Mark ChangeLog
[official-gcc.git] / libjava / boehm.cc
blob49b4eab27fde9e7ea4de877384e511f667eaa942
1 // boehm.cc - interface between libjava and Boehm GC.
3 /* Copyright (C) 1998, 1999, 2000 Free Software Foundation
5 This file is part of libgcj.
7 This software is copyrighted work licensed under the terms of the
8 Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
9 details. */
11 #include <config.h>
13 #include <stdio.h>
15 #include <jvm.h>
16 #include <gcj/cni.h>
18 #include <java/lang/Class.h>
19 #include <java/lang/reflect/Modifier.h>
20 #include <java-interp.h>
22 // More nastiness: the GC wants to define TRUE and FALSE. We don't
23 // need the Java definitions (themselves a hack), so we undefine them.
24 #undef TRUE
25 #undef FALSE
27 extern "C"
29 #include <gc_priv.h>
30 #include <gc_mark.h>
31 #include <include/gc_gcj.h>
33 // These aren't declared in any Boehm GC header.
34 void GC_finalize_all (void);
35 ptr_t GC_debug_generic_malloc (size_t size, int k, GC_EXTRA_PARAMS);
38 // FIXME: this should probably be defined in some GC header.
39 #ifdef GC_DEBUG
40 # define GC_GENERIC_MALLOC(Size, Type) \
41 GC_debug_generic_malloc (Size, Type, GC_EXTRAS)
42 #else
43 # define GC_GENERIC_MALLOC(Size, Type) GC_generic_malloc (Size, Type)
44 #endif
46 // We must check for plausibility ourselves.
47 #define MAYBE_MARK(Obj, Top, Limit, Source, Exit) \
48 if ((ptr_t) (Obj) >= GC_least_plausible_heap_addr \
49 && (ptr_t) (Obj) <= GC_greatest_plausible_heap_addr) \
50 PUSH_CONTENTS (Obj, Top, Limit, Source, Exit)
54 // Nonzero if this module has been initialized.
55 static int initialized = 0;
57 #if 0
58 // `kind' index used when allocating Java objects.
59 static int obj_kind_x;
61 // Freelist used for Java objects.
62 static ptr_t *obj_free_list;
63 #endif /* 0 */
65 // `kind' index used when allocating Java arrays.
66 static int array_kind_x;
68 // Freelist used for Java arrays.
69 static ptr_t *array_free_list;
71 // Lock used to protect access to Boehm's GC_enable/GC_disable functions.
72 static _Jv_Mutex_t disable_gc_mutex;
76 // This is called by the GC during the mark phase. It marks a Java
77 // object. We use `void *' arguments and return, and not what the
78 // Boehm GC wants, to avoid pollution in our headers.
79 void *
80 _Jv_MarkObj (void *addr, void *msp, void *msl, void * /* env */)
82 mse *mark_stack_ptr = (mse *) msp;
83 mse *mark_stack_limit = (mse *) msl;
84 jobject obj = (jobject) addr;
86 // FIXME: if env is 1, this object was allocated through the debug
87 // interface, and addr points to the beginning of the debug header.
88 // In that case, we should really add the size of the header to addr.
90 _Jv_VTable *dt = *(_Jv_VTable **) addr;
91 // The object might not yet have its vtable set, or it might
92 // really be an object on the freelist. In either case, the vtable slot
93 // will either be 0, or it will point to a cleared object.
94 // This assumes Java objects have size at least 3 words,
95 // including the header. But this should remain true, since this
96 // should only be used with debugging allocation or with large objects.
97 if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
98 return mark_stack_ptr;
99 jclass klass = dt->clas;
101 // Every object has a sync_info pointer.
102 ptr_t p = (ptr_t) obj->sync_info;
103 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o1label);
104 // Mark the object's class.
105 p = (ptr_t) klass;
106 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o2label);
108 if (__builtin_expect (klass == &java::lang::Class::class$, false))
110 // Currently we allocate some of the memory referenced from class objects
111 // as pointerfree memory, and then mark it more intelligently here.
112 // We ensure that the ClassClass mark descriptor forces invocation of
113 // this procedure.
114 // Correctness of this is subtle, but it looks OK to me for now. For the incremental
115 // collector, we need to make sure that the class object is written whenever
116 // any of the subobjects are altered and may need rescanning. This may be tricky
117 // during construction, and this may not be the right way to do this with
118 // incremental collection.
119 // If we overflow the mark stack, we will rescan the class object, so we should
120 // be OK. The same applies if we redo the mark phase because win32 unmapped part
121 // of our root set. - HB
122 jclass c = (jclass) addr;
124 p = (ptr_t) c->name;
125 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c3label);
126 p = (ptr_t) c->superclass;
127 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c4label);
128 for (int i = 0; i < c->constants.size; ++i)
130 /* FIXME: We could make this more precise by using the tags -KKT */
131 p = (ptr_t) c->constants.data[i].p;
132 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5label);
135 #ifdef INTERPRETER
136 if (_Jv_IsInterpretedClass (c))
138 p = (ptr_t) c->constants.tags;
139 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5alabel);
140 p = (ptr_t) c->constants.data;
141 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5blabel);
142 p = (ptr_t) c->vtable;
143 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c5clabel);
145 #endif
147 // If the class is an array, then the methods field holds a
148 // pointer to the element class. If the class is primitive,
149 // then the methods field holds a pointer to the array class.
150 p = (ptr_t) c->methods;
151 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c6label);
154 if (! c->isArray() && ! c->isPrimitive())
156 // Scan each method in the cases where `methods' really
157 // points to a methods structure.
158 for (int i = 0; i < c->method_count; ++i)
160 p = (ptr_t) c->methods[i].name;
161 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
162 cm1label);
163 p = (ptr_t) c->methods[i].signature;
164 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
165 cm2label);
167 // FIXME: `ncode' entry?
169 #ifdef INTERPRETER
170 // The interpreter installs a heap-allocated
171 // trampoline here, so we'll mark it.
172 if (_Jv_IsInterpretedClass (c))
174 p = (ptr_t) c->methods[i].ncode;
175 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c,
176 cm3label);
178 #endif
182 // Mark all the fields.
183 p = (ptr_t) c->fields;
184 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8label);
185 for (int i = 0; i < c->field_count; ++i)
187 _Jv_Field* field = &c->fields[i];
189 #ifndef COMPACT_FIELDS
190 p = (ptr_t) field->name;
191 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8alabel);
192 #endif
193 p = (ptr_t) field->type;
194 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8blabel);
196 // For the interpreter, we also need to mark the memory
197 // containing static members
198 if ((field->flags & java::lang::reflect::Modifier::STATIC))
200 p = (ptr_t) field->u.addr;
201 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c8clabel);
203 // also, if the static member is a reference,
204 // mark also the value pointed to. We check for isResolved
205 // since marking can happen before memory is allocated for
206 // static members.
207 if (JvFieldIsRef (field) && field->isResolved())
209 jobject val = *(jobject*) field->u.addr;
210 p = (ptr_t) val;
211 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit,
212 c, c8elabel);
217 p = (ptr_t) c->vtable;
218 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, c9label);
219 p = (ptr_t) c->interfaces;
220 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cAlabel);
221 for (int i = 0; i < c->interface_count; ++i)
223 p = (ptr_t) c->interfaces[i];
224 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cClabel);
226 p = (ptr_t) c->loader;
227 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cBlabel);
228 p = (ptr_t) c->arrayclass;
229 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, c, cDlabel);
231 #ifdef INTERPRETER
232 if (_Jv_IsInterpretedClass (c))
234 _Jv_InterpClass* ic = (_Jv_InterpClass*)c;
236 p = (ptr_t) ic->interpreted_methods;
237 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, cElabel);
239 for (int i = 0; i < c->method_count; i++)
241 p = (ptr_t) ic->interpreted_methods[i];
242 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, \
243 cFlabel);
246 p = (ptr_t) ic->field_initializers;
247 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, ic, cGlabel);
250 #endif
253 else
255 // NOTE: each class only holds information about the class
256 // itself. So we must do the marking for the entire inheritance
257 // tree in order to mark all fields. FIXME: what about
258 // interfaces? We skip Object here, because Object only has a
259 // sync_info, and we handled that earlier.
260 // Note: occasionally `klass' can be null. For instance, this
261 // can happen if a GC occurs between the point where an object
262 // is allocated and where the vtbl slot is set.
263 while (klass && klass != &java::lang::Object::class$)
265 jfieldID field = JvGetFirstInstanceField (klass);
266 jint max = JvNumInstanceFields (klass);
268 for (int i = 0; i < max; ++i)
270 if (JvFieldIsRef (field))
272 jobject val = JvGetObjectField (obj, field);
273 p = (ptr_t) val;
274 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit,
275 obj, elabel);
277 field = field->getNextField ();
279 klass = klass->getSuperclass();
283 return mark_stack_ptr;
286 // This is called by the GC during the mark phase. It marks a Java
287 // array (of objects). We use `void *' arguments and return, and not
288 // what the Boehm GC wants, to avoid pollution in our headers.
289 void *
290 _Jv_MarkArray (void *addr, void *msp, void *msl, void * /*env*/)
292 mse *mark_stack_ptr = (mse *) msp;
293 mse *mark_stack_limit = (mse *) msl;
294 jobjectArray array = (jobjectArray) addr;
296 _Jv_VTable *dt = *(_Jv_VTable **) addr;
297 // Assumes size >= 3 words. That's currently true since arrays have
298 // a vtable, sync pointer, and size. If the sync pointer goes away,
299 // we may need to round up the size.
300 if (__builtin_expect (! dt || !(dt -> get_finalizer()), false))
301 return mark_stack_ptr;
302 jclass klass = dt->clas;
304 // Every object has a sync_info pointer.
305 ptr_t p = (ptr_t) array->sync_info;
306 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array, e1label);
307 // Mark the object's class.
308 p = (ptr_t) klass;
309 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, obj, o2label);
311 for (int i = 0; i < JvGetArrayLength (array); ++i)
313 jobject obj = elements (array)[i];
314 p = (ptr_t) obj;
315 MAYBE_MARK (p, mark_stack_ptr, mark_stack_limit, array, e2label);
318 return mark_stack_ptr;
321 // Return GC descriptor for interpreted class
322 #ifdef INTERPRETER
324 // We assume that the gcj mark proc has index 0. This is a dubious assumption,
325 // since another one could be registered first. But the compiler also
326 // knows this, so in that case everything else will break, too.
327 #define GCJ_DEFAULT_DESCR MAKE_PROC(GCJ_RESERVED_MARK_PROC_INDEX,0)
328 void *
329 _Jv_BuildGCDescr(jclass klass)
331 /* FIXME: We should really look at the class and build the descriptor. */
332 return (void *)(GCJ_DEFAULT_DESCR);
334 #endif
336 // Allocate space for a new Java object.
337 void *
338 _Jv_AllocObj (jsize size, jclass klass)
340 return GC_GCJ_MALLOC (size, klass->vtable);
343 // Allocate space for a new Java array.
344 // Used only for arrays of objects.
345 void *
346 _Jv_AllocArray (jsize size, jclass klass)
348 void *obj;
349 const jsize min_heap_addr = 16*1024;
350 // A heuristic. If size is less than this value, the size
351 // stored in the array can't possibly be misinterpreted as
352 // a pointer. Thus we lose nothing by scanning the object
353 // completely conservatively, since no misidentification can
354 // take place.
356 #ifdef GC_DEBUG
357 // There isn't much to lose by scanning this conservatively.
358 // If we didn't, the mark proc would have to understand that
359 // it needed to skip the header.
360 obj = GC_MALLOC(size);
361 #else
362 if (size < min_heap_addr)
363 obj = GC_MALLOC(size);
364 else
365 obj = GC_GENERIC_MALLOC (size, array_kind_x);
366 #endif
367 *((_Jv_VTable **) obj) = klass->vtable;
368 return obj;
371 // Allocate some space that is known to be pointer-free.
372 void *
373 _Jv_AllocBytes (jsize size)
375 void *r = GC_MALLOC_ATOMIC (size);
376 // We have to explicitly zero memory here, as the GC doesn't
377 // guarantee that PTRFREE allocations are zeroed. Note that we
378 // don't have to do this for other allocation types because we set
379 // the `ok_init' flag in the type descriptor.
380 if (__builtin_expect (r != NULL, !NULL))
381 memset (r, 0, size);
382 return r;
385 static void
386 call_finalizer (GC_PTR obj, GC_PTR client_data)
388 _Jv_FinalizerFunc *fn = (_Jv_FinalizerFunc *) client_data;
389 jobject jobj = (jobject) obj;
391 (*fn) (jobj);
394 void
395 _Jv_RegisterFinalizer (void *object, _Jv_FinalizerFunc *meth)
397 GC_REGISTER_FINALIZER_NO_ORDER (object, call_finalizer, (GC_PTR) meth,
398 NULL, NULL);
401 void
402 _Jv_RunFinalizers (void)
404 GC_invoke_finalizers ();
407 void
408 _Jv_RunAllFinalizers (void)
410 GC_finalize_all ();
413 void
414 _Jv_RunGC (void)
416 GC_gcollect ();
419 long
420 _Jv_GCTotalMemory (void)
422 return GC_get_heap_size ();
425 long
426 _Jv_GCFreeMemory (void)
428 return GC_get_free_bytes ();
431 void
432 _Jv_GCSetInitialHeapSize (size_t size)
434 size_t current = GC_get_heap_size ();
435 if (size > current)
436 GC_expand_hp (size - current);
439 void
440 _Jv_GCSetMaximumHeapSize (size_t size)
442 GC_set_max_heap_size ((GC_word) size);
445 // From boehm's misc.c
446 extern "C" void GC_enable();
447 extern "C" void GC_disable();
449 void
450 _Jv_DisableGC (void)
452 _Jv_MutexLock (&disable_gc_mutex);
453 GC_disable();
454 _Jv_MutexUnlock (&disable_gc_mutex);
457 void
458 _Jv_EnableGC (void)
460 _Jv_MutexLock (&disable_gc_mutex);
461 GC_enable();
462 _Jv_MutexUnlock (&disable_gc_mutex);
465 void
466 _Jv_InitGC (void)
468 int proc;
469 DCL_LOCK_STATE;
471 DISABLE_SIGNALS ();
472 LOCK ();
474 if (initialized)
476 UNLOCK ();
477 ENABLE_SIGNALS ();
478 return;
480 initialized = 1;
481 UNLOCK ();
483 // Configure the collector to use the bitmap marking descriptors that we
484 // stash in the class vtable.
485 GC_init_gcj_malloc (0, (void *) _Jv_MarkObj);
487 LOCK ();
488 GC_java_finalization = 1;
490 // We use a different mark procedure for object arrays. This code
491 // configures a different object `kind' for object array allocation and
492 // marking. FIXME: see above.
493 array_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
494 * sizeof (ptr_t),
495 PTRFREE);
496 memset (array_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
498 proc = GC_n_mark_procs++;
499 GC_mark_procs[proc] = (mark_proc) _Jv_MarkArray;
501 array_kind_x = GC_n_kinds++;
502 GC_obj_kinds[array_kind_x].ok_freelist = array_free_list;
503 GC_obj_kinds[array_kind_x].ok_reclaim_list = 0;
504 GC_obj_kinds[array_kind_x].ok_descriptor = MAKE_PROC (proc, 0);
505 GC_obj_kinds[array_kind_x].ok_relocate_descr = FALSE;
506 GC_obj_kinds[array_kind_x].ok_init = TRUE;
508 _Jv_MutexInit (&disable_gc_mutex);
510 UNLOCK ();
511 ENABLE_SIGNALS ();
514 #if 0
515 void
516 _Jv_InitGC (void)
518 int proc;
519 DCL_LOCK_STATE;
521 DISABLE_SIGNALS ();
522 LOCK ();
524 if (initialized)
526 UNLOCK ();
527 ENABLE_SIGNALS ();
528 return;
530 initialized = 1;
532 GC_java_finalization = 1;
534 // Set up state for marking and allocation of Java objects.
535 obj_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
536 * sizeof (ptr_t),
537 PTRFREE);
538 memset (obj_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
540 proc = GC_n_mark_procs++;
541 GC_mark_procs[proc] = (mark_proc) _Jv_MarkObj;
543 obj_kind_x = GC_n_kinds++;
544 GC_obj_kinds[obj_kind_x].ok_freelist = obj_free_list;
545 GC_obj_kinds[obj_kind_x].ok_reclaim_list = 0;
546 GC_obj_kinds[obj_kind_x].ok_descriptor = MAKE_PROC (proc, 0);
547 GC_obj_kinds[obj_kind_x].ok_relocate_descr = FALSE;
548 GC_obj_kinds[obj_kind_x].ok_init = TRUE;
550 // Set up state for marking and allocation of arrays of Java
551 // objects.
552 array_free_list = (ptr_t *) GC_generic_malloc_inner ((MAXOBJSZ + 1)
553 * sizeof (ptr_t),
554 PTRFREE);
555 memset (array_free_list, 0, (MAXOBJSZ + 1) * sizeof (ptr_t));
557 proc = GC_n_mark_procs++;
558 GC_mark_procs[proc] = (mark_proc) _Jv_MarkArray;
560 array_kind_x = GC_n_kinds++;
561 GC_obj_kinds[array_kind_x].ok_freelist = array_free_list;
562 GC_obj_kinds[array_kind_x].ok_reclaim_list = 0;
563 GC_obj_kinds[array_kind_x].ok_descriptor = MAKE_PROC (proc, 0);
564 GC_obj_kinds[array_kind_x].ok_relocate_descr = FALSE;
565 GC_obj_kinds[array_kind_x].ok_init = TRUE;
567 _Jv_MutexInit (&disable_gc_mutex);
569 UNLOCK ();
570 ENABLE_SIGNALS ();
572 #endif /* 0 */