(TARGET_SHORT_BY_BYTES): New macro.
[official-gcc.git] / gcc / dwarfout.c
blobccf436b5d18da71584df9efdc49ea92222586b12
1 /* Output Dwarf format symbol table information from the GNU C compiler.
2 Copyright (C) 1992, 1993 Free Software Foundation, Inc.
4 Written by Ron Guilmette (rfg@netcom.com) for
5 Network Computing Devices, August, September, October, November 1990.
6 Generously contributed by NCD to the Free Software Foundation.
8 This file is part of GNU CC.
10 GNU CC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2, or (at your option)
13 any later version.
15 GNU CC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
20 You should have received a copy of the GNU General Public License
21 along with GNU CC; see the file COPYING. If not, write to
22 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
24 #include "config.h"
26 #ifdef DWARF_DEBUGGING_INFO
27 #include <stdio.h>
28 #include "dwarf.h"
29 #include "tree.h"
30 #include "flags.h"
31 #include "rtl.h"
32 #include "hard-reg-set.h"
33 #include "insn-config.h"
34 #include "reload.h"
35 #include "output.h"
36 #include "defaults.h"
38 #ifndef DWARF_VERSION
39 #define DWARF_VERSION 1
40 #endif
42 /* #define NDEBUG 1 */
43 #include "assert.h"
45 #if defined(DWARF_TIMESTAMPS)
46 #if defined(POSIX)
47 #include <time.h>
48 #else /* !defined(POSIX) */
49 #include <sys/types.h>
50 #if defined(__STDC__)
51 extern time_t time (time_t *);
52 #else /* !defined(__STDC__) */
53 extern time_t time ();
54 #endif /* !defined(__STDC__) */
55 #endif /* !defined(POSIX) */
56 #endif /* defined(DWARF_TIMESTAMPS) */
58 extern char *getpwd ();
60 extern char *index ();
61 extern char *rindex ();
63 /* IMPORTANT NOTE: Please see the file README.DWARF for important details
64 regarding the GNU implementation of Dwarf. */
66 /* NOTE: In the comments in this file, many references are made to
67 so called "Debugging Information Entries". For the sake of brevity,
68 this term is abbreviated to `DIE' throughout the remainder of this
69 file. */
71 /* Note that the implementation of C++ support herein is (as yet) unfinished.
72 If you want to try to complete it, more power to you. */
74 #if defined(__GNUC__) && (NDEBUG == 1)
75 #define inline static inline
76 #else
77 #define inline static
78 #endif
80 /* How to start an assembler comment. */
81 #ifndef ASM_COMMENT_START
82 #define ASM_COMMENT_START ";#"
83 #endif
85 /* How to print out a register name. */
86 #ifndef PRINT_REG
87 #define PRINT_REG(RTX, CODE, FILE) \
88 fprintf ((FILE), "%s", reg_names[REGNO (RTX)])
89 #endif
91 /* Define a macro which returns non-zero for any tagged type which is
92 used (directly or indirectly) in the specification of either some
93 function's return type or some formal parameter of some function.
94 We use this macro when we are operating in "terse" mode to help us
95 know what tagged types have to be represented in Dwarf (even in
96 terse mode) and which ones don't.
98 A flag bit with this meaning really should be a part of the normal
99 GCC ..._TYPE nodes, but at the moment, there is no such bit defined
100 for these nodes. For now, we have to just fake it. It it safe for
101 us to simply return zero for all complete tagged types (which will
102 get forced out anyway if they were used in the specification of some
103 formal or return type) and non-zero for all incomplete tagged types.
106 #define TYPE_USED_FOR_FUNCTION(tagged_type) (TYPE_SIZE (tagged_type) == 0)
108 extern int flag_traditional;
109 extern char *version_string;
110 extern char *language_string;
112 /* Maximum size (in bytes) of an artificially generated label. */
114 #define MAX_ARTIFICIAL_LABEL_BYTES 30
116 /* Make sure we know the sizes of the various types dwarf can describe.
117 These are only defaults. If the sizes are different for your target,
118 you should override these values by defining the appropriate symbols
119 in your tm.h file. */
121 #ifndef CHAR_TYPE_SIZE
122 #define CHAR_TYPE_SIZE BITS_PER_UNIT
123 #endif
125 #ifndef SHORT_TYPE_SIZE
126 #define SHORT_TYPE_SIZE (BITS_PER_UNIT * 2)
127 #endif
129 #ifndef INT_TYPE_SIZE
130 #define INT_TYPE_SIZE BITS_PER_WORD
131 #endif
133 #ifndef LONG_TYPE_SIZE
134 #define LONG_TYPE_SIZE BITS_PER_WORD
135 #endif
137 #ifndef LONG_LONG_TYPE_SIZE
138 #define LONG_LONG_TYPE_SIZE (BITS_PER_WORD * 2)
139 #endif
141 #ifndef WCHAR_TYPE_SIZE
142 #define WCHAR_TYPE_SIZE INT_TYPE_SIZE
143 #endif
145 #ifndef WCHAR_UNSIGNED
146 #define WCHAR_UNSIGNED 0
147 #endif
149 #ifndef FLOAT_TYPE_SIZE
150 #define FLOAT_TYPE_SIZE BITS_PER_WORD
151 #endif
153 #ifndef DOUBLE_TYPE_SIZE
154 #define DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
155 #endif
157 #ifndef LONG_DOUBLE_TYPE_SIZE
158 #define LONG_DOUBLE_TYPE_SIZE (BITS_PER_WORD * 2)
159 #endif
161 /* Structure to keep track of source filenames. */
163 struct filename_entry {
164 unsigned number;
165 char * name;
168 typedef struct filename_entry filename_entry;
170 /* Pointer to an array of elements, each one having the structure above. */
172 static filename_entry *filename_table;
174 /* Total number of entries in the table (i.e. array) pointed to by
175 `filename_table'. This is the *total* and includes both used and
176 unused slots. */
178 static unsigned ft_entries_allocated;
180 /* Number of entries in the filename_table which are actually in use. */
182 static unsigned ft_entries;
184 /* Size (in elements) of increments by which we may expand the filename
185 table. Actually, a single hunk of space of this size should be enough
186 for most typical programs. */
188 #define FT_ENTRIES_INCREMENT 64
190 /* Local pointer to the name of the main input file. Initialized in
191 dwarfout_init. */
193 static char *primary_filename;
195 /* Pointer to the most recent filename for which we produced some line info. */
197 static char *last_filename;
199 /* For Dwarf output, we must assign lexical-blocks id numbers
200 in the order in which their beginnings are encountered.
201 We output Dwarf debugging info that refers to the beginnings
202 and ends of the ranges of code for each lexical block with
203 assembler labels ..Bn and ..Bn.e, where n is the block number.
204 The labels themselves are generated in final.c, which assigns
205 numbers to the blocks in the same way. */
207 static unsigned next_block_number = 2;
209 /* Counter to generate unique names for DIEs. */
211 static unsigned next_unused_dienum = 1;
213 /* Number of the DIE which is currently being generated. */
215 static unsigned current_dienum;
217 /* Number to use for the special "pubname" label on the next DIE which
218 represents a function or data object defined in this compilation
219 unit which has "extern" linkage. */
221 static next_pubname_number = 0;
223 #define NEXT_DIE_NUM pending_sibling_stack[pending_siblings-1]
225 /* Pointer to a dynamically allocated list of pre-reserved and still
226 pending sibling DIE numbers. Note that this list will grow as needed. */
228 static unsigned *pending_sibling_stack;
230 /* Counter to keep track of the number of pre-reserved and still pending
231 sibling DIE numbers. */
233 static unsigned pending_siblings;
235 /* The currently allocated size of the above list (expressed in number of
236 list elements). */
238 static unsigned pending_siblings_allocated;
240 /* Size (in elements) of increments by which we may expand the pending
241 sibling stack. Actually, a single hunk of space of this size should
242 be enough for most typical programs. */
244 #define PENDING_SIBLINGS_INCREMENT 64
246 /* Non-zero if we are performing our file-scope finalization pass and if
247 we should force out Dwarf descriptions of any and all file-scope
248 tagged types which are still incomplete types. */
250 static int finalizing = 0;
252 /* A pointer to the base of a list of pending types which we haven't
253 generated DIEs for yet, but which we will have to come back to
254 later on. */
256 static tree *pending_types_list;
258 /* Number of elements currently allocated for the pending_types_list. */
260 static unsigned pending_types_allocated;
262 /* Number of elements of pending_types_list currently in use. */
264 static unsigned pending_types;
266 /* Size (in elements) of increments by which we may expand the pending
267 types list. Actually, a single hunk of space of this size should
268 be enough for most typical programs. */
270 #define PENDING_TYPES_INCREMENT 64
272 /* Pointer to an artificial RECORD_TYPE which we create in dwarfout_init.
273 This is used in a hack to help us get the DIEs describing types of
274 formal parameters to come *after* all of the DIEs describing the formal
275 parameters themselves. That's necessary in order to be compatible
276 with what the brain-damaged svr4 SDB debugger requires. */
278 static tree fake_containing_scope;
280 /* The number of the current function definition that we are generating
281 debugging information for. These numbers range from 1 up to the maximum
282 number of function definitions contained within the current compilation
283 unit. These numbers are used to create unique labels for various things
284 contained within various function definitions. */
286 static unsigned current_funcdef_number = 1;
288 /* A pointer to the ..._DECL node which we have most recently been working
289 on. We keep this around just in case something about it looks screwy
290 and we want to tell the user what the source coordinates for the actual
291 declaration are. */
293 static tree dwarf_last_decl;
295 /* Forward declarations for functions defined in this file. */
297 static void output_type ();
298 static void type_attribute ();
299 static void output_decls_for_scope ();
300 static void output_decl ();
301 static unsigned lookup_filename ();
303 /* Definitions of defaults for assembler-dependent names of various
304 pseudo-ops and section names.
306 Theses may be overridden in your tm.h file (if necessary) for your
307 particular assembler. The default values provided here correspond to
308 what is expected by "standard" AT&T System V.4 assemblers. */
310 #ifndef FILE_ASM_OP
311 #define FILE_ASM_OP ".file"
312 #endif
313 #ifndef VERSION_ASM_OP
314 #define VERSION_ASM_OP ".version"
315 #endif
316 #ifndef UNALIGNED_SHORT_ASM_OP
317 #define UNALIGNED_SHORT_ASM_OP ".2byte"
318 #endif
319 #ifndef UNALIGNED_INT_ASM_OP
320 #define UNALIGNED_INT_ASM_OP ".4byte"
321 #endif
322 #ifndef ASM_BYTE_OP
323 #define ASM_BYTE_OP ".byte"
324 #endif
325 #ifndef SET_ASM_OP
326 #define SET_ASM_OP ".set"
327 #endif
329 /* Pseudo-ops for pushing the current section onto the section stack (and
330 simultaneously changing to a new section) and for poping back to the
331 section we were in immediately before this one. Note that most svr4
332 assemblers only maintain a one level stack... you can push all the
333 sections you want, but you can only pop out one level. (The sparc
334 svr4 assembler is an exception to this general rule.) That's
335 OK because we only use at most one level of the section stack herein. */
337 #ifndef PUSHSECTION_ASM_OP
338 #define PUSHSECTION_ASM_OP ".section"
339 #endif
340 #ifndef POPSECTION_ASM_OP
341 #define POPSECTION_ASM_OP ".previous"
342 #endif
344 /* The default format used by the ASM_OUTPUT_PUSH_SECTION macro (see below)
345 to print the PUSHSECTION_ASM_OP and the section name. The default here
346 works for almost all svr4 assemblers, except for the sparc, where the
347 section name must be enclosed in double quotes. (See sparcv4.h.) */
349 #ifndef PUSHSECTION_FORMAT
350 #define PUSHSECTION_FORMAT "%s\t%s\n"
351 #endif
353 #ifndef DEBUG_SECTION
354 #define DEBUG_SECTION ".debug"
355 #endif
356 #ifndef LINE_SECTION
357 #define LINE_SECTION ".line"
358 #endif
359 #ifndef SFNAMES_SECTION
360 #define SFNAMES_SECTION ".debug_sfnames"
361 #endif
362 #ifndef SRCINFO_SECTION
363 #define SRCINFO_SECTION ".debug_srcinfo"
364 #endif
365 #ifndef MACINFO_SECTION
366 #define MACINFO_SECTION ".debug_macinfo"
367 #endif
368 #ifndef PUBNAMES_SECTION
369 #define PUBNAMES_SECTION ".debug_pubnames"
370 #endif
371 #ifndef ARANGES_SECTION
372 #define ARANGES_SECTION ".debug_aranges"
373 #endif
374 #ifndef TEXT_SECTION
375 #define TEXT_SECTION ".text"
376 #endif
377 #ifndef DATA_SECTION
378 #define DATA_SECTION ".data"
379 #endif
380 #ifndef DATA1_SECTION
381 #define DATA1_SECTION ".data1"
382 #endif
383 #ifndef RODATA_SECTION
384 #define RODATA_SECTION ".rodata"
385 #endif
386 #ifndef RODATA1_SECTION
387 #define RODATA1_SECTION ".rodata1"
388 #endif
389 #ifndef BSS_SECTION
390 #define BSS_SECTION ".bss"
391 #endif
393 /* Definitions of defaults for formats and names of various special
394 (artificial) labels which may be generated within this file (when
395 the -g options is used and DWARF_DEBUGGING_INFO is in effect.
397 If necessary, these may be overridden from within your tm.h file,
398 but typically, you should never need to override these.
400 These labels have been hacked (temporarily) so that they all begin with
401 a `.L' sequence so as to appease the stock sparc/svr4 assembler and the
402 stock m88k/svr4 assembler, both of which need to see .L at the start of
403 a label in order to prevent that label from going into the linker symbol
404 table). When I get time, I'll have to fix this the right way so that we
405 will use ASM_GENERATE_INTERNAL_LABEL and ASM_OUTPUT_INTERNAL_LABEL herein,
406 but that will require a rather massive set of changes. For the moment,
407 the following definitions out to produce the right results for all svr4
408 and svr3 assemblers. -- rfg
411 #ifndef TEXT_BEGIN_LABEL
412 #define TEXT_BEGIN_LABEL ".L_text_b"
413 #endif
414 #ifndef TEXT_END_LABEL
415 #define TEXT_END_LABEL ".L_text_e"
416 #endif
418 #ifndef DATA_BEGIN_LABEL
419 #define DATA_BEGIN_LABEL ".L_data_b"
420 #endif
421 #ifndef DATA_END_LABEL
422 #define DATA_END_LABEL ".L_data_e"
423 #endif
425 #ifndef DATA1_BEGIN_LABEL
426 #define DATA1_BEGIN_LABEL ".L_data1_b"
427 #endif
428 #ifndef DATA1_END_LABEL
429 #define DATA1_END_LABEL ".L_data1_e"
430 #endif
432 #ifndef RODATA_BEGIN_LABEL
433 #define RODATA_BEGIN_LABEL ".L_rodata_b"
434 #endif
435 #ifndef RODATA_END_LABEL
436 #define RODATA_END_LABEL ".L_rodata_e"
437 #endif
439 #ifndef RODATA1_BEGIN_LABEL
440 #define RODATA1_BEGIN_LABEL ".L_rodata1_b"
441 #endif
442 #ifndef RODATA1_END_LABEL
443 #define RODATA1_END_LABEL ".L_rodata1_e"
444 #endif
446 #ifndef BSS_BEGIN_LABEL
447 #define BSS_BEGIN_LABEL ".L_bss_b"
448 #endif
449 #ifndef BSS_END_LABEL
450 #define BSS_END_LABEL ".L_bss_e"
451 #endif
453 #ifndef LINE_BEGIN_LABEL
454 #define LINE_BEGIN_LABEL ".L_line_b"
455 #endif
456 #ifndef LINE_LAST_ENTRY_LABEL
457 #define LINE_LAST_ENTRY_LABEL ".L_line_last"
458 #endif
459 #ifndef LINE_END_LABEL
460 #define LINE_END_LABEL ".L_line_e"
461 #endif
463 #ifndef DEBUG_BEGIN_LABEL
464 #define DEBUG_BEGIN_LABEL ".L_debug_b"
465 #endif
466 #ifndef SFNAMES_BEGIN_LABEL
467 #define SFNAMES_BEGIN_LABEL ".L_sfnames_b"
468 #endif
469 #ifndef SRCINFO_BEGIN_LABEL
470 #define SRCINFO_BEGIN_LABEL ".L_srcinfo_b"
471 #endif
472 #ifndef MACINFO_BEGIN_LABEL
473 #define MACINFO_BEGIN_LABEL ".L_macinfo_b"
474 #endif
476 #ifndef DIE_BEGIN_LABEL_FMT
477 #define DIE_BEGIN_LABEL_FMT ".L_D%u"
478 #endif
479 #ifndef DIE_END_LABEL_FMT
480 #define DIE_END_LABEL_FMT ".L_D%u_e"
481 #endif
482 #ifndef PUB_DIE_LABEL_FMT
483 #define PUB_DIE_LABEL_FMT ".L_P%u"
484 #endif
485 #ifndef INSN_LABEL_FMT
486 #define INSN_LABEL_FMT ".L_I%u_%u"
487 #endif
488 #ifndef BLOCK_BEGIN_LABEL_FMT
489 #define BLOCK_BEGIN_LABEL_FMT ".L_B%u"
490 #endif
491 #ifndef BLOCK_END_LABEL_FMT
492 #define BLOCK_END_LABEL_FMT ".L_B%u_e"
493 #endif
494 #ifndef SS_BEGIN_LABEL_FMT
495 #define SS_BEGIN_LABEL_FMT ".L_s%u"
496 #endif
497 #ifndef SS_END_LABEL_FMT
498 #define SS_END_LABEL_FMT ".L_s%u_e"
499 #endif
500 #ifndef EE_BEGIN_LABEL_FMT
501 #define EE_BEGIN_LABEL_FMT ".L_e%u"
502 #endif
503 #ifndef EE_END_LABEL_FMT
504 #define EE_END_LABEL_FMT ".L_e%u_e"
505 #endif
506 #ifndef MT_BEGIN_LABEL_FMT
507 #define MT_BEGIN_LABEL_FMT ".L_t%u"
508 #endif
509 #ifndef MT_END_LABEL_FMT
510 #define MT_END_LABEL_FMT ".L_t%u_e"
511 #endif
512 #ifndef LOC_BEGIN_LABEL_FMT
513 #define LOC_BEGIN_LABEL_FMT ".L_l%u"
514 #endif
515 #ifndef LOC_END_LABEL_FMT
516 #define LOC_END_LABEL_FMT ".L_l%u_e"
517 #endif
518 #ifndef BOUND_BEGIN_LABEL_FMT
519 #define BOUND_BEGIN_LABEL_FMT ".L_b%u_%u_%c"
520 #endif
521 #ifndef BOUND_END_LABEL_FMT
522 #define BOUND_END_LABEL_FMT ".L_b%u_%u_%c_e"
523 #endif
524 #ifndef DERIV_BEGIN_LABEL_FMT
525 #define DERIV_BEGIN_LABEL_FMT ".L_d%u"
526 #endif
527 #ifndef DERIV_END_LABEL_FMT
528 #define DERIV_END_LABEL_FMT ".L_d%u_e"
529 #endif
530 #ifndef SL_BEGIN_LABEL_FMT
531 #define SL_BEGIN_LABEL_FMT ".L_sl%u"
532 #endif
533 #ifndef SL_END_LABEL_FMT
534 #define SL_END_LABEL_FMT ".L_sl%u_e"
535 #endif
536 #ifndef BODY_BEGIN_LABEL_FMT
537 #define BODY_BEGIN_LABEL_FMT ".L_b%u"
538 #endif
539 #ifndef BODY_END_LABEL_FMT
540 #define BODY_END_LABEL_FMT ".L_b%u_e"
541 #endif
542 #ifndef FUNC_END_LABEL_FMT
543 #define FUNC_END_LABEL_FMT ".L_f%u_e"
544 #endif
545 #ifndef TYPE_NAME_FMT
546 #define TYPE_NAME_FMT ".L_T%u"
547 #endif
548 #ifndef DECL_NAME_FMT
549 #define DECL_NAME_FMT ".L_E%u"
550 #endif
551 #ifndef LINE_CODE_LABEL_FMT
552 #define LINE_CODE_LABEL_FMT ".L_LC%u"
553 #endif
554 #ifndef SFNAMES_ENTRY_LABEL_FMT
555 #define SFNAMES_ENTRY_LABEL_FMT ".L_F%u"
556 #endif
557 #ifndef LINE_ENTRY_LABEL_FMT
558 #define LINE_ENTRY_LABEL_FMT ".L_LE%u"
559 #endif
561 /* Definitions of defaults for various types of primitive assembly language
562 output operations.
564 If necessary, these may be overridden from within your tm.h file,
565 but typically, you shouldn't need to override these. */
567 #ifndef ASM_OUTPUT_PUSH_SECTION
568 #define ASM_OUTPUT_PUSH_SECTION(FILE, SECTION) \
569 fprintf ((FILE), PUSHSECTION_FORMAT, PUSHSECTION_ASM_OP, SECTION)
570 #endif
572 #ifndef ASM_OUTPUT_POP_SECTION
573 #define ASM_OUTPUT_POP_SECTION(FILE) \
574 fprintf ((FILE), "\t%s\n", POPSECTION_ASM_OP)
575 #endif
577 #ifndef ASM_OUTPUT_SOURCE_FILENAME
578 #define ASM_OUTPUT_SOURCE_FILENAME(FILE,NAME) \
579 do { fprintf (FILE, "\t%s\t", FILE_ASM_OP); \
580 output_quoted_string (FILE, NAME); \
581 fputc ('\n', FILE); \
582 } while (0)
583 #endif
585 #ifndef ASM_OUTPUT_DWARF_DELTA2
586 #define ASM_OUTPUT_DWARF_DELTA2(FILE,LABEL1,LABEL2) \
587 do { fprintf ((FILE), "\t%s\t", UNALIGNED_SHORT_ASM_OP); \
588 assemble_name (FILE, LABEL1); \
589 fprintf (FILE, "-"); \
590 assemble_name (FILE, LABEL2); \
591 fprintf (FILE, "\n"); \
592 } while (0)
593 #endif
595 #ifndef ASM_OUTPUT_DWARF_DELTA4
596 #define ASM_OUTPUT_DWARF_DELTA4(FILE,LABEL1,LABEL2) \
597 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
598 assemble_name (FILE, LABEL1); \
599 fprintf (FILE, "-"); \
600 assemble_name (FILE, LABEL2); \
601 fprintf (FILE, "\n"); \
602 } while (0)
603 #endif
605 #ifndef ASM_OUTPUT_DWARF_TAG
606 #define ASM_OUTPUT_DWARF_TAG(FILE,TAG) \
607 do { \
608 fprintf ((FILE), "\t%s\t0x%x", \
609 UNALIGNED_SHORT_ASM_OP, (unsigned) TAG); \
610 if (flag_verbose_asm) \
611 fprintf ((FILE), "\t%s %s", \
612 ASM_COMMENT_START, dwarf_tag_name (TAG)); \
613 fputc ('\n', (FILE)); \
614 } while (0)
615 #endif
617 #ifndef ASM_OUTPUT_DWARF_ATTRIBUTE
618 #define ASM_OUTPUT_DWARF_ATTRIBUTE(FILE,ATTR) \
619 do { \
620 fprintf ((FILE), "\t%s\t0x%x", \
621 UNALIGNED_SHORT_ASM_OP, (unsigned) ATTR); \
622 if (flag_verbose_asm) \
623 fprintf ((FILE), "\t%s %s", \
624 ASM_COMMENT_START, dwarf_attr_name (ATTR)); \
625 fputc ('\n', (FILE)); \
626 } while (0)
627 #endif
629 #ifndef ASM_OUTPUT_DWARF_STACK_OP
630 #define ASM_OUTPUT_DWARF_STACK_OP(FILE,OP) \
631 do { \
632 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) OP); \
633 if (flag_verbose_asm) \
634 fprintf ((FILE), "\t%s %s", \
635 ASM_COMMENT_START, dwarf_stack_op_name (OP)); \
636 fputc ('\n', (FILE)); \
637 } while (0)
638 #endif
640 #ifndef ASM_OUTPUT_DWARF_FUND_TYPE
641 #define ASM_OUTPUT_DWARF_FUND_TYPE(FILE,FT) \
642 do { \
643 fprintf ((FILE), "\t%s\t0x%x", \
644 UNALIGNED_SHORT_ASM_OP, (unsigned) FT); \
645 if (flag_verbose_asm) \
646 fprintf ((FILE), "\t%s %s", \
647 ASM_COMMENT_START, dwarf_fund_type_name (FT)); \
648 fputc ('\n', (FILE)); \
649 } while (0)
650 #endif
652 #ifndef ASM_OUTPUT_DWARF_FMT_BYTE
653 #define ASM_OUTPUT_DWARF_FMT_BYTE(FILE,FMT) \
654 do { \
655 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) FMT); \
656 if (flag_verbose_asm) \
657 fprintf ((FILE), "\t%s %s", \
658 ASM_COMMENT_START, dwarf_fmt_byte_name (FMT)); \
659 fputc ('\n', (FILE)); \
660 } while (0)
661 #endif
663 #ifndef ASM_OUTPUT_DWARF_TYPE_MODIFIER
664 #define ASM_OUTPUT_DWARF_TYPE_MODIFIER(FILE,MOD) \
665 do { \
666 fprintf ((FILE), "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) MOD); \
667 if (flag_verbose_asm) \
668 fprintf ((FILE), "\t%s %s", \
669 ASM_COMMENT_START, dwarf_typemod_name (MOD)); \
670 fputc ('\n', (FILE)); \
671 } while (0)
672 #endif
674 #ifndef ASM_OUTPUT_DWARF_ADDR
675 #define ASM_OUTPUT_DWARF_ADDR(FILE,LABEL) \
676 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
677 assemble_name (FILE, LABEL); \
678 fprintf (FILE, "\n"); \
679 } while (0)
680 #endif
682 #ifndef ASM_OUTPUT_DWARF_ADDR_CONST
683 #define ASM_OUTPUT_DWARF_ADDR_CONST(FILE,RTX) \
684 do { \
685 fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
686 output_addr_const ((FILE), (RTX)); \
687 fputc ('\n', (FILE)); \
688 } while (0)
689 #endif
691 #ifndef ASM_OUTPUT_DWARF_REF
692 #define ASM_OUTPUT_DWARF_REF(FILE,LABEL) \
693 do { fprintf ((FILE), "\t%s\t", UNALIGNED_INT_ASM_OP); \
694 assemble_name (FILE, LABEL); \
695 fprintf (FILE, "\n"); \
696 } while (0)
697 #endif
699 #ifndef ASM_OUTPUT_DWARF_DATA1
700 #define ASM_OUTPUT_DWARF_DATA1(FILE,VALUE) \
701 fprintf ((FILE), "\t%s\t0x%x\n", ASM_BYTE_OP, VALUE)
702 #endif
704 #ifndef ASM_OUTPUT_DWARF_DATA2
705 #define ASM_OUTPUT_DWARF_DATA2(FILE,VALUE) \
706 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_SHORT_ASM_OP, (unsigned) VALUE)
707 #endif
709 #ifndef ASM_OUTPUT_DWARF_DATA4
710 #define ASM_OUTPUT_DWARF_DATA4(FILE,VALUE) \
711 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, (unsigned) VALUE)
712 #endif
714 #ifndef ASM_OUTPUT_DWARF_DATA8
715 #define ASM_OUTPUT_DWARF_DATA8(FILE,HIGH_VALUE,LOW_VALUE) \
716 do { \
717 if (WORDS_BIG_ENDIAN) \
719 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
720 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
722 else \
724 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, LOW_VALUE);\
725 fprintf ((FILE), "\t%s\t0x%x\n", UNALIGNED_INT_ASM_OP, HIGH_VALUE); \
727 } while (0)
728 #endif
730 #ifndef ASM_OUTPUT_DWARF_STRING
731 #define ASM_OUTPUT_DWARF_STRING(FILE,P) \
732 ASM_OUTPUT_ASCII ((FILE), P, strlen (P)+1)
733 #endif
735 /************************ general utility functions **************************/
737 inline char *
738 xstrdup (s)
739 register char *s;
741 register char *p = (char *) xmalloc (strlen (s) + 1);
743 strcpy (p, s);
744 return p;
747 inline int
748 is_pseudo_reg (rtl)
749 register rtx rtl;
751 return (((GET_CODE (rtl) == REG) && (REGNO (rtl) >= FIRST_PSEUDO_REGISTER))
752 || ((GET_CODE (rtl) == SUBREG)
753 && (REGNO (XEXP (rtl, 0)) >= FIRST_PSEUDO_REGISTER)));
756 inline tree
757 type_main_variant (type)
758 register tree type;
760 type = TYPE_MAIN_VARIANT (type);
762 /* There really should be only one main variant among any group of variants
763 of a given type (and all of the MAIN_VARIANT values for all members of
764 the group should point to that one type) but sometimes the C front-end
765 messes this up for array types, so we work around that bug here. */
767 if (TREE_CODE (type) == ARRAY_TYPE)
769 while (type != TYPE_MAIN_VARIANT (type))
770 type = TYPE_MAIN_VARIANT (type);
773 return type;
776 /* Return non-zero if the given type node represents a tagged type. */
778 inline int
779 is_tagged_type (type)
780 register tree type;
782 register enum tree_code code = TREE_CODE (type);
784 return (code == RECORD_TYPE || code == UNION_TYPE
785 || code == QUAL_UNION_TYPE || code == ENUMERAL_TYPE);
788 static char *
789 dwarf_tag_name (tag)
790 register unsigned tag;
792 switch (tag)
794 case TAG_padding: return "TAG_padding";
795 case TAG_array_type: return "TAG_array_type";
796 case TAG_class_type: return "TAG_class_type";
797 case TAG_entry_point: return "TAG_entry_point";
798 case TAG_enumeration_type: return "TAG_enumeration_type";
799 case TAG_formal_parameter: return "TAG_formal_parameter";
800 case TAG_global_subroutine: return "TAG_global_subroutine";
801 case TAG_global_variable: return "TAG_global_variable";
802 case TAG_label: return "TAG_label";
803 case TAG_lexical_block: return "TAG_lexical_block";
804 case TAG_local_variable: return "TAG_local_variable";
805 case TAG_member: return "TAG_member";
806 case TAG_pointer_type: return "TAG_pointer_type";
807 case TAG_reference_type: return "TAG_reference_type";
808 case TAG_compile_unit: return "TAG_compile_unit";
809 case TAG_string_type: return "TAG_string_type";
810 case TAG_structure_type: return "TAG_structure_type";
811 case TAG_subroutine: return "TAG_subroutine";
812 case TAG_subroutine_type: return "TAG_subroutine_type";
813 case TAG_typedef: return "TAG_typedef";
814 case TAG_union_type: return "TAG_union_type";
815 case TAG_unspecified_parameters: return "TAG_unspecified_parameters";
816 case TAG_variant: return "TAG_variant";
817 case TAG_common_block: return "TAG_common_block";
818 case TAG_common_inclusion: return "TAG_common_inclusion";
819 case TAG_inheritance: return "TAG_inheritance";
820 case TAG_inlined_subroutine: return "TAG_inlined_subroutine";
821 case TAG_module: return "TAG_module";
822 case TAG_ptr_to_member_type: return "TAG_ptr_to_member_type";
823 case TAG_set_type: return "TAG_set_type";
824 case TAG_subrange_type: return "TAG_subrange_type";
825 case TAG_with_stmt: return "TAG_with_stmt";
827 /* GNU extensions. */
829 case TAG_format_label: return "TAG_format_label";
830 case TAG_namelist: return "TAG_namelist";
831 case TAG_function_template: return "TAG_function_template";
832 case TAG_class_template: return "TAG_class_template";
834 default: return "TAG_<unknown>";
838 static char *
839 dwarf_attr_name (attr)
840 register unsigned attr;
842 switch (attr)
844 case AT_sibling: return "AT_sibling";
845 case AT_location: return "AT_location";
846 case AT_name: return "AT_name";
847 case AT_fund_type: return "AT_fund_type";
848 case AT_mod_fund_type: return "AT_mod_fund_type";
849 case AT_user_def_type: return "AT_user_def_type";
850 case AT_mod_u_d_type: return "AT_mod_u_d_type";
851 case AT_ordering: return "AT_ordering";
852 case AT_subscr_data: return "AT_subscr_data";
853 case AT_byte_size: return "AT_byte_size";
854 case AT_bit_offset: return "AT_bit_offset";
855 case AT_bit_size: return "AT_bit_size";
856 case AT_element_list: return "AT_element_list";
857 case AT_stmt_list: return "AT_stmt_list";
858 case AT_low_pc: return "AT_low_pc";
859 case AT_high_pc: return "AT_high_pc";
860 case AT_language: return "AT_language";
861 case AT_member: return "AT_member";
862 case AT_discr: return "AT_discr";
863 case AT_discr_value: return "AT_discr_value";
864 case AT_string_length: return "AT_string_length";
865 case AT_common_reference: return "AT_common_reference";
866 case AT_comp_dir: return "AT_comp_dir";
867 case AT_const_value_string: return "AT_const_value_string";
868 case AT_const_value_data2: return "AT_const_value_data2";
869 case AT_const_value_data4: return "AT_const_value_data4";
870 case AT_const_value_data8: return "AT_const_value_data8";
871 case AT_const_value_block2: return "AT_const_value_block2";
872 case AT_const_value_block4: return "AT_const_value_block4";
873 case AT_containing_type: return "AT_containing_type";
874 case AT_default_value_addr: return "AT_default_value_addr";
875 case AT_default_value_data2: return "AT_default_value_data2";
876 case AT_default_value_data4: return "AT_default_value_data4";
877 case AT_default_value_data8: return "AT_default_value_data8";
878 case AT_default_value_string: return "AT_default_value_string";
879 case AT_friends: return "AT_friends";
880 case AT_inline: return "AT_inline";
881 case AT_is_optional: return "AT_is_optional";
882 case AT_lower_bound_ref: return "AT_lower_bound_ref";
883 case AT_lower_bound_data2: return "AT_lower_bound_data2";
884 case AT_lower_bound_data4: return "AT_lower_bound_data4";
885 case AT_lower_bound_data8: return "AT_lower_bound_data8";
886 case AT_private: return "AT_private";
887 case AT_producer: return "AT_producer";
888 case AT_program: return "AT_program";
889 case AT_protected: return "AT_protected";
890 case AT_prototyped: return "AT_prototyped";
891 case AT_public: return "AT_public";
892 case AT_pure_virtual: return "AT_pure_virtual";
893 case AT_return_addr: return "AT_return_addr";
894 case AT_abstract_origin: return "AT_abstract_origin";
895 case AT_start_scope: return "AT_start_scope";
896 case AT_stride_size: return "AT_stride_size";
897 case AT_upper_bound_ref: return "AT_upper_bound_ref";
898 case AT_upper_bound_data2: return "AT_upper_bound_data2";
899 case AT_upper_bound_data4: return "AT_upper_bound_data4";
900 case AT_upper_bound_data8: return "AT_upper_bound_data8";
901 case AT_virtual: return "AT_virtual";
903 /* GNU extensions */
905 case AT_sf_names: return "AT_sf_names";
906 case AT_src_info: return "AT_src_info";
907 case AT_mac_info: return "AT_mac_info";
908 case AT_src_coords: return "AT_src_coords";
909 case AT_body_begin: return "AT_body_begin";
910 case AT_body_end: return "AT_body_end";
912 default: return "AT_<unknown>";
916 static char *
917 dwarf_stack_op_name (op)
918 register unsigned op;
920 switch (op)
922 case OP_REG: return "OP_REG";
923 case OP_BASEREG: return "OP_BASEREG";
924 case OP_ADDR: return "OP_ADDR";
925 case OP_CONST: return "OP_CONST";
926 case OP_DEREF2: return "OP_DEREF2";
927 case OP_DEREF4: return "OP_DEREF4";
928 case OP_ADD: return "OP_ADD";
929 default: return "OP_<unknown>";
933 static char *
934 dwarf_typemod_name (mod)
935 register unsigned mod;
937 switch (mod)
939 case MOD_pointer_to: return "MOD_pointer_to";
940 case MOD_reference_to: return "MOD_reference_to";
941 case MOD_const: return "MOD_const";
942 case MOD_volatile: return "MOD_volatile";
943 default: return "MOD_<unknown>";
947 static char *
948 dwarf_fmt_byte_name (fmt)
949 register unsigned fmt;
951 switch (fmt)
953 case FMT_FT_C_C: return "FMT_FT_C_C";
954 case FMT_FT_C_X: return "FMT_FT_C_X";
955 case FMT_FT_X_C: return "FMT_FT_X_C";
956 case FMT_FT_X_X: return "FMT_FT_X_X";
957 case FMT_UT_C_C: return "FMT_UT_C_C";
958 case FMT_UT_C_X: return "FMT_UT_C_X";
959 case FMT_UT_X_C: return "FMT_UT_X_C";
960 case FMT_UT_X_X: return "FMT_UT_X_X";
961 case FMT_ET: return "FMT_ET";
962 default: return "FMT_<unknown>";
965 static char *
966 dwarf_fund_type_name (ft)
967 register unsigned ft;
969 switch (ft)
971 case FT_char: return "FT_char";
972 case FT_signed_char: return "FT_signed_char";
973 case FT_unsigned_char: return "FT_unsigned_char";
974 case FT_short: return "FT_short";
975 case FT_signed_short: return "FT_signed_short";
976 case FT_unsigned_short: return "FT_unsigned_short";
977 case FT_integer: return "FT_integer";
978 case FT_signed_integer: return "FT_signed_integer";
979 case FT_unsigned_integer: return "FT_unsigned_integer";
980 case FT_long: return "FT_long";
981 case FT_signed_long: return "FT_signed_long";
982 case FT_unsigned_long: return "FT_unsigned_long";
983 case FT_pointer: return "FT_pointer";
984 case FT_float: return "FT_float";
985 case FT_dbl_prec_float: return "FT_dbl_prec_float";
986 case FT_ext_prec_float: return "FT_ext_prec_float";
987 case FT_complex: return "FT_complex";
988 case FT_dbl_prec_complex: return "FT_dbl_prec_complex";
989 case FT_void: return "FT_void";
990 case FT_boolean: return "FT_boolean";
991 case FT_ext_prec_complex: return "FT_ext_prec_complex";
992 case FT_label: return "FT_label";
994 /* GNU extensions. */
996 case FT_long_long: return "FT_long_long";
997 case FT_signed_long_long: return "FT_signed_long_long";
998 case FT_unsigned_long_long: return "FT_unsigned_long_long";
1000 case FT_int8: return "FT_int8";
1001 case FT_signed_int8: return "FT_signed_int8";
1002 case FT_unsigned_int8: return "FT_unsigned_int8";
1003 case FT_int16: return "FT_int16";
1004 case FT_signed_int16: return "FT_signed_int16";
1005 case FT_unsigned_int16: return "FT_unsigned_int16";
1006 case FT_int32: return "FT_int32";
1007 case FT_signed_int32: return "FT_signed_int32";
1008 case FT_unsigned_int32: return "FT_unsigned_int32";
1009 case FT_int64: return "FT_int64";
1010 case FT_signed_int64: return "FT_signed_int64";
1011 case FT_unsigned_int64: return "FT_signed_int64";
1013 case FT_real32: return "FT_real32";
1014 case FT_real64: return "FT_real64";
1015 case FT_real96: return "FT_real96";
1016 case FT_real128: return "FT_real128";
1018 default: return "FT_<unknown>";
1022 /* Determine the "ultimate origin" of a decl. The decl may be an
1023 inlined instance of an inlined instance of a decl which is local
1024 to an inline function, so we have to trace all of the way back
1025 through the origin chain to find out what sort of node actually
1026 served as the original seed for the given block. */
1028 static tree
1029 decl_ultimate_origin (decl)
1030 register tree decl;
1032 register tree immediate_origin = DECL_ABSTRACT_ORIGIN (decl);
1034 if (immediate_origin == NULL)
1035 return NULL;
1036 else
1038 register tree ret_val;
1039 register tree lookahead = immediate_origin;
1043 ret_val = lookahead;
1044 lookahead = DECL_ABSTRACT_ORIGIN (ret_val);
1046 while (lookahead != NULL && lookahead != ret_val);
1047 return ret_val;
1051 /* Determine the "ultimate origin" of a block. The block may be an
1052 inlined instance of an inlined instance of a block which is local
1053 to an inline function, so we have to trace all of the way back
1054 through the origin chain to find out what sort of node actually
1055 served as the original seed for the given block. */
1057 static tree
1058 block_ultimate_origin (block)
1059 register tree block;
1061 register tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
1063 if (immediate_origin == NULL)
1064 return NULL;
1065 else
1067 register tree ret_val;
1068 register tree lookahead = immediate_origin;
1072 ret_val = lookahead;
1073 lookahead = (TREE_CODE (ret_val) == BLOCK)
1074 ? BLOCK_ABSTRACT_ORIGIN (ret_val)
1075 : NULL;
1077 while (lookahead != NULL && lookahead != ret_val);
1078 return ret_val;
1082 static void
1083 output_unsigned_leb128 (value)
1084 register unsigned long value;
1086 register unsigned long orig_value = value;
1090 register unsigned byte = (value & 0x7f);
1092 value >>= 7;
1093 if (value != 0) /* more bytes to follow */
1094 byte |= 0x80;
1095 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1096 if (flag_verbose_asm && value == 0)
1097 fprintf (asm_out_file, "\t%s ULEB128 number - value = %u",
1098 ASM_COMMENT_START, orig_value);
1099 fputc ('\n', asm_out_file);
1101 while (value != 0);
1104 static void
1105 output_signed_leb128 (value)
1106 register long value;
1108 register long orig_value = value;
1109 register int negative = (value < 0);
1110 register int more;
1114 register unsigned byte = (value & 0x7f);
1116 value >>= 7;
1117 if (negative)
1118 value |= 0xfe000000; /* manually sign extend */
1119 if (((value == 0) && ((byte & 0x40) == 0))
1120 || ((value == -1) && ((byte & 0x40) == 1)))
1121 more = 0;
1122 else
1124 byte |= 0x80;
1125 more = 1;
1127 fprintf (asm_out_file, "\t%s\t0x%x", ASM_BYTE_OP, (unsigned) byte);
1128 if (flag_verbose_asm && more == 0)
1129 fprintf (asm_out_file, "\t%s SLEB128 number - value = %d",
1130 ASM_COMMENT_START, orig_value);
1131 fputc ('\n', asm_out_file);
1133 while (more);
1136 /**************** utility functions for attribute functions ******************/
1138 /* Given a pointer to a BLOCK node return non-zero if (and only if) the
1139 node in question represents the outermost pair of curly braces (i.e.
1140 the "body block") of a function or method.
1142 For any BLOCK node representing a "body block" of a function or method,
1143 the BLOCK_SUPERCONTEXT of the node will point to another BLOCK node
1144 which represents the outermost (function) scope for the function or
1145 method (i.e. the one which includes the formal parameters). The
1146 BLOCK_SUPERCONTEXT of *that* node in turn will point to the relevant
1147 FUNCTION_DECL node.
1150 inline int
1151 is_body_block (stmt)
1152 register tree stmt;
1154 if (TREE_CODE (stmt) == BLOCK)
1156 register tree parent = BLOCK_SUPERCONTEXT (stmt);
1158 if (TREE_CODE (parent) == BLOCK)
1160 register tree grandparent = BLOCK_SUPERCONTEXT (parent);
1162 if (TREE_CODE (grandparent) == FUNCTION_DECL)
1163 return 1;
1166 return 0;
1169 /* Given a pointer to a tree node for some type, return a Dwarf fundamental
1170 type code for the given type.
1172 This routine must only be called for GCC type nodes that correspond to
1173 Dwarf fundamental types.
1175 The current Dwarf draft specification calls for Dwarf fundamental types
1176 to accurately reflect the fact that a given type was either a "plain"
1177 integral type or an explicitly "signed" integral type. Unfortunately,
1178 we can't always do this, because GCC may already have thrown away the
1179 information about the precise way in which the type was originally
1180 specified, as in:
1182 typedef signed int my_type;
1184 struct s { my_type f; };
1186 Since we may be stuck here without enought information to do exactly
1187 what is called for in the Dwarf draft specification, we do the best
1188 that we can under the circumstances and always use the "plain" integral
1189 fundamental type codes for int, short, and long types. That's probably
1190 good enough. The additional accuracy called for in the current DWARF
1191 draft specification is probably never even useful in practice. */
1193 static int
1194 fundamental_type_code (type)
1195 register tree type;
1197 if (TREE_CODE (type) == ERROR_MARK)
1198 return 0;
1200 switch (TREE_CODE (type))
1202 case ERROR_MARK:
1203 return FT_void;
1205 case VOID_TYPE:
1206 return FT_void;
1208 case INTEGER_TYPE:
1209 /* Carefully distinguish all the standard types of C,
1210 without messing up if the language is not C.
1211 Note that we check only for the names that contain spaces;
1212 other names might occur by coincidence in other languages. */
1213 if (TYPE_NAME (type) != 0
1214 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1215 && DECL_NAME (TYPE_NAME (type)) != 0
1216 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1218 char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1220 if (!strcmp (name, "unsigned char"))
1221 return FT_unsigned_char;
1222 if (!strcmp (name, "signed char"))
1223 return FT_signed_char;
1224 if (!strcmp (name, "unsigned int"))
1225 return FT_unsigned_integer;
1226 if (!strcmp (name, "short int"))
1227 return FT_short;
1228 if (!strcmp (name, "short unsigned int"))
1229 return FT_unsigned_short;
1230 if (!strcmp (name, "long int"))
1231 return FT_long;
1232 if (!strcmp (name, "long unsigned int"))
1233 return FT_unsigned_long;
1234 if (!strcmp (name, "long long int"))
1235 return FT_long_long; /* Not grok'ed by svr4 SDB */
1236 if (!strcmp (name, "long long unsigned int"))
1237 return FT_unsigned_long_long; /* Not grok'ed by svr4 SDB */
1240 /* Most integer types will be sorted out above, however, for the
1241 sake of special `array index' integer types, the following code
1242 is also provided. */
1244 if (TYPE_PRECISION (type) == INT_TYPE_SIZE)
1245 return (TREE_UNSIGNED (type) ? FT_unsigned_integer : FT_integer);
1247 if (TYPE_PRECISION (type) == LONG_TYPE_SIZE)
1248 return (TREE_UNSIGNED (type) ? FT_unsigned_long : FT_long);
1250 if (TYPE_PRECISION (type) == LONG_LONG_TYPE_SIZE)
1251 return (TREE_UNSIGNED (type) ? FT_unsigned_long_long : FT_long_long);
1253 if (TYPE_PRECISION (type) == SHORT_TYPE_SIZE)
1254 return (TREE_UNSIGNED (type) ? FT_unsigned_short : FT_short);
1256 if (TYPE_PRECISION (type) == CHAR_TYPE_SIZE)
1257 return (TREE_UNSIGNED (type) ? FT_unsigned_char : FT_char);
1259 abort ();
1261 case REAL_TYPE:
1262 /* Carefully distinguish all the standard types of C,
1263 without messing up if the language is not C. */
1264 if (TYPE_NAME (type) != 0
1265 && TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1266 && DECL_NAME (TYPE_NAME (type)) != 0
1267 && TREE_CODE (DECL_NAME (TYPE_NAME (type))) == IDENTIFIER_NODE)
1269 char *name = IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1271 /* Note that here we can run afowl of a serious bug in "classic"
1272 svr4 SDB debuggers. They don't seem to understand the
1273 FT_ext_prec_float type (even though they should). */
1275 if (!strcmp (name, "long double"))
1276 return FT_ext_prec_float;
1279 if (TYPE_PRECISION (type) == DOUBLE_TYPE_SIZE)
1280 return FT_dbl_prec_float;
1281 if (TYPE_PRECISION (type) == FLOAT_TYPE_SIZE)
1282 return FT_float;
1284 /* Note that here we can run afowl of a serious bug in "classic"
1285 svr4 SDB debuggers. They don't seem to understand the
1286 FT_ext_prec_float type (even though they should). */
1288 if (TYPE_PRECISION (type) == LONG_DOUBLE_TYPE_SIZE)
1289 return FT_ext_prec_float;
1290 abort ();
1292 case COMPLEX_TYPE:
1293 return FT_complex; /* GNU FORTRAN COMPLEX type. */
1295 case CHAR_TYPE:
1296 return FT_char; /* GNU Pascal CHAR type. Not used in C. */
1298 case BOOLEAN_TYPE:
1299 return FT_boolean; /* GNU FORTRAN BOOLEAN type. */
1301 default:
1302 abort (); /* No other TREE_CODEs are Dwarf fundamental types. */
1304 return 0;
1307 /* Given a pointer to an arbitrary ..._TYPE tree node, return a pointer to
1308 the Dwarf "root" type for the given input type. The Dwarf "root" type
1309 of a given type is generally the same as the given type, except that if
1310 the given type is a pointer or reference type, then the root type of
1311 the given type is the root type of the "basis" type for the pointer or
1312 reference type. (This definition of the "root" type is recursive.)
1313 Also, the root type of a `const' qualified type or a `volatile'
1314 qualified type is the root type of the given type without the
1315 qualifiers. */
1317 static tree
1318 root_type (type)
1319 register tree type;
1321 if (TREE_CODE (type) == ERROR_MARK)
1322 return error_mark_node;
1324 switch (TREE_CODE (type))
1326 case ERROR_MARK:
1327 return error_mark_node;
1329 case POINTER_TYPE:
1330 case REFERENCE_TYPE:
1331 return type_main_variant (root_type (TREE_TYPE (type)));
1333 default:
1334 return type_main_variant (type);
1338 /* Given a pointer to an arbitrary ..._TYPE tree node, write out a sequence
1339 of zero or more Dwarf "type-modifier" bytes applicable to the type. */
1341 static void
1342 write_modifier_bytes (type, decl_const, decl_volatile)
1343 register tree type;
1344 register int decl_const;
1345 register int decl_volatile;
1347 if (TREE_CODE (type) == ERROR_MARK)
1348 return;
1350 if (TYPE_READONLY (type) || decl_const)
1351 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_const);
1352 if (TYPE_VOLATILE (type) || decl_volatile)
1353 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_volatile);
1354 switch (TREE_CODE (type))
1356 case POINTER_TYPE:
1357 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_pointer_to);
1358 write_modifier_bytes (TREE_TYPE (type), 0, 0);
1359 return;
1361 case REFERENCE_TYPE:
1362 ASM_OUTPUT_DWARF_TYPE_MODIFIER (asm_out_file, MOD_reference_to);
1363 write_modifier_bytes (TREE_TYPE (type), 0, 0);
1364 return;
1366 case ERROR_MARK:
1367 default:
1368 return;
1372 /* Given a pointer to an arbitrary ..._TYPE tree node, return non-zero if the
1373 given input type is a Dwarf "fundamental" type. Otherwise return zero. */
1375 inline int
1376 type_is_fundamental (type)
1377 register tree type;
1379 switch (TREE_CODE (type))
1381 case ERROR_MARK:
1382 case VOID_TYPE:
1383 case INTEGER_TYPE:
1384 case REAL_TYPE:
1385 case COMPLEX_TYPE:
1386 case BOOLEAN_TYPE:
1387 case CHAR_TYPE:
1388 return 1;
1390 case SET_TYPE:
1391 case ARRAY_TYPE:
1392 case RECORD_TYPE:
1393 case UNION_TYPE:
1394 case QUAL_UNION_TYPE:
1395 case ENUMERAL_TYPE:
1396 case FUNCTION_TYPE:
1397 case METHOD_TYPE:
1398 case POINTER_TYPE:
1399 case REFERENCE_TYPE:
1400 case FILE_TYPE:
1401 case OFFSET_TYPE:
1402 case LANG_TYPE:
1403 return 0;
1405 default:
1406 abort ();
1408 return 0;
1411 /* Given a pointer to some ..._DECL tree node, generate an assembly language
1412 equate directive which will associate a symbolic name with the current DIE.
1414 The name used is an artificial label generated from the DECL_UID number
1415 associated with the given decl node. The name it gets equated to is the
1416 symbolic label that we (previously) output at the start of the DIE that
1417 we are currently generating.
1419 Calling this function while generating some "decl related" form of DIE
1420 makes it possible to later refer to the DIE which represents the given
1421 decl simply by re-generating the symbolic name from the ..._DECL node's
1422 UID number. */
1424 static void
1425 equate_decl_number_to_die_number (decl)
1426 register tree decl;
1428 /* In the case where we are generating a DIE for some ..._DECL node
1429 which represents either some inline function declaration or some
1430 entity declared within an inline function declaration/definition,
1431 setup a symbolic name for the current DIE so that we have a name
1432 for this DIE that we can easily refer to later on within
1433 AT_abstract_origin attributes. */
1435 char decl_label[MAX_ARTIFICIAL_LABEL_BYTES];
1436 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1438 sprintf (decl_label, DECL_NAME_FMT, DECL_UID (decl));
1439 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1440 ASM_OUTPUT_DEF (asm_out_file, decl_label, die_label);
1443 /* Given a pointer to some ..._TYPE tree node, generate an assembly language
1444 equate directive which will associate a symbolic name with the current DIE.
1446 The name used is an artificial label generated from the TYPE_UID number
1447 associated with the given type node. The name it gets equated to is the
1448 symbolic label that we (previously) output at the start of the DIE that
1449 we are currently generating.
1451 Calling this function while generating some "type related" form of DIE
1452 makes it easy to later refer to the DIE which represents the given type
1453 simply by re-generating the alternative name from the ..._TYPE node's
1454 UID number. */
1456 inline void
1457 equate_type_number_to_die_number (type)
1458 register tree type;
1460 char type_label[MAX_ARTIFICIAL_LABEL_BYTES];
1461 char die_label[MAX_ARTIFICIAL_LABEL_BYTES];
1463 /* We are generating a DIE to represent the main variant of this type
1464 (i.e the type without any const or volatile qualifiers) so in order
1465 to get the equate to come out right, we need to get the main variant
1466 itself here. */
1468 type = type_main_variant (type);
1470 sprintf (type_label, TYPE_NAME_FMT, TYPE_UID (type));
1471 sprintf (die_label, DIE_BEGIN_LABEL_FMT, current_dienum);
1472 ASM_OUTPUT_DEF (asm_out_file, type_label, die_label);
1475 static void
1476 output_reg_number (rtl)
1477 register rtx rtl;
1479 register unsigned regno = REGNO (rtl);
1481 if (regno >= FIRST_PSEUDO_REGISTER)
1483 warning_with_decl (dwarf_last_decl, "internal regno botch: regno = %d\n",
1484 regno);
1485 regno = 0;
1487 fprintf (asm_out_file, "\t%s\t0x%x",
1488 UNALIGNED_INT_ASM_OP, DBX_REGISTER_NUMBER (regno));
1489 if (flag_verbose_asm)
1491 fprintf (asm_out_file, "\t%s ", ASM_COMMENT_START);
1492 PRINT_REG (rtl, 0, asm_out_file);
1494 fputc ('\n', asm_out_file);
1497 /* The following routine is a nice and simple transducer. It converts the
1498 RTL for a variable or parameter (resident in memory) into an equivalent
1499 Dwarf representation of a mechanism for getting the address of that same
1500 variable onto the top of a hypothetical "address evaluation" stack.
1502 When creating memory location descriptors, we are effectively trans-
1503 forming the RTL for a memory-resident object into its Dwarf postfix
1504 expression equivalent. This routine just recursively descends an
1505 RTL tree, turning it into Dwarf postfix code as it goes. */
1507 static void
1508 output_mem_loc_descriptor (rtl)
1509 register rtx rtl;
1511 /* Note that for a dynamically sized array, the location we will
1512 generate a description of here will be the lowest numbered location
1513 which is actually within the array. That's *not* necessarily the
1514 same as the zeroth element of the array. */
1516 switch (GET_CODE (rtl))
1518 case SUBREG:
1520 /* The case of a subreg may arise when we have a local (register)
1521 variable or a formal (register) parameter which doesn't quite
1522 fill up an entire register. For now, just assume that it is
1523 legitimate to make the Dwarf info refer to the whole register
1524 which contains the given subreg. */
1526 rtl = XEXP (rtl, 0);
1527 /* Drop thru. */
1529 case REG:
1531 /* Whenever a register number forms a part of the description of
1532 the method for calculating the (dynamic) address of a memory
1533 resident object, DWARF rules require the register number to
1534 be referred to as a "base register". This distinction is not
1535 based in any way upon what category of register the hardware
1536 believes the given register belongs to. This is strictly
1537 DWARF terminology we're dealing with here.
1539 Note that in cases where the location of a memory-resident data
1540 object could be expressed as:
1542 OP_ADD (OP_BASEREG (basereg), OP_CONST (0))
1544 the actual DWARF location descriptor that we generate may just
1545 be OP_BASEREG (basereg). This may look deceptively like the
1546 object in question was allocated to a register (rather than
1547 in memory) so DWARF consumers need to be aware of the subtle
1548 distinction between OP_REG and OP_BASEREG. */
1550 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_BASEREG);
1551 output_reg_number (rtl);
1552 break;
1554 case MEM:
1555 output_mem_loc_descriptor (XEXP (rtl, 0));
1556 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_DEREF4);
1557 break;
1559 case CONST:
1560 case SYMBOL_REF:
1561 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADDR);
1562 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
1563 break;
1565 case PLUS:
1566 output_mem_loc_descriptor (XEXP (rtl, 0));
1567 output_mem_loc_descriptor (XEXP (rtl, 1));
1568 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
1569 break;
1571 case CONST_INT:
1572 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
1573 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, INTVAL (rtl));
1574 break;
1576 default:
1577 abort ();
1581 /* Output a proper Dwarf location descriptor for a variable or parameter
1582 which is either allocated in a register or in a memory location. For
1583 a register, we just generate an OP_REG and the register number. For a
1584 memory location we provide a Dwarf postfix expression describing how to
1585 generate the (dynamic) address of the object onto the address stack. */
1587 static void
1588 output_loc_descriptor (rtl)
1589 register rtx rtl;
1591 switch (GET_CODE (rtl))
1593 case SUBREG:
1595 /* The case of a subreg may arise when we have a local (register)
1596 variable or a formal (register) parameter which doesn't quite
1597 fill up an entire register. For now, just assume that it is
1598 legitimate to make the Dwarf info refer to the whole register
1599 which contains the given subreg. */
1601 rtl = XEXP (rtl, 0);
1602 /* Drop thru. */
1604 case REG:
1605 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_REG);
1606 output_reg_number (rtl);
1607 break;
1609 case MEM:
1610 output_mem_loc_descriptor (XEXP (rtl, 0));
1611 break;
1613 default:
1614 abort (); /* Should never happen */
1618 /* Given a tree node describing an array bound (either lower or upper)
1619 output a representation for that bound. */
1621 static void
1622 output_bound_representation (bound, dim_num, u_or_l)
1623 register tree bound;
1624 register unsigned dim_num; /* For multi-dimensional arrays. */
1625 register char u_or_l; /* Designates upper or lower bound. */
1627 switch (TREE_CODE (bound))
1630 case ERROR_MARK:
1631 return;
1633 /* All fixed-bounds are represented by INTEGER_CST nodes. */
1635 case INTEGER_CST:
1636 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1637 (unsigned) TREE_INT_CST_LOW (bound));
1638 break;
1640 /* Dynamic bounds may be represented by NOP_EXPR nodes containing
1641 SAVE_EXPR nodes. */
1643 case NOP_EXPR:
1644 bound = TREE_OPERAND (bound, 0);
1645 /* ... fall thru... */
1647 case SAVE_EXPR:
1649 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
1650 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
1652 sprintf (begin_label, BOUND_BEGIN_LABEL_FMT,
1653 current_dienum, dim_num, u_or_l);
1655 sprintf (end_label, BOUND_END_LABEL_FMT,
1656 current_dienum, dim_num, u_or_l);
1658 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
1659 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
1661 /* If we are working on a bound for a dynamic dimension in C,
1662 the dynamic dimension in question had better have a static
1663 (zero) lower bound and a dynamic *upper* bound. */
1665 if (u_or_l != 'u')
1666 abort ();
1668 /* If optimization is turned on, the SAVE_EXPRs that describe
1669 how to access the upper bound values are essentially bogus.
1670 They only describe (at best) how to get at these values at
1671 the points in the generated code right after they have just
1672 been computed. Worse yet, in the typical case, the upper
1673 bound values will not even *be* computed in the optimized
1674 code, so these SAVE_EXPRs are entirely bogus.
1676 In order to compensate for this fact, we check here to see
1677 if optimization is enabled, and if so, we effectively create
1678 an empty location description for the (unknown and unknowable)
1679 upper bound.
1681 This should not cause too much trouble for existing (stupid?)
1682 debuggers because they have to deal with empty upper bounds
1683 location descriptions anyway in order to be able to deal with
1684 incomplete array types.
1686 Of course an intelligent debugger (GDB?) should be able to
1687 comprehend that a missing upper bound specification in a
1688 array type used for a storage class `auto' local array variable
1689 indicates that the upper bound is both unknown (at compile-
1690 time) and unknowable (at run-time) due to optimization.
1693 if (! optimize)
1694 output_loc_descriptor
1695 (eliminate_regs (SAVE_EXPR_RTL (bound), 0, NULL_RTX));
1697 ASM_OUTPUT_LABEL (asm_out_file, end_label);
1699 break;
1701 default:
1702 abort ();
1706 /* Recursive function to output a sequence of value/name pairs for
1707 enumeration constants in reversed order. This is called from
1708 enumeration_type_die. */
1710 static void
1711 output_enumeral_list (link)
1712 register tree link;
1714 if (link)
1716 output_enumeral_list (TREE_CHAIN (link));
1717 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
1718 (unsigned) TREE_INT_CST_LOW (TREE_VALUE (link)));
1719 ASM_OUTPUT_DWARF_STRING (asm_out_file,
1720 IDENTIFIER_POINTER (TREE_PURPOSE (link)));
1724 /* Given an unsigned value, round it up to the lowest multiple of `boundary'
1725 which is not less than the value itself. */
1727 inline unsigned
1728 ceiling (value, boundary)
1729 register unsigned value;
1730 register unsigned boundary;
1732 return (((value + boundary - 1) / boundary) * boundary);
1735 /* Given a pointer to what is assumed to be a FIELD_DECL node, return a
1736 pointer to the declared type for the relevant field variable, or return
1737 `integer_type_node' if the given node turns out to be an ERROR_MARK node. */
1739 inline tree
1740 field_type (decl)
1741 register tree decl;
1743 register tree type;
1745 if (TREE_CODE (decl) == ERROR_MARK)
1746 return integer_type_node;
1748 type = DECL_BIT_FIELD_TYPE (decl);
1749 if (type == NULL)
1750 type = TREE_TYPE (decl);
1751 return type;
1754 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1755 node, return the alignment in bits for the type, or else return
1756 BITS_PER_WORD if the node actually turns out to be an ERROR_MARK node. */
1758 inline unsigned
1759 simple_type_align_in_bits (type)
1760 register tree type;
1762 return (TREE_CODE (type) != ERROR_MARK) ? TYPE_ALIGN (type) : BITS_PER_WORD;
1765 /* Given a pointer to a tree node, assumed to be some kind of a ..._TYPE
1766 node, return the size in bits for the type if it is a constant, or
1767 else return the alignment for the type if the type's size is not
1768 constant, or else return BITS_PER_WORD if the type actually turns out
1769 to be an ERROR_MARK node. */
1771 inline unsigned
1772 simple_type_size_in_bits (type)
1773 register tree type;
1775 if (TREE_CODE (type) == ERROR_MARK)
1776 return BITS_PER_WORD;
1777 else
1779 register tree type_size_tree = TYPE_SIZE (type);
1781 if (TREE_CODE (type_size_tree) != INTEGER_CST)
1782 return TYPE_ALIGN (type);
1784 return (unsigned) TREE_INT_CST_LOW (type_size_tree);
1788 /* Given a pointer to what is assumed to be a FIELD_DECL node, compute and
1789 return the byte offset of the lowest addressed byte of the "containing
1790 object" for the given FIELD_DECL, or return 0 if we are unable to deter-
1791 mine what that offset is, either because the argument turns out to be a
1792 pointer to an ERROR_MARK node, or because the offset is actually variable.
1793 (We can't handle the latter case just yet.) */
1795 static unsigned
1796 field_byte_offset (decl)
1797 register tree decl;
1799 register unsigned type_align_in_bytes;
1800 register unsigned type_align_in_bits;
1801 register unsigned type_size_in_bits;
1802 register unsigned object_offset_in_align_units;
1803 register unsigned object_offset_in_bits;
1804 register unsigned object_offset_in_bytes;
1805 register tree type;
1806 register tree bitpos_tree;
1807 register tree field_size_tree;
1808 register unsigned bitpos_int;
1809 register unsigned deepest_bitpos;
1810 register unsigned field_size_in_bits;
1812 if (TREE_CODE (decl) == ERROR_MARK)
1813 return 0;
1815 if (TREE_CODE (decl) != FIELD_DECL)
1816 abort ();
1818 type = field_type (decl);
1820 bitpos_tree = DECL_FIELD_BITPOS (decl);
1821 field_size_tree = DECL_SIZE (decl);
1823 /* We cannot yet cope with fields whose positions or sizes are variable,
1824 so for now, when we see such things, we simply return 0. Someday,
1825 we may be able to handle such cases, but it will be damn difficult. */
1827 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
1828 return 0;
1829 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
1831 if (TREE_CODE (field_size_tree) != INTEGER_CST)
1832 return 0;
1833 field_size_in_bits = (unsigned) TREE_INT_CST_LOW (field_size_tree);
1835 type_size_in_bits = simple_type_size_in_bits (type);
1837 type_align_in_bits = simple_type_align_in_bits (type);
1838 type_align_in_bytes = type_align_in_bits / BITS_PER_UNIT;
1840 /* Note that the GCC front-end doesn't make any attempt to keep track
1841 of the starting bit offset (relative to the start of the containing
1842 structure type) of the hypothetical "containing object" for a bit-
1843 field. Thus, when computing the byte offset value for the start of
1844 the "containing object" of a bit-field, we must deduce this infor-
1845 mation on our own.
1847 This can be rather tricky to do in some cases. For example, handling
1848 the following structure type definition when compiling for an i386/i486
1849 target (which only aligns long long's to 32-bit boundaries) can be very
1850 tricky:
1852 struct S {
1853 int field1;
1854 long long field2:31;
1857 Fortunately, there is a simple rule-of-thumb which can be used in such
1858 cases. When compiling for an i386/i486, GCC will allocate 8 bytes for
1859 the structure shown above. It decides to do this based upon one simple
1860 rule for bit-field allocation. Quite simply, GCC allocates each "con-
1861 taining object" for each bit-field at the first (i.e. lowest addressed)
1862 legitimate alignment boundary (based upon the required minimum alignment
1863 for the declared type of the field) which it can possibly use, subject
1864 to the condition that there is still enough available space remaining
1865 in the containing object (when allocated at the selected point) to
1866 fully accommodate all of the bits of the bit-field itself.
1868 This simple rule makes it obvious why GCC allocates 8 bytes for each
1869 object of the structure type shown above. When looking for a place to
1870 allocate the "containing object" for `field2', the compiler simply tries
1871 to allocate a 64-bit "containing object" at each successive 32-bit
1872 boundary (starting at zero) until it finds a place to allocate that 64-
1873 bit field such that at least 31 contiguous (and previously unallocated)
1874 bits remain within that selected 64 bit field. (As it turns out, for
1875 the example above, the compiler finds that it is OK to allocate the
1876 "containing object" 64-bit field at bit-offset zero within the
1877 structure type.)
1879 Here we attempt to work backwards from the limited set of facts we're
1880 given, and we try to deduce from those facts, where GCC must have
1881 believed that the containing object started (within the structure type).
1883 The value we deduce is then used (by the callers of this routine) to
1884 generate AT_location and AT_bit_offset attributes for fields (both
1885 bit-fields and, in the case of AT_location, regular fields as well).
1888 /* Figure out the bit-distance from the start of the structure to the
1889 "deepest" bit of the bit-field. */
1890 deepest_bitpos = bitpos_int + field_size_in_bits;
1892 /* This is the tricky part. Use some fancy footwork to deduce where the
1893 lowest addressed bit of the containing object must be. */
1894 object_offset_in_bits
1895 = ceiling (deepest_bitpos, type_align_in_bits) - type_size_in_bits;
1897 /* Compute the offset of the containing object in "alignment units". */
1898 object_offset_in_align_units = object_offset_in_bits / type_align_in_bits;
1900 /* Compute the offset of the containing object in bytes. */
1901 object_offset_in_bytes = object_offset_in_align_units * type_align_in_bytes;
1903 return object_offset_in_bytes;
1906 /****************************** attributes *********************************/
1908 /* The following routines are responsible for writing out the various types
1909 of Dwarf attributes (and any following data bytes associated with them).
1910 These routines are listed in order based on the numerical codes of their
1911 associated attributes. */
1913 /* Generate an AT_sibling attribute. */
1915 inline void
1916 sibling_attribute ()
1918 char label[MAX_ARTIFICIAL_LABEL_BYTES];
1920 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sibling);
1921 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
1922 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
1925 /* Output the form of location attributes suitable for whole variables and
1926 whole parameters. Note that the location attributes for struct fields
1927 are generated by the routine `data_member_location_attribute' below. */
1929 static void
1930 location_attribute (rtl)
1931 register rtx rtl;
1933 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
1934 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
1936 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
1937 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
1938 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
1939 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
1940 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
1942 /* Handle a special case. If we are about to output a location descriptor
1943 for a variable or parameter which has been optimized out of existence,
1944 don't do that. Instead we output a zero-length location descriptor
1945 value as part of the location attribute.
1947 A variable which has been optimized out of existence will have a
1948 DECL_RTL value which denotes a pseudo-reg.
1950 Currently, in some rare cases, variables can have DECL_RTL values
1951 which look like (MEM (REG pseudo-reg#)). These cases are due to
1952 bugs elsewhere in the compiler. We treat such cases
1953 as if the variable(s) in question had been optimized out of existence.
1955 Note that in all cases where we wish to express the fact that a
1956 variable has been optimized out of existence, we do not simply
1957 suppress the generation of the entire location attribute because
1958 the absence of a location attribute in certain kinds of DIEs is
1959 used to indicate something else entirely... i.e. that the DIE
1960 represents an object declaration, but not a definition. So sayeth
1961 the PLSIG.
1964 if (! is_pseudo_reg (rtl)
1965 && (GET_CODE (rtl) != MEM || ! is_pseudo_reg (XEXP (rtl, 0))))
1966 output_loc_descriptor (eliminate_regs (rtl, 0, NULL_RTX));
1968 ASM_OUTPUT_LABEL (asm_out_file, end_label);
1971 /* Output the specialized form of location attribute used for data members
1972 of struct and union types.
1974 In the special case of a FIELD_DECL node which represents a bit-field,
1975 the "offset" part of this special location descriptor must indicate the
1976 distance in bytes from the lowest-addressed byte of the containing
1977 struct or union type to the lowest-addressed byte of the "containing
1978 object" for the bit-field. (See the `field_byte_offset' function above.)
1980 For any given bit-field, the "containing object" is a hypothetical
1981 object (of some integral or enum type) within which the given bit-field
1982 lives. The type of this hypothetical "containing object" is always the
1983 same as the declared type of the individual bit-field itself (for GCC
1984 anyway... the DWARF spec doesn't actually mandate this).
1986 Note that it is the size (in bytes) of the hypothetical "containing
1987 object" which will be given in the AT_byte_size attribute for this
1988 bit-field. (See the `byte_size_attribute' function below.) It is
1989 also used when calculating the value of the AT_bit_offset attribute.
1990 (See the `bit_offset_attribute' function below.)
1993 static void
1994 data_member_location_attribute (decl)
1995 register tree decl;
1997 register unsigned object_offset_in_bytes = field_byte_offset (decl);
1998 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
1999 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2001 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_location);
2002 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2003 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2004 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2005 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2006 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_CONST);
2007 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, object_offset_in_bytes);
2008 ASM_OUTPUT_DWARF_STACK_OP (asm_out_file, OP_ADD);
2009 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2012 /* Output an AT_const_value attribute for a variable or a parameter which
2013 does not have a "location" either in memory or in a register. These
2014 things can arise in GNU C when a constant is passed as an actual
2015 parameter to an inlined function. They can also arise in C++ where
2016 declared constants do not necessarily get memory "homes". */
2018 static void
2019 const_value_attribute (rtl)
2020 register rtx rtl;
2022 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2023 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2025 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_const_value_block4);
2026 sprintf (begin_label, LOC_BEGIN_LABEL_FMT, current_dienum);
2027 sprintf (end_label, LOC_END_LABEL_FMT, current_dienum);
2028 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2029 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2031 switch (GET_CODE (rtl))
2033 case CONST_INT:
2034 /* Note that a CONST_INT rtx could represent either an integer or
2035 a floating-point constant. A CONST_INT is used whenever the
2036 constant will fit into a single word. In all such cases, the
2037 original mode of the constant value is wiped out, and the
2038 CONST_INT rtx is assigned VOIDmode. Since we no longer have
2039 precise mode information for these constants, we always just
2040 output them using 4 bytes. */
2042 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, (unsigned) INTVAL (rtl));
2043 break;
2045 case CONST_DOUBLE:
2046 /* Note that a CONST_DOUBLE rtx could represent either an integer
2047 or a floating-point constant. A CONST_DOUBLE is used whenever
2048 the constant requires more than one word in order to be adequately
2049 represented. In all such cases, the original mode of the constant
2050 value is preserved as the mode of the CONST_DOUBLE rtx, but for
2051 simplicity we always just output CONST_DOUBLEs using 8 bytes. */
2053 ASM_OUTPUT_DWARF_DATA8 (asm_out_file,
2054 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (rtl),
2055 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (rtl));
2056 break;
2058 case CONST_STRING:
2059 ASM_OUTPUT_DWARF_STRING (asm_out_file, XSTR (rtl, 0));
2060 break;
2062 case SYMBOL_REF:
2063 case LABEL_REF:
2064 case CONST:
2065 ASM_OUTPUT_DWARF_ADDR_CONST (asm_out_file, rtl);
2066 break;
2068 case PLUS:
2069 /* In cases where an inlined instance of an inline function is passed
2070 the address of an `auto' variable (which is local to the caller)
2071 we can get a situation where the DECL_RTL of the artificial
2072 local variable (for the inlining) which acts as a stand-in for
2073 the corresponding formal parameter (of the inline function)
2074 will look like (plus:SI (reg:SI FRAME_PTR) (const_int ...)).
2075 This is not exactly a compile-time constant expression, but it
2076 isn't the address of the (artificial) local variable either.
2077 Rather, it represents the *value* which the artificial local
2078 variable always has during its lifetime. We currently have no
2079 way to represent such quasi-constant values in Dwarf, so for now
2080 we just punt and generate an AT_const_value attribute with form
2081 FORM_BLOCK4 and a length of zero. */
2082 break;
2084 default:
2085 abort (); /* No other kinds of rtx should be possible here. */
2088 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2091 /* Generate *either* an AT_location attribute or else an AT_const_value
2092 data attribute for a variable or a parameter. We generate the
2093 AT_const_value attribute only in those cases where the given
2094 variable or parameter does not have a true "location" either in
2095 memory or in a register. This can happen (for example) when a
2096 constant is passed as an actual argument in a call to an inline
2097 function. (It's possible that these things can crop up in other
2098 ways also.) Note that one type of constant value which can be
2099 passed into an inlined function is a constant pointer. This can
2100 happen for example if an actual argument in an inlined function
2101 call evaluates to a compile-time constant address. */
2103 static void
2104 location_or_const_value_attribute (decl)
2105 register tree decl;
2107 register rtx rtl;
2109 if (TREE_CODE (decl) == ERROR_MARK)
2110 return;
2112 if ((TREE_CODE (decl) != VAR_DECL) && (TREE_CODE (decl) != PARM_DECL))
2114 /* Should never happen. */
2115 abort ();
2116 return;
2119 /* Here we have to decide where we are going to say the parameter "lives"
2120 (as far as the debugger is concerned). We only have a couple of choices.
2121 GCC provides us with DECL_RTL and with DECL_INCOMING_RTL. DECL_RTL
2122 normally indicates where the parameter lives during most of the activa-
2123 tion of the function. If optimization is enabled however, this could
2124 be either NULL or else a pseudo-reg. Both of those cases indicate that
2125 the parameter doesn't really live anywhere (as far as the code generation
2126 parts of GCC are concerned) during most of the function's activation.
2127 That will happen (for example) if the parameter is never referenced
2128 within the function.
2130 We could just generate a location descriptor here for all non-NULL
2131 non-pseudo values of DECL_RTL and ignore all of the rest, but we can
2132 be a little nicer than that if we also consider DECL_INCOMING_RTL in
2133 cases where DECL_RTL is NULL or is a pseudo-reg.
2135 Note however that we can only get away with using DECL_INCOMING_RTL as
2136 a backup substitute for DECL_RTL in certain limited cases. In cases
2137 where DECL_ARG_TYPE(decl) indicates the same type as TREE_TYPE(decl)
2138 we can be sure that the parameter was passed using the same type as it
2139 is declared to have within the function, and that its DECL_INCOMING_RTL
2140 points us to a place where a value of that type is passed. In cases
2141 where DECL_ARG_TYPE(decl) and TREE_TYPE(decl) are different types
2142 however, we cannot (in general) use DECL_INCOMING_RTL as a backup
2143 substitute for DECL_RTL because in these cases, DECL_INCOMING_RTL
2144 points us to a value of some type which is *different* from the type
2145 of the parameter itself. Thus, if we tried to use DECL_INCOMING_RTL
2146 to generate a location attribute in such cases, the debugger would
2147 end up (for example) trying to fetch a `float' from a place which
2148 actually contains the first part of a `double'. That would lead to
2149 really incorrect and confusing output at debug-time, and we don't
2150 want that now do we?
2152 So in general, we DO NOT use DECL_INCOMING_RTL as a backup for DECL_RTL
2153 in cases where DECL_ARG_TYPE(decl) != TREE_TYPE(decl). There are a
2154 couple of cute exceptions however. On little-endian machines we can
2155 get away with using DECL_INCOMING_RTL even when DECL_ARG_TYPE(decl) is
2156 not the same as TREE_TYPE(decl) but only when DECL_ARG_TYPE(decl) is
2157 an integral type which is smaller than TREE_TYPE(decl). These cases
2158 arise when (on a little-endian machine) a non-prototyped function has
2159 a parameter declared to be of type `short' or `char'. In such cases,
2160 TREE_TYPE(decl) will be `short' or `char', DECL_ARG_TYPE(decl) will be
2161 `int', and DECL_INCOMING_RTL will point to the lowest-order byte of the
2162 passed `int' value. If the debugger then uses that address to fetch a
2163 `short' or a `char' (on a little-endian machine) the result will be the
2164 correct data, so we allow for such exceptional cases below.
2166 Note that our goal here is to describe the place where the given formal
2167 parameter lives during most of the function's activation (i.e. between
2168 the end of the prologue and the start of the epilogue). We'll do that
2169 as best as we can. Note however that if the given formal parameter is
2170 modified sometime during the execution of the function, then a stack
2171 backtrace (at debug-time) will show the function as having been called
2172 with the *new* value rather than the value which was originally passed
2173 in. This happens rarely enough that it is not a major problem, but it
2174 *is* a problem, and I'd like to fix it. A future version of dwarfout.c
2175 may generate two additional attributes for any given TAG_formal_parameter
2176 DIE which will describe the "passed type" and the "passed location" for
2177 the given formal parameter in addition to the attributes we now generate
2178 to indicate the "declared type" and the "active location" for each
2179 parameter. This additional set of attributes could be used by debuggers
2180 for stack backtraces.
2182 Separately, note that sometimes DECL_RTL can be NULL and DECL_INCOMING_RTL
2183 can be NULL also. This happens (for example) for inlined-instances of
2184 inline function formal parameters which are never referenced. This really
2185 shouldn't be happening. All PARM_DECL nodes should get valid non-NULL
2186 DECL_INCOMING_RTL values, but integrate.c doesn't currently generate
2187 these values for inlined instances of inline function parameters, so
2188 when we see such cases, we are just SOL (shit-out-of-luck) for the time
2189 being (until integrate.c gets fixed).
2192 /* Use DECL_RTL as the "location" unless we find something better. */
2193 rtl = DECL_RTL (decl);
2195 if (TREE_CODE (decl) == PARM_DECL)
2196 if (rtl == NULL_RTX || is_pseudo_reg (rtl))
2198 /* This decl represents a formal parameter which was optimized out. */
2199 register tree declared_type = type_main_variant (TREE_TYPE (decl));
2200 register tree passed_type = type_main_variant (DECL_ARG_TYPE (decl));
2202 /* Note that DECL_INCOMING_RTL may be NULL in here, but we handle
2203 *all* cases where (rtl == NULL_RTX) just below. */
2205 if (declared_type == passed_type)
2206 rtl = DECL_INCOMING_RTL (decl);
2207 #if (BYTES_BIG_ENDIAN == 0)
2208 else
2209 if (TREE_CODE (declared_type) == INTEGER_TYPE)
2210 if (TYPE_SIZE (declared_type) <= TYPE_SIZE (passed_type))
2211 rtl = DECL_INCOMING_RTL (decl);
2212 #endif /* (BYTES_BIG_ENDIAN == 0) */
2215 if (rtl == NULL_RTX)
2216 return;
2218 switch (GET_CODE (rtl))
2220 case CONST_INT:
2221 case CONST_DOUBLE:
2222 case CONST_STRING:
2223 case SYMBOL_REF:
2224 case LABEL_REF:
2225 case CONST:
2226 case PLUS: /* DECL_RTL could be (plus (reg ...) (const_int ...)) */
2227 const_value_attribute (rtl);
2228 break;
2230 case MEM:
2231 case REG:
2232 case SUBREG:
2233 location_attribute (rtl);
2234 break;
2236 default:
2237 abort (); /* Should never happen. */
2241 /* Generate an AT_name attribute given some string value to be included as
2242 the value of the attribute. */
2244 inline void
2245 name_attribute (name_string)
2246 register char *name_string;
2248 if (name_string && *name_string)
2250 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_name);
2251 ASM_OUTPUT_DWARF_STRING (asm_out_file, name_string);
2255 inline void
2256 fund_type_attribute (ft_code)
2257 register unsigned ft_code;
2259 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_fund_type);
2260 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, ft_code);
2263 static void
2264 mod_fund_type_attribute (type, decl_const, decl_volatile)
2265 register tree type;
2266 register int decl_const;
2267 register int decl_volatile;
2269 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2270 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2272 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_fund_type);
2273 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2274 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2275 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2276 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2277 write_modifier_bytes (type, decl_const, decl_volatile);
2278 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2279 fundamental_type_code (root_type (type)));
2280 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2283 inline void
2284 user_def_type_attribute (type)
2285 register tree type;
2287 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2289 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_user_def_type);
2290 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (type));
2291 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2294 static void
2295 mod_u_d_type_attribute (type, decl_const, decl_volatile)
2296 register tree type;
2297 register int decl_const;
2298 register int decl_volatile;
2300 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2301 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2302 char ud_type_name[MAX_ARTIFICIAL_LABEL_BYTES];
2304 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mod_u_d_type);
2305 sprintf (begin_label, MT_BEGIN_LABEL_FMT, current_dienum);
2306 sprintf (end_label, MT_END_LABEL_FMT, current_dienum);
2307 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2308 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2309 write_modifier_bytes (type, decl_const, decl_volatile);
2310 sprintf (ud_type_name, TYPE_NAME_FMT, TYPE_UID (root_type (type)));
2311 ASM_OUTPUT_DWARF_REF (asm_out_file, ud_type_name);
2312 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2315 #ifdef USE_ORDERING_ATTRIBUTE
2316 inline void
2317 ordering_attribute (ordering)
2318 register unsigned ordering;
2320 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_ordering);
2321 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, ordering);
2323 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
2325 /* Note that the block of subscript information for an array type also
2326 includes information about the element type of type given array type. */
2328 static void
2329 subscript_data_attribute (type)
2330 register tree type;
2332 register unsigned dimension_number;
2333 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2334 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2336 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_subscr_data);
2337 sprintf (begin_label, SS_BEGIN_LABEL_FMT, current_dienum);
2338 sprintf (end_label, SS_END_LABEL_FMT, current_dienum);
2339 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2340 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2342 /* The GNU compilers represent multidimensional array types as sequences
2343 of one dimensional array types whose element types are themselves array
2344 types. Here we squish that down, so that each multidimensional array
2345 type gets only one array_type DIE in the Dwarf debugging info. The
2346 draft Dwarf specification say that we are allowed to do this kind
2347 of compression in C (because there is no difference between an
2348 array or arrays and a multidimensional array in C) but for other
2349 source languages (e.g. Ada) we probably shouldn't do this. */
2351 for (dimension_number = 0;
2352 TREE_CODE (type) == ARRAY_TYPE;
2353 type = TREE_TYPE (type), dimension_number++)
2355 register tree domain = TYPE_DOMAIN (type);
2357 /* Arrays come in three flavors. Unspecified bounds, fixed
2358 bounds, and (in GNU C only) variable bounds. Handle all
2359 three forms here. */
2361 if (domain)
2363 /* We have an array type with specified bounds. */
2365 register tree lower = TYPE_MIN_VALUE (domain);
2366 register tree upper = TYPE_MAX_VALUE (domain);
2368 /* Handle only fundamental types as index types for now. */
2370 if (! type_is_fundamental (domain))
2371 abort ();
2373 /* Output the representation format byte for this dimension. */
2375 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file,
2376 FMT_CODE (1,
2377 TREE_CODE (lower) == INTEGER_CST,
2378 TREE_CODE (upper) == INTEGER_CST));
2380 /* Output the index type for this dimension. */
2382 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file,
2383 fundamental_type_code (domain));
2385 /* Output the representation for the lower bound. */
2387 output_bound_representation (lower, dimension_number, 'l');
2389 /* Output the representation for the upper bound. */
2391 output_bound_representation (upper, dimension_number, 'u');
2393 else
2395 /* We have an array type with an unspecified length. For C and
2396 C++ we can assume that this really means that (a) the index
2397 type is an integral type, and (b) the lower bound is zero.
2398 Note that Dwarf defines the representation of an unspecified
2399 (upper) bound as being a zero-length location description. */
2401 /* Output the array-bounds format byte. */
2403 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_FT_C_X);
2405 /* Output the (assumed) index type. */
2407 ASM_OUTPUT_DWARF_FUND_TYPE (asm_out_file, FT_integer);
2409 /* Output the (assumed) lower bound (constant) value. */
2411 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
2413 /* Output the (empty) location description for the upper bound. */
2415 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0);
2419 /* Output the prefix byte that says that the element type is comming up. */
2421 ASM_OUTPUT_DWARF_FMT_BYTE (asm_out_file, FMT_ET);
2423 /* Output a representation of the type of the elements of this array type. */
2425 type_attribute (type, 0, 0);
2427 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2430 static void
2431 byte_size_attribute (tree_node)
2432 register tree tree_node;
2434 register unsigned size;
2436 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_byte_size);
2437 switch (TREE_CODE (tree_node))
2439 case ERROR_MARK:
2440 size = 0;
2441 break;
2443 case ENUMERAL_TYPE:
2444 case RECORD_TYPE:
2445 case UNION_TYPE:
2446 case QUAL_UNION_TYPE:
2447 size = int_size_in_bytes (tree_node);
2448 break;
2450 case FIELD_DECL:
2451 /* For a data member of a struct or union, the AT_byte_size is
2452 generally given as the number of bytes normally allocated for
2453 an object of the *declared* type of the member itself. This
2454 is true even for bit-fields. */
2455 size = simple_type_size_in_bits (field_type (tree_node))
2456 / BITS_PER_UNIT;
2457 break;
2459 default:
2460 abort ();
2463 /* Note that `size' might be -1 when we get to this point. If it
2464 is, that indicates that the byte size of the entity in question
2465 is variable. We have no good way of expressing this fact in Dwarf
2466 at the present time, so just let the -1 pass on through. */
2468 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, size);
2471 /* For a FIELD_DECL node which represents a bit-field, output an attribute
2472 which specifies the distance in bits from the highest order bit of the
2473 "containing object" for the bit-field to the highest order bit of the
2474 bit-field itself.
2476 For any given bit-field, the "containing object" is a hypothetical
2477 object (of some integral or enum type) within which the given bit-field
2478 lives. The type of this hypothetical "containing object" is always the
2479 same as the declared type of the individual bit-field itself.
2481 The determination of the exact location of the "containing object" for
2482 a bit-field is rather complicated. It's handled by the `field_byte_offset'
2483 function (above).
2485 Note that it is the size (in bytes) of the hypothetical "containing
2486 object" which will be given in the AT_byte_size attribute for this
2487 bit-field. (See `byte_size_attribute' above.)
2490 inline void
2491 bit_offset_attribute (decl)
2492 register tree decl;
2494 register unsigned object_offset_in_bytes = field_byte_offset (decl);
2495 register tree type = DECL_BIT_FIELD_TYPE (decl);
2496 register tree bitpos_tree = DECL_FIELD_BITPOS (decl);
2497 register unsigned bitpos_int;
2498 register unsigned highest_order_object_bit_offset;
2499 register unsigned highest_order_field_bit_offset;
2500 register unsigned bit_offset;
2502 assert (TREE_CODE (decl) == FIELD_DECL); /* Must be a field. */
2503 assert (type); /* Must be a bit field. */
2505 /* We can't yet handle bit-fields whose offsets are variable, so if we
2506 encounter such things, just return without generating any attribute
2507 whatsoever. */
2509 if (TREE_CODE (bitpos_tree) != INTEGER_CST)
2510 return;
2511 bitpos_int = (unsigned) TREE_INT_CST_LOW (bitpos_tree);
2513 /* Note that the bit offset is always the distance (in bits) from the
2514 highest-order bit of the "containing object" to the highest-order
2515 bit of the bit-field itself. Since the "high-order end" of any
2516 object or field is different on big-endian and little-endian machines,
2517 the computation below must take account of these differences. */
2519 highest_order_object_bit_offset = object_offset_in_bytes * BITS_PER_UNIT;
2520 highest_order_field_bit_offset = bitpos_int;
2522 #if (BYTES_BIG_ENDIAN == 0)
2523 highest_order_field_bit_offset
2524 += (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl));
2526 highest_order_object_bit_offset += simple_type_size_in_bits (type);
2527 #endif /* (BYTES_BIG_ENDIAN == 0) */
2529 bit_offset =
2530 #if (BYTES_BIG_ENDIAN == 0)
2531 highest_order_object_bit_offset - highest_order_field_bit_offset;
2532 #else /* (BYTES_BIG_ENDIAN != 0) */
2533 highest_order_field_bit_offset - highest_order_object_bit_offset;
2534 #endif /* (BYTES_BIG_ENDIAN != 0) */
2536 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_offset);
2537 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, bit_offset);
2540 /* For a FIELD_DECL node which represents a bit field, output an attribute
2541 which specifies the length in bits of the given field. */
2543 inline void
2544 bit_size_attribute (decl)
2545 register tree decl;
2547 assert (TREE_CODE (decl) == FIELD_DECL); /* Must be a field. */
2548 assert (DECL_BIT_FIELD_TYPE (decl)); /* Must be a bit field. */
2550 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_bit_size);
2551 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
2552 (unsigned) TREE_INT_CST_LOW (DECL_SIZE (decl)));
2555 /* The following routine outputs the `element_list' attribute for enumeration
2556 type DIEs. The element_lits attribute includes the names and values of
2557 all of the enumeration constants associated with the given enumeration
2558 type. */
2560 inline void
2561 element_list_attribute (element)
2562 register tree element;
2564 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2565 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2567 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_element_list);
2568 sprintf (begin_label, EE_BEGIN_LABEL_FMT, current_dienum);
2569 sprintf (end_label, EE_END_LABEL_FMT, current_dienum);
2570 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
2571 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2573 /* Here we output a list of value/name pairs for each enumeration constant
2574 defined for this enumeration type (as required), but we do it in REVERSE
2575 order. The order is the one required by the draft #5 Dwarf specification
2576 published by the UI/PLSIG. */
2578 output_enumeral_list (element); /* Recursively output the whole list. */
2580 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2583 /* Generate an AT_stmt_list attribute. These are normally present only in
2584 DIEs with a TAG_compile_unit tag. */
2586 inline void
2587 stmt_list_attribute (label)
2588 register char *label;
2590 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_stmt_list);
2591 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2592 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
2595 /* Generate an AT_low_pc attribute for a label DIE, a lexical_block DIE or
2596 for a subroutine DIE. */
2598 inline void
2599 low_pc_attribute (asm_low_label)
2600 register char *asm_low_label;
2602 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_low_pc);
2603 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_low_label);
2606 /* Generate an AT_high_pc attribute for a lexical_block DIE or for a
2607 subroutine DIE. */
2609 inline void
2610 high_pc_attribute (asm_high_label)
2611 register char *asm_high_label;
2613 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_high_pc);
2614 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_high_label);
2617 /* Generate an AT_body_begin attribute for a subroutine DIE. */
2619 inline void
2620 body_begin_attribute (asm_begin_label)
2621 register char *asm_begin_label;
2623 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_begin);
2624 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_begin_label);
2627 /* Generate an AT_body_end attribute for a subroutine DIE. */
2629 inline void
2630 body_end_attribute (asm_end_label)
2631 register char *asm_end_label;
2633 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_body_end);
2634 ASM_OUTPUT_DWARF_ADDR (asm_out_file, asm_end_label);
2637 /* Generate an AT_language attribute given a LANG value. These attributes
2638 are used only within TAG_compile_unit DIEs. */
2640 inline void
2641 language_attribute (language_code)
2642 register unsigned language_code;
2644 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_language);
2645 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, language_code);
2648 inline void
2649 member_attribute (context)
2650 register tree context;
2652 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2654 /* Generate this attribute only for members in C++. */
2656 if (context != NULL && is_tagged_type (context))
2658 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_member);
2659 sprintf (label, TYPE_NAME_FMT, TYPE_UID (context));
2660 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2664 inline void
2665 string_length_attribute (upper_bound)
2666 register tree upper_bound;
2668 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
2669 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
2671 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_string_length);
2672 sprintf (begin_label, SL_BEGIN_LABEL_FMT, current_dienum);
2673 sprintf (end_label, SL_END_LABEL_FMT, current_dienum);
2674 ASM_OUTPUT_DWARF_DELTA2 (asm_out_file, end_label, begin_label);
2675 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
2676 output_bound_representation (upper_bound, 0, 'u');
2677 ASM_OUTPUT_LABEL (asm_out_file, end_label);
2680 inline void
2681 comp_dir_attribute (dirname)
2682 register char *dirname;
2684 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_comp_dir);
2685 ASM_OUTPUT_DWARF_STRING (asm_out_file, dirname);
2688 inline void
2689 sf_names_attribute (sf_names_start_label)
2690 register char *sf_names_start_label;
2692 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_sf_names);
2693 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2694 ASM_OUTPUT_DWARF_ADDR (asm_out_file, sf_names_start_label);
2697 inline void
2698 src_info_attribute (src_info_start_label)
2699 register char *src_info_start_label;
2701 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_info);
2702 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2703 ASM_OUTPUT_DWARF_ADDR (asm_out_file, src_info_start_label);
2706 inline void
2707 mac_info_attribute (mac_info_start_label)
2708 register char *mac_info_start_label;
2710 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_mac_info);
2711 /* Don't use ASM_OUTPUT_DWARF_DATA4 here. */
2712 ASM_OUTPUT_DWARF_ADDR (asm_out_file, mac_info_start_label);
2715 inline void
2716 prototyped_attribute (func_type)
2717 register tree func_type;
2719 if ((strcmp (language_string, "GNU C") == 0)
2720 && (TYPE_ARG_TYPES (func_type) != NULL))
2722 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_prototyped);
2723 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
2727 inline void
2728 producer_attribute (producer)
2729 register char *producer;
2731 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_producer);
2732 ASM_OUTPUT_DWARF_STRING (asm_out_file, producer);
2735 inline void
2736 inline_attribute (decl)
2737 register tree decl;
2739 if (DECL_INLINE (decl))
2741 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_inline);
2742 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
2746 inline void
2747 containing_type_attribute (containing_type)
2748 register tree containing_type;
2750 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2752 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_containing_type);
2753 sprintf (label, TYPE_NAME_FMT, TYPE_UID (containing_type));
2754 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2757 inline void
2758 abstract_origin_attribute (origin)
2759 register tree origin;
2761 char label[MAX_ARTIFICIAL_LABEL_BYTES];
2763 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_abstract_origin);
2764 switch (TREE_CODE_CLASS (TREE_CODE (origin)))
2766 case 'd':
2767 sprintf (label, DECL_NAME_FMT, DECL_UID (origin));
2768 break;
2770 case 't':
2771 sprintf (label, TYPE_NAME_FMT, TYPE_UID (origin));
2772 break;
2774 default:
2775 abort (); /* Should never happen. */
2778 ASM_OUTPUT_DWARF_REF (asm_out_file, label);
2781 #ifdef DWARF_DECL_COORDINATES
2782 inline void
2783 src_coords_attribute (src_fileno, src_lineno)
2784 register unsigned src_fileno;
2785 register unsigned src_lineno;
2787 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_src_coords);
2788 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_fileno);
2789 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, src_lineno);
2791 #endif /* defined(DWARF_DECL_COORDINATES) */
2793 inline void
2794 pure_or_virtual_attribute (func_decl)
2795 register tree func_decl;
2797 if (DECL_VIRTUAL_P (func_decl))
2799 #if 0 /* DECL_ABSTRACT_VIRTUAL_P is C++-specific. */
2800 if (DECL_ABSTRACT_VIRTUAL_P (func_decl))
2801 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_pure_virtual);
2802 else
2803 #endif
2804 ASM_OUTPUT_DWARF_ATTRIBUTE (asm_out_file, AT_virtual);
2805 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
2809 /************************* end of attributes *****************************/
2811 /********************* utility routines for DIEs *************************/
2813 /* Output an AT_name attribute and an AT_src_coords attribute for the
2814 given decl, but only if it actually has a name. */
2816 static void
2817 name_and_src_coords_attributes (decl)
2818 register tree decl;
2820 register tree decl_name = DECL_NAME (decl);
2822 if (decl_name && IDENTIFIER_POINTER (decl_name))
2824 name_attribute (IDENTIFIER_POINTER (decl_name));
2825 #ifdef DWARF_DECL_COORDINATES
2827 register unsigned file_index;
2829 /* This is annoying, but we have to pop out of the .debug section
2830 for a moment while we call `lookup_filename' because calling it
2831 may cause a temporary switch into the .debug_sfnames section and
2832 most svr4 assemblers are not smart enough be be able to nest
2833 section switches to any depth greater than one. Note that we
2834 also can't skirt this issue by delaying all output to the
2835 .debug_sfnames section unit the end of compilation because that
2836 would cause us to have inter-section forward references and
2837 Fred Fish sez that m68k/svr4 assemblers botch those. */
2839 ASM_OUTPUT_POP_SECTION (asm_out_file);
2840 file_index = lookup_filename (DECL_SOURCE_FILE (decl));
2841 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
2843 src_coords_attribute (file_index, DECL_SOURCE_LINE (decl));
2845 #endif /* defined(DWARF_DECL_COORDINATES) */
2849 /* Many forms of DIEs contain a "type description" part. The following
2850 routine writes out these "type descriptor" parts. */
2852 static void
2853 type_attribute (type, decl_const, decl_volatile)
2854 register tree type;
2855 register int decl_const;
2856 register int decl_volatile;
2858 register enum tree_code code = TREE_CODE (type);
2859 register int root_type_modified;
2861 if (TREE_CODE (type) == ERROR_MARK)
2862 return;
2864 /* Handle a special case. For functions whose return type is void,
2865 we generate *no* type attribute. (Note that no object may have
2866 type `void', so this only applies to function return types. */
2868 if (TREE_CODE (type) == VOID_TYPE)
2869 return;
2871 root_type_modified = (code == POINTER_TYPE || code == REFERENCE_TYPE
2872 || decl_const || decl_volatile
2873 || TYPE_READONLY (type) || TYPE_VOLATILE (type));
2875 if (type_is_fundamental (root_type (type)))
2876 if (root_type_modified)
2877 mod_fund_type_attribute (type, decl_const, decl_volatile);
2878 else
2879 fund_type_attribute (fundamental_type_code (type));
2880 else
2881 if (root_type_modified)
2882 mod_u_d_type_attribute (type, decl_const, decl_volatile);
2883 else
2884 /* We have to get the type_main_variant here (and pass that to the
2885 `user_def_type_attribute' routine) because the ..._TYPE node we
2886 have might simply be a *copy* of some original type node (where
2887 the copy was created to help us keep track of typedef names)
2888 and that copy might have a different TYPE_UID from the original
2889 ..._TYPE node. (Note that when `equate_type_number_to_die_number'
2890 is labeling a given type DIE for future reference, it always and
2891 only creates labels for DIEs representing *main variants*, and it
2892 never even knows about non-main-variants.) */
2893 user_def_type_attribute (type_main_variant (type));
2896 /* Given a tree pointer to a struct, class, union, or enum type node, return
2897 a pointer to the (string) tag name for the given type, or zero if the
2898 type was declared without a tag. */
2900 static char *
2901 type_tag (type)
2902 register tree type;
2904 register char *name = 0;
2906 if (TYPE_NAME (type) != 0)
2908 register tree t = 0;
2910 /* Find the IDENTIFIER_NODE for the type name. */
2911 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
2912 t = TYPE_NAME (type);
2913 #if 0
2914 /* The g++ front end makes the TYPE_NAME of *each* tagged type point
2915 to a TYPE_DECL node, regardless of whether or not a `typedef' was
2916 involved. This is distinctly different from what the gcc front-end
2917 does. It always makes the TYPE_NAME for each tagged type be either
2918 NULL (signifying an anonymous tagged type) or else a pointer to an
2919 IDENTIFIER_NODE. Obviously, we would like to generate correct Dwarf
2920 for both C and C++, but given this inconsistency in the TREE
2921 representation of tagged types for C and C++ in the GNU front-ends,
2922 we cannot support both languages correctly unless we introduce some
2923 front-end specific code here, and rms objects to that, so we can
2924 only generate correct Dwarf for one of these two languages. C is
2925 more important, so for now we'll do the right thing for C and let
2926 g++ go fish. */
2928 else
2929 if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL)
2930 t = DECL_NAME (TYPE_NAME (type));
2931 #endif
2932 /* Now get the name as a string, or invent one. */
2933 if (t != 0)
2934 name = IDENTIFIER_POINTER (t);
2937 return (name == 0 || *name == '\0') ? 0 : name;
2940 inline void
2941 dienum_push ()
2943 /* Start by checking if the pending_sibling_stack needs to be expanded.
2944 If necessary, expand it. */
2946 if (pending_siblings == pending_siblings_allocated)
2948 pending_siblings_allocated += PENDING_SIBLINGS_INCREMENT;
2949 pending_sibling_stack
2950 = (unsigned *) xrealloc (pending_sibling_stack,
2951 pending_siblings_allocated * sizeof(unsigned));
2954 pending_siblings++;
2955 NEXT_DIE_NUM = next_unused_dienum++;
2958 /* Pop the sibling stack so that the most recently pushed DIEnum becomes the
2959 NEXT_DIE_NUM. */
2961 inline void
2962 dienum_pop ()
2964 pending_siblings--;
2967 inline tree
2968 member_declared_type (member)
2969 register tree member;
2971 return (DECL_BIT_FIELD_TYPE (member))
2972 ? DECL_BIT_FIELD_TYPE (member)
2973 : TREE_TYPE (member);
2976 /* Get the function's label, as described by its RTL.
2977 This may be different from the DECL_NAME name used
2978 in the source file. */
2980 static char *
2981 function_start_label (decl)
2982 register tree decl;
2984 rtx x;
2985 char *fnname;
2987 x = DECL_RTL (decl);
2988 if (GET_CODE (x) != MEM)
2989 abort ();
2990 x = XEXP (x, 0);
2991 if (GET_CODE (x) != SYMBOL_REF)
2992 abort ();
2993 fnname = XSTR (x, 0);
2994 return fnname;
2998 /******************************* DIEs ************************************/
3000 /* Output routines for individual types of DIEs. */
3002 /* Note that every type of DIE (except a null DIE) gets a sibling. */
3004 static void
3005 output_array_type_die (arg)
3006 register void *arg;
3008 register tree type = arg;
3010 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_array_type);
3011 sibling_attribute ();
3012 equate_type_number_to_die_number (type);
3013 member_attribute (TYPE_CONTEXT (type));
3015 /* I believe that we can default the array ordering. SDB will probably
3016 do the right things even if AT_ordering is not present. It's not
3017 even an issue until we start to get into multidimensional arrays
3018 anyway. If SDB is ever caught doing the Wrong Thing for multi-
3019 dimensional arrays, then we'll have to put the AT_ordering attribute
3020 back in. (But if and when we find out that we need to put these in,
3021 we will only do so for multidimensional arrays. After all, we don't
3022 want to waste space in the .debug section now do we?) */
3024 #ifdef USE_ORDERING_ATTRIBUTE
3025 ordering_attribute (ORD_row_major);
3026 #endif /* defined(USE_ORDERING_ATTRIBUTE) */
3028 subscript_data_attribute (type);
3031 static void
3032 output_set_type_die (arg)
3033 register void *arg;
3035 register tree type = arg;
3037 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_set_type);
3038 sibling_attribute ();
3039 equate_type_number_to_die_number (type);
3040 member_attribute (TYPE_CONTEXT (type));
3041 type_attribute (TREE_TYPE (type), 0, 0);
3044 #if 0
3045 /* Implement this when there is a GNU FORTRAN or GNU Ada front end. */
3046 static void
3047 output_entry_point_die (arg)
3048 register void *arg;
3050 register tree decl = arg;
3051 register tree origin = decl_ultimate_origin (decl);
3053 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_entry_point);
3054 sibling_attribute ();
3055 dienum_push ();
3056 if (origin != NULL)
3057 abstract_origin_attribute (origin);
3058 else
3060 name_and_src_coords_attributes (decl);
3061 member_attribute (DECL_CONTEXT (decl));
3062 type_attribute (TREE_TYPE (TREE_TYPE (decl)), 0, 0);
3064 if (DECL_ABSTRACT (decl))
3065 equate_decl_number_to_die_number (decl);
3066 else
3067 low_pc_attribute (function_start_label (decl));
3069 #endif
3071 /* Output a DIE to represent an inlined instance of an enumeration type. */
3073 static void
3074 output_inlined_enumeration_type_die (arg)
3075 register void *arg;
3077 register tree type = arg;
3079 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3080 sibling_attribute ();
3081 assert (TREE_ASM_WRITTEN (type));
3082 abstract_origin_attribute (type);
3085 /* Output a DIE to represent an inlined instance of a structure type. */
3087 static void
3088 output_inlined_structure_type_die (arg)
3089 register void *arg;
3091 register tree type = arg;
3093 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3094 sibling_attribute ();
3095 assert (TREE_ASM_WRITTEN (type));
3096 abstract_origin_attribute (type);
3099 /* Output a DIE to represent an inlined instance of a union type. */
3101 static void
3102 output_inlined_union_type_die (arg)
3103 register void *arg;
3105 register tree type = arg;
3107 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3108 sibling_attribute ();
3109 assert (TREE_ASM_WRITTEN (type));
3110 abstract_origin_attribute (type);
3113 /* Output a DIE to represent an enumeration type. Note that these DIEs
3114 include all of the information about the enumeration values also.
3115 This information is encoded into the element_list attribute. */
3117 static void
3118 output_enumeration_type_die (arg)
3119 register void *arg;
3121 register tree type = arg;
3123 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_enumeration_type);
3124 sibling_attribute ();
3125 equate_type_number_to_die_number (type);
3126 name_attribute (type_tag (type));
3127 member_attribute (TYPE_CONTEXT (type));
3129 /* Handle a GNU C/C++ extension, i.e. incomplete enum types. If the
3130 given enum type is incomplete, do not generate the AT_byte_size
3131 attribute or the AT_element_list attribute. */
3133 if (TYPE_SIZE (type))
3135 byte_size_attribute (type);
3136 element_list_attribute (TYPE_FIELDS (type));
3140 /* Output a DIE to represent either a real live formal parameter decl or
3141 to represent just the type of some formal parameter position in some
3142 function type.
3144 Note that this routine is a bit unusual because its argument may be
3145 a ..._DECL node (i.e. either a PARM_DECL or perhaps a VAR_DECL which
3146 represents an inlining of some PARM_DECL) or else some sort of a
3147 ..._TYPE node. If it's the former then this function is being called
3148 to output a DIE to represent a formal parameter object (or some inlining
3149 thereof). If it's the latter, then this function is only being called
3150 to output a TAG_formal_parameter DIE to stand as a placeholder for some
3151 formal argument type of some subprogram type. */
3153 static void
3154 output_formal_parameter_die (arg)
3155 register void *arg;
3157 register tree node = arg;
3159 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_formal_parameter);
3160 sibling_attribute ();
3162 switch (TREE_CODE_CLASS (TREE_CODE (node)))
3164 case 'd': /* We were called with some kind of a ..._DECL node. */
3166 register tree origin = decl_ultimate_origin (node);
3168 if (origin != NULL)
3169 abstract_origin_attribute (origin);
3170 else
3172 name_and_src_coords_attributes (node);
3173 type_attribute (TREE_TYPE (node),
3174 TREE_READONLY (node), TREE_THIS_VOLATILE (node));
3176 if (DECL_ABSTRACT (node))
3177 equate_decl_number_to_die_number (node);
3178 else
3179 location_or_const_value_attribute (node);
3181 break;
3183 case 't': /* We were called with some kind of a ..._TYPE node. */
3184 type_attribute (node, 0, 0);
3185 break;
3187 default:
3188 abort (); /* Should never happen. */
3192 /* Output a DIE to represent a declared function (either file-scope
3193 or block-local) which has "external linkage" (according to ANSI-C). */
3195 static void
3196 output_global_subroutine_die (arg)
3197 register void *arg;
3199 register tree decl = arg;
3200 register tree origin = decl_ultimate_origin (decl);
3202 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_subroutine);
3203 sibling_attribute ();
3204 dienum_push ();
3205 if (origin != NULL)
3206 abstract_origin_attribute (origin);
3207 else
3209 register tree type = TREE_TYPE (decl);
3211 name_and_src_coords_attributes (decl);
3212 inline_attribute (decl);
3213 prototyped_attribute (type);
3214 member_attribute (DECL_CONTEXT (decl));
3215 type_attribute (TREE_TYPE (type), 0, 0);
3216 pure_or_virtual_attribute (decl);
3218 if (DECL_ABSTRACT (decl))
3219 equate_decl_number_to_die_number (decl);
3220 else
3222 if (! DECL_EXTERNAL (decl))
3224 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3226 low_pc_attribute (function_start_label (decl));
3227 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3228 high_pc_attribute (label);
3229 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3230 body_begin_attribute (label);
3231 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3232 body_end_attribute (label);
3237 /* Output a DIE to represent a declared data object (either file-scope
3238 or block-local) which has "external linkage" (according to ANSI-C). */
3240 static void
3241 output_global_variable_die (arg)
3242 register void *arg;
3244 register tree decl = arg;
3245 register tree origin = decl_ultimate_origin (decl);
3247 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_global_variable);
3248 sibling_attribute ();
3249 if (origin != NULL)
3250 abstract_origin_attribute (origin);
3251 else
3253 name_and_src_coords_attributes (decl);
3254 member_attribute (DECL_CONTEXT (decl));
3255 type_attribute (TREE_TYPE (decl),
3256 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3258 if (DECL_ABSTRACT (decl))
3259 equate_decl_number_to_die_number (decl);
3260 else
3262 if (!DECL_EXTERNAL (decl))
3263 location_or_const_value_attribute (decl);
3267 static void
3268 output_label_die (arg)
3269 register void *arg;
3271 register tree decl = arg;
3272 register tree origin = decl_ultimate_origin (decl);
3274 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_label);
3275 sibling_attribute ();
3276 if (origin != NULL)
3277 abstract_origin_attribute (origin);
3278 else
3279 name_and_src_coords_attributes (decl);
3280 if (DECL_ABSTRACT (decl))
3281 equate_decl_number_to_die_number (decl);
3282 else
3284 register rtx insn = DECL_RTL (decl);
3286 if (GET_CODE (insn) == CODE_LABEL)
3288 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3290 /* When optimization is enabled (via -O) some parts of the compiler
3291 (e.g. jump.c and cse.c) may try to delete CODE_LABEL insns which
3292 represent source-level labels which were explicitly declared by
3293 the user. This really shouldn't be happening though, so catch
3294 it if it ever does happen. */
3296 if (INSN_DELETED_P (insn))
3297 abort (); /* Should never happen. */
3299 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
3300 (unsigned) INSN_UID (insn));
3301 low_pc_attribute (label);
3306 static void
3307 output_lexical_block_die (arg)
3308 register void *arg;
3310 register tree stmt = arg;
3312 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_lexical_block);
3313 sibling_attribute ();
3314 dienum_push ();
3315 if (! BLOCK_ABSTRACT (stmt))
3317 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3318 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3320 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3321 low_pc_attribute (begin_label);
3322 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3323 high_pc_attribute (end_label);
3327 static void
3328 output_inlined_subroutine_die (arg)
3329 register void *arg;
3331 register tree stmt = arg;
3333 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_inlined_subroutine);
3334 sibling_attribute ();
3335 dienum_push ();
3336 abstract_origin_attribute (block_ultimate_origin (stmt));
3337 if (! BLOCK_ABSTRACT (stmt))
3339 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3340 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3342 sprintf (begin_label, BLOCK_BEGIN_LABEL_FMT, next_block_number);
3343 low_pc_attribute (begin_label);
3344 sprintf (end_label, BLOCK_END_LABEL_FMT, next_block_number);
3345 high_pc_attribute (end_label);
3349 /* Output a DIE to represent a declared data object (either file-scope
3350 or block-local) which has "internal linkage" (according to ANSI-C). */
3352 static void
3353 output_local_variable_die (arg)
3354 register void *arg;
3356 register tree decl = arg;
3357 register tree origin = decl_ultimate_origin (decl);
3359 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_local_variable);
3360 sibling_attribute ();
3361 if (origin != NULL)
3362 abstract_origin_attribute (origin);
3363 else
3365 name_and_src_coords_attributes (decl);
3366 member_attribute (DECL_CONTEXT (decl));
3367 type_attribute (TREE_TYPE (decl),
3368 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3370 if (DECL_ABSTRACT (decl))
3371 equate_decl_number_to_die_number (decl);
3372 else
3373 location_or_const_value_attribute (decl);
3376 static void
3377 output_member_die (arg)
3378 register void *arg;
3380 register tree decl = arg;
3382 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_member);
3383 sibling_attribute ();
3384 name_and_src_coords_attributes (decl);
3385 member_attribute (DECL_CONTEXT (decl));
3386 type_attribute (member_declared_type (decl),
3387 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3388 if (DECL_BIT_FIELD_TYPE (decl)) /* If this is a bit field... */
3390 byte_size_attribute (decl);
3391 bit_size_attribute (decl);
3392 bit_offset_attribute (decl);
3394 data_member_location_attribute (decl);
3397 #if 0
3398 /* Don't generate either pointer_type DIEs or reference_type DIEs. Use
3399 modified types instead.
3401 We keep this code here just in case these types of DIEs may be needed
3402 to represent certain things in other languages (e.g. Pascal) someday.
3405 static void
3406 output_pointer_type_die (arg)
3407 register void *arg;
3409 register tree type = arg;
3411 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_pointer_type);
3412 sibling_attribute ();
3413 equate_type_number_to_die_number (type);
3414 member_attribute (TYPE_CONTEXT (type));
3415 type_attribute (TREE_TYPE (type), 0, 0);
3418 static void
3419 output_reference_type_die (arg)
3420 register void *arg;
3422 register tree type = arg;
3424 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_reference_type);
3425 sibling_attribute ();
3426 equate_type_number_to_die_number (type);
3427 member_attribute (TYPE_CONTEXT (type));
3428 type_attribute (TREE_TYPE (type), 0, 0);
3430 #endif
3432 static void
3433 output_ptr_to_mbr_type_die (arg)
3434 register void *arg;
3436 register tree type = arg;
3438 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_ptr_to_member_type);
3439 sibling_attribute ();
3440 equate_type_number_to_die_number (type);
3441 member_attribute (TYPE_CONTEXT (type));
3442 containing_type_attribute (TYPE_OFFSET_BASETYPE (type));
3443 type_attribute (TREE_TYPE (type), 0, 0);
3446 static void
3447 output_compile_unit_die (arg)
3448 register void *arg;
3450 register char *main_input_filename = arg;
3452 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_compile_unit);
3453 sibling_attribute ();
3454 dienum_push ();
3455 name_attribute (main_input_filename);
3458 char producer[250];
3460 sprintf (producer, "%s %s", language_string, version_string);
3461 producer_attribute (producer);
3464 if (strcmp (language_string, "GNU C++") == 0)
3465 language_attribute (LANG_C_PLUS_PLUS);
3466 else if (strcmp (language_string, "GNU Ada") == 0)
3467 language_attribute (LANG_ADA83);
3468 else if (flag_traditional)
3469 language_attribute (LANG_C);
3470 else
3471 language_attribute (LANG_C89);
3472 low_pc_attribute (TEXT_BEGIN_LABEL);
3473 high_pc_attribute (TEXT_END_LABEL);
3474 if (debug_info_level >= DINFO_LEVEL_NORMAL)
3475 stmt_list_attribute (LINE_BEGIN_LABEL);
3476 last_filename = xstrdup (main_input_filename);
3479 char *wd = getpwd ();
3480 if (wd)
3481 comp_dir_attribute (wd);
3484 if (debug_info_level >= DINFO_LEVEL_NORMAL)
3486 sf_names_attribute (SFNAMES_BEGIN_LABEL);
3487 src_info_attribute (SRCINFO_BEGIN_LABEL);
3488 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
3489 mac_info_attribute (MACINFO_BEGIN_LABEL);
3493 static void
3494 output_string_type_die (arg)
3495 register void *arg;
3497 register tree type = arg;
3499 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_string_type);
3500 sibling_attribute ();
3501 member_attribute (TYPE_CONTEXT (type));
3503 /* Fudge the string length attribute for now. */
3505 string_length_attribute (TYPE_MAX_VALUE (TYPE_DOMAIN (type)));
3508 static void
3509 output_structure_type_die (arg)
3510 register void *arg;
3512 register tree type = arg;
3514 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_structure_type);
3515 sibling_attribute ();
3516 equate_type_number_to_die_number (type);
3517 name_attribute (type_tag (type));
3518 member_attribute (TYPE_CONTEXT (type));
3520 /* If this type has been completed, then give it a byte_size attribute
3521 and prepare to give a list of members. Otherwise, don't do either of
3522 these things. In the latter case, we will not be generating a list
3523 of members (since we don't have any idea what they might be for an
3524 incomplete type). */
3526 if (TYPE_SIZE (type))
3528 dienum_push ();
3529 byte_size_attribute (type);
3533 /* Output a DIE to represent a declared function (either file-scope
3534 or block-local) which has "internal linkage" (according to ANSI-C). */
3536 static void
3537 output_local_subroutine_die (arg)
3538 register void *arg;
3540 register tree decl = arg;
3541 register tree origin = decl_ultimate_origin (decl);
3543 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine);
3544 sibling_attribute ();
3545 dienum_push ();
3546 if (origin != NULL)
3547 abstract_origin_attribute (origin);
3548 else
3550 register tree type = TREE_TYPE (decl);
3552 name_and_src_coords_attributes (decl);
3553 inline_attribute (decl);
3554 prototyped_attribute (type);
3555 member_attribute (DECL_CONTEXT (decl));
3556 type_attribute (TREE_TYPE (type), 0, 0);
3557 pure_or_virtual_attribute (decl);
3559 if (DECL_ABSTRACT (decl))
3560 equate_decl_number_to_die_number (decl);
3561 else
3563 /* Avoid getting screwed up in cases where a function was declared
3564 static but where no definition was ever given for it. */
3566 if (TREE_ASM_WRITTEN (decl))
3568 char label[MAX_ARTIFICIAL_LABEL_BYTES];
3569 low_pc_attribute (function_start_label (decl));
3570 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
3571 high_pc_attribute (label);
3572 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
3573 body_begin_attribute (label);
3574 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
3575 body_end_attribute (label);
3580 static void
3581 output_subroutine_type_die (arg)
3582 register void *arg;
3584 register tree type = arg;
3585 register tree return_type = TREE_TYPE (type);
3587 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_subroutine_type);
3588 sibling_attribute ();
3589 dienum_push ();
3590 equate_type_number_to_die_number (type);
3591 prototyped_attribute (type);
3592 member_attribute (TYPE_CONTEXT (type));
3593 type_attribute (return_type, 0, 0);
3596 static void
3597 output_typedef_die (arg)
3598 register void *arg;
3600 register tree decl = arg;
3601 register tree origin = decl_ultimate_origin (decl);
3603 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_typedef);
3604 sibling_attribute ();
3605 if (origin != NULL)
3606 abstract_origin_attribute (origin);
3607 else
3609 name_and_src_coords_attributes (decl);
3610 member_attribute (DECL_CONTEXT (decl));
3611 type_attribute (TREE_TYPE (decl),
3612 TREE_READONLY (decl), TREE_THIS_VOLATILE (decl));
3614 if (DECL_ABSTRACT (decl))
3615 equate_decl_number_to_die_number (decl);
3618 static void
3619 output_union_type_die (arg)
3620 register void *arg;
3622 register tree type = arg;
3624 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_union_type);
3625 sibling_attribute ();
3626 equate_type_number_to_die_number (type);
3627 name_attribute (type_tag (type));
3628 member_attribute (TYPE_CONTEXT (type));
3630 /* If this type has been completed, then give it a byte_size attribute
3631 and prepare to give a list of members. Otherwise, don't do either of
3632 these things. In the latter case, we will not be generating a list
3633 of members (since we don't have any idea what they might be for an
3634 incomplete type). */
3636 if (TYPE_SIZE (type))
3638 dienum_push ();
3639 byte_size_attribute (type);
3643 /* Generate a special type of DIE used as a stand-in for a trailing ellipsis
3644 at the end of an (ANSI prototyped) formal parameters list. */
3646 static void
3647 output_unspecified_parameters_die (arg)
3648 register void *arg;
3650 register tree decl_or_type = arg;
3652 ASM_OUTPUT_DWARF_TAG (asm_out_file, TAG_unspecified_parameters);
3653 sibling_attribute ();
3655 /* This kludge is here only for the sake of being compatible with what
3656 the USL CI5 C compiler does. The specification of Dwarf Version 1
3657 doesn't say that TAG_unspecified_parameters DIEs should contain any
3658 attributes other than the AT_sibling attribute, but they are certainly
3659 allowed to contain additional attributes, and the CI5 compiler
3660 generates AT_name, AT_fund_type, and AT_location attributes within
3661 TAG_unspecified_parameters DIEs which appear in the child lists for
3662 DIEs representing function definitions, so we do likewise here. */
3664 if (TREE_CODE (decl_or_type) == FUNCTION_DECL && DECL_INITIAL (decl_or_type))
3666 name_attribute ("...");
3667 fund_type_attribute (FT_pointer);
3668 /* location_attribute (?); */
3672 static void
3673 output_padded_null_die (arg)
3674 register void *arg;
3676 ASM_OUTPUT_ALIGN (asm_out_file, 2); /* 2**2 == 4 */
3679 /*************************** end of DIEs *********************************/
3681 /* Generate some type of DIE. This routine generates the generic outer
3682 wrapper stuff which goes around all types of DIE's (regardless of their
3683 TAGs. All forms of DIEs start with a DIE-specific label, followed by a
3684 DIE-length word, followed by the guts of the DIE itself. After the guts
3685 of the DIE, there must always be a terminator label for the DIE. */
3687 static void
3688 output_die (die_specific_output_function, param)
3689 register void (*die_specific_output_function)();
3690 register void *param;
3692 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3693 char end_label[MAX_ARTIFICIAL_LABEL_BYTES];
3695 current_dienum = NEXT_DIE_NUM;
3696 NEXT_DIE_NUM = next_unused_dienum;
3698 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
3699 sprintf (end_label, DIE_END_LABEL_FMT, current_dienum);
3701 /* Write a label which will act as the name for the start of this DIE. */
3703 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3705 /* Write the DIE-length word. */
3707 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, end_label, begin_label);
3709 /* Fill in the guts of the DIE. */
3711 next_unused_dienum++;
3712 die_specific_output_function (param);
3714 /* Write a label which will act as the name for the end of this DIE. */
3716 ASM_OUTPUT_LABEL (asm_out_file, end_label);
3719 static void
3720 end_sibling_chain ()
3722 char begin_label[MAX_ARTIFICIAL_LABEL_BYTES];
3724 current_dienum = NEXT_DIE_NUM;
3725 NEXT_DIE_NUM = next_unused_dienum;
3727 sprintf (begin_label, DIE_BEGIN_LABEL_FMT, current_dienum);
3729 /* Write a label which will act as the name for the start of this DIE. */
3731 ASM_OUTPUT_LABEL (asm_out_file, begin_label);
3733 /* Write the DIE-length word. */
3735 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 4);
3737 dienum_pop ();
3740 /* Generate a list of nameless TAG_formal_parameter DIEs (and perhaps a
3741 TAG_unspecified_parameters DIE) to represent the types of the formal
3742 parameters as specified in some function type specification (except
3743 for those which appear as part of a function *definition*).
3745 Note that we must be careful here to output all of the parameter DIEs
3746 *before* we output any DIEs needed to represent the types of the formal
3747 parameters. This keeps svr4 SDB happy because it (incorrectly) thinks
3748 that the first non-parameter DIE it sees ends the formal parameter list.
3751 static void
3752 output_formal_types (function_or_method_type)
3753 register tree function_or_method_type;
3755 register tree link;
3756 register tree formal_type = NULL;
3757 register tree first_parm_type = TYPE_ARG_TYPES (function_or_method_type);
3759 /* In the case where we are generating a formal types list for a C++
3760 non-static member function type, skip over the first thing on the
3761 TYPE_ARG_TYPES list because it only represents the type of the
3762 hidden `this pointer'. The debugger should be able to figure
3763 out (without being explicitly told) that this non-static member
3764 function type takes a `this pointer' and should be able to figure
3765 what the type of that hidden parameter is from the AT_member
3766 attribute of the parent TAG_subroutine_type DIE. */
3768 if (TREE_CODE (function_or_method_type) == METHOD_TYPE)
3769 first_parm_type = TREE_CHAIN (first_parm_type);
3771 /* Make our first pass over the list of formal parameter types and output
3772 a TAG_formal_parameter DIE for each one. */
3774 for (link = first_parm_type; link; link = TREE_CHAIN (link))
3776 formal_type = TREE_VALUE (link);
3777 if (formal_type == void_type_node)
3778 break;
3780 /* Output a (nameless) DIE to represent the formal parameter itself. */
3782 output_die (output_formal_parameter_die, formal_type);
3785 /* If this function type has an ellipsis, add a TAG_unspecified_parameters
3786 DIE to the end of the parameter list. */
3788 if (formal_type != void_type_node)
3789 output_die (output_unspecified_parameters_die, function_or_method_type);
3791 /* Make our second (and final) pass over the list of formal parameter types
3792 and output DIEs to represent those types (as necessary). */
3794 for (link = TYPE_ARG_TYPES (function_or_method_type);
3795 link;
3796 link = TREE_CHAIN (link))
3798 formal_type = TREE_VALUE (link);
3799 if (formal_type == void_type_node)
3800 break;
3802 output_type (formal_type, function_or_method_type);
3806 /* Remember a type in the pending_types_list. */
3808 static void
3809 pend_type (type)
3810 register tree type;
3812 if (pending_types == pending_types_allocated)
3814 pending_types_allocated += PENDING_TYPES_INCREMENT;
3815 pending_types_list
3816 = (tree *) xrealloc (pending_types_list,
3817 sizeof (tree) * pending_types_allocated);
3819 pending_types_list[pending_types++] = type;
3821 /* Mark the pending type as having been output already (even though
3822 it hasn't been). This prevents the type from being added to the
3823 pending_types_list more than once. */
3825 TREE_ASM_WRITTEN (type) = 1;
3828 /* Return non-zero if it is legitimate to output DIEs to represent a
3829 given type while we are generating the list of child DIEs for some
3830 DIE (e.g. a function or lexical block DIE) associated with a given scope.
3832 See the comments within the function for a description of when it is
3833 considered legitimate to output DIEs for various kinds of types.
3835 Note that TYPE_CONTEXT(type) may be NULL (to indicate global scope)
3836 or it may point to a BLOCK node (for types local to a block), or to a
3837 FUNCTION_DECL node (for types local to the heading of some function
3838 definition), or to a FUNCTION_TYPE node (for types local to the
3839 prototyped parameter list of a function type specification), or to a
3840 RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE node
3841 (in the case of C++ nested types).
3843 The `scope' parameter should likewise be NULL or should point to a
3844 BLOCK node, a FUNCTION_DECL node, a FUNCTION_TYPE node, a RECORD_TYPE
3845 node, a UNION_TYPE node, or a QUAL_UNION_TYPE node.
3847 This function is used only for deciding when to "pend" and when to
3848 "un-pend" types to/from the pending_types_list.
3850 Note that we sometimes make use of this "type pending" feature in a
3851 rather twisted way to temporarily delay the production of DIEs for the
3852 types of formal parameters. (We do this just to make svr4 SDB happy.)
3853 It order to delay the production of DIEs representing types of formal
3854 parameters, callers of this function supply `fake_containing_scope' as
3855 the `scope' parameter to this function. Given that fake_containing_scope
3856 is a tagged type which is *not* the containing scope for *any* other type,
3857 the desired effect is achieved, i.e. output of DIEs representing types
3858 is temporarily suspended, and any type DIEs which would have otherwise
3859 been output are instead placed onto the pending_types_list. Later on,
3860 we force these (temporarily pended) types to be output simply by calling
3861 `output_pending_types_for_scope' with an actual argument equal to the
3862 true scope of the types we temporarily pended.
3865 inline int
3866 type_ok_for_scope (type, scope)
3867 register tree type;
3868 register tree scope;
3870 /* Tagged types (i.e. struct, union, and enum types) must always be
3871 output only in the scopes where they actually belong (or else the
3872 scoping of their own tag names and the scoping of their member
3873 names will be incorrect). Non-tagged-types on the other hand can
3874 generally be output anywhere, except that svr4 SDB really doesn't
3875 want to see them nested within struct or union types, so here we
3876 say it is always OK to immediately output any such a (non-tagged)
3877 type, so long as we are not within such a context. Note that the
3878 only kinds of non-tagged types which we will be dealing with here
3879 (for C and C++ anyway) will be array types and function types. */
3881 return is_tagged_type (type)
3882 ? (TYPE_CONTEXT (type) == scope)
3883 : (scope == NULL_TREE || ! is_tagged_type (scope));
3886 /* Output any pending types (from the pending_types list) which we can output
3887 now (taking into account the scope that we are working on now).
3889 For each type output, remove the given type from the pending_types_list
3890 *before* we try to output it.
3892 Note that we have to process the list in beginning-to-end order,
3893 because the call made here to output_type may cause yet more types
3894 to be added to the end of the list, and we may have to output some
3895 of them too.
3898 static void
3899 output_pending_types_for_scope (containing_scope)
3900 register tree containing_scope;
3902 register unsigned i;
3904 for (i = 0; i < pending_types; )
3906 register tree type = pending_types_list[i];
3908 if (type_ok_for_scope (type, containing_scope))
3910 register tree *mover;
3911 register tree *limit;
3913 pending_types--;
3914 limit = &pending_types_list[pending_types];
3915 for (mover = &pending_types_list[i]; mover < limit; mover++)
3916 *mover = *(mover+1);
3918 /* Un-mark the type as having been output already (because it
3919 hasn't been, really). Then call output_type to generate a
3920 Dwarf representation of it. */
3922 TREE_ASM_WRITTEN (type) = 0;
3923 output_type (type, containing_scope);
3925 /* Don't increment the loop counter in this case because we
3926 have shifted all of the subsequent pending types down one
3927 element in the pending_types_list array. */
3929 else
3930 i++;
3934 static void
3935 output_type (type, containing_scope)
3936 register tree type;
3937 register tree containing_scope;
3939 if (type == 0 || type == error_mark_node)
3940 return;
3942 /* We are going to output a DIE to represent the unqualified version of
3943 of this type (i.e. without any const or volatile qualifiers) so get
3944 the main variant (i.e. the unqualified version) of this type now. */
3946 type = type_main_variant (type);
3948 if (TREE_ASM_WRITTEN (type))
3949 return;
3951 /* Don't generate any DIEs for this type now unless it is OK to do so
3952 (based upon what `type_ok_for_scope' tells us). */
3954 if (! type_ok_for_scope (type, containing_scope))
3956 pend_type (type);
3957 return;
3960 switch (TREE_CODE (type))
3962 case ERROR_MARK:
3963 break;
3965 case POINTER_TYPE:
3966 case REFERENCE_TYPE:
3967 /* For these types, all that is required is that we output a DIE
3968 (or a set of DIEs) to represent the "basis" type. */
3969 output_type (TREE_TYPE (type), containing_scope);
3970 break;
3972 case OFFSET_TYPE:
3973 /* This code is used for C++ pointer-to-data-member types. */
3974 /* Output a description of the relevant class type. */
3975 output_type (TYPE_OFFSET_BASETYPE (type), containing_scope);
3976 /* Output a description of the type of the object pointed to. */
3977 output_type (TREE_TYPE (type), containing_scope);
3978 /* Now output a DIE to represent this pointer-to-data-member type
3979 itself. */
3980 output_die (output_ptr_to_mbr_type_die, type);
3981 break;
3983 case SET_TYPE:
3984 output_type (TYPE_DOMAIN (type), containing_scope);
3985 output_die (output_set_type_die, type);
3986 break;
3988 case FILE_TYPE:
3989 output_type (TREE_TYPE (type), containing_scope);
3990 abort (); /* No way to represent these in Dwarf yet! */
3991 break;
3993 case FUNCTION_TYPE:
3994 /* Force out return type (in case it wasn't forced out already). */
3995 output_type (TREE_TYPE (type), containing_scope);
3996 output_die (output_subroutine_type_die, type);
3997 output_formal_types (type);
3998 end_sibling_chain ();
3999 break;
4001 case METHOD_TYPE:
4002 /* Force out return type (in case it wasn't forced out already). */
4003 output_type (TREE_TYPE (type), containing_scope);
4004 output_die (output_subroutine_type_die, type);
4005 output_formal_types (type);
4006 end_sibling_chain ();
4007 break;
4009 case ARRAY_TYPE:
4010 if (TYPE_STRING_FLAG (type) && TREE_CODE(TREE_TYPE(type)) == CHAR_TYPE)
4012 output_type (TREE_TYPE (type), containing_scope);
4013 output_die (output_string_type_die, type);
4015 else
4017 register tree element_type;
4019 element_type = TREE_TYPE (type);
4020 while (TREE_CODE (element_type) == ARRAY_TYPE)
4021 element_type = TREE_TYPE (element_type);
4023 output_type (element_type, containing_scope);
4024 output_die (output_array_type_die, type);
4026 break;
4028 case ENUMERAL_TYPE:
4029 case RECORD_TYPE:
4030 case UNION_TYPE:
4031 case QUAL_UNION_TYPE:
4033 /* For a non-file-scope tagged type, we can always go ahead and
4034 output a Dwarf description of this type right now, even if
4035 the type in question is still incomplete, because if this
4036 local type *was* ever completed anywhere within its scope,
4037 that complete definition would already have been attached to
4038 this RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE or ENUMERAL_TYPE
4039 node by the time we reach this point. That's true because of the
4040 way the front-end does its processing of file-scope declarations (of
4041 functions and class types) within which other types might be
4042 nested. The C and C++ front-ends always gobble up such "local
4043 scope" things en-mass before they try to output *any* debugging
4044 information for any of the stuff contained inside them and thus,
4045 we get the benefit here of what is (in effect) a pre-resolution
4046 of forward references to tagged types in local scopes.
4048 Note however that for file-scope tagged types we cannot assume
4049 that such pre-resolution of forward references has taken place.
4050 A given file-scope tagged type may appear to be incomplete when
4051 we reach this point, but it may yet be given a full definition
4052 (at file-scope) later on during compilation. In order to avoid
4053 generating a premature (and possibly incorrect) set of Dwarf
4054 DIEs for such (as yet incomplete) file-scope tagged types, we
4055 generate nothing at all for as-yet incomplete file-scope tagged
4056 types here unless we are making our special "finalization" pass
4057 for file-scope things at the very end of compilation. At that
4058 time, we will certainly know as much about each file-scope tagged
4059 type as we are ever going to know, so at that point in time, we
4060 can safely generate correct Dwarf descriptions for these file-
4061 scope tagged types.
4064 if (TYPE_SIZE (type) == 0 && TYPE_CONTEXT (type) == NULL && !finalizing)
4065 return; /* EARLY EXIT! Avoid setting TREE_ASM_WRITTEN. */
4067 /* Prevent infinite recursion in cases where the type of some
4068 member of this type is expressed in terms of this type itself. */
4070 TREE_ASM_WRITTEN (type) = 1;
4072 /* Output a DIE to represent the tagged type itself. */
4074 switch (TREE_CODE (type))
4076 case ENUMERAL_TYPE:
4077 output_die (output_enumeration_type_die, type);
4078 return; /* a special case -- nothing left to do so just return */
4080 case RECORD_TYPE:
4081 output_die (output_structure_type_die, type);
4082 break;
4084 case UNION_TYPE:
4085 case QUAL_UNION_TYPE:
4086 output_die (output_union_type_die, type);
4087 break;
4089 default:
4090 abort (); /* Should never happen. */
4093 /* If this is not an incomplete type, output descriptions of
4094 each of its members.
4096 Note that as we output the DIEs necessary to represent the
4097 members of this record or union type, we will also be trying
4098 to output DIEs to represent the *types* of those members.
4099 However the `output_type' function (above) will specifically
4100 avoid generating type DIEs for member types *within* the list
4101 of member DIEs for this (containing) type execpt for those
4102 types (of members) which are explicitly marked as also being
4103 members of this (containing) type themselves. The g++ front-
4104 end can force any given type to be treated as a member of some
4105 other (containing) type by setting the TYPE_CONTEXT of the
4106 given (member) type to point to the TREE node representing the
4107 appropriate (containing) type.
4110 if (TYPE_SIZE (type))
4113 register tree normal_member;
4115 /* First output info about the data members and type members. */
4117 for (normal_member = TYPE_FIELDS (type);
4118 normal_member;
4119 normal_member = TREE_CHAIN (normal_member))
4120 output_decl (normal_member, type);
4124 register tree vec_base;
4126 /* Now output info about the function members (if any). */
4128 vec_base = TYPE_METHODS (type);
4129 if (vec_base)
4131 register tree first_func_member = TREE_VEC_ELT (vec_base, 0);
4132 register tree func_member;
4134 /* This isn't documented, but the first element of the
4135 vector of member functions can be NULL in cases where
4136 the class type in question didn't have either a
4137 constructor or a destructor declared for it. We have
4138 to make allowances for that here. */
4140 if (first_func_member == NULL)
4141 first_func_member = TREE_VEC_ELT (vec_base, 1);
4143 for (func_member = first_func_member;
4144 func_member;
4145 func_member = TREE_CHAIN (func_member))
4146 output_decl (func_member, type);
4150 /* RECORD_TYPEs, UNION_TYPEs, and QUAL_UNION_TYPEs are themselves
4151 scopes (at least in C++) so we must now output any nested
4152 pending types which are local just to this type. */
4154 output_pending_types_for_scope (type);
4156 end_sibling_chain (); /* Terminate member chain. */
4159 break;
4161 case VOID_TYPE:
4162 case INTEGER_TYPE:
4163 case REAL_TYPE:
4164 case COMPLEX_TYPE:
4165 case BOOLEAN_TYPE:
4166 case CHAR_TYPE:
4167 break; /* No DIEs needed for fundamental types. */
4169 case LANG_TYPE: /* No Dwarf representation currently defined. */
4170 break;
4172 default:
4173 abort ();
4176 TREE_ASM_WRITTEN (type) = 1;
4179 static void
4180 output_tagged_type_instantiation (type)
4181 register tree type;
4183 if (type == 0 || type == error_mark_node)
4184 return;
4186 /* We are going to output a DIE to represent the unqualified version of
4187 of this type (i.e. without any const or volatile qualifiers) so make
4188 sure that we have the main variant (i.e. the unqualified version) of
4189 this type now. */
4191 assert (type == type_main_variant (type));
4193 assert (TREE_ASM_WRITTEN (type));
4195 switch (TREE_CODE (type))
4197 case ERROR_MARK:
4198 break;
4200 case ENUMERAL_TYPE:
4201 output_die (output_inlined_enumeration_type_die, type);
4202 break;
4204 case RECORD_TYPE:
4205 output_die (output_inlined_structure_type_die, type);
4206 break;
4208 case UNION_TYPE:
4209 case QUAL_UNION_TYPE:
4210 output_die (output_inlined_union_type_die, type);
4211 break;
4213 default:
4214 abort (); /* Should never happen. */
4218 /* Output a TAG_lexical_block DIE followed by DIEs to represent all of
4219 the things which are local to the given block. */
4221 static void
4222 output_block (stmt)
4223 register tree stmt;
4225 register int must_output_die = 0;
4226 register tree origin;
4227 register enum tree_code origin_code;
4229 /* Ignore blocks never really used to make RTL. */
4231 if (! stmt || ! TREE_USED (stmt))
4232 return;
4234 /* Determine the "ultimate origin" of this block. This block may be an
4235 inlined instance of an inlined instance of inline function, so we
4236 have to trace all of the way back through the origin chain to find
4237 out what sort of node actually served as the original seed for the
4238 creation of the current block. */
4240 origin = block_ultimate_origin (stmt);
4241 origin_code = (origin != NULL) ? TREE_CODE (origin) : ERROR_MARK;
4243 /* Determine if we need to output any Dwarf DIEs at all to represent this
4244 block. */
4246 if (origin_code == FUNCTION_DECL)
4247 /* The outer scopes for inlinings *must* always be represented. We
4248 generate TAG_inlined_subroutine DIEs for them. (See below.) */
4249 must_output_die = 1;
4250 else
4252 /* In the case where the current block represents an inlining of the
4253 "body block" of an inline function, we must *NOT* output any DIE
4254 for this block because we have already output a DIE to represent
4255 the whole inlined function scope and the "body block" of any
4256 function doesn't really represent a different scope according to
4257 ANSI C rules. So we check here to make sure that this block does
4258 not represent a "body block inlining" before trying to set the
4259 `must_output_die' flag. */
4261 if (origin == NULL || ! is_body_block (origin))
4263 /* Determine if this block directly contains any "significant"
4264 local declarations which we will need to output DIEs for. */
4266 if (debug_info_level > DINFO_LEVEL_TERSE)
4267 /* We are not in terse mode so *any* local declaration counts
4268 as being a "significant" one. */
4269 must_output_die = (BLOCK_VARS (stmt) != NULL);
4270 else
4272 register tree decl;
4274 /* We are in terse mode, so only local (nested) function
4275 definitions count as "significant" local declarations. */
4277 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4278 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl))
4280 must_output_die = 1;
4281 break;
4287 /* It would be a waste of space to generate a Dwarf TAG_lexical_block
4288 DIE for any block which contains no significant local declarations
4289 at all. Rather, in such cases we just call `output_decls_for_scope'
4290 so that any needed Dwarf info for any sub-blocks will get properly
4291 generated. Note that in terse mode, our definition of what constitutes
4292 a "significant" local declaration gets restricted to include only
4293 inlined function instances and local (nested) function definitions. */
4295 if (must_output_die)
4297 output_die ((origin_code == FUNCTION_DECL)
4298 ? output_inlined_subroutine_die
4299 : output_lexical_block_die,
4300 stmt);
4301 output_decls_for_scope (stmt);
4302 end_sibling_chain ();
4304 else
4305 output_decls_for_scope (stmt);
4308 /* Output all of the decls declared within a given scope (also called
4309 a `binding contour') and (recursively) all of it's sub-blocks. */
4311 static void
4312 output_decls_for_scope (stmt)
4313 register tree stmt;
4315 /* Ignore blocks never really used to make RTL. */
4317 if (! stmt || ! TREE_USED (stmt))
4318 return;
4320 if (! BLOCK_ABSTRACT (stmt))
4321 next_block_number++;
4323 /* Output the DIEs to represent all of the data objects, functions,
4324 typedefs, and tagged types declared directly within this block
4325 but not within any nested sub-blocks. */
4328 register tree decl;
4330 for (decl = BLOCK_VARS (stmt); decl; decl = TREE_CHAIN (decl))
4331 output_decl (decl, stmt);
4334 output_pending_types_for_scope (stmt);
4336 /* Output the DIEs to represent all sub-blocks (and the items declared
4337 therein) of this block. */
4340 register tree subblocks;
4342 for (subblocks = BLOCK_SUBBLOCKS (stmt);
4343 subblocks;
4344 subblocks = BLOCK_CHAIN (subblocks))
4345 output_block (subblocks);
4349 /* Output Dwarf .debug information for a decl described by DECL. */
4351 static void
4352 output_decl (decl, containing_scope)
4353 register tree decl;
4354 register tree containing_scope;
4356 /* Make a note of the decl node we are going to be working on. We may
4357 need to give the user the source coordinates of where it appeared in
4358 case we notice (later on) that something about it looks screwy. */
4360 dwarf_last_decl = decl;
4362 if (TREE_CODE (decl) == ERROR_MARK)
4363 return;
4365 /* If this ..._DECL node is marked to be ignored, then ignore it.
4366 But don't ignore a function definition, since that would screw
4367 up our count of blocks, and that it turn will completely screw up the
4368 the labels we will reference in subsequent AT_low_pc and AT_high_pc
4369 attributes (for subsequent blocks). */
4371 if (DECL_IGNORED_P (decl) && TREE_CODE (decl) != FUNCTION_DECL)
4372 return;
4374 switch (TREE_CODE (decl))
4376 case CONST_DECL:
4377 /* The individual enumerators of an enum type get output when we
4378 output the Dwarf representation of the relevant enum type itself. */
4379 break;
4381 case FUNCTION_DECL:
4382 /* If we are in terse mode, don't output any DIEs to represent
4383 mere function declarations. Also, if we are conforming
4384 to the DWARF version 1 specification, don't output DIEs for
4385 mere function declarations. */
4387 if (DECL_INITIAL (decl) == NULL_TREE)
4388 #if (DWARF_VERSION > 1)
4389 if (debug_info_level <= DINFO_LEVEL_TERSE)
4390 #endif
4391 break;
4393 /* Before we describe the FUNCTION_DECL itself, make sure that we
4394 have described its return type. */
4396 output_type (TREE_TYPE (TREE_TYPE (decl)), containing_scope);
4398 /* If the following DIE will represent a function definition for a
4399 function with "extern" linkage, output a special "pubnames" DIE
4400 label just ahead of the actual DIE. A reference to this label
4401 was already generated in the .debug_pubnames section sub-entry
4402 for this function definition. */
4404 if (TREE_PUBLIC (decl))
4406 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4408 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4409 ASM_OUTPUT_LABEL (asm_out_file, label);
4412 /* Now output a DIE to represent the function itself. */
4414 output_die (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl)
4415 ? output_global_subroutine_die
4416 : output_local_subroutine_die,
4417 decl);
4419 /* Now output descriptions of the arguments for this function.
4420 This gets (unnecessarily?) complex because of the fact that
4421 the DECL_ARGUMENT list for a FUNCTION_DECL doesn't indicate
4422 cases where there was a trailing `...' at the end of the formal
4423 parameter list. In order to find out if there was a trailing
4424 ellipsis or not, we must instead look at the type associated
4425 with the FUNCTION_DECL. This will be a node of type FUNCTION_TYPE.
4426 If the chain of type nodes hanging off of this FUNCTION_TYPE node
4427 ends with a void_type_node then there should *not* be an ellipsis
4428 at the end. */
4430 /* In the case where we are describing a mere function declaration, all
4431 we need to do here (and all we *can* do here) is to describe
4432 the *types* of its formal parameters. */
4434 if (DECL_INITIAL (decl) == NULL_TREE)
4435 output_formal_types (TREE_TYPE (decl));
4436 else
4438 /* Generate DIEs to represent all known formal parameters */
4440 register tree arg_decls = DECL_ARGUMENTS (decl);
4441 register tree parm;
4443 /* WARNING! Kludge zone ahead! Here we have a special
4444 hack for svr4 SDB compatibility. Instead of passing the
4445 current FUNCTION_DECL node as the second parameter (i.e.
4446 the `containing_scope' parameter) to `output_decl' (as
4447 we ought to) we instead pass a pointer to our own private
4448 fake_containing_scope node. That node is a RECORD_TYPE
4449 node which NO OTHER TYPE may ever actually be a member of.
4451 This pointer will ultimately get passed into `output_type'
4452 as its `containing_scope' parameter. `Output_type' will
4453 then perform its part in the hack... i.e. it will pend
4454 the type of the formal parameter onto the pending_types
4455 list. Later on, when we are done generating the whole
4456 sequence of formal parameter DIEs for this function
4457 definition, we will un-pend all previously pended types
4458 of formal parameters for this function definition.
4460 This whole kludge prevents any type DIEs from being
4461 mixed in with the formal parameter DIEs. That's good
4462 because svr4 SDB believes that the list of formal
4463 parameter DIEs for a function ends wherever the first
4464 non-formal-parameter DIE appears. Thus, we have to
4465 keep the formal parameter DIEs segregated. They must
4466 all appear (consecutively) at the start of the list of
4467 children for the DIE representing the function definition.
4468 Then (and only then) may we output any additional DIEs
4469 needed to represent the types of these formal parameters.
4473 When generating DIEs, generate the unspecified_parameters
4474 DIE instead if we come across the arg "__builtin_va_alist"
4477 for (parm = arg_decls; parm; parm = TREE_CHAIN (parm))
4478 if (TREE_CODE (parm) == PARM_DECL)
4480 if (DECL_NAME(parm) &&
4481 !strcmp(IDENTIFIER_POINTER(DECL_NAME(parm)),
4482 "__builtin_va_alist") )
4483 output_die (output_unspecified_parameters_die, decl);
4484 else
4485 output_decl (parm, fake_containing_scope);
4489 Now that we have finished generating all of the DIEs to
4490 represent the formal parameters themselves, force out
4491 any DIEs needed to represent their types. We do this
4492 simply by un-pending all previously pended types which
4493 can legitimately go into the chain of children DIEs for
4494 the current FUNCTION_DECL.
4497 output_pending_types_for_scope (decl);
4500 Decide whether we need a unspecified_parameters DIE at the end.
4501 There are 2 more cases to do this for:
4502 1) the ansi ... declaration - this is detectable when the end
4503 of the arg list is not a void_type_node
4504 2) an unprototyped function declaration (not a definition). This
4505 just means that we have no info about the parameters at all.
4509 register tree fn_arg_types = TYPE_ARG_TYPES (TREE_TYPE (decl));
4511 if (fn_arg_types)
4513 /* this is the prototyped case, check for ... */
4514 if (TREE_VALUE (tree_last (fn_arg_types)) != void_type_node)
4515 output_die (output_unspecified_parameters_die, decl);
4517 else
4519 /* this is unprotoyped, check for undefined (just declaration) */
4520 if (!DECL_INITIAL (decl))
4521 output_die (output_unspecified_parameters_die, decl);
4526 /* Output Dwarf info for all of the stuff within the body of the
4527 function (if it has one - it may be just a declaration). */
4530 register tree outer_scope = DECL_INITIAL (decl);
4532 if (outer_scope && TREE_CODE (outer_scope) != ERROR_MARK)
4534 /* Note that here, `outer_scope' is a pointer to the outermost
4535 BLOCK node created to represent a function.
4536 This outermost BLOCK actually represents the outermost
4537 binding contour for the function, i.e. the contour in which
4538 the function's formal parameters and labels get declared.
4540 Curiously, it appears that the front end doesn't actually
4541 put the PARM_DECL nodes for the current function onto the
4542 BLOCK_VARS list for this outer scope. (They are strung
4543 off of the DECL_ARGUMENTS list for the function instead.)
4544 The BLOCK_VARS list for the `outer_scope' does provide us
4545 with a list of the LABEL_DECL nodes for the function however,
4546 and we output DWARF info for those here.
4548 Just within the `outer_scope' there will be another BLOCK
4549 node representing the function's outermost pair of curly
4550 braces. We musn't generate a lexical_block DIE for this
4551 outermost pair of curly braces because that is not really an
4552 independent scope according to ANSI C rules. Rather, it is
4553 the same scope in which the parameters were declared. */
4556 register tree label;
4558 for (label = BLOCK_VARS (outer_scope);
4559 label;
4560 label = TREE_CHAIN (label))
4561 output_decl (label, outer_scope);
4564 /* Note here that `BLOCK_SUBBLOCKS (outer_scope)' points to a
4565 list of BLOCK nodes which is always only one element long.
4566 That one element represents the outermost pair of curley
4567 braces for the function body. */
4569 output_decls_for_scope (BLOCK_SUBBLOCKS (outer_scope));
4571 /* Finally, force out any pending types which are local to the
4572 outermost block of this function definition. These will
4573 all have a TYPE_CONTEXT which points to the FUNCTION_DECL
4574 node itself. */
4576 output_pending_types_for_scope (decl);
4580 /* Generate a terminator for the list of stuff `owned' by this
4581 function. */
4583 end_sibling_chain ();
4585 break;
4587 case TYPE_DECL:
4588 /* If we are in terse mode, don't generate any DIEs to represent
4589 any actual typedefs. Note that even when we are in terse mode,
4590 we must still output DIEs to represent those tagged types which
4591 are used (directly or indirectly) in the specification of either
4592 a return type or a formal parameter type of some function. */
4594 if (debug_info_level <= DINFO_LEVEL_TERSE)
4595 if (DECL_NAME (decl) != NULL
4596 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
4597 return;
4599 /* In the special case of a null-named TYPE_DECL node (representing
4600 the declaration of some type tag), if the given TYPE_DECL is
4601 marked as having been instantiated from some other (original)
4602 TYPE_DECL node (e.g. one which was generated within the original
4603 definition of an inline function) we have to generate a special
4604 (abbreviated) TAG_structure_type, TAG_union_type, or
4605 TAG_enumeration-type DIE here. */
4607 if (! DECL_NAME (decl) && DECL_ABSTRACT_ORIGIN (decl))
4609 output_tagged_type_instantiation (TREE_TYPE (decl));
4610 return;
4613 output_type (TREE_TYPE (decl), containing_scope);
4615 /* Note that unlike the gcc front end (which generates a NULL named
4616 TYPE_DECL node for each complete tagged type, each array type,
4617 and each function type node created) the g++ front end generates
4618 a *named* TYPE_DECL node for each tagged type node created.
4619 Unfortunately, these g++ TYPE_DECL nodes cause us to output many
4620 superfluous and unnecessary TAG_typedef DIEs here. When g++ is
4621 fixed to stop generating these superfluous named TYPE_DECL nodes,
4622 the superfluous TAG_typedef DIEs will likewise cease. */
4624 if (DECL_NAME (decl))
4625 /* Output a DIE to represent the typedef itself. */
4626 output_die (output_typedef_die, decl);
4627 break;
4629 case LABEL_DECL:
4630 if (debug_info_level >= DINFO_LEVEL_NORMAL)
4631 output_die (output_label_die, decl);
4632 break;
4634 case VAR_DECL:
4635 /* If we are conforming to the DWARF version 1 specification, don't
4636 generated any DIEs to represent mere external object declarations. */
4638 #if (DWARF_VERSION <= 1)
4639 if (DECL_EXTERNAL (decl) && ! TREE_PUBLIC (decl))
4640 break;
4641 #endif
4643 /* If we are in terse mode, don't generate any DIEs to represent
4644 any variable declarations or definitions. */
4646 if (debug_info_level <= DINFO_LEVEL_TERSE)
4647 break;
4649 /* Output any DIEs that are needed to specify the type of this data
4650 object. */
4652 output_type (TREE_TYPE (decl), containing_scope);
4654 /* If the following DIE will represent a data object definition for a
4655 data object with "extern" linkage, output a special "pubnames" DIE
4656 label just ahead of the actual DIE. A reference to this label
4657 was already generated in the .debug_pubnames section sub-entry
4658 for this data object definition. */
4660 if (TREE_PUBLIC (decl) && ! DECL_ABSTRACT (decl))
4662 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4664 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number++);
4665 ASM_OUTPUT_LABEL (asm_out_file, label);
4668 /* Now output the DIE to represent the data object itself. This gets
4669 complicated because of the possibility that the VAR_DECL really
4670 represents an inlined instance of a formal parameter for an inline
4671 function. */
4674 register void (*func) ();
4675 register tree origin = decl_ultimate_origin (decl);
4677 if (origin != NULL && TREE_CODE (origin) == PARM_DECL)
4678 func = output_formal_parameter_die;
4679 else
4681 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
4682 func = output_global_variable_die;
4683 else
4684 func = output_local_variable_die;
4686 output_die (func, decl);
4688 break;
4690 case FIELD_DECL:
4691 /* Ignore the nameless fields that are used to skip bits. */
4692 if (DECL_NAME (decl) != 0)
4694 output_type (member_declared_type (decl), containing_scope);
4695 output_die (output_member_die, decl);
4697 break;
4699 case PARM_DECL:
4700 /* Force out the type of this formal, if it was not forced out yet.
4701 Note that here we can run afowl of a bug in "classic" svr4 SDB.
4702 It should be able to grok the presence of type DIEs within a list
4703 of TAG_formal_parameter DIEs, but it doesn't. */
4705 output_type (TREE_TYPE (decl), containing_scope);
4706 output_die (output_formal_parameter_die, decl);
4707 break;
4709 default:
4710 abort ();
4714 void
4715 dwarfout_file_scope_decl (decl, set_finalizing)
4716 register tree decl;
4717 register int set_finalizing;
4719 if (TREE_CODE (decl) == ERROR_MARK)
4720 return;
4722 /* If this ..._DECL node is marked to be ignored, then ignore it. We
4723 gotta hope that the node in question doesn't represent a function
4724 definition. If it does, then totally ignoring it is bound to screw
4725 up our count of blocks, and that it turn will completely screw up the
4726 the labels we will reference in subsequent AT_low_pc and AT_high_pc
4727 attributes (for subsequent blocks). (It's too bad that BLOCK nodes
4728 don't carry their own sequence numbers with them!) */
4730 if (DECL_IGNORED_P (decl))
4732 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
4733 abort ();
4734 return;
4737 switch (TREE_CODE (decl))
4739 case FUNCTION_DECL:
4741 /* Ignore this FUNCTION_DECL if it refers to a builtin declaration of
4742 a builtin function. Explicit programmer-supplied declarations of
4743 these same functions should NOT be ignored however. */
4745 if (DECL_EXTERNAL (decl) && DECL_FUNCTION_CODE (decl))
4746 return;
4748 /* What we would really like to do here is to filter out all mere
4749 file-scope declarations of file-scope functions which are never
4750 referenced later within this translation unit (and keep all of
4751 ones that *are* referenced later on) but we aren't clarvoiant,
4752 so we have no idea which functions will be referenced in the
4753 future (i.e. later on within the current translation unit).
4754 So here we just ignore all file-scope function declarations
4755 which are not also definitions. If and when the debugger needs
4756 to know something about these funcstion, it wil have to hunt
4757 around and find the DWARF information associated with the
4758 *definition* of the function.
4760 Note that we can't just check `DECL_EXTERNAL' to find out which
4761 FUNCTION_DECL nodes represent definitions and which ones represent
4762 mere declarations. We have to check `DECL_INITIAL' instead. That's
4763 because the C front-end supports some weird semantics for "extern
4764 inline" function definitions. These can get inlined within the
4765 current translation unit (an thus, we need to generate DWARF info
4766 for their abstract instances so that the DWARF info for the
4767 concrete inlined instances can have something to refer to) but
4768 the compiler never generates any out-of-lines instances of such
4769 things (despite the fact that they *are* definitions). The
4770 important point is that the C front-end marks these "extern inline"
4771 functions as DECL_EXTERNAL, but we need to generate DWARf for them
4772 anyway.
4774 Note that the C++ front-end also plays some similar games for inline
4775 function definitions appearing within include files which also
4776 contain `#pragma interface' pragmas. */
4778 if (DECL_INITIAL (decl) == NULL_TREE)
4779 return;
4781 if (TREE_PUBLIC (decl)
4782 && ! DECL_EXTERNAL (decl)
4783 && ! DECL_ABSTRACT (decl))
4785 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4787 /* Output a .debug_pubnames entry for a public function
4788 defined in this compilation unit. */
4790 fputc ('\n', asm_out_file);
4791 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
4792 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
4793 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
4794 ASM_OUTPUT_DWARF_STRING (asm_out_file,
4795 IDENTIFIER_POINTER (DECL_NAME (decl)));
4796 ASM_OUTPUT_POP_SECTION (asm_out_file);
4799 break;
4801 case VAR_DECL:
4803 /* Ignore this VAR_DECL if it refers to a file-scope extern data
4804 object declaration and if the declaration was never even
4805 referenced from within this entire compilation unit. We
4806 suppress these DIEs in order to save space in the .debug section
4807 (by eliminating entries which are probably useless). Note that
4808 we must not suppress block-local extern declarations (whether
4809 used or not) because that would screw-up the debugger's name
4810 lookup mechanism and cause it to miss things which really ought
4811 to be in scope at a given point. */
4813 if (DECL_EXTERNAL (decl) && !TREE_USED (decl))
4814 return;
4816 if (TREE_PUBLIC (decl)
4817 && ! DECL_EXTERNAL (decl)
4818 && GET_CODE (DECL_RTL (decl)) == MEM
4819 && ! DECL_ABSTRACT (decl))
4821 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4823 if (debug_info_level >= DINFO_LEVEL_NORMAL)
4825 /* Output a .debug_pubnames entry for a public variable
4826 defined in this compilation unit. */
4828 fputc ('\n', asm_out_file);
4829 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
4830 sprintf (label, PUB_DIE_LABEL_FMT, next_pubname_number);
4831 ASM_OUTPUT_DWARF_ADDR (asm_out_file, label);
4832 ASM_OUTPUT_DWARF_STRING (asm_out_file,
4833 IDENTIFIER_POINTER (DECL_NAME (decl)));
4834 ASM_OUTPUT_POP_SECTION (asm_out_file);
4837 if (DECL_INITIAL (decl) == NULL)
4839 /* Output a .debug_aranges entry for a public variable
4840 which is tentatively defined in this compilation unit. */
4842 fputc ('\n', asm_out_file);
4843 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
4844 ASM_OUTPUT_DWARF_ADDR (asm_out_file,
4845 IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (decl)));
4846 ASM_OUTPUT_DWARF_DATA4 (asm_out_file,
4847 (unsigned) int_size_in_bytes (TREE_TYPE (decl)));
4848 ASM_OUTPUT_POP_SECTION (asm_out_file);
4852 /* If we are in terse mode, don't generate any DIEs to represent
4853 any variable declarations or definitions. */
4855 if (debug_info_level <= DINFO_LEVEL_TERSE)
4856 return;
4858 break;
4860 case TYPE_DECL:
4861 /* Don't bother trying to generate any DIEs to represent any of the
4862 normal built-in types for the language we are compiling, except
4863 in cases where the types in question are *not* DWARF fundamental
4864 types. We make an exception in the case of non-fundamental types
4865 for the sake of objective C (and perhaps C++) because the GNU
4866 front-ends for these languages may in fact create certain "built-in"
4867 types which are (for example) RECORD_TYPEs. In such cases, we
4868 really need to output these (non-fundamental) types because other
4869 DIEs may contain references to them. */
4871 if (DECL_SOURCE_LINE (decl) == 0
4872 && type_is_fundamental (TREE_TYPE (decl)))
4873 return;
4875 /* If we are in terse mode, don't generate any DIEs to represent
4876 any actual typedefs. Note that even when we are in terse mode,
4877 we must still output DIEs to represent those tagged types which
4878 are used (directly or indirectly) in the specification of either
4879 a return type or a formal parameter type of some function. */
4881 if (debug_info_level <= DINFO_LEVEL_TERSE)
4882 if (DECL_NAME (decl) != NULL
4883 || ! TYPE_USED_FOR_FUNCTION (TREE_TYPE (decl)))
4884 return;
4886 break;
4888 default:
4889 return;
4892 fputc ('\n', asm_out_file);
4893 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
4894 finalizing = set_finalizing;
4895 output_decl (decl, NULL_TREE);
4897 /* NOTE: The call above to `output_decl' may have caused one or more
4898 file-scope named types (i.e. tagged types) to be placed onto the
4899 pending_types_list. We have to get those types off of that list
4900 at some point, and this is the perfect time to do it. If we didn't
4901 take them off now, they might still be on the list when cc1 finally
4902 exits. That might be OK if it weren't for the fact that when we put
4903 types onto the pending_types_list, we set the TREE_ASM_WRITTEN flag
4904 for these types, and that causes them never to be output unless
4905 `output_pending_types_for_scope' takes them off of the list and un-sets
4906 their TREE_ASM_WRITTEN flags. */
4908 output_pending_types_for_scope (NULL_TREE);
4910 /* The above call should have totally emptied the pending_types_list. */
4912 assert (pending_types == 0);
4914 ASM_OUTPUT_POP_SECTION (asm_out_file);
4916 if (TREE_CODE (decl) == FUNCTION_DECL && DECL_INITIAL (decl) != NULL)
4917 current_funcdef_number++;
4920 /* Output a marker (i.e. a label) for the beginning of the generated code
4921 for a lexical block. */
4923 void
4924 dwarfout_begin_block (blocknum)
4925 register unsigned blocknum;
4927 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4929 text_section ();
4930 sprintf (label, BLOCK_BEGIN_LABEL_FMT, blocknum);
4931 ASM_OUTPUT_LABEL (asm_out_file, label);
4934 /* Output a marker (i.e. a label) for the end of the generated code
4935 for a lexical block. */
4937 void
4938 dwarfout_end_block (blocknum)
4939 register unsigned blocknum;
4941 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4943 text_section ();
4944 sprintf (label, BLOCK_END_LABEL_FMT, blocknum);
4945 ASM_OUTPUT_LABEL (asm_out_file, label);
4948 /* Output a marker (i.e. a label) at a point in the assembly code which
4949 corresponds to a given source level label. */
4951 void
4952 dwarfout_label (insn)
4953 register rtx insn;
4955 if (debug_info_level >= DINFO_LEVEL_NORMAL)
4957 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4959 text_section ();
4960 sprintf (label, INSN_LABEL_FMT, current_funcdef_number,
4961 (unsigned) INSN_UID (insn));
4962 ASM_OUTPUT_LABEL (asm_out_file, label);
4966 /* Output a marker (i.e. a label) for the point in the generated code where
4967 the real body of the function begins (after parameters have been moved
4968 to their home locations). */
4970 void
4971 dwarfout_begin_function ()
4973 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4975 text_section ();
4976 sprintf (label, BODY_BEGIN_LABEL_FMT, current_funcdef_number);
4977 ASM_OUTPUT_LABEL (asm_out_file, label);
4980 /* Output a marker (i.e. a label) for the point in the generated code where
4981 the real body of the function ends (just before the epilogue code). */
4983 void
4984 dwarfout_end_function ()
4986 char label[MAX_ARTIFICIAL_LABEL_BYTES];
4988 text_section ();
4989 sprintf (label, BODY_END_LABEL_FMT, current_funcdef_number);
4990 ASM_OUTPUT_LABEL (asm_out_file, label);
4993 /* Output a marker (i.e. a label) for the absolute end of the generated code
4994 for a function definition. This gets called *after* the epilogue code
4995 has been generated. */
4997 void
4998 dwarfout_end_epilogue ()
5000 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5002 /* Output a label to mark the endpoint of the code generated for this
5003 function. */
5005 sprintf (label, FUNC_END_LABEL_FMT, current_funcdef_number);
5006 ASM_OUTPUT_LABEL (asm_out_file, label);
5009 static void
5010 shuffle_filename_entry (new_zeroth)
5011 register filename_entry *new_zeroth;
5013 filename_entry temp_entry;
5014 register filename_entry *limit_p;
5015 register filename_entry *move_p;
5017 if (new_zeroth == &filename_table[0])
5018 return;
5020 temp_entry = *new_zeroth;
5022 /* Shift entries up in the table to make room at [0]. */
5024 limit_p = &filename_table[0];
5025 for (move_p = new_zeroth; move_p > limit_p; move_p--)
5026 *move_p = *(move_p-1);
5028 /* Install the found entry at [0]. */
5030 filename_table[0] = temp_entry;
5033 /* Create a new (string) entry for the .debug_sfnames section. */
5035 static void
5036 generate_new_sfname_entry ()
5038 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5040 fputc ('\n', asm_out_file);
5041 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5042 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, filename_table[0].number);
5043 ASM_OUTPUT_LABEL (asm_out_file, label);
5044 ASM_OUTPUT_DWARF_STRING (asm_out_file,
5045 filename_table[0].name
5046 ? filename_table[0].name
5047 : "");
5048 ASM_OUTPUT_POP_SECTION (asm_out_file);
5051 /* Lookup a filename (in the list of filenames that we know about here in
5052 dwarfout.c) and return its "index". The index of each (known) filename
5053 is just a unique number which is associated with only that one filename.
5054 We need such numbers for the sake of generating labels (in the
5055 .debug_sfnames section) and references to those unique labels (in the
5056 .debug_srcinfo and .debug_macinfo sections).
5058 If the filename given as an argument is not found in our current list,
5059 add it to the list and assign it the next available unique index number.
5061 Whatever we do (i.e. whether we find a pre-existing filename or add a new
5062 one), we shuffle the filename found (or added) up to the zeroth entry of
5063 our list of filenames (which is always searched linearly). We do this so
5064 as to optimize the most common case for these filename lookups within
5065 dwarfout.c. The most common case by far is the case where we call
5066 lookup_filename to lookup the very same filename that we did a lookup
5067 on the last time we called lookup_filename. We make sure that this
5068 common case is fast because such cases will constitute 99.9% of the
5069 lookups we ever do (in practice).
5071 If we add a new filename entry to our table, we go ahead and generate
5072 the corresponding entry in the .debug_sfnames section right away.
5073 Doing so allows us to avoid tickling an assembler bug (present in some
5074 m68k assemblers) which yields assembly-time errors in cases where the
5075 difference of two label addresses is taken and where the two labels
5076 are in a section *other* than the one where the difference is being
5077 calculated, and where at least one of the two symbol references is a
5078 forward reference. (This bug could be tickled by our .debug_srcinfo
5079 entries if we don't output their corresponding .debug_sfnames entries
5080 before them.)
5083 static unsigned
5084 lookup_filename (file_name)
5085 char *file_name;
5087 register filename_entry *search_p;
5088 register filename_entry *limit_p = &filename_table[ft_entries];
5090 for (search_p = filename_table; search_p < limit_p; search_p++)
5091 if (!strcmp (file_name, search_p->name))
5093 /* When we get here, we have found the filename that we were
5094 looking for in the filename_table. Now we want to make sure
5095 that it gets moved to the zero'th entry in the table (if it
5096 is not already there) so that subsequent attempts to find the
5097 same filename will find it as quickly as possible. */
5099 shuffle_filename_entry (search_p);
5100 return filename_table[0].number;
5103 /* We come here whenever we have a new filename which is not registered
5104 in the current table. Here we add it to the table. */
5106 /* Prepare to add a new table entry by making sure there is enough space
5107 in the table to do so. If not, expand the current table. */
5109 if (ft_entries == ft_entries_allocated)
5111 ft_entries_allocated += FT_ENTRIES_INCREMENT;
5112 filename_table
5113 = (filename_entry *)
5114 xrealloc (filename_table,
5115 ft_entries_allocated * sizeof (filename_entry));
5118 /* Initially, add the new entry at the end of the filename table. */
5120 filename_table[ft_entries].number = ft_entries;
5121 filename_table[ft_entries].name = xstrdup (file_name);
5123 /* Shuffle the new entry into filename_table[0]. */
5125 shuffle_filename_entry (&filename_table[ft_entries]);
5127 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5128 generate_new_sfname_entry ();
5130 ft_entries++;
5131 return filename_table[0].number;
5134 static void
5135 generate_srcinfo_entry (line_entry_num, files_entry_num)
5136 unsigned line_entry_num;
5137 unsigned files_entry_num;
5139 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5141 fputc ('\n', asm_out_file);
5142 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5143 sprintf (label, LINE_ENTRY_LABEL_FMT, line_entry_num);
5144 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, LINE_BEGIN_LABEL);
5145 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, files_entry_num);
5146 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, SFNAMES_BEGIN_LABEL);
5147 ASM_OUTPUT_POP_SECTION (asm_out_file);
5150 void
5151 dwarfout_line (filename, line)
5152 register char *filename;
5153 register unsigned line;
5155 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5157 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5158 static unsigned last_line_entry_num = 0;
5159 static unsigned prev_file_entry_num = (unsigned) -1;
5160 register unsigned this_file_entry_num = lookup_filename (filename);
5162 text_section ();
5163 sprintf (label, LINE_CODE_LABEL_FMT, ++last_line_entry_num);
5164 ASM_OUTPUT_LABEL (asm_out_file, label);
5166 fputc ('\n', asm_out_file);
5167 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5169 if (this_file_entry_num != prev_file_entry_num)
5171 char line_entry_label[MAX_ARTIFICIAL_LABEL_BYTES];
5173 sprintf (line_entry_label, LINE_ENTRY_LABEL_FMT, last_line_entry_num);
5174 ASM_OUTPUT_LABEL (asm_out_file, line_entry_label);
5178 register char *tail = rindex (filename, '/');
5180 if (tail != NULL)
5181 filename = tail;
5184 fprintf (asm_out_file, "\t%s\t%u\t%s %s:%u\n",
5185 UNALIGNED_INT_ASM_OP, line, ASM_COMMENT_START,
5186 filename, line);
5187 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5188 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, label, TEXT_BEGIN_LABEL);
5189 ASM_OUTPUT_POP_SECTION (asm_out_file);
5191 if (this_file_entry_num != prev_file_entry_num)
5192 generate_srcinfo_entry (last_line_entry_num, this_file_entry_num);
5193 prev_file_entry_num = this_file_entry_num;
5197 /* Generate an entry in the .debug_macinfo section. */
5199 static void
5200 generate_macinfo_entry (type_and_offset, string)
5201 register char *type_and_offset;
5202 register char *string;
5204 fputc ('\n', asm_out_file);
5205 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5206 fprintf (asm_out_file, "\t%s\t%s\n", UNALIGNED_INT_ASM_OP, type_and_offset);
5207 ASM_OUTPUT_DWARF_STRING (asm_out_file, string);
5208 ASM_OUTPUT_POP_SECTION (asm_out_file);
5211 void
5212 dwarfout_start_new_source_file (filename)
5213 register char *filename;
5215 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5216 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*3];
5218 sprintf (label, SFNAMES_ENTRY_LABEL_FMT, lookup_filename (filename));
5219 sprintf (type_and_offset, "0x%08x+%s-%s",
5220 ((unsigned) MACINFO_start << 24), label, SFNAMES_BEGIN_LABEL);
5221 generate_macinfo_entry (type_and_offset, "");
5224 void
5225 dwarfout_resume_previous_source_file (lineno)
5226 register unsigned lineno;
5228 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5230 sprintf (type_and_offset, "0x%08x+%u",
5231 ((unsigned) MACINFO_resume << 24), lineno);
5232 generate_macinfo_entry (type_and_offset, "");
5235 /* Called from check_newline in c-parse.y. The `buffer' parameter
5236 contains the tail part of the directive line, i.e. the part which
5237 is past the initial whitespace, #, whitespace, directive-name,
5238 whitespace part. */
5240 void
5241 dwarfout_define (lineno, buffer)
5242 register unsigned lineno;
5243 register char *buffer;
5245 static int initialized = 0;
5246 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5248 if (!initialized)
5250 dwarfout_start_new_source_file (primary_filename);
5251 initialized = 1;
5253 sprintf (type_and_offset, "0x%08x+%u",
5254 ((unsigned) MACINFO_define << 24), lineno);
5255 generate_macinfo_entry (type_and_offset, buffer);
5258 /* Called from check_newline in c-parse.y. The `buffer' parameter
5259 contains the tail part of the directive line, i.e. the part which
5260 is past the initial whitespace, #, whitespace, directive-name,
5261 whitespace part. */
5263 void
5264 dwarfout_undef (lineno, buffer)
5265 register unsigned lineno;
5266 register char *buffer;
5268 char type_and_offset[MAX_ARTIFICIAL_LABEL_BYTES*2];
5270 sprintf (type_and_offset, "0x%08x+%u",
5271 ((unsigned) MACINFO_undef << 24), lineno);
5272 generate_macinfo_entry (type_and_offset, buffer);
5275 /* Set up for Dwarf output at the start of compilation. */
5277 void
5278 dwarfout_init (asm_out_file, main_input_filename)
5279 register FILE *asm_out_file;
5280 register char *main_input_filename;
5282 /* Remember the name of the primary input file. */
5284 primary_filename = main_input_filename;
5286 /* Allocate the initial hunk of the pending_sibling_stack. */
5288 pending_sibling_stack
5289 = (unsigned *)
5290 xmalloc (PENDING_SIBLINGS_INCREMENT * sizeof (unsigned));
5291 pending_siblings_allocated = PENDING_SIBLINGS_INCREMENT;
5292 pending_siblings = 1;
5294 /* Allocate the initial hunk of the filename_table. */
5296 filename_table
5297 = (filename_entry *)
5298 xmalloc (FT_ENTRIES_INCREMENT * sizeof (filename_entry));
5299 ft_entries_allocated = FT_ENTRIES_INCREMENT;
5300 ft_entries = 0;
5302 /* Allocate the initial hunk of the pending_types_list. */
5304 pending_types_list
5305 = (tree *) xmalloc (PENDING_TYPES_INCREMENT * sizeof (tree));
5306 pending_types_allocated = PENDING_TYPES_INCREMENT;
5307 pending_types = 0;
5309 /* Create an artificial RECORD_TYPE node which we can use in our hack
5310 to get the DIEs representing types of formal parameters to come out
5311 only *after* the DIEs for the formal parameters themselves. */
5313 fake_containing_scope = make_node (RECORD_TYPE);
5315 /* Output a starting label for the .text section. */
5317 fputc ('\n', asm_out_file);
5318 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5319 ASM_OUTPUT_LABEL (asm_out_file, TEXT_BEGIN_LABEL);
5320 ASM_OUTPUT_POP_SECTION (asm_out_file);
5322 /* Output a starting label for the .data section. */
5324 fputc ('\n', asm_out_file);
5325 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5326 ASM_OUTPUT_LABEL (asm_out_file, DATA_BEGIN_LABEL);
5327 ASM_OUTPUT_POP_SECTION (asm_out_file);
5329 #if 0 /* GNU C doesn't currently use .data1. */
5330 /* Output a starting label for the .data1 section. */
5332 fputc ('\n', asm_out_file);
5333 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5334 ASM_OUTPUT_LABEL (asm_out_file, DATA1_BEGIN_LABEL);
5335 ASM_OUTPUT_POP_SECTION (asm_out_file);
5336 #endif
5338 /* Output a starting label for the .rodata section. */
5340 fputc ('\n', asm_out_file);
5341 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5342 ASM_OUTPUT_LABEL (asm_out_file, RODATA_BEGIN_LABEL);
5343 ASM_OUTPUT_POP_SECTION (asm_out_file);
5345 #if 0 /* GNU C doesn't currently use .rodata1. */
5346 /* Output a starting label for the .rodata1 section. */
5348 fputc ('\n', asm_out_file);
5349 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5350 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_BEGIN_LABEL);
5351 ASM_OUTPUT_POP_SECTION (asm_out_file);
5352 #endif
5354 /* Output a starting label for the .bss section. */
5356 fputc ('\n', asm_out_file);
5357 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
5358 ASM_OUTPUT_LABEL (asm_out_file, BSS_BEGIN_LABEL);
5359 ASM_OUTPUT_POP_SECTION (asm_out_file);
5361 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5363 /* Output a starting label and an initial (compilation directory)
5364 entry for the .debug_sfnames section. The starting label will be
5365 referenced by the initial entry in the .debug_srcinfo section. */
5367 fputc ('\n', asm_out_file);
5368 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SFNAMES_SECTION);
5369 ASM_OUTPUT_LABEL (asm_out_file, SFNAMES_BEGIN_LABEL);
5371 register char *pwd;
5372 register unsigned len;
5373 register char *dirname;
5375 pwd = getpwd ();
5376 if (!pwd)
5377 pfatal_with_name ("getpwd");
5378 len = strlen (pwd);
5379 dirname = (char *) xmalloc (len + 2);
5381 strcpy (dirname, pwd);
5382 strcpy (dirname + len, "/");
5383 ASM_OUTPUT_DWARF_STRING (asm_out_file, dirname);
5384 free (dirname);
5386 ASM_OUTPUT_POP_SECTION (asm_out_file);
5388 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
5390 /* Output a starting label for the .debug_macinfo section. This
5391 label will be referenced by the AT_mac_info attribute in the
5392 TAG_compile_unit DIE. */
5394 fputc ('\n', asm_out_file);
5395 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5396 ASM_OUTPUT_LABEL (asm_out_file, MACINFO_BEGIN_LABEL);
5397 ASM_OUTPUT_POP_SECTION (asm_out_file);
5400 /* Generate the initial entry for the .line section. */
5402 fputc ('\n', asm_out_file);
5403 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5404 ASM_OUTPUT_LABEL (asm_out_file, LINE_BEGIN_LABEL);
5405 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, LINE_END_LABEL, LINE_BEGIN_LABEL);
5406 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5407 ASM_OUTPUT_POP_SECTION (asm_out_file);
5409 /* Generate the initial entry for the .debug_srcinfo section. */
5411 fputc ('\n', asm_out_file);
5412 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5413 ASM_OUTPUT_LABEL (asm_out_file, SRCINFO_BEGIN_LABEL);
5414 ASM_OUTPUT_DWARF_ADDR (asm_out_file, LINE_BEGIN_LABEL);
5415 ASM_OUTPUT_DWARF_ADDR (asm_out_file, SFNAMES_BEGIN_LABEL);
5416 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5417 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_END_LABEL);
5418 #ifdef DWARF_TIMESTAMPS
5419 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, time (NULL));
5420 #else
5421 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
5422 #endif
5423 ASM_OUTPUT_POP_SECTION (asm_out_file);
5425 /* Generate the initial entry for the .debug_pubnames section. */
5427 fputc ('\n', asm_out_file);
5428 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5429 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5430 ASM_OUTPUT_POP_SECTION (asm_out_file);
5432 /* Generate the initial entry for the .debug_aranges section. */
5434 fputc ('\n', asm_out_file);
5435 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5436 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DEBUG_BEGIN_LABEL);
5437 ASM_OUTPUT_POP_SECTION (asm_out_file);
5440 /* Setup first DIE number == 1. */
5441 NEXT_DIE_NUM = next_unused_dienum++;
5443 /* Generate the initial DIE for the .debug section. Note that the
5444 (string) value given in the AT_name attribute of the TAG_compile_unit
5445 DIE will (typically) be a relative pathname and that this pathname
5446 should be taken as being relative to the directory from which the
5447 compiler was invoked when the given (base) source file was compiled. */
5449 fputc ('\n', asm_out_file);
5450 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5451 ASM_OUTPUT_LABEL (asm_out_file, DEBUG_BEGIN_LABEL);
5452 output_die (output_compile_unit_die, main_input_filename);
5453 ASM_OUTPUT_POP_SECTION (asm_out_file);
5455 fputc ('\n', asm_out_file);
5458 /* Output stuff that dwarf requires at the end of every file. */
5460 void
5461 dwarfout_finish ()
5463 char label[MAX_ARTIFICIAL_LABEL_BYTES];
5465 fputc ('\n', asm_out_file);
5466 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DEBUG_SECTION);
5468 /* Mark the end of the chain of siblings which represent all file-scope
5469 declarations in this compilation unit. */
5471 /* The (null) DIE which represents the terminator for the (sibling linked)
5472 list of file-scope items is *special*. Normally, we would just call
5473 end_sibling_chain at this point in order to output a word with the
5474 value `4' and that word would act as the terminator for the list of
5475 DIEs describing file-scope items. Unfortunately, if we were to simply
5476 do that, the label that would follow this DIE in the .debug section
5477 (i.e. `..D2') would *not* be properly aligned (as it must be on some
5478 machines) to a 4 byte boundary.
5480 In order to force the label `..D2' to get aligned to a 4 byte boundary,
5481 the trick used is to insert extra (otherwise useless) padding bytes
5482 into the (null) DIE that we know must precede the ..D2 label in the
5483 .debug section. The amount of padding required can be anywhere between
5484 0 and 3 bytes. The length word at the start of this DIE (i.e. the one
5485 with the padding) would normally contain the value 4, but now it will
5486 also have to include the padding bytes, so it will instead have some
5487 value in the range 4..7.
5489 Fortunately, the rules of Dwarf say that any DIE whose length word
5490 contains *any* value less than 8 should be treated as a null DIE, so
5491 this trick works out nicely. Clever, eh? Don't give me any credit
5492 (or blame). I didn't think of this scheme. I just conformed to it.
5495 output_die (output_padded_null_die, (void *)0);
5496 dienum_pop ();
5498 sprintf (label, DIE_BEGIN_LABEL_FMT, NEXT_DIE_NUM);
5499 ASM_OUTPUT_LABEL (asm_out_file, label); /* should be ..D2 */
5500 ASM_OUTPUT_POP_SECTION (asm_out_file);
5502 /* Output a terminator label for the .text section. */
5504 fputc ('\n', asm_out_file);
5505 ASM_OUTPUT_PUSH_SECTION (asm_out_file, TEXT_SECTION);
5506 ASM_OUTPUT_LABEL (asm_out_file, TEXT_END_LABEL);
5507 ASM_OUTPUT_POP_SECTION (asm_out_file);
5509 /* Output a terminator label for the .data section. */
5511 fputc ('\n', asm_out_file);
5512 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA_SECTION);
5513 ASM_OUTPUT_LABEL (asm_out_file, DATA_END_LABEL);
5514 ASM_OUTPUT_POP_SECTION (asm_out_file);
5516 #if 0 /* GNU C doesn't currently use .data1. */
5517 /* Output a terminator label for the .data1 section. */
5519 fputc ('\n', asm_out_file);
5520 ASM_OUTPUT_PUSH_SECTION (asm_out_file, DATA1_SECTION);
5521 ASM_OUTPUT_LABEL (asm_out_file, DATA1_END_LABEL);
5522 ASM_OUTPUT_POP_SECTION (asm_out_file);
5523 #endif
5525 /* Output a terminator label for the .rodata section. */
5527 fputc ('\n', asm_out_file);
5528 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA_SECTION);
5529 ASM_OUTPUT_LABEL (asm_out_file, RODATA_END_LABEL);
5530 ASM_OUTPUT_POP_SECTION (asm_out_file);
5532 #if 0 /* GNU C doesn't currently use .rodata1. */
5533 /* Output a terminator label for the .rodata1 section. */
5535 fputc ('\n', asm_out_file);
5536 ASM_OUTPUT_PUSH_SECTION (asm_out_file, RODATA1_SECTION);
5537 ASM_OUTPUT_LABEL (asm_out_file, RODATA1_END_LABEL);
5538 ASM_OUTPUT_POP_SECTION (asm_out_file);
5539 #endif
5541 /* Output a terminator label for the .bss section. */
5543 fputc ('\n', asm_out_file);
5544 ASM_OUTPUT_PUSH_SECTION (asm_out_file, BSS_SECTION);
5545 ASM_OUTPUT_LABEL (asm_out_file, BSS_END_LABEL);
5546 ASM_OUTPUT_POP_SECTION (asm_out_file);
5548 if (debug_info_level >= DINFO_LEVEL_NORMAL)
5550 /* Output a terminating entry for the .line section. */
5552 fputc ('\n', asm_out_file);
5553 ASM_OUTPUT_PUSH_SECTION (asm_out_file, LINE_SECTION);
5554 ASM_OUTPUT_LABEL (asm_out_file, LINE_LAST_ENTRY_LABEL);
5555 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5556 ASM_OUTPUT_DWARF_DATA2 (asm_out_file, 0xffff);
5557 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
5558 ASM_OUTPUT_LABEL (asm_out_file, LINE_END_LABEL);
5559 ASM_OUTPUT_POP_SECTION (asm_out_file);
5561 /* Output a terminating entry for the .debug_srcinfo section. */
5563 fputc ('\n', asm_out_file);
5564 ASM_OUTPUT_PUSH_SECTION (asm_out_file, SRCINFO_SECTION);
5565 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file,
5566 LINE_LAST_ENTRY_LABEL, LINE_BEGIN_LABEL);
5567 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, -1);
5568 ASM_OUTPUT_POP_SECTION (asm_out_file);
5570 if (debug_info_level >= DINFO_LEVEL_VERBOSE)
5572 /* Output terminating entries for the .debug_macinfo section. */
5574 dwarfout_resume_previous_source_file (0);
5576 fputc ('\n', asm_out_file);
5577 ASM_OUTPUT_PUSH_SECTION (asm_out_file, MACINFO_SECTION);
5578 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5579 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
5580 ASM_OUTPUT_POP_SECTION (asm_out_file);
5583 /* Generate the terminating entry for the .debug_pubnames section. */
5585 fputc ('\n', asm_out_file);
5586 ASM_OUTPUT_PUSH_SECTION (asm_out_file, PUBNAMES_SECTION);
5587 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5588 ASM_OUTPUT_DWARF_STRING (asm_out_file, "");
5589 ASM_OUTPUT_POP_SECTION (asm_out_file);
5591 /* Generate the terminating entries for the .debug_aranges section.
5593 Note that we want to do this only *after* we have output the end
5594 labels (for the various program sections) which we are going to
5595 refer to here. This allows us to work around a bug in the m68k
5596 svr4 assembler. That assembler gives bogus assembly-time errors
5597 if (within any given section) you try to take the difference of
5598 two relocatable symbols, both of which are located within some
5599 other section, and if one (or both?) of the symbols involved is
5600 being forward-referenced. By generating the .debug_aranges
5601 entries at this late point in the assembly output, we skirt the
5602 issue simply by avoiding forward-references.
5605 fputc ('\n', asm_out_file);
5606 ASM_OUTPUT_PUSH_SECTION (asm_out_file, ARANGES_SECTION);
5608 ASM_OUTPUT_DWARF_ADDR (asm_out_file, TEXT_BEGIN_LABEL);
5609 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, TEXT_END_LABEL, TEXT_BEGIN_LABEL);
5611 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA_BEGIN_LABEL);
5612 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA_END_LABEL, DATA_BEGIN_LABEL);
5614 #if 0 /* GNU C doesn't currently use .data1. */
5615 ASM_OUTPUT_DWARF_ADDR (asm_out_file, DATA1_BEGIN_LABEL);
5616 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, DATA1_END_LABEL,
5617 DATA1_BEGIN_LABEL);
5618 #endif
5620 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA_BEGIN_LABEL);
5621 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA_END_LABEL,
5622 RODATA_BEGIN_LABEL);
5624 #if 0 /* GNU C doesn't currently use .rodata1. */
5625 ASM_OUTPUT_DWARF_ADDR (asm_out_file, RODATA1_BEGIN_LABEL);
5626 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, RODATA1_END_LABEL,
5627 RODATA1_BEGIN_LABEL);
5628 #endif
5630 ASM_OUTPUT_DWARF_ADDR (asm_out_file, BSS_BEGIN_LABEL);
5631 ASM_OUTPUT_DWARF_DELTA4 (asm_out_file, BSS_END_LABEL, BSS_BEGIN_LABEL);
5633 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5634 ASM_OUTPUT_DWARF_DATA4 (asm_out_file, 0);
5636 ASM_OUTPUT_POP_SECTION (asm_out_file);
5640 #endif /* DWARF_DEBUGGING_INFO */