fold_convert (ctype
, c
)),
6483 /* We have a special case here if we are doing something like
6484 (C * 8) % 4 since we know that's zero. */
6485 if ((code
== TRUNC_MOD_EXPR
|| code
== CEIL_MOD_EXPR
6486 || code
== FLOOR_MOD_EXPR
|| code
== ROUND_MOD_EXPR
)
6487 /* If the multiplication can overflow we cannot optimize this. */
6488 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t
))
6489 && TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
6490 && wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6493 *strict_overflow_p
= true;
6494 return omit_one_operand (type
, integer_zero_node
, op0
);
6497 /* ... fall through ... */
6499 case TRUNC_DIV_EXPR
: case CEIL_DIV_EXPR
: case FLOOR_DIV_EXPR
:
6500 case ROUND_DIV_EXPR
: case EXACT_DIV_EXPR
:
6501 /* If we can extract our operation from the LHS, do so and return a
6502 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6503 do something only if the second operand is a constant. */
6505 && TYPE_OVERFLOW_WRAPS (ctype
)
6506 && (t1
= extract_muldiv (op0
, c
, code
, wide_type
,
6507 strict_overflow_p
)) != 0)
6508 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, t1
),
6509 fold_convert (ctype
, op1
));
6510 else if (tcode
== MULT_EXPR
&& code
== MULT_EXPR
6511 && TYPE_OVERFLOW_WRAPS (ctype
)
6512 && (t1
= extract_muldiv (op1
, c
, code
, wide_type
,
6513 strict_overflow_p
)) != 0)
6514 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6515 fold_convert (ctype
, t1
));
6516 else if (TREE_CODE (op1
) != INTEGER_CST
)
6519 /* If these are the same operation types, we can associate them
6520 assuming no overflow. */
6523 bool overflow_p
= false;
6524 wi::overflow_type overflow_mul
;
6525 signop sign
= TYPE_SIGN (ctype
);
6526 unsigned prec
= TYPE_PRECISION (ctype
);
6527 wide_int mul
= wi::mul (wi::to_wide (op1
, prec
),
6528 wi::to_wide (c
, prec
),
6529 sign
, &overflow_mul
);
6530 overflow_p
= TREE_OVERFLOW (c
) | TREE_OVERFLOW (op1
);
6532 && ((sign
== UNSIGNED
&& tcode
!= MULT_EXPR
) || sign
== SIGNED
))
6535 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6536 wide_int_to_tree (ctype
, mul
));
6539 /* If these operations "cancel" each other, we have the main
6540 optimizations of this pass, which occur when either constant is a
6541 multiple of the other, in which case we replace this with either an
6542 operation or CODE or TCODE.
6544 If we have an unsigned type, we cannot do this since it will change
6545 the result if the original computation overflowed. */
6546 if (TYPE_OVERFLOW_UNDEFINED (ctype
)
6547 && ((code
== MULT_EXPR
&& tcode
== EXACT_DIV_EXPR
)
6548 || (tcode
== MULT_EXPR
6549 && code
!= TRUNC_MOD_EXPR
&& code
!= CEIL_MOD_EXPR
6550 && code
!= FLOOR_MOD_EXPR
&& code
!= ROUND_MOD_EXPR
6551 && code
!= MULT_EXPR
)))
6553 if (wi::multiple_of_p (wi::to_wide (op1
), wi::to_wide (c
),
6556 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6557 *strict_overflow_p
= true;
6558 return fold_build2 (tcode
, ctype
, fold_convert (ctype
, op0
),
6559 fold_convert (ctype
,
6560 const_binop (TRUNC_DIV_EXPR
,
6563 else if (wi::multiple_of_p (wi::to_wide (c
), wi::to_wide (op1
),
6566 if (TYPE_OVERFLOW_UNDEFINED (ctype
))
6567 *strict_overflow_p
= true;
6568 return fold_build2 (code
, ctype
, fold_convert (ctype
, op0
),
6569 fold_convert (ctype
,
6570 const_binop (TRUNC_DIV_EXPR
,
6583 /* Return a node which has the indicated constant VALUE (either 0 or
6584 1 for scalars or {-1,-1,..} or {0,0,...} for vectors),
6585 and is of the indicated TYPE. */
6588 constant_boolean_node (bool value
, tree type
)
6590 if (type
== integer_type_node
)
6591 return value
? integer_one_node
: integer_zero_node
;
6592 else if (type
== boolean_type_node
)
6593 return value
? boolean_true_node
: boolean_false_node
;
6594 else if (TREE_CODE (type
) == VECTOR_TYPE
)
6595 return build_vector_from_val (type
,
6596 build_int_cst (TREE_TYPE (type
),
6599 return fold_convert (type
, value
? integer_one_node
: integer_zero_node
);
6603 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6604 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6605 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6606 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6607 COND is the first argument to CODE; otherwise (as in the example
6608 given here), it is the second argument. TYPE is the type of the
6609 original expression. Return NULL_TREE if no simplification is
6613 fold_binary_op_with_conditional_arg (location_t loc
,
6614 enum tree_code code
,
6615 tree type
, tree op0
, tree op1
,
6616 tree cond
, tree arg
, int cond_first_p
)
6618 tree cond_type
= cond_first_p
? TREE_TYPE (op0
) : TREE_TYPE (op1
);
6619 tree arg_type
= cond_first_p
? TREE_TYPE (op1
) : TREE_TYPE (op0
);
6620 tree test
, true_value
, false_value
;
6621 tree lhs
= NULL_TREE
;
6622 tree rhs
= NULL_TREE
;
6623 enum tree_code cond_code
= COND_EXPR
;
6625 /* Do not move possibly trapping operations into the conditional as this
6626 pessimizes code and causes gimplification issues when applied late. */
6627 if (operation_could_trap_p (code
, FLOAT_TYPE_P (type
),
6628 ANY_INTEGRAL_TYPE_P (type
)
6629 && TYPE_OVERFLOW_TRAPS (type
), op1
))
6632 if (TREE_CODE (cond
) == COND_EXPR
6633 || TREE_CODE (cond
) == VEC_COND_EXPR
)
6635 test
= TREE_OPERAND (cond
, 0);
6636 true_value
= TREE_OPERAND (cond
, 1);
6637 false_value
= TREE_OPERAND (cond
, 2);
6638 /* If this operand throws an expression, then it does not make
6639 sense to try to perform a logical or arithmetic operation
6641 if (VOID_TYPE_P (TREE_TYPE (true_value
)))
6643 if (VOID_TYPE_P (TREE_TYPE (false_value
)))
6646 else if (!(TREE_CODE (type
) != VECTOR_TYPE
6647 && TREE_CODE (TREE_TYPE (cond
)) == VECTOR_TYPE
))
6649 tree testtype
= TREE_TYPE (cond
);
6651 true_value
= constant_boolean_node (true, testtype
);
6652 false_value
= constant_boolean_node (false, testtype
);
6655 /* Detect the case of mixing vector and scalar types - bail out. */
6658 if (TREE_CODE (TREE_TYPE (test
)) == VECTOR_TYPE
)
6659 cond_code
= VEC_COND_EXPR
;
6661 /* This transformation is only worthwhile if we don't have to wrap ARG
6662 in a SAVE_EXPR and the operation can be simplified without recursing
6663 on at least one of the branches once its pushed inside the COND_EXPR. */
6664 if (!TREE_CONSTANT (arg
)
6665 && (TREE_SIDE_EFFECTS (arg
)
6666 || TREE_CODE (arg
) == COND_EXPR
|| TREE_CODE (arg
) == VEC_COND_EXPR
6667 || TREE_CONSTANT (true_value
) || TREE_CONSTANT (false_value
)))
6670 arg
= fold_convert_loc (loc
, arg_type
, arg
);
6673 true_value
= fold_convert_loc (loc
, cond_type
, true_value
);
6675 lhs
= fold_build2_loc (loc
, code
, type
, true_value
, arg
);
6677 lhs
= fold_build2_loc (loc
, code
, type
, arg
, true_value
);
6681 false_value
= fold_convert_loc (loc
, cond_type
, false_value
);
6683 rhs
= fold_build2_loc (loc
, code
, type
, false_value
, arg
);
6685 rhs
= fold_build2_loc (loc
, code
, type
, arg
, false_value
);
6688 /* Check that we have simplified at least one of the branches. */
6689 if (!TREE_CONSTANT (arg
) && !TREE_CONSTANT (lhs
) && !TREE_CONSTANT (rhs
))
6692 return fold_build3_loc (loc
, cond_code
, type
, test
, lhs
, rhs
);
6696 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6698 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6699 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6700 ADDEND is the same as X.
6702 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6703 and finite. The problematic cases are when X is zero, and its mode
6704 has signed zeros. In the case of rounding towards -infinity,
6705 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6706 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6709 fold_real_zero_addition_p (const_tree type
, const_tree addend
, int negate
)
6711 if (!real_zerop (addend
))
6714 /* Don't allow the fold with -fsignaling-nans. */
6715 if (HONOR_SNANS (element_mode (type
)))
6718 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6719 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
6722 /* In a vector or complex, we would need to check the sign of all zeros. */
6723 if (TREE_CODE (addend
) != REAL_CST
)
6726 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6727 if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend
)))
6730 /* The mode has signed zeros, and we have to honor their sign.
6731 In this situation, there is only one case we can return true for.
6732 X - 0 is the same as X unless rounding towards -infinity is
6734 return negate
&& !HONOR_SIGN_DEPENDENT_ROUNDING (element_mode (type
));
6737 /* Subroutine of match.pd that optimizes comparisons of a division by
6738 a nonzero integer constant against an integer constant, i.e.
6741 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6742 GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */
6745 fold_div_compare (enum tree_code code
, tree c1
, tree c2
, tree
*lo
,
6746 tree
*hi
, bool *neg_overflow
)
6748 tree prod
, tmp
, type
= TREE_TYPE (c1
);
6749 signop sign
= TYPE_SIGN (type
);
6750 wi::overflow_type overflow
;
6752 /* We have to do this the hard way to detect unsigned overflow.
6753 prod = int_const_binop (MULT_EXPR, c1, c2); */
6754 wide_int val
= wi::mul (wi::to_wide (c1
), wi::to_wide (c2
), sign
, &overflow
);
6755 prod
= force_fit_type (type
, val
, -1, overflow
);
6756 *neg_overflow
= false;
6758 if (sign
== UNSIGNED
)
6760 tmp
= int_const_binop (MINUS_EXPR
, c1
, build_int_cst (type
, 1));
6763 /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */
6764 val
= wi::add (wi::to_wide (prod
), wi::to_wide (tmp
), sign
, &overflow
);
6765 *hi
= force_fit_type (type
, val
, -1, overflow
| TREE_OVERFLOW (prod
));
6767 else if (tree_int_cst_sgn (c1
) >= 0)
6769 tmp
= int_const_binop (MINUS_EXPR
, c1
, build_int_cst (type
, 1));
6770 switch (tree_int_cst_sgn (c2
))
6773 *neg_overflow
= true;
6774 *lo
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6779 *lo
= fold_negate_const (tmp
, type
);
6784 *hi
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6794 /* A negative divisor reverses the relational operators. */
6795 code
= swap_tree_comparison (code
);
6797 tmp
= int_const_binop (PLUS_EXPR
, c1
, build_int_cst (type
, 1));
6798 switch (tree_int_cst_sgn (c2
))
6801 *hi
= int_const_binop (MINUS_EXPR
, prod
, tmp
);
6806 *hi
= fold_negate_const (tmp
, type
);
6811 *neg_overflow
= true;
6812 *lo
= int_const_binop (PLUS_EXPR
, prod
, tmp
);
6821 if (code
!= EQ_EXPR
&& code
!= NE_EXPR
)
6824 if (TREE_OVERFLOW (*lo
)
6825 || operand_equal_p (*lo
, TYPE_MIN_VALUE (type
), 0))
6827 if (TREE_OVERFLOW (*hi
)
6828 || operand_equal_p (*hi
, TYPE_MAX_VALUE (type
), 0))
6835 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6836 equality/inequality test, then return a simplified form of the test
6837 using a sign testing. Otherwise return NULL. TYPE is the desired
6841 fold_single_bit_test_into_sign_test (location_t loc
,
6842 enum tree_code code
, tree arg0
, tree arg1
,
6845 /* If this is testing a single bit, we can optimize the test. */
6846 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6847 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6848 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6850 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6851 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6852 tree arg00
= sign_bit_p (TREE_OPERAND (arg0
, 0), TREE_OPERAND (arg0
, 1));
6854 if (arg00
!= NULL_TREE
6855 /* This is only a win if casting to a signed type is cheap,
6856 i.e. when arg00's type is not a partial mode. */
6857 && type_has_mode_precision_p (TREE_TYPE (arg00
)))
6859 tree stype
= signed_type_for (TREE_TYPE (arg00
));
6860 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
6862 fold_convert_loc (loc
, stype
, arg00
),
6863 build_int_cst (stype
, 0));
6870 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6871 equality/inequality test, then return a simplified form of
6872 the test using shifts and logical operations. Otherwise return
6873 NULL. TYPE is the desired result type. */
6876 fold_single_bit_test (location_t loc
, enum tree_code code
,
6877 tree arg0
, tree arg1
, tree result_type
)
6879 /* If this is testing a single bit, we can optimize the test. */
6880 if ((code
== NE_EXPR
|| code
== EQ_EXPR
)
6881 && TREE_CODE (arg0
) == BIT_AND_EXPR
&& integer_zerop (arg1
)
6882 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
6884 tree inner
= TREE_OPERAND (arg0
, 0);
6885 tree type
= TREE_TYPE (arg0
);
6886 int bitnum
= tree_log2 (TREE_OPERAND (arg0
, 1));
6887 scalar_int_mode operand_mode
= SCALAR_INT_TYPE_MODE (type
);
6889 tree signed_type
, unsigned_type
, intermediate_type
;
6892 /* First, see if we can fold the single bit test into a sign-bit
6894 tem
= fold_single_bit_test_into_sign_test (loc
, code
, arg0
, arg1
,
6899 /* Otherwise we have (A & C) != 0 where C is a single bit,
6900 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6901 Similarly for (A & C) == 0. */
6903 /* If INNER is a right shift of a constant and it plus BITNUM does
6904 not overflow, adjust BITNUM and INNER. */
6905 if (TREE_CODE (inner
) == RSHIFT_EXPR
6906 && TREE_CODE (TREE_OPERAND (inner
, 1)) == INTEGER_CST
6907 && bitnum
< TYPE_PRECISION (type
)
6908 && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner
, 1)),
6909 TYPE_PRECISION (type
) - bitnum
))
6911 bitnum
+= tree_to_uhwi (TREE_OPERAND (inner
, 1));
6912 inner
= TREE_OPERAND (inner
, 0);
6915 /* If we are going to be able to omit the AND below, we must do our
6916 operations as unsigned. If we must use the AND, we have a choice.
6917 Normally unsigned is faster, but for some machines signed is. */
6918 ops_unsigned
= (load_extend_op (operand_mode
) == SIGN_EXTEND
6919 && !flag_syntax_only
) ? 0 : 1;
6921 signed_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 0);
6922 unsigned_type
= lang_hooks
.types
.type_for_mode (operand_mode
, 1);
6923 intermediate_type
= ops_unsigned
? unsigned_type
: signed_type
;
6924 inner
= fold_convert_loc (loc
, intermediate_type
, inner
);
6927 inner
= build2 (RSHIFT_EXPR
, intermediate_type
,
6928 inner
, size_int (bitnum
));
6930 one
= build_int_cst (intermediate_type
, 1);
6932 if (code
== EQ_EXPR
)
6933 inner
= fold_build2_loc (loc
, BIT_XOR_EXPR
, intermediate_type
, inner
, one
);
6935 /* Put the AND last so it can combine with more things. */
6936 inner
= build2 (BIT_AND_EXPR
, intermediate_type
, inner
, one
);
6938 /* Make sure to return the proper type. */
6939 inner
= fold_convert_loc (loc
, result_type
, inner
);
6946 /* Test whether it is preferable two swap two operands, ARG0 and
6947 ARG1, for example because ARG0 is an integer constant and ARG1
6951 tree_swap_operands_p (const_tree arg0
, const_tree arg1
)
6953 if (CONSTANT_CLASS_P (arg1
))
6955 if (CONSTANT_CLASS_P (arg0
))
6961 if (TREE_CONSTANT (arg1
))
6963 if (TREE_CONSTANT (arg0
))
6966 /* It is preferable to swap two SSA_NAME to ensure a canonical form
6967 for commutative and comparison operators. Ensuring a canonical
6968 form allows the optimizers to find additional redundancies without
6969 having to explicitly check for both orderings. */
6970 if (TREE_CODE (arg0
) == SSA_NAME
6971 && TREE_CODE (arg1
) == SSA_NAME
6972 && SSA_NAME_VERSION (arg0
) > SSA_NAME_VERSION (arg1
))
6975 /* Put SSA_NAMEs last. */
6976 if (TREE_CODE (arg1
) == SSA_NAME
)
6978 if (TREE_CODE (arg0
) == SSA_NAME
)
6981 /* Put variables last. */
6991 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
6992 means A >= Y && A != MAX, but in this case we know that
6993 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
6996 fold_to_nonsharp_ineq_using_bound (location_t loc
, tree ineq
, tree bound
)
6998 tree a
, typea
, type
= TREE_TYPE (ineq
), a1
, diff
, y
;
7000 if (TREE_CODE (bound
) == LT_EXPR
)
7001 a
= TREE_OPERAND (bound
, 0);
7002 else if (TREE_CODE (bound
) == GT_EXPR
)
7003 a
= TREE_OPERAND (bound
, 1);
7007 typea
= TREE_TYPE (a
);
7008 if (!INTEGRAL_TYPE_P (typea
)
7009 && !POINTER_TYPE_P (typea
))
7012 if (TREE_CODE (ineq
) == LT_EXPR
)
7014 a1
= TREE_OPERAND (ineq
, 1);
7015 y
= TREE_OPERAND (ineq
, 0);
7017 else if (TREE_CODE (ineq
) == GT_EXPR
)
7019 a1
= TREE_OPERAND (ineq
, 0);
7020 y
= TREE_OPERAND (ineq
, 1);
7025 if (TREE_TYPE (a1
) != typea
)
7028 if (POINTER_TYPE_P (typea
))
7030 /* Convert the pointer types into integer before taking the difference. */
7031 tree ta
= fold_convert_loc (loc
, ssizetype
, a
);
7032 tree ta1
= fold_convert_loc (loc
, ssizetype
, a1
);
7033 diff
= fold_binary_loc (loc
, MINUS_EXPR
, ssizetype
, ta1
, ta
);
7036 diff
= fold_binary_loc (loc
, MINUS_EXPR
, typea
, a1
, a
);
7038 if (!diff
|| !integer_onep (diff
))
7041 return fold_build2_loc (loc
, GE_EXPR
, type
, a
, y
);
7044 /* Fold a sum or difference of at least one multiplication.
7045 Returns the folded tree or NULL if no simplification could be made. */
7048 fold_plusminus_mult_expr (location_t loc
, enum tree_code code
, tree type
,
7049 tree arg0
, tree arg1
)
7051 tree arg00
, arg01
, arg10
, arg11
;
7052 tree alt0
= NULL_TREE
, alt1
= NULL_TREE
, same
;
7054 /* (A * C) +- (B * C) -> (A+-B) * C.
7055 (A * C) +- A -> A * (C+-1).
7056 We are most concerned about the case where C is a constant,
7057 but other combinations show up during loop reduction. Since
7058 it is not difficult, try all four possibilities. */
7060 if (TREE_CODE (arg0
) == MULT_EXPR
)
7062 arg00
= TREE_OPERAND (arg0
, 0);
7063 arg01
= TREE_OPERAND (arg0
, 1);
7065 else if (TREE_CODE (arg0
) == INTEGER_CST
)
7067 arg00
= build_one_cst (type
);
7072 /* We cannot generate constant 1 for fract. */
7073 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7076 arg01
= build_one_cst (type
);
7078 if (TREE_CODE (arg1
) == MULT_EXPR
)
7080 arg10
= TREE_OPERAND (arg1
, 0);
7081 arg11
= TREE_OPERAND (arg1
, 1);
7083 else if (TREE_CODE (arg1
) == INTEGER_CST
)
7085 arg10
= build_one_cst (type
);
7086 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7087 the purpose of this canonicalization. */
7088 if (wi::neg_p (wi::to_wide (arg1
), TYPE_SIGN (TREE_TYPE (arg1
)))
7089 && negate_expr_p (arg1
)
7090 && code
== PLUS_EXPR
)
7092 arg11
= negate_expr (arg1
);
7100 /* We cannot generate constant 1 for fract. */
7101 if (ALL_FRACT_MODE_P (TYPE_MODE (type
)))
7104 arg11
= build_one_cst (type
);
7108 /* Prefer factoring a common non-constant. */
7109 if (operand_equal_p (arg00
, arg10
, 0))
7110 same
= arg00
, alt0
= arg01
, alt1
= arg11
;
7111 else if (operand_equal_p (arg01
, arg11
, 0))
7112 same
= arg01
, alt0
= arg00
, alt1
= arg10
;
7113 else if (operand_equal_p (arg00
, arg11
, 0))
7114 same
= arg00
, alt0
= arg01
, alt1
= arg10
;
7115 else if (operand_equal_p (arg01
, arg10
, 0))
7116 same
= arg01
, alt0
= arg00
, alt1
= arg11
;
7118 /* No identical multiplicands; see if we can find a common
7119 power-of-two factor in non-power-of-two multiplies. This
7120 can help in multi-dimensional array access. */
7121 else if (tree_fits_shwi_p (arg01
)
7122 && tree_fits_shwi_p (arg11
))
7124 HOST_WIDE_INT int01
, int11
, tmp
;
7127 int01
= tree_to_shwi (arg01
);
7128 int11
= tree_to_shwi (arg11
);
7130 /* Move min of absolute values to int11. */
7131 if (absu_hwi (int01
) < absu_hwi (int11
))
7133 tmp
= int01
, int01
= int11
, int11
= tmp
;
7134 alt0
= arg00
, arg00
= arg10
, arg10
= alt0
;
7141 if (exact_log2 (absu_hwi (int11
)) > 0 && int01
% int11
== 0
7142 /* The remainder should not be a constant, otherwise we
7143 end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has
7144 increased the number of multiplications necessary. */
7145 && TREE_CODE (arg10
) != INTEGER_CST
)
7147 alt0
= fold_build2_loc (loc
, MULT_EXPR
, TREE_TYPE (arg00
), arg00
,
7148 build_int_cst (TREE_TYPE (arg00
),
7153 maybe_same
= alt0
, alt0
= alt1
, alt1
= maybe_same
;
7160 if (! ANY_INTEGRAL_TYPE_P (type
)
7161 || TYPE_OVERFLOW_WRAPS (type
)
7162 /* We are neither factoring zero nor minus one. */
7163 || TREE_CODE (same
) == INTEGER_CST
)
7164 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7165 fold_build2_loc (loc
, code
, type
,
7166 fold_convert_loc (loc
, type
, alt0
),
7167 fold_convert_loc (loc
, type
, alt1
)),
7168 fold_convert_loc (loc
, type
, same
));
7170 /* Same may be zero and thus the operation 'code' may overflow. Likewise
7171 same may be minus one and thus the multiplication may overflow. Perform
7172 the sum operation in an unsigned type. */
7173 tree utype
= unsigned_type_for (type
);
7174 tree tem
= fold_build2_loc (loc
, code
, utype
,
7175 fold_convert_loc (loc
, utype
, alt0
),
7176 fold_convert_loc (loc
, utype
, alt1
));
7177 /* If the sum evaluated to a constant that is not -INF the multiplication
7179 if (TREE_CODE (tem
) == INTEGER_CST
7180 && (wi::to_wide (tem
)
7181 != wi::min_value (TYPE_PRECISION (utype
), SIGNED
)))
7182 return fold_build2_loc (loc
, MULT_EXPR
, type
,
7183 fold_convert (type
, tem
), same
);
7185 /* Do not resort to unsigned multiplication because
7186 we lose the no-overflow property of the expression. */
7190 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7191 specified by EXPR into the buffer PTR of length LEN bytes.
7192 Return the number of bytes placed in the buffer, or zero
7196 native_encode_int (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7198 tree type
= TREE_TYPE (expr
);
7199 int total_bytes
= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
));
7200 int byte
, offset
, word
, words
;
7201 unsigned char value
;
7203 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7210 return MIN (len
, total_bytes
- off
);
7212 words
= total_bytes
/ UNITS_PER_WORD
;
7214 for (byte
= 0; byte
< total_bytes
; byte
++)
7216 int bitpos
= byte
* BITS_PER_UNIT
;
7217 /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole
7219 value
= wi::extract_uhwi (wi::to_widest (expr
), bitpos
, BITS_PER_UNIT
);
7221 if (total_bytes
> UNITS_PER_WORD
)
7223 word
= byte
/ UNITS_PER_WORD
;
7224 if (WORDS_BIG_ENDIAN
)
7225 word
= (words
- 1) - word
;
7226 offset
= word
* UNITS_PER_WORD
;
7227 if (BYTES_BIG_ENDIAN
)
7228 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7230 offset
+= byte
% UNITS_PER_WORD
;
7233 offset
= BYTES_BIG_ENDIAN
? (total_bytes
- 1) - byte
: byte
;
7234 if (offset
>= off
&& offset
- off
< len
)
7235 ptr
[offset
- off
] = value
;
7237 return MIN (len
, total_bytes
- off
);
7241 /* Subroutine of native_encode_expr. Encode the FIXED_CST
7242 specified by EXPR into the buffer PTR of length LEN bytes.
7243 Return the number of bytes placed in the buffer, or zero
7247 native_encode_fixed (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7249 tree type
= TREE_TYPE (expr
);
7250 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
7251 int total_bytes
= GET_MODE_SIZE (mode
);
7252 FIXED_VALUE_TYPE value
;
7253 tree i_value
, i_type
;
7255 if (total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7258 i_type
= lang_hooks
.types
.type_for_size (GET_MODE_BITSIZE (mode
), 1);
7260 if (NULL_TREE
== i_type
|| TYPE_PRECISION (i_type
) != total_bytes
)
7263 value
= TREE_FIXED_CST (expr
);
7264 i_value
= double_int_to_tree (i_type
, value
.data
);
7266 return native_encode_int (i_value
, ptr
, len
, off
);
7270 /* Subroutine of native_encode_expr. Encode the REAL_CST
7271 specified by EXPR into the buffer PTR of length LEN bytes.
7272 Return the number of bytes placed in the buffer, or zero
7276 native_encode_real (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7278 tree type
= TREE_TYPE (expr
);
7279 int total_bytes
= GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type
));
7280 int byte
, offset
, word
, words
, bitpos
;
7281 unsigned char value
;
7283 /* There are always 32 bits in each long, no matter the size of
7284 the hosts long. We handle floating point representations with
7288 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7295 return MIN (len
, total_bytes
- off
);
7297 words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7299 real_to_target (tmp
, TREE_REAL_CST_PTR (expr
), TYPE_MODE (type
));
7301 for (bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7302 bitpos
+= BITS_PER_UNIT
)
7304 byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7305 value
= (unsigned char) (tmp
[bitpos
/ 32] >> (bitpos
& 31));
7307 if (UNITS_PER_WORD
< 4)
7309 word
= byte
/ UNITS_PER_WORD
;
7310 if (WORDS_BIG_ENDIAN
)
7311 word
= (words
- 1) - word
;
7312 offset
= word
* UNITS_PER_WORD
;
7313 if (BYTES_BIG_ENDIAN
)
7314 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7316 offset
+= byte
% UNITS_PER_WORD
;
7321 if (BYTES_BIG_ENDIAN
)
7323 /* Reverse bytes within each long, or within the entire float
7324 if it's smaller than a long (for HFmode). */
7325 offset
= MIN (3, total_bytes
- 1) - offset
;
7326 gcc_assert (offset
>= 0);
7329 offset
= offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3);
7331 && offset
- off
< len
)
7332 ptr
[offset
- off
] = value
;
7334 return MIN (len
, total_bytes
- off
);
7337 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7338 specified by EXPR into the buffer PTR of length LEN bytes.
7339 Return the number of bytes placed in the buffer, or zero
7343 native_encode_complex (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7348 part
= TREE_REALPART (expr
);
7349 rsize
= native_encode_expr (part
, ptr
, len
, off
);
7350 if (off
== -1 && rsize
== 0)
7352 part
= TREE_IMAGPART (expr
);
7354 off
= MAX (0, off
- GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part
))));
7355 isize
= native_encode_expr (part
, ptr
? ptr
+ rsize
: NULL
,
7357 if (off
== -1 && isize
!= rsize
)
7359 return rsize
+ isize
;
7363 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7364 specified by EXPR into the buffer PTR of length LEN bytes.
7365 Return the number of bytes placed in the buffer, or zero
7369 native_encode_vector (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7371 unsigned HOST_WIDE_INT i
, count
;
7376 if (!VECTOR_CST_NELTS (expr
).is_constant (&count
))
7378 itype
= TREE_TYPE (TREE_TYPE (expr
));
7379 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (itype
));
7380 for (i
= 0; i
< count
; i
++)
7387 elem
= VECTOR_CST_ELT (expr
, i
);
7388 int res
= native_encode_expr (elem
, ptr
? ptr
+ offset
: NULL
,
7390 if ((off
== -1 && res
!= size
) || res
== 0)
7394 return (off
== -1 && i
< count
- 1) ? 0 : offset
;
7402 /* Subroutine of native_encode_expr. Encode the STRING_CST
7403 specified by EXPR into the buffer PTR of length LEN bytes.
7404 Return the number of bytes placed in the buffer, or zero
7408 native_encode_string (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7410 tree type
= TREE_TYPE (expr
);
7412 /* Wide-char strings are encoded in target byte-order so native
7413 encoding them is trivial. */
7414 if (BITS_PER_UNIT
!= CHAR_BIT
7415 || TREE_CODE (type
) != ARRAY_TYPE
7416 || TREE_CODE (TREE_TYPE (type
)) != INTEGER_TYPE
7417 || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type
)))
7420 HOST_WIDE_INT total_bytes
= tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr
)));
7421 if ((off
== -1 && total_bytes
> len
) || off
>= total_bytes
)
7427 else if (TREE_STRING_LENGTH (expr
) - off
< MIN (total_bytes
, len
))
7430 if (off
< TREE_STRING_LENGTH (expr
))
7432 written
= MIN (len
, TREE_STRING_LENGTH (expr
) - off
);
7433 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, written
);
7435 memset (ptr
+ written
, 0,
7436 MIN (total_bytes
- written
, len
- written
));
7439 memcpy (ptr
, TREE_STRING_POINTER (expr
) + off
, MIN (total_bytes
, len
));
7440 return MIN (total_bytes
- off
, len
);
7444 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7445 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7446 buffer PTR of length LEN bytes. If PTR is NULL, don't actually store
7447 anything, just do a dry run. If OFF is not -1 then start
7448 the encoding at byte offset OFF and encode at most LEN bytes.
7449 Return the number of bytes placed in the buffer, or zero upon failure. */
7452 native_encode_expr (const_tree expr
, unsigned char *ptr
, int len
, int off
)
7454 /* We don't support starting at negative offset and -1 is special. */
7458 switch (TREE_CODE (expr
))
7461 return native_encode_int (expr
, ptr
, len
, off
);
7464 return native_encode_real (expr
, ptr
, len
, off
);
7467 return native_encode_fixed (expr
, ptr
, len
, off
);
7470 return native_encode_complex (expr
, ptr
, len
, off
);
7473 return native_encode_vector (expr
, ptr
, len
, off
);
7476 return native_encode_string (expr
, ptr
, len
, off
);
7484 /* Subroutine of native_interpret_expr. Interpret the contents of
7485 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7486 If the buffer cannot be interpreted, return NULL_TREE. */
7489 native_interpret_int (tree type
, const unsigned char *ptr
, int len
)
7491 int total_bytes
= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type
));
7493 if (total_bytes
> len
7494 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7497 wide_int result
= wi::from_buffer (ptr
, total_bytes
);
7499 return wide_int_to_tree (type
, result
);
7503 /* Subroutine of native_interpret_expr. Interpret the contents of
7504 the buffer PTR of length LEN as a FIXED_CST of type TYPE.
7505 If the buffer cannot be interpreted, return NULL_TREE. */
7508 native_interpret_fixed (tree type
, const unsigned char *ptr
, int len
)
7510 scalar_mode mode
= SCALAR_TYPE_MODE (type
);
7511 int total_bytes
= GET_MODE_SIZE (mode
);
7513 FIXED_VALUE_TYPE fixed_value
;
7515 if (total_bytes
> len
7516 || total_bytes
* BITS_PER_UNIT
> HOST_BITS_PER_DOUBLE_INT
)
7519 result
= double_int::from_buffer (ptr
, total_bytes
);
7520 fixed_value
= fixed_from_double_int (result
, mode
);
7522 return build_fixed (type
, fixed_value
);
7526 /* Subroutine of native_interpret_expr. Interpret the contents of
7527 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7528 If the buffer cannot be interpreted, return NULL_TREE. */
7531 native_interpret_real (tree type
, const unsigned char *ptr
, int len
)
7533 scalar_float_mode mode
= SCALAR_FLOAT_TYPE_MODE (type
);
7534 int total_bytes
= GET_MODE_SIZE (mode
);
7535 unsigned char value
;
7536 /* There are always 32 bits in each long, no matter the size of
7537 the hosts long. We handle floating point representations with
7542 if (total_bytes
> len
|| total_bytes
> 24)
7544 int words
= (32 / BITS_PER_UNIT
) / UNITS_PER_WORD
;
7546 memset (tmp
, 0, sizeof (tmp
));
7547 for (int bitpos
= 0; bitpos
< total_bytes
* BITS_PER_UNIT
;
7548 bitpos
+= BITS_PER_UNIT
)
7550 /* Both OFFSET and BYTE index within a long;
7551 bitpos indexes the whole float. */
7552 int offset
, byte
= (bitpos
/ BITS_PER_UNIT
) & 3;
7553 if (UNITS_PER_WORD
< 4)
7555 int word
= byte
/ UNITS_PER_WORD
;
7556 if (WORDS_BIG_ENDIAN
)
7557 word
= (words
- 1) - word
;
7558 offset
= word
* UNITS_PER_WORD
;
7559 if (BYTES_BIG_ENDIAN
)
7560 offset
+= (UNITS_PER_WORD
- 1) - (byte
% UNITS_PER_WORD
);
7562 offset
+= byte
% UNITS_PER_WORD
;
7567 if (BYTES_BIG_ENDIAN
)
7569 /* Reverse bytes within each long, or within the entire float
7570 if it's smaller than a long (for HFmode). */
7571 offset
= MIN (3, total_bytes
- 1) - offset
;
7572 gcc_assert (offset
>= 0);
7575 value
= ptr
[offset
+ ((bitpos
/ BITS_PER_UNIT
) & ~3)];
7577 tmp
[bitpos
/ 32] |= (unsigned long)value
<< (bitpos
& 31);
7580 real_from_target (&r
, tmp
, mode
);
7581 return build_real (type
, r
);
7585 /* Subroutine of native_interpret_expr. Interpret the contents of
7586 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7587 If the buffer cannot be interpreted, return NULL_TREE. */
7590 native_interpret_complex (tree type
, const unsigned char *ptr
, int len
)
7592 tree etype
, rpart
, ipart
;
7595 etype
= TREE_TYPE (type
);
7596 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (etype
));
7599 rpart
= native_interpret_expr (etype
, ptr
, size
);
7602 ipart
= native_interpret_expr (etype
, ptr
+size
, size
);
7605 return build_complex (type
, rpart
, ipart
);
7609 /* Subroutine of native_interpret_expr. Interpret the contents of
7610 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7611 If the buffer cannot be interpreted, return NULL_TREE. */
7614 native_interpret_vector (tree type
, const unsigned char *ptr
, unsigned int len
)
7617 unsigned int i
, size
;
7618 unsigned HOST_WIDE_INT count
;
7620 etype
= TREE_TYPE (type
);
7621 size
= GET_MODE_SIZE (SCALAR_TYPE_MODE (etype
));
7622 if (!TYPE_VECTOR_SUBPARTS (type
).is_constant (&count
)
7623 || size
* count
> len
)
7626 tree_vector_builder
elements (type
, count
, 1);
7627 for (i
= 0; i
< count
; ++i
)
7629 elem
= native_interpret_expr (etype
, ptr
+(i
*size
), size
);
7632 elements
.quick_push (elem
);
7634 return elements
.build ();
7638 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7639 the buffer PTR of length LEN as a constant of type TYPE. For
7640 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7641 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7642 return NULL_TREE. */
7645 native_interpret_expr (tree type
, const unsigned char *ptr
, int len
)
7647 switch (TREE_CODE (type
))
7653 case REFERENCE_TYPE
:
7654 return native_interpret_int (type
, ptr
, len
);
7657 return native_interpret_real (type
, ptr
, len
);
7659 case FIXED_POINT_TYPE
:
7660 return native_interpret_fixed (type
, ptr
, len
);
7663 return native_interpret_complex (type
, ptr
, len
);
7666 return native_interpret_vector (type
, ptr
, len
);
7673 /* Returns true if we can interpret the contents of a native encoding
7677 can_native_interpret_type_p (tree type
)
7679 switch (TREE_CODE (type
))
7685 case REFERENCE_TYPE
:
7686 case FIXED_POINT_TYPE
:
7697 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7698 TYPE at compile-time. If we're unable to perform the conversion
7699 return NULL_TREE. */
7702 fold_view_convert_expr (tree type
, tree expr
)
7704 /* We support up to 512-bit values (for V8DFmode). */
7705 unsigned char buffer
[64];
7708 /* Check that the host and target are sane. */
7709 if (CHAR_BIT
!= 8 || BITS_PER_UNIT
!= 8)
7712 len
= native_encode_expr (expr
, buffer
, sizeof (buffer
));
7716 return native_interpret_expr (type
, buffer
, len
);
7719 /* Build an expression for the address of T. Folds away INDIRECT_REF
7720 to avoid confusing the gimplify process. */
7723 build_fold_addr_expr_with_type_loc (location_t loc
, tree t
, tree ptrtype
)
7725 /* The size of the object is not relevant when talking about its address. */
7726 if (TREE_CODE (t
) == WITH_SIZE_EXPR
)
7727 t
= TREE_OPERAND (t
, 0);
7729 if (TREE_CODE (t
) == INDIRECT_REF
)
7731 t
= TREE_OPERAND (t
, 0);
7733 if (TREE_TYPE (t
) != ptrtype
)
7734 t
= build1_loc (loc
, NOP_EXPR
, ptrtype
, t
);
7736 else if (TREE_CODE (t
) == MEM_REF
7737 && integer_zerop (TREE_OPERAND (t
, 1)))
7738 return TREE_OPERAND (t
, 0);
7739 else if (TREE_CODE (t
) == MEM_REF
7740 && TREE_CODE (TREE_OPERAND (t
, 0)) == INTEGER_CST
)
7741 return fold_binary (POINTER_PLUS_EXPR
, ptrtype
,
7742 TREE_OPERAND (t
, 0),
7743 convert_to_ptrofftype (TREE_OPERAND (t
, 1)));
7744 else if (TREE_CODE (t
) == VIEW_CONVERT_EXPR
)
7746 t
= build_fold_addr_expr_loc (loc
, TREE_OPERAND (t
, 0));
7748 if (TREE_TYPE (t
) != ptrtype
)
7749 t
= fold_convert_loc (loc
, ptrtype
, t
);
7752 t
= build1_loc (loc
, ADDR_EXPR
, ptrtype
, t
);
7757 /* Build an expression for the address of T. */
7760 build_fold_addr_expr_loc (location_t loc
, tree t
)
7762 tree ptrtype
= build_pointer_type (TREE_TYPE (t
));
7764 return build_fold_addr_expr_with_type_loc (loc
, t
, ptrtype
);
7767 /* Fold a unary expression of code CODE and type TYPE with operand
7768 OP0. Return the folded expression if folding is successful.
7769 Otherwise, return NULL_TREE. */
7772 fold_unary_loc (location_t loc
, enum tree_code code
, tree type
, tree op0
)
7776 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
7778 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
7779 && TREE_CODE_LENGTH (code
) == 1);
7784 if (CONVERT_EXPR_CODE_P (code
)
7785 || code
== FLOAT_EXPR
|| code
== ABS_EXPR
|| code
== NEGATE_EXPR
)
7787 /* Don't use STRIP_NOPS, because signedness of argument type
7789 STRIP_SIGN_NOPS (arg0
);
7793 /* Strip any conversions that don't change the mode. This
7794 is safe for every expression, except for a comparison
7795 expression because its signedness is derived from its
7798 Note that this is done as an internal manipulation within
7799 the constant folder, in order to find the simplest
7800 representation of the arguments so that their form can be
7801 studied. In any cases, the appropriate type conversions
7802 should be put back in the tree that will get out of the
7807 if (CONSTANT_CLASS_P (arg0
))
7809 tree tem
= const_unop (code
, type
, arg0
);
7812 if (TREE_TYPE (tem
) != type
)
7813 tem
= fold_convert_loc (loc
, type
, tem
);
7819 tem
= generic_simplify (loc
, code
, type
, op0
);
7823 if (TREE_CODE_CLASS (code
) == tcc_unary
)
7825 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
7826 return build2 (COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7827 fold_build1_loc (loc
, code
, type
,
7828 fold_convert_loc (loc
, TREE_TYPE (op0
),
7829 TREE_OPERAND (arg0
, 1))));
7830 else if (TREE_CODE (arg0
) == COND_EXPR
)
7832 tree arg01
= TREE_OPERAND (arg0
, 1);
7833 tree arg02
= TREE_OPERAND (arg0
, 2);
7834 if (! VOID_TYPE_P (TREE_TYPE (arg01
)))
7835 arg01
= fold_build1_loc (loc
, code
, type
,
7836 fold_convert_loc (loc
,
7837 TREE_TYPE (op0
), arg01
));
7838 if (! VOID_TYPE_P (TREE_TYPE (arg02
)))
7839 arg02
= fold_build1_loc (loc
, code
, type
,
7840 fold_convert_loc (loc
,
7841 TREE_TYPE (op0
), arg02
));
7842 tem
= fold_build3_loc (loc
, COND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
7845 /* If this was a conversion, and all we did was to move into
7846 inside the COND_EXPR, bring it back out. But leave it if
7847 it is a conversion from integer to integer and the
7848 result precision is no wider than a word since such a
7849 conversion is cheap and may be optimized away by combine,
7850 while it couldn't if it were outside the COND_EXPR. Then return
7851 so we don't get into an infinite recursion loop taking the
7852 conversion out and then back in. */
7854 if ((CONVERT_EXPR_CODE_P (code
)
7855 || code
== NON_LVALUE_EXPR
)
7856 && TREE_CODE (tem
) == COND_EXPR
7857 && TREE_CODE (TREE_OPERAND (tem
, 1)) == code
7858 && TREE_CODE (TREE_OPERAND (tem
, 2)) == code
7859 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 1))
7860 && ! VOID_TYPE_P (TREE_OPERAND (tem
, 2))
7861 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))
7862 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 2), 0)))
7863 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
7865 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem
, 1), 0))))
7866 && TYPE_PRECISION (TREE_TYPE (tem
)) <= BITS_PER_WORD
)
7867 || flag_syntax_only
))
7868 tem
= build1_loc (loc
, code
, type
,
7870 TREE_TYPE (TREE_OPERAND
7871 (TREE_OPERAND (tem
, 1), 0)),
7872 TREE_OPERAND (tem
, 0),
7873 TREE_OPERAND (TREE_OPERAND (tem
, 1), 0),
7874 TREE_OPERAND (TREE_OPERAND (tem
, 2),
7882 case NON_LVALUE_EXPR
:
7883 if (!maybe_lvalue_p (op0
))
7884 return fold_convert_loc (loc
, type
, op0
);
7889 case FIX_TRUNC_EXPR
:
7890 if (COMPARISON_CLASS_P (op0
))
7892 /* If we have (type) (a CMP b) and type is an integral type, return
7893 new expression involving the new type. Canonicalize
7894 (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for
7896 Do not fold the result as that would not simplify further, also
7897 folding again results in recursions. */
7898 if (TREE_CODE (type
) == BOOLEAN_TYPE
)
7899 return build2_loc (loc
, TREE_CODE (op0
), type
,
7900 TREE_OPERAND (op0
, 0),
7901 TREE_OPERAND (op0
, 1));
7902 else if (!INTEGRAL_TYPE_P (type
) && !VOID_TYPE_P (type
)
7903 && TREE_CODE (type
) != VECTOR_TYPE
)
7904 return build3_loc (loc
, COND_EXPR
, type
, op0
,
7905 constant_boolean_node (true, type
),
7906 constant_boolean_node (false, type
));
7909 /* Handle (T *)&A.B.C for A being of type T and B and C
7910 living at offset zero. This occurs frequently in
7911 C++ upcasting and then accessing the base. */
7912 if (TREE_CODE (op0
) == ADDR_EXPR
7913 && POINTER_TYPE_P (type
)
7914 && handled_component_p (TREE_OPERAND (op0
, 0)))
7916 poly_int64 bitsize
, bitpos
;
7919 int unsignedp
, reversep
, volatilep
;
7921 = get_inner_reference (TREE_OPERAND (op0
, 0), &bitsize
, &bitpos
,
7922 &offset
, &mode
, &unsignedp
, &reversep
,
7924 /* If the reference was to a (constant) zero offset, we can use
7925 the address of the base if it has the same base type
7926 as the result type and the pointer type is unqualified. */
7928 && known_eq (bitpos
, 0)
7929 && (TYPE_MAIN_VARIANT (TREE_TYPE (type
))
7930 == TYPE_MAIN_VARIANT (TREE_TYPE (base
)))
7931 && TYPE_QUALS (type
) == TYPE_UNQUALIFIED
)
7932 return fold_convert_loc (loc
, type
,
7933 build_fold_addr_expr_loc (loc
, base
));
7936 if (TREE_CODE (op0
) == MODIFY_EXPR
7937 && TREE_CONSTANT (TREE_OPERAND (op0
, 1))
7938 /* Detect assigning a bitfield. */
7939 && !(TREE_CODE (TREE_OPERAND (op0
, 0)) == COMPONENT_REF
7941 (TREE_OPERAND (TREE_OPERAND (op0
, 0), 1))))
7943 /* Don't leave an assignment inside a conversion
7944 unless assigning a bitfield. */
7945 tem
= fold_build1_loc (loc
, code
, type
, TREE_OPERAND (op0
, 1));
7946 /* First do the assignment, then return converted constant. */
7947 tem
= build2_loc (loc
, COMPOUND_EXPR
, TREE_TYPE (tem
), op0
, tem
);
7948 TREE_NO_WARNING (tem
) = 1;
7949 TREE_USED (tem
) = 1;
7953 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
7954 constants (if x has signed type, the sign bit cannot be set
7955 in c). This folds extension into the BIT_AND_EXPR.
7956 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
7957 very likely don't have maximal range for their precision and this
7958 transformation effectively doesn't preserve non-maximal ranges. */
7959 if (TREE_CODE (type
) == INTEGER_TYPE
7960 && TREE_CODE (op0
) == BIT_AND_EXPR
7961 && TREE_CODE (TREE_OPERAND (op0
, 1)) == INTEGER_CST
)
7963 tree and_expr
= op0
;
7964 tree and0
= TREE_OPERAND (and_expr
, 0);
7965 tree and1
= TREE_OPERAND (and_expr
, 1);
7968 if (TYPE_UNSIGNED (TREE_TYPE (and_expr
))
7969 || (TYPE_PRECISION (type
)
7970 <= TYPE_PRECISION (TREE_TYPE (and_expr
))))
7972 else if (TYPE_PRECISION (TREE_TYPE (and1
))
7973 <= HOST_BITS_PER_WIDE_INT
7974 && tree_fits_uhwi_p (and1
))
7976 unsigned HOST_WIDE_INT cst
;
7978 cst
= tree_to_uhwi (and1
);
7979 cst
&= HOST_WIDE_INT_M1U
7980 << (TYPE_PRECISION (TREE_TYPE (and1
)) - 1);
7981 change
= (cst
== 0);
7983 && !flag_syntax_only
7984 && (load_extend_op (TYPE_MODE (TREE_TYPE (and0
)))
7987 tree uns
= unsigned_type_for (TREE_TYPE (and0
));
7988 and0
= fold_convert_loc (loc
, uns
, and0
);
7989 and1
= fold_convert_loc (loc
, uns
, and1
);
7994 tem
= force_fit_type (type
, wi::to_widest (and1
), 0,
7995 TREE_OVERFLOW (and1
));
7996 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
7997 fold_convert_loc (loc
, type
, and0
), tem
);
8001 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new
8002 cast (T1)X will fold away. We assume that this happens when X itself
8004 if (POINTER_TYPE_P (type
)
8005 && TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8006 && CONVERT_EXPR_P (TREE_OPERAND (arg0
, 0)))
8008 tree arg00
= TREE_OPERAND (arg0
, 0);
8009 tree arg01
= TREE_OPERAND (arg0
, 1);
8011 return fold_build_pointer_plus_loc
8012 (loc
, fold_convert_loc (loc
, type
, arg00
), arg01
);
8015 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8016 of the same precision, and X is an integer type not narrower than
8017 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8018 if (INTEGRAL_TYPE_P (type
)
8019 && TREE_CODE (op0
) == BIT_NOT_EXPR
8020 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8021 && CONVERT_EXPR_P (TREE_OPERAND (op0
, 0))
8022 && TYPE_PRECISION (type
) == TYPE_PRECISION (TREE_TYPE (op0
)))
8024 tem
= TREE_OPERAND (TREE_OPERAND (op0
, 0), 0);
8025 if (INTEGRAL_TYPE_P (TREE_TYPE (tem
))
8026 && TYPE_PRECISION (type
) <= TYPE_PRECISION (TREE_TYPE (tem
)))
8027 return fold_build1_loc (loc
, BIT_NOT_EXPR
, type
,
8028 fold_convert_loc (loc
, type
, tem
));
8031 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8032 type of X and Y (integer types only). */
8033 if (INTEGRAL_TYPE_P (type
)
8034 && TREE_CODE (op0
) == MULT_EXPR
8035 && INTEGRAL_TYPE_P (TREE_TYPE (op0
))
8036 && TYPE_PRECISION (type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
8038 /* Be careful not to introduce new overflows. */
8040 if (TYPE_OVERFLOW_WRAPS (type
))
8043 mult_type
= unsigned_type_for (type
);
8045 if (TYPE_PRECISION (mult_type
) < TYPE_PRECISION (TREE_TYPE (op0
)))
8047 tem
= fold_build2_loc (loc
, MULT_EXPR
, mult_type
,
8048 fold_convert_loc (loc
, mult_type
,
8049 TREE_OPERAND (op0
, 0)),
8050 fold_convert_loc (loc
, mult_type
,
8051 TREE_OPERAND (op0
, 1)));
8052 return fold_convert_loc (loc
, type
, tem
);
8058 case VIEW_CONVERT_EXPR
:
8059 if (TREE_CODE (op0
) == MEM_REF
)
8061 if (TYPE_ALIGN (TREE_TYPE (op0
)) != TYPE_ALIGN (type
))
8062 type
= build_aligned_type (type
, TYPE_ALIGN (TREE_TYPE (op0
)));
8063 tem
= fold_build2_loc (loc
, MEM_REF
, type
,
8064 TREE_OPERAND (op0
, 0), TREE_OPERAND (op0
, 1));
8065 REF_REVERSE_STORAGE_ORDER (tem
) = REF_REVERSE_STORAGE_ORDER (op0
);
8072 tem
= fold_negate_expr (loc
, arg0
);
8074 return fold_convert_loc (loc
, type
, tem
);
8078 /* Convert fabs((double)float) into (double)fabsf(float). */
8079 if (TREE_CODE (arg0
) == NOP_EXPR
8080 && TREE_CODE (type
) == REAL_TYPE
)
8082 tree targ0
= strip_float_extensions (arg0
);
8084 return fold_convert_loc (loc
, type
,
8085 fold_build1_loc (loc
, ABS_EXPR
,
8092 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8093 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8094 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8095 fold_convert_loc (loc
, type
,
8096 TREE_OPERAND (arg0
, 0)))))
8097 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
, tem
,
8098 fold_convert_loc (loc
, type
,
8099 TREE_OPERAND (arg0
, 1)));
8100 else if (TREE_CODE (arg0
) == BIT_XOR_EXPR
8101 && (tem
= fold_unary_loc (loc
, BIT_NOT_EXPR
, type
,
8102 fold_convert_loc (loc
, type
,
8103 TREE_OPERAND (arg0
, 1)))))
8104 return fold_build2_loc (loc
, BIT_XOR_EXPR
, type
,
8105 fold_convert_loc (loc
, type
,
8106 TREE_OPERAND (arg0
, 0)), tem
);
8110 case TRUTH_NOT_EXPR
:
8111 /* Note that the operand of this must be an int
8112 and its values must be 0 or 1.
8113 ("true" is a fixed value perhaps depending on the language,
8114 but we don't handle values other than 1 correctly yet.) */
8115 tem
= fold_truth_not_expr (loc
, arg0
);
8118 return fold_convert_loc (loc
, type
, tem
);
8121 /* Fold *&X to X if X is an lvalue. */
8122 if (TREE_CODE (op0
) == ADDR_EXPR
)
8124 tree op00
= TREE_OPERAND (op0
, 0);
8126 || TREE_CODE (op00
) == PARM_DECL
8127 || TREE_CODE (op00
) == RESULT_DECL
)
8128 && !TREE_READONLY (op00
))
8135 } /* switch (code) */
8139 /* If the operation was a conversion do _not_ mark a resulting constant
8140 with TREE_OVERFLOW if the original constant was not. These conversions
8141 have implementation defined behavior and retaining the TREE_OVERFLOW
8142 flag here would confuse later passes such as VRP. */
8144 fold_unary_ignore_overflow_loc (location_t loc
, enum tree_code code
,
8145 tree type
, tree op0
)
8147 tree res
= fold_unary_loc (loc
, code
, type
, op0
);
8149 && TREE_CODE (res
) == INTEGER_CST
8150 && TREE_CODE (op0
) == INTEGER_CST
8151 && CONVERT_EXPR_CODE_P (code
))
8152 TREE_OVERFLOW (res
) = TREE_OVERFLOW (op0
);
8157 /* Fold a binary bitwise/truth expression of code CODE and type TYPE with
8158 operands OP0 and OP1. LOC is the location of the resulting expression.
8159 ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1.
8160 Return the folded expression if folding is successful. Otherwise,
8161 return NULL_TREE. */
8163 fold_truth_andor (location_t loc
, enum tree_code code
, tree type
,
8164 tree arg0
, tree arg1
, tree op0
, tree op1
)
8168 /* We only do these simplifications if we are optimizing. */
8172 /* Check for things like (A || B) && (A || C). We can convert this
8173 to A || (B && C). Note that either operator can be any of the four
8174 truth and/or operations and the transformation will still be
8175 valid. Also note that we only care about order for the
8176 ANDIF and ORIF operators. If B contains side effects, this
8177 might change the truth-value of A. */
8178 if (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8179 && (TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
8180 || TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
8181 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
8182 || TREE_CODE (arg0
) == TRUTH_OR_EXPR
)
8183 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0
, 1)))
8185 tree a00
= TREE_OPERAND (arg0
, 0);
8186 tree a01
= TREE_OPERAND (arg0
, 1);
8187 tree a10
= TREE_OPERAND (arg1
, 0);
8188 tree a11
= TREE_OPERAND (arg1
, 1);
8189 int commutative
= ((TREE_CODE (arg0
) == TRUTH_OR_EXPR
8190 || TREE_CODE (arg0
) == TRUTH_AND_EXPR
)
8191 && (code
== TRUTH_AND_EXPR
8192 || code
== TRUTH_OR_EXPR
));
8194 if (operand_equal_p (a00
, a10
, 0))
8195 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8196 fold_build2_loc (loc
, code
, type
, a01
, a11
));
8197 else if (commutative
&& operand_equal_p (a00
, a11
, 0))
8198 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a00
,
8199 fold_build2_loc (loc
, code
, type
, a01
, a10
));
8200 else if (commutative
&& operand_equal_p (a01
, a10
, 0))
8201 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
, a01
,
8202 fold_build2_loc (loc
, code
, type
, a00
, a11
));
8204 /* This case if tricky because we must either have commutative
8205 operators or else A10 must not have side-effects. */
8207 else if ((commutative
|| ! TREE_SIDE_EFFECTS (a10
))
8208 && operand_equal_p (a01
, a11
, 0))
8209 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
8210 fold_build2_loc (loc
, code
, type
, a00
, a10
),
8214 /* See if we can build a range comparison. */
8215 if ((tem
= fold_range_test (loc
, code
, type
, op0
, op1
)) != 0)
8218 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ORIF_EXPR
)
8219 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg0
) == TRUTH_ANDIF_EXPR
))
8221 tem
= merge_truthop_with_opposite_arm (loc
, arg0
, arg1
, true);
8223 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
8226 if ((code
== TRUTH_ANDIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ORIF_EXPR
)
8227 || (code
== TRUTH_ORIF_EXPR
&& TREE_CODE (arg1
) == TRUTH_ANDIF_EXPR
))
8229 tem
= merge_truthop_with_opposite_arm (loc
, arg1
, arg0
, false);
8231 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
8234 /* Check for the possibility of merging component references. If our
8235 lhs is another similar operation, try to merge its rhs with our
8236 rhs. Then try to merge our lhs and rhs. */
8237 if (TREE_CODE (arg0
) == code
8238 && (tem
= fold_truth_andor_1 (loc
, code
, type
,
8239 TREE_OPERAND (arg0
, 1), arg1
)) != 0)
8240 return fold_build2_loc (loc
, code
, type
, TREE_OPERAND (arg0
, 0), tem
);
8242 if ((tem
= fold_truth_andor_1 (loc
, code
, type
, arg0
, arg1
)) != 0)
8245 bool logical_op_non_short_circuit
= LOGICAL_OP_NON_SHORT_CIRCUIT
;
8246 if (PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT
) != -1)
8247 logical_op_non_short_circuit
8248 = PARAM_VALUE (PARAM_LOGICAL_OP_NON_SHORT_CIRCUIT
);
8249 if (logical_op_non_short_circuit
8250 && !flag_sanitize_coverage
8251 && (code
== TRUTH_AND_EXPR
8252 || code
== TRUTH_ANDIF_EXPR
8253 || code
== TRUTH_OR_EXPR
8254 || code
== TRUTH_ORIF_EXPR
))
8256 enum tree_code ncode
, icode
;
8258 ncode
= (code
== TRUTH_ANDIF_EXPR
|| code
== TRUTH_AND_EXPR
)
8259 ? TRUTH_AND_EXPR
: TRUTH_OR_EXPR
;
8260 icode
= ncode
== TRUTH_AND_EXPR
? TRUTH_ANDIF_EXPR
: TRUTH_ORIF_EXPR
;
8262 /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)),
8263 or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C))
8264 We don't want to pack more than two leafs to a non-IF AND/OR
8266 If tree-code of left-hand operand isn't an AND/OR-IF code and not
8267 equal to IF-CODE, then we don't want to add right-hand operand.
8268 If the inner right-hand side of left-hand operand has
8269 side-effects, or isn't simple, then we can't add to it,
8270 as otherwise we might destroy if-sequence. */
8271 if (TREE_CODE (arg0
) == icode
8272 && simple_operand_p_2 (arg1
)
8273 /* Needed for sequence points to handle trappings, and
8275 && simple_operand_p_2 (TREE_OPERAND (arg0
, 1)))
8277 tem
= fold_build2_loc (loc
, ncode
, type
, TREE_OPERAND (arg0
, 1),
8279 return fold_build2_loc (loc
, icode
, type
, TREE_OPERAND (arg0
, 0),
8282 /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C),
8283 or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */
8284 else if (TREE_CODE (arg1
) == icode
8285 && simple_operand_p_2 (arg0
)
8286 /* Needed for sequence points to handle trappings, and
8288 && simple_operand_p_2 (TREE_OPERAND (arg1
, 0)))
8290 tem
= fold_build2_loc (loc
, ncode
, type
,
8291 arg0
, TREE_OPERAND (arg1
, 0));
8292 return fold_build2_loc (loc
, icode
, type
, tem
,
8293 TREE_OPERAND (arg1
, 1));
8295 /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B)
8297 For sequence point consistancy, we need to check for trapping,
8298 and side-effects. */
8299 else if (code
== icode
&& simple_operand_p_2 (arg0
)
8300 && simple_operand_p_2 (arg1
))
8301 return fold_build2_loc (loc
, ncode
, type
, arg0
, arg1
);
8307 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8308 by changing CODE to reduce the magnitude of constants involved in
8309 ARG0 of the comparison.
8310 Returns a canonicalized comparison tree if a simplification was
8311 possible, otherwise returns NULL_TREE.
8312 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8313 valid if signed overflow is undefined. */
8316 maybe_canonicalize_comparison_1 (location_t loc
, enum tree_code code
, tree type
,
8317 tree arg0
, tree arg1
,
8318 bool *strict_overflow_p
)
8320 enum tree_code code0
= TREE_CODE (arg0
);
8321 tree t
, cst0
= NULL_TREE
;
8324 /* Match A +- CST code arg1. We can change this only if overflow
8326 if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8327 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
)))
8328 /* In principle pointers also have undefined overflow behavior,
8329 but that causes problems elsewhere. */
8330 && !POINTER_TYPE_P (TREE_TYPE (arg0
))
8331 && (code0
== MINUS_EXPR
8332 || code0
== PLUS_EXPR
)
8333 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
))
8336 /* Identify the constant in arg0 and its sign. */
8337 cst0
= TREE_OPERAND (arg0
, 1);
8338 sgn0
= tree_int_cst_sgn (cst0
);
8340 /* Overflowed constants and zero will cause problems. */
8341 if (integer_zerop (cst0
)
8342 || TREE_OVERFLOW (cst0
))
8345 /* See if we can reduce the magnitude of the constant in
8346 arg0 by changing the comparison code. */
8347 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8349 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8351 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8352 else if (code
== GT_EXPR
8353 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8355 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8356 else if (code
== LE_EXPR
8357 && code0
== ((sgn0
== -1) ? MINUS_EXPR
: PLUS_EXPR
))
8359 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8360 else if (code
== GE_EXPR
8361 && code0
== ((sgn0
== -1) ? PLUS_EXPR
: MINUS_EXPR
))
8365 *strict_overflow_p
= true;
8367 /* Now build the constant reduced in magnitude. But not if that
8368 would produce one outside of its types range. */
8369 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0
))
8371 && TYPE_MIN_VALUE (TREE_TYPE (cst0
))
8372 && tree_int_cst_equal (cst0
, TYPE_MIN_VALUE (TREE_TYPE (cst0
))))
8374 && TYPE_MAX_VALUE (TREE_TYPE (cst0
))
8375 && tree_int_cst_equal (cst0
, TYPE_MAX_VALUE (TREE_TYPE (cst0
))))))
8378 t
= int_const_binop (sgn0
== -1 ? PLUS_EXPR
: MINUS_EXPR
,
8379 cst0
, build_int_cst (TREE_TYPE (cst0
), 1));
8380 t
= fold_build2_loc (loc
, code0
, TREE_TYPE (arg0
), TREE_OPERAND (arg0
, 0), t
);
8381 t
= fold_convert (TREE_TYPE (arg1
), t
);
8383 return fold_build2_loc (loc
, code
, type
, t
, arg1
);
8386 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8387 overflow further. Try to decrease the magnitude of constants involved
8388 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8389 and put sole constants at the second argument position.
8390 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8393 maybe_canonicalize_comparison (location_t loc
, enum tree_code code
, tree type
,
8394 tree arg0
, tree arg1
)
8397 bool strict_overflow_p
;
8398 const char * const warnmsg
= G_("assuming signed overflow does not occur "
8399 "when reducing constant in comparison");
8401 /* Try canonicalization by simplifying arg0. */
8402 strict_overflow_p
= false;
8403 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg0
, arg1
,
8404 &strict_overflow_p
);
8407 if (strict_overflow_p
)
8408 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8412 /* Try canonicalization by simplifying arg1 using the swapped
8414 code
= swap_tree_comparison (code
);
8415 strict_overflow_p
= false;
8416 t
= maybe_canonicalize_comparison_1 (loc
, code
, type
, arg1
, arg0
,
8417 &strict_overflow_p
);
8418 if (t
&& strict_overflow_p
)
8419 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_MAGNITUDE
);
8423 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8424 space. This is used to avoid issuing overflow warnings for
8425 expressions like &p->x which cannot wrap. */
8428 pointer_may_wrap_p (tree base
, tree offset
, poly_int64 bitpos
)
8430 if (!POINTER_TYPE_P (TREE_TYPE (base
)))
8433 if (maybe_lt (bitpos
, 0))
8436 poly_wide_int wi_offset
;
8437 int precision
= TYPE_PRECISION (TREE_TYPE (base
));
8438 if (offset
== NULL_TREE
)
8439 wi_offset
= wi::zero (precision
);
8440 else if (!poly_int_tree_p (offset
) || TREE_OVERFLOW (offset
))
8443 wi_offset
= wi::to_poly_wide (offset
);
8445 wi::overflow_type overflow
;
8446 poly_wide_int units
= wi::shwi (bits_to_bytes_round_down (bitpos
),
8448 poly_wide_int total
= wi::add (wi_offset
, units
, UNSIGNED
, &overflow
);
8452 poly_uint64 total_hwi
, size
;
8453 if (!total
.to_uhwi (&total_hwi
)
8454 || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base
))),
8456 || known_eq (size
, 0U))
8459 if (known_le (total_hwi
, size
))
8462 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8464 if (TREE_CODE (base
) == ADDR_EXPR
8465 && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base
, 0))),
8467 && maybe_ne (size
, 0U)
8468 && known_le (total_hwi
, size
))
8474 /* Return a positive integer when the symbol DECL is known to have
8475 a nonzero address, zero when it's known not to (e.g., it's a weak
8476 symbol), and a negative integer when the symbol is not yet in the
8477 symbol table and so whether or not its address is zero is unknown.
8478 For function local objects always return positive integer. */
8480 maybe_nonzero_address (tree decl
)
8482 if (DECL_P (decl
) && decl_in_symtab_p (decl
))
8483 if (struct symtab_node
*symbol
= symtab_node::get_create (decl
))
8484 return symbol
->nonzero_address ();
8486 /* Function local objects are never NULL. */
8488 && (DECL_CONTEXT (decl
)
8489 && TREE_CODE (DECL_CONTEXT (decl
)) == FUNCTION_DECL
8490 && auto_var_in_fn_p (decl
, DECL_CONTEXT (decl
))))
8496 /* Subroutine of fold_binary. This routine performs all of the
8497 transformations that are common to the equality/inequality
8498 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8499 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8500 fold_binary should call fold_binary. Fold a comparison with
8501 tree code CODE and type TYPE with operands OP0 and OP1. Return
8502 the folded comparison or NULL_TREE. */
8505 fold_comparison (location_t loc
, enum tree_code code
, tree type
,
8508 const bool equality_code
= (code
== EQ_EXPR
|| code
== NE_EXPR
);
8509 tree arg0
, arg1
, tem
;
8514 STRIP_SIGN_NOPS (arg0
);
8515 STRIP_SIGN_NOPS (arg1
);
8517 /* For comparisons of pointers we can decompose it to a compile time
8518 comparison of the base objects and the offsets into the object.
8519 This requires at least one operand being an ADDR_EXPR or a
8520 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8521 if (POINTER_TYPE_P (TREE_TYPE (arg0
))
8522 && (TREE_CODE (arg0
) == ADDR_EXPR
8523 || TREE_CODE (arg1
) == ADDR_EXPR
8524 || TREE_CODE (arg0
) == POINTER_PLUS_EXPR
8525 || TREE_CODE (arg1
) == POINTER_PLUS_EXPR
))
8527 tree base0
, base1
, offset0
= NULL_TREE
, offset1
= NULL_TREE
;
8528 poly_int64 bitsize
, bitpos0
= 0, bitpos1
= 0;
8530 int volatilep
, reversep
, unsignedp
;
8531 bool indirect_base0
= false, indirect_base1
= false;
8533 /* Get base and offset for the access. Strip ADDR_EXPR for
8534 get_inner_reference, but put it back by stripping INDIRECT_REF
8535 off the base object if possible. indirect_baseN will be true
8536 if baseN is not an address but refers to the object itself. */
8538 if (TREE_CODE (arg0
) == ADDR_EXPR
)
8541 = get_inner_reference (TREE_OPERAND (arg0
, 0),
8542 &bitsize
, &bitpos0
, &offset0
, &mode
,
8543 &unsignedp
, &reversep
, &volatilep
);
8544 if (TREE_CODE (base0
) == INDIRECT_REF
)
8545 base0
= TREE_OPERAND (base0
, 0);
8547 indirect_base0
= true;
8549 else if (TREE_CODE (arg0
) == POINTER_PLUS_EXPR
)
8551 base0
= TREE_OPERAND (arg0
, 0);
8552 STRIP_SIGN_NOPS (base0
);
8553 if (TREE_CODE (base0
) == ADDR_EXPR
)
8556 = get_inner_reference (TREE_OPERAND (base0
, 0),
8557 &bitsize
, &bitpos0
, &offset0
, &mode
,
8558 &unsignedp
, &reversep
, &volatilep
);
8559 if (TREE_CODE (base0
) == INDIRECT_REF
)
8560 base0
= TREE_OPERAND (base0
, 0);
8562 indirect_base0
= true;
8564 if (offset0
== NULL_TREE
|| integer_zerop (offset0
))
8565 offset0
= TREE_OPERAND (arg0
, 1);
8567 offset0
= size_binop (PLUS_EXPR
, offset0
,
8568 TREE_OPERAND (arg0
, 1));
8569 if (poly_int_tree_p (offset0
))
8571 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset0
),
8572 TYPE_PRECISION (sizetype
));
8573 tem
<<= LOG2_BITS_PER_UNIT
;
8575 if (tem
.to_shwi (&bitpos0
))
8576 offset0
= NULL_TREE
;
8581 if (TREE_CODE (arg1
) == ADDR_EXPR
)
8584 = get_inner_reference (TREE_OPERAND (arg1
, 0),
8585 &bitsize
, &bitpos1
, &offset1
, &mode
,
8586 &unsignedp
, &reversep
, &volatilep
);
8587 if (TREE_CODE (base1
) == INDIRECT_REF
)
8588 base1
= TREE_OPERAND (base1
, 0);
8590 indirect_base1
= true;
8592 else if (TREE_CODE (arg1
) == POINTER_PLUS_EXPR
)
8594 base1
= TREE_OPERAND (arg1
, 0);
8595 STRIP_SIGN_NOPS (base1
);
8596 if (TREE_CODE (base1
) == ADDR_EXPR
)
8599 = get_inner_reference (TREE_OPERAND (base1
, 0),
8600 &bitsize
, &bitpos1
, &offset1
, &mode
,
8601 &unsignedp
, &reversep
, &volatilep
);
8602 if (TREE_CODE (base1
) == INDIRECT_REF
)
8603 base1
= TREE_OPERAND (base1
, 0);
8605 indirect_base1
= true;
8607 if (offset1
== NULL_TREE
|| integer_zerop (offset1
))
8608 offset1
= TREE_OPERAND (arg1
, 1);
8610 offset1
= size_binop (PLUS_EXPR
, offset1
,
8611 TREE_OPERAND (arg1
, 1));
8612 if (poly_int_tree_p (offset1
))
8614 poly_offset_int tem
= wi::sext (wi::to_poly_offset (offset1
),
8615 TYPE_PRECISION (sizetype
));
8616 tem
<<= LOG2_BITS_PER_UNIT
;
8618 if (tem
.to_shwi (&bitpos1
))
8619 offset1
= NULL_TREE
;
8623 /* If we have equivalent bases we might be able to simplify. */
8624 if (indirect_base0
== indirect_base1
8625 && operand_equal_p (base0
, base1
,
8626 indirect_base0
? OEP_ADDRESS_OF
: 0))
8628 /* We can fold this expression to a constant if the non-constant
8629 offset parts are equal. */
8630 if ((offset0
== offset1
8631 || (offset0
&& offset1
8632 && operand_equal_p (offset0
, offset1
, 0)))
8635 && (DECL_P (base0
) || CONSTANT_CLASS_P (base0
)))
8636 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
8639 && maybe_ne (bitpos0
, bitpos1
)
8640 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8641 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8642 fold_overflow_warning (("assuming pointer wraparound does not "
8643 "occur when comparing P +- C1 with "
8645 WARN_STRICT_OVERFLOW_CONDITIONAL
);
8650 if (known_eq (bitpos0
, bitpos1
))
8651 return constant_boolean_node (true, type
);
8652 if (known_ne (bitpos0
, bitpos1
))
8653 return constant_boolean_node (false, type
);
8656 if (known_ne (bitpos0
, bitpos1
))
8657 return constant_boolean_node (true, type
);
8658 if (known_eq (bitpos0
, bitpos1
))
8659 return constant_boolean_node (false, type
);
8662 if (known_lt (bitpos0
, bitpos1
))
8663 return constant_boolean_node (true, type
);
8664 if (known_ge (bitpos0
, bitpos1
))
8665 return constant_boolean_node (false, type
);
8668 if (known_le (bitpos0
, bitpos1
))
8669 return constant_boolean_node (true, type
);
8670 if (known_gt (bitpos0
, bitpos1
))
8671 return constant_boolean_node (false, type
);
8674 if (known_ge (bitpos0
, bitpos1
))
8675 return constant_boolean_node (true, type
);
8676 if (known_lt (bitpos0
, bitpos1
))
8677 return constant_boolean_node (false, type
);
8680 if (known_gt (bitpos0
, bitpos1
))
8681 return constant_boolean_node (true, type
);
8682 if (known_le (bitpos0
, bitpos1
))
8683 return constant_boolean_node (false, type
);
8688 /* We can simplify the comparison to a comparison of the variable
8689 offset parts if the constant offset parts are equal.
8690 Be careful to use signed sizetype here because otherwise we
8691 mess with array offsets in the wrong way. This is possible
8692 because pointer arithmetic is restricted to retain within an
8693 object and overflow on pointer differences is undefined as of
8694 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
8695 else if (known_eq (bitpos0
, bitpos1
)
8698 && (DECL_P (base0
) || CONSTANT_CLASS_P (base0
)))
8699 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
8701 /* By converting to signed sizetype we cover middle-end pointer
8702 arithmetic which operates on unsigned pointer types of size
8703 type size and ARRAY_REF offsets which are properly sign or
8704 zero extended from their type in case it is narrower than
8706 if (offset0
== NULL_TREE
)
8707 offset0
= build_int_cst (ssizetype
, 0);
8709 offset0
= fold_convert_loc (loc
, ssizetype
, offset0
);
8710 if (offset1
== NULL_TREE
)
8711 offset1
= build_int_cst (ssizetype
, 0);
8713 offset1
= fold_convert_loc (loc
, ssizetype
, offset1
);
8716 && (pointer_may_wrap_p (base0
, offset0
, bitpos0
)
8717 || pointer_may_wrap_p (base1
, offset1
, bitpos1
)))
8718 fold_overflow_warning (("assuming pointer wraparound does not "
8719 "occur when comparing P +- C1 with "
8721 WARN_STRICT_OVERFLOW_COMPARISON
);
8723 return fold_build2_loc (loc
, code
, type
, offset0
, offset1
);
8726 /* For equal offsets we can simplify to a comparison of the
8728 else if (known_eq (bitpos0
, bitpos1
)
8730 ? base0
!= TREE_OPERAND (arg0
, 0) : base0
!= arg0
)
8732 ? base1
!= TREE_OPERAND (arg1
, 0) : base1
!= arg1
)
8733 && ((offset0
== offset1
)
8734 || (offset0
&& offset1
8735 && operand_equal_p (offset0
, offset1
, 0))))
8738 base0
= build_fold_addr_expr_loc (loc
, base0
);
8740 base1
= build_fold_addr_expr_loc (loc
, base1
);
8741 return fold_build2_loc (loc
, code
, type
, base0
, base1
);
8743 /* Comparison between an ordinary (non-weak) symbol and a null
8744 pointer can be eliminated since such symbols must have a non
8745 null address. In C, relational expressions between pointers
8746 to objects and null pointers are undefined. The results
8747 below follow the C++ rules with the additional property that
8748 every object pointer compares greater than a null pointer.
8750 else if (((DECL_P (base0
)
8751 && maybe_nonzero_address (base0
) > 0
8752 /* Avoid folding references to struct members at offset 0 to
8753 prevent tests like '&ptr->firstmember == 0' from getting
8754 eliminated. When ptr is null, although the -> expression
8755 is strictly speaking invalid, GCC retains it as a matter
8756 of QoI. See PR c/44555. */
8757 && (offset0
== NULL_TREE
&& known_ne (bitpos0
, 0)))
8758 || CONSTANT_CLASS_P (base0
))
8760 /* The caller guarantees that when one of the arguments is
8761 constant (i.e., null in this case) it is second. */
8762 && integer_zerop (arg1
))
8769 return constant_boolean_node (false, type
);
8773 return constant_boolean_node (true, type
);
8780 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
8781 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
8782 the resulting offset is smaller in absolute value than the
8783 original one and has the same sign. */
8784 if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
8785 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))
8786 && (TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
8787 && (TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
8788 && !TREE_OVERFLOW (TREE_OPERAND (arg0
, 1)))
8789 && (TREE_CODE (arg1
) == PLUS_EXPR
|| TREE_CODE (arg1
) == MINUS_EXPR
)
8790 && (TREE_CODE (TREE_OPERAND (arg1
, 1)) == INTEGER_CST
8791 && !TREE_OVERFLOW (TREE_OPERAND (arg1
, 1))))
8793 tree const1
= TREE_OPERAND (arg0
, 1);
8794 tree const2
= TREE_OPERAND (arg1
, 1);
8795 tree variable1
= TREE_OPERAND (arg0
, 0);
8796 tree variable2
= TREE_OPERAND (arg1
, 0);
8798 const char * const warnmsg
= G_("assuming signed overflow does not "
8799 "occur when combining constants around "
8802 /* Put the constant on the side where it doesn't overflow and is
8803 of lower absolute value and of same sign than before. */
8804 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8805 ? MINUS_EXPR
: PLUS_EXPR
,
8807 if (!TREE_OVERFLOW (cst
)
8808 && tree_int_cst_compare (const2
, cst
) == tree_int_cst_sgn (const2
)
8809 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const2
))
8811 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8812 return fold_build2_loc (loc
, code
, type
,
8814 fold_build2_loc (loc
, TREE_CODE (arg1
),
8819 cst
= int_const_binop (TREE_CODE (arg0
) == TREE_CODE (arg1
)
8820 ? MINUS_EXPR
: PLUS_EXPR
,
8822 if (!TREE_OVERFLOW (cst
)
8823 && tree_int_cst_compare (const1
, cst
) == tree_int_cst_sgn (const1
)
8824 && tree_int_cst_sgn (cst
) == tree_int_cst_sgn (const1
))
8826 fold_overflow_warning (warnmsg
, WARN_STRICT_OVERFLOW_COMPARISON
);
8827 return fold_build2_loc (loc
, code
, type
,
8828 fold_build2_loc (loc
, TREE_CODE (arg0
),
8835 tem
= maybe_canonicalize_comparison (loc
, code
, type
, arg0
, arg1
);
8839 /* If we are comparing an expression that just has comparisons
8840 of two integer values, arithmetic expressions of those comparisons,
8841 and constants, we can simplify it. There are only three cases
8842 to check: the two values can either be equal, the first can be
8843 greater, or the second can be greater. Fold the expression for
8844 those three values. Since each value must be 0 or 1, we have
8845 eight possibilities, each of which corresponds to the constant 0
8846 or 1 or one of the six possible comparisons.
8848 This handles common cases like (a > b) == 0 but also handles
8849 expressions like ((x > y) - (y > x)) > 0, which supposedly
8850 occur in macroized code. */
8852 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) != INTEGER_CST
)
8854 tree cval1
= 0, cval2
= 0;
8856 if (twoval_comparison_p (arg0
, &cval1
, &cval2
)
8857 /* Don't handle degenerate cases here; they should already
8858 have been handled anyway. */
8859 && cval1
!= 0 && cval2
!= 0
8860 && ! (TREE_CONSTANT (cval1
) && TREE_CONSTANT (cval2
))
8861 && TREE_TYPE (cval1
) == TREE_TYPE (cval2
)
8862 && INTEGRAL_TYPE_P (TREE_TYPE (cval1
))
8863 && TYPE_MAX_VALUE (TREE_TYPE (cval1
))
8864 && TYPE_MAX_VALUE (TREE_TYPE (cval2
))
8865 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1
)),
8866 TYPE_MAX_VALUE (TREE_TYPE (cval2
)), 0))
8868 tree maxval
= TYPE_MAX_VALUE (TREE_TYPE (cval1
));
8869 tree minval
= TYPE_MIN_VALUE (TREE_TYPE (cval1
));
8871 /* We can't just pass T to eval_subst in case cval1 or cval2
8872 was the same as ARG1. */
8875 = fold_build2_loc (loc
, code
, type
,
8876 eval_subst (loc
, arg0
, cval1
, maxval
,
8880 = fold_build2_loc (loc
, code
, type
,
8881 eval_subst (loc
, arg0
, cval1
, maxval
,
8885 = fold_build2_loc (loc
, code
, type
,
8886 eval_subst (loc
, arg0
, cval1
, minval
,
8890 /* All three of these results should be 0 or 1. Confirm they are.
8891 Then use those values to select the proper code to use. */
8893 if (TREE_CODE (high_result
) == INTEGER_CST
8894 && TREE_CODE (equal_result
) == INTEGER_CST
8895 && TREE_CODE (low_result
) == INTEGER_CST
)
8897 /* Make a 3-bit mask with the high-order bit being the
8898 value for `>', the next for '=', and the low for '<'. */
8899 switch ((integer_onep (high_result
) * 4)
8900 + (integer_onep (equal_result
) * 2)
8901 + integer_onep (low_result
))
8905 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
8926 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
8929 return fold_build2_loc (loc
, code
, type
, cval1
, cval2
);
8938 /* Subroutine of fold_binary. Optimize complex multiplications of the
8939 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
8940 argument EXPR represents the expression "z" of type TYPE. */
8943 fold_mult_zconjz (location_t loc
, tree type
, tree expr
)
8945 tree itype
= TREE_TYPE (type
);
8946 tree rpart
, ipart
, tem
;
8948 if (TREE_CODE (expr
) == COMPLEX_EXPR
)
8950 rpart
= TREE_OPERAND (expr
, 0);
8951 ipart
= TREE_OPERAND (expr
, 1);
8953 else if (TREE_CODE (expr
) == COMPLEX_CST
)
8955 rpart
= TREE_REALPART (expr
);
8956 ipart
= TREE_IMAGPART (expr
);
8960 expr
= save_expr (expr
);
8961 rpart
= fold_build1_loc (loc
, REALPART_EXPR
, itype
, expr
);
8962 ipart
= fold_build1_loc (loc
, IMAGPART_EXPR
, itype
, expr
);
8965 rpart
= save_expr (rpart
);
8966 ipart
= save_expr (ipart
);
8967 tem
= fold_build2_loc (loc
, PLUS_EXPR
, itype
,
8968 fold_build2_loc (loc
, MULT_EXPR
, itype
, rpart
, rpart
),
8969 fold_build2_loc (loc
, MULT_EXPR
, itype
, ipart
, ipart
));
8970 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, tem
,
8971 build_zero_cst (itype
));
8975 /* Helper function for fold_vec_perm. Store elements of VECTOR_CST or
8976 CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return
8977 true if successful. */
8980 vec_cst_ctor_to_array (tree arg
, unsigned int nelts
, tree
*elts
)
8982 unsigned HOST_WIDE_INT i
, nunits
;
8984 if (TREE_CODE (arg
) == VECTOR_CST
8985 && VECTOR_CST_NELTS (arg
).is_constant (&nunits
))
8987 for (i
= 0; i
< nunits
; ++i
)
8988 elts
[i
] = VECTOR_CST_ELT (arg
, i
);
8990 else if (TREE_CODE (arg
) == CONSTRUCTOR
)
8992 constructor_elt
*elt
;
8994 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg
), i
, elt
)
8995 if (i
>= nelts
|| TREE_CODE (TREE_TYPE (elt
->value
)) == VECTOR_TYPE
)
8998 elts
[i
] = elt
->value
;
9002 for (; i
< nelts
; i
++)
9004 = fold_convert (TREE_TYPE (TREE_TYPE (arg
)), integer_zero_node
);
9008 /* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL
9009 selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful,
9010 NULL_TREE otherwise. */
9013 fold_vec_perm (tree type
, tree arg0
, tree arg1
, const vec_perm_indices
&sel
)
9016 unsigned HOST_WIDE_INT nelts
;
9017 bool need_ctor
= false;
9019 if (!sel
.length ().is_constant (&nelts
))
9021 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type
), nelts
)
9022 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
)), nelts
)
9023 && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1
)), nelts
));
9024 if (TREE_TYPE (TREE_TYPE (arg0
)) != TREE_TYPE (type
)
9025 || TREE_TYPE (TREE_TYPE (arg1
)) != TREE_TYPE (type
))
9028 tree
*in_elts
= XALLOCAVEC (tree
, nelts
* 2);
9029 if (!vec_cst_ctor_to_array (arg0
, nelts
, in_elts
)
9030 || !vec_cst_ctor_to_array (arg1
, nelts
, in_elts
+ nelts
))
9033 tree_vector_builder
out_elts (type
, nelts
, 1);
9034 for (i
= 0; i
< nelts
; i
++)
9036 HOST_WIDE_INT index
;
9037 if (!sel
[i
].is_constant (&index
))
9039 if (!CONSTANT_CLASS_P (in_elts
[index
]))
9041 out_elts
.quick_push (unshare_expr (in_elts
[index
]));
9046 vec
<constructor_elt
, va_gc
> *v
;
9047 vec_alloc (v
, nelts
);
9048 for (i
= 0; i
< nelts
; i
++)
9049 CONSTRUCTOR_APPEND_ELT (v
, NULL_TREE
, out_elts
[i
]);
9050 return build_constructor (type
, v
);
9053 return out_elts
.build ();
9056 /* Try to fold a pointer difference of type TYPE two address expressions of
9057 array references AREF0 and AREF1 using location LOC. Return a
9058 simplified expression for the difference or NULL_TREE. */
9061 fold_addr_of_array_ref_difference (location_t loc
, tree type
,
9062 tree aref0
, tree aref1
,
9063 bool use_pointer_diff
)
9065 tree base0
= TREE_OPERAND (aref0
, 0);
9066 tree base1
= TREE_OPERAND (aref1
, 0);
9067 tree base_offset
= build_int_cst (type
, 0);
9069 /* If the bases are array references as well, recurse. If the bases
9070 are pointer indirections compute the difference of the pointers.
9071 If the bases are equal, we are set. */
9072 if ((TREE_CODE (base0
) == ARRAY_REF
9073 && TREE_CODE (base1
) == ARRAY_REF
9075 = fold_addr_of_array_ref_difference (loc
, type
, base0
, base1
,
9077 || (INDIRECT_REF_P (base0
)
9078 && INDIRECT_REF_P (base1
)
9081 ? fold_binary_loc (loc
, POINTER_DIFF_EXPR
, type
,
9082 TREE_OPERAND (base0
, 0),
9083 TREE_OPERAND (base1
, 0))
9084 : fold_binary_loc (loc
, MINUS_EXPR
, type
,
9086 TREE_OPERAND (base0
, 0)),
9088 TREE_OPERAND (base1
, 0)))))
9089 || operand_equal_p (base0
, base1
, OEP_ADDRESS_OF
))
9091 tree op0
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref0
, 1));
9092 tree op1
= fold_convert_loc (loc
, type
, TREE_OPERAND (aref1
, 1));
9093 tree esz
= fold_convert_loc (loc
, type
, array_ref_element_size (aref0
));
9094 tree diff
= fold_build2_loc (loc
, MINUS_EXPR
, type
, op0
, op1
);
9095 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
9097 fold_build2_loc (loc
, MULT_EXPR
, type
,
9103 /* If the real or vector real constant CST of type TYPE has an exact
9104 inverse, return it, else return NULL. */
9107 exact_inverse (tree type
, tree cst
)
9113 switch (TREE_CODE (cst
))
9116 r
= TREE_REAL_CST (cst
);
9118 if (exact_real_inverse (TYPE_MODE (type
), &r
))
9119 return build_real (type
, r
);
9125 unit_type
= TREE_TYPE (type
);
9126 mode
= TYPE_MODE (unit_type
);
9128 tree_vector_builder elts
;
9129 if (!elts
.new_unary_operation (type
, cst
, false))
9131 unsigned int count
= elts
.encoded_nelts ();
9132 for (unsigned int i
= 0; i
< count
; ++i
)
9134 r
= TREE_REAL_CST (VECTOR_CST_ELT (cst
, i
));
9135 if (!exact_real_inverse (mode
, &r
))
9137 elts
.quick_push (build_real (unit_type
, r
));
9140 return elts
.build ();
9148 /* Mask out the tz least significant bits of X of type TYPE where
9149 tz is the number of trailing zeroes in Y. */
9151 mask_with_tz (tree type
, const wide_int
&x
, const wide_int
&y
)
9153 int tz
= wi::ctz (y
);
9155 return wi::mask (tz
, true, TYPE_PRECISION (type
)) & x
;
9159 /* Return true when T is an address and is known to be nonzero.
9160 For floating point we further ensure that T is not denormal.
9161 Similar logic is present in nonzero_address in rtlanal.h.
9163 If the return value is based on the assumption that signed overflow
9164 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
9165 change *STRICT_OVERFLOW_P. */
9168 tree_expr_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
9170 tree type
= TREE_TYPE (t
);
9171 enum tree_code code
;
9173 /* Doing something useful for floating point would need more work. */
9174 if (!INTEGRAL_TYPE_P (type
) && !POINTER_TYPE_P (type
))
9177 code
= TREE_CODE (t
);
9178 switch (TREE_CODE_CLASS (code
))
9181 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
9184 case tcc_comparison
:
9185 return tree_binary_nonzero_warnv_p (code
, type
,
9186 TREE_OPERAND (t
, 0),
9187 TREE_OPERAND (t
, 1),
9190 case tcc_declaration
:
9192 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9200 case TRUTH_NOT_EXPR
:
9201 return tree_unary_nonzero_warnv_p (code
, type
, TREE_OPERAND (t
, 0),
9204 case TRUTH_AND_EXPR
:
9206 case TRUTH_XOR_EXPR
:
9207 return tree_binary_nonzero_warnv_p (code
, type
,
9208 TREE_OPERAND (t
, 0),
9209 TREE_OPERAND (t
, 1),
9217 case WITH_SIZE_EXPR
:
9219 return tree_single_nonzero_warnv_p (t
, strict_overflow_p
);
9224 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
9228 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 0),
9233 tree fndecl
= get_callee_fndecl (t
);
9234 if (!fndecl
) return false;
9235 if (flag_delete_null_pointer_checks
&& !flag_check_new
9236 && DECL_IS_OPERATOR_NEW (fndecl
)
9237 && !TREE_NOTHROW (fndecl
))
9239 if (flag_delete_null_pointer_checks
9240 && lookup_attribute ("returns_nonnull",
9241 TYPE_ATTRIBUTES (TREE_TYPE (fndecl
))))
9243 return alloca_call_p (t
);
9252 /* Return true when T is an address and is known to be nonzero.
9253 Handle warnings about undefined signed overflow. */
9256 tree_expr_nonzero_p (tree t
)
9258 bool ret
, strict_overflow_p
;
9260 strict_overflow_p
= false;
9261 ret
= tree_expr_nonzero_warnv_p (t
, &strict_overflow_p
);
9262 if (strict_overflow_p
)
9263 fold_overflow_warning (("assuming signed overflow does not occur when "
9264 "determining that expression is always "
9266 WARN_STRICT_OVERFLOW_MISC
);
9270 /* Return true if T is known not to be equal to an integer W. */
9273 expr_not_equal_to (tree t
, const wide_int
&w
)
9275 wide_int min
, max
, nz
;
9276 value_range_kind rtype
;
9277 switch (TREE_CODE (t
))
9280 return wi::to_wide (t
) != w
;
9283 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
9285 rtype
= get_range_info (t
, &min
, &max
);
9286 if (rtype
== VR_RANGE
)
9288 if (wi::lt_p (max
, w
, TYPE_SIGN (TREE_TYPE (t
))))
9290 if (wi::lt_p (w
, min
, TYPE_SIGN (TREE_TYPE (t
))))
9293 else if (rtype
== VR_ANTI_RANGE
9294 && wi::le_p (min
, w
, TYPE_SIGN (TREE_TYPE (t
)))
9295 && wi::le_p (w
, max
, TYPE_SIGN (TREE_TYPE (t
))))
9297 /* If T has some known zero bits and W has any of those bits set,
9298 then T is known not to be equal to W. */
9299 if (wi::ne_p (wi::zext (wi::bit_and_not (w
, get_nonzero_bits (t
)),
9300 TYPE_PRECISION (TREE_TYPE (t
))), 0))
9309 /* Fold a binary expression of code CODE and type TYPE with operands
9310 OP0 and OP1. LOC is the location of the resulting expression.
9311 Return the folded expression if folding is successful. Otherwise,
9312 return NULL_TREE. */
9315 fold_binary_loc (location_t loc
, enum tree_code code
, tree type
,
9318 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
9319 tree arg0
, arg1
, tem
;
9320 tree t1
= NULL_TREE
;
9321 bool strict_overflow_p
;
9324 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
9325 && TREE_CODE_LENGTH (code
) == 2
9327 && op1
!= NULL_TREE
);
9332 /* Strip any conversions that don't change the mode. This is
9333 safe for every expression, except for a comparison expression
9334 because its signedness is derived from its operands. So, in
9335 the latter case, only strip conversions that don't change the
9336 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9339 Note that this is done as an internal manipulation within the
9340 constant folder, in order to find the simplest representation
9341 of the arguments so that their form can be studied. In any
9342 cases, the appropriate type conversions should be put back in
9343 the tree that will get out of the constant folder. */
9345 if (kind
== tcc_comparison
|| code
== MIN_EXPR
|| code
== MAX_EXPR
)
9347 STRIP_SIGN_NOPS (arg0
);
9348 STRIP_SIGN_NOPS (arg1
);
9356 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9357 constant but we can't do arithmetic on them. */
9358 if (CONSTANT_CLASS_P (arg0
) && CONSTANT_CLASS_P (arg1
))
9360 tem
= const_binop (code
, type
, arg0
, arg1
);
9361 if (tem
!= NULL_TREE
)
9363 if (TREE_TYPE (tem
) != type
)
9364 tem
= fold_convert_loc (loc
, type
, tem
);
9369 /* If this is a commutative operation, and ARG0 is a constant, move it
9370 to ARG1 to reduce the number of tests below. */
9371 if (commutative_tree_code (code
)
9372 && tree_swap_operands_p (arg0
, arg1
))
9373 return fold_build2_loc (loc
, code
, type
, op1
, op0
);
9375 /* Likewise if this is a comparison, and ARG0 is a constant, move it
9376 to ARG1 to reduce the number of tests below. */
9377 if (kind
== tcc_comparison
9378 && tree_swap_operands_p (arg0
, arg1
))
9379 return fold_build2_loc (loc
, swap_tree_comparison (code
), type
, op1
, op0
);
9381 tem
= generic_simplify (loc
, code
, type
, op0
, op1
);
9385 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9387 First check for cases where an arithmetic operation is applied to a
9388 compound, conditional, or comparison operation. Push the arithmetic
9389 operation inside the compound or conditional to see if any folding
9390 can then be done. Convert comparison to conditional for this purpose.
9391 The also optimizes non-constant cases that used to be done in
9394 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9395 one of the operands is a comparison and the other is a comparison, a
9396 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9397 code below would make the expression more complex. Change it to a
9398 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9399 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9401 if ((code
== BIT_AND_EXPR
|| code
== BIT_IOR_EXPR
9402 || code
== EQ_EXPR
|| code
== NE_EXPR
)
9403 && !VECTOR_TYPE_P (TREE_TYPE (arg0
))
9404 && ((truth_value_p (TREE_CODE (arg0
))
9405 && (truth_value_p (TREE_CODE (arg1
))
9406 || (TREE_CODE (arg1
) == BIT_AND_EXPR
9407 && integer_onep (TREE_OPERAND (arg1
, 1)))))
9408 || (truth_value_p (TREE_CODE (arg1
))
9409 && (truth_value_p (TREE_CODE (arg0
))
9410 || (TREE_CODE (arg0
) == BIT_AND_EXPR
9411 && integer_onep (TREE_OPERAND (arg0
, 1)))))))
9413 tem
= fold_build2_loc (loc
, code
== BIT_AND_EXPR
? TRUTH_AND_EXPR
9414 : code
== BIT_IOR_EXPR
? TRUTH_OR_EXPR
9417 fold_convert_loc (loc
, boolean_type_node
, arg0
),
9418 fold_convert_loc (loc
, boolean_type_node
, arg1
));
9420 if (code
== EQ_EXPR
)
9421 tem
= invert_truthvalue_loc (loc
, tem
);
9423 return fold_convert_loc (loc
, type
, tem
);
9426 if (TREE_CODE_CLASS (code
) == tcc_binary
9427 || TREE_CODE_CLASS (code
) == tcc_comparison
)
9429 if (TREE_CODE (arg0
) == COMPOUND_EXPR
)
9431 tem
= fold_build2_loc (loc
, code
, type
,
9432 fold_convert_loc (loc
, TREE_TYPE (op0
),
9433 TREE_OPERAND (arg0
, 1)), op1
);
9434 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg0
, 0),
9437 if (TREE_CODE (arg1
) == COMPOUND_EXPR
)
9439 tem
= fold_build2_loc (loc
, code
, type
, op0
,
9440 fold_convert_loc (loc
, TREE_TYPE (op1
),
9441 TREE_OPERAND (arg1
, 1)));
9442 return build2_loc (loc
, COMPOUND_EXPR
, type
, TREE_OPERAND (arg1
, 0),
9446 if (TREE_CODE (arg0
) == COND_EXPR
9447 || TREE_CODE (arg0
) == VEC_COND_EXPR
9448 || COMPARISON_CLASS_P (arg0
))
9450 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9452 /*cond_first_p=*/1);
9453 if (tem
!= NULL_TREE
)
9457 if (TREE_CODE (arg1
) == COND_EXPR
9458 || TREE_CODE (arg1
) == VEC_COND_EXPR
9459 || COMPARISON_CLASS_P (arg1
))
9461 tem
= fold_binary_op_with_conditional_arg (loc
, code
, type
, op0
, op1
,
9463 /*cond_first_p=*/0);
9464 if (tem
!= NULL_TREE
)
9472 /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */
9473 if (TREE_CODE (arg0
) == ADDR_EXPR
9474 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == MEM_REF
)
9476 tree iref
= TREE_OPERAND (arg0
, 0);
9477 return fold_build2 (MEM_REF
, type
,
9478 TREE_OPERAND (iref
, 0),
9479 int_const_binop (PLUS_EXPR
, arg1
,
9480 TREE_OPERAND (iref
, 1)));
9483 /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */
9484 if (TREE_CODE (arg0
) == ADDR_EXPR
9485 && handled_component_p (TREE_OPERAND (arg0
, 0)))
9489 base
= get_addr_base_and_unit_offset (TREE_OPERAND (arg0
, 0),
9493 return fold_build2 (MEM_REF
, type
,
9494 build_fold_addr_expr (base
),
9495 int_const_binop (PLUS_EXPR
, arg1
,
9496 size_int (coffset
)));
9501 case POINTER_PLUS_EXPR
:
9502 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9503 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9504 && INTEGRAL_TYPE_P (TREE_TYPE (arg0
)))
9505 return fold_convert_loc (loc
, type
,
9506 fold_build2_loc (loc
, PLUS_EXPR
, sizetype
,
9507 fold_convert_loc (loc
, sizetype
,
9509 fold_convert_loc (loc
, sizetype
,
9515 if (INTEGRAL_TYPE_P (type
) || VECTOR_INTEGER_TYPE_P (type
))
9517 /* X + (X / CST) * -CST is X % CST. */
9518 if (TREE_CODE (arg1
) == MULT_EXPR
9519 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == TRUNC_DIV_EXPR
9520 && operand_equal_p (arg0
,
9521 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0), 0))
9523 tree cst0
= TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1);
9524 tree cst1
= TREE_OPERAND (arg1
, 1);
9525 tree sum
= fold_binary_loc (loc
, PLUS_EXPR
, TREE_TYPE (cst1
),
9527 if (sum
&& integer_zerop (sum
))
9528 return fold_convert_loc (loc
, type
,
9529 fold_build2_loc (loc
, TRUNC_MOD_EXPR
,
9530 TREE_TYPE (arg0
), arg0
,
9535 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or
9536 one. Make sure the type is not saturating and has the signedness of
9537 the stripped operands, as fold_plusminus_mult_expr will re-associate.
9538 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
9539 if ((TREE_CODE (arg0
) == MULT_EXPR
9540 || TREE_CODE (arg1
) == MULT_EXPR
)
9541 && !TYPE_SATURATING (type
)
9542 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
9543 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
9544 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
9546 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
9551 if (! FLOAT_TYPE_P (type
))
9553 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9554 (plus (plus (mult) (mult)) (foo)) so that we can
9555 take advantage of the factoring cases below. */
9556 if (ANY_INTEGRAL_TYPE_P (type
)
9557 && TYPE_OVERFLOW_WRAPS (type
)
9558 && (((TREE_CODE (arg0
) == PLUS_EXPR
9559 || TREE_CODE (arg0
) == MINUS_EXPR
)
9560 && TREE_CODE (arg1
) == MULT_EXPR
)
9561 || ((TREE_CODE (arg1
) == PLUS_EXPR
9562 || TREE_CODE (arg1
) == MINUS_EXPR
)
9563 && TREE_CODE (arg0
) == MULT_EXPR
)))
9565 tree parg0
, parg1
, parg
, marg
;
9566 enum tree_code pcode
;
9568 if (TREE_CODE (arg1
) == MULT_EXPR
)
9569 parg
= arg0
, marg
= arg1
;
9571 parg
= arg1
, marg
= arg0
;
9572 pcode
= TREE_CODE (parg
);
9573 parg0
= TREE_OPERAND (parg
, 0);
9574 parg1
= TREE_OPERAND (parg
, 1);
9578 if (TREE_CODE (parg0
) == MULT_EXPR
9579 && TREE_CODE (parg1
) != MULT_EXPR
)
9580 return fold_build2_loc (loc
, pcode
, type
,
9581 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9582 fold_convert_loc (loc
, type
,
9584 fold_convert_loc (loc
, type
,
9586 fold_convert_loc (loc
, type
, parg1
));
9587 if (TREE_CODE (parg0
) != MULT_EXPR
9588 && TREE_CODE (parg1
) == MULT_EXPR
)
9590 fold_build2_loc (loc
, PLUS_EXPR
, type
,
9591 fold_convert_loc (loc
, type
, parg0
),
9592 fold_build2_loc (loc
, pcode
, type
,
9593 fold_convert_loc (loc
, type
, marg
),
9594 fold_convert_loc (loc
, type
,
9600 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
9601 to __complex__ ( x, y ). This is not the same for SNaNs or
9602 if signed zeros are involved. */
9603 if (!HONOR_SNANS (element_mode (arg0
))
9604 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
9605 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
9607 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
9608 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
9609 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
9610 bool arg0rz
= false, arg0iz
= false;
9611 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
9612 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
9614 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
9615 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
9616 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
9618 tree rp
= arg1r
? arg1r
9619 : build1 (REALPART_EXPR
, rtype
, arg1
);
9620 tree ip
= arg0i
? arg0i
9621 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
9622 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9624 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
9626 tree rp
= arg0r
? arg0r
9627 : build1 (REALPART_EXPR
, rtype
, arg0
);
9628 tree ip
= arg1i
? arg1i
9629 : build1 (IMAGPART_EXPR
, rtype
, arg1
);
9630 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
9635 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
9636 We associate floats only if the user has specified
9637 -fassociative-math. */
9638 if (flag_associative_math
9639 && TREE_CODE (arg1
) == PLUS_EXPR
9640 && TREE_CODE (arg0
) != MULT_EXPR
)
9642 tree tree10
= TREE_OPERAND (arg1
, 0);
9643 tree tree11
= TREE_OPERAND (arg1
, 1);
9644 if (TREE_CODE (tree11
) == MULT_EXPR
9645 && TREE_CODE (tree10
) == MULT_EXPR
)
9648 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, arg0
, tree10
);
9649 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree0
, tree11
);
9652 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
9653 We associate floats only if the user has specified
9654 -fassociative-math. */
9655 if (flag_associative_math
9656 && TREE_CODE (arg0
) == PLUS_EXPR
9657 && TREE_CODE (arg1
) != MULT_EXPR
)
9659 tree tree00
= TREE_OPERAND (arg0
, 0);
9660 tree tree01
= TREE_OPERAND (arg0
, 1);
9661 if (TREE_CODE (tree01
) == MULT_EXPR
9662 && TREE_CODE (tree00
) == MULT_EXPR
)
9665 tree0
= fold_build2_loc (loc
, PLUS_EXPR
, type
, tree01
, arg1
);
9666 return fold_build2_loc (loc
, PLUS_EXPR
, type
, tree00
, tree0
);
9672 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
9673 is a rotate of A by C1 bits. */
9674 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
9675 is a rotate of A by B bits.
9676 Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1,
9677 though in this case CODE must be | and not + or ^, otherwise
9678 it doesn't return A when B is 0. */
9680 enum tree_code code0
, code1
;
9682 code0
= TREE_CODE (arg0
);
9683 code1
= TREE_CODE (arg1
);
9684 if (((code0
== RSHIFT_EXPR
&& code1
== LSHIFT_EXPR
)
9685 || (code1
== RSHIFT_EXPR
&& code0
== LSHIFT_EXPR
))
9686 && operand_equal_p (TREE_OPERAND (arg0
, 0),
9687 TREE_OPERAND (arg1
, 0), 0)
9688 && (rtype
= TREE_TYPE (TREE_OPERAND (arg0
, 0)),
9689 TYPE_UNSIGNED (rtype
))
9690 /* Only create rotates in complete modes. Other cases are not
9691 expanded properly. */
9692 && (element_precision (rtype
)
9693 == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype
))))
9695 tree tree01
, tree11
;
9696 tree orig_tree01
, orig_tree11
;
9697 enum tree_code code01
, code11
;
9699 tree01
= orig_tree01
= TREE_OPERAND (arg0
, 1);
9700 tree11
= orig_tree11
= TREE_OPERAND (arg1
, 1);
9701 STRIP_NOPS (tree01
);
9702 STRIP_NOPS (tree11
);
9703 code01
= TREE_CODE (tree01
);
9704 code11
= TREE_CODE (tree11
);
9705 if (code11
!= MINUS_EXPR
9706 && (code01
== MINUS_EXPR
|| code01
== BIT_AND_EXPR
))
9708 std::swap (code0
, code1
);
9709 std::swap (code01
, code11
);
9710 std::swap (tree01
, tree11
);
9711 std::swap (orig_tree01
, orig_tree11
);
9713 if (code01
== INTEGER_CST
9714 && code11
== INTEGER_CST
9715 && (wi::to_widest (tree01
) + wi::to_widest (tree11
)
9716 == element_precision (rtype
)))
9718 tem
= build2_loc (loc
, LROTATE_EXPR
,
9719 rtype
, TREE_OPERAND (arg0
, 0),
9720 code0
== LSHIFT_EXPR
9721 ? orig_tree01
: orig_tree11
);
9722 return fold_convert_loc (loc
, type
, tem
);
9724 else if (code11
== MINUS_EXPR
)
9726 tree tree110
, tree111
;
9727 tree110
= TREE_OPERAND (tree11
, 0);
9728 tree111
= TREE_OPERAND (tree11
, 1);
9729 STRIP_NOPS (tree110
);
9730 STRIP_NOPS (tree111
);
9731 if (TREE_CODE (tree110
) == INTEGER_CST
9732 && compare_tree_int (tree110
,
9733 element_precision (rtype
)) == 0
9734 && operand_equal_p (tree01
, tree111
, 0))
9736 tem
= build2_loc (loc
, (code0
== LSHIFT_EXPR
9737 ? LROTATE_EXPR
: RROTATE_EXPR
),
9738 rtype
, TREE_OPERAND (arg0
, 0),
9740 return fold_convert_loc (loc
, type
, tem
);
9743 else if (code
== BIT_IOR_EXPR
9744 && code11
== BIT_AND_EXPR
9745 && pow2p_hwi (element_precision (rtype
)))
9747 tree tree110
, tree111
;
9748 tree110
= TREE_OPERAND (tree11
, 0);
9749 tree111
= TREE_OPERAND (tree11
, 1);
9750 STRIP_NOPS (tree110
);
9751 STRIP_NOPS (tree111
);
9752 if (TREE_CODE (tree110
) == NEGATE_EXPR
9753 && TREE_CODE (tree111
) == INTEGER_CST
9754 && compare_tree_int (tree111
,
9755 element_precision (rtype
) - 1) == 0
9756 && operand_equal_p (tree01
, TREE_OPERAND (tree110
, 0), 0))
9758 tem
= build2_loc (loc
, (code0
== LSHIFT_EXPR
9759 ? LROTATE_EXPR
: RROTATE_EXPR
),
9760 rtype
, TREE_OPERAND (arg0
, 0),
9762 return fold_convert_loc (loc
, type
, tem
);
9769 /* In most languages, can't associate operations on floats through
9770 parentheses. Rather than remember where the parentheses were, we
9771 don't associate floats at all, unless the user has specified
9773 And, we need to make sure type is not saturating. */
9775 if ((! FLOAT_TYPE_P (type
) || flag_associative_math
)
9776 && !TYPE_SATURATING (type
))
9778 tree var0
, minus_var0
, con0
, minus_con0
, lit0
, minus_lit0
;
9779 tree var1
, minus_var1
, con1
, minus_con1
, lit1
, minus_lit1
;
9783 /* Split both trees into variables, constants, and literals. Then
9784 associate each group together, the constants with literals,
9785 then the result with variables. This increases the chances of
9786 literals being recombined later and of generating relocatable
9787 expressions for the sum of a constant and literal. */
9788 var0
= split_tree (arg0
, type
, code
,
9789 &minus_var0
, &con0
, &minus_con0
,
9790 &lit0
, &minus_lit0
, 0);
9791 var1
= split_tree (arg1
, type
, code
,
9792 &minus_var1
, &con1
, &minus_con1
,
9793 &lit1
, &minus_lit1
, code
== MINUS_EXPR
);
9795 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
9796 if (code
== MINUS_EXPR
)
9799 /* With undefined overflow prefer doing association in a type
9800 which wraps on overflow, if that is one of the operand types. */
9801 if ((POINTER_TYPE_P (type
) || INTEGRAL_TYPE_P (type
))
9802 && !TYPE_OVERFLOW_WRAPS (type
))
9804 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9805 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0
)))
9806 atype
= TREE_TYPE (arg0
);
9807 else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1
))
9808 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1
)))
9809 atype
= TREE_TYPE (arg1
);
9810 gcc_assert (TYPE_PRECISION (atype
) == TYPE_PRECISION (type
));
9813 /* With undefined overflow we can only associate constants with one
9814 variable, and constants whose association doesn't overflow. */
9815 if ((POINTER_TYPE_P (atype
) || INTEGRAL_TYPE_P (atype
))
9816 && !TYPE_OVERFLOW_WRAPS (atype
))
9818 if ((var0
&& var1
) || (minus_var0
&& minus_var1
))
9820 /* ??? If split_tree would handle NEGATE_EXPR we could
9821 simply reject these cases and the allowed cases would
9822 be the var0/minus_var1 ones. */
9823 tree tmp0
= var0
? var0
: minus_var0
;
9824 tree tmp1
= var1
? var1
: minus_var1
;
9825 bool one_neg
= false;
9827 if (TREE_CODE (tmp0
) == NEGATE_EXPR
)
9829 tmp0
= TREE_OPERAND (tmp0
, 0);
9832 if (CONVERT_EXPR_P (tmp0
)
9833 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9834 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0
, 0)))
9835 <= TYPE_PRECISION (atype
)))
9836 tmp0
= TREE_OPERAND (tmp0
, 0);
9837 if (TREE_CODE (tmp1
) == NEGATE_EXPR
)
9839 tmp1
= TREE_OPERAND (tmp1
, 0);
9842 if (CONVERT_EXPR_P (tmp1
)
9843 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9844 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1
, 0)))
9845 <= TYPE_PRECISION (atype
)))
9846 tmp1
= TREE_OPERAND (tmp1
, 0);
9847 /* The only case we can still associate with two variables
9848 is if they cancel out. */
9850 || !operand_equal_p (tmp0
, tmp1
, 0))
9853 else if ((var0
&& minus_var1
9854 && ! operand_equal_p (var0
, minus_var1
, 0))
9855 || (minus_var0
&& var1
9856 && ! operand_equal_p (minus_var0
, var1
, 0)))
9860 /* Only do something if we found more than two objects. Otherwise,
9861 nothing has changed and we risk infinite recursion. */
9863 && ((var0
!= 0) + (var1
!= 0)
9864 + (minus_var0
!= 0) + (minus_var1
!= 0)
9865 + (con0
!= 0) + (con1
!= 0)
9866 + (minus_con0
!= 0) + (minus_con1
!= 0)
9867 + (lit0
!= 0) + (lit1
!= 0)
9868 + (minus_lit0
!= 0) + (minus_lit1
!= 0)) > 2)
9870 var0
= associate_trees (loc
, var0
, var1
, code
, atype
);
9871 minus_var0
= associate_trees (loc
, minus_var0
, minus_var1
,
9873 con0
= associate_trees (loc
, con0
, con1
, code
, atype
);
9874 minus_con0
= associate_trees (loc
, minus_con0
, minus_con1
,
9876 lit0
= associate_trees (loc
, lit0
, lit1
, code
, atype
);
9877 minus_lit0
= associate_trees (loc
, minus_lit0
, minus_lit1
,
9880 if (minus_var0
&& var0
)
9882 var0
= associate_trees (loc
, var0
, minus_var0
,
9886 if (minus_con0
&& con0
)
9888 con0
= associate_trees (loc
, con0
, minus_con0
,
9893 /* Preserve the MINUS_EXPR if the negative part of the literal is
9894 greater than the positive part. Otherwise, the multiplicative
9895 folding code (i.e extract_muldiv) may be fooled in case
9896 unsigned constants are subtracted, like in the following
9897 example: ((X*2 + 4) - 8U)/2. */
9898 if (minus_lit0
&& lit0
)
9900 if (TREE_CODE (lit0
) == INTEGER_CST
9901 && TREE_CODE (minus_lit0
) == INTEGER_CST
9902 && tree_int_cst_lt (lit0
, minus_lit0
)
9903 /* But avoid ending up with only negated parts. */
9906 minus_lit0
= associate_trees (loc
, minus_lit0
, lit0
,
9912 lit0
= associate_trees (loc
, lit0
, minus_lit0
,
9918 /* Don't introduce overflows through reassociation. */
9919 if ((lit0
&& TREE_OVERFLOW_P (lit0
))
9920 || (minus_lit0
&& TREE_OVERFLOW_P (minus_lit0
)))
9923 /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */
9924 con0
= associate_trees (loc
, con0
, lit0
, code
, atype
);
9926 minus_con0
= associate_trees (loc
, minus_con0
, minus_lit0
,
9930 /* Eliminate minus_con0. */
9934 con0
= associate_trees (loc
, con0
, minus_con0
,
9937 var0
= associate_trees (loc
, var0
, minus_con0
,
9944 /* Eliminate minus_var0. */
9948 con0
= associate_trees (loc
, con0
, minus_var0
,
9956 fold_convert_loc (loc
, type
, associate_trees (loc
, var0
, con0
,
9963 case POINTER_DIFF_EXPR
:
9965 /* Fold &a[i] - &a[j] to i-j. */
9966 if (TREE_CODE (arg0
) == ADDR_EXPR
9967 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == ARRAY_REF
9968 && TREE_CODE (arg1
) == ADDR_EXPR
9969 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == ARRAY_REF
)
9971 tree tem
= fold_addr_of_array_ref_difference (loc
, type
,
9972 TREE_OPERAND (arg0
, 0),
9973 TREE_OPERAND (arg1
, 0),
9975 == POINTER_DIFF_EXPR
);
9980 /* Further transformations are not for pointers. */
9981 if (code
== POINTER_DIFF_EXPR
)
9984 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
9985 if (TREE_CODE (arg0
) == NEGATE_EXPR
9986 && negate_expr_p (op1
)
9987 /* If arg0 is e.g. unsigned int and type is int, then this could
9988 introduce UB, because if A is INT_MIN at runtime, the original
9989 expression can be well defined while the latter is not.
9991 && !(ANY_INTEGRAL_TYPE_P (type
)
9992 && TYPE_OVERFLOW_UNDEFINED (type
)
9993 && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0
))
9994 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0
))))
9995 return fold_build2_loc (loc
, MINUS_EXPR
, type
, negate_expr (op1
),
9996 fold_convert_loc (loc
, type
,
9997 TREE_OPERAND (arg0
, 0)));
9999 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10000 __complex__ ( x, -y ). This is not the same for SNaNs or if
10001 signed zeros are involved. */
10002 if (!HONOR_SNANS (element_mode (arg0
))
10003 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
10004 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
)))
10006 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10007 tree arg0r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg0
);
10008 tree arg0i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
);
10009 bool arg0rz
= false, arg0iz
= false;
10010 if ((arg0r
&& (arg0rz
= real_zerop (arg0r
)))
10011 || (arg0i
&& (arg0iz
= real_zerop (arg0i
))))
10013 tree arg1r
= fold_unary_loc (loc
, REALPART_EXPR
, rtype
, arg1
);
10014 tree arg1i
= fold_unary_loc (loc
, IMAGPART_EXPR
, rtype
, arg1
);
10015 if (arg0rz
&& arg1i
&& real_zerop (arg1i
))
10017 tree rp
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
10019 : build1 (REALPART_EXPR
, rtype
, arg1
));
10020 tree ip
= arg0i
? arg0i
10021 : build1 (IMAGPART_EXPR
, rtype
, arg0
);
10022 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
10024 else if (arg0iz
&& arg1r
&& real_zerop (arg1r
))
10026 tree rp
= arg0r
? arg0r
10027 : build1 (REALPART_EXPR
, rtype
, arg0
);
10028 tree ip
= fold_build1_loc (loc
, NEGATE_EXPR
, rtype
,
10030 : build1 (IMAGPART_EXPR
, rtype
, arg1
));
10031 return fold_build2_loc (loc
, COMPLEX_EXPR
, type
, rp
, ip
);
10036 /* A - B -> A + (-B) if B is easily negatable. */
10037 if (negate_expr_p (op1
)
10038 && ! TYPE_OVERFLOW_SANITIZED (type
)
10039 && ((FLOAT_TYPE_P (type
)
10040 /* Avoid this transformation if B is a positive REAL_CST. */
10041 && (TREE_CODE (op1
) != REAL_CST
10042 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1
))))
10043 || INTEGRAL_TYPE_P (type
)))
10044 return fold_build2_loc (loc
, PLUS_EXPR
, type
,
10045 fold_convert_loc (loc
, type
, arg0
),
10046 negate_expr (op1
));
10048 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or
10049 one. Make sure the type is not saturating and has the signedness of
10050 the stripped operands, as fold_plusminus_mult_expr will re-associate.
10051 ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */
10052 if ((TREE_CODE (arg0
) == MULT_EXPR
10053 || TREE_CODE (arg1
) == MULT_EXPR
)
10054 && !TYPE_SATURATING (type
)
10055 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg0
))
10056 && TYPE_UNSIGNED (type
) == TYPE_UNSIGNED (TREE_TYPE (arg1
))
10057 && (!FLOAT_TYPE_P (type
) || flag_associative_math
))
10059 tree tem
= fold_plusminus_mult_expr (loc
, code
, type
, arg0
, arg1
);
10067 if (! FLOAT_TYPE_P (type
))
10069 /* Transform x * -C into -x * C if x is easily negatable. */
10070 if (TREE_CODE (op1
) == INTEGER_CST
10071 && tree_int_cst_sgn (op1
) == -1
10072 && negate_expr_p (op0
)
10073 && negate_expr_p (op1
)
10074 && (tem
= negate_expr (op1
)) != op1
10075 && ! TREE_OVERFLOW (tem
))
10076 return fold_build2_loc (loc
, MULT_EXPR
, type
,
10077 fold_convert_loc (loc
, type
,
10078 negate_expr (op0
)), tem
);
10080 strict_overflow_p
= false;
10081 if (TREE_CODE (arg1
) == INTEGER_CST
10082 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10083 &strict_overflow_p
)) != 0)
10085 if (strict_overflow_p
)
10086 fold_overflow_warning (("assuming signed overflow does not "
10087 "occur when simplifying "
10089 WARN_STRICT_OVERFLOW_MISC
);
10090 return fold_convert_loc (loc
, type
, tem
);
10093 /* Optimize z * conj(z) for integer complex numbers. */
10094 if (TREE_CODE (arg0
) == CONJ_EXPR
10095 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10096 return fold_mult_zconjz (loc
, type
, arg1
);
10097 if (TREE_CODE (arg1
) == CONJ_EXPR
10098 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10099 return fold_mult_zconjz (loc
, type
, arg0
);
10103 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10104 This is not the same for NaNs or if signed zeros are
10106 if (!HONOR_NANS (arg0
)
10107 && !HONOR_SIGNED_ZEROS (element_mode (arg0
))
10108 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0
))
10109 && TREE_CODE (arg1
) == COMPLEX_CST
10110 && real_zerop (TREE_REALPART (arg1
)))
10112 tree rtype
= TREE_TYPE (TREE_TYPE (arg0
));
10113 if (real_onep (TREE_IMAGPART (arg1
)))
10115 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
10116 negate_expr (fold_build1_loc (loc
, IMAGPART_EXPR
,
10118 fold_build1_loc (loc
, REALPART_EXPR
, rtype
, arg0
));
10119 else if (real_minus_onep (TREE_IMAGPART (arg1
)))
10121 fold_build2_loc (loc
, COMPLEX_EXPR
, type
,
10122 fold_build1_loc (loc
, IMAGPART_EXPR
, rtype
, arg0
),
10123 negate_expr (fold_build1_loc (loc
, REALPART_EXPR
,
10127 /* Optimize z * conj(z) for floating point complex numbers.
10128 Guarded by flag_unsafe_math_optimizations as non-finite
10129 imaginary components don't produce scalar results. */
10130 if (flag_unsafe_math_optimizations
10131 && TREE_CODE (arg0
) == CONJ_EXPR
10132 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10133 return fold_mult_zconjz (loc
, type
, arg1
);
10134 if (flag_unsafe_math_optimizations
10135 && TREE_CODE (arg1
) == CONJ_EXPR
10136 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10137 return fold_mult_zconjz (loc
, type
, arg0
);
10142 /* Canonicalize (X & C1) | C2. */
10143 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10144 && TREE_CODE (arg1
) == INTEGER_CST
10145 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10147 int width
= TYPE_PRECISION (type
), w
;
10148 wide_int c1
= wi::to_wide (TREE_OPERAND (arg0
, 1));
10149 wide_int c2
= wi::to_wide (arg1
);
10151 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10152 if ((c1
& c2
) == c1
)
10153 return omit_one_operand_loc (loc
, type
, arg1
,
10154 TREE_OPERAND (arg0
, 0));
10156 wide_int msk
= wi::mask (width
, false,
10157 TYPE_PRECISION (TREE_TYPE (arg1
)));
10159 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10160 if (wi::bit_and_not (msk
, c1
| c2
) == 0)
10162 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10163 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
, tem
, arg1
);
10166 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10167 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10168 mode which allows further optimizations. */
10171 wide_int c3
= wi::bit_and_not (c1
, c2
);
10172 for (w
= BITS_PER_UNIT
; w
<= width
; w
<<= 1)
10174 wide_int mask
= wi::mask (w
, false,
10175 TYPE_PRECISION (type
));
10176 if (((c1
| c2
) & mask
) == mask
10177 && wi::bit_and_not (c1
, mask
) == 0)
10186 tem
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10187 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, type
, tem
,
10188 wide_int_to_tree (type
, c3
));
10189 return fold_build2_loc (loc
, BIT_IOR_EXPR
, type
, tem
, arg1
);
10193 /* See if this can be simplified into a rotate first. If that
10194 is unsuccessful continue in the association code. */
10198 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
10199 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10200 && INTEGRAL_TYPE_P (type
)
10201 && integer_onep (TREE_OPERAND (arg0
, 1))
10202 && integer_onep (arg1
))
10203 return fold_build2_loc (loc
, EQ_EXPR
, type
, arg0
,
10204 build_zero_cst (TREE_TYPE (arg0
)));
10206 /* See if this can be simplified into a rotate first. If that
10207 is unsuccessful continue in the association code. */
10211 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
10212 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10213 && INTEGRAL_TYPE_P (type
)
10214 && integer_onep (TREE_OPERAND (arg0
, 1))
10215 && integer_onep (arg1
))
10218 tem
= TREE_OPERAND (arg0
, 0);
10219 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
10220 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
10222 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
10223 build_zero_cst (TREE_TYPE (tem
)));
10225 /* Fold ~X & 1 as (X & 1) == 0. */
10226 if (TREE_CODE (arg0
) == BIT_NOT_EXPR
10227 && INTEGRAL_TYPE_P (type
)
10228 && integer_onep (arg1
))
10231 tem
= TREE_OPERAND (arg0
, 0);
10232 tem2
= fold_convert_loc (loc
, TREE_TYPE (tem
), arg1
);
10233 tem2
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (tem
),
10235 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem2
,
10236 build_zero_cst (TREE_TYPE (tem
)));
10238 /* Fold !X & 1 as X == 0. */
10239 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10240 && integer_onep (arg1
))
10242 tem
= TREE_OPERAND (arg0
, 0);
10243 return fold_build2_loc (loc
, EQ_EXPR
, type
, tem
,
10244 build_zero_cst (TREE_TYPE (tem
)));
10247 /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant
10248 multiple of 1 << CST. */
10249 if (TREE_CODE (arg1
) == INTEGER_CST
)
10251 wi::tree_to_wide_ref cst1
= wi::to_wide (arg1
);
10252 wide_int ncst1
= -cst1
;
10253 if ((cst1
& ncst1
) == ncst1
10254 && multiple_of_p (type
, arg0
,
10255 wide_int_to_tree (TREE_TYPE (arg1
), ncst1
)))
10256 return fold_convert_loc (loc
, type
, arg0
);
10259 /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero
10261 if (TREE_CODE (arg1
) == INTEGER_CST
10262 && TREE_CODE (arg0
) == MULT_EXPR
10263 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10265 wi::tree_to_wide_ref warg1
= wi::to_wide (arg1
);
10267 = mask_with_tz (type
, warg1
, wi::to_wide (TREE_OPERAND (arg0
, 1)));
10270 return omit_two_operands_loc (loc
, type
, build_zero_cst (type
),
10272 else if (masked
!= warg1
)
10274 /* Avoid the transform if arg1 is a mask of some
10275 mode which allows further optimizations. */
10276 int pop
= wi::popcount (warg1
);
10277 if (!(pop
>= BITS_PER_UNIT
10279 && wi::mask (pop
, false, warg1
.get_precision ()) == warg1
))
10280 return fold_build2_loc (loc
, code
, type
, op0
,
10281 wide_int_to_tree (type
, masked
));
10285 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
10286 if (TREE_CODE (arg1
) == INTEGER_CST
&& TREE_CODE (arg0
) == NOP_EXPR
10287 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0
, 0))))
10289 prec
= element_precision (TREE_TYPE (TREE_OPERAND (arg0
, 0)));
10291 wide_int mask
= wide_int::from (wi::to_wide (arg1
), prec
, UNSIGNED
);
10294 fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10300 /* Don't touch a floating-point divide by zero unless the mode
10301 of the constant can represent infinity. */
10302 if (TREE_CODE (arg1
) == REAL_CST
10303 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1
)))
10304 && real_zerop (arg1
))
10307 /* (-A) / (-B) -> A / B */
10308 if (TREE_CODE (arg0
) == NEGATE_EXPR
&& negate_expr_p (arg1
))
10309 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10310 TREE_OPERAND (arg0
, 0),
10311 negate_expr (arg1
));
10312 if (TREE_CODE (arg1
) == NEGATE_EXPR
&& negate_expr_p (arg0
))
10313 return fold_build2_loc (loc
, RDIV_EXPR
, type
,
10314 negate_expr (arg0
),
10315 TREE_OPERAND (arg1
, 0));
10318 case TRUNC_DIV_EXPR
:
10321 case FLOOR_DIV_EXPR
:
10322 /* Simplify A / (B << N) where A and B are positive and B is
10323 a power of 2, to A >> (N + log2(B)). */
10324 strict_overflow_p
= false;
10325 if (TREE_CODE (arg1
) == LSHIFT_EXPR
10326 && (TYPE_UNSIGNED (type
)
10327 || tree_expr_nonnegative_warnv_p (op0
, &strict_overflow_p
)))
10329 tree sval
= TREE_OPERAND (arg1
, 0);
10330 if (integer_pow2p (sval
) && tree_int_cst_sgn (sval
) > 0)
10332 tree sh_cnt
= TREE_OPERAND (arg1
, 1);
10333 tree pow2
= build_int_cst (TREE_TYPE (sh_cnt
),
10334 wi::exact_log2 (wi::to_wide (sval
)));
10336 if (strict_overflow_p
)
10337 fold_overflow_warning (("assuming signed overflow does not "
10338 "occur when simplifying A / (B << N)"),
10339 WARN_STRICT_OVERFLOW_MISC
);
10341 sh_cnt
= fold_build2_loc (loc
, PLUS_EXPR
, TREE_TYPE (sh_cnt
),
10343 return fold_build2_loc (loc
, RSHIFT_EXPR
, type
,
10344 fold_convert_loc (loc
, type
, arg0
), sh_cnt
);
10350 case ROUND_DIV_EXPR
:
10351 case CEIL_DIV_EXPR
:
10352 case EXACT_DIV_EXPR
:
10353 if (integer_zerop (arg1
))
10356 /* Convert -A / -B to A / B when the type is signed and overflow is
10358 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10359 && TREE_CODE (op0
) == NEGATE_EXPR
10360 && negate_expr_p (op1
))
10362 if (INTEGRAL_TYPE_P (type
))
10363 fold_overflow_warning (("assuming signed overflow does not occur "
10364 "when distributing negation across "
10366 WARN_STRICT_OVERFLOW_MISC
);
10367 return fold_build2_loc (loc
, code
, type
,
10368 fold_convert_loc (loc
, type
,
10369 TREE_OPERAND (arg0
, 0)),
10370 negate_expr (op1
));
10372 if ((!INTEGRAL_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
10373 && TREE_CODE (arg1
) == NEGATE_EXPR
10374 && negate_expr_p (op0
))
10376 if (INTEGRAL_TYPE_P (type
))
10377 fold_overflow_warning (("assuming signed overflow does not occur "
10378 "when distributing negation across "
10380 WARN_STRICT_OVERFLOW_MISC
);
10381 return fold_build2_loc (loc
, code
, type
,
10383 fold_convert_loc (loc
, type
,
10384 TREE_OPERAND (arg1
, 0)));
10387 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
10388 operation, EXACT_DIV_EXPR.
10390 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
10391 At one time others generated faster code, it's not clear if they do
10392 after the last round to changes to the DIV code in expmed.c. */
10393 if ((code
== CEIL_DIV_EXPR
|| code
== FLOOR_DIV_EXPR
)
10394 && multiple_of_p (type
, arg0
, arg1
))
10395 return fold_build2_loc (loc
, EXACT_DIV_EXPR
, type
,
10396 fold_convert (type
, arg0
),
10397 fold_convert (type
, arg1
));
10399 strict_overflow_p
= false;
10400 if (TREE_CODE (arg1
) == INTEGER_CST
10401 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10402 &strict_overflow_p
)) != 0)
10404 if (strict_overflow_p
)
10405 fold_overflow_warning (("assuming signed overflow does not occur "
10406 "when simplifying division"),
10407 WARN_STRICT_OVERFLOW_MISC
);
10408 return fold_convert_loc (loc
, type
, tem
);
10413 case CEIL_MOD_EXPR
:
10414 case FLOOR_MOD_EXPR
:
10415 case ROUND_MOD_EXPR
:
10416 case TRUNC_MOD_EXPR
:
10417 strict_overflow_p
= false;
10418 if (TREE_CODE (arg1
) == INTEGER_CST
10419 && (tem
= extract_muldiv (op0
, arg1
, code
, NULL_TREE
,
10420 &strict_overflow_p
)) != 0)
10422 if (strict_overflow_p
)
10423 fold_overflow_warning (("assuming signed overflow does not occur "
10424 "when simplifying modulus"),
10425 WARN_STRICT_OVERFLOW_MISC
);
10426 return fold_convert_loc (loc
, type
, tem
);
10435 /* Since negative shift count is not well-defined,
10436 don't try to compute it in the compiler. */
10437 if (TREE_CODE (arg1
) == INTEGER_CST
&& tree_int_cst_sgn (arg1
) < 0)
10440 prec
= element_precision (type
);
10442 /* If we have a rotate of a bit operation with the rotate count and
10443 the second operand of the bit operation both constant,
10444 permute the two operations. */
10445 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10446 && (TREE_CODE (arg0
) == BIT_AND_EXPR
10447 || TREE_CODE (arg0
) == BIT_IOR_EXPR
10448 || TREE_CODE (arg0
) == BIT_XOR_EXPR
)
10449 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10451 tree arg00
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10452 tree arg01
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10453 return fold_build2_loc (loc
, TREE_CODE (arg0
), type
,
10454 fold_build2_loc (loc
, code
, type
,
10456 fold_build2_loc (loc
, code
, type
,
10460 /* Two consecutive rotates adding up to the some integer
10461 multiple of the precision of the type can be ignored. */
10462 if (code
== RROTATE_EXPR
&& TREE_CODE (arg1
) == INTEGER_CST
10463 && TREE_CODE (arg0
) == RROTATE_EXPR
10464 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
10465 && wi::umod_trunc (wi::to_wide (arg1
)
10466 + wi::to_wide (TREE_OPERAND (arg0
, 1)),
10468 return fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10476 case TRUTH_ANDIF_EXPR
:
10477 /* Note that the operands of this must be ints
10478 and their values must be 0 or 1.
10479 ("true" is a fixed value perhaps depending on the language.) */
10480 /* If first arg is constant zero, return it. */
10481 if (integer_zerop (arg0
))
10482 return fold_convert_loc (loc
, type
, arg0
);
10484 case TRUTH_AND_EXPR
:
10485 /* If either arg is constant true, drop it. */
10486 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10487 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10488 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
)
10489 /* Preserve sequence points. */
10490 && (code
!= TRUTH_ANDIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10491 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10492 /* If second arg is constant zero, result is zero, but first arg
10493 must be evaluated. */
10494 if (integer_zerop (arg1
))
10495 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10496 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
10497 case will be handled here. */
10498 if (integer_zerop (arg0
))
10499 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10501 /* !X && X is always false. */
10502 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10503 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10504 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg1
);
10505 /* X && !X is always false. */
10506 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10507 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10508 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10510 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
10511 means A >= Y && A != MAX, but in this case we know that
10514 if (!TREE_SIDE_EFFECTS (arg0
)
10515 && !TREE_SIDE_EFFECTS (arg1
))
10517 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg0
, arg1
);
10518 if (tem
&& !operand_equal_p (tem
, arg0
, 0))
10519 return fold_build2_loc (loc
, code
, type
, tem
, arg1
);
10521 tem
= fold_to_nonsharp_ineq_using_bound (loc
, arg1
, arg0
);
10522 if (tem
&& !operand_equal_p (tem
, arg1
, 0))
10523 return fold_build2_loc (loc
, code
, type
, arg0
, tem
);
10526 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10532 case TRUTH_ORIF_EXPR
:
10533 /* Note that the operands of this must be ints
10534 and their values must be 0 or true.
10535 ("true" is a fixed value perhaps depending on the language.) */
10536 /* If first arg is constant true, return it. */
10537 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10538 return fold_convert_loc (loc
, type
, arg0
);
10540 case TRUTH_OR_EXPR
:
10541 /* If either arg is constant zero, drop it. */
10542 if (TREE_CODE (arg0
) == INTEGER_CST
&& integer_zerop (arg0
))
10543 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg1
));
10544 if (TREE_CODE (arg1
) == INTEGER_CST
&& integer_zerop (arg1
)
10545 /* Preserve sequence points. */
10546 && (code
!= TRUTH_ORIF_EXPR
|| ! TREE_SIDE_EFFECTS (arg0
)))
10547 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10548 /* If second arg is constant true, result is true, but we must
10549 evaluate first arg. */
10550 if (TREE_CODE (arg1
) == INTEGER_CST
&& ! integer_zerop (arg1
))
10551 return omit_one_operand_loc (loc
, type
, arg1
, arg0
);
10552 /* Likewise for first arg, but note this only occurs here for
10554 if (TREE_CODE (arg0
) == INTEGER_CST
&& ! integer_zerop (arg0
))
10555 return omit_one_operand_loc (loc
, type
, arg0
, arg1
);
10557 /* !X || X is always true. */
10558 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10559 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10560 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10561 /* X || !X is always true. */
10562 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10563 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10564 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10566 /* (X && !Y) || (!X && Y) is X ^ Y */
10567 if (TREE_CODE (arg0
) == TRUTH_AND_EXPR
10568 && TREE_CODE (arg1
) == TRUTH_AND_EXPR
)
10570 tree a0
, a1
, l0
, l1
, n0
, n1
;
10572 a0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 0));
10573 a1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg1
, 1));
10575 l0
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 0));
10576 l1
= fold_convert_loc (loc
, type
, TREE_OPERAND (arg0
, 1));
10578 n0
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l0
);
10579 n1
= fold_build1_loc (loc
, TRUTH_NOT_EXPR
, type
, l1
);
10581 if ((operand_equal_p (n0
, a0
, 0)
10582 && operand_equal_p (n1
, a1
, 0))
10583 || (operand_equal_p (n0
, a1
, 0)
10584 && operand_equal_p (n1
, a0
, 0)))
10585 return fold_build2_loc (loc
, TRUTH_XOR_EXPR
, type
, l0
, n1
);
10588 if ((tem
= fold_truth_andor (loc
, code
, type
, arg0
, arg1
, op0
, op1
))
10594 case TRUTH_XOR_EXPR
:
10595 /* If the second arg is constant zero, drop it. */
10596 if (integer_zerop (arg1
))
10597 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10598 /* If the second arg is constant true, this is a logical inversion. */
10599 if (integer_onep (arg1
))
10601 tem
= invert_truthvalue_loc (loc
, arg0
);
10602 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, tem
));
10604 /* Identical arguments cancel to zero. */
10605 if (operand_equal_p (arg0
, arg1
, 0))
10606 return omit_one_operand_loc (loc
, type
, integer_zero_node
, arg0
);
10608 /* !X ^ X is always true. */
10609 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
10610 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0))
10611 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg1
);
10613 /* X ^ !X is always true. */
10614 if (TREE_CODE (arg1
) == TRUTH_NOT_EXPR
10615 && operand_equal_p (arg0
, TREE_OPERAND (arg1
, 0), 0))
10616 return omit_one_operand_loc (loc
, type
, integer_one_node
, arg0
);
10625 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
10626 if (tem
!= NULL_TREE
)
10629 /* bool_var != 1 becomes !bool_var. */
10630 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_onep (arg1
)
10631 && code
== NE_EXPR
)
10632 return fold_convert_loc (loc
, type
,
10633 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10634 TREE_TYPE (arg0
), arg0
));
10636 /* bool_var == 0 becomes !bool_var. */
10637 if (TREE_CODE (TREE_TYPE (arg0
)) == BOOLEAN_TYPE
&& integer_zerop (arg1
)
10638 && code
== EQ_EXPR
)
10639 return fold_convert_loc (loc
, type
,
10640 fold_build1_loc (loc
, TRUTH_NOT_EXPR
,
10641 TREE_TYPE (arg0
), arg0
));
10643 /* !exp != 0 becomes !exp */
10644 if (TREE_CODE (arg0
) == TRUTH_NOT_EXPR
&& integer_zerop (arg1
)
10645 && code
== NE_EXPR
)
10646 return non_lvalue_loc (loc
, fold_convert_loc (loc
, type
, arg0
));
10648 /* If this is an EQ or NE comparison with zero and ARG0 is
10649 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
10650 two operations, but the latter can be done in one less insn
10651 on machines that have only two-operand insns or on which a
10652 constant cannot be the first operand. */
10653 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10654 && integer_zerop (arg1
))
10656 tree arg00
= TREE_OPERAND (arg0
, 0);
10657 tree arg01
= TREE_OPERAND (arg0
, 1);
10658 if (TREE_CODE (arg00
) == LSHIFT_EXPR
10659 && integer_onep (TREE_OPERAND (arg00
, 0)))
10661 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg00
),
10662 arg01
, TREE_OPERAND (arg00
, 1));
10663 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10664 build_int_cst (TREE_TYPE (arg0
), 1));
10665 return fold_build2_loc (loc
, code
, type
,
10666 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10669 else if (TREE_CODE (arg01
) == LSHIFT_EXPR
10670 && integer_onep (TREE_OPERAND (arg01
, 0)))
10672 tree tem
= fold_build2_loc (loc
, RSHIFT_EXPR
, TREE_TYPE (arg01
),
10673 arg00
, TREE_OPERAND (arg01
, 1));
10674 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
), tem
,
10675 build_int_cst (TREE_TYPE (arg0
), 1));
10676 return fold_build2_loc (loc
, code
, type
,
10677 fold_convert_loc (loc
, TREE_TYPE (arg1
), tem
),
10682 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
10683 C1 is a valid shift constant, and C2 is a power of two, i.e.
10685 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10686 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == RSHIFT_EXPR
10687 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1))
10689 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10690 && integer_zerop (arg1
))
10692 tree itype
= TREE_TYPE (arg0
);
10693 tree arg001
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1);
10694 prec
= TYPE_PRECISION (itype
);
10696 /* Check for a valid shift count. */
10697 if (wi::ltu_p (wi::to_wide (arg001
), prec
))
10699 tree arg01
= TREE_OPERAND (arg0
, 1);
10700 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10701 unsigned HOST_WIDE_INT log2
= tree_log2 (arg01
);
10702 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
10703 can be rewritten as (X & (C2 << C1)) != 0. */
10704 if ((log2
+ TREE_INT_CST_LOW (arg001
)) < prec
)
10706 tem
= fold_build2_loc (loc
, LSHIFT_EXPR
, itype
, arg01
, arg001
);
10707 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, arg000
, tem
);
10708 return fold_build2_loc (loc
, code
, type
, tem
,
10709 fold_convert_loc (loc
, itype
, arg1
));
10711 /* Otherwise, for signed (arithmetic) shifts,
10712 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
10713 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
10714 else if (!TYPE_UNSIGNED (itype
))
10715 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
, type
,
10716 arg000
, build_int_cst (itype
, 0));
10717 /* Otherwise, of unsigned (logical) shifts,
10718 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
10719 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
10721 return omit_one_operand_loc (loc
, type
,
10722 code
== EQ_EXPR
? integer_one_node
10723 : integer_zero_node
,
10728 /* If this is a comparison of a field, we may be able to simplify it. */
10729 if ((TREE_CODE (arg0
) == COMPONENT_REF
10730 || TREE_CODE (arg0
) == BIT_FIELD_REF
)
10731 /* Handle the constant case even without -O
10732 to make sure the warnings are given. */
10733 && (optimize
|| TREE_CODE (arg1
) == INTEGER_CST
))
10735 t1
= optimize_bit_field_compare (loc
, code
, type
, arg0
, arg1
);
10740 /* Optimize comparisons of strlen vs zero to a compare of the
10741 first character of the string vs zero. To wit,
10742 strlen(ptr) == 0 => *ptr == 0
10743 strlen(ptr) != 0 => *ptr != 0
10744 Other cases should reduce to one of these two (or a constant)
10745 due to the return value of strlen being unsigned. */
10746 if (TREE_CODE (arg0
) == CALL_EXPR
&& integer_zerop (arg1
))
10748 tree fndecl
= get_callee_fndecl (arg0
);
10751 && fndecl_built_in_p (fndecl
, BUILT_IN_STRLEN
)
10752 && call_expr_nargs (arg0
) == 1
10753 && (TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0
, 0)))
10757 = build_pointer_type (build_qualified_type (char_type_node
,
10759 tree ptr
= fold_convert_loc (loc
, ptrtype
,
10760 CALL_EXPR_ARG (arg0
, 0));
10761 tree iref
= build_fold_indirect_ref_loc (loc
, ptr
);
10762 return fold_build2_loc (loc
, code
, type
, iref
,
10763 build_int_cst (TREE_TYPE (iref
), 0));
10767 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
10768 of X. Similarly fold (X >> C) == 0 into X >= 0. */
10769 if (TREE_CODE (arg0
) == RSHIFT_EXPR
10770 && integer_zerop (arg1
)
10771 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == INTEGER_CST
)
10773 tree arg00
= TREE_OPERAND (arg0
, 0);
10774 tree arg01
= TREE_OPERAND (arg0
, 1);
10775 tree itype
= TREE_TYPE (arg00
);
10776 if (wi::to_wide (arg01
) == element_precision (itype
) - 1)
10778 if (TYPE_UNSIGNED (itype
))
10780 itype
= signed_type_for (itype
);
10781 arg00
= fold_convert_loc (loc
, itype
, arg00
);
10783 return fold_build2_loc (loc
, code
== EQ_EXPR
? GE_EXPR
: LT_EXPR
,
10784 type
, arg00
, build_zero_cst (itype
));
10788 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
10789 (X & C) == 0 when C is a single bit. */
10790 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10791 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_NOT_EXPR
10792 && integer_zerop (arg1
)
10793 && integer_pow2p (TREE_OPERAND (arg0
, 1)))
10795 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg0
),
10796 TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0),
10797 TREE_OPERAND (arg0
, 1));
10798 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
,
10800 fold_convert_loc (loc
, TREE_TYPE (arg0
),
10804 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
10805 constant C is a power of two, i.e. a single bit. */
10806 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10807 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
10808 && integer_zerop (arg1
)
10809 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10810 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10811 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10813 tree arg00
= TREE_OPERAND (arg0
, 0);
10814 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10815 arg00
, build_int_cst (TREE_TYPE (arg00
), 0));
10818 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
10819 when is C is a power of two, i.e. a single bit. */
10820 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10821 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_XOR_EXPR
10822 && integer_zerop (arg1
)
10823 && integer_pow2p (TREE_OPERAND (arg0
, 1))
10824 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
10825 TREE_OPERAND (arg0
, 1), OEP_ONLY_CONST
))
10827 tree arg000
= TREE_OPERAND (TREE_OPERAND (arg0
, 0), 0);
10828 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, TREE_TYPE (arg000
),
10829 arg000
, TREE_OPERAND (arg0
, 1));
10830 return fold_build2_loc (loc
, code
== EQ_EXPR
? NE_EXPR
: EQ_EXPR
, type
,
10831 tem
, build_int_cst (TREE_TYPE (tem
), 0));
10834 if (integer_zerop (arg1
)
10835 && tree_expr_nonzero_p (arg0
))
10837 tree res
= constant_boolean_node (code
==NE_EXPR
, type
);
10838 return omit_one_operand_loc (loc
, type
, res
, arg0
);
10841 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
10842 if (TREE_CODE (arg0
) == BIT_AND_EXPR
10843 && TREE_CODE (arg1
) == BIT_AND_EXPR
)
10845 tree arg00
= TREE_OPERAND (arg0
, 0);
10846 tree arg01
= TREE_OPERAND (arg0
, 1);
10847 tree arg10
= TREE_OPERAND (arg1
, 0);
10848 tree arg11
= TREE_OPERAND (arg1
, 1);
10849 tree itype
= TREE_TYPE (arg0
);
10851 if (operand_equal_p (arg01
, arg11
, 0))
10853 tem
= fold_convert_loc (loc
, itype
, arg10
);
10854 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10855 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg01
);
10856 return fold_build2_loc (loc
, code
, type
, tem
,
10857 build_zero_cst (itype
));
10859 if (operand_equal_p (arg01
, arg10
, 0))
10861 tem
= fold_convert_loc (loc
, itype
, arg11
);
10862 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10863 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg01
);
10864 return fold_build2_loc (loc
, code
, type
, tem
,
10865 build_zero_cst (itype
));
10867 if (operand_equal_p (arg00
, arg11
, 0))
10869 tem
= fold_convert_loc (loc
, itype
, arg10
);
10870 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
, tem
);
10871 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg00
);
10872 return fold_build2_loc (loc
, code
, type
, tem
,
10873 build_zero_cst (itype
));
10875 if (operand_equal_p (arg00
, arg10
, 0))
10877 tem
= fold_convert_loc (loc
, itype
, arg11
);
10878 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
, tem
);
10879 tem
= fold_build2_loc (loc
, BIT_AND_EXPR
, itype
, tem
, arg00
);
10880 return fold_build2_loc (loc
, code
, type
, tem
,
10881 build_zero_cst (itype
));
10885 if (TREE_CODE (arg0
) == BIT_XOR_EXPR
10886 && TREE_CODE (arg1
) == BIT_XOR_EXPR
)
10888 tree arg00
= TREE_OPERAND (arg0
, 0);
10889 tree arg01
= TREE_OPERAND (arg0
, 1);
10890 tree arg10
= TREE_OPERAND (arg1
, 0);
10891 tree arg11
= TREE_OPERAND (arg1
, 1);
10892 tree itype
= TREE_TYPE (arg0
);
10894 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
10895 operand_equal_p guarantees no side-effects so we don't need
10896 to use omit_one_operand on Z. */
10897 if (operand_equal_p (arg01
, arg11
, 0))
10898 return fold_build2_loc (loc
, code
, type
, arg00
,
10899 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10901 if (operand_equal_p (arg01
, arg10
, 0))
10902 return fold_build2_loc (loc
, code
, type
, arg00
,
10903 fold_convert_loc (loc
, TREE_TYPE (arg00
),
10905 if (operand_equal_p (arg00
, arg11
, 0))
10906 return fold_build2_loc (loc
, code
, type
, arg01
,
10907 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10909 if (operand_equal_p (arg00
, arg10
, 0))
10910 return fold_build2_loc (loc
, code
, type
, arg01
,
10911 fold_convert_loc (loc
, TREE_TYPE (arg01
),
10914 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
10915 if (TREE_CODE (arg01
) == INTEGER_CST
10916 && TREE_CODE (arg11
) == INTEGER_CST
)
10918 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg01
,
10919 fold_convert_loc (loc
, itype
, arg11
));
10920 tem
= fold_build2_loc (loc
, BIT_XOR_EXPR
, itype
, arg00
, tem
);
10921 return fold_build2_loc (loc
, code
, type
, tem
,
10922 fold_convert_loc (loc
, itype
, arg10
));
10926 /* Attempt to simplify equality/inequality comparisons of complex
10927 values. Only lower the comparison if the result is known or
10928 can be simplified to a single scalar comparison. */
10929 if ((TREE_CODE (arg0
) == COMPLEX_EXPR
10930 || TREE_CODE (arg0
) == COMPLEX_CST
)
10931 && (TREE_CODE (arg1
) == COMPLEX_EXPR
10932 || TREE_CODE (arg1
) == COMPLEX_CST
))
10934 tree real0
, imag0
, real1
, imag1
;
10937 if (TREE_CODE (arg0
) == COMPLEX_EXPR
)
10939 real0
= TREE_OPERAND (arg0
, 0);
10940 imag0
= TREE_OPERAND (arg0
, 1);
10944 real0
= TREE_REALPART (arg0
);
10945 imag0
= TREE_IMAGPART (arg0
);
10948 if (TREE_CODE (arg1
) == COMPLEX_EXPR
)
10950 real1
= TREE_OPERAND (arg1
, 0);
10951 imag1
= TREE_OPERAND (arg1
, 1);
10955 real1
= TREE_REALPART (arg1
);
10956 imag1
= TREE_IMAGPART (arg1
);
10959 rcond
= fold_binary_loc (loc
, code
, type
, real0
, real1
);
10960 if (rcond
&& TREE_CODE (rcond
) == INTEGER_CST
)
10962 if (integer_zerop (rcond
))
10964 if (code
== EQ_EXPR
)
10965 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
10967 return fold_build2_loc (loc
, NE_EXPR
, type
, imag0
, imag1
);
10971 if (code
== NE_EXPR
)
10972 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
10974 return fold_build2_loc (loc
, EQ_EXPR
, type
, imag0
, imag1
);
10978 icond
= fold_binary_loc (loc
, code
, type
, imag0
, imag1
);
10979 if (icond
&& TREE_CODE (icond
) == INTEGER_CST
)
10981 if (integer_zerop (icond
))
10983 if (code
== EQ_EXPR
)
10984 return omit_two_operands_loc (loc
, type
, boolean_false_node
,
10986 return fold_build2_loc (loc
, NE_EXPR
, type
, real0
, real1
);
10990 if (code
== NE_EXPR
)
10991 return omit_two_operands_loc (loc
, type
, boolean_true_node
,
10993 return fold_build2_loc (loc
, EQ_EXPR
, type
, real0
, real1
);
11004 tem
= fold_comparison (loc
, code
, type
, op0
, op1
);
11005 if (tem
!= NULL_TREE
)
11008 /* Transform comparisons of the form X +- C CMP X. */
11009 if ((TREE_CODE (arg0
) == PLUS_EXPR
|| TREE_CODE (arg0
) == MINUS_EXPR
)
11010 && operand_equal_p (TREE_OPERAND (arg0
, 0), arg1
, 0)
11011 && TREE_CODE (TREE_OPERAND (arg0
, 1)) == REAL_CST
11012 && !HONOR_SNANS (arg0
))
11014 tree arg01
= TREE_OPERAND (arg0
, 1);
11015 enum tree_code code0
= TREE_CODE (arg0
);
11016 int is_positive
= REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01
)) ? -1 : 1;
11018 /* (X - c) > X becomes false. */
11019 if (code
== GT_EXPR
11020 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
11021 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
11022 return constant_boolean_node (0, type
);
11024 /* Likewise (X + c) < X becomes false. */
11025 if (code
== LT_EXPR
11026 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
11027 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
11028 return constant_boolean_node (0, type
);
11030 /* Convert (X - c) <= X to true. */
11031 if (!HONOR_NANS (arg1
)
11033 && ((code0
== MINUS_EXPR
&& is_positive
>= 0)
11034 || (code0
== PLUS_EXPR
&& is_positive
<= 0)))
11035 return constant_boolean_node (1, type
);
11037 /* Convert (X + c) >= X to true. */
11038 if (!HONOR_NANS (arg1
)
11040 && ((code0
== PLUS_EXPR
&& is_positive
>= 0)
11041 || (code0
== MINUS_EXPR
&& is_positive
<= 0)))
11042 return constant_boolean_node (1, type
);
11045 /* If we are comparing an ABS_EXPR with a constant, we can
11046 convert all the cases into explicit comparisons, but they may
11047 well not be faster than doing the ABS and one comparison.
11048 But ABS (X) <= C is a range comparison, which becomes a subtraction
11049 and a comparison, and is probably faster. */
11050 if (code
== LE_EXPR
11051 && TREE_CODE (arg1
) == INTEGER_CST
11052 && TREE_CODE (arg0
) == ABS_EXPR
11053 && ! TREE_SIDE_EFFECTS (arg0
)
11054 && (tem
= negate_expr (arg1
)) != 0
11055 && TREE_CODE (tem
) == INTEGER_CST
11056 && !TREE_OVERFLOW (tem
))
11057 return fold_build2_loc (loc
, TRUTH_ANDIF_EXPR
, type
,
11058 build2 (GE_EXPR
, type
,
11059 TREE_OPERAND (arg0
, 0), tem
),
11060 build2 (LE_EXPR
, type
,
11061 TREE_OPERAND (arg0
, 0), arg1
));
11063 /* Convert ABS_EXPR<x> >= 0 to true. */
11064 strict_overflow_p
= false;
11065 if (code
== GE_EXPR
11066 && (integer_zerop (arg1
)
11067 || (! HONOR_NANS (arg0
)
11068 && real_zerop (arg1
)))
11069 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11071 if (strict_overflow_p
)
11072 fold_overflow_warning (("assuming signed overflow does not occur "
11073 "when simplifying comparison of "
11074 "absolute value and zero"),
11075 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11076 return omit_one_operand_loc (loc
, type
,
11077 constant_boolean_node (true, type
),
11081 /* Convert ABS_EXPR<x> < 0 to false. */
11082 strict_overflow_p
= false;
11083 if (code
== LT_EXPR
11084 && (integer_zerop (arg1
) || real_zerop (arg1
))
11085 && tree_expr_nonnegative_warnv_p (arg0
, &strict_overflow_p
))
11087 if (strict_overflow_p
)
11088 fold_overflow_warning (("assuming signed overflow does not occur "
11089 "when simplifying comparison of "
11090 "absolute value and zero"),
11091 WARN_STRICT_OVERFLOW_CONDITIONAL
);
11092 return omit_one_operand_loc (loc
, type
,
11093 constant_boolean_node (false, type
),
11097 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
11098 and similarly for >= into !=. */
11099 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11100 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11101 && TREE_CODE (arg1
) == LSHIFT_EXPR
11102 && integer_onep (TREE_OPERAND (arg1
, 0)))
11103 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11104 build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11105 TREE_OPERAND (arg1
, 1)),
11106 build_zero_cst (TREE_TYPE (arg0
)));
11108 /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing,
11109 otherwise Y might be >= # of bits in X's type and thus e.g.
11110 (unsigned char) (1 << Y) for Y 15 might be 0.
11111 If the cast is widening, then 1 << Y should have unsigned type,
11112 otherwise if Y is number of bits in the signed shift type minus 1,
11113 we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y
11114 31 might be 0xffffffff80000000. */
11115 if ((code
== LT_EXPR
|| code
== GE_EXPR
)
11116 && TYPE_UNSIGNED (TREE_TYPE (arg0
))
11117 && CONVERT_EXPR_P (arg1
)
11118 && TREE_CODE (TREE_OPERAND (arg1
, 0)) == LSHIFT_EXPR
11119 && (element_precision (TREE_TYPE (arg1
))
11120 >= element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0))))
11121 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1
, 0)))
11122 || (element_precision (TREE_TYPE (arg1
))
11123 == element_precision (TREE_TYPE (TREE_OPERAND (arg1
, 0)))))
11124 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1
, 0), 0)))
11126 tem
= build2 (RSHIFT_EXPR
, TREE_TYPE (arg0
), arg0
,
11127 TREE_OPERAND (TREE_OPERAND (arg1
, 0), 1));
11128 return build2_loc (loc
, code
== LT_EXPR
? EQ_EXPR
: NE_EXPR
, type
,
11129 fold_convert_loc (loc
, TREE_TYPE (arg0
), tem
),
11130 build_zero_cst (TREE_TYPE (arg0
)));
11135 case UNORDERED_EXPR
:
11143 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
11145 tree targ0
= strip_float_extensions (arg0
);
11146 tree targ1
= strip_float_extensions (arg1
);
11147 tree newtype
= TREE_TYPE (targ0
);
11149 if (TYPE_PRECISION (TREE_TYPE (targ1
)) > TYPE_PRECISION (newtype
))
11150 newtype
= TREE_TYPE (targ1
);
11152 if (TYPE_PRECISION (newtype
) < TYPE_PRECISION (TREE_TYPE (arg0
)))
11153 return fold_build2_loc (loc
, code
, type
,
11154 fold_convert_loc (loc
, newtype
, targ0
),
11155 fold_convert_loc (loc
, newtype
, targ1
));
11160 case COMPOUND_EXPR
:
11161 /* When pedantic, a compound expression can be neither an lvalue
11162 nor an integer constant expression. */
11163 if (TREE_SIDE_EFFECTS (arg0
) || TREE_CONSTANT (arg1
))
11165 /* Don't let (0, 0) be null pointer constant. */
11166 tem
= integer_zerop (arg1
) ? build1 (NOP_EXPR
, type
, arg1
)
11167 : fold_convert_loc (loc
, type
, arg1
);
11168 return pedantic_non_lvalue_loc (loc
, tem
);
11171 /* An ASSERT_EXPR should never be passed to fold_binary. */
11172 gcc_unreachable ();
11176 } /* switch (code) */
11179 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
11180 ((A & N) + B) & M -> (A + B) & M
11181 Similarly if (N & M) == 0,
11182 ((A | N) + B) & M -> (A + B) & M
11183 and for - instead of + (or unary - instead of +)
11184 and/or ^ instead of |.
11185 If B is constant and (B & M) == 0, fold into A & M.
11187 This function is a helper for match.pd patterns. Return non-NULL
11188 type in which the simplified operation should be performed only
11189 if any optimization is possible.
11191 ARG1 is M above, ARG00 is left operand of +/-, if CODE00 is BIT_*_EXPR,
11192 then ARG00{0,1} are operands of that bitop, otherwise CODE00 is ERROR_MARK.
11193 Similarly for ARG01, CODE01 and ARG01{0,1}, just for the right operand of
11196 fold_bit_and_mask (tree type
, tree arg1
, enum tree_code code
,
11197 tree arg00
, enum tree_code code00
, tree arg000
, tree arg001
,
11198 tree arg01
, enum tree_code code01
, tree arg010
, tree arg011
,
11201 gcc_assert (TREE_CODE (arg1
) == INTEGER_CST
);
11202 gcc_assert (code
== PLUS_EXPR
|| code
== MINUS_EXPR
|| code
== NEGATE_EXPR
);
11203 wi::tree_to_wide_ref cst1
= wi::to_wide (arg1
);
11205 || (cst1
& (cst1
+ 1)) != 0
11206 || !INTEGRAL_TYPE_P (type
)
11207 || (!TYPE_OVERFLOW_WRAPS (type
)
11208 && TREE_CODE (type
) != INTEGER_TYPE
)
11209 || (wi::max_value (type
) & cst1
) != cst1
)
11212 enum tree_code codes
[2] = { code00
, code01
};
11213 tree arg0xx
[4] = { arg000
, arg001
, arg010
, arg011
};
11217 /* Now we know that arg0 is (C + D) or (C - D) or -C and
11218 arg1 (M) is == (1LL << cst) - 1.
11219 Store C into PMOP[0] and D into PMOP[1]. */
11222 which
= code
!= NEGATE_EXPR
;
11224 for (; which
>= 0; which
--)
11225 switch (codes
[which
])
11230 gcc_assert (TREE_CODE (arg0xx
[2 * which
+ 1]) == INTEGER_CST
);
11231 cst0
= wi::to_wide (arg0xx
[2 * which
+ 1]) & cst1
;
11232 if (codes
[which
] == BIT_AND_EXPR
)
11237 else if (cst0
!= 0)
11239 /* If C or D is of the form (A & N) where
11240 (N & M) == M, or of the form (A | N) or
11241 (A ^ N) where (N & M) == 0, replace it with A. */
11242 pmop
[which
] = arg0xx
[2 * which
];
11245 if (TREE_CODE (pmop
[which
]) != INTEGER_CST
)
11247 /* If C or D is a N where (N & M) == 0, it can be
11248 omitted (replaced with 0). */
11249 if ((code
== PLUS_EXPR
11250 || (code
== MINUS_EXPR
&& which
== 0))
11251 && (cst1
& wi::to_wide (pmop
[which
])) == 0)
11252 pmop
[which
] = build_int_cst (type
, 0);
11253 /* Similarly, with C - N where (-N & M) == 0. */
11254 if (code
== MINUS_EXPR
11256 && (cst1
& -wi::to_wide (pmop
[which
])) == 0)
11257 pmop
[which
] = build_int_cst (type
, 0);
11260 gcc_unreachable ();
11263 /* Only build anything new if we optimized one or both arguments above. */
11264 if (pmop
[0] == arg00
&& pmop
[1] == arg01
)
11267 if (TYPE_OVERFLOW_WRAPS (type
))
11270 return unsigned_type_for (type
);
11273 /* Used by contains_label_[p1]. */
11275 struct contains_label_data
11277 hash_set
<tree
> *pset
;
11278 bool inside_switch_p
;
11281 /* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is
11282 a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise
11283 return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */
11286 contains_label_1 (tree
*tp
, int *walk_subtrees
, void *data
)
11288 contains_label_data
*d
= (contains_label_data
*) data
;
11289 switch (TREE_CODE (*tp
))
11294 case CASE_LABEL_EXPR
:
11295 if (!d
->inside_switch_p
)
11300 if (!d
->inside_switch_p
)
11302 if (walk_tree (&SWITCH_COND (*tp
), contains_label_1
, data
, d
->pset
))
11304 d
->inside_switch_p
= true;
11305 if (walk_tree (&SWITCH_BODY (*tp
), contains_label_1
, data
, d
->pset
))
11307 d
->inside_switch_p
= false;
11308 *walk_subtrees
= 0;
11313 *walk_subtrees
= 0;
11321 /* Return whether the sub-tree ST contains a label which is accessible from
11322 outside the sub-tree. */
11325 contains_label_p (tree st
)
11327 hash_set
<tree
> pset
;
11328 contains_label_data data
= { &pset
, false };
11329 return walk_tree (&st
, contains_label_1
, &data
, &pset
) != NULL_TREE
;
11332 /* Fold a ternary expression of code CODE and type TYPE with operands
11333 OP0, OP1, and OP2. Return the folded expression if folding is
11334 successful. Otherwise, return NULL_TREE. */
11337 fold_ternary_loc (location_t loc
, enum tree_code code
, tree type
,
11338 tree op0
, tree op1
, tree op2
)
11341 tree arg0
= NULL_TREE
, arg1
= NULL_TREE
, arg2
= NULL_TREE
;
11342 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11344 gcc_assert (IS_EXPR_CODE_CLASS (kind
)
11345 && TREE_CODE_LENGTH (code
) == 3);
11347 /* If this is a commutative operation, and OP0 is a constant, move it
11348 to OP1 to reduce the number of tests below. */
11349 if (commutative_ternary_tree_code (code
)
11350 && tree_swap_operands_p (op0
, op1
))
11351 return fold_build3_loc (loc
, code
, type
, op1
, op0
, op2
);
11353 tem
= generic_simplify (loc
, code
, type
, op0
, op1
, op2
);
11357 /* Strip any conversions that don't change the mode. This is safe
11358 for every expression, except for a comparison expression because
11359 its signedness is derived from its operands. So, in the latter
11360 case, only strip conversions that don't change the signedness.
11362 Note that this is done as an internal manipulation within the
11363 constant folder, in order to find the simplest representation of
11364 the arguments so that their form can be studied. In any cases,
11365 the appropriate type conversions should be put back in the tree
11366 that will get out of the constant folder. */
11387 case COMPONENT_REF
:
11388 if (TREE_CODE (arg0
) == CONSTRUCTOR
11389 && ! type_contains_placeholder_p (TREE_TYPE (arg0
)))
11391 unsigned HOST_WIDE_INT idx
;
11393 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0
), idx
, field
, value
)
11400 case VEC_COND_EXPR
:
11401 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
11402 so all simple results must be passed through pedantic_non_lvalue. */
11403 if (TREE_CODE (arg0
) == INTEGER_CST
)
11405 tree unused_op
= integer_zerop (arg0
) ? op1
: op2
;
11406 tem
= integer_zerop (arg0
) ? op2
: op1
;
11407 /* Only optimize constant conditions when the selected branch
11408 has the same type as the COND_EXPR. This avoids optimizing
11409 away "c ? x : throw", where the throw has a void type.
11410 Avoid throwing away that operand which contains label. */
11411 if ((!TREE_SIDE_EFFECTS (unused_op
)
11412 || !contains_label_p (unused_op
))
11413 && (! VOID_TYPE_P (TREE_TYPE (tem
))
11414 || VOID_TYPE_P (type
)))
11415 return pedantic_non_lvalue_loc (loc
, tem
);
11418 else if (TREE_CODE (arg0
) == VECTOR_CST
)
11420 unsigned HOST_WIDE_INT nelts
;
11421 if ((TREE_CODE (arg1
) == VECTOR_CST
11422 || TREE_CODE (arg1
) == CONSTRUCTOR
)
11423 && (TREE_CODE (arg2
) == VECTOR_CST
11424 || TREE_CODE (arg2
) == CONSTRUCTOR
)
11425 && TYPE_VECTOR_SUBPARTS (type
).is_constant (&nelts
))
11427 vec_perm_builder
sel (nelts
, nelts
, 1);
11428 for (unsigned int i
= 0; i
< nelts
; i
++)
11430 tree val
= VECTOR_CST_ELT (arg0
, i
);
11431 if (integer_all_onesp (val
))
11432 sel
.quick_push (i
);
11433 else if (integer_zerop (val
))
11434 sel
.quick_push (nelts
+ i
);
11435 else /* Currently unreachable. */
11438 vec_perm_indices
indices (sel
, 2, nelts
);
11439 tree t
= fold_vec_perm (type
, arg1
, arg2
, indices
);
11440 if (t
!= NULL_TREE
)
11445 /* If we have A op B ? A : C, we may be able to convert this to a
11446 simpler expression, depending on the operation and the values
11447 of B and C. Signed zeros prevent all of these transformations,
11448 for reasons given above each one.
11450 Also try swapping the arguments and inverting the conditional. */
11451 if (COMPARISON_CLASS_P (arg0
)
11452 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0), op1
)
11453 && !HONOR_SIGNED_ZEROS (element_mode (op1
)))
11455 tem
= fold_cond_expr_with_comparison (loc
, type
, arg0
, op1
, op2
);
11460 if (COMPARISON_CLASS_P (arg0
)
11461 && operand_equal_for_comparison_p (TREE_OPERAND (arg0
, 0), op2
)
11462 && !HONOR_SIGNED_ZEROS (element_mode (op2
)))
11464 location_t loc0
= expr_location_or (arg0
, loc
);
11465 tem
= fold_invert_truthvalue (loc0
, arg0
);
11466 if (tem
&& COMPARISON_CLASS_P (tem
))
11468 tem
= fold_cond_expr_with_comparison (loc
, type
, tem
, op2
, op1
);
11474 /* If the second operand is simpler than the third, swap them
11475 since that produces better jump optimization results. */
11476 if (truth_value_p (TREE_CODE (arg0
))
11477 && tree_swap_operands_p (op1
, op2
))
11479 location_t loc0
= expr_location_or (arg0
, loc
);
11480 /* See if this can be inverted. If it can't, possibly because
11481 it was a floating-point inequality comparison, don't do
11483 tem
= fold_invert_truthvalue (loc0
, arg0
);
11485 return fold_build3_loc (loc
, code
, type
, tem
, op2
, op1
);
11488 /* Convert A ? 1 : 0 to simply A. */
11489 if ((code
== VEC_COND_EXPR
? integer_all_onesp (op1
)
11490 : (integer_onep (op1
)
11491 && !VECTOR_TYPE_P (type
)))
11492 && integer_zerop (op2
)
11493 /* If we try to convert OP0 to our type, the
11494 call to fold will try to move the conversion inside
11495 a COND, which will recurse. In that case, the COND_EXPR
11496 is probably the best choice, so leave it alone. */
11497 && type
== TREE_TYPE (arg0
))
11498 return pedantic_non_lvalue_loc (loc
, arg0
);
11500 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
11501 over COND_EXPR in cases such as floating point comparisons. */
11502 if (integer_zerop (op1
)
11503 && code
== COND_EXPR
11504 && integer_onep (op2
)
11505 && !VECTOR_TYPE_P (type
)
11506 && truth_value_p (TREE_CODE (arg0
)))
11507 return pedantic_non_lvalue_loc (loc
,
11508 fold_convert_loc (loc
, type
,
11509 invert_truthvalue_loc (loc
,
11512 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
11513 if (TREE_CODE (arg0
) == LT_EXPR
11514 && integer_zerop (TREE_OPERAND (arg0
, 1))
11515 && integer_zerop (op2
)
11516 && (tem
= sign_bit_p (TREE_OPERAND (arg0
, 0), arg1
)))
11518 /* sign_bit_p looks through both zero and sign extensions,
11519 but for this optimization only sign extensions are
11521 tree tem2
= TREE_OPERAND (arg0
, 0);
11522 while (tem
!= tem2
)
11524 if (TREE_CODE (tem2
) != NOP_EXPR
11525 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2
, 0))))
11530 tem2
= TREE_OPERAND (tem2
, 0);
11532 /* sign_bit_p only checks ARG1 bits within A's precision.
11533 If <sign bit of A> has wider type than A, bits outside
11534 of A's precision in <sign bit of A> need to be checked.
11535 If they are all 0, this optimization needs to be done
11536 in unsigned A's type, if they are all 1 in signed A's type,
11537 otherwise this can't be done. */
11539 && TYPE_PRECISION (TREE_TYPE (tem
))
11540 < TYPE_PRECISION (TREE_TYPE (arg1
))
11541 && TYPE_PRECISION (TREE_TYPE (tem
))
11542 < TYPE_PRECISION (type
))
11544 int inner_width
, outer_width
;
11547 inner_width
= TYPE_PRECISION (TREE_TYPE (tem
));
11548 outer_width
= TYPE_PRECISION (TREE_TYPE (arg1
));
11549 if (outer_width
> TYPE_PRECISION (type
))
11550 outer_width
= TYPE_PRECISION (type
);
11552 wide_int mask
= wi::shifted_mask
11553 (inner_width
, outer_width
- inner_width
, false,
11554 TYPE_PRECISION (TREE_TYPE (arg1
)));
11556 wide_int common
= mask
& wi::to_wide (arg1
);
11557 if (common
== mask
)
11559 tem_type
= signed_type_for (TREE_TYPE (tem
));
11560 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11562 else if (common
== 0)
11564 tem_type
= unsigned_type_for (TREE_TYPE (tem
));
11565 tem
= fold_convert_loc (loc
, tem_type
, tem
);
11573 fold_convert_loc (loc
, type
,
11574 fold_build2_loc (loc
, BIT_AND_EXPR
,
11575 TREE_TYPE (tem
), tem
,
11576 fold_convert_loc (loc
,
11581 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
11582 already handled above. */
11583 if (TREE_CODE (arg0
) == BIT_AND_EXPR
11584 && integer_onep (TREE_OPERAND (arg0
, 1))
11585 && integer_zerop (op2
)
11586 && integer_pow2p (arg1
))
11588 tree tem
= TREE_OPERAND (arg0
, 0);
11590 if (TREE_CODE (tem
) == RSHIFT_EXPR
11591 && tree_fits_uhwi_p (TREE_OPERAND (tem
, 1))
11592 && (unsigned HOST_WIDE_INT
) tree_log2 (arg1
)
11593 == tree_to_uhwi (TREE_OPERAND (tem
, 1)))
11594 return fold_build2_loc (loc
, BIT_AND_EXPR
, type
,
11595 fold_convert_loc (loc
, type
,
11596 TREE_OPERAND (tem
, 0)),
11600 /* A & N ? N : 0 is simply A & N if N is a power of two. This
11601 is probably obsolete because the first operand should be a
11602 truth value (that's why we have the two cases above), but let's
11603 leave it in until we can confirm this for all front-ends. */
11604 if (integer_zerop (op2
)
11605 && TREE_CODE (arg0
) == NE_EXPR
11606 && integer_zerop (TREE_OPERAND (arg0
, 1))
11607 && integer_pow2p (arg1
)
11608 && TREE_CODE (TREE_OPERAND (arg0
, 0)) == BIT_AND_EXPR
11609 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1),
11610 arg1
, OEP_ONLY_CONST
)
11611 /* operand_equal_p compares just value, not precision, so e.g.
11612 arg1 could be 8-bit -128 and be power of two, but BIT_AND_EXPR
11613 second operand 32-bit -128, which is not a power of two (or vice
11615 && integer_pow2p (TREE_OPERAND (TREE_OPERAND (arg0
, 0), 1)))
11616 return pedantic_non_lvalue_loc (loc
,
11617 fold_convert_loc (loc
, type
,
11618 TREE_OPERAND (arg0
,
11621 /* Disable the transformations below for vectors, since
11622 fold_binary_op_with_conditional_arg may undo them immediately,
11623 yielding an infinite loop. */
11624 if (code
== VEC_COND_EXPR
)
11627 /* Convert A ? B : 0 into A && B if A and B are truth values. */
11628 if (integer_zerop (op2
)
11629 && truth_value_p (TREE_CODE (arg0
))
11630 && truth_value_p (TREE_CODE (arg1
))
11631 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11632 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
? BIT_AND_EXPR
11633 : TRUTH_ANDIF_EXPR
,
11634 type
, fold_convert_loc (loc
, type
, arg0
), op1
);
11636 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
11637 if (code
== VEC_COND_EXPR
? integer_all_onesp (op2
) : integer_onep (op2
)
11638 && truth_value_p (TREE_CODE (arg0
))
11639 && truth_value_p (TREE_CODE (arg1
))
11640 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11642 location_t loc0
= expr_location_or (arg0
, loc
);
11643 /* Only perform transformation if ARG0 is easily inverted. */
11644 tem
= fold_invert_truthvalue (loc0
, arg0
);
11646 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11649 type
, fold_convert_loc (loc
, type
, tem
),
11653 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
11654 if (integer_zerop (arg1
)
11655 && truth_value_p (TREE_CODE (arg0
))
11656 && truth_value_p (TREE_CODE (op2
))
11657 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11659 location_t loc0
= expr_location_or (arg0
, loc
);
11660 /* Only perform transformation if ARG0 is easily inverted. */
11661 tem
= fold_invert_truthvalue (loc0
, arg0
);
11663 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11664 ? BIT_AND_EXPR
: TRUTH_ANDIF_EXPR
,
11665 type
, fold_convert_loc (loc
, type
, tem
),
11669 /* Convert A ? 1 : B into A || B if A and B are truth values. */
11670 if (code
== VEC_COND_EXPR
? integer_all_onesp (arg1
) : integer_onep (arg1
)
11671 && truth_value_p (TREE_CODE (arg0
))
11672 && truth_value_p (TREE_CODE (op2
))
11673 && (code
== VEC_COND_EXPR
|| !VECTOR_TYPE_P (type
)))
11674 return fold_build2_loc (loc
, code
== VEC_COND_EXPR
11675 ? BIT_IOR_EXPR
: TRUTH_ORIF_EXPR
,
11676 type
, fold_convert_loc (loc
, type
, arg0
), op2
);
11681 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
11682 of fold_ternary on them. */
11683 gcc_unreachable ();
11685 case BIT_FIELD_REF
:
11686 if (TREE_CODE (arg0
) == VECTOR_CST
11687 && (type
== TREE_TYPE (TREE_TYPE (arg0
))
11688 || (VECTOR_TYPE_P (type
)
11689 && TREE_TYPE (type
) == TREE_TYPE (TREE_TYPE (arg0
))))
11690 && tree_fits_uhwi_p (op1
)
11691 && tree_fits_uhwi_p (op2
))
11693 tree eltype
= TREE_TYPE (TREE_TYPE (arg0
));
11694 unsigned HOST_WIDE_INT width
= tree_to_uhwi (TYPE_SIZE (eltype
));
11695 unsigned HOST_WIDE_INT n
= tree_to_uhwi (arg1
);
11696 unsigned HOST_WIDE_INT idx
= tree_to_uhwi (op2
);
11699 && (idx
% width
) == 0
11700 && (n
% width
) == 0
11701 && known_le ((idx
+ n
) / width
,
11702 TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0
))))
11707 if (TREE_CODE (arg0
) == VECTOR_CST
)
11711 tem
= VECTOR_CST_ELT (arg0
, idx
);
11712 if (VECTOR_TYPE_P (type
))
11713 tem
= fold_build1 (VIEW_CONVERT_EXPR
, type
, tem
);
11717 tree_vector_builder
vals (type
, n
, 1);
11718 for (unsigned i
= 0; i
< n
; ++i
)
11719 vals
.quick_push (VECTOR_CST_ELT (arg0
, idx
+ i
));
11720 return vals
.build ();
11725 /* On constants we can use native encode/interpret to constant
11726 fold (nearly) all BIT_FIELD_REFs. */
11727 if (CONSTANT_CLASS_P (arg0
)
11728 && can_native_interpret_type_p (type
)
11729 && BITS_PER_UNIT
== 8
11730 && tree_fits_uhwi_p (op1
)
11731 && tree_fits_uhwi_p (op2
))
11733 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11734 unsigned HOST_WIDE_INT bitsize
= tree_to_uhwi (op1
);
11735 /* Limit us to a reasonable amount of work. To relax the
11736 other limitations we need bit-shifting of the buffer
11737 and rounding up the size. */
11738 if (bitpos
% BITS_PER_UNIT
== 0
11739 && bitsize
% BITS_PER_UNIT
== 0
11740 && bitsize
<= MAX_BITSIZE_MODE_ANY_MODE
)
11742 unsigned char b
[MAX_BITSIZE_MODE_ANY_MODE
/ BITS_PER_UNIT
];
11743 unsigned HOST_WIDE_INT len
11744 = native_encode_expr (arg0
, b
, bitsize
/ BITS_PER_UNIT
,
11745 bitpos
/ BITS_PER_UNIT
);
11747 && len
* BITS_PER_UNIT
>= bitsize
)
11749 tree v
= native_interpret_expr (type
, b
,
11750 bitsize
/ BITS_PER_UNIT
);
11759 case VEC_PERM_EXPR
:
11760 if (TREE_CODE (arg2
) == VECTOR_CST
)
11762 /* Build a vector of integers from the tree mask. */
11763 vec_perm_builder builder
;
11764 if (!tree_to_vec_perm_builder (&builder
, arg2
))
11767 /* Create a vec_perm_indices for the integer vector. */
11768 poly_uint64 nelts
= TYPE_VECTOR_SUBPARTS (type
);
11769 bool single_arg
= (op0
== op1
);
11770 vec_perm_indices
sel (builder
, single_arg
? 1 : 2, nelts
);
11772 /* Check for cases that fold to OP0 or OP1 in their original
11774 if (sel
.series_p (0, 1, 0, 1))
11776 if (sel
.series_p (0, 1, nelts
, 1))
11781 if (sel
.all_from_input_p (0))
11783 else if (sel
.all_from_input_p (1))
11786 sel
.rotate_inputs (1);
11790 if ((TREE_CODE (op0
) == VECTOR_CST
11791 || TREE_CODE (op0
) == CONSTRUCTOR
)
11792 && (TREE_CODE (op1
) == VECTOR_CST
11793 || TREE_CODE (op1
) == CONSTRUCTOR
))
11795 tree t
= fold_vec_perm (type
, op0
, op1
, sel
);
11796 if (t
!= NULL_TREE
)
11800 bool changed
= (op0
== op1
&& !single_arg
);
11802 /* Generate a canonical form of the selector. */
11803 if (arg2
== op2
&& sel
.encoding () != builder
)
11805 /* Some targets are deficient and fail to expand a single
11806 argument permutation while still allowing an equivalent
11807 2-argument version. */
11808 if (sel
.ninputs () == 2
11809 || can_vec_perm_const_p (TYPE_MODE (type
), sel
, false))
11810 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel
);
11813 vec_perm_indices
sel2 (builder
, 2, nelts
);
11814 if (can_vec_perm_const_p (TYPE_MODE (type
), sel2
, false))
11815 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel2
);
11817 /* Not directly supported with either encoding,
11818 so use the preferred form. */
11819 op2
= vec_perm_indices_to_tree (TREE_TYPE (arg2
), sel
);
11825 return build3_loc (loc
, VEC_PERM_EXPR
, type
, op0
, op1
, op2
);
11829 case BIT_INSERT_EXPR
:
11830 /* Perform (partial) constant folding of BIT_INSERT_EXPR. */
11831 if (TREE_CODE (arg0
) == INTEGER_CST
11832 && TREE_CODE (arg1
) == INTEGER_CST
)
11834 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11835 unsigned bitsize
= TYPE_PRECISION (TREE_TYPE (arg1
));
11836 wide_int tem
= (wi::to_wide (arg0
)
11837 & wi::shifted_mask (bitpos
, bitsize
, true,
11838 TYPE_PRECISION (type
)));
11840 = wi::lshift (wi::zext (wi::to_wide (arg1
, TYPE_PRECISION (type
)),
11842 return wide_int_to_tree (type
, wi::bit_or (tem
, tem2
));
11844 else if (TREE_CODE (arg0
) == VECTOR_CST
11845 && CONSTANT_CLASS_P (arg1
)
11846 && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0
)),
11849 unsigned HOST_WIDE_INT bitpos
= tree_to_uhwi (op2
);
11850 unsigned HOST_WIDE_INT elsize
11851 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1
)));
11852 if (bitpos
% elsize
== 0)
11854 unsigned k
= bitpos
/ elsize
;
11855 unsigned HOST_WIDE_INT nelts
;
11856 if (operand_equal_p (VECTOR_CST_ELT (arg0
, k
), arg1
, 0))
11858 else if (VECTOR_CST_NELTS (arg0
).is_constant (&nelts
))
11860 tree_vector_builder
elts (type
, nelts
, 1);
11861 elts
.quick_grow (nelts
);
11862 for (unsigned HOST_WIDE_INT i
= 0; i
< nelts
; ++i
)
11863 elts
[i
] = (i
== k
? arg1
: VECTOR_CST_ELT (arg0
, i
));
11864 return elts
.build ();
11872 } /* switch (code) */
11875 /* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR
11876 of an array (or vector). */
11879 get_array_ctor_element_at_index (tree ctor
, offset_int access_index
)
11881 tree index_type
= NULL_TREE
;
11882 offset_int low_bound
= 0;
11884 if (TREE_CODE (TREE_TYPE (ctor
)) == ARRAY_TYPE
)
11886 tree domain_type
= TYPE_DOMAIN (TREE_TYPE (ctor
));
11887 if (domain_type
&& TYPE_MIN_VALUE (domain_type
))
11889 /* Static constructors for variably sized objects makes no sense. */
11890 gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type
)) == INTEGER_CST
);
11891 index_type
= TREE_TYPE (TYPE_MIN_VALUE (domain_type
));
11892 low_bound
= wi::to_offset (TYPE_MIN_VALUE (domain_type
));
11897 access_index
= wi::ext (access_index
, TYPE_PRECISION (index_type
),
11898 TYPE_SIGN (index_type
));
11900 offset_int index
= low_bound
- 1;
11902 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11903 TYPE_SIGN (index_type
));
11905 offset_int max_index
;
11906 unsigned HOST_WIDE_INT cnt
;
11909 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor
), cnt
, cfield
, cval
)
11911 /* Array constructor might explicitly set index, or specify a range,
11912 or leave index NULL meaning that it is next index after previous
11916 if (TREE_CODE (cfield
) == INTEGER_CST
)
11917 max_index
= index
= wi::to_offset (cfield
);
11920 gcc_assert (TREE_CODE (cfield
) == RANGE_EXPR
);
11921 index
= wi::to_offset (TREE_OPERAND (cfield
, 0));
11922 max_index
= wi::to_offset (TREE_OPERAND (cfield
, 1));
11929 index
= wi::ext (index
, TYPE_PRECISION (index_type
),
11930 TYPE_SIGN (index_type
));
11934 /* Do we have match? */
11935 if (wi::cmpu (access_index
, index
) >= 0
11936 && wi::cmpu (access_index
, max_index
) <= 0)
11942 /* Perform constant folding and related simplification of EXPR.
11943 The related simplifications include x*1 => x, x*0 => 0, etc.,
11944 and application of the associative law.
11945 NOP_EXPR conversions may be removed freely (as long as we
11946 are careful not to change the type of the overall expression).
11947 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
11948 but we can constant-fold them if they have constant operands. */
11950 #ifdef ENABLE_FOLD_CHECKING
11951 # define fold(x) fold_1 (x)
11952 static tree
fold_1 (tree
);
11958 const tree t
= expr
;
11959 enum tree_code code
= TREE_CODE (t
);
11960 enum tree_code_class kind
= TREE_CODE_CLASS (code
);
11962 location_t loc
= EXPR_LOCATION (expr
);
11964 /* Return right away if a constant. */
11965 if (kind
== tcc_constant
)
11968 /* CALL_EXPR-like objects with variable numbers of operands are
11969 treated specially. */
11970 if (kind
== tcc_vl_exp
)
11972 if (code
== CALL_EXPR
)
11974 tem
= fold_call_expr (loc
, expr
, false);
11975 return tem
? tem
: expr
;
11980 if (IS_EXPR_CODE_CLASS (kind
))
11982 tree type
= TREE_TYPE (t
);
11983 tree op0
, op1
, op2
;
11985 switch (TREE_CODE_LENGTH (code
))
11988 op0
= TREE_OPERAND (t
, 0);
11989 tem
= fold_unary_loc (loc
, code
, type
, op0
);
11990 return tem
? tem
: expr
;
11992 op0
= TREE_OPERAND (t
, 0);
11993 op1
= TREE_OPERAND (t
, 1);
11994 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
11995 return tem
? tem
: expr
;
11997 op0
= TREE_OPERAND (t
, 0);
11998 op1
= TREE_OPERAND (t
, 1);
11999 op2
= TREE_OPERAND (t
, 2);
12000 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
12001 return tem
? tem
: expr
;
12011 tree op0
= TREE_OPERAND (t
, 0);
12012 tree op1
= TREE_OPERAND (t
, 1);
12014 if (TREE_CODE (op1
) == INTEGER_CST
12015 && TREE_CODE (op0
) == CONSTRUCTOR
12016 && ! type_contains_placeholder_p (TREE_TYPE (op0
)))
12018 tree val
= get_array_ctor_element_at_index (op0
,
12019 wi::to_offset (op1
));
12027 /* Return a VECTOR_CST if possible. */
12030 tree type
= TREE_TYPE (t
);
12031 if (TREE_CODE (type
) != VECTOR_TYPE
)
12036 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t
), i
, val
)
12037 if (! CONSTANT_CLASS_P (val
))
12040 return build_vector_from_ctor (type
, CONSTRUCTOR_ELTS (t
));
12044 return fold (DECL_INITIAL (t
));
12048 } /* switch (code) */
12051 #ifdef ENABLE_FOLD_CHECKING
12054 static void fold_checksum_tree (const_tree
, struct md5_ctx
*,
12055 hash_table
<nofree_ptr_hash
<const tree_node
> > *);
12056 static void fold_check_failed (const_tree
, const_tree
);
12057 void print_fold_checksum (const_tree
);
12059 /* When --enable-checking=fold, compute a digest of expr before
12060 and after actual fold call to see if fold did not accidentally
12061 change original expr. */
12067 struct md5_ctx ctx
;
12068 unsigned char checksum_before
[16], checksum_after
[16];
12069 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12071 md5_init_ctx (&ctx
);
12072 fold_checksum_tree (expr
, &ctx
, &ht
);
12073 md5_finish_ctx (&ctx
, checksum_before
);
12076 ret
= fold_1 (expr
);
12078 md5_init_ctx (&ctx
);
12079 fold_checksum_tree (expr
, &ctx
, &ht
);
12080 md5_finish_ctx (&ctx
, checksum_after
);
12082 if (memcmp (checksum_before
, checksum_after
, 16))
12083 fold_check_failed (expr
, ret
);
12089 print_fold_checksum (const_tree expr
)
12091 struct md5_ctx ctx
;
12092 unsigned char checksum
[16], cnt
;
12093 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12095 md5_init_ctx (&ctx
);
12096 fold_checksum_tree (expr
, &ctx
, &ht
);
12097 md5_finish_ctx (&ctx
, checksum
);
12098 for (cnt
= 0; cnt
< 16; ++cnt
)
12099 fprintf (stderr
, "%02x", checksum
[cnt
]);
12100 putc ('\n', stderr
);
12104 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED
, const_tree ret ATTRIBUTE_UNUSED
)
12106 internal_error ("fold check: original tree changed by fold");
12110 fold_checksum_tree (const_tree expr
, struct md5_ctx
*ctx
,
12111 hash_table
<nofree_ptr_hash
<const tree_node
> > *ht
)
12113 const tree_node
**slot
;
12114 enum tree_code code
;
12115 union tree_node
*buf
;
12121 slot
= ht
->find_slot (expr
, INSERT
);
12125 code
= TREE_CODE (expr
);
12126 if (TREE_CODE_CLASS (code
) == tcc_declaration
12127 && HAS_DECL_ASSEMBLER_NAME_P (expr
))
12129 /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */
12130 size_t sz
= tree_size (expr
);
12131 buf
= XALLOCAVAR (union tree_node
, sz
);
12132 memcpy ((char *) buf
, expr
, sz
);
12133 SET_DECL_ASSEMBLER_NAME ((tree
) buf
, NULL
);
12134 buf
->decl_with_vis
.symtab_node
= NULL
;
12135 buf
->base
.nowarning_flag
= 0;
12138 else if (TREE_CODE_CLASS (code
) == tcc_type
12139 && (TYPE_POINTER_TO (expr
)
12140 || TYPE_REFERENCE_TO (expr
)
12141 || TYPE_CACHED_VALUES_P (expr
)
12142 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr
)
12143 || TYPE_NEXT_VARIANT (expr
)
12144 || TYPE_ALIAS_SET_KNOWN_P (expr
)))
12146 /* Allow these fields to be modified. */
12148 size_t sz
= tree_size (expr
);
12149 buf
= XALLOCAVAR (union tree_node
, sz
);
12150 memcpy ((char *) buf
, expr
, sz
);
12151 expr
= tmp
= (tree
) buf
;
12152 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp
) = 0;
12153 TYPE_POINTER_TO (tmp
) = NULL
;
12154 TYPE_REFERENCE_TO (tmp
) = NULL
;
12155 TYPE_NEXT_VARIANT (tmp
) = NULL
;
12156 TYPE_ALIAS_SET (tmp
) = -1;
12157 if (TYPE_CACHED_VALUES_P (tmp
))
12159 TYPE_CACHED_VALUES_P (tmp
) = 0;
12160 TYPE_CACHED_VALUES (tmp
) = NULL
;
12163 else if (TREE_NO_WARNING (expr
) && (DECL_P (expr
) || EXPR_P (expr
)))
12165 /* Allow TREE_NO_WARNING to be set. Perhaps we shouldn't allow that
12166 and change builtins.c etc. instead - see PR89543. */
12167 size_t sz
= tree_size (expr
);
12168 buf
= XALLOCAVAR (union tree_node
, sz
);
12169 memcpy ((char *) buf
, expr
, sz
);
12170 buf
->base
.nowarning_flag
= 0;
12173 md5_process_bytes (expr
, tree_size (expr
), ctx
);
12174 if (CODE_CONTAINS_STRUCT (code
, TS_TYPED
))
12175 fold_checksum_tree (TREE_TYPE (expr
), ctx
, ht
);
12176 if (TREE_CODE_CLASS (code
) != tcc_type
12177 && TREE_CODE_CLASS (code
) != tcc_declaration
12178 && code
!= TREE_LIST
12179 && code
!= SSA_NAME
12180 && CODE_CONTAINS_STRUCT (code
, TS_COMMON
))
12181 fold_checksum_tree (TREE_CHAIN (expr
), ctx
, ht
);
12182 switch (TREE_CODE_CLASS (code
))
12188 md5_process_bytes (TREE_STRING_POINTER (expr
),
12189 TREE_STRING_LENGTH (expr
), ctx
);
12192 fold_checksum_tree (TREE_REALPART (expr
), ctx
, ht
);
12193 fold_checksum_tree (TREE_IMAGPART (expr
), ctx
, ht
);
12196 len
= vector_cst_encoded_nelts (expr
);
12197 for (i
= 0; i
< len
; ++i
)
12198 fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr
, i
), ctx
, ht
);
12204 case tcc_exceptional
:
12208 fold_checksum_tree (TREE_PURPOSE (expr
), ctx
, ht
);
12209 fold_checksum_tree (TREE_VALUE (expr
), ctx
, ht
);
12210 expr
= TREE_CHAIN (expr
);
12211 goto recursive_label
;
12214 for (i
= 0; i
< TREE_VEC_LENGTH (expr
); ++i
)
12215 fold_checksum_tree (TREE_VEC_ELT (expr
, i
), ctx
, ht
);
12221 case tcc_expression
:
12222 case tcc_reference
:
12223 case tcc_comparison
:
12226 case tcc_statement
:
12228 len
= TREE_OPERAND_LENGTH (expr
);
12229 for (i
= 0; i
< len
; ++i
)
12230 fold_checksum_tree (TREE_OPERAND (expr
, i
), ctx
, ht
);
12232 case tcc_declaration
:
12233 fold_checksum_tree (DECL_NAME (expr
), ctx
, ht
);
12234 fold_checksum_tree (DECL_CONTEXT (expr
), ctx
, ht
);
12235 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_COMMON
))
12237 fold_checksum_tree (DECL_SIZE (expr
), ctx
, ht
);
12238 fold_checksum_tree (DECL_SIZE_UNIT (expr
), ctx
, ht
);
12239 fold_checksum_tree (DECL_INITIAL (expr
), ctx
, ht
);
12240 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr
), ctx
, ht
);
12241 fold_checksum_tree (DECL_ATTRIBUTES (expr
), ctx
, ht
);
12244 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr
), TS_DECL_NON_COMMON
))
12246 if (TREE_CODE (expr
) == FUNCTION_DECL
)
12248 fold_checksum_tree (DECL_VINDEX (expr
), ctx
, ht
);
12249 fold_checksum_tree (DECL_ARGUMENTS (expr
), ctx
, ht
);
12251 fold_checksum_tree (DECL_RESULT_FLD (expr
), ctx
, ht
);
12255 if (TREE_CODE (expr
) == ENUMERAL_TYPE
)
12256 fold_checksum_tree (TYPE_VALUES (expr
), ctx
, ht
);
12257 fold_checksum_tree (TYPE_SIZE (expr
), ctx
, ht
);
12258 fold_checksum_tree (TYPE_SIZE_UNIT (expr
), ctx
, ht
);
12259 fold_checksum_tree (TYPE_ATTRIBUTES (expr
), ctx
, ht
);
12260 fold_checksum_tree (TYPE_NAME (expr
), ctx
, ht
);
12261 if (INTEGRAL_TYPE_P (expr
)
12262 || SCALAR_FLOAT_TYPE_P (expr
))
12264 fold_checksum_tree (TYPE_MIN_VALUE (expr
), ctx
, ht
);
12265 fold_checksum_tree (TYPE_MAX_VALUE (expr
), ctx
, ht
);
12267 fold_checksum_tree (TYPE_MAIN_VARIANT (expr
), ctx
, ht
);
12268 if (TREE_CODE (expr
) == RECORD_TYPE
12269 || TREE_CODE (expr
) == UNION_TYPE
12270 || TREE_CODE (expr
) == QUAL_UNION_TYPE
)
12271 fold_checksum_tree (TYPE_BINFO (expr
), ctx
, ht
);
12272 fold_checksum_tree (TYPE_CONTEXT (expr
), ctx
, ht
);
12279 /* Helper function for outputting the checksum of a tree T. When
12280 debugging with gdb, you can "define mynext" to be "next" followed
12281 by "call debug_fold_checksum (op0)", then just trace down till the
12284 DEBUG_FUNCTION
void
12285 debug_fold_checksum (const_tree t
)
12288 unsigned char checksum
[16];
12289 struct md5_ctx ctx
;
12290 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12292 md5_init_ctx (&ctx
);
12293 fold_checksum_tree (t
, &ctx
, &ht
);
12294 md5_finish_ctx (&ctx
, checksum
);
12297 for (i
= 0; i
< 16; i
++)
12298 fprintf (stderr
, "%d ", checksum
[i
]);
12300 fprintf (stderr
, "\n");
12305 /* Fold a unary tree expression with code CODE of type TYPE with an
12306 operand OP0. LOC is the location of the resulting expression.
12307 Return a folded expression if successful. Otherwise, return a tree
12308 expression with code CODE of type TYPE with an operand OP0. */
12311 fold_build1_loc (location_t loc
,
12312 enum tree_code code
, tree type
, tree op0 MEM_STAT_DECL
)
12315 #ifdef ENABLE_FOLD_CHECKING
12316 unsigned char checksum_before
[16], checksum_after
[16];
12317 struct md5_ctx ctx
;
12318 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12320 md5_init_ctx (&ctx
);
12321 fold_checksum_tree (op0
, &ctx
, &ht
);
12322 md5_finish_ctx (&ctx
, checksum_before
);
12326 tem
= fold_unary_loc (loc
, code
, type
, op0
);
12328 tem
= build1_loc (loc
, code
, type
, op0 PASS_MEM_STAT
);
12330 #ifdef ENABLE_FOLD_CHECKING
12331 md5_init_ctx (&ctx
);
12332 fold_checksum_tree (op0
, &ctx
, &ht
);
12333 md5_finish_ctx (&ctx
, checksum_after
);
12335 if (memcmp (checksum_before
, checksum_after
, 16))
12336 fold_check_failed (op0
, tem
);
12341 /* Fold a binary tree expression with code CODE of type TYPE with
12342 operands OP0 and OP1. LOC is the location of the resulting
12343 expression. Return a folded expression if successful. Otherwise,
12344 return a tree expression with code CODE of type TYPE with operands
12348 fold_build2_loc (location_t loc
,
12349 enum tree_code code
, tree type
, tree op0
, tree op1
12353 #ifdef ENABLE_FOLD_CHECKING
12354 unsigned char checksum_before_op0
[16],
12355 checksum_before_op1
[16],
12356 checksum_after_op0
[16],
12357 checksum_after_op1
[16];
12358 struct md5_ctx ctx
;
12359 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12361 md5_init_ctx (&ctx
);
12362 fold_checksum_tree (op0
, &ctx
, &ht
);
12363 md5_finish_ctx (&ctx
, checksum_before_op0
);
12366 md5_init_ctx (&ctx
);
12367 fold_checksum_tree (op1
, &ctx
, &ht
);
12368 md5_finish_ctx (&ctx
, checksum_before_op1
);
12372 tem
= fold_binary_loc (loc
, code
, type
, op0
, op1
);
12374 tem
= build2_loc (loc
, code
, type
, op0
, op1 PASS_MEM_STAT
);
12376 #ifdef ENABLE_FOLD_CHECKING
12377 md5_init_ctx (&ctx
);
12378 fold_checksum_tree (op0
, &ctx
, &ht
);
12379 md5_finish_ctx (&ctx
, checksum_after_op0
);
12382 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12383 fold_check_failed (op0
, tem
);
12385 md5_init_ctx (&ctx
);
12386 fold_checksum_tree (op1
, &ctx
, &ht
);
12387 md5_finish_ctx (&ctx
, checksum_after_op1
);
12389 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12390 fold_check_failed (op1
, tem
);
12395 /* Fold a ternary tree expression with code CODE of type TYPE with
12396 operands OP0, OP1, and OP2. Return a folded expression if
12397 successful. Otherwise, return a tree expression with code CODE of
12398 type TYPE with operands OP0, OP1, and OP2. */
12401 fold_build3_loc (location_t loc
, enum tree_code code
, tree type
,
12402 tree op0
, tree op1
, tree op2 MEM_STAT_DECL
)
12405 #ifdef ENABLE_FOLD_CHECKING
12406 unsigned char checksum_before_op0
[16],
12407 checksum_before_op1
[16],
12408 checksum_before_op2
[16],
12409 checksum_after_op0
[16],
12410 checksum_after_op1
[16],
12411 checksum_after_op2
[16];
12412 struct md5_ctx ctx
;
12413 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12415 md5_init_ctx (&ctx
);
12416 fold_checksum_tree (op0
, &ctx
, &ht
);
12417 md5_finish_ctx (&ctx
, checksum_before_op0
);
12420 md5_init_ctx (&ctx
);
12421 fold_checksum_tree (op1
, &ctx
, &ht
);
12422 md5_finish_ctx (&ctx
, checksum_before_op1
);
12425 md5_init_ctx (&ctx
);
12426 fold_checksum_tree (op2
, &ctx
, &ht
);
12427 md5_finish_ctx (&ctx
, checksum_before_op2
);
12431 gcc_assert (TREE_CODE_CLASS (code
) != tcc_vl_exp
);
12432 tem
= fold_ternary_loc (loc
, code
, type
, op0
, op1
, op2
);
12434 tem
= build3_loc (loc
, code
, type
, op0
, op1
, op2 PASS_MEM_STAT
);
12436 #ifdef ENABLE_FOLD_CHECKING
12437 md5_init_ctx (&ctx
);
12438 fold_checksum_tree (op0
, &ctx
, &ht
);
12439 md5_finish_ctx (&ctx
, checksum_after_op0
);
12442 if (memcmp (checksum_before_op0
, checksum_after_op0
, 16))
12443 fold_check_failed (op0
, tem
);
12445 md5_init_ctx (&ctx
);
12446 fold_checksum_tree (op1
, &ctx
, &ht
);
12447 md5_finish_ctx (&ctx
, checksum_after_op1
);
12450 if (memcmp (checksum_before_op1
, checksum_after_op1
, 16))
12451 fold_check_failed (op1
, tem
);
12453 md5_init_ctx (&ctx
);
12454 fold_checksum_tree (op2
, &ctx
, &ht
);
12455 md5_finish_ctx (&ctx
, checksum_after_op2
);
12457 if (memcmp (checksum_before_op2
, checksum_after_op2
, 16))
12458 fold_check_failed (op2
, tem
);
12463 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
12464 arguments in ARGARRAY, and a null static chain.
12465 Return a folded expression if successful. Otherwise, return a CALL_EXPR
12466 of type TYPE from the given operands as constructed by build_call_array. */
12469 fold_build_call_array_loc (location_t loc
, tree type
, tree fn
,
12470 int nargs
, tree
*argarray
)
12473 #ifdef ENABLE_FOLD_CHECKING
12474 unsigned char checksum_before_fn
[16],
12475 checksum_before_arglist
[16],
12476 checksum_after_fn
[16],
12477 checksum_after_arglist
[16];
12478 struct md5_ctx ctx
;
12479 hash_table
<nofree_ptr_hash
<const tree_node
> > ht (32);
12482 md5_init_ctx (&ctx
);
12483 fold_checksum_tree (fn
, &ctx
, &ht
);
12484 md5_finish_ctx (&ctx
, checksum_before_fn
);
12487 md5_init_ctx (&ctx
);
12488 for (i
= 0; i
< nargs
; i
++)
12489 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12490 md5_finish_ctx (&ctx
, checksum_before_arglist
);
12494 tem
= fold_builtin_call_array (loc
, type
, fn
, nargs
, argarray
);
12496 tem
= build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12498 #ifdef ENABLE_FOLD_CHECKING
12499 md5_init_ctx (&ctx
);
12500 fold_checksum_tree (fn
, &ctx
, &ht
);
12501 md5_finish_ctx (&ctx
, checksum_after_fn
);
12504 if (memcmp (checksum_before_fn
, checksum_after_fn
, 16))
12505 fold_check_failed (fn
, tem
);
12507 md5_init_ctx (&ctx
);
12508 for (i
= 0; i
< nargs
; i
++)
12509 fold_checksum_tree (argarray
[i
], &ctx
, &ht
);
12510 md5_finish_ctx (&ctx
, checksum_after_arglist
);
12512 if (memcmp (checksum_before_arglist
, checksum_after_arglist
, 16))
12513 fold_check_failed (NULL_TREE
, tem
);
12518 /* Perform constant folding and related simplification of initializer
12519 expression EXPR. These behave identically to "fold_buildN" but ignore
12520 potential run-time traps and exceptions that fold must preserve. */
12522 #define START_FOLD_INIT \
12523 int saved_signaling_nans = flag_signaling_nans;\
12524 int saved_trapping_math = flag_trapping_math;\
12525 int saved_rounding_math = flag_rounding_math;\
12526 int saved_trapv = flag_trapv;\
12527 int saved_folding_initializer = folding_initializer;\
12528 flag_signaling_nans = 0;\
12529 flag_trapping_math = 0;\
12530 flag_rounding_math = 0;\
12532 folding_initializer = 1;
12534 #define END_FOLD_INIT \
12535 flag_signaling_nans = saved_signaling_nans;\
12536 flag_trapping_math = saved_trapping_math;\
12537 flag_rounding_math = saved_rounding_math;\
12538 flag_trapv = saved_trapv;\
12539 folding_initializer = saved_folding_initializer;
12542 fold_build1_initializer_loc (location_t loc
, enum tree_code code
,
12543 tree type
, tree op
)
12548 result
= fold_build1_loc (loc
, code
, type
, op
);
12555 fold_build2_initializer_loc (location_t loc
, enum tree_code code
,
12556 tree type
, tree op0
, tree op1
)
12561 result
= fold_build2_loc (loc
, code
, type
, op0
, op1
);
12568 fold_build_call_array_initializer_loc (location_t loc
, tree type
, tree fn
,
12569 int nargs
, tree
*argarray
)
12574 result
= fold_build_call_array_loc (loc
, type
, fn
, nargs
, argarray
);
12580 #undef START_FOLD_INIT
12581 #undef END_FOLD_INIT
12583 /* Determine if first argument is a multiple of second argument. Return 0 if
12584 it is not, or we cannot easily determined it to be.
12586 An example of the sort of thing we care about (at this point; this routine
12587 could surely be made more general, and expanded to do what the *_DIV_EXPR's
12588 fold cases do now) is discovering that
12590 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12596 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
12598 This code also handles discovering that
12600 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
12602 is a multiple of 8 so we don't have to worry about dealing with a
12603 possible remainder.
12605 Note that we *look* inside a SAVE_EXPR only to determine how it was
12606 calculated; it is not safe for fold to do much of anything else with the
12607 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
12608 at run time. For example, the latter example above *cannot* be implemented
12609 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
12610 evaluation time of the original SAVE_EXPR is not necessarily the same at
12611 the time the new expression is evaluated. The only optimization of this
12612 sort that would be valid is changing
12614 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
12618 SAVE_EXPR (I) * SAVE_EXPR (J)
12620 (where the same SAVE_EXPR (J) is used in the original and the
12621 transformed version). */
12624 multiple_of_p (tree type
, const_tree top
, const_tree bottom
)
12629 if (operand_equal_p (top
, bottom
, 0))
12632 if (TREE_CODE (type
) != INTEGER_TYPE
)
12635 switch (TREE_CODE (top
))
12638 /* Bitwise and provides a power of two multiple. If the mask is
12639 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
12640 if (!integer_pow2p (bottom
))
12642 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12643 || multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12646 if (TREE_CODE (bottom
) == INTEGER_CST
)
12648 op1
= TREE_OPERAND (top
, 0);
12649 op2
= TREE_OPERAND (top
, 1);
12650 if (TREE_CODE (op1
) == INTEGER_CST
)
12651 std::swap (op1
, op2
);
12652 if (TREE_CODE (op2
) == INTEGER_CST
)
12654 if (multiple_of_p (type
, op2
, bottom
))
12656 /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */
12657 if (multiple_of_p (type
, bottom
, op2
))
12659 widest_int w
= wi::sdiv_trunc (wi::to_widest (bottom
),
12660 wi::to_widest (op2
));
12661 if (wi::fits_to_tree_p (w
, TREE_TYPE (bottom
)))
12663 op2
= wide_int_to_tree (TREE_TYPE (bottom
), w
);
12664 return multiple_of_p (type
, op1
, op2
);
12667 return multiple_of_p (type
, op1
, bottom
);
12670 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12671 || multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12674 /* It is impossible to prove if op0 - op1 is multiple of bottom
12675 precisely, so be conservative here checking if both op0 and op1
12676 are multiple of bottom. Note we check the second operand first
12677 since it's usually simpler. */
12678 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12679 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12682 /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd
12683 as op0 - 3 if the expression has unsigned type. For example,
12684 (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */
12685 op1
= TREE_OPERAND (top
, 1);
12686 if (TYPE_UNSIGNED (type
)
12687 && TREE_CODE (op1
) == INTEGER_CST
&& tree_int_cst_sign_bit (op1
))
12688 op1
= fold_build1 (NEGATE_EXPR
, type
, op1
);
12689 return (multiple_of_p (type
, op1
, bottom
)
12690 && multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
));
12693 if (TREE_CODE (TREE_OPERAND (top
, 1)) == INTEGER_CST
)
12695 op1
= TREE_OPERAND (top
, 1);
12696 /* const_binop may not detect overflow correctly,
12697 so check for it explicitly here. */
12698 if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node
)),
12700 && (t1
= fold_convert (type
,
12701 const_binop (LSHIFT_EXPR
, size_one_node
,
12703 && !TREE_OVERFLOW (t1
))
12704 return multiple_of_p (type
, t1
, bottom
);
12709 /* Can't handle conversions from non-integral or wider integral type. */
12710 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top
, 0))) != INTEGER_TYPE
)
12711 || (TYPE_PRECISION (type
)
12712 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top
, 0)))))
12718 return multiple_of_p (type
, TREE_OPERAND (top
, 0), bottom
);
12721 return (multiple_of_p (type
, TREE_OPERAND (top
, 1), bottom
)
12722 && multiple_of_p (type
, TREE_OPERAND (top
, 2), bottom
));
12725 if (TREE_CODE (bottom
) != INTEGER_CST
12726 || integer_zerop (bottom
)
12727 || (TYPE_UNSIGNED (type
)
12728 && (tree_int_cst_sgn (top
) < 0
12729 || tree_int_cst_sgn (bottom
) < 0)))
12731 return wi::multiple_of_p (wi::to_widest (top
), wi::to_widest (bottom
),
12735 if (TREE_CODE (bottom
) == INTEGER_CST
12736 && (stmt
= SSA_NAME_DEF_STMT (top
)) != NULL
12737 && gimple_code (stmt
) == GIMPLE_ASSIGN
)
12739 enum tree_code code
= gimple_assign_rhs_code (stmt
);
12741 /* Check for special cases to see if top is defined as multiple
12744 top = (X & ~(bottom - 1) ; bottom is power of 2
12750 if (code
== BIT_AND_EXPR
12751 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12752 && TREE_CODE (op2
) == INTEGER_CST
12753 && integer_pow2p (bottom
)
12754 && wi::multiple_of_p (wi::to_widest (op2
),
12755 wi::to_widest (bottom
), UNSIGNED
))
12758 op1
= gimple_assign_rhs1 (stmt
);
12759 if (code
== MINUS_EXPR
12760 && (op2
= gimple_assign_rhs2 (stmt
)) != NULL_TREE
12761 && TREE_CODE (op2
) == SSA_NAME
12762 && (stmt
= SSA_NAME_DEF_STMT (op2
)) != NULL
12763 && gimple_code (stmt
) == GIMPLE_ASSIGN
12764 && (code
= gimple_assign_rhs_code (stmt
)) == TRUNC_MOD_EXPR
12765 && operand_equal_p (op1
, gimple_assign_rhs1 (stmt
), 0)
12766 && operand_equal_p (bottom
, gimple_assign_rhs2 (stmt
), 0))
12773 if (POLY_INT_CST_P (top
) && poly_int_tree_p (bottom
))
12774 return multiple_p (wi::to_poly_widest (top
),
12775 wi::to_poly_widest (bottom
));
12781 #define tree_expr_nonnegative_warnv_p(X, Y) \
12782 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
12784 #define RECURSE(X) \
12785 ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1))
12787 /* Return true if CODE or TYPE is known to be non-negative. */
12790 tree_simple_nonnegative_warnv_p (enum tree_code code
, tree type
)
12792 if ((TYPE_PRECISION (type
) != 1 || TYPE_UNSIGNED (type
))
12793 && truth_value_p (code
))
12794 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
12795 have a signed:1 type (where the value is -1 and 0). */
12800 /* Return true if (CODE OP0) is known to be non-negative. If the return
12801 value is based on the assumption that signed overflow is undefined,
12802 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12803 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12806 tree_unary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12807 bool *strict_overflow_p
, int depth
)
12809 if (TYPE_UNSIGNED (type
))
12815 /* We can't return 1 if flag_wrapv is set because
12816 ABS_EXPR<INT_MIN> = INT_MIN. */
12817 if (!ANY_INTEGRAL_TYPE_P (type
))
12819 if (TYPE_OVERFLOW_UNDEFINED (type
))
12821 *strict_overflow_p
= true;
12826 case NON_LVALUE_EXPR
:
12828 case FIX_TRUNC_EXPR
:
12829 return RECURSE (op0
);
12833 tree inner_type
= TREE_TYPE (op0
);
12834 tree outer_type
= type
;
12836 if (TREE_CODE (outer_type
) == REAL_TYPE
)
12838 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12839 return RECURSE (op0
);
12840 if (INTEGRAL_TYPE_P (inner_type
))
12842 if (TYPE_UNSIGNED (inner_type
))
12844 return RECURSE (op0
);
12847 else if (INTEGRAL_TYPE_P (outer_type
))
12849 if (TREE_CODE (inner_type
) == REAL_TYPE
)
12850 return RECURSE (op0
);
12851 if (INTEGRAL_TYPE_P (inner_type
))
12852 return TYPE_PRECISION (inner_type
) < TYPE_PRECISION (outer_type
)
12853 && TYPE_UNSIGNED (inner_type
);
12859 return tree_simple_nonnegative_warnv_p (code
, type
);
12862 /* We don't know sign of `t', so be conservative and return false. */
12866 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
12867 value is based on the assumption that signed overflow is undefined,
12868 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12869 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12872 tree_binary_nonnegative_warnv_p (enum tree_code code
, tree type
, tree op0
,
12873 tree op1
, bool *strict_overflow_p
,
12876 if (TYPE_UNSIGNED (type
))
12881 case POINTER_PLUS_EXPR
:
12883 if (FLOAT_TYPE_P (type
))
12884 return RECURSE (op0
) && RECURSE (op1
);
12886 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
12887 both unsigned and at least 2 bits shorter than the result. */
12888 if (TREE_CODE (type
) == INTEGER_TYPE
12889 && TREE_CODE (op0
) == NOP_EXPR
12890 && TREE_CODE (op1
) == NOP_EXPR
)
12892 tree inner1
= TREE_TYPE (TREE_OPERAND (op0
, 0));
12893 tree inner2
= TREE_TYPE (TREE_OPERAND (op1
, 0));
12894 if (TREE_CODE (inner1
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner1
)
12895 && TREE_CODE (inner2
) == INTEGER_TYPE
&& TYPE_UNSIGNED (inner2
))
12897 unsigned int prec
= MAX (TYPE_PRECISION (inner1
),
12898 TYPE_PRECISION (inner2
)) + 1;
12899 return prec
< TYPE_PRECISION (type
);
12905 if (FLOAT_TYPE_P (type
) || TYPE_OVERFLOW_UNDEFINED (type
))
12907 /* x * x is always non-negative for floating point x
12908 or without overflow. */
12909 if (operand_equal_p (op0
, op1
, 0)
12910 || (RECURSE (op0
) && RECURSE (op1
)))
12912 if (ANY_INTEGRAL_TYPE_P (type
)
12913 && TYPE_OVERFLOW_UNDEFINED (type
))
12914 *strict_overflow_p
= true;
12919 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
12920 both unsigned and their total bits is shorter than the result. */
12921 if (TREE_CODE (type
) == INTEGER_TYPE
12922 && (TREE_CODE (op0
) == NOP_EXPR
|| TREE_CODE (op0
) == INTEGER_CST
)
12923 && (TREE_CODE (op1
) == NOP_EXPR
|| TREE_CODE (op1
) == INTEGER_CST
))
12925 tree inner0
= (TREE_CODE (op0
) == NOP_EXPR
)
12926 ? TREE_TYPE (TREE_OPERAND (op0
, 0))
12928 tree inner1
= (TREE_CODE (op1
) == NOP_EXPR
)
12929 ? TREE_TYPE (TREE_OPERAND (op1
, 0))
12932 bool unsigned0
= TYPE_UNSIGNED (inner0
);
12933 bool unsigned1
= TYPE_UNSIGNED (inner1
);
12935 if (TREE_CODE (op0
) == INTEGER_CST
)
12936 unsigned0
= unsigned0
|| tree_int_cst_sgn (op0
) >= 0;
12938 if (TREE_CODE (op1
) == INTEGER_CST
)
12939 unsigned1
= unsigned1
|| tree_int_cst_sgn (op1
) >= 0;
12941 if (TREE_CODE (inner0
) == INTEGER_TYPE
&& unsigned0
12942 && TREE_CODE (inner1
) == INTEGER_TYPE
&& unsigned1
)
12944 unsigned int precision0
= (TREE_CODE (op0
) == INTEGER_CST
)
12945 ? tree_int_cst_min_precision (op0
, UNSIGNED
)
12946 : TYPE_PRECISION (inner0
);
12948 unsigned int precision1
= (TREE_CODE (op1
) == INTEGER_CST
)
12949 ? tree_int_cst_min_precision (op1
, UNSIGNED
)
12950 : TYPE_PRECISION (inner1
);
12952 return precision0
+ precision1
< TYPE_PRECISION (type
);
12959 return RECURSE (op0
) || RECURSE (op1
);
12965 case TRUNC_DIV_EXPR
:
12966 case CEIL_DIV_EXPR
:
12967 case FLOOR_DIV_EXPR
:
12968 case ROUND_DIV_EXPR
:
12969 return RECURSE (op0
) && RECURSE (op1
);
12971 case TRUNC_MOD_EXPR
:
12972 return RECURSE (op0
);
12974 case FLOOR_MOD_EXPR
:
12975 return RECURSE (op1
);
12977 case CEIL_MOD_EXPR
:
12978 case ROUND_MOD_EXPR
:
12980 return tree_simple_nonnegative_warnv_p (code
, type
);
12983 /* We don't know sign of `t', so be conservative and return false. */
12987 /* Return true if T is known to be non-negative. If the return
12988 value is based on the assumption that signed overflow is undefined,
12989 set *STRICT_OVERFLOW_P to true; otherwise, don't change
12990 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
12993 tree_single_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
12995 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
12998 switch (TREE_CODE (t
))
13001 return tree_int_cst_sgn (t
) >= 0;
13004 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t
));
13007 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t
));
13010 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
13013 /* Limit the depth of recursion to avoid quadratic behavior.
13014 This is expected to catch almost all occurrences in practice.
13015 If this code misses important cases that unbounded recursion
13016 would not, passes that need this information could be revised
13017 to provide it through dataflow propagation. */
13018 return (!name_registered_for_update_p (t
)
13019 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
13020 && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t
),
13021 strict_overflow_p
, depth
));
13024 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
13028 /* Return true if T is known to be non-negative. If the return
13029 value is based on the assumption that signed overflow is undefined,
13030 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13031 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13034 tree_call_nonnegative_warnv_p (tree type
, combined_fn fn
, tree arg0
, tree arg1
,
13035 bool *strict_overflow_p
, int depth
)
13056 case CFN_BUILT_IN_BSWAP32
:
13057 case CFN_BUILT_IN_BSWAP64
:
13063 /* sqrt(-0.0) is -0.0. */
13064 if (!HONOR_SIGNED_ZEROS (element_mode (type
)))
13066 return RECURSE (arg0
);
13094 CASE_CFN_NEARBYINT
:
13095 CASE_CFN_NEARBYINT_FN
:
13104 CASE_CFN_SIGNIFICAND
:
13109 /* True if the 1st argument is nonnegative. */
13110 return RECURSE (arg0
);
13114 /* True if the 1st OR 2nd arguments are nonnegative. */
13115 return RECURSE (arg0
) || RECURSE (arg1
);
13119 /* True if the 1st AND 2nd arguments are nonnegative. */
13120 return RECURSE (arg0
) && RECURSE (arg1
);
13123 CASE_CFN_COPYSIGN_FN
:
13124 /* True if the 2nd argument is nonnegative. */
13125 return RECURSE (arg1
);
13128 /* True if the 1st argument is nonnegative or the second
13129 argument is an even integer. */
13130 if (TREE_CODE (arg1
) == INTEGER_CST
13131 && (TREE_INT_CST_LOW (arg1
) & 1) == 0)
13133 return RECURSE (arg0
);
13136 /* True if the 1st argument is nonnegative or the second
13137 argument is an even integer valued real. */
13138 if (TREE_CODE (arg1
) == REAL_CST
)
13143 c
= TREE_REAL_CST (arg1
);
13144 n
= real_to_integer (&c
);
13147 REAL_VALUE_TYPE cint
;
13148 real_from_integer (&cint
, VOIDmode
, n
, SIGNED
);
13149 if (real_identical (&c
, &cint
))
13153 return RECURSE (arg0
);
13158 return tree_simple_nonnegative_warnv_p (CALL_EXPR
, type
);
13161 /* Return true if T is known to be non-negative. If the return
13162 value is based on the assumption that signed overflow is undefined,
13163 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13164 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13167 tree_invalid_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13169 enum tree_code code
= TREE_CODE (t
);
13170 if (TYPE_UNSIGNED (TREE_TYPE (t
)))
13177 tree temp
= TARGET_EXPR_SLOT (t
);
13178 t
= TARGET_EXPR_INITIAL (t
);
13180 /* If the initializer is non-void, then it's a normal expression
13181 that will be assigned to the slot. */
13182 if (!VOID_TYPE_P (t
))
13183 return RECURSE (t
);
13185 /* Otherwise, the initializer sets the slot in some way. One common
13186 way is an assignment statement at the end of the initializer. */
13189 if (TREE_CODE (t
) == BIND_EXPR
)
13190 t
= expr_last (BIND_EXPR_BODY (t
));
13191 else if (TREE_CODE (t
) == TRY_FINALLY_EXPR
13192 || TREE_CODE (t
) == TRY_CATCH_EXPR
)
13193 t
= expr_last (TREE_OPERAND (t
, 0));
13194 else if (TREE_CODE (t
) == STATEMENT_LIST
)
13199 if (TREE_CODE (t
) == MODIFY_EXPR
13200 && TREE_OPERAND (t
, 0) == temp
)
13201 return RECURSE (TREE_OPERAND (t
, 1));
13208 tree arg0
= call_expr_nargs (t
) > 0 ? CALL_EXPR_ARG (t
, 0) : NULL_TREE
;
13209 tree arg1
= call_expr_nargs (t
) > 1 ? CALL_EXPR_ARG (t
, 1) : NULL_TREE
;
13211 return tree_call_nonnegative_warnv_p (TREE_TYPE (t
),
13212 get_call_combined_fn (t
),
13215 strict_overflow_p
, depth
);
13217 case COMPOUND_EXPR
:
13219 return RECURSE (TREE_OPERAND (t
, 1));
13222 return RECURSE (expr_last (TREE_OPERAND (t
, 1)));
13225 return RECURSE (TREE_OPERAND (t
, 0));
13228 return tree_simple_nonnegative_warnv_p (TREE_CODE (t
), TREE_TYPE (t
));
13233 #undef tree_expr_nonnegative_warnv_p
13235 /* Return true if T is known to be non-negative. If the return
13236 value is based on the assumption that signed overflow is undefined,
13237 set *STRICT_OVERFLOW_P to true; otherwise, don't change
13238 *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */
13241 tree_expr_nonnegative_warnv_p (tree t
, bool *strict_overflow_p
, int depth
)
13243 enum tree_code code
;
13244 if (t
== error_mark_node
)
13247 code
= TREE_CODE (t
);
13248 switch (TREE_CODE_CLASS (code
))
13251 case tcc_comparison
:
13252 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13254 TREE_OPERAND (t
, 0),
13255 TREE_OPERAND (t
, 1),
13256 strict_overflow_p
, depth
);
13259 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13261 TREE_OPERAND (t
, 0),
13262 strict_overflow_p
, depth
);
13265 case tcc_declaration
:
13266 case tcc_reference
:
13267 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13275 case TRUTH_AND_EXPR
:
13276 case TRUTH_OR_EXPR
:
13277 case TRUTH_XOR_EXPR
:
13278 return tree_binary_nonnegative_warnv_p (TREE_CODE (t
),
13280 TREE_OPERAND (t
, 0),
13281 TREE_OPERAND (t
, 1),
13282 strict_overflow_p
, depth
);
13283 case TRUTH_NOT_EXPR
:
13284 return tree_unary_nonnegative_warnv_p (TREE_CODE (t
),
13286 TREE_OPERAND (t
, 0),
13287 strict_overflow_p
, depth
);
13294 case WITH_SIZE_EXPR
:
13296 return tree_single_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13299 return tree_invalid_nonnegative_warnv_p (t
, strict_overflow_p
, depth
);
13303 /* Return true if `t' is known to be non-negative. Handle warnings
13304 about undefined signed overflow. */
13307 tree_expr_nonnegative_p (tree t
)
13309 bool ret
, strict_overflow_p
;
13311 strict_overflow_p
= false;
13312 ret
= tree_expr_nonnegative_warnv_p (t
, &strict_overflow_p
);
13313 if (strict_overflow_p
)
13314 fold_overflow_warning (("assuming signed overflow does not occur when "
13315 "determining that expression is always "
13317 WARN_STRICT_OVERFLOW_MISC
);
13322 /* Return true when (CODE OP0) is an address and is known to be nonzero.
13323 For floating point we further ensure that T is not denormal.
13324 Similar logic is present in nonzero_address in rtlanal.h.
13326 If the return value is based on the assumption that signed overflow
13327 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13328 change *STRICT_OVERFLOW_P. */
13331 tree_unary_nonzero_warnv_p (enum tree_code code
, tree type
, tree op0
,
13332 bool *strict_overflow_p
)
13337 return tree_expr_nonzero_warnv_p (op0
,
13338 strict_overflow_p
);
13342 tree inner_type
= TREE_TYPE (op0
);
13343 tree outer_type
= type
;
13345 return (TYPE_PRECISION (outer_type
) >= TYPE_PRECISION (inner_type
)
13346 && tree_expr_nonzero_warnv_p (op0
,
13347 strict_overflow_p
));
13351 case NON_LVALUE_EXPR
:
13352 return tree_expr_nonzero_warnv_p (op0
,
13353 strict_overflow_p
);
13362 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
13363 For floating point we further ensure that T is not denormal.
13364 Similar logic is present in nonzero_address in rtlanal.h.
13366 If the return value is based on the assumption that signed overflow
13367 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13368 change *STRICT_OVERFLOW_P. */
13371 tree_binary_nonzero_warnv_p (enum tree_code code
,
13374 tree op1
, bool *strict_overflow_p
)
13376 bool sub_strict_overflow_p
;
13379 case POINTER_PLUS_EXPR
:
13381 if (ANY_INTEGRAL_TYPE_P (type
) && TYPE_OVERFLOW_UNDEFINED (type
))
13383 /* With the presence of negative values it is hard
13384 to say something. */
13385 sub_strict_overflow_p
= false;
13386 if (!tree_expr_nonnegative_warnv_p (op0
,
13387 &sub_strict_overflow_p
)
13388 || !tree_expr_nonnegative_warnv_p (op1
,
13389 &sub_strict_overflow_p
))
13391 /* One of operands must be positive and the other non-negative. */
13392 /* We don't set *STRICT_OVERFLOW_P here: even if this value
13393 overflows, on a twos-complement machine the sum of two
13394 nonnegative numbers can never be zero. */
13395 return (tree_expr_nonzero_warnv_p (op0
,
13397 || tree_expr_nonzero_warnv_p (op1
,
13398 strict_overflow_p
));
13403 if (TYPE_OVERFLOW_UNDEFINED (type
))
13405 if (tree_expr_nonzero_warnv_p (op0
,
13407 && tree_expr_nonzero_warnv_p (op1
,
13408 strict_overflow_p
))
13410 *strict_overflow_p
= true;
13417 sub_strict_overflow_p
= false;
13418 if (tree_expr_nonzero_warnv_p (op0
,
13419 &sub_strict_overflow_p
)
13420 && tree_expr_nonzero_warnv_p (op1
,
13421 &sub_strict_overflow_p
))
13423 if (sub_strict_overflow_p
)
13424 *strict_overflow_p
= true;
13429 sub_strict_overflow_p
= false;
13430 if (tree_expr_nonzero_warnv_p (op0
,
13431 &sub_strict_overflow_p
))
13433 if (sub_strict_overflow_p
)
13434 *strict_overflow_p
= true;
13436 /* When both operands are nonzero, then MAX must be too. */
13437 if (tree_expr_nonzero_warnv_p (op1
,
13438 strict_overflow_p
))
13441 /* MAX where operand 0 is positive is positive. */
13442 return tree_expr_nonnegative_warnv_p (op0
,
13443 strict_overflow_p
);
13445 /* MAX where operand 1 is positive is positive. */
13446 else if (tree_expr_nonzero_warnv_p (op1
,
13447 &sub_strict_overflow_p
)
13448 && tree_expr_nonnegative_warnv_p (op1
,
13449 &sub_strict_overflow_p
))
13451 if (sub_strict_overflow_p
)
13452 *strict_overflow_p
= true;
13458 return (tree_expr_nonzero_warnv_p (op1
,
13460 || tree_expr_nonzero_warnv_p (op0
,
13461 strict_overflow_p
));
13470 /* Return true when T is an address and is known to be nonzero.
13471 For floating point we further ensure that T is not denormal.
13472 Similar logic is present in nonzero_address in rtlanal.h.
13474 If the return value is based on the assumption that signed overflow
13475 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
13476 change *STRICT_OVERFLOW_P. */
13479 tree_single_nonzero_warnv_p (tree t
, bool *strict_overflow_p
)
13481 bool sub_strict_overflow_p
;
13482 switch (TREE_CODE (t
))
13485 return !integer_zerop (t
);
13489 tree base
= TREE_OPERAND (t
, 0);
13491 if (!DECL_P (base
))
13492 base
= get_base_address (base
);
13494 if (base
&& TREE_CODE (base
) == TARGET_EXPR
)
13495 base
= TARGET_EXPR_SLOT (base
);
13500 /* For objects in symbol table check if we know they are non-zero.
13501 Don't do anything for variables and functions before symtab is built;
13502 it is quite possible that they will be declared weak later. */
13503 int nonzero_addr
= maybe_nonzero_address (base
);
13504 if (nonzero_addr
>= 0)
13505 return nonzero_addr
;
13507 /* Constants are never weak. */
13508 if (CONSTANT_CLASS_P (base
))
13515 sub_strict_overflow_p
= false;
13516 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 1),
13517 &sub_strict_overflow_p
)
13518 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t
, 2),
13519 &sub_strict_overflow_p
))
13521 if (sub_strict_overflow_p
)
13522 *strict_overflow_p
= true;
13528 if (!INTEGRAL_TYPE_P (TREE_TYPE (t
)))
13530 return expr_not_equal_to (t
, wi::zero (TYPE_PRECISION (TREE_TYPE (t
))));
13538 #define integer_valued_real_p(X) \
13539 _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0
13541 #define RECURSE(X) \
13542 ((integer_valued_real_p) (X, depth + 1))
13544 /* Return true if the floating point result of (CODE OP0) has an
13545 integer value. We also allow +Inf, -Inf and NaN to be considered
13546 integer values. Return false for signaling NaN.
13548 DEPTH is the current nesting depth of the query. */
13551 integer_valued_real_unary_p (tree_code code
, tree op0
, int depth
)
13559 return RECURSE (op0
);
13563 tree type
= TREE_TYPE (op0
);
13564 if (TREE_CODE (type
) == INTEGER_TYPE
)
13566 if (TREE_CODE (type
) == REAL_TYPE
)
13567 return RECURSE (op0
);
13577 /* Return true if the floating point result of (CODE OP0 OP1) has an
13578 integer value. We also allow +Inf, -Inf and NaN to be considered
13579 integer values. Return false for signaling NaN.
13581 DEPTH is the current nesting depth of the query. */
13584 integer_valued_real_binary_p (tree_code code
, tree op0
, tree op1
, int depth
)
13593 return RECURSE (op0
) && RECURSE (op1
);
13601 /* Return true if the floating point result of calling FNDECL with arguments
13602 ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be
13603 considered integer values. Return false for signaling NaN. If FNDECL
13604 takes fewer than 2 arguments, the remaining ARGn are null.
13606 DEPTH is the current nesting depth of the query. */
13609 integer_valued_real_call_p (combined_fn fn
, tree arg0
, tree arg1
, int depth
)
13617 CASE_CFN_NEARBYINT
:
13618 CASE_CFN_NEARBYINT_FN
:
13631 return RECURSE (arg0
) && RECURSE (arg1
);
13639 /* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS)
13640 has an integer value. We also allow +Inf, -Inf and NaN to be
13641 considered integer values. Return false for signaling NaN.
13643 DEPTH is the current nesting depth of the query. */
13646 integer_valued_real_single_p (tree t
, int depth
)
13648 switch (TREE_CODE (t
))
13651 return real_isinteger (TREE_REAL_CST_PTR (t
), TYPE_MODE (TREE_TYPE (t
)));
13654 return RECURSE (TREE_OPERAND (t
, 1)) && RECURSE (TREE_OPERAND (t
, 2));
13657 /* Limit the depth of recursion to avoid quadratic behavior.
13658 This is expected to catch almost all occurrences in practice.
13659 If this code misses important cases that unbounded recursion
13660 would not, passes that need this information could be revised
13661 to provide it through dataflow propagation. */
13662 return (!name_registered_for_update_p (t
)
13663 && depth
< PARAM_VALUE (PARAM_MAX_SSA_NAME_QUERY_DEPTH
)
13664 && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t
),
13673 /* Return true if the floating point expression T (a GIMPLE_INVALID_RHS)
13674 has an integer value. We also allow +Inf, -Inf and NaN to be
13675 considered integer values. Return false for signaling NaN.
13677 DEPTH is the current nesting depth of the query. */
13680 integer_valued_real_invalid_p (tree t
, int depth
)
13682 switch (TREE_CODE (t
))
13684 case COMPOUND_EXPR
:
13687 return RECURSE (TREE_OPERAND (t
, 1));
13690 return RECURSE (TREE_OPERAND (t
, 0));
13699 #undef integer_valued_real_p
13701 /* Return true if the floating point expression T has an integer value.
13702 We also allow +Inf, -Inf and NaN to be considered integer values.
13703 Return false for signaling NaN.
13705 DEPTH is the current nesting depth of the query. */
13708 integer_valued_real_p (tree t
, int depth
)
13710 if (t
== error_mark_node
)
13713 STRIP_ANY_LOCATION_WRAPPER (t
);
13715 tree_code code
= TREE_CODE (t
);
13716 switch (TREE_CODE_CLASS (code
))
13719 case tcc_comparison
:
13720 return integer_valued_real_binary_p (code
, TREE_OPERAND (t
, 0),
13721 TREE_OPERAND (t
, 1), depth
);
13724 return integer_valued_real_unary_p (code
, TREE_OPERAND (t
, 0), depth
);
13727 case tcc_declaration
:
13728 case tcc_reference
:
13729 return integer_valued_real_single_p (t
, depth
);
13739 return integer_valued_real_single_p (t
, depth
);
13743 tree arg0
= (call_expr_nargs (t
) > 0
13744 ? CALL_EXPR_ARG (t
, 0)
13746 tree arg1
= (call_expr_nargs (t
) > 1
13747 ? CALL_EXPR_ARG (t
, 1)
13749 return integer_valued_real_call_p (get_call_combined_fn (t
),
13750 arg0
, arg1
, depth
);
13754 return integer_valued_real_invalid_p (t
, depth
);
13758 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
13759 attempt to fold the expression to a constant without modifying TYPE,
13762 If the expression could be simplified to a constant, then return
13763 the constant. If the expression would not be simplified to a
13764 constant, then return NULL_TREE. */
13767 fold_binary_to_constant (enum tree_code code
, tree type
, tree op0
, tree op1
)
13769 tree tem
= fold_binary (code
, type
, op0
, op1
);
13770 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13773 /* Given the components of a unary expression CODE, TYPE and OP0,
13774 attempt to fold the expression to a constant without modifying
13777 If the expression could be simplified to a constant, then return
13778 the constant. If the expression would not be simplified to a
13779 constant, then return NULL_TREE. */
13782 fold_unary_to_constant (enum tree_code code
, tree type
, tree op0
)
13784 tree tem
= fold_unary (code
, type
, op0
);
13785 return (tem
&& TREE_CONSTANT (tem
)) ? tem
: NULL_TREE
;
13788 /* If EXP represents referencing an element in a constant string
13789 (either via pointer arithmetic or array indexing), return the
13790 tree representing the value accessed, otherwise return NULL. */
13793 fold_read_from_constant_string (tree exp
)
13795 if ((TREE_CODE (exp
) == INDIRECT_REF
13796 || TREE_CODE (exp
) == ARRAY_REF
)
13797 && TREE_CODE (TREE_TYPE (exp
)) == INTEGER_TYPE
)
13799 tree exp1
= TREE_OPERAND (exp
, 0);
13802 location_t loc
= EXPR_LOCATION (exp
);
13804 if (TREE_CODE (exp
) == INDIRECT_REF
)
13805 string
= string_constant (exp1
, &index
, NULL
, NULL
);
13808 tree low_bound
= array_ref_low_bound (exp
);
13809 index
= fold_convert_loc (loc
, sizetype
, TREE_OPERAND (exp
, 1));
13811 /* Optimize the special-case of a zero lower bound.
13813 We convert the low_bound to sizetype to avoid some problems
13814 with constant folding. (E.g. suppose the lower bound is 1,
13815 and its mode is QI. Without the conversion,l (ARRAY
13816 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
13817 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
13818 if (! integer_zerop (low_bound
))
13819 index
= size_diffop_loc (loc
, index
,
13820 fold_convert_loc (loc
, sizetype
, low_bound
));
13825 scalar_int_mode char_mode
;
13827 && TYPE_MODE (TREE_TYPE (exp
)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string
)))
13828 && TREE_CODE (string
) == STRING_CST
13829 && TREE_CODE (index
) == INTEGER_CST
13830 && compare_tree_int (index
, TREE_STRING_LENGTH (string
)) < 0
13831 && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string
))),
13833 && GET_MODE_SIZE (char_mode
) == 1)
13834 return build_int_cst_type (TREE_TYPE (exp
),
13835 (TREE_STRING_POINTER (string
)
13836 [TREE_INT_CST_LOW (index
)]));
13841 /* Return the tree for neg (ARG0) when ARG0 is known to be either
13842 an integer constant, real, or fixed-point constant.
13844 TYPE is the type of the result. */
13847 fold_negate_const (tree arg0
, tree type
)
13849 tree t
= NULL_TREE
;
13851 switch (TREE_CODE (arg0
))
13854 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13859 FIXED_VALUE_TYPE f
;
13860 bool overflow_p
= fixed_arithmetic (&f
, NEGATE_EXPR
,
13861 &(TREE_FIXED_CST (arg0
)), NULL
,
13862 TYPE_SATURATING (type
));
13863 t
= build_fixed (type
, f
);
13864 /* Propagate overflow flags. */
13865 if (overflow_p
| TREE_OVERFLOW (arg0
))
13866 TREE_OVERFLOW (t
) = 1;
13871 if (poly_int_tree_p (arg0
))
13873 wi::overflow_type overflow
;
13874 poly_wide_int res
= wi::neg (wi::to_poly_wide (arg0
), &overflow
);
13875 t
= force_fit_type (type
, res
, 1,
13876 (overflow
&& ! TYPE_UNSIGNED (type
))
13877 || TREE_OVERFLOW (arg0
));
13881 gcc_unreachable ();
13887 /* Return the tree for abs (ARG0) when ARG0 is known to be either
13888 an integer constant or real constant.
13890 TYPE is the type of the result. */
13893 fold_abs_const (tree arg0
, tree type
)
13895 tree t
= NULL_TREE
;
13897 switch (TREE_CODE (arg0
))
13901 /* If the value is unsigned or non-negative, then the absolute value
13902 is the same as the ordinary value. */
13903 wide_int val
= wi::to_wide (arg0
);
13904 wi::overflow_type overflow
= wi::OVF_NONE
;
13905 if (!wi::neg_p (val
, TYPE_SIGN (TREE_TYPE (arg0
))))
13908 /* If the value is negative, then the absolute value is
13911 val
= wi::neg (val
, &overflow
);
13913 /* Force to the destination type, set TREE_OVERFLOW for signed
13915 t
= force_fit_type (type
, val
, 1, overflow
| TREE_OVERFLOW (arg0
));
13920 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0
)))
13921 t
= build_real (type
, real_value_negate (&TREE_REAL_CST (arg0
)));
13927 gcc_unreachable ();
13933 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
13934 constant. TYPE is the type of the result. */
13937 fold_not_const (const_tree arg0
, tree type
)
13939 gcc_assert (TREE_CODE (arg0
) == INTEGER_CST
);
13941 return force_fit_type (type
, ~wi::to_wide (arg0
), 0, TREE_OVERFLOW (arg0
));
13944 /* Given CODE, a relational operator, the target type, TYPE and two
13945 constant operands OP0 and OP1, return the result of the
13946 relational operation. If the result is not a compile time
13947 constant, then return NULL_TREE. */
13950 fold_relational_const (enum tree_code code
, tree type
, tree op0
, tree op1
)
13952 int result
, invert
;
13954 /* From here on, the only cases we handle are when the result is
13955 known to be a constant. */
13957 if (TREE_CODE (op0
) == REAL_CST
&& TREE_CODE (op1
) == REAL_CST
)
13959 const REAL_VALUE_TYPE
*c0
= TREE_REAL_CST_PTR (op0
);
13960 const REAL_VALUE_TYPE
*c1
= TREE_REAL_CST_PTR (op1
);
13962 /* Handle the cases where either operand is a NaN. */
13963 if (real_isnan (c0
) || real_isnan (c1
))
13973 case UNORDERED_EXPR
:
13987 if (flag_trapping_math
)
13993 gcc_unreachable ();
13996 return constant_boolean_node (result
, type
);
13999 return constant_boolean_node (real_compare (code
, c0
, c1
), type
);
14002 if (TREE_CODE (op0
) == FIXED_CST
&& TREE_CODE (op1
) == FIXED_CST
)
14004 const FIXED_VALUE_TYPE
*c0
= TREE_FIXED_CST_PTR (op0
);
14005 const FIXED_VALUE_TYPE
*c1
= TREE_FIXED_CST_PTR (op1
);
14006 return constant_boolean_node (fixed_compare (code
, c0
, c1
), type
);
14009 /* Handle equality/inequality of complex constants. */
14010 if (TREE_CODE (op0
) == COMPLEX_CST
&& TREE_CODE (op1
) == COMPLEX_CST
)
14012 tree rcond
= fold_relational_const (code
, type
,
14013 TREE_REALPART (op0
),
14014 TREE_REALPART (op1
));
14015 tree icond
= fold_relational_const (code
, type
,
14016 TREE_IMAGPART (op0
),
14017 TREE_IMAGPART (op1
));
14018 if (code
== EQ_EXPR
)
14019 return fold_build2 (TRUTH_ANDIF_EXPR
, type
, rcond
, icond
);
14020 else if (code
== NE_EXPR
)
14021 return fold_build2 (TRUTH_ORIF_EXPR
, type
, rcond
, icond
);
14026 if (TREE_CODE (op0
) == VECTOR_CST
&& TREE_CODE (op1
) == VECTOR_CST
)
14028 if (!VECTOR_TYPE_P (type
))
14030 /* Have vector comparison with scalar boolean result. */
14031 gcc_assert ((code
== EQ_EXPR
|| code
== NE_EXPR
)
14032 && known_eq (VECTOR_CST_NELTS (op0
),
14033 VECTOR_CST_NELTS (op1
)));
14034 unsigned HOST_WIDE_INT nunits
;
14035 if (!VECTOR_CST_NELTS (op0
).is_constant (&nunits
))
14037 for (unsigned i
= 0; i
< nunits
; i
++)
14039 tree elem0
= VECTOR_CST_ELT (op0
, i
);
14040 tree elem1
= VECTOR_CST_ELT (op1
, i
);
14041 tree tmp
= fold_relational_const (code
, type
, elem0
, elem1
);
14042 if (tmp
== NULL_TREE
)
14044 if (integer_zerop (tmp
))
14045 return constant_boolean_node (false, type
);
14047 return constant_boolean_node (true, type
);
14049 tree_vector_builder elts
;
14050 if (!elts
.new_binary_operation (type
, op0
, op1
, false))
14052 unsigned int count
= elts
.encoded_nelts ();
14053 for (unsigned i
= 0; i
< count
; i
++)
14055 tree elem_type
= TREE_TYPE (type
);
14056 tree elem0
= VECTOR_CST_ELT (op0
, i
);
14057 tree elem1
= VECTOR_CST_ELT (op1
, i
);
14059 tree tem
= fold_relational_const (code
, elem_type
,
14062 if (tem
== NULL_TREE
)
14065 elts
.quick_push (build_int_cst (elem_type
,
14066 integer_zerop (tem
) ? 0 : -1));
14069 return elts
.build ();
14072 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
14074 To compute GT, swap the arguments and do LT.
14075 To compute GE, do LT and invert the result.
14076 To compute LE, swap the arguments, do LT and invert the result.
14077 To compute NE, do EQ and invert the result.
14079 Therefore, the code below must handle only EQ and LT. */
14081 if (code
== LE_EXPR
|| code
== GT_EXPR
)
14083 std::swap (op0
, op1
);
14084 code
= swap_tree_comparison (code
);
14087 /* Note that it is safe to invert for real values here because we
14088 have already handled the one case that it matters. */
14091 if (code
== NE_EXPR
|| code
== GE_EXPR
)
14094 code
= invert_tree_comparison (code
, false);
14097 /* Compute a result for LT or EQ if args permit;
14098 Otherwise return T. */
14099 if (TREE_CODE (op0
) == INTEGER_CST
&& TREE_CODE (op1
) == INTEGER_CST
)
14101 if (code
== EQ_EXPR
)
14102 result
= tree_int_cst_equal (op0
, op1
);
14104 result
= tree_int_cst_lt (op0
, op1
);
14111 return constant_boolean_node (result
, type
);
14114 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
14115 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
14119 fold_build_cleanup_point_expr (tree type
, tree expr
)
14121 /* If the expression does not have side effects then we don't have to wrap
14122 it with a cleanup point expression. */
14123 if (!TREE_SIDE_EFFECTS (expr
))
14126 /* If the expression is a return, check to see if the expression inside the
14127 return has no side effects or the right hand side of the modify expression
14128 inside the return. If either don't have side effects set we don't need to
14129 wrap the expression in a cleanup point expression. Note we don't check the
14130 left hand side of the modify because it should always be a return decl. */
14131 if (TREE_CODE (expr
) == RETURN_EXPR
)
14133 tree op
= TREE_OPERAND (expr
, 0);
14134 if (!op
|| !TREE_SIDE_EFFECTS (op
))
14136 op
= TREE_OPERAND (op
, 1);
14137 if (!TREE_SIDE_EFFECTS (op
))
14141 return build1_loc (EXPR_LOCATION (expr
), CLEANUP_POINT_EXPR
, type
, expr
);
14144 /* Given a pointer value OP0 and a type TYPE, return a simplified version
14145 of an indirection through OP0, or NULL_TREE if no simplification is
14149 fold_indirect_ref_1 (location_t loc
, tree type
, tree op0
)
14153 poly_uint64 const_op01
;
14156 subtype
= TREE_TYPE (sub
);
14157 if (!POINTER_TYPE_P (subtype
)
14158 || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0
)))
14161 if (TREE_CODE (sub
) == ADDR_EXPR
)
14163 tree op
= TREE_OPERAND (sub
, 0);
14164 tree optype
= TREE_TYPE (op
);
14166 /* *&CONST_DECL -> to the value of the const decl. */
14167 if (TREE_CODE (op
) == CONST_DECL
)
14168 return DECL_INITIAL (op
);
14169 /* *&p => p; make sure to handle *&"str"[cst] here. */
14170 if (type
== optype
)
14172 tree fop
= fold_read_from_constant_string (op
);
14178 /* *(foo *)&fooarray => fooarray[0] */
14179 else if (TREE_CODE (optype
) == ARRAY_TYPE
14180 && type
== TREE_TYPE (optype
)
14181 && (!in_gimple_form
14182 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14184 tree type_domain
= TYPE_DOMAIN (optype
);
14185 tree min_val
= size_zero_node
;
14186 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14187 min_val
= TYPE_MIN_VALUE (type_domain
);
14189 && TREE_CODE (min_val
) != INTEGER_CST
)
14191 return build4_loc (loc
, ARRAY_REF
, type
, op
, min_val
,
14192 NULL_TREE
, NULL_TREE
);
14194 /* *(foo *)&complexfoo => __real__ complexfoo */
14195 else if (TREE_CODE (optype
) == COMPLEX_TYPE
14196 && type
== TREE_TYPE (optype
))
14197 return fold_build1_loc (loc
, REALPART_EXPR
, type
, op
);
14198 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
14199 else if (VECTOR_TYPE_P (optype
)
14200 && type
== TREE_TYPE (optype
))
14202 tree part_width
= TYPE_SIZE (type
);
14203 tree index
= bitsize_int (0);
14204 return fold_build3_loc (loc
, BIT_FIELD_REF
, type
, op
, part_width
,
14209 if (TREE_CODE (sub
) == POINTER_PLUS_EXPR
14210 && poly_int_tree_p (TREE_OPERAND (sub
, 1), &const_op01
))
14212 tree op00
= TREE_OPERAND (sub
, 0);
14213 tree op01
= TREE_OPERAND (sub
, 1);
14216 if (TREE_CODE (op00
) == ADDR_EXPR
)
14219 op00
= TREE_OPERAND (op00
, 0);
14220 op00type
= TREE_TYPE (op00
);
14222 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
14223 if (VECTOR_TYPE_P (op00type
)
14224 && type
== TREE_TYPE (op00type
)
14225 /* POINTER_PLUS_EXPR second operand is sizetype, unsigned,
14226 but we want to treat offsets with MSB set as negative.
14227 For the code below negative offsets are invalid and
14228 TYPE_SIZE of the element is something unsigned, so
14229 check whether op01 fits into poly_int64, which implies
14230 it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and
14231 then just use poly_uint64 because we want to treat the
14232 value as unsigned. */
14233 && tree_fits_poly_int64_p (op01
))
14235 tree part_width
= TYPE_SIZE (type
);
14236 poly_uint64 max_offset
14237 = (tree_to_uhwi (part_width
) / BITS_PER_UNIT
14238 * TYPE_VECTOR_SUBPARTS (op00type
));
14239 if (known_lt (const_op01
, max_offset
))
14241 tree index
= bitsize_int (const_op01
* BITS_PER_UNIT
);
14242 return fold_build3_loc (loc
,
14243 BIT_FIELD_REF
, type
, op00
,
14244 part_width
, index
);
14247 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
14248 else if (TREE_CODE (op00type
) == COMPLEX_TYPE
14249 && type
== TREE_TYPE (op00type
))
14251 if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type
)),
14253 return fold_build1_loc (loc
, IMAGPART_EXPR
, type
, op00
);
14255 /* ((foo *)&fooarray)[1] => fooarray[1] */
14256 else if (TREE_CODE (op00type
) == ARRAY_TYPE
14257 && type
== TREE_TYPE (op00type
))
14259 tree type_domain
= TYPE_DOMAIN (op00type
);
14260 tree min_val
= size_zero_node
;
14261 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14262 min_val
= TYPE_MIN_VALUE (type_domain
);
14263 poly_uint64 type_size
, index
;
14264 if (poly_int_tree_p (min_val
)
14265 && poly_int_tree_p (TYPE_SIZE_UNIT (type
), &type_size
)
14266 && multiple_p (const_op01
, type_size
, &index
))
14268 poly_offset_int off
= index
+ wi::to_poly_offset (min_val
);
14269 op01
= wide_int_to_tree (sizetype
, off
);
14270 return build4_loc (loc
, ARRAY_REF
, type
, op00
, op01
,
14271 NULL_TREE
, NULL_TREE
);
14277 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
14278 if (TREE_CODE (TREE_TYPE (subtype
)) == ARRAY_TYPE
14279 && type
== TREE_TYPE (TREE_TYPE (subtype
))
14280 && (!in_gimple_form
14281 || TREE_CODE (TYPE_SIZE (type
)) == INTEGER_CST
))
14284 tree min_val
= size_zero_node
;
14285 sub
= build_fold_indirect_ref_loc (loc
, sub
);
14286 type_domain
= TYPE_DOMAIN (TREE_TYPE (sub
));
14287 if (type_domain
&& TYPE_MIN_VALUE (type_domain
))
14288 min_val
= TYPE_MIN_VALUE (type_domain
);
14290 && TREE_CODE (min_val
) != INTEGER_CST
)
14292 return build4_loc (loc
, ARRAY_REF
, type
, sub
, min_val
, NULL_TREE
,
14299 /* Builds an expression for an indirection through T, simplifying some
14303 build_fold_indirect_ref_loc (location_t loc
, tree t
)
14305 tree type
= TREE_TYPE (TREE_TYPE (t
));
14306 tree sub
= fold_indirect_ref_1 (loc
, type
, t
);
14311 return build1_loc (loc
, INDIRECT_REF
, type
, t
);
14314 /* Given an INDIRECT_REF T, return either T or a simplified version. */
14317 fold_indirect_ref_loc (location_t loc
, tree t
)
14319 tree sub
= fold_indirect_ref_1 (loc
, TREE_TYPE (t
), TREE_OPERAND (t
, 0));
14327 /* Strip non-trapping, non-side-effecting tree nodes from an expression
14328 whose result is ignored. The type of the returned tree need not be
14329 the same as the original expression. */
14332 fold_ignored_result (tree t
)
14334 if (!TREE_SIDE_EFFECTS (t
))
14335 return integer_zero_node
;
14338 switch (TREE_CODE_CLASS (TREE_CODE (t
)))
14341 t
= TREE_OPERAND (t
, 0);
14345 case tcc_comparison
:
14346 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14347 t
= TREE_OPERAND (t
, 0);
14348 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 0)))
14349 t
= TREE_OPERAND (t
, 1);
14354 case tcc_expression
:
14355 switch (TREE_CODE (t
))
14357 case COMPOUND_EXPR
:
14358 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1)))
14360 t
= TREE_OPERAND (t
, 0);
14364 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 1))
14365 || TREE_SIDE_EFFECTS (TREE_OPERAND (t
, 2)))
14367 t
= TREE_OPERAND (t
, 0);
14380 /* Return the value of VALUE, rounded up to a multiple of DIVISOR. */
14383 round_up_loc (location_t loc
, tree value
, unsigned int divisor
)
14385 tree div
= NULL_TREE
;
14390 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14391 have to do anything. Only do this when we are not given a const,
14392 because in that case, this check is more expensive than just
14394 if (TREE_CODE (value
) != INTEGER_CST
)
14396 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14398 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14402 /* If divisor is a power of two, simplify this to bit manipulation. */
14403 if (pow2_or_zerop (divisor
))
14405 if (TREE_CODE (value
) == INTEGER_CST
)
14407 wide_int val
= wi::to_wide (value
);
14410 if ((val
& (divisor
- 1)) == 0)
14413 overflow_p
= TREE_OVERFLOW (value
);
14414 val
+= divisor
- 1;
14415 val
&= (int) -divisor
;
14419 return force_fit_type (TREE_TYPE (value
), val
, -1, overflow_p
);
14425 t
= build_int_cst (TREE_TYPE (value
), divisor
- 1);
14426 value
= size_binop_loc (loc
, PLUS_EXPR
, value
, t
);
14427 t
= build_int_cst (TREE_TYPE (value
), - (int) divisor
);
14428 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14434 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14435 value
= size_binop_loc (loc
, CEIL_DIV_EXPR
, value
, div
);
14436 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14442 /* Likewise, but round down. */
14445 round_down_loc (location_t loc
, tree value
, int divisor
)
14447 tree div
= NULL_TREE
;
14449 gcc_assert (divisor
> 0);
14453 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
14454 have to do anything. Only do this when we are not given a const,
14455 because in that case, this check is more expensive than just
14457 if (TREE_CODE (value
) != INTEGER_CST
)
14459 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14461 if (multiple_of_p (TREE_TYPE (value
), value
, div
))
14465 /* If divisor is a power of two, simplify this to bit manipulation. */
14466 if (pow2_or_zerop (divisor
))
14470 t
= build_int_cst (TREE_TYPE (value
), -divisor
);
14471 value
= size_binop_loc (loc
, BIT_AND_EXPR
, value
, t
);
14476 div
= build_int_cst (TREE_TYPE (value
), divisor
);
14477 value
= size_binop_loc (loc
, FLOOR_DIV_EXPR
, value
, div
);
14478 value
= size_binop_loc (loc
, MULT_EXPR
, value
, div
);
14484 /* Returns the pointer to the base of the object addressed by EXP and
14485 extracts the information about the offset of the access, storing it
14486 to PBITPOS and POFFSET. */
14489 split_address_to_core_and_offset (tree exp
,
14490 poly_int64_pod
*pbitpos
, tree
*poffset
)
14494 int unsignedp
, reversep
, volatilep
;
14495 poly_int64 bitsize
;
14496 location_t loc
= EXPR_LOCATION (exp
);
14498 if (TREE_CODE (exp
) == ADDR_EXPR
)
14500 core
= get_inner_reference (TREE_OPERAND (exp
, 0), &bitsize
, pbitpos
,
14501 poffset
, &mode
, &unsignedp
, &reversep
,
14503 core
= build_fold_addr_expr_loc (loc
, core
);
14505 else if (TREE_CODE (exp
) == POINTER_PLUS_EXPR
)
14507 core
= TREE_OPERAND (exp
, 0);
14510 *poffset
= TREE_OPERAND (exp
, 1);
14511 if (poly_int_tree_p (*poffset
))
14513 poly_offset_int tem
14514 = wi::sext (wi::to_poly_offset (*poffset
),
14515 TYPE_PRECISION (TREE_TYPE (*poffset
)));
14516 tem
<<= LOG2_BITS_PER_UNIT
;
14517 if (tem
.to_shwi (pbitpos
))
14518 *poffset
= NULL_TREE
;
14525 *poffset
= NULL_TREE
;
14531 /* Returns true if addresses of E1 and E2 differ by a constant, false
14532 otherwise. If they do, E1 - E2 is stored in *DIFF. */
14535 ptr_difference_const (tree e1
, tree e2
, poly_int64_pod
*diff
)
14538 poly_int64 bitpos1
, bitpos2
;
14539 tree toffset1
, toffset2
, tdiff
, type
;
14541 core1
= split_address_to_core_and_offset (e1
, &bitpos1
, &toffset1
);
14542 core2
= split_address_to_core_and_offset (e2
, &bitpos2
, &toffset2
);
14544 poly_int64 bytepos1
, bytepos2
;
14545 if (!multiple_p (bitpos1
, BITS_PER_UNIT
, &bytepos1
)
14546 || !multiple_p (bitpos2
, BITS_PER_UNIT
, &bytepos2
)
14547 || !operand_equal_p (core1
, core2
, 0))
14550 if (toffset1
&& toffset2
)
14552 type
= TREE_TYPE (toffset1
);
14553 if (type
!= TREE_TYPE (toffset2
))
14554 toffset2
= fold_convert (type
, toffset2
);
14556 tdiff
= fold_build2 (MINUS_EXPR
, type
, toffset1
, toffset2
);
14557 if (!cst_and_fits_in_hwi (tdiff
))
14560 *diff
= int_cst_value (tdiff
);
14562 else if (toffset1
|| toffset2
)
14564 /* If only one of the offsets is non-constant, the difference cannot
14571 *diff
+= bytepos1
- bytepos2
;
14575 /* Return OFF converted to a pointer offset type suitable as offset for
14576 POINTER_PLUS_EXPR. Use location LOC for this conversion. */
14578 convert_to_ptrofftype_loc (location_t loc
, tree off
)
14580 return fold_convert_loc (loc
, sizetype
, off
);
14583 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14585 fold_build_pointer_plus_loc (location_t loc
, tree ptr
, tree off
)
14587 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14588 ptr
, convert_to_ptrofftype_loc (loc
, off
));
14591 /* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */
14593 fold_build_pointer_plus_hwi_loc (location_t loc
, tree ptr
, HOST_WIDE_INT off
)
14595 return fold_build2_loc (loc
, POINTER_PLUS_EXPR
, TREE_TYPE (ptr
),
14596 ptr
, size_int (off
));
14599 /* Return a pointer P to a NUL-terminated string representing the sequence
14600 of constant characters referred to by SRC (or a subsequence of such
14601 characters within it if SRC is a reference to a string plus some
14602 constant offset). If STRLEN is non-null, store the number of bytes
14603 in the string constant including the terminating NUL char. *STRLEN is
14604 typically strlen(P) + 1 in the absence of embedded NUL characters. */
14607 c_getstr (tree src
, unsigned HOST_WIDE_INT
*strlen
/* = NULL */)
14615 src
= string_constant (src
, &offset_node
, &mem_size
, NULL
);
14619 unsigned HOST_WIDE_INT offset
= 0;
14620 if (offset_node
!= NULL_TREE
)
14622 if (!tree_fits_uhwi_p (offset_node
))
14625 offset
= tree_to_uhwi (offset_node
);
14628 if (!tree_fits_uhwi_p (mem_size
))
14631 /* STRING_LENGTH is the size of the string literal, including any
14632 embedded NULs. STRING_SIZE is the size of the array the string
14633 literal is stored in. */
14634 unsigned HOST_WIDE_INT string_length
= TREE_STRING_LENGTH (src
);
14635 unsigned HOST_WIDE_INT string_size
= tree_to_uhwi (mem_size
);
14637 /* Ideally this would turn into a gcc_checking_assert over time. */
14638 if (string_length
> string_size
)
14639 string_length
= string_size
;
14641 const char *string
= TREE_STRING_POINTER (src
);
14643 /* Ideally this would turn into a gcc_checking_assert over time. */
14644 if (string_length
> string_size
)
14645 string_length
= string_size
;
14647 if (string_length
== 0
14648 || offset
>= string_size
)
14653 /* Compute and store the length of the substring at OFFSET.
14654 All offsets past the initial length refer to null strings. */
14655 if (offset
< string_length
)
14656 *strlen
= string_length
- offset
;
14662 tree eltype
= TREE_TYPE (TREE_TYPE (src
));
14663 /* Support only properly NUL-terminated single byte strings. */
14664 if (tree_to_uhwi (TYPE_SIZE_UNIT (eltype
)) != 1)
14666 if (string
[string_length
- 1] != '\0')
14670 return offset
< string_length
? string
+ offset
: "";
14673 /* Given a tree T, compute which bits in T may be nonzero. */
14676 tree_nonzero_bits (const_tree t
)
14678 switch (TREE_CODE (t
))
14681 return wi::to_wide (t
);
14683 return get_nonzero_bits (t
);
14684 case NON_LVALUE_EXPR
:
14686 return tree_nonzero_bits (TREE_OPERAND (t
, 0));
14688 return wi::bit_and (tree_nonzero_bits (TREE_OPERAND (t
, 0)),
14689 tree_nonzero_bits (TREE_OPERAND (t
, 1)));
14692 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t
, 0)),
14693 tree_nonzero_bits (TREE_OPERAND (t
, 1)));
14695 return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t
, 1)),
14696 tree_nonzero_bits (TREE_OPERAND (t
, 2)));
14698 return wide_int::from (tree_nonzero_bits (TREE_OPERAND (t
, 0)),
14699 TYPE_PRECISION (TREE_TYPE (t
)),
14700 TYPE_SIGN (TREE_TYPE (TREE_OPERAND (t
, 0))));
14702 if (INTEGRAL_TYPE_P (TREE_TYPE (t
)))
14704 wide_int nzbits1
= tree_nonzero_bits (TREE_OPERAND (t
, 0));
14705 wide_int nzbits2
= tree_nonzero_bits (TREE_OPERAND (t
, 1));
14706 if (wi::bit_and (nzbits1
, nzbits2
) == 0)
14707 return wi::bit_or (nzbits1
, nzbits2
);
14711 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
14713 tree type
= TREE_TYPE (t
);
14714 wide_int nzbits
= tree_nonzero_bits (TREE_OPERAND (t
, 0));
14715 wide_int arg1
= wi::to_wide (TREE_OPERAND (t
, 1),
14716 TYPE_PRECISION (type
));
14717 return wi::neg_p (arg1
)
14718 ? wi::rshift (nzbits
, -arg1
, TYPE_SIGN (type
))
14719 : wi::lshift (nzbits
, arg1
);
14723 if (TREE_CODE (TREE_OPERAND (t
, 1)) == INTEGER_CST
)
14725 tree type
= TREE_TYPE (t
);
14726 wide_int nzbits
= tree_nonzero_bits (TREE_OPERAND (t
, 0));
14727 wide_int arg1
= wi::to_wide (TREE_OPERAND (t
, 1),
14728 TYPE_PRECISION (type
));
14729 return wi::neg_p (arg1
)
14730 ? wi::lshift (nzbits
, -arg1
)
14731 : wi::rshift (nzbits
, arg1
, TYPE_SIGN (type
));
14738 return wi::shwi (-1, TYPE_PRECISION (TREE_TYPE (t
)));
14743 namespace selftest
{
14745 /* Helper functions for writing tests of folding trees. */
14747 /* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */
14750 assert_binop_folds_to_const (tree lhs
, enum tree_code code
, tree rhs
,
14753 ASSERT_EQ (constant
, fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
));
14756 /* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR
14757 wrapping WRAPPED_EXPR. */
14760 assert_binop_folds_to_nonlvalue (tree lhs
, enum tree_code code
, tree rhs
,
14763 tree result
= fold_build2 (code
, TREE_TYPE (lhs
), lhs
, rhs
);
14764 ASSERT_NE (wrapped_expr
, result
);
14765 ASSERT_EQ (NON_LVALUE_EXPR
, TREE_CODE (result
));
14766 ASSERT_EQ (wrapped_expr
, TREE_OPERAND (result
, 0));
14769 /* Verify that various arithmetic binary operations are folded
14773 test_arithmetic_folding ()
14775 tree type
= integer_type_node
;
14776 tree x
= create_tmp_var_raw (type
, "x");
14777 tree zero
= build_zero_cst (type
);
14778 tree one
= build_int_cst (type
, 1);
14781 /* 1 <-- (0 + 1) */
14782 assert_binop_folds_to_const (zero
, PLUS_EXPR
, one
,
14784 assert_binop_folds_to_const (one
, PLUS_EXPR
, zero
,
14787 /* (nonlvalue)x <-- (x + 0) */
14788 assert_binop_folds_to_nonlvalue (x
, PLUS_EXPR
, zero
,
14792 /* 0 <-- (x - x) */
14793 assert_binop_folds_to_const (x
, MINUS_EXPR
, x
,
14795 assert_binop_folds_to_nonlvalue (x
, MINUS_EXPR
, zero
,
14798 /* Multiplication. */
14799 /* 0 <-- (x * 0) */
14800 assert_binop_folds_to_const (x
, MULT_EXPR
, zero
,
14803 /* (nonlvalue)x <-- (x * 1) */
14804 assert_binop_folds_to_nonlvalue (x
, MULT_EXPR
, one
,
14808 /* Verify that various binary operations on vectors are folded
14812 test_vector_folding ()
14814 tree inner_type
= integer_type_node
;
14815 tree type
= build_vector_type (inner_type
, 4);
14816 tree zero
= build_zero_cst (type
);
14817 tree one
= build_one_cst (type
);
14819 /* Verify equality tests that return a scalar boolean result. */
14820 tree res_type
= boolean_type_node
;
14821 ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, one
)));
14822 ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR
, res_type
, zero
, zero
)));
14823 ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, zero
, one
)));
14824 ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR
, res_type
, one
, one
)));
14827 /* Verify folding of VEC_DUPLICATE_EXPRs. */
14830 test_vec_duplicate_folding ()
14832 scalar_int_mode int_mode
= SCALAR_INT_TYPE_MODE (ssizetype
);
14833 machine_mode vec_mode
= targetm
.vectorize
.preferred_simd_mode (int_mode
);
14834 /* This will be 1 if VEC_MODE isn't a vector mode. */
14835 poly_uint64 nunits
= GET_MODE_NUNITS (vec_mode
);
14837 tree type
= build_vector_type (ssizetype
, nunits
);
14838 tree dup5_expr
= fold_unary (VEC_DUPLICATE_EXPR
, type
, ssize_int (5));
14839 tree dup5_cst
= build_vector_from_val (type
, ssize_int (5));
14840 ASSERT_TRUE (operand_equal_p (dup5_expr
, dup5_cst
, 0));
14843 /* Run all of the selftests within this file. */
14846 fold_const_c_tests ()
14848 test_arithmetic_folding ();
14849 test_vector_folding ();
14850 test_vec_duplicate_folding ();
14853 } // namespace selftest
14855 #endif /* CHECKING_P */