mips.c (TARGET_MIN_ANCHOR_OFFSET): Delete.
[official-gcc.git] / gcc / tree-ssa-dse.c
blob3435fa3038215055b9c0f654b486c77728cec4be
1 /* Dead store elimination
2 Copyright (C) 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "ggc.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "basic-block.h"
29 #include "timevar.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "tree-pass.h"
33 #include "tree-dump.h"
34 #include "domwalk.h"
35 #include "flags.h"
37 /* This file implements dead store elimination.
39 A dead store is a store into a memory location which will later be
40 overwritten by another store without any intervening loads. In this
41 case the earlier store can be deleted.
43 In our SSA + virtual operand world we use immediate uses of virtual
44 operands to detect dead stores. If a store's virtual definition
45 is used precisely once by a later store to the same location which
46 post dominates the first store, then the first store is dead.
48 The single use of the store's virtual definition ensures that
49 there are no intervening aliased loads and the requirement that
50 the second load post dominate the first ensures that if the earlier
51 store executes, then the later stores will execute before the function
52 exits.
54 It may help to think of this as first moving the earlier store to
55 the point immediately before the later store. Again, the single
56 use of the virtual definition and the post-dominance relationship
57 ensure that such movement would be safe. Clearly if there are
58 back to back stores, then the second is redundant.
60 Reviewing section 10.7.2 in Morgan's "Building an Optimizing Compiler"
61 may also help in understanding this code since it discusses the
62 relationship between dead store and redundant load elimination. In
63 fact, they are the same transformation applied to different views of
64 the CFG. */
67 struct dse_global_data
69 /* This is the global bitmap for store statements.
71 Each statement has a unique ID. When we encounter a store statement
72 that we want to record, set the bit corresponding to the statement's
73 unique ID in this bitmap. */
74 bitmap stores;
77 /* We allocate a bitmap-per-block for stores which are encountered
78 during the scan of that block. This allows us to restore the
79 global bitmap of stores when we finish processing a block. */
80 struct dse_block_local_data
82 bitmap stores;
85 /* Basic blocks of the potentially dead store and the following
86 store, for memory_address_same. */
87 struct address_walk_data
89 basic_block store1_bb, store2_bb;
92 static bool gate_dse (void);
93 static unsigned int tree_ssa_dse (void);
94 static void dse_initialize_block_local_data (struct dom_walk_data *,
95 basic_block,
96 bool);
97 static void dse_optimize_stmt (struct dom_walk_data *,
98 basic_block,
99 block_stmt_iterator);
100 static void dse_record_phis (struct dom_walk_data *, basic_block);
101 static void dse_finalize_block (struct dom_walk_data *, basic_block);
102 static void record_voperand_set (bitmap, bitmap *, unsigned int);
104 static unsigned max_stmt_uid; /* Maximal uid of a statement. Uids to phi
105 nodes are assigned using the versions of
106 ssa names they define. */
108 /* Returns uid of statement STMT. */
110 static unsigned
111 get_stmt_uid (tree stmt)
113 if (TREE_CODE (stmt) == PHI_NODE)
114 return SSA_NAME_VERSION (PHI_RESULT (stmt)) + max_stmt_uid;
116 return stmt_ann (stmt)->uid;
119 /* Set bit UID in bitmaps GLOBAL and *LOCAL, creating *LOCAL as needed. */
121 static void
122 record_voperand_set (bitmap global, bitmap *local, unsigned int uid)
124 /* Lazily allocate the bitmap. Note that we do not get a notification
125 when the block local data structures die, so we allocate the local
126 bitmap backed by the GC system. */
127 if (*local == NULL)
128 *local = BITMAP_GGC_ALLOC ();
130 /* Set the bit in the local and global bitmaps. */
131 bitmap_set_bit (*local, uid);
132 bitmap_set_bit (global, uid);
135 /* Initialize block local data structures. */
137 static void
138 dse_initialize_block_local_data (struct dom_walk_data *walk_data,
139 basic_block bb ATTRIBUTE_UNUSED,
140 bool recycled)
142 struct dse_block_local_data *bd
143 = (struct dse_block_local_data *)
144 VEC_last (void_p, walk_data->block_data_stack);
146 /* If we are given a recycled block local data structure, ensure any
147 bitmap associated with the block is cleared. */
148 if (recycled)
150 if (bd->stores)
151 bitmap_clear (bd->stores);
155 /* Helper function for memory_address_same via walk_tree. Returns
156 non-NULL if it finds an SSA_NAME which is part of the address,
157 such that the definition of the SSA_NAME post-dominates the store
158 we want to delete but not the store that we believe makes it
159 redundant. This indicates that the address may change between
160 the two stores. */
162 static tree
163 memory_ssa_name_same (tree *expr_p, int *walk_subtrees ATTRIBUTE_UNUSED,
164 void *data)
166 struct address_walk_data *walk_data = (struct address_walk_data *) data;
167 tree expr = *expr_p;
168 tree def_stmt;
169 basic_block def_bb;
171 if (TREE_CODE (expr) != SSA_NAME)
172 return NULL_TREE;
174 /* If we've found a default definition, then there's no problem. Both
175 stores will post-dominate it. And def_bb will be NULL. */
176 if (SSA_NAME_IS_DEFAULT_DEF (expr))
177 return NULL_TREE;
179 def_stmt = SSA_NAME_DEF_STMT (expr);
180 def_bb = bb_for_stmt (def_stmt);
182 /* DEF_STMT must dominate both stores. So if it is in the same
183 basic block as one, it does not post-dominate that store. */
184 if (walk_data->store1_bb != def_bb
185 && dominated_by_p (CDI_POST_DOMINATORS, walk_data->store1_bb, def_bb))
187 if (walk_data->store2_bb == def_bb
188 || !dominated_by_p (CDI_POST_DOMINATORS, walk_data->store2_bb,
189 def_bb))
190 /* Return non-NULL to stop the walk. */
191 return def_stmt;
194 return NULL_TREE;
197 /* Return TRUE if the destination memory address in STORE1 and STORE2
198 might be modified after STORE1, before control reaches STORE2. */
200 static bool
201 memory_address_same (tree store1, tree store2)
203 struct address_walk_data walk_data;
205 walk_data.store1_bb = bb_for_stmt (store1);
206 walk_data.store2_bb = bb_for_stmt (store2);
208 return (walk_tree (&GIMPLE_STMT_OPERAND (store1, 0), memory_ssa_name_same,
209 &walk_data, NULL)
210 == NULL);
213 /* Return true if there is a stmt that kills the lhs of STMT and is in the
214 virtual def-use chain of STMT without a use inbetween the kill and STMT.
215 Returns false if no such stmt is found.
216 *FIRST_USE_P is set to the first use of the single virtual def of
217 STMT. *USE_P is set to the vop killed by *USE_STMT. */
219 static bool
220 get_kill_of_stmt_lhs (tree stmt,
221 use_operand_p * first_use_p,
222 use_operand_p * use_p, tree * use_stmt)
224 tree lhs;
226 gcc_assert (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT);
228 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
230 /* We now walk the chain of single uses of the single VDEFs.
231 We succeeded finding a kill if the lhs of the use stmt is
232 equal to the original lhs. We can keep walking to the next
233 use if there are no possible uses of the original lhs in
234 the stmt. */
237 tree use_lhs, use_rhs;
238 def_operand_p def_p;
240 /* The stmt must have a single VDEF. */
241 def_p = SINGLE_SSA_DEF_OPERAND (stmt, SSA_OP_VDEF);
242 if (def_p == NULL_DEF_OPERAND_P)
243 return false;
245 /* Get the single immediate use of the def. */
246 if (!single_imm_use (DEF_FROM_PTR (def_p), first_use_p, &stmt))
247 return false;
248 first_use_p = use_p;
250 /* If there are possible hidden uses, give up. */
251 if (TREE_CODE (stmt) != GIMPLE_MODIFY_STMT)
252 return false;
253 use_rhs = GIMPLE_STMT_OPERAND (stmt, 1);
254 if (TREE_CODE (use_rhs) == CALL_EXPR
255 || (!is_gimple_min_invariant (use_rhs)
256 && TREE_CODE (use_rhs) != SSA_NAME))
257 return false;
259 /* If the use stmts lhs matches the original lhs we have
260 found the kill, otherwise continue walking. */
261 use_lhs = GIMPLE_STMT_OPERAND (stmt, 0);
262 if (operand_equal_p (use_lhs, lhs, 0))
264 *use_stmt = stmt;
265 return true;
268 while (1);
271 /* A helper of dse_optimize_stmt.
272 Given a GIMPLE_MODIFY_STMT in STMT, check that each VDEF has one
273 use, and that one use is another VDEF clobbering the first one.
275 Return TRUE if the above conditions are met, otherwise FALSE. */
277 static bool
278 dse_possible_dead_store_p (tree stmt,
279 use_operand_p *first_use_p,
280 use_operand_p *use_p,
281 tree *use_stmt,
282 struct dse_global_data *dse_gd,
283 struct dse_block_local_data *bd)
285 ssa_op_iter op_iter;
286 bool fail = false;
287 def_operand_p var1;
288 vuse_vec_p vv;
289 tree defvar = NULL_TREE, temp;
290 tree prev_defvar = NULL_TREE;
291 stmt_ann_t ann = stmt_ann (stmt);
293 /* We want to verify that each virtual definition in STMT has
294 precisely one use and that all the virtual definitions are
295 used by the same single statement. When complete, we
296 want USE_STMT to refer to the one statement which uses
297 all of the virtual definitions from STMT. */
298 *use_stmt = NULL;
299 FOR_EACH_SSA_VDEF_OPERAND (var1, vv, stmt, op_iter)
301 defvar = DEF_FROM_PTR (var1);
303 /* If this virtual def does not have precisely one use, then
304 we will not be able to eliminate STMT. */
305 if (!has_single_use (defvar))
307 fail = true;
308 break;
311 /* Get the one and only immediate use of DEFVAR. */
312 single_imm_use (defvar, use_p, &temp);
313 gcc_assert (*use_p != NULL_USE_OPERAND_P);
314 *first_use_p = *use_p;
316 /* In the case of memory partitions, we may get:
318 # MPT.764_162 = VDEF <MPT.764_161(D)>
319 x = {};
320 # MPT.764_167 = VDEF <MPT.764_162>
321 y = {};
323 So we must make sure we're talking about the same LHS.
325 if (TREE_CODE (temp) == GIMPLE_MODIFY_STMT)
327 tree base1 = get_base_address (GIMPLE_STMT_OPERAND (stmt, 0));
328 tree base2 = get_base_address (GIMPLE_STMT_OPERAND (temp, 0));
330 while (base1 && INDIRECT_REF_P (base1))
331 base1 = TREE_OPERAND (base1, 0);
332 while (base2 && INDIRECT_REF_P (base2))
333 base2 = TREE_OPERAND (base2, 0);
335 if (base1 != base2)
337 fail = true;
338 break;
342 /* If the immediate use of DEF_VAR is not the same as the
343 previously find immediate uses, then we will not be able
344 to eliminate STMT. */
345 if (*use_stmt == NULL)
347 *use_stmt = temp;
348 prev_defvar = defvar;
350 else if (temp != *use_stmt)
352 fail = true;
353 break;
357 if (fail)
359 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
360 return false;
363 /* Skip through any PHI nodes we have already seen if the PHI
364 represents the only use of this store.
366 Note this does not handle the case where the store has
367 multiple VDEFs which all reach a set of PHI nodes in the same block. */
368 while (*use_p != NULL_USE_OPERAND_P
369 && TREE_CODE (*use_stmt) == PHI_NODE
370 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (*use_stmt)))
372 /* A PHI node can both define and use the same SSA_NAME if
373 the PHI is at the top of a loop and the PHI_RESULT is
374 a loop invariant and copies have not been fully propagated.
376 The safe thing to do is exit assuming no optimization is
377 possible. */
378 if (SSA_NAME_DEF_STMT (PHI_RESULT (*use_stmt)) == *use_stmt)
379 return false;
381 /* Skip past this PHI and loop again in case we had a PHI
382 chain. */
383 single_imm_use (PHI_RESULT (*use_stmt), use_p, use_stmt);
386 return true;
390 /* Attempt to eliminate dead stores in the statement referenced by BSI.
392 A dead store is a store into a memory location which will later be
393 overwritten by another store without any intervening loads. In this
394 case the earlier store can be deleted.
396 In our SSA + virtual operand world we use immediate uses of virtual
397 operands to detect dead stores. If a store's virtual definition
398 is used precisely once by a later store to the same location which
399 post dominates the first store, then the first store is dead. */
401 static void
402 dse_optimize_stmt (struct dom_walk_data *walk_data,
403 basic_block bb ATTRIBUTE_UNUSED,
404 block_stmt_iterator bsi)
406 struct dse_block_local_data *bd
407 = (struct dse_block_local_data *)
408 VEC_last (void_p, walk_data->block_data_stack);
409 struct dse_global_data *dse_gd
410 = (struct dse_global_data *) walk_data->global_data;
411 tree stmt = bsi_stmt (bsi);
412 stmt_ann_t ann = stmt_ann (stmt);
414 /* If this statement has no virtual defs, then there is nothing
415 to do. */
416 if (ZERO_SSA_OPERANDS (stmt, SSA_OP_VDEF))
417 return;
419 /* We know we have virtual definitions. If this is a GIMPLE_MODIFY_STMT
420 that's not also a function call, then record it into our table. */
421 if (get_call_expr_in (stmt))
422 return;
424 if (ann->has_volatile_ops)
425 return;
427 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
429 use_operand_p first_use_p = NULL_USE_OPERAND_P;
430 use_operand_p use_p = NULL;
431 tree use_stmt;
433 if (!dse_possible_dead_store_p (stmt, &first_use_p, &use_p, &use_stmt,
434 dse_gd, bd))
435 return;
437 /* If we have precisely one immediate use at this point, then we may
438 have found redundant store. Make sure that the stores are to
439 the same memory location. This includes checking that any
440 SSA-form variables in the address will have the same values. */
441 if (use_p != NULL_USE_OPERAND_P
442 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))
443 && !operand_equal_p (GIMPLE_STMT_OPERAND (stmt, 0),
444 GIMPLE_STMT_OPERAND (use_stmt, 0), 0)
445 && memory_address_same (stmt, use_stmt))
447 /* If we have precisely one immediate use at this point, but
448 the stores are not to the same memory location then walk the
449 virtual def-use chain to get the stmt which stores to that same
450 memory location. */
451 if (!get_kill_of_stmt_lhs (stmt, &first_use_p, &use_p, &use_stmt))
453 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
454 return;
458 /* If we have precisely one immediate use at this point and the
459 stores are to the same memory location or there is a chain of
460 virtual uses from stmt and the stmt which stores to that same
461 memory location, then we may have found redundant store. */
462 if (use_p != NULL_USE_OPERAND_P
463 && bitmap_bit_p (dse_gd->stores, get_stmt_uid (use_stmt))
464 && operand_equal_p (GIMPLE_STMT_OPERAND (stmt, 0),
465 GIMPLE_STMT_OPERAND (use_stmt, 0), 0)
466 && memory_address_same (stmt, use_stmt))
468 ssa_op_iter op_iter;
469 def_operand_p var1;
470 vuse_vec_p vv;
471 tree stmt_lhs;
473 if (dump_file && (dump_flags & TDF_DETAILS))
475 fprintf (dump_file, " Deleted dead store '");
476 print_generic_expr (dump_file, bsi_stmt (bsi), dump_flags);
477 fprintf (dump_file, "'\n");
480 /* Then we need to fix the operand of the consuming stmt. */
481 stmt_lhs = USE_FROM_PTR (first_use_p);
482 FOR_EACH_SSA_VDEF_OPERAND (var1, vv, stmt, op_iter)
484 tree usevar, temp;
486 single_imm_use (DEF_FROM_PTR (var1), &use_p, &temp);
487 gcc_assert (VUSE_VECT_NUM_ELEM (*vv) == 1);
488 usevar = VUSE_ELEMENT_VAR (*vv, 0);
489 SET_USE (use_p, usevar);
491 /* Make sure we propagate the ABNORMAL bit setting. */
492 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (stmt_lhs))
493 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (usevar) = 1;
496 /* Remove the dead store. */
497 bsi_remove (&bsi, true);
499 /* And release any SSA_NAMEs set in this statement back to the
500 SSA_NAME manager. */
501 release_defs (stmt);
504 record_voperand_set (dse_gd->stores, &bd->stores, ann->uid);
508 /* Record that we have seen the PHIs at the start of BB which correspond
509 to virtual operands. */
510 static void
511 dse_record_phis (struct dom_walk_data *walk_data, basic_block bb)
513 struct dse_block_local_data *bd
514 = (struct dse_block_local_data *)
515 VEC_last (void_p, walk_data->block_data_stack);
516 struct dse_global_data *dse_gd
517 = (struct dse_global_data *) walk_data->global_data;
518 tree phi;
520 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
521 if (!is_gimple_reg (PHI_RESULT (phi)))
522 record_voperand_set (dse_gd->stores,
523 &bd->stores,
524 get_stmt_uid (phi));
527 static void
528 dse_finalize_block (struct dom_walk_data *walk_data,
529 basic_block bb ATTRIBUTE_UNUSED)
531 struct dse_block_local_data *bd
532 = (struct dse_block_local_data *)
533 VEC_last (void_p, walk_data->block_data_stack);
534 struct dse_global_data *dse_gd
535 = (struct dse_global_data *) walk_data->global_data;
536 bitmap stores = dse_gd->stores;
537 unsigned int i;
538 bitmap_iterator bi;
540 /* Unwind the stores noted in this basic block. */
541 if (bd->stores)
542 EXECUTE_IF_SET_IN_BITMAP (bd->stores, 0, i, bi)
544 bitmap_clear_bit (stores, i);
548 /* Main entry point. */
550 static unsigned int
551 tree_ssa_dse (void)
553 struct dom_walk_data walk_data;
554 struct dse_global_data dse_gd;
555 basic_block bb;
557 /* Create a UID for each statement in the function. Ordering of the
558 UIDs is not important for this pass. */
559 max_stmt_uid = 0;
560 FOR_EACH_BB (bb)
562 block_stmt_iterator bsi;
564 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
565 stmt_ann (bsi_stmt (bsi))->uid = max_stmt_uid++;
568 /* We might consider making this a property of each pass so that it
569 can be [re]computed on an as-needed basis. Particularly since
570 this pass could be seen as an extension of DCE which needs post
571 dominators. */
572 calculate_dominance_info (CDI_POST_DOMINATORS);
574 /* Dead store elimination is fundamentally a walk of the post-dominator
575 tree and a backwards walk of statements within each block. */
576 walk_data.walk_stmts_backward = true;
577 walk_data.dom_direction = CDI_POST_DOMINATORS;
578 walk_data.initialize_block_local_data = dse_initialize_block_local_data;
579 walk_data.before_dom_children_before_stmts = NULL;
580 walk_data.before_dom_children_walk_stmts = dse_optimize_stmt;
581 walk_data.before_dom_children_after_stmts = dse_record_phis;
582 walk_data.after_dom_children_before_stmts = NULL;
583 walk_data.after_dom_children_walk_stmts = NULL;
584 walk_data.after_dom_children_after_stmts = dse_finalize_block;
585 walk_data.interesting_blocks = NULL;
587 walk_data.block_local_data_size = sizeof (struct dse_block_local_data);
589 /* This is the main hash table for the dead store elimination pass. */
590 dse_gd.stores = BITMAP_ALLOC (NULL);
591 walk_data.global_data = &dse_gd;
593 /* Initialize the dominator walker. */
594 init_walk_dominator_tree (&walk_data);
596 /* Recursively walk the dominator tree. */
597 walk_dominator_tree (&walk_data, EXIT_BLOCK_PTR);
599 /* Finalize the dominator walker. */
600 fini_walk_dominator_tree (&walk_data);
602 /* Release the main bitmap. */
603 BITMAP_FREE (dse_gd.stores);
605 /* For now, just wipe the post-dominator information. */
606 free_dominance_info (CDI_POST_DOMINATORS);
607 return 0;
610 static bool
611 gate_dse (void)
613 return flag_tree_dse != 0;
616 struct tree_opt_pass pass_dse = {
617 "dse", /* name */
618 gate_dse, /* gate */
619 tree_ssa_dse, /* execute */
620 NULL, /* sub */
621 NULL, /* next */
622 0, /* static_pass_number */
623 TV_TREE_DSE, /* tv_id */
624 PROP_cfg
625 | PROP_ssa
626 | PROP_alias, /* properties_required */
627 0, /* properties_provided */
628 0, /* properties_destroyed */
629 0, /* todo_flags_start */
630 TODO_dump_func
631 | TODO_ggc_collect
632 | TODO_verify_ssa, /* todo_flags_finish */
633 0 /* letter */
636 /* A very simple dead store pass eliminating write only local variables.
637 The pass does not require alias information and thus can be run before
638 inlining to quickly eliminate artifacts of some common C++ constructs. */
640 static unsigned int
641 execute_simple_dse (void)
643 block_stmt_iterator bsi;
644 basic_block bb;
645 bitmap variables_loaded = BITMAP_ALLOC (NULL);
646 unsigned int todo = 0;
648 /* Collect into VARIABLES LOADED all variables that are read in function
649 body. */
650 FOR_EACH_BB (bb)
651 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
652 if (LOADED_SYMS (bsi_stmt (bsi)))
653 bitmap_ior_into (variables_loaded,
654 LOADED_SYMS (bsi_stmt (bsi)));
656 /* Look for statements writing into the write only variables.
657 And try to remove them. */
659 FOR_EACH_BB (bb)
660 for (bsi = bsi_start (bb); !bsi_end_p (bsi);)
662 tree stmt = bsi_stmt (bsi), op;
663 bool removed = false;
664 ssa_op_iter iter;
666 if (STORED_SYMS (stmt) && TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
667 && TREE_CODE (stmt) != RETURN_EXPR
668 && !bitmap_intersect_p (STORED_SYMS (stmt), variables_loaded))
670 unsigned int i;
671 bitmap_iterator bi;
672 bool dead = true;
676 /* See if STMT only stores to write-only variables and
677 verify that there are no volatile operands. tree-ssa-operands
678 sets has_volatile_ops flag for all statements involving
679 reads and writes when aliases are not built to prevent passes
680 from removing them as dead. The flag thus has no use for us
681 and we need to look into all operands. */
683 EXECUTE_IF_SET_IN_BITMAP (STORED_SYMS (stmt), 0, i, bi)
685 tree var = referenced_var_lookup (i);
686 if (TREE_ADDRESSABLE (var)
687 || is_global_var (var)
688 || TREE_THIS_VOLATILE (var))
689 dead = false;
692 if (dead && LOADED_SYMS (stmt))
693 EXECUTE_IF_SET_IN_BITMAP (LOADED_SYMS (stmt), 0, i, bi)
694 if (TREE_THIS_VOLATILE (referenced_var_lookup (i)))
695 dead = false;
697 if (dead)
698 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_ALL_OPERANDS)
699 if (TREE_THIS_VOLATILE (op))
700 dead = false;
702 /* Look for possible occurence var = indirect_ref (...) where
703 indirect_ref itself is volatile. */
705 if (dead && TREE_THIS_VOLATILE (GIMPLE_STMT_OPERAND (stmt, 1)))
706 dead = false;
708 if (dead)
710 tree call = get_call_expr_in (stmt);
712 /* When LHS of var = call (); is dead, simplify it into
713 call (); saving one operand. */
714 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
715 && call
716 && TREE_SIDE_EFFECTS (call))
718 if (dump_file && (dump_flags & TDF_DETAILS))
720 fprintf (dump_file, "Deleted LHS of call: ");
721 print_generic_stmt (dump_file, stmt, TDF_SLIM);
722 fprintf (dump_file, "\n");
724 push_stmt_changes (bsi_stmt_ptr (bsi));
725 TREE_BLOCK (call) = TREE_BLOCK (stmt);
726 bsi_replace (&bsi, call, false);
727 maybe_clean_or_replace_eh_stmt (stmt, call);
728 mark_symbols_for_renaming (call);
729 pop_stmt_changes (bsi_stmt_ptr (bsi));
731 else
733 if (dump_file && (dump_flags & TDF_DETAILS))
735 fprintf (dump_file, " Deleted dead store '");
736 print_generic_expr (dump_file, stmt, dump_flags);
737 fprintf (dump_file, "'\n");
739 removed = true;
740 bsi_remove (&bsi, true);
741 todo |= TODO_cleanup_cfg;
743 todo |= TODO_remove_unused_locals | TODO_ggc_collect;
746 if (!removed)
747 bsi_next (&bsi);
749 BITMAP_FREE (variables_loaded);
750 return todo;
753 struct tree_opt_pass pass_simple_dse =
755 "sdse", /* name */
756 NULL, /* gate */
757 execute_simple_dse, /* execute */
758 NULL, /* sub */
759 NULL, /* next */
760 0, /* static_pass_number */
761 0, /* tv_id */
762 PROP_ssa, /* properties_required */
763 0, /* properties_provided */
764 0, /* properties_destroyed */
765 0, /* todo_flags_start */
766 TODO_dump_func, /* todo_flags_finish */
767 0 /* letter */