* pa-protos.h (get_deferred_plabel): New prototype.
[official-gcc.git] / gcc / lambda.h
blob9855b6f73edd461827311cbe2401c9561e62d451
1 /* Lambda matrix and vector interface.
2 Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dberlin@dberlin.org>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #ifndef LAMBDA_H
23 #define LAMBDA_H
25 #include "vec.h"
27 /* An integer vector. A vector formally consists of an element of a vector
28 space. A vector space is a set that is closed under vector addition
29 and scalar multiplication. In this vector space, an element is a list of
30 integers. */
31 typedef int *lambda_vector;
33 /* An integer matrix. A matrix consists of m vectors of length n (IE
34 all vectors are the same length). */
35 typedef lambda_vector *lambda_matrix;
37 /* A transformation matrix, which is a self-contained ROWSIZE x COLSIZE
38 matrix. Rather than use floats, we simply keep a single DENOMINATOR that
39 represents the denominator for every element in the matrix. */
40 typedef struct
42 lambda_matrix matrix;
43 int rowsize;
44 int colsize;
45 int denominator;
46 } *lambda_trans_matrix;
47 #define LTM_MATRIX(T) ((T)->matrix)
48 #define LTM_ROWSIZE(T) ((T)->rowsize)
49 #define LTM_COLSIZE(T) ((T)->colsize)
50 #define LTM_DENOMINATOR(T) ((T)->denominator)
52 /* A vector representing a statement in the body of a loop.
53 The COEFFICIENTS vector contains a coefficient for each induction variable
54 in the loop nest containing the statement.
55 The DENOMINATOR represents the denominator for each coefficient in the
56 COEFFICIENT vector.
58 This structure is used during code generation in order to rewrite the old
59 induction variable uses in a statement in terms of the newly created
60 induction variables. */
61 typedef struct
63 lambda_vector coefficients;
64 int size;
65 int denominator;
66 } *lambda_body_vector;
67 #define LBV_COEFFICIENTS(T) ((T)->coefficients)
68 #define LBV_SIZE(T) ((T)->size)
69 #define LBV_DENOMINATOR(T) ((T)->denominator)
71 /* Piecewise linear expression.
72 This structure represents a linear expression with terms for the invariants
73 and induction variables of a loop.
74 COEFFICIENTS is a vector of coefficients for the induction variables, one
75 per loop in the loop nest.
76 CONSTANT is the constant portion of the linear expression
77 INVARIANT_COEFFICIENTS is a vector of coefficients for the loop invariants,
78 one per invariant.
79 DENOMINATOR is the denominator for all of the coefficients and constants in
80 the expression.
81 The linear expressions can be linked together using the NEXT field, in
82 order to represent MAX or MIN of a group of linear expressions. */
83 typedef struct lambda_linear_expression_s
85 lambda_vector coefficients;
86 int constant;
87 lambda_vector invariant_coefficients;
88 int denominator;
89 struct lambda_linear_expression_s *next;
90 } *lambda_linear_expression;
92 #define LLE_COEFFICIENTS(T) ((T)->coefficients)
93 #define LLE_CONSTANT(T) ((T)->constant)
94 #define LLE_INVARIANT_COEFFICIENTS(T) ((T)->invariant_coefficients)
95 #define LLE_DENOMINATOR(T) ((T)->denominator)
96 #define LLE_NEXT(T) ((T)->next)
98 lambda_linear_expression lambda_linear_expression_new (int, int);
99 void print_lambda_linear_expression (FILE *, lambda_linear_expression, int,
100 int, char);
102 /* Loop structure. Our loop structure consists of a constant representing the
103 STEP of the loop, a set of linear expressions representing the LOWER_BOUND
104 of the loop, a set of linear expressions representing the UPPER_BOUND of
105 the loop, and a set of linear expressions representing the LINEAR_OFFSET of
106 the loop. The linear offset is a set of linear expressions that are
107 applied to *both* the lower bound, and the upper bound. */
108 typedef struct lambda_loop_s
110 lambda_linear_expression lower_bound;
111 lambda_linear_expression upper_bound;
112 lambda_linear_expression linear_offset;
113 int step;
114 } *lambda_loop;
116 #define LL_LOWER_BOUND(T) ((T)->lower_bound)
117 #define LL_UPPER_BOUND(T) ((T)->upper_bound)
118 #define LL_LINEAR_OFFSET(T) ((T)->linear_offset)
119 #define LL_STEP(T) ((T)->step)
121 /* Loop nest structure.
122 The loop nest structure consists of a set of loop structures (defined
123 above) in LOOPS, along with an integer representing the DEPTH of the loop,
124 and an integer representing the number of INVARIANTS in the loop. Both of
125 these integers are used to size the associated coefficient vectors in the
126 linear expression structures. */
127 typedef struct
129 lambda_loop *loops;
130 int depth;
131 int invariants;
132 } *lambda_loopnest;
134 #define LN_LOOPS(T) ((T)->loops)
135 #define LN_DEPTH(T) ((T)->depth)
136 #define LN_INVARIANTS(T) ((T)->invariants)
138 lambda_loopnest lambda_loopnest_new (int, int);
139 lambda_loopnest lambda_loopnest_transform (lambda_loopnest, lambda_trans_matrix);
140 struct loop;
141 struct loops;
142 bool perfect_nest_p (struct loop *);
143 bool lambda_transform_legal_p (lambda_trans_matrix, int, varray_type);
144 void print_lambda_loopnest (FILE *, lambda_loopnest, char);
146 #define lambda_loop_new() (lambda_loop) ggc_alloc_cleared (sizeof (struct lambda_loop_s))
148 void print_lambda_loop (FILE *, lambda_loop, int, int, char);
150 lambda_matrix lambda_matrix_new (int, int);
152 void lambda_matrix_id (lambda_matrix, int);
153 bool lambda_matrix_id_p (lambda_matrix, int);
154 void lambda_matrix_copy (lambda_matrix, lambda_matrix, int, int);
155 void lambda_matrix_negate (lambda_matrix, lambda_matrix, int, int);
156 void lambda_matrix_transpose (lambda_matrix, lambda_matrix, int, int);
157 void lambda_matrix_add (lambda_matrix, lambda_matrix, lambda_matrix, int,
158 int);
159 void lambda_matrix_add_mc (lambda_matrix, int, lambda_matrix, int,
160 lambda_matrix, int, int);
161 void lambda_matrix_mult (lambda_matrix, lambda_matrix, lambda_matrix,
162 int, int, int);
163 void lambda_matrix_delete_rows (lambda_matrix, int, int, int);
164 void lambda_matrix_row_exchange (lambda_matrix, int, int);
165 void lambda_matrix_row_add (lambda_matrix, int, int, int, int);
166 void lambda_matrix_row_negate (lambda_matrix mat, int, int);
167 void lambda_matrix_row_mc (lambda_matrix, int, int, int);
168 void lambda_matrix_col_exchange (lambda_matrix, int, int, int);
169 void lambda_matrix_col_add (lambda_matrix, int, int, int, int);
170 void lambda_matrix_col_negate (lambda_matrix, int, int);
171 void lambda_matrix_col_mc (lambda_matrix, int, int, int);
172 int lambda_matrix_inverse (lambda_matrix, lambda_matrix, int);
173 void lambda_matrix_hermite (lambda_matrix, int, lambda_matrix, lambda_matrix);
174 void lambda_matrix_left_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
175 void lambda_matrix_right_hermite (lambda_matrix, int, int, lambda_matrix, lambda_matrix);
176 int lambda_matrix_first_nz_vec (lambda_matrix, int, int, int);
177 void lambda_matrix_project_to_null (lambda_matrix, int, int, int,
178 lambda_vector);
179 void print_lambda_matrix (FILE *, lambda_matrix, int, int);
181 lambda_trans_matrix lambda_trans_matrix_new (int, int);
182 bool lambda_trans_matrix_nonsingular_p (lambda_trans_matrix);
183 bool lambda_trans_matrix_fullrank_p (lambda_trans_matrix);
184 int lambda_trans_matrix_rank (lambda_trans_matrix);
185 lambda_trans_matrix lambda_trans_matrix_basis (lambda_trans_matrix);
186 lambda_trans_matrix lambda_trans_matrix_padding (lambda_trans_matrix);
187 lambda_trans_matrix lambda_trans_matrix_inverse (lambda_trans_matrix);
188 void print_lambda_trans_matrix (FILE *, lambda_trans_matrix);
189 void lambda_matrix_vector_mult (lambda_matrix, int, int, lambda_vector,
190 lambda_vector);
191 bool lambda_trans_matrix_id_p (lambda_trans_matrix);
193 lambda_body_vector lambda_body_vector_new (int);
194 lambda_body_vector lambda_body_vector_compute_new (lambda_trans_matrix,
195 lambda_body_vector);
196 void print_lambda_body_vector (FILE *, lambda_body_vector);
197 lambda_loopnest gcc_loopnest_to_lambda_loopnest (struct loops *,
198 struct loop *,
199 VEC(tree,heap) **,
200 VEC(tree,heap) **,
201 bool);
202 void lambda_loopnest_to_gcc_loopnest (struct loop *,
203 VEC(tree,heap) *, VEC(tree,heap) *,
204 lambda_loopnest, lambda_trans_matrix);
207 static inline void lambda_vector_negate (lambda_vector, lambda_vector, int);
208 static inline void lambda_vector_mult_const (lambda_vector, lambda_vector, int, int);
209 static inline void lambda_vector_add (lambda_vector, lambda_vector,
210 lambda_vector, int);
211 static inline void lambda_vector_add_mc (lambda_vector, int, lambda_vector, int,
212 lambda_vector, int);
213 static inline void lambda_vector_copy (lambda_vector, lambda_vector, int);
214 static inline bool lambda_vector_zerop (lambda_vector, int);
215 static inline void lambda_vector_clear (lambda_vector, int);
216 static inline bool lambda_vector_equal (lambda_vector, lambda_vector, int);
217 static inline int lambda_vector_min_nz (lambda_vector, int, int);
218 static inline int lambda_vector_first_nz (lambda_vector, int, int);
219 static inline void print_lambda_vector (FILE *, lambda_vector, int);
221 /* Allocate a new vector of given SIZE. */
223 static inline lambda_vector
224 lambda_vector_new (int size)
226 return ggc_alloc_cleared (size * sizeof(int));
231 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
232 and store the result in VEC2. */
234 static inline void
235 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
236 int size, int const1)
238 int i;
240 if (const1 == 0)
241 lambda_vector_clear (vec2, size);
242 else
243 for (i = 0; i < size; i++)
244 vec2[i] = const1 * vec1[i];
247 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
249 static inline void
250 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
251 int size)
253 lambda_vector_mult_const (vec1, vec2, size, -1);
256 /* VEC3 = VEC1+VEC2, where all three the vectors are of length SIZE. */
258 static inline void
259 lambda_vector_add (lambda_vector vec1, lambda_vector vec2,
260 lambda_vector vec3, int size)
262 int i;
263 for (i = 0; i < size; i++)
264 vec3[i] = vec1[i] + vec2[i];
267 /* VEC3 = CONSTANT1*VEC1 + CONSTANT2*VEC2. All vectors have length SIZE. */
269 static inline void
270 lambda_vector_add_mc (lambda_vector vec1, int const1,
271 lambda_vector vec2, int const2,
272 lambda_vector vec3, int size)
274 int i;
275 for (i = 0; i < size; i++)
276 vec3[i] = const1 * vec1[i] + const2 * vec2[i];
279 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
281 static inline void
282 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
283 int size)
285 memcpy (vec2, vec1, size * sizeof (*vec1));
288 /* Return true if vector VEC1 of length SIZE is the zero vector. */
290 static inline bool
291 lambda_vector_zerop (lambda_vector vec1, int size)
293 int i;
294 for (i = 0; i < size; i++)
295 if (vec1[i] != 0)
296 return false;
297 return true;
300 /* Clear out vector VEC1 of length SIZE. */
302 static inline void
303 lambda_vector_clear (lambda_vector vec1, int size)
305 memset (vec1, 0, size * sizeof (*vec1));
308 /* Return true if two vectors are equal. */
310 static inline bool
311 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
313 int i;
314 for (i = 0; i < size; i++)
315 if (vec1[i] != vec2[i])
316 return false;
317 return true;
320 /* Return the minimum nonzero element in vector VEC1 between START and N.
321 We must have START <= N. */
323 static inline int
324 lambda_vector_min_nz (lambda_vector vec1, int n, int start)
326 int j;
327 int min = -1;
329 gcc_assert (start <= n);
330 for (j = start; j < n; j++)
332 if (vec1[j])
333 if (min < 0 || vec1[j] < vec1[min])
334 min = j;
336 gcc_assert (min >= 0);
338 return min;
341 /* Return the first nonzero element of vector VEC1 between START and N.
342 We must have START <= N. Returns N if VEC1 is the zero vector. */
344 static inline int
345 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
347 int j = start;
348 while (j < n && vec1[j] == 0)
349 j++;
350 return j;
354 /* Multiply a vector by a matrix. */
356 static inline void
357 lambda_vector_matrix_mult (lambda_vector vect, int m, lambda_matrix mat,
358 int n, lambda_vector dest)
360 int i, j;
361 lambda_vector_clear (dest, n);
362 for (i = 0; i < n; i++)
363 for (j = 0; j < m; j++)
364 dest[i] += mat[j][i] * vect[j];
368 /* Print out a vector VEC of length N to OUTFILE. */
370 static inline void
371 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
373 int i;
375 for (i = 0; i < n; i++)
376 fprintf (outfile, "%3d ", vector[i]);
377 fprintf (outfile, "\n");
380 /* Returns true when the vector V is lexicographically positive, in
381 other words, when the first nonzero element is positive. */
383 static inline bool
384 lambda_vector_lexico_pos (lambda_vector v,
385 unsigned n)
387 unsigned i;
388 for (i = 0; i < n; i++)
390 if (v[i] == 0)
391 continue;
392 if (v[i] < 0)
393 return false;
394 if (v[i] > 0)
395 return true;
397 return true;
400 #endif /* LAMBDA_H */