1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2006, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
25 ------------------------------------------------------------------------------
27 with Atree
; use Atree
;
28 with Checks
; use Checks
;
29 with Einfo
; use Einfo
;
30 with Errout
; use Errout
;
31 with Exp_Aggr
; use Exp_Aggr
;
32 with Exp_Ch4
; use Exp_Ch4
;
33 with Exp_Ch7
; use Exp_Ch7
;
34 with Exp_Ch9
; use Exp_Ch9
;
35 with Exp_Ch11
; use Exp_Ch11
;
36 with Exp_Disp
; use Exp_Disp
;
37 with Exp_Dist
; use Exp_Dist
;
38 with Exp_Smem
; use Exp_Smem
;
39 with Exp_Strm
; use Exp_Strm
;
40 with Exp_Tss
; use Exp_Tss
;
41 with Exp_Util
; use Exp_Util
;
42 with Freeze
; use Freeze
;
43 with Hostparm
; use Hostparm
;
44 with Nlists
; use Nlists
;
45 with Nmake
; use Nmake
;
47 with Restrict
; use Restrict
;
48 with Rident
; use Rident
;
49 with Rtsfind
; use Rtsfind
;
51 with Sem_Attr
; use Sem_Attr
;
52 with Sem_Ch3
; use Sem_Ch3
;
53 with Sem_Ch8
; use Sem_Ch8
;
54 with Sem_Disp
; use Sem_Disp
;
55 with Sem_Eval
; use Sem_Eval
;
56 with Sem_Mech
; use Sem_Mech
;
57 with Sem_Res
; use Sem_Res
;
58 with Sem_Util
; use Sem_Util
;
59 with Sinfo
; use Sinfo
;
60 with Stand
; use Stand
;
61 with Snames
; use Snames
;
62 with Tbuild
; use Tbuild
;
63 with Ttypes
; use Ttypes
;
64 with Validsw
; use Validsw
;
66 package body Exp_Ch3
is
68 -----------------------
69 -- Local Subprograms --
70 -----------------------
72 procedure Adjust_Discriminants
(Rtype
: Entity_Id
);
73 -- This is used when freezing a record type. It attempts to construct
74 -- more restrictive subtypes for discriminants so that the max size of
75 -- the record can be calculated more accurately. See the body of this
76 -- procedure for details.
78 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
);
79 -- Build initialization procedure for given array type. Nod is a node
80 -- used for attachment of any actions required in its construction.
81 -- It also supplies the source location used for the procedure.
83 function Build_Discriminant_Formals
85 Use_Dl
: Boolean) return List_Id
;
86 -- This function uses the discriminants of a type to build a list of
87 -- formal parameters, used in the following function. If the flag Use_Dl
88 -- is set, the list is built using the already defined discriminals
89 -- of the type. Otherwise new identifiers are created, with the source
90 -- names of the discriminants.
92 procedure Build_Master_Renaming
(N
: Node_Id
; T
: Entity_Id
);
93 -- If the designated type of an access type is a task type or contains
94 -- tasks, we make sure that a _Master variable is declared in the current
95 -- scope, and then declare a renaming for it:
97 -- atypeM : Master_Id renames _Master;
99 -- where atyp is the name of the access type. This declaration is
100 -- used when an allocator for the access type is expanded. The node N
101 -- is the full declaration of the designated type that contains tasks.
102 -- The renaming declaration is inserted before N, and after the Master
105 procedure Build_Record_Init_Proc
(N
: Node_Id
; Pe
: Entity_Id
);
106 -- Build record initialization procedure. N is the type declaration
107 -- node, and Pe is the corresponding entity for the record type.
109 procedure Build_Slice_Assignment
(Typ
: Entity_Id
);
110 -- Build assignment procedure for one-dimensional arrays of controlled
111 -- types. Other array and slice assignments are expanded in-line, but
112 -- the code expansion for controlled components (when control actions
113 -- are active) can lead to very large blocks that GCC3 handles poorly.
115 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
);
116 -- Create An Equality function for the non-tagged variant record 'Typ'
117 -- and attach it to the TSS list
119 procedure Check_Stream_Attributes
(Typ
: Entity_Id
);
120 -- Check that if a limited extension has a parent with user-defined
121 -- stream attributes, and does not itself have user-definer
122 -- stream-attributes, then any limited component of the extension also
123 -- has the corresponding user-defined stream attributes.
125 procedure Expand_Tagged_Root
(T
: Entity_Id
);
126 -- Add a field _Tag at the beginning of the record. This field carries
127 -- the value of the access to the Dispatch table. This procedure is only
128 -- called on root (non CPP_Class) types, the _Tag field being inherited
129 -- by the descendants.
131 procedure Expand_Record_Controller
(T
: Entity_Id
);
132 -- T must be a record type that Has_Controlled_Component. Add a field
133 -- _controller of type Record_Controller or Limited_Record_Controller
136 procedure Freeze_Array_Type
(N
: Node_Id
);
137 -- Freeze an array type. Deals with building the initialization procedure,
138 -- creating the packed array type for a packed array and also with the
139 -- creation of the controlling procedures for the controlled case. The
140 -- argument N is the N_Freeze_Entity node for the type.
142 procedure Freeze_Enumeration_Type
(N
: Node_Id
);
143 -- Freeze enumeration type with non-standard representation. Builds the
144 -- array and function needed to convert between enumeration pos and
145 -- enumeration representation values. N is the N_Freeze_Entity node
148 procedure Freeze_Record_Type
(N
: Node_Id
);
149 -- Freeze record type. Builds all necessary discriminant checking
150 -- and other ancillary functions, and builds dispatch tables where
151 -- needed. The argument N is the N_Freeze_Entity node. This processing
152 -- applies only to E_Record_Type entities, not to class wide types,
153 -- record subtypes, or private types.
155 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
);
156 -- Treat user-defined stream operations as renaming_as_body if the
157 -- subprogram they rename is not frozen when the type is frozen.
159 function Init_Formals
(Typ
: Entity_Id
) return List_Id
;
160 -- This function builds the list of formals for an initialization routine.
161 -- The first formal is always _Init with the given type. For task value
162 -- record types and types containing tasks, three additional formals are
165 -- _Master : Master_Id
166 -- _Chain : in out Activation_Chain
167 -- _Task_Name : String
169 -- The caller must append additional entries for discriminants if required.
171 function In_Runtime
(E
: Entity_Id
) return Boolean;
172 -- Check if E is defined in the RTL (in a child of Ada or System). Used
173 -- to avoid to bring in the overhead of _Input, _Output for tagged types.
175 function Make_Eq_Case
178 Discr
: Entity_Id
:= Empty
) return List_Id
;
179 -- Building block for variant record equality. Defined to share the
180 -- code between the tagged and non-tagged case. Given a Component_List
181 -- node CL, it generates an 'if' followed by a 'case' statement that
182 -- compares all components of local temporaries named X and Y (that
183 -- are declared as formals at some upper level). E provides the Sloc to be
184 -- used for the generated code. Discr is used as the case statement switch
185 -- in the case of Unchecked_Union equality.
189 L
: List_Id
) return Node_Id
;
190 -- Building block for variant record equality. Defined to share the
191 -- code between the tagged and non-tagged case. Given the list of
192 -- components (or discriminants) L, it generates a return statement
193 -- that compares all components of local temporaries named X and Y
194 -- (that are declared as formals at some upper level). E provides the Sloc
195 -- to be used for the generated code.
197 procedure Make_Predefined_Primitive_Specs
198 (Tag_Typ
: Entity_Id
;
199 Predef_List
: out List_Id
;
200 Renamed_Eq
: out Node_Id
);
201 -- Create a list with the specs of the predefined primitive operations.
202 -- The following entries are present for all tagged types, and provide
203 -- the results of the corresponding attribute applied to the object.
204 -- Dispatching is required in general, since the result of the attribute
205 -- will vary with the actual object subtype.
207 -- _alignment provides result of 'Alignment attribute
208 -- _size provides result of 'Size attribute
209 -- typSR provides result of 'Read attribute
210 -- typSW provides result of 'Write attribute
211 -- typSI provides result of 'Input attribute
212 -- typSO provides result of 'Output attribute
214 -- The following entries are additionally present for non-limited
215 -- tagged types, and implement additional dispatching operations
216 -- for predefined operations:
218 -- _equality implements "=" operator
219 -- _assign implements assignment operation
220 -- typDF implements deep finalization
221 -- typDA implements deep adust
223 -- The latter two are empty procedures unless the type contains some
224 -- controlled components that require finalization actions (the deep
225 -- in the name refers to the fact that the action applies to components).
227 -- The list is returned in Predef_List. The Parameter Renamed_Eq
228 -- either returns the value Empty, or else the defining unit name
229 -- for the predefined equality function in the case where the type
230 -- has a primitive operation that is a renaming of predefined equality
231 -- (but only if there is also an overriding user-defined equality
232 -- function). The returned Renamed_Eq will be passed to the
233 -- corresponding parameter of Predefined_Primitive_Bodies.
235 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean;
236 -- returns True if there are representation clauses for type T that
237 -- are not inherited. If the result is false, the init_proc and the
238 -- discriminant_checking functions of the parent can be reused by
241 procedure Make_Controlling_Function_Wrappers
242 (Tag_Typ
: Entity_Id
;
243 Decl_List
: out List_Id
;
244 Body_List
: out List_Id
);
245 -- Ada 2005 (AI-391): Makes specs and bodies for the wrapper functions
246 -- associated with inherited functions with controlling results which
247 -- are not overridden. The body of each wrapper function consists solely
248 -- of a return statement whose expression is an extension aggregate
249 -- invoking the inherited subprogram's parent subprogram and extended
250 -- with a null association list.
252 function Predef_Spec_Or_Body
257 Ret_Type
: Entity_Id
:= Empty
;
258 For_Body
: Boolean := False) return Node_Id
;
259 -- This function generates the appropriate expansion for a predefined
260 -- primitive operation specified by its name, parameter profile and
261 -- return type (Empty means this is a procedure). If For_Body is false,
262 -- then the returned node is a subprogram declaration. If For_Body is
263 -- true, then the returned node is a empty subprogram body containing
264 -- no declarations and no statements.
266 function Predef_Stream_Attr_Spec
269 Name
: TSS_Name_Type
;
270 For_Body
: Boolean := False) return Node_Id
;
271 -- Specialized version of Predef_Spec_Or_Body that apply to read, write,
272 -- input and output attribute whose specs are constructed in Exp_Strm.
274 function Predef_Deep_Spec
277 Name
: TSS_Name_Type
;
278 For_Body
: Boolean := False) return Node_Id
;
279 -- Specialized version of Predef_Spec_Or_Body that apply to _deep_adjust
280 -- and _deep_finalize
282 function Predefined_Primitive_Bodies
283 (Tag_Typ
: Entity_Id
;
284 Renamed_Eq
: Node_Id
) return List_Id
;
285 -- Create the bodies of the predefined primitives that are described in
286 -- Predefined_Primitive_Specs. When not empty, Renamed_Eq must denote
287 -- the defining unit name of the type's predefined equality as returned
288 -- by Make_Predefined_Primitive_Specs.
290 function Predefined_Primitive_Freeze
(Tag_Typ
: Entity_Id
) return List_Id
;
291 -- Freeze entities of all predefined primitive operations. This is needed
292 -- because the bodies of these operations do not normally do any freezeing.
294 function Stream_Operation_OK
296 Operation
: TSS_Name_Type
) return Boolean;
297 -- Check whether the named stream operation must be emitted for a given
298 -- type. The rules for inheritance of stream attributes by type extensions
299 -- are enforced by this function. Furthermore, various restrictions prevent
300 -- the generation of these operations, as a useful optimization or for
301 -- certification purposes.
303 --------------------------
304 -- Adjust_Discriminants --
305 --------------------------
307 -- This procedure attempts to define subtypes for discriminants that
308 -- are more restrictive than those declared. Such a replacement is
309 -- possible if we can demonstrate that values outside the restricted
310 -- range would cause constraint errors in any case. The advantage of
311 -- restricting the discriminant types in this way is tha the maximum
312 -- size of the variant record can be calculated more conservatively.
314 -- An example of a situation in which we can perform this type of
315 -- restriction is the following:
317 -- subtype B is range 1 .. 10;
318 -- type Q is array (B range <>) of Integer;
320 -- type V (N : Natural) is record
324 -- In this situation, we can restrict the upper bound of N to 10, since
325 -- any larger value would cause a constraint error in any case.
327 -- There are many situations in which such restriction is possible, but
328 -- for now, we just look for cases like the above, where the component
329 -- in question is a one dimensional array whose upper bound is one of
330 -- the record discriminants. Also the component must not be part of
331 -- any variant part, since then the component does not always exist.
333 procedure Adjust_Discriminants
(Rtype
: Entity_Id
) is
334 Loc
: constant Source_Ptr
:= Sloc
(Rtype
);
351 Comp
:= First_Component
(Rtype
);
352 while Present
(Comp
) loop
354 -- If our parent is a variant, quit, we do not look at components
355 -- that are in variant parts, because they may not always exist.
357 P
:= Parent
(Comp
); -- component declaration
358 P
:= Parent
(P
); -- component list
360 exit when Nkind
(Parent
(P
)) = N_Variant
;
362 -- We are looking for a one dimensional array type
364 Ctyp
:= Etype
(Comp
);
366 if not Is_Array_Type
(Ctyp
)
367 or else Number_Dimensions
(Ctyp
) > 1
372 -- The lower bound must be constant, and the upper bound is a
373 -- discriminant (which is a discriminant of the current record).
375 Ityp
:= Etype
(First_Index
(Ctyp
));
376 Lo
:= Type_Low_Bound
(Ityp
);
377 Hi
:= Type_High_Bound
(Ityp
);
379 if not Compile_Time_Known_Value
(Lo
)
380 or else Nkind
(Hi
) /= N_Identifier
381 or else No
(Entity
(Hi
))
382 or else Ekind
(Entity
(Hi
)) /= E_Discriminant
387 -- We have an array with appropriate bounds
389 Loval
:= Expr_Value
(Lo
);
390 Discr
:= Entity
(Hi
);
391 Dtyp
:= Etype
(Discr
);
393 -- See if the discriminant has a known upper bound
395 Dhi
:= Type_High_Bound
(Dtyp
);
397 if not Compile_Time_Known_Value
(Dhi
) then
401 Dhiv
:= Expr_Value
(Dhi
);
403 -- See if base type of component array has known upper bound
405 Ahi
:= Type_High_Bound
(Etype
(First_Index
(Base_Type
(Ctyp
))));
407 if not Compile_Time_Known_Value
(Ahi
) then
411 Ahiv
:= Expr_Value
(Ahi
);
413 -- The condition for doing the restriction is that the high bound
414 -- of the discriminant is greater than the low bound of the array,
415 -- and is also greater than the high bound of the base type index.
417 if Dhiv
> Loval
and then Dhiv
> Ahiv
then
419 -- We can reset the upper bound of the discriminant type to
420 -- whichever is larger, the low bound of the component, or
421 -- the high bound of the base type array index.
423 -- We build a subtype that is declared as
425 -- subtype Tnn is discr_type range discr_type'First .. max;
427 -- And insert this declaration into the tree. The type of the
428 -- discriminant is then reset to this more restricted subtype.
430 Tnn
:= Make_Defining_Identifier
(Loc
, New_Internal_Name
('T'));
432 Insert_Action
(Declaration_Node
(Rtype
),
433 Make_Subtype_Declaration
(Loc
,
434 Defining_Identifier
=> Tnn
,
435 Subtype_Indication
=>
436 Make_Subtype_Indication
(Loc
,
437 Subtype_Mark
=> New_Occurrence_Of
(Dtyp
, Loc
),
439 Make_Range_Constraint
(Loc
,
443 Make_Attribute_Reference
(Loc
,
444 Attribute_Name
=> Name_First
,
445 Prefix
=> New_Occurrence_Of
(Dtyp
, Loc
)),
447 Make_Integer_Literal
(Loc
,
448 Intval
=> UI_Max
(Loval
, Ahiv
)))))));
450 Set_Etype
(Discr
, Tnn
);
454 Next_Component
(Comp
);
456 end Adjust_Discriminants
;
458 ---------------------------
459 -- Build_Array_Init_Proc --
460 ---------------------------
462 procedure Build_Array_Init_Proc
(A_Type
: Entity_Id
; Nod
: Node_Id
) is
463 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
464 Comp_Type
: constant Entity_Id
:= Component_Type
(A_Type
);
465 Index_List
: List_Id
;
467 Body_Stmts
: List_Id
;
469 function Init_Component
return List_Id
;
470 -- Create one statement to initialize one array component, designated
471 -- by a full set of indices.
473 function Init_One_Dimension
(N
: Int
) return List_Id
;
474 -- Create loop to initialize one dimension of the array. The single
475 -- statement in the loop body initializes the inner dimensions if any,
476 -- or else the single component. Note that this procedure is called
477 -- recursively, with N being the dimension to be initialized. A call
478 -- with N greater than the number of dimensions simply generates the
479 -- component initialization, terminating the recursion.
485 function Init_Component
return List_Id
is
490 Make_Indexed_Component
(Loc
,
491 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
492 Expressions
=> Index_List
);
494 if Needs_Simple_Initialization
(Comp_Type
) then
495 Set_Assignment_OK
(Comp
);
497 Make_Assignment_Statement
(Loc
,
501 (Comp_Type
, Loc
, Component_Size
(A_Type
))));
505 Build_Initialization_Call
(Loc
, Comp
, Comp_Type
, True, A_Type
);
509 ------------------------
510 -- Init_One_Dimension --
511 ------------------------
513 function Init_One_Dimension
(N
: Int
) return List_Id
is
517 -- If the component does not need initializing, then there is nothing
518 -- to do here, so we return a null body. This occurs when generating
519 -- the dummy Init_Proc needed for Initialize_Scalars processing.
521 if not Has_Non_Null_Base_Init_Proc
(Comp_Type
)
522 and then not Needs_Simple_Initialization
(Comp_Type
)
523 and then not Has_Task
(Comp_Type
)
525 return New_List
(Make_Null_Statement
(Loc
));
527 -- If all dimensions dealt with, we simply initialize the component
529 elsif N
> Number_Dimensions
(A_Type
) then
530 return Init_Component
;
532 -- Here we generate the required loop
536 Make_Defining_Identifier
(Loc
, New_External_Name
('J', N
));
538 Append
(New_Reference_To
(Index
, Loc
), Index_List
);
541 Make_Implicit_Loop_Statement
(Nod
,
544 Make_Iteration_Scheme
(Loc
,
545 Loop_Parameter_Specification
=>
546 Make_Loop_Parameter_Specification
(Loc
,
547 Defining_Identifier
=> Index
,
548 Discrete_Subtype_Definition
=>
549 Make_Attribute_Reference
(Loc
,
550 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
551 Attribute_Name
=> Name_Range
,
552 Expressions
=> New_List
(
553 Make_Integer_Literal
(Loc
, N
))))),
554 Statements
=> Init_One_Dimension
(N
+ 1)));
556 end Init_One_Dimension
;
558 -- Start of processing for Build_Array_Init_Proc
561 if Suppress_Init_Proc
(A_Type
) then
565 Index_List
:= New_List
;
567 -- We need an initialization procedure if any of the following is true:
569 -- 1. The component type has an initialization procedure
570 -- 2. The component type needs simple initialization
571 -- 3. Tasks are present
572 -- 4. The type is marked as a publc entity
574 -- The reason for the public entity test is to deal properly with the
575 -- Initialize_Scalars pragma. This pragma can be set in the client and
576 -- not in the declaring package, this means the client will make a call
577 -- to the initialization procedure (because one of conditions 1-3 must
578 -- apply in this case), and we must generate a procedure (even if it is
579 -- null) to satisfy the call in this case.
581 -- Exception: do not build an array init_proc for a type whose root
582 -- type is Standard.String or Standard.Wide_[Wide_]String, since there
583 -- is no place to put the code, and in any case we handle initialization
584 -- of such types (in the Initialize_Scalars case, that's the only time
585 -- the issue arises) in a special manner anyway which does not need an
588 if Has_Non_Null_Base_Init_Proc
(Comp_Type
)
589 or else Needs_Simple_Initialization
(Comp_Type
)
590 or else Has_Task
(Comp_Type
)
591 or else (not Restriction_Active
(No_Initialize_Scalars
)
592 and then Is_Public
(A_Type
)
593 and then Root_Type
(A_Type
) /= Standard_String
594 and then Root_Type
(A_Type
) /= Standard_Wide_String
595 and then Root_Type
(A_Type
) /= Standard_Wide_Wide_String
)
598 Make_Defining_Identifier
(Loc
, Make_Init_Proc_Name
(A_Type
));
600 Body_Stmts
:= Init_One_Dimension
(1);
603 Make_Subprogram_Body
(Loc
,
605 Make_Procedure_Specification
(Loc
,
606 Defining_Unit_Name
=> Proc_Id
,
607 Parameter_Specifications
=> Init_Formals
(A_Type
)),
608 Declarations
=> New_List
,
609 Handled_Statement_Sequence
=>
610 Make_Handled_Sequence_Of_Statements
(Loc
,
611 Statements
=> Body_Stmts
)));
613 Set_Ekind
(Proc_Id
, E_Procedure
);
614 Set_Is_Public
(Proc_Id
, Is_Public
(A_Type
));
615 Set_Is_Internal
(Proc_Id
);
616 Set_Has_Completion
(Proc_Id
);
618 if not Debug_Generated_Code
then
619 Set_Debug_Info_Off
(Proc_Id
);
622 -- Set inlined unless controlled stuff or tasks around, in which
623 -- case we do not want to inline, because nested stuff may cause
624 -- difficulties in interunit inlining, and furthermore there is
625 -- in any case no point in inlining such complex init procs.
627 if not Has_Task
(Proc_Id
)
628 and then not Controlled_Type
(Proc_Id
)
630 Set_Is_Inlined
(Proc_Id
);
633 -- Associate Init_Proc with type, and determine if the procedure
634 -- is null (happens because of the Initialize_Scalars pragma case,
635 -- where we have to generate a null procedure in case it is called
636 -- by a client with Initialize_Scalars set). Such procedures have
637 -- to be generated, but do not have to be called, so we mark them
638 -- as null to suppress the call.
640 Set_Init_Proc
(A_Type
, Proc_Id
);
642 if List_Length
(Body_Stmts
) = 1
643 and then Nkind
(First
(Body_Stmts
)) = N_Null_Statement
645 Set_Is_Null_Init_Proc
(Proc_Id
);
648 end Build_Array_Init_Proc
;
650 -----------------------------
651 -- Build_Class_Wide_Master --
652 -----------------------------
654 procedure Build_Class_Wide_Master
(T
: Entity_Id
) is
655 Loc
: constant Source_Ptr
:= Sloc
(T
);
662 -- Nothing to do if there is no task hierarchy
664 if Restriction_Active
(No_Task_Hierarchy
) then
668 -- Find declaration that created the access type: either a
669 -- type declaration, or an object declaration with an
670 -- access definition, in which case the type is anonymous.
673 P
:= Associated_Node_For_Itype
(T
);
678 -- Nothing to do if we already built a master entity for this scope
680 if not Has_Master_Entity
(Scope
(T
)) then
682 -- first build the master entity
683 -- _Master : constant Master_Id := Current_Master.all;
684 -- and insert it just before the current declaration
687 Make_Object_Declaration
(Loc
,
688 Defining_Identifier
=>
689 Make_Defining_Identifier
(Loc
, Name_uMaster
),
690 Constant_Present
=> True,
691 Object_Definition
=> New_Reference_To
(Standard_Integer
, Loc
),
693 Make_Explicit_Dereference
(Loc
,
694 New_Reference_To
(RTE
(RE_Current_Master
), Loc
)));
696 Insert_Before
(P
, Decl
);
698 Set_Has_Master_Entity
(Scope
(T
));
700 -- Now mark the containing scope as a task master
703 while Nkind
(Par
) /= N_Compilation_Unit
loop
706 -- If we fall off the top, we are at the outer level, and the
707 -- environment task is our effective master, so nothing to mark.
709 if Nkind
(Par
) = N_Task_Body
710 or else Nkind
(Par
) = N_Block_Statement
711 or else Nkind
(Par
) = N_Subprogram_Body
713 Set_Is_Task_Master
(Par
, True);
719 -- Now define the renaming of the master_id
722 Make_Defining_Identifier
(Loc
,
723 New_External_Name
(Chars
(T
), 'M'));
726 Make_Object_Renaming_Declaration
(Loc
,
727 Defining_Identifier
=> M_Id
,
728 Subtype_Mark
=> New_Reference_To
(Standard_Integer
, Loc
),
729 Name
=> Make_Identifier
(Loc
, Name_uMaster
));
730 Insert_Before
(P
, Decl
);
733 Set_Master_Id
(T
, M_Id
);
736 when RE_Not_Available
=>
738 end Build_Class_Wide_Master
;
740 --------------------------------
741 -- Build_Discr_Checking_Funcs --
742 --------------------------------
744 procedure Build_Discr_Checking_Funcs
(N
: Node_Id
) is
747 Enclosing_Func_Id
: Entity_Id
;
752 function Build_Case_Statement
753 (Case_Id
: Entity_Id
;
754 Variant
: Node_Id
) return Node_Id
;
755 -- Build a case statement containing only two alternatives. The
756 -- first alternative corresponds exactly to the discrete choices
757 -- given on the variant with contains the components that we are
758 -- generating the checks for. If the discriminant is one of these
759 -- return False. The second alternative is an OTHERS choice that
760 -- will return True indicating the discriminant did not match.
762 function Build_Dcheck_Function
763 (Case_Id
: Entity_Id
;
764 Variant
: Node_Id
) return Entity_Id
;
765 -- Build the discriminant checking function for a given variant
767 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
);
768 -- Builds the discriminant checking function for each variant of the
769 -- given variant part of the record type.
771 --------------------------
772 -- Build_Case_Statement --
773 --------------------------
775 function Build_Case_Statement
776 (Case_Id
: Entity_Id
;
777 Variant
: Node_Id
) return Node_Id
779 Alt_List
: constant List_Id
:= New_List
;
780 Actuals_List
: List_Id
;
782 Case_Alt_Node
: Node_Id
;
784 Choice_List
: List_Id
;
786 Return_Node
: Node_Id
;
789 Case_Node
:= New_Node
(N_Case_Statement
, Loc
);
791 -- Replace the discriminant which controls the variant, with the
792 -- name of the formal of the checking function.
794 Set_Expression
(Case_Node
,
795 Make_Identifier
(Loc
, Chars
(Case_Id
)));
797 Choice
:= First
(Discrete_Choices
(Variant
));
799 if Nkind
(Choice
) = N_Others_Choice
then
800 Choice_List
:= New_Copy_List
(Others_Discrete_Choices
(Choice
));
802 Choice_List
:= New_Copy_List
(Discrete_Choices
(Variant
));
805 if not Is_Empty_List
(Choice_List
) then
806 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
807 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
809 -- In case this is a nested variant, we need to return the result
810 -- of the discriminant checking function for the immediately
811 -- enclosing variant.
813 if Present
(Enclosing_Func_Id
) then
814 Actuals_List
:= New_List
;
816 D
:= First_Discriminant
(Rec_Id
);
817 while Present
(D
) loop
818 Append
(Make_Identifier
(Loc
, Chars
(D
)), Actuals_List
);
819 Next_Discriminant
(D
);
823 Make_Return_Statement
(Loc
,
825 Make_Function_Call
(Loc
,
827 New_Reference_To
(Enclosing_Func_Id
, Loc
),
828 Parameter_Associations
=>
833 Make_Return_Statement
(Loc
,
835 New_Reference_To
(Standard_False
, Loc
));
838 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
839 Append
(Case_Alt_Node
, Alt_List
);
842 Case_Alt_Node
:= New_Node
(N_Case_Statement_Alternative
, Loc
);
843 Choice_List
:= New_List
(New_Node
(N_Others_Choice
, Loc
));
844 Set_Discrete_Choices
(Case_Alt_Node
, Choice_List
);
847 Make_Return_Statement
(Loc
,
849 New_Reference_To
(Standard_True
, Loc
));
851 Set_Statements
(Case_Alt_Node
, New_List
(Return_Node
));
852 Append
(Case_Alt_Node
, Alt_List
);
854 Set_Alternatives
(Case_Node
, Alt_List
);
856 end Build_Case_Statement
;
858 ---------------------------
859 -- Build_Dcheck_Function --
860 ---------------------------
862 function Build_Dcheck_Function
863 (Case_Id
: Entity_Id
;
864 Variant
: Node_Id
) return Entity_Id
868 Parameter_List
: List_Id
;
872 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
873 Sequence
:= Sequence
+ 1;
876 Make_Defining_Identifier
(Loc
,
877 Chars
=> New_External_Name
(Chars
(Rec_Id
), 'D', Sequence
));
879 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
880 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
882 Parameter_List
:= Build_Discriminant_Formals
(Rec_Id
, False);
884 Set_Parameter_Specifications
(Spec_Node
, Parameter_List
);
885 Set_Result_Definition
(Spec_Node
,
886 New_Reference_To
(Standard_Boolean
, Loc
));
887 Set_Specification
(Body_Node
, Spec_Node
);
888 Set_Declarations
(Body_Node
, New_List
);
890 Set_Handled_Statement_Sequence
(Body_Node
,
891 Make_Handled_Sequence_Of_Statements
(Loc
,
892 Statements
=> New_List
(
893 Build_Case_Statement
(Case_Id
, Variant
))));
895 Set_Ekind
(Func_Id
, E_Function
);
896 Set_Mechanism
(Func_Id
, Default_Mechanism
);
897 Set_Is_Inlined
(Func_Id
, True);
898 Set_Is_Pure
(Func_Id
, True);
899 Set_Is_Public
(Func_Id
, Is_Public
(Rec_Id
));
900 Set_Is_Internal
(Func_Id
, True);
902 if not Debug_Generated_Code
then
903 Set_Debug_Info_Off
(Func_Id
);
908 Append_Freeze_Action
(Rec_Id
, Body_Node
);
909 Set_Dcheck_Function
(Variant
, Func_Id
);
911 end Build_Dcheck_Function
;
913 ----------------------------
914 -- Build_Dcheck_Functions --
915 ----------------------------
917 procedure Build_Dcheck_Functions
(Variant_Part_Node
: Node_Id
) is
918 Component_List_Node
: Node_Id
;
920 Discr_Name
: Entity_Id
;
923 Saved_Enclosing_Func_Id
: Entity_Id
;
926 -- Build the discriminant checking function for each variant, label
927 -- all components of that variant with the function's name.
929 Discr_Name
:= Entity
(Name
(Variant_Part_Node
));
930 Variant
:= First_Non_Pragma
(Variants
(Variant_Part_Node
));
932 while Present
(Variant
) loop
933 Func_Id
:= Build_Dcheck_Function
(Discr_Name
, Variant
);
934 Component_List_Node
:= Component_List
(Variant
);
936 if not Null_Present
(Component_List_Node
) then
938 First_Non_Pragma
(Component_Items
(Component_List_Node
));
940 while Present
(Decl
) loop
941 Set_Discriminant_Checking_Func
942 (Defining_Identifier
(Decl
), Func_Id
);
944 Next_Non_Pragma
(Decl
);
947 if Present
(Variant_Part
(Component_List_Node
)) then
948 Saved_Enclosing_Func_Id
:= Enclosing_Func_Id
;
949 Enclosing_Func_Id
:= Func_Id
;
950 Build_Dcheck_Functions
(Variant_Part
(Component_List_Node
));
951 Enclosing_Func_Id
:= Saved_Enclosing_Func_Id
;
955 Next_Non_Pragma
(Variant
);
957 end Build_Dcheck_Functions
;
959 -- Start of processing for Build_Discr_Checking_Funcs
962 -- Only build if not done already
964 if not Discr_Check_Funcs_Built
(N
) then
965 Type_Def
:= Type_Definition
(N
);
967 if Nkind
(Type_Def
) = N_Record_Definition
then
968 if No
(Component_List
(Type_Def
)) then -- null record.
971 V
:= Variant_Part
(Component_List
(Type_Def
));
974 else pragma Assert
(Nkind
(Type_Def
) = N_Derived_Type_Definition
);
975 if No
(Component_List
(Record_Extension_Part
(Type_Def
))) then
979 (Component_List
(Record_Extension_Part
(Type_Def
)));
983 Rec_Id
:= Defining_Identifier
(N
);
985 if Present
(V
) and then not Is_Unchecked_Union
(Rec_Id
) then
987 Enclosing_Func_Id
:= Empty
;
988 Build_Dcheck_Functions
(V
);
991 Set_Discr_Check_Funcs_Built
(N
);
993 end Build_Discr_Checking_Funcs
;
995 --------------------------------
996 -- Build_Discriminant_Formals --
997 --------------------------------
999 function Build_Discriminant_Formals
1000 (Rec_Id
: Entity_Id
;
1001 Use_Dl
: Boolean) return List_Id
1003 Loc
: Source_Ptr
:= Sloc
(Rec_Id
);
1004 Parameter_List
: constant List_Id
:= New_List
;
1007 Param_Spec_Node
: Node_Id
;
1010 if Has_Discriminants
(Rec_Id
) then
1011 D
:= First_Discriminant
(Rec_Id
);
1012 while Present
(D
) loop
1016 Formal
:= Discriminal
(D
);
1018 Formal
:= Make_Defining_Identifier
(Loc
, Chars
(D
));
1022 Make_Parameter_Specification
(Loc
,
1023 Defining_Identifier
=> Formal
,
1025 New_Reference_To
(Etype
(D
), Loc
));
1026 Append
(Param_Spec_Node
, Parameter_List
);
1027 Next_Discriminant
(D
);
1031 return Parameter_List
;
1032 end Build_Discriminant_Formals
;
1034 -------------------------------
1035 -- Build_Initialization_Call --
1036 -------------------------------
1038 -- References to a discriminant inside the record type declaration
1039 -- can appear either in the subtype_indication to constrain a
1040 -- record or an array, or as part of a larger expression given for
1041 -- the initial value of a component. In both of these cases N appears
1042 -- in the record initialization procedure and needs to be replaced by
1043 -- the formal parameter of the initialization procedure which
1044 -- corresponds to that discriminant.
1046 -- In the example below, references to discriminants D1 and D2 in proc_1
1047 -- are replaced by references to formals with the same name
1050 -- A similar replacement is done for calls to any record
1051 -- initialization procedure for any components that are themselves
1052 -- of a record type.
1054 -- type R (D1, D2 : Integer) is record
1055 -- X : Integer := F * D1;
1056 -- Y : Integer := F * D2;
1059 -- procedure proc_1 (Out_2 : out R; D1 : Integer; D2 : Integer) is
1063 -- Out_2.X := F * D1;
1064 -- Out_2.Y := F * D2;
1067 function Build_Initialization_Call
1071 In_Init_Proc
: Boolean := False;
1072 Enclos_Type
: Entity_Id
:= Empty
;
1073 Discr_Map
: Elist_Id
:= New_Elmt_List
;
1074 With_Default_Init
: Boolean := False) return List_Id
1076 First_Arg
: Node_Id
;
1082 Proc
: constant Entity_Id
:= Base_Init_Proc
(Typ
);
1083 Init_Type
: constant Entity_Id
:= Etype
(First_Formal
(Proc
));
1084 Full_Init_Type
: constant Entity_Id
:= Underlying_Type
(Init_Type
);
1085 Res
: constant List_Id
:= New_List
;
1086 Full_Type
: Entity_Id
:= Typ
;
1087 Controller_Typ
: Entity_Id
;
1090 -- Nothing to do if the Init_Proc is null, unless Initialize_Scalars
1091 -- is active (in which case we make the call anyway, since in the
1092 -- actual compiled client it may be non null).
1094 if Is_Null_Init_Proc
(Proc
) and then not Init_Or_Norm_Scalars
then
1098 -- Go to full view if private type. In the case of successive
1099 -- private derivations, this can require more than one step.
1101 while Is_Private_Type
(Full_Type
)
1102 and then Present
(Full_View
(Full_Type
))
1104 Full_Type
:= Full_View
(Full_Type
);
1107 -- If Typ is derived, the procedure is the initialization procedure for
1108 -- the root type. Wrap the argument in an conversion to make it type
1109 -- honest. Actually it isn't quite type honest, because there can be
1110 -- conflicts of views in the private type case. That is why we set
1111 -- Conversion_OK in the conversion node.
1113 if (Is_Record_Type
(Typ
)
1114 or else Is_Array_Type
(Typ
)
1115 or else Is_Private_Type
(Typ
))
1116 and then Init_Type
/= Base_Type
(Typ
)
1118 First_Arg
:= OK_Convert_To
(Etype
(Init_Type
), Id_Ref
);
1119 Set_Etype
(First_Arg
, Init_Type
);
1122 First_Arg
:= Id_Ref
;
1125 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Typ
));
1127 -- In the tasks case, add _Master as the value of the _Master parameter
1128 -- and _Chain as the value of the _Chain parameter. At the outer level,
1129 -- these will be variables holding the corresponding values obtained
1130 -- from GNARL. At inner levels, they will be the parameters passed down
1131 -- through the outer routines.
1133 if Has_Task
(Full_Type
) then
1134 if Restriction_Active
(No_Task_Hierarchy
) then
1136 -- See comments in System.Tasking.Initialization.Init_RTS
1137 -- for the value 3 (should be rtsfindable constant ???)
1139 Append_To
(Args
, Make_Integer_Literal
(Loc
, 3));
1141 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
1144 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
1146 -- Ada 2005 (AI-287): In case of default initialized components
1147 -- with tasks, we generate a null string actual parameter.
1148 -- This is just a workaround that must be improved later???
1150 if With_Default_Init
then
1152 Make_String_Literal
(Loc
,
1156 Decls
:= Build_Task_Image_Decls
(Loc
, Id_Ref
, Enclos_Type
);
1157 Decl
:= Last
(Decls
);
1160 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
));
1161 Append_List
(Decls
, Res
);
1169 -- Add discriminant values if discriminants are present
1171 if Has_Discriminants
(Full_Init_Type
) then
1172 Discr
:= First_Discriminant
(Full_Init_Type
);
1174 while Present
(Discr
) loop
1176 -- If this is a discriminated concurrent type, the init_proc
1177 -- for the corresponding record is being called. Use that
1178 -- type directly to find the discriminant value, to handle
1179 -- properly intervening renamed discriminants.
1182 T
: Entity_Id
:= Full_Type
;
1185 if Is_Protected_Type
(T
) then
1186 T
:= Corresponding_Record_Type
(T
);
1188 elsif Is_Private_Type
(T
)
1189 and then Present
(Underlying_Full_View
(T
))
1190 and then Is_Protected_Type
(Underlying_Full_View
(T
))
1192 T
:= Corresponding_Record_Type
(Underlying_Full_View
(T
));
1196 Get_Discriminant_Value
(
1199 Discriminant_Constraint
(Full_Type
));
1202 if In_Init_Proc
then
1204 -- Replace any possible references to the discriminant in the
1205 -- call to the record initialization procedure with references
1206 -- to the appropriate formal parameter.
1208 if Nkind
(Arg
) = N_Identifier
1209 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1211 Arg
:= New_Reference_To
(Discriminal
(Entity
(Arg
)), Loc
);
1213 -- Case of access discriminants. We replace the reference
1214 -- to the type by a reference to the actual object
1216 elsif Nkind
(Arg
) = N_Attribute_Reference
1217 and then Is_Access_Type
(Etype
(Arg
))
1218 and then Is_Entity_Name
(Prefix
(Arg
))
1219 and then Is_Type
(Entity
(Prefix
(Arg
)))
1222 Make_Attribute_Reference
(Loc
,
1223 Prefix
=> New_Copy
(Prefix
(Id_Ref
)),
1224 Attribute_Name
=> Name_Unrestricted_Access
);
1226 -- Otherwise make a copy of the default expression. Note
1227 -- that we use the current Sloc for this, because we do not
1228 -- want the call to appear to be at the declaration point.
1229 -- Within the expression, replace discriminants with their
1234 New_Copy_Tree
(Arg
, Map
=> Discr_Map
, New_Sloc
=> Loc
);
1238 if Is_Constrained
(Full_Type
) then
1239 Arg
:= Duplicate_Subexpr_No_Checks
(Arg
);
1241 -- The constraints come from the discriminant default
1242 -- exps, they must be reevaluated, so we use New_Copy_Tree
1243 -- but we ensure the proper Sloc (for any embedded calls).
1245 Arg
:= New_Copy_Tree
(Arg
, New_Sloc
=> Loc
);
1249 -- Ada 2005 (AI-287) In case of default initialized components,
1250 -- we need to generate the corresponding selected component node
1251 -- to access the discriminant value. In other cases this is not
1252 -- required because we are inside the init proc and we use the
1253 -- corresponding formal.
1255 if With_Default_Init
1256 and then Nkind
(Id_Ref
) = N_Selected_Component
1257 and then Nkind
(Arg
) = N_Identifier
1260 Make_Selected_Component
(Loc
,
1261 Prefix
=> New_Copy_Tree
(Prefix
(Id_Ref
)),
1262 Selector_Name
=> Arg
));
1264 Append_To
(Args
, Arg
);
1267 Next_Discriminant
(Discr
);
1271 -- If this is a call to initialize the parent component of a derived
1272 -- tagged type, indicate that the tag should not be set in the parent.
1274 if Is_Tagged_Type
(Full_Init_Type
)
1275 and then not Is_CPP_Class
(Full_Init_Type
)
1276 and then Nkind
(Id_Ref
) = N_Selected_Component
1277 and then Chars
(Selector_Name
(Id_Ref
)) = Name_uParent
1279 Append_To
(Args
, New_Occurrence_Of
(Standard_False
, Loc
));
1283 Make_Procedure_Call_Statement
(Loc
,
1284 Name
=> New_Occurrence_Of
(Proc
, Loc
),
1285 Parameter_Associations
=> Args
));
1287 if Controlled_Type
(Typ
)
1288 and then Nkind
(Id_Ref
) = N_Selected_Component
1290 if Chars
(Selector_Name
(Id_Ref
)) /= Name_uParent
then
1291 Append_List_To
(Res
,
1293 Ref
=> New_Copy_Tree
(First_Arg
),
1296 Find_Final_List
(Typ
, New_Copy_Tree
(First_Arg
)),
1297 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
1299 -- If the enclosing type is an extension with new controlled
1300 -- components, it has his own record controller. If the parent
1301 -- also had a record controller, attach it to the new one.
1302 -- Build_Init_Statements relies on the fact that in this specific
1303 -- case the last statement of the result is the attach call to
1304 -- the controller. If this is changed, it must be synchronized.
1306 elsif Present
(Enclos_Type
)
1307 and then Has_New_Controlled_Component
(Enclos_Type
)
1308 and then Has_Controlled_Component
(Typ
)
1310 if Is_Return_By_Reference_Type
(Typ
) then
1311 Controller_Typ
:= RTE
(RE_Limited_Record_Controller
);
1313 Controller_Typ
:= RTE
(RE_Record_Controller
);
1316 Append_List_To
(Res
,
1319 Make_Selected_Component
(Loc
,
1320 Prefix
=> New_Copy_Tree
(First_Arg
),
1321 Selector_Name
=> Make_Identifier
(Loc
, Name_uController
)),
1322 Typ
=> Controller_Typ
,
1323 Flist_Ref
=> Find_Final_List
(Typ
, New_Copy_Tree
(First_Arg
)),
1324 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
1331 when RE_Not_Available
=>
1333 end Build_Initialization_Call
;
1335 ---------------------------
1336 -- Build_Master_Renaming --
1337 ---------------------------
1339 procedure Build_Master_Renaming
(N
: Node_Id
; T
: Entity_Id
) is
1340 Loc
: constant Source_Ptr
:= Sloc
(N
);
1345 -- Nothing to do if there is no task hierarchy
1347 if Restriction_Active
(No_Task_Hierarchy
) then
1352 Make_Defining_Identifier
(Loc
,
1353 New_External_Name
(Chars
(T
), 'M'));
1356 Make_Object_Renaming_Declaration
(Loc
,
1357 Defining_Identifier
=> M_Id
,
1358 Subtype_Mark
=> New_Reference_To
(RTE
(RE_Master_Id
), Loc
),
1359 Name
=> Make_Identifier
(Loc
, Name_uMaster
));
1360 Insert_Before
(N
, Decl
);
1363 Set_Master_Id
(T
, M_Id
);
1366 when RE_Not_Available
=>
1368 end Build_Master_Renaming
;
1370 ----------------------------
1371 -- Build_Record_Init_Proc --
1372 ----------------------------
1374 procedure Build_Record_Init_Proc
(N
: Node_Id
; Pe
: Entity_Id
) is
1375 Loc
: Source_Ptr
:= Sloc
(N
);
1376 Discr_Map
: constant Elist_Id
:= New_Elmt_List
;
1377 Proc_Id
: Entity_Id
;
1378 Rec_Type
: Entity_Id
;
1379 Set_Tag
: Entity_Id
:= Empty
;
1381 function Build_Assignment
(Id
: Entity_Id
; N
: Node_Id
) return List_Id
;
1382 -- Build a assignment statement node which assigns to record
1383 -- component its default expression if defined. The left hand side
1384 -- of the assignment is marked Assignment_OK so that initialization
1385 -- of limited private records works correctly, Return also the
1386 -- adjustment call for controlled objects
1388 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
);
1389 -- If the record has discriminants, adds assignment statements to
1390 -- statement list to initialize the discriminant values from the
1391 -- arguments of the initialization procedure.
1393 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
;
1394 -- Build a list representing a sequence of statements which initialize
1395 -- components of the given component list. This may involve building
1396 -- case statements for the variant parts.
1398 function Build_Init_Call_Thru
(Parameters
: List_Id
) return List_Id
;
1399 -- Given a non-tagged type-derivation that declares discriminants,
1402 -- type R (R1, R2 : Integer) is record ... end record;
1404 -- type D (D1 : Integer) is new R (1, D1);
1406 -- we make the _init_proc of D be
1408 -- procedure _init_proc(X : D; D1 : Integer) is
1410 -- _init_proc( R(X), 1, D1);
1413 -- This function builds the call statement in this _init_proc.
1415 procedure Build_Init_Procedure
;
1416 -- Build the tree corresponding to the procedure specification and body
1417 -- of the initialization procedure (by calling all the preceding
1418 -- auxiliary routines), and install it as the _init TSS.
1420 procedure Build_Offset_To_Top_Functions
;
1421 -- Ada 2005 (AI-251): Build the tree corresponding to the procedure spec
1422 -- and body of the Offset_To_Top function that is generated when the
1423 -- parent of a type with discriminants has secondary dispatch tables.
1425 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
);
1426 -- Add range checks to components of disciminated records. S is a
1427 -- subtype indication of a record component. Check_List is a list
1428 -- to which the check actions are appended.
1430 function Component_Needs_Simple_Initialization
1431 (T
: Entity_Id
) return Boolean;
1432 -- Determines if a component needs simple initialization, given its type
1433 -- T. This is the same as Needs_Simple_Initialization except for the
1434 -- following difference: the types Tag, Interface_Tag, and Vtable_Ptr
1435 -- which are access types which would normally require simple
1436 -- initialization to null, do not require initialization as components,
1437 -- since they are explicitly initialized by other means.
1439 procedure Constrain_Array
1441 Check_List
: List_Id
);
1442 -- Called from Build_Record_Checks.
1443 -- Apply a list of index constraints to an unconstrained array type.
1444 -- The first parameter is the entity for the resulting subtype.
1445 -- Check_List is a list to which the check actions are appended.
1447 procedure Constrain_Index
1450 Check_List
: List_Id
);
1451 -- Called from Build_Record_Checks.
1452 -- Process an index constraint in a constrained array declaration.
1453 -- The constraint can be a subtype name, or a range with or without
1454 -- an explicit subtype mark. The index is the corresponding index of the
1455 -- unconstrained array. S is the range expression. Check_List is a list
1456 -- to which the check actions are appended.
1458 function Parent_Subtype_Renaming_Discrims
return Boolean;
1459 -- Returns True for base types N that rename discriminants, else False
1461 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean;
1462 -- Determines whether a record initialization procedure needs to be
1463 -- generated for the given record type.
1465 ----------------------
1466 -- Build_Assignment --
1467 ----------------------
1469 function Build_Assignment
(Id
: Entity_Id
; N
: Node_Id
) return List_Id
is
1472 Typ
: constant Entity_Id
:= Underlying_Type
(Etype
(Id
));
1473 Kind
: Node_Kind
:= Nkind
(N
);
1479 Make_Selected_Component
(Loc
,
1480 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1481 Selector_Name
=> New_Occurrence_Of
(Id
, Loc
));
1482 Set_Assignment_OK
(Lhs
);
1484 -- Case of an access attribute applied to the current instance.
1485 -- Replace the reference to the type by a reference to the actual
1486 -- object. (Note that this handles the case of the top level of
1487 -- the expression being given by such an attribute, but does not
1488 -- cover uses nested within an initial value expression. Nested
1489 -- uses are unlikely to occur in practice, but are theoretically
1490 -- possible. It is not clear how to handle them without fully
1491 -- traversing the expression. ???
1493 if Kind
= N_Attribute_Reference
1494 and then (Attribute_Name
(N
) = Name_Unchecked_Access
1496 Attribute_Name
(N
) = Name_Unrestricted_Access
)
1497 and then Is_Entity_Name
(Prefix
(N
))
1498 and then Is_Type
(Entity
(Prefix
(N
)))
1499 and then Entity
(Prefix
(N
)) = Rec_Type
1502 Make_Attribute_Reference
(Loc
,
1503 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1504 Attribute_Name
=> Name_Unrestricted_Access
);
1507 -- Ada 2005 (AI-231): Add the run-time check if required
1509 if Ada_Version
>= Ada_05
1510 and then Can_Never_Be_Null
(Etype
(Id
)) -- Lhs
1512 if Nkind
(Exp
) = N_Null
then
1514 Make_Raise_Constraint_Error
(Sloc
(Exp
),
1515 Reason
=> CE_Null_Not_Allowed
));
1517 elsif Present
(Etype
(Exp
))
1518 and then not Can_Never_Be_Null
(Etype
(Exp
))
1520 Install_Null_Excluding_Check
(Exp
);
1524 -- Take a copy of Exp to ensure that later copies of this
1525 -- component_declaration in derived types see the original tree,
1526 -- not a node rewritten during expansion of the init_proc.
1528 Exp
:= New_Copy_Tree
(Exp
);
1531 Make_Assignment_Statement
(Loc
,
1533 Expression
=> Exp
));
1535 Set_No_Ctrl_Actions
(First
(Res
));
1537 -- Adjust the tag if tagged (because of possible view conversions).
1538 -- Suppress the tag adjustment when Java_VM because JVM tags are
1539 -- represented implicitly in objects.
1541 if Is_Tagged_Type
(Typ
) and then not Java_VM
then
1543 Make_Assignment_Statement
(Loc
,
1545 Make_Selected_Component
(Loc
,
1546 Prefix
=> New_Copy_Tree
(Lhs
),
1548 New_Reference_To
(First_Tag_Component
(Typ
), Loc
)),
1551 Unchecked_Convert_To
(RTE
(RE_Tag
),
1553 (Node
(First_Elmt
(Access_Disp_Table
(Typ
))), Loc
))));
1556 -- Adjust the component if controlled except if it is an
1557 -- aggregate that will be expanded inline
1559 if Kind
= N_Qualified_Expression
then
1560 Kind
:= Nkind
(Expression
(N
));
1563 if Controlled_Type
(Typ
)
1564 and then not (Kind
= N_Aggregate
or else Kind
= N_Extension_Aggregate
)
1566 Append_List_To
(Res
,
1568 Ref
=> New_Copy_Tree
(Lhs
),
1571 Find_Final_List
(Etype
(Id
), New_Copy_Tree
(Lhs
)),
1572 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
1578 when RE_Not_Available
=>
1580 end Build_Assignment
;
1582 ------------------------------------
1583 -- Build_Discriminant_Assignments --
1584 ------------------------------------
1586 procedure Build_Discriminant_Assignments
(Statement_List
: List_Id
) is
1588 Is_Tagged
: constant Boolean := Is_Tagged_Type
(Rec_Type
);
1591 if Has_Discriminants
(Rec_Type
)
1592 and then not Is_Unchecked_Union
(Rec_Type
)
1594 D
:= First_Discriminant
(Rec_Type
);
1596 while Present
(D
) loop
1597 -- Don't generate the assignment for discriminants in derived
1598 -- tagged types if the discriminant is a renaming of some
1599 -- ancestor discriminant. This initialization will be done
1600 -- when initializing the _parent field of the derived record.
1602 if Is_Tagged
and then
1603 Present
(Corresponding_Discriminant
(D
))
1609 Append_List_To
(Statement_List
,
1610 Build_Assignment
(D
,
1611 New_Reference_To
(Discriminal
(D
), Loc
)));
1614 Next_Discriminant
(D
);
1617 end Build_Discriminant_Assignments
;
1619 --------------------------
1620 -- Build_Init_Call_Thru --
1621 --------------------------
1623 function Build_Init_Call_Thru
(Parameters
: List_Id
) return List_Id
is
1624 Parent_Proc
: constant Entity_Id
:=
1625 Base_Init_Proc
(Etype
(Rec_Type
));
1627 Parent_Type
: constant Entity_Id
:=
1628 Etype
(First_Formal
(Parent_Proc
));
1630 Uparent_Type
: constant Entity_Id
:=
1631 Underlying_Type
(Parent_Type
);
1633 First_Discr_Param
: Node_Id
;
1635 Parent_Discr
: Entity_Id
;
1636 First_Arg
: Node_Id
;
1642 -- First argument (_Init) is the object to be initialized.
1643 -- ??? not sure where to get a reasonable Loc for First_Arg
1646 OK_Convert_To
(Parent_Type
,
1647 New_Reference_To
(Defining_Identifier
(First
(Parameters
)), Loc
));
1649 Set_Etype
(First_Arg
, Parent_Type
);
1651 Args
:= New_List
(Convert_Concurrent
(First_Arg
, Rec_Type
));
1653 -- In the tasks case,
1654 -- add _Master as the value of the _Master parameter
1655 -- add _Chain as the value of the _Chain parameter.
1656 -- add _Task_Name as the value of the _Task_Name parameter.
1657 -- At the outer level, these will be variables holding the
1658 -- corresponding values obtained from GNARL or the expander.
1660 -- At inner levels, they will be the parameters passed down through
1661 -- the outer routines.
1663 First_Discr_Param
:= Next
(First
(Parameters
));
1665 if Has_Task
(Rec_Type
) then
1666 if Restriction_Active
(No_Task_Hierarchy
) then
1668 -- See comments in System.Tasking.Initialization.Init_RTS
1671 Append_To
(Args
, Make_Integer_Literal
(Loc
, 3));
1673 Append_To
(Args
, Make_Identifier
(Loc
, Name_uMaster
));
1676 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
1677 Append_To
(Args
, Make_Identifier
(Loc
, Name_uTask_Name
));
1678 First_Discr_Param
:= Next
(Next
(Next
(First_Discr_Param
)));
1681 -- Append discriminant values
1683 if Has_Discriminants
(Uparent_Type
) then
1684 pragma Assert
(not Is_Tagged_Type
(Uparent_Type
));
1686 Parent_Discr
:= First_Discriminant
(Uparent_Type
);
1687 while Present
(Parent_Discr
) loop
1689 -- Get the initial value for this discriminant
1690 -- ??? needs to be cleaned up to use parent_Discr_Constr
1694 Discr_Value
: Elmt_Id
:=
1696 (Stored_Constraint
(Rec_Type
));
1698 Discr
: Entity_Id
:=
1699 First_Stored_Discriminant
(Uparent_Type
);
1701 while Original_Record_Component
(Parent_Discr
) /= Discr
loop
1702 Next_Stored_Discriminant
(Discr
);
1703 Next_Elmt
(Discr_Value
);
1706 Arg
:= Node
(Discr_Value
);
1709 -- Append it to the list
1711 if Nkind
(Arg
) = N_Identifier
1712 and then Ekind
(Entity
(Arg
)) = E_Discriminant
1715 New_Reference_To
(Discriminal
(Entity
(Arg
)), Loc
));
1717 -- Case of access discriminants. We replace the reference
1718 -- to the type by a reference to the actual object
1720 -- ??? why is this code deleted without comment
1722 -- elsif Nkind (Arg) = N_Attribute_Reference
1723 -- and then Is_Entity_Name (Prefix (Arg))
1724 -- and then Is_Type (Entity (Prefix (Arg)))
1727 -- Make_Attribute_Reference (Loc,
1728 -- Prefix => New_Copy (Prefix (Id_Ref)),
1729 -- Attribute_Name => Name_Unrestricted_Access));
1732 Append_To
(Args
, New_Copy
(Arg
));
1735 Next_Discriminant
(Parent_Discr
);
1741 Make_Procedure_Call_Statement
(Loc
,
1742 Name
=> New_Occurrence_Of
(Parent_Proc
, Loc
),
1743 Parameter_Associations
=> Args
));
1746 end Build_Init_Call_Thru
;
1748 -----------------------------------
1749 -- Build_Offset_To_Top_Functions --
1750 -----------------------------------
1752 procedure Build_Offset_To_Top_Functions
is
1754 Body_Node
: Node_Id
;
1755 Func_Id
: Entity_Id
;
1756 Spec_Node
: Node_Id
;
1759 procedure Build_Offset_To_Top_Internal
(Typ
: Entity_Id
);
1760 -- Internal subprogram used to recursively traverse all the ancestors
1762 ----------------------------------
1763 -- Build_Offset_To_Top_Internal --
1764 ----------------------------------
1766 procedure Build_Offset_To_Top_Internal
(Typ
: Entity_Id
) is
1768 -- Climb to the ancestor (if any) handling private types
1770 if Present
(Full_View
(Etype
(Typ
))) then
1771 if Full_View
(Etype
(Typ
)) /= Typ
then
1772 Build_Offset_To_Top_Internal
(Full_View
(Etype
(Typ
)));
1775 elsif Etype
(Typ
) /= Typ
then
1776 Build_Offset_To_Top_Internal
(Etype
(Typ
));
1779 if Present
(Abstract_Interfaces
(Typ
))
1780 and then not Is_Empty_Elmt_List
(Abstract_Interfaces
(Typ
))
1782 E
:= First_Entity
(Typ
);
1783 while Present
(E
) loop
1785 and then Chars
(E
) /= Name_uTag
1787 if Typ
= Rec_Type
then
1788 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
1790 Func_Id
:= Make_Defining_Identifier
(Loc
,
1791 New_Internal_Name
('F'));
1793 Set_DT_Offset_To_Top_Func
(E
, Func_Id
);
1795 Spec_Node
:= New_Node
(N_Function_Specification
, Loc
);
1796 Set_Defining_Unit_Name
(Spec_Node
, Func_Id
);
1797 Set_Parameter_Specifications
(Spec_Node
, New_List
(
1798 Make_Parameter_Specification
(Loc
,
1799 Defining_Identifier
=>
1800 Make_Defining_Identifier
(Loc
, Name_uO
),
1802 Parameter_Type
=> New_Reference_To
(Typ
, Loc
))));
1803 Set_Result_Definition
(Spec_Node
,
1804 New_Reference_To
(RTE
(RE_Storage_Offset
), Loc
));
1806 Set_Specification
(Body_Node
, Spec_Node
);
1807 Set_Declarations
(Body_Node
, New_List
);
1808 Set_Handled_Statement_Sequence
(Body_Node
,
1809 Make_Handled_Sequence_Of_Statements
(Loc
,
1810 Statements
=> New_List
(
1811 Make_Return_Statement
(Loc
,
1813 Make_Attribute_Reference
(Loc
,
1815 Make_Selected_Component
(Loc
,
1816 Prefix
=> Make_Identifier
(Loc
,
1818 Selector_Name
=> New_Reference_To
1820 Attribute_Name
=> Name_Position
)))));
1822 Set_Ekind
(Func_Id
, E_Function
);
1823 Set_Mechanism
(Func_Id
, Default_Mechanism
);
1824 Set_Is_Internal
(Func_Id
, True);
1826 if not Debug_Generated_Code
then
1827 Set_Debug_Info_Off
(Func_Id
);
1830 Analyze
(Body_Node
);
1832 Append_Freeze_Action
(Rec_Type
, Body_Node
);
1841 end Build_Offset_To_Top_Internal
;
1843 -- Start of processing for Build_Offset_To_Top_Functions
1846 if Etype
(Rec_Type
) = Rec_Type
1847 or else not Has_Discriminants
(Etype
(Rec_Type
))
1848 or else No
(Abstract_Interfaces
(Rec_Type
))
1849 or else Is_Empty_Elmt_List
(Abstract_Interfaces
(Rec_Type
))
1854 -- Skip the first _Tag, which is the main tag of the
1855 -- tagged type. Following tags correspond with abstract
1858 ADT
:= Next_Elmt
(First_Elmt
(Access_Disp_Table
(Rec_Type
)));
1860 -- Handle private types
1862 if Present
(Full_View
(Rec_Type
)) then
1863 Build_Offset_To_Top_Internal
(Full_View
(Rec_Type
));
1865 Build_Offset_To_Top_Internal
(Rec_Type
);
1867 end Build_Offset_To_Top_Functions
;
1869 --------------------------
1870 -- Build_Init_Procedure --
1871 --------------------------
1873 procedure Build_Init_Procedure
is
1874 Body_Node
: Node_Id
;
1875 Handled_Stmt_Node
: Node_Id
;
1876 Parameters
: List_Id
;
1877 Proc_Spec_Node
: Node_Id
;
1878 Body_Stmts
: List_Id
;
1879 Record_Extension_Node
: Node_Id
;
1882 procedure Init_Secondary_Tags
(Typ
: Entity_Id
);
1883 -- Ada 2005 (AI-251): Initialize the tags of all the secondary
1884 -- tables associated with abstract interface types
1886 -------------------------
1887 -- Init_Secondary_Tags --
1888 -------------------------
1890 procedure Init_Secondary_Tags
(Typ
: Entity_Id
) is
1893 procedure Init_Secondary_Tags_Internal
(Typ
: Entity_Id
);
1894 -- Internal subprogram used to recursively climb to the root type
1896 ----------------------------------
1897 -- Init_Secondary_Tags_Internal --
1898 ----------------------------------
1900 procedure Init_Secondary_Tags_Internal
(Typ
: Entity_Id
) is
1907 -- Climb to the ancestor (if any) handling private types
1909 if Present
(Full_View
(Etype
(Typ
))) then
1910 if Full_View
(Etype
(Typ
)) /= Typ
then
1911 Init_Secondary_Tags_Internal
(Full_View
(Etype
(Typ
)));
1914 elsif Etype
(Typ
) /= Typ
then
1915 Init_Secondary_Tags_Internal
(Etype
(Typ
));
1918 if Present
(Abstract_Interfaces
(Typ
))
1919 and then not Is_Empty_Elmt_List
(Abstract_Interfaces
(Typ
))
1921 E
:= First_Entity
(Typ
);
1922 while Present
(E
) loop
1924 and then Chars
(E
) /= Name_uTag
1926 Aux_N
:= Node
(ADT
);
1927 pragma Assert
(Present
(Aux_N
));
1929 Iface
:= Find_Interface
(Typ
, E
);
1931 -- Initialize the pointer to the secondary DT
1932 -- associated with the interface
1934 Append_To
(Body_Stmts
,
1935 Make_Assignment_Statement
(Loc
,
1937 Make_Selected_Component
(Loc
,
1938 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
1940 New_Reference_To
(E
, Loc
)),
1942 New_Reference_To
(Aux_N
, Loc
)));
1944 -- Issue error if Set_Offset_To_Top is not available
1945 -- in a configurable run-time environment.
1947 if not RTE_Available
(RE_Set_Offset_To_Top
) then
1948 Error_Msg_CRT
("abstract interface types", Typ
);
1952 -- We generate a different call to Set_Offset_To_Top
1953 -- when the parent of the type has discriminants
1955 if Typ
/= Etype
(Typ
)
1956 and then Has_Discriminants
(Etype
(Typ
))
1958 pragma Assert
(Present
(DT_Offset_To_Top_Func
(E
)));
1961 -- Set_Offset_To_Top
1963 -- Interface_T => Iface'Tag,
1964 -- Is_Constant => False,
1965 -- Offset_Value => n,
1966 -- Offset_Func => Fn'Address)
1968 Append_To
(Body_Stmts
,
1969 Make_Procedure_Call_Statement
(Loc
,
1970 Name
=> New_Reference_To
1971 (RTE
(RE_Set_Offset_To_Top
), Loc
),
1972 Parameter_Associations
=> New_List
(
1973 Make_Attribute_Reference
(Loc
,
1974 Prefix
=> Make_Identifier
(Loc
,
1976 Attribute_Name
=> Name_Address
),
1978 Unchecked_Convert_To
(RTE
(RE_Tag
),
1981 (Access_Disp_Table
(Iface
))),
1984 New_Occurrence_Of
(Standard_False
, Loc
),
1986 Unchecked_Convert_To
(RTE
(RE_Storage_Offset
),
1987 Make_Attribute_Reference
(Loc
,
1989 Make_Selected_Component
(Loc
,
1990 Prefix
=> Make_Identifier
(Loc
,
1992 Selector_Name
=> New_Reference_To
1994 Attribute_Name
=> Name_Position
)),
1996 Unchecked_Convert_To
(RTE
(RE_Address
),
1997 Make_Attribute_Reference
(Loc
,
1998 Prefix
=> New_Reference_To
1999 (DT_Offset_To_Top_Func
(E
),
2004 -- In this case the next component stores the value
2005 -- of the offset to the top
2009 pragma Assert
(Present
(E
));
2011 Append_To
(Body_Stmts
,
2012 Make_Assignment_Statement
(Loc
,
2014 Make_Selected_Component
(Loc
,
2015 Prefix
=> Make_Identifier
(Loc
,
2018 New_Reference_To
(E
, Loc
)),
2020 Make_Attribute_Reference
(Loc
,
2022 Make_Selected_Component
(Loc
,
2023 Prefix
=> Make_Identifier
(Loc
,
2025 Selector_Name
=> New_Reference_To
2027 Attribute_Name
=> Name_Position
)));
2029 -- Normal case: No discriminants in the parent type
2033 -- Set_Offset_To_Top
2035 -- Interface_T => Iface'Tag,
2036 -- Is_Constant => True,
2037 -- Offset_Value => n,
2038 -- Offset_Func => null);
2040 Append_To
(Body_Stmts
,
2041 Make_Procedure_Call_Statement
(Loc
,
2042 Name
=> New_Reference_To
2043 (RTE
(RE_Set_Offset_To_Top
), Loc
),
2044 Parameter_Associations
=> New_List
(
2045 Make_Attribute_Reference
(Loc
,
2046 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2047 Attribute_Name
=> Name_Address
),
2049 Unchecked_Convert_To
(RTE
(RE_Tag
),
2052 (Access_Disp_Table
(Iface
))),
2055 New_Occurrence_Of
(Standard_True
, Loc
),
2057 Unchecked_Convert_To
(RTE
(RE_Storage_Offset
),
2058 Make_Attribute_Reference
(Loc
,
2060 Make_Selected_Component
(Loc
,
2061 Prefix
=> Make_Identifier
(Loc
,
2063 Selector_Name
=> New_Reference_To
2065 Attribute_Name
=> Name_Position
)),
2068 (RTE
(RE_Null_Address
), Loc
))));
2077 end Init_Secondary_Tags_Internal
;
2079 -- Start of processing for Init_Secondary_Tags
2082 -- Skip the first _Tag, which is the main tag of the
2083 -- tagged type. Following tags correspond with abstract
2086 ADT
:= Next_Elmt
(First_Elmt
(Access_Disp_Table
(Typ
)));
2088 -- Handle private types
2090 if Present
(Full_View
(Typ
)) then
2091 Init_Secondary_Tags_Internal
(Full_View
(Typ
));
2093 Init_Secondary_Tags_Internal
(Typ
);
2095 end Init_Secondary_Tags
;
2097 -- Start of processing for Build_Init_Procedure
2100 Body_Stmts
:= New_List
;
2101 Body_Node
:= New_Node
(N_Subprogram_Body
, Loc
);
2104 Make_Defining_Identifier
(Loc
,
2105 Chars
=> Make_Init_Proc_Name
(Rec_Type
));
2106 Set_Ekind
(Proc_Id
, E_Procedure
);
2108 Proc_Spec_Node
:= New_Node
(N_Procedure_Specification
, Loc
);
2109 Set_Defining_Unit_Name
(Proc_Spec_Node
, Proc_Id
);
2111 Parameters
:= Init_Formals
(Rec_Type
);
2112 Append_List_To
(Parameters
,
2113 Build_Discriminant_Formals
(Rec_Type
, True));
2115 -- For tagged types, we add a flag to indicate whether the routine
2116 -- is called to initialize a parent component in the init_proc of
2117 -- a type extension. If the flag is false, we do not set the tag
2118 -- because it has been set already in the extension.
2120 if Is_Tagged_Type
(Rec_Type
)
2121 and then not Is_CPP_Class
(Rec_Type
)
2124 Make_Defining_Identifier
(Loc
, New_Internal_Name
('P'));
2126 Append_To
(Parameters
,
2127 Make_Parameter_Specification
(Loc
,
2128 Defining_Identifier
=> Set_Tag
,
2129 Parameter_Type
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
2130 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)));
2133 Set_Parameter_Specifications
(Proc_Spec_Node
, Parameters
);
2134 Set_Specification
(Body_Node
, Proc_Spec_Node
);
2135 Set_Declarations
(Body_Node
, New_List
);
2137 if Parent_Subtype_Renaming_Discrims
then
2139 -- N is a Derived_Type_Definition that renames the parameters
2140 -- of the ancestor type. We initialize it by expanding our
2141 -- discriminants and call the ancestor _init_proc with a
2142 -- type-converted object
2144 Append_List_To
(Body_Stmts
,
2145 Build_Init_Call_Thru
(Parameters
));
2147 elsif Nkind
(Type_Definition
(N
)) = N_Record_Definition
then
2148 Build_Discriminant_Assignments
(Body_Stmts
);
2150 if not Null_Present
(Type_Definition
(N
)) then
2151 Append_List_To
(Body_Stmts
,
2152 Build_Init_Statements
(
2153 Component_List
(Type_Definition
(N
))));
2157 -- N is a Derived_Type_Definition with a possible non-empty
2158 -- extension. The initialization of a type extension consists
2159 -- in the initialization of the components in the extension.
2161 Build_Discriminant_Assignments
(Body_Stmts
);
2163 Record_Extension_Node
:=
2164 Record_Extension_Part
(Type_Definition
(N
));
2166 if not Null_Present
(Record_Extension_Node
) then
2168 Stmts
: constant List_Id
:=
2169 Build_Init_Statements
(
2170 Component_List
(Record_Extension_Node
));
2173 -- The parent field must be initialized first because
2174 -- the offset of the new discriminants may depend on it
2176 Prepend_To
(Body_Stmts
, Remove_Head
(Stmts
));
2177 Append_List_To
(Body_Stmts
, Stmts
);
2182 -- Add here the assignment to instantiate the Tag
2184 -- The assignement corresponds to the code:
2186 -- _Init._Tag := Typ'Tag;
2188 -- Suppress the tag assignment when Java_VM because JVM tags are
2189 -- represented implicitly in objects. It is also suppressed in
2190 -- case of CPP_Class types because in this case the tag is
2191 -- initialized in the C++ side.
2193 if Is_Tagged_Type
(Rec_Type
)
2194 and then not Is_CPP_Class
(Rec_Type
)
2195 and then not Java_VM
2198 Make_Assignment_Statement
(Loc
,
2200 Make_Selected_Component
(Loc
,
2201 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2203 New_Reference_To
(First_Tag_Component
(Rec_Type
), Loc
)),
2207 (Node
(First_Elmt
(Access_Disp_Table
(Rec_Type
))), Loc
));
2209 -- The tag must be inserted before the assignments to other
2210 -- components, because the initial value of the component may
2211 -- depend ot the tag (eg. through a dispatching operation on
2212 -- an access to the current type). The tag assignment is not done
2213 -- when initializing the parent component of a type extension,
2214 -- because in that case the tag is set in the extension.
2215 -- Extensions of imported C++ classes add a final complication,
2216 -- because we cannot inhibit tag setting in the constructor for
2217 -- the parent. In that case we insert the tag initialization
2218 -- after the calls to initialize the parent.
2221 Make_If_Statement
(Loc
,
2222 Condition
=> New_Occurrence_Of
(Set_Tag
, Loc
),
2223 Then_Statements
=> New_List
(Init_Tag
));
2225 if not Is_CPP_Class
(Etype
(Rec_Type
)) then
2226 Prepend_To
(Body_Stmts
, Init_Tag
);
2228 -- Ada 2005 (AI-251): Initialization of all the tags
2229 -- corresponding with abstract interfaces
2231 if Ada_Version
>= Ada_05
2232 and then not Is_Interface
(Rec_Type
)
2234 Init_Secondary_Tags
(Rec_Type
);
2239 Nod
: Node_Id
:= First
(Body_Stmts
);
2242 -- We assume the first init_proc call is for the parent
2244 while Present
(Next
(Nod
))
2245 and then (Nkind
(Nod
) /= N_Procedure_Call_Statement
2246 or else not Is_Init_Proc
(Name
(Nod
)))
2251 Insert_After
(Nod
, Init_Tag
);
2256 Handled_Stmt_Node
:= New_Node
(N_Handled_Sequence_Of_Statements
, Loc
);
2257 Set_Statements
(Handled_Stmt_Node
, Body_Stmts
);
2258 Set_Exception_Handlers
(Handled_Stmt_Node
, No_List
);
2259 Set_Handled_Statement_Sequence
(Body_Node
, Handled_Stmt_Node
);
2261 if not Debug_Generated_Code
then
2262 Set_Debug_Info_Off
(Proc_Id
);
2265 -- Associate Init_Proc with type, and determine if the procedure
2266 -- is null (happens because of the Initialize_Scalars pragma case,
2267 -- where we have to generate a null procedure in case it is called
2268 -- by a client with Initialize_Scalars set). Such procedures have
2269 -- to be generated, but do not have to be called, so we mark them
2270 -- as null to suppress the call.
2272 Set_Init_Proc
(Rec_Type
, Proc_Id
);
2274 if List_Length
(Body_Stmts
) = 1
2275 and then Nkind
(First
(Body_Stmts
)) = N_Null_Statement
2277 Set_Is_Null_Init_Proc
(Proc_Id
);
2279 end Build_Init_Procedure
;
2281 ---------------------------
2282 -- Build_Init_Statements --
2283 ---------------------------
2285 function Build_Init_Statements
(Comp_List
: Node_Id
) return List_Id
is
2286 Check_List
: constant List_Id
:= New_List
;
2288 Statement_List
: List_Id
;
2291 Per_Object_Constraint_Components
: Boolean;
2299 function Has_Access_Constraint
(E
: Entity_Id
) return Boolean;
2300 -- Components with access discriminants that depend on the current
2301 -- instance must be initialized after all other components.
2303 ---------------------------
2304 -- Has_Access_Constraint --
2305 ---------------------------
2307 function Has_Access_Constraint
(E
: Entity_Id
) return Boolean is
2309 T
: constant Entity_Id
:= Etype
(E
);
2312 if Has_Per_Object_Constraint
(E
)
2313 and then Has_Discriminants
(T
)
2315 Disc
:= First_Discriminant
(T
);
2316 while Present
(Disc
) loop
2317 if Is_Access_Type
(Etype
(Disc
)) then
2321 Next_Discriminant
(Disc
);
2328 end Has_Access_Constraint
;
2330 -- Start of processing for Build_Init_Statements
2333 if Null_Present
(Comp_List
) then
2334 return New_List
(Make_Null_Statement
(Loc
));
2337 Statement_List
:= New_List
;
2339 -- Loop through components, skipping pragmas, in 2 steps. The first
2340 -- step deals with regular components. The second step deals with
2341 -- components have per object constraints, and no explicit initia-
2344 Per_Object_Constraint_Components
:= False;
2346 -- First step : regular components
2348 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
2349 while Present
(Decl
) loop
2352 (Subtype_Indication
(Component_Definition
(Decl
)), Check_List
);
2354 Id
:= Defining_Identifier
(Decl
);
2357 if Has_Access_Constraint
(Id
)
2358 and then No
(Expression
(Decl
))
2360 -- Skip processing for now and ask for a second pass
2362 Per_Object_Constraint_Components
:= True;
2365 -- Case of explicit initialization
2367 if Present
(Expression
(Decl
)) then
2368 Stmts
:= Build_Assignment
(Id
, Expression
(Decl
));
2370 -- Case of composite component with its own Init_Proc
2372 elsif not Is_Interface
(Typ
)
2373 and then Has_Non_Null_Base_Init_Proc
(Typ
)
2376 Build_Initialization_Call
2378 Make_Selected_Component
(Loc
,
2379 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2380 Selector_Name
=> New_Occurrence_Of
(Id
, Loc
)),
2384 Discr_Map
=> Discr_Map
);
2386 -- Case of component needing simple initialization
2388 elsif Component_Needs_Simple_Initialization
(Typ
) then
2391 (Id
, Get_Simple_Init_Val
(Typ
, Loc
, Esize
(Id
)));
2393 -- Nothing needed for this case
2399 if Present
(Check_List
) then
2400 Append_List_To
(Statement_List
, Check_List
);
2403 if Present
(Stmts
) then
2405 -- Add the initialization of the record controller before
2406 -- the _Parent field is attached to it when the attachment
2407 -- can occur. It does not work to simply initialize the
2408 -- controller first: it must be initialized after the parent
2409 -- if the parent holds discriminants that can be used
2410 -- to compute the offset of the controller. We assume here
2411 -- that the last statement of the initialization call is the
2412 -- attachement of the parent (see Build_Initialization_Call)
2414 if Chars
(Id
) = Name_uController
2415 and then Rec_Type
/= Etype
(Rec_Type
)
2416 and then Has_Controlled_Component
(Etype
(Rec_Type
))
2417 and then Has_New_Controlled_Component
(Rec_Type
)
2419 Insert_List_Before
(Last
(Statement_List
), Stmts
);
2421 Append_List_To
(Statement_List
, Stmts
);
2426 Next_Non_Pragma
(Decl
);
2429 if Per_Object_Constraint_Components
then
2431 -- Second pass: components with per-object constraints
2433 Decl
:= First_Non_Pragma
(Component_Items
(Comp_List
));
2435 while Present
(Decl
) loop
2437 Id
:= Defining_Identifier
(Decl
);
2440 if Has_Access_Constraint
(Id
)
2441 and then No
(Expression
(Decl
))
2443 if Has_Non_Null_Base_Init_Proc
(Typ
) then
2444 Append_List_To
(Statement_List
,
2445 Build_Initialization_Call
(Loc
,
2446 Make_Selected_Component
(Loc
,
2447 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2448 Selector_Name
=> New_Occurrence_Of
(Id
, Loc
)),
2449 Typ
, True, Rec_Type
, Discr_Map
=> Discr_Map
));
2451 elsif Component_Needs_Simple_Initialization
(Typ
) then
2452 Append_List_To
(Statement_List
,
2454 (Id
, Get_Simple_Init_Val
(Typ
, Loc
, Esize
(Id
))));
2458 Next_Non_Pragma
(Decl
);
2462 -- Process the variant part
2464 if Present
(Variant_Part
(Comp_List
)) then
2465 Alt_List
:= New_List
;
2466 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(Comp_List
)));
2468 while Present
(Variant
) loop
2469 Loc
:= Sloc
(Variant
);
2470 Append_To
(Alt_List
,
2471 Make_Case_Statement_Alternative
(Loc
,
2473 New_Copy_List
(Discrete_Choices
(Variant
)),
2475 Build_Init_Statements
(Component_List
(Variant
))));
2477 Next_Non_Pragma
(Variant
);
2480 -- The expression of the case statement which is a reference
2481 -- to one of the discriminants is replaced by the appropriate
2482 -- formal parameter of the initialization procedure.
2484 Append_To
(Statement_List
,
2485 Make_Case_Statement
(Loc
,
2487 New_Reference_To
(Discriminal
(
2488 Entity
(Name
(Variant_Part
(Comp_List
)))), Loc
),
2489 Alternatives
=> Alt_List
));
2492 -- For a task record type, add the task create call and calls
2493 -- to bind any interrupt (signal) entries.
2495 if Is_Task_Record_Type
(Rec_Type
) then
2497 -- In the case of the restricted run time the ATCB has already
2498 -- been preallocated.
2500 if Restricted_Profile
then
2501 Append_To
(Statement_List
,
2502 Make_Assignment_Statement
(Loc
,
2503 Name
=> Make_Selected_Component
(Loc
,
2504 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2505 Selector_Name
=> Make_Identifier
(Loc
, Name_uTask_Id
)),
2506 Expression
=> Make_Attribute_Reference
(Loc
,
2508 Make_Selected_Component
(Loc
,
2509 Prefix
=> Make_Identifier
(Loc
, Name_uInit
),
2511 Make_Identifier
(Loc
, Name_uATCB
)),
2512 Attribute_Name
=> Name_Unchecked_Access
)));
2515 Append_To
(Statement_List
, Make_Task_Create_Call
(Rec_Type
));
2518 Task_Type
: constant Entity_Id
:=
2519 Corresponding_Concurrent_Type
(Rec_Type
);
2520 Task_Decl
: constant Node_Id
:= Parent
(Task_Type
);
2521 Task_Def
: constant Node_Id
:= Task_Definition
(Task_Decl
);
2526 if Present
(Task_Def
) then
2527 Vis_Decl
:= First
(Visible_Declarations
(Task_Def
));
2528 while Present
(Vis_Decl
) loop
2529 Loc
:= Sloc
(Vis_Decl
);
2531 if Nkind
(Vis_Decl
) = N_Attribute_Definition_Clause
then
2532 if Get_Attribute_Id
(Chars
(Vis_Decl
)) =
2535 Ent
:= Entity
(Name
(Vis_Decl
));
2537 if Ekind
(Ent
) = E_Entry
then
2538 Append_To
(Statement_List
,
2539 Make_Procedure_Call_Statement
(Loc
,
2540 Name
=> New_Reference_To
(
2541 RTE
(RE_Bind_Interrupt_To_Entry
), Loc
),
2542 Parameter_Associations
=> New_List
(
2543 Make_Selected_Component
(Loc
,
2545 Make_Identifier
(Loc
, Name_uInit
),
2547 Make_Identifier
(Loc
, Name_uTask_Id
)),
2548 Entry_Index_Expression
(
2549 Loc
, Ent
, Empty
, Task_Type
),
2550 Expression
(Vis_Decl
))));
2561 -- For a protected type, add statements generated by
2562 -- Make_Initialize_Protection.
2564 if Is_Protected_Record_Type
(Rec_Type
) then
2565 Append_List_To
(Statement_List
,
2566 Make_Initialize_Protection
(Rec_Type
));
2569 -- If no initializations when generated for component declarations
2570 -- corresponding to this Statement_List, append a null statement
2571 -- to the Statement_List to make it a valid Ada tree.
2573 if Is_Empty_List
(Statement_List
) then
2574 Append
(New_Node
(N_Null_Statement
, Loc
), Statement_List
);
2577 return Statement_List
;
2580 when RE_Not_Available
=>
2582 end Build_Init_Statements
;
2584 -------------------------
2585 -- Build_Record_Checks --
2586 -------------------------
2588 procedure Build_Record_Checks
(S
: Node_Id
; Check_List
: List_Id
) is
2589 Subtype_Mark_Id
: Entity_Id
;
2592 if Nkind
(S
) = N_Subtype_Indication
then
2593 Find_Type
(Subtype_Mark
(S
));
2594 Subtype_Mark_Id
:= Entity
(Subtype_Mark
(S
));
2596 -- Remaining processing depends on type
2598 case Ekind
(Subtype_Mark_Id
) is
2601 Constrain_Array
(S
, Check_List
);
2607 end Build_Record_Checks
;
2609 -------------------------------------------
2610 -- Component_Needs_Simple_Initialization --
2611 -------------------------------------------
2613 function Component_Needs_Simple_Initialization
2614 (T
: Entity_Id
) return Boolean
2618 Needs_Simple_Initialization
(T
)
2619 and then not Is_RTE
(T
, RE_Tag
)
2620 and then not Is_RTE
(T
, RE_Vtable_Ptr
)
2622 -- Ada 2005 (AI-251): Check also the tag of abstract interfaces
2624 and then not Is_RTE
(T
, RE_Interface_Tag
);
2625 end Component_Needs_Simple_Initialization
;
2627 ---------------------
2628 -- Constrain_Array --
2629 ---------------------
2631 procedure Constrain_Array
2633 Check_List
: List_Id
)
2635 C
: constant Node_Id
:= Constraint
(SI
);
2636 Number_Of_Constraints
: Nat
:= 0;
2641 T
:= Entity
(Subtype_Mark
(SI
));
2643 if Ekind
(T
) in Access_Kind
then
2644 T
:= Designated_Type
(T
);
2647 S
:= First
(Constraints
(C
));
2649 while Present
(S
) loop
2650 Number_Of_Constraints
:= Number_Of_Constraints
+ 1;
2654 -- In either case, the index constraint must provide a discrete
2655 -- range for each index of the array type and the type of each
2656 -- discrete range must be the same as that of the corresponding
2657 -- index. (RM 3.6.1)
2659 S
:= First
(Constraints
(C
));
2660 Index
:= First_Index
(T
);
2663 -- Apply constraints to each index type
2665 for J
in 1 .. Number_Of_Constraints
loop
2666 Constrain_Index
(Index
, S
, Check_List
);
2671 end Constrain_Array
;
2673 ---------------------
2674 -- Constrain_Index --
2675 ---------------------
2677 procedure Constrain_Index
2680 Check_List
: List_Id
)
2682 T
: constant Entity_Id
:= Etype
(Index
);
2685 if Nkind
(S
) = N_Range
then
2686 Process_Range_Expr_In_Decl
(S
, T
, Check_List
);
2688 end Constrain_Index
;
2690 --------------------------------------
2691 -- Parent_Subtype_Renaming_Discrims --
2692 --------------------------------------
2694 function Parent_Subtype_Renaming_Discrims
return Boolean is
2699 if Base_Type
(Pe
) /= Pe
then
2704 or else not Has_Discriminants
(Pe
)
2705 or else Is_Constrained
(Pe
)
2706 or else Is_Tagged_Type
(Pe
)
2711 -- If there are no explicit stored discriminants we have inherited
2712 -- the root type discriminants so far, so no renamings occurred.
2714 if First_Discriminant
(Pe
) = First_Stored_Discriminant
(Pe
) then
2718 -- Check if we have done some trivial renaming of the parent
2719 -- discriminants, i.e. someting like
2721 -- type DT (X1,X2: int) is new PT (X1,X2);
2723 De
:= First_Discriminant
(Pe
);
2724 Dp
:= First_Discriminant
(Etype
(Pe
));
2726 while Present
(De
) loop
2727 pragma Assert
(Present
(Dp
));
2729 if Corresponding_Discriminant
(De
) /= Dp
then
2733 Next_Discriminant
(De
);
2734 Next_Discriminant
(Dp
);
2737 return Present
(Dp
);
2738 end Parent_Subtype_Renaming_Discrims
;
2740 ------------------------
2741 -- Requires_Init_Proc --
2742 ------------------------
2744 function Requires_Init_Proc
(Rec_Id
: Entity_Id
) return Boolean is
2745 Comp_Decl
: Node_Id
;
2750 -- Definitely do not need one if specifically suppressed
2752 if Suppress_Init_Proc
(Rec_Id
) then
2756 -- If it is a type derived from a type with unknown discriminants,
2757 -- we cannot build an initialization procedure for it.
2759 if Has_Unknown_Discriminants
(Rec_Id
) then
2763 -- Otherwise we need to generate an initialization procedure if
2764 -- Is_CPP_Class is False and at least one of the following applies:
2766 -- 1. Discriminants are present, since they need to be initialized
2767 -- with the appropriate discriminant constraint expressions.
2768 -- However, the discriminant of an unchecked union does not
2769 -- count, since the discriminant is not present.
2771 -- 2. The type is a tagged type, since the implicit Tag component
2772 -- needs to be initialized with a pointer to the dispatch table.
2774 -- 3. The type contains tasks
2776 -- 4. One or more components has an initial value
2778 -- 5. One or more components is for a type which itself requires
2779 -- an initialization procedure.
2781 -- 6. One or more components is a type that requires simple
2782 -- initialization (see Needs_Simple_Initialization), except
2783 -- that types Tag and Interface_Tag are excluded, since fields
2784 -- of these types are initialized by other means.
2786 -- 7. The type is the record type built for a task type (since at
2787 -- the very least, Create_Task must be called)
2789 -- 8. The type is the record type built for a protected type (since
2790 -- at least Initialize_Protection must be called)
2792 -- 9. The type is marked as a public entity. The reason we add this
2793 -- case (even if none of the above apply) is to properly handle
2794 -- Initialize_Scalars. If a package is compiled without an IS
2795 -- pragma, and the client is compiled with an IS pragma, then
2796 -- the client will think an initialization procedure is present
2797 -- and call it, when in fact no such procedure is required, but
2798 -- since the call is generated, there had better be a routine
2799 -- at the other end of the call, even if it does nothing!)
2801 -- Note: the reason we exclude the CPP_Class case is because in this
2802 -- case the initialization is performed in the C++ side.
2804 if Is_CPP_Class
(Rec_Id
) then
2807 elsif not Restriction_Active
(No_Initialize_Scalars
)
2808 and then Is_Public
(Rec_Id
)
2812 elsif (Has_Discriminants
(Rec_Id
)
2813 and then not Is_Unchecked_Union
(Rec_Id
))
2814 or else Is_Tagged_Type
(Rec_Id
)
2815 or else Is_Concurrent_Record_Type
(Rec_Id
)
2816 or else Has_Task
(Rec_Id
)
2821 Id
:= First_Component
(Rec_Id
);
2823 while Present
(Id
) loop
2824 Comp_Decl
:= Parent
(Id
);
2827 if Present
(Expression
(Comp_Decl
))
2828 or else Has_Non_Null_Base_Init_Proc
(Typ
)
2829 or else Component_Needs_Simple_Initialization
(Typ
)
2834 Next_Component
(Id
);
2838 end Requires_Init_Proc
;
2840 -- Start of processing for Build_Record_Init_Proc
2843 Rec_Type
:= Defining_Identifier
(N
);
2845 -- This may be full declaration of a private type, in which case
2846 -- the visible entity is a record, and the private entity has been
2847 -- exchanged with it in the private part of the current package.
2848 -- The initialization procedure is built for the record type, which
2849 -- is retrievable from the private entity.
2851 if Is_Incomplete_Or_Private_Type
(Rec_Type
) then
2852 Rec_Type
:= Underlying_Type
(Rec_Type
);
2855 -- If there are discriminants, build the discriminant map to replace
2856 -- discriminants by their discriminals in complex bound expressions.
2857 -- These only arise for the corresponding records of protected types.
2859 if Is_Concurrent_Record_Type
(Rec_Type
)
2860 and then Has_Discriminants
(Rec_Type
)
2866 Disc
:= First_Discriminant
(Rec_Type
);
2868 while Present
(Disc
) loop
2869 Append_Elmt
(Disc
, Discr_Map
);
2870 Append_Elmt
(Discriminal
(Disc
), Discr_Map
);
2871 Next_Discriminant
(Disc
);
2876 -- Derived types that have no type extension can use the initialization
2877 -- procedure of their parent and do not need a procedure of their own.
2878 -- This is only correct if there are no representation clauses for the
2879 -- type or its parent, and if the parent has in fact been frozen so
2880 -- that its initialization procedure exists.
2882 if Is_Derived_Type
(Rec_Type
)
2883 and then not Is_Tagged_Type
(Rec_Type
)
2884 and then not Is_Unchecked_Union
(Rec_Type
)
2885 and then not Has_New_Non_Standard_Rep
(Rec_Type
)
2886 and then not Parent_Subtype_Renaming_Discrims
2887 and then Has_Non_Null_Base_Init_Proc
(Etype
(Rec_Type
))
2889 Copy_TSS
(Base_Init_Proc
(Etype
(Rec_Type
)), Rec_Type
);
2891 -- Otherwise if we need an initialization procedure, then build one,
2892 -- mark it as public and inlinable and as having a completion.
2894 elsif Requires_Init_Proc
(Rec_Type
)
2895 or else Is_Unchecked_Union
(Rec_Type
)
2897 Build_Offset_To_Top_Functions
;
2898 Build_Init_Procedure
;
2899 Set_Is_Public
(Proc_Id
, Is_Public
(Pe
));
2901 -- The initialization of protected records is not worth inlining.
2902 -- In addition, when compiled for another unit for inlining purposes,
2903 -- it may make reference to entities that have not been elaborated
2904 -- yet. The initialization of controlled records contains a nested
2905 -- clean-up procedure that makes it impractical to inline as well,
2906 -- and leads to undefined symbols if inlined in a different unit.
2907 -- Similar considerations apply to task types.
2909 if not Is_Concurrent_Type
(Rec_Type
)
2910 and then not Has_Task
(Rec_Type
)
2911 and then not Controlled_Type
(Rec_Type
)
2913 Set_Is_Inlined
(Proc_Id
);
2916 Set_Is_Internal
(Proc_Id
);
2917 Set_Has_Completion
(Proc_Id
);
2919 if not Debug_Generated_Code
then
2920 Set_Debug_Info_Off
(Proc_Id
);
2923 end Build_Record_Init_Proc
;
2925 ----------------------------
2926 -- Build_Slice_Assignment --
2927 ----------------------------
2929 -- Generates the following subprogram:
2932 -- (Source, Target : Array_Type,
2933 -- Left_Lo, Left_Hi, Right_Lo, Right_Hi : Index;
2950 -- exit when Li1 < Left_Lo;
2952 -- exit when Li1 > Left_Hi;
2955 -- Target (Li1) := Source (Ri1);
2958 -- Li1 := Index'pred (Li1);
2959 -- Ri1 := Index'pred (Ri1);
2961 -- Li1 := Index'succ (Li1);
2962 -- Ri1 := Index'succ (Ri1);
2967 procedure Build_Slice_Assignment
(Typ
: Entity_Id
) is
2968 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
2969 Index
: constant Entity_Id
:= Base_Type
(Etype
(First_Index
(Typ
)));
2971 -- Build formal parameters of procedure
2973 Larray
: constant Entity_Id
:=
2974 Make_Defining_Identifier
2975 (Loc
, Chars
=> New_Internal_Name
('A'));
2976 Rarray
: constant Entity_Id
:=
2977 Make_Defining_Identifier
2978 (Loc
, Chars
=> New_Internal_Name
('R'));
2979 Left_Lo
: constant Entity_Id
:=
2980 Make_Defining_Identifier
2981 (Loc
, Chars
=> New_Internal_Name
('L'));
2982 Left_Hi
: constant Entity_Id
:=
2983 Make_Defining_Identifier
2984 (Loc
, Chars
=> New_Internal_Name
('L'));
2985 Right_Lo
: constant Entity_Id
:=
2986 Make_Defining_Identifier
2987 (Loc
, Chars
=> New_Internal_Name
('R'));
2988 Right_Hi
: constant Entity_Id
:=
2989 Make_Defining_Identifier
2990 (Loc
, Chars
=> New_Internal_Name
('R'));
2991 Rev
: constant Entity_Id
:=
2992 Make_Defining_Identifier
2993 (Loc
, Chars
=> New_Internal_Name
('D'));
2994 Proc_Name
: constant Entity_Id
:=
2995 Make_Defining_Identifier
(Loc
,
2996 Chars
=> Make_TSS_Name
(Typ
, TSS_Slice_Assign
));
2998 Lnn
: constant Entity_Id
:=
2999 Make_Defining_Identifier
(Loc
, New_Internal_Name
('L'));
3000 Rnn
: constant Entity_Id
:=
3001 Make_Defining_Identifier
(Loc
, New_Internal_Name
('R'));
3002 -- Subscripts for left and right sides
3009 -- Build declarations for indices
3014 Make_Object_Declaration
(Loc
,
3015 Defining_Identifier
=> Lnn
,
3016 Object_Definition
=>
3017 New_Occurrence_Of
(Index
, Loc
)));
3020 Make_Object_Declaration
(Loc
,
3021 Defining_Identifier
=> Rnn
,
3022 Object_Definition
=>
3023 New_Occurrence_Of
(Index
, Loc
)));
3027 -- Build initializations for indices
3030 F_Init
: constant List_Id
:= New_List
;
3031 B_Init
: constant List_Id
:= New_List
;
3035 Make_Assignment_Statement
(Loc
,
3036 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3037 Expression
=> New_Occurrence_Of
(Left_Lo
, Loc
)));
3040 Make_Assignment_Statement
(Loc
,
3041 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3042 Expression
=> New_Occurrence_Of
(Right_Lo
, Loc
)));
3045 Make_Assignment_Statement
(Loc
,
3046 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3047 Expression
=> New_Occurrence_Of
(Left_Hi
, Loc
)));
3050 Make_Assignment_Statement
(Loc
,
3051 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3052 Expression
=> New_Occurrence_Of
(Right_Hi
, Loc
)));
3055 Make_If_Statement
(Loc
,
3056 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
3057 Then_Statements
=> B_Init
,
3058 Else_Statements
=> F_Init
));
3061 -- Now construct the assignment statement
3064 Make_Loop_Statement
(Loc
,
3065 Statements
=> New_List
(
3066 Make_Assignment_Statement
(Loc
,
3068 Make_Indexed_Component
(Loc
,
3069 Prefix
=> New_Occurrence_Of
(Larray
, Loc
),
3070 Expressions
=> New_List
(New_Occurrence_Of
(Lnn
, Loc
))),
3072 Make_Indexed_Component
(Loc
,
3073 Prefix
=> New_Occurrence_Of
(Rarray
, Loc
),
3074 Expressions
=> New_List
(New_Occurrence_Of
(Rnn
, Loc
))))),
3075 End_Label
=> Empty
);
3077 -- Build exit condition
3080 F_Ass
: constant List_Id
:= New_List
;
3081 B_Ass
: constant List_Id
:= New_List
;
3085 Make_Exit_Statement
(Loc
,
3088 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
3089 Right_Opnd
=> New_Occurrence_Of
(Left_Hi
, Loc
))));
3092 Make_Exit_Statement
(Loc
,
3095 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
3096 Right_Opnd
=> New_Occurrence_Of
(Left_Lo
, Loc
))));
3098 Prepend_To
(Statements
(Loops
),
3099 Make_If_Statement
(Loc
,
3100 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
3101 Then_Statements
=> B_Ass
,
3102 Else_Statements
=> F_Ass
));
3105 -- Build the increment/decrement statements
3108 F_Ass
: constant List_Id
:= New_List
;
3109 B_Ass
: constant List_Id
:= New_List
;
3113 Make_Assignment_Statement
(Loc
,
3114 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3116 Make_Attribute_Reference
(Loc
,
3118 New_Occurrence_Of
(Index
, Loc
),
3119 Attribute_Name
=> Name_Succ
,
3120 Expressions
=> New_List
(
3121 New_Occurrence_Of
(Lnn
, Loc
)))));
3124 Make_Assignment_Statement
(Loc
,
3125 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3127 Make_Attribute_Reference
(Loc
,
3129 New_Occurrence_Of
(Index
, Loc
),
3130 Attribute_Name
=> Name_Succ
,
3131 Expressions
=> New_List
(
3132 New_Occurrence_Of
(Rnn
, Loc
)))));
3135 Make_Assignment_Statement
(Loc
,
3136 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
3138 Make_Attribute_Reference
(Loc
,
3140 New_Occurrence_Of
(Index
, Loc
),
3141 Attribute_Name
=> Name_Pred
,
3142 Expressions
=> New_List
(
3143 New_Occurrence_Of
(Lnn
, Loc
)))));
3146 Make_Assignment_Statement
(Loc
,
3147 Name
=> New_Occurrence_Of
(Rnn
, Loc
),
3149 Make_Attribute_Reference
(Loc
,
3151 New_Occurrence_Of
(Index
, Loc
),
3152 Attribute_Name
=> Name_Pred
,
3153 Expressions
=> New_List
(
3154 New_Occurrence_Of
(Rnn
, Loc
)))));
3156 Append_To
(Statements
(Loops
),
3157 Make_If_Statement
(Loc
,
3158 Condition
=> New_Occurrence_Of
(Rev
, Loc
),
3159 Then_Statements
=> B_Ass
,
3160 Else_Statements
=> F_Ass
));
3163 Append_To
(Stats
, Loops
);
3167 Formals
: List_Id
:= New_List
;
3170 Formals
:= New_List
(
3171 Make_Parameter_Specification
(Loc
,
3172 Defining_Identifier
=> Larray
,
3173 Out_Present
=> True,
3175 New_Reference_To
(Base_Type
(Typ
), Loc
)),
3177 Make_Parameter_Specification
(Loc
,
3178 Defining_Identifier
=> Rarray
,
3180 New_Reference_To
(Base_Type
(Typ
), Loc
)),
3182 Make_Parameter_Specification
(Loc
,
3183 Defining_Identifier
=> Left_Lo
,
3185 New_Reference_To
(Index
, Loc
)),
3187 Make_Parameter_Specification
(Loc
,
3188 Defining_Identifier
=> Left_Hi
,
3190 New_Reference_To
(Index
, Loc
)),
3192 Make_Parameter_Specification
(Loc
,
3193 Defining_Identifier
=> Right_Lo
,
3195 New_Reference_To
(Index
, Loc
)),
3197 Make_Parameter_Specification
(Loc
,
3198 Defining_Identifier
=> Right_Hi
,
3200 New_Reference_To
(Index
, Loc
)));
3203 Make_Parameter_Specification
(Loc
,
3204 Defining_Identifier
=> Rev
,
3206 New_Reference_To
(Standard_Boolean
, Loc
)));
3209 Make_Procedure_Specification
(Loc
,
3210 Defining_Unit_Name
=> Proc_Name
,
3211 Parameter_Specifications
=> Formals
);
3214 Make_Subprogram_Body
(Loc
,
3215 Specification
=> Spec
,
3216 Declarations
=> Decls
,
3217 Handled_Statement_Sequence
=>
3218 Make_Handled_Sequence_Of_Statements
(Loc
,
3219 Statements
=> Stats
)));
3222 Set_TSS
(Typ
, Proc_Name
);
3223 Set_Is_Pure
(Proc_Name
);
3224 end Build_Slice_Assignment
;
3226 ------------------------------------
3227 -- Build_Variant_Record_Equality --
3228 ------------------------------------
3232 -- function _Equality (X, Y : T) return Boolean is
3234 -- -- Compare discriminants
3236 -- if False or else X.D1 /= Y.D1 or else X.D2 /= Y.D2 then
3240 -- -- Compare components
3242 -- if False or else X.C1 /= Y.C1 or else X.C2 /= Y.C2 then
3246 -- -- Compare variant part
3250 -- if False or else X.C2 /= Y.C2 or else X.C3 /= Y.C3 then
3255 -- if False or else X.Cn /= Y.Cn then
3262 procedure Build_Variant_Record_Equality
(Typ
: Entity_Id
) is
3263 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
3265 F
: constant Entity_Id
:=
3266 Make_Defining_Identifier
(Loc
,
3267 Chars
=> Make_TSS_Name
(Typ
, TSS_Composite_Equality
));
3269 X
: constant Entity_Id
:=
3270 Make_Defining_Identifier
(Loc
,
3273 Y
: constant Entity_Id
:=
3274 Make_Defining_Identifier
(Loc
,
3277 Def
: constant Node_Id
:= Parent
(Typ
);
3278 Comps
: constant Node_Id
:= Component_List
(Type_Definition
(Def
));
3279 Stmts
: constant List_Id
:= New_List
;
3280 Pspecs
: constant List_Id
:= New_List
;
3283 -- Derived Unchecked_Union types no longer inherit the equality function
3286 if Is_Derived_Type
(Typ
)
3287 and then not Is_Unchecked_Union
(Typ
)
3288 and then not Has_New_Non_Standard_Rep
(Typ
)
3291 Parent_Eq
: constant Entity_Id
:=
3292 TSS
(Root_Type
(Typ
), TSS_Composite_Equality
);
3295 if Present
(Parent_Eq
) then
3296 Copy_TSS
(Parent_Eq
, Typ
);
3303 Make_Subprogram_Body
(Loc
,
3305 Make_Function_Specification
(Loc
,
3306 Defining_Unit_Name
=> F
,
3307 Parameter_Specifications
=> Pspecs
,
3308 Result_Definition
=> New_Reference_To
(Standard_Boolean
, Loc
)),
3309 Declarations
=> New_List
,
3310 Handled_Statement_Sequence
=>
3311 Make_Handled_Sequence_Of_Statements
(Loc
,
3312 Statements
=> Stmts
)));
3315 Make_Parameter_Specification
(Loc
,
3316 Defining_Identifier
=> X
,
3317 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)));
3320 Make_Parameter_Specification
(Loc
,
3321 Defining_Identifier
=> Y
,
3322 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)));
3324 -- Unchecked_Unions require additional machinery to support equality.
3325 -- Two extra parameters (A and B) are added to the equality function
3326 -- parameter list in order to capture the inferred values of the
3327 -- discriminants in later calls.
3329 if Is_Unchecked_Union
(Typ
) then
3331 Discr_Type
: constant Node_Id
:= Etype
(First_Discriminant
(Typ
));
3333 A
: constant Node_Id
:=
3334 Make_Defining_Identifier
(Loc
,
3337 B
: constant Node_Id
:=
3338 Make_Defining_Identifier
(Loc
,
3342 -- Add A and B to the parameter list
3345 Make_Parameter_Specification
(Loc
,
3346 Defining_Identifier
=> A
,
3347 Parameter_Type
=> New_Reference_To
(Discr_Type
, Loc
)));
3350 Make_Parameter_Specification
(Loc
,
3351 Defining_Identifier
=> B
,
3352 Parameter_Type
=> New_Reference_To
(Discr_Type
, Loc
)));
3354 -- Generate the following header code to compare the inferred
3362 Make_If_Statement
(Loc
,
3365 Left_Opnd
=> New_Reference_To
(A
, Loc
),
3366 Right_Opnd
=> New_Reference_To
(B
, Loc
)),
3367 Then_Statements
=> New_List
(
3368 Make_Return_Statement
(Loc
,
3369 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
)))));
3371 -- Generate component-by-component comparison. Note that we must
3372 -- propagate one of the inferred discriminant formals to act as
3373 -- the case statement switch.
3375 Append_List_To
(Stmts
,
3376 Make_Eq_Case
(Typ
, Comps
, A
));
3380 -- Normal case (not unchecked union)
3385 Discriminant_Specifications
(Def
)));
3387 Append_List_To
(Stmts
,
3388 Make_Eq_Case
(Typ
, Comps
));
3392 Make_Return_Statement
(Loc
,
3393 Expression
=> New_Reference_To
(Standard_True
, Loc
)));
3398 if not Debug_Generated_Code
then
3399 Set_Debug_Info_Off
(F
);
3401 end Build_Variant_Record_Equality
;
3403 -----------------------------
3404 -- Check_Stream_Attributes --
3405 -----------------------------
3407 procedure Check_Stream_Attributes
(Typ
: Entity_Id
) is
3409 Par_Read
: constant Boolean :=
3410 Stream_Attribute_Available
(Typ
, TSS_Stream_Read
)
3411 and then not Has_Specified_Stream_Read
(Typ
);
3412 Par_Write
: constant Boolean :=
3413 Stream_Attribute_Available
(Typ
, TSS_Stream_Write
)
3414 and then not Has_Specified_Stream_Write
(Typ
);
3416 procedure Check_Attr
(Nam
: Name_Id
; TSS_Nam
: TSS_Name_Type
);
3417 -- Check that Comp has a user-specified Nam stream attribute
3423 procedure Check_Attr
(Nam
: Name_Id
; TSS_Nam
: TSS_Name_Type
) is
3425 if not Stream_Attribute_Available
(Etype
(Comp
), TSS_Nam
) then
3426 Error_Msg_Name_1
:= Nam
;
3428 ("|component& in limited extension must have% attribute", Comp
);
3432 -- Start of processing for Check_Stream_Attributes
3435 if Par_Read
or else Par_Write
then
3436 Comp
:= First_Component
(Typ
);
3437 while Present
(Comp
) loop
3438 if Comes_From_Source
(Comp
)
3439 and then Original_Record_Component
(Comp
) = Comp
3440 and then Is_Limited_Type
(Etype
(Comp
))
3443 Check_Attr
(Name_Read
, TSS_Stream_Read
);
3447 Check_Attr
(Name_Write
, TSS_Stream_Write
);
3451 Next_Component
(Comp
);
3454 end Check_Stream_Attributes
;
3456 -----------------------------
3457 -- Expand_Record_Extension --
3458 -----------------------------
3460 -- Add a field _parent at the beginning of the record extension. This is
3461 -- used to implement inheritance. Here are some examples of expansion:
3463 -- 1. no discriminants
3464 -- type T2 is new T1 with null record;
3466 -- type T2 is new T1 with record
3470 -- 2. renamed discriminants
3471 -- type T2 (B, C : Int) is new T1 (A => B) with record
3472 -- _Parent : T1 (A => B);
3476 -- 3. inherited discriminants
3477 -- type T2 is new T1 with record -- discriminant A inherited
3478 -- _Parent : T1 (A);
3482 procedure Expand_Record_Extension
(T
: Entity_Id
; Def
: Node_Id
) is
3483 Indic
: constant Node_Id
:= Subtype_Indication
(Def
);
3484 Loc
: constant Source_Ptr
:= Sloc
(Def
);
3485 Rec_Ext_Part
: Node_Id
:= Record_Extension_Part
(Def
);
3486 Par_Subtype
: Entity_Id
;
3487 Comp_List
: Node_Id
;
3488 Comp_Decl
: Node_Id
;
3491 List_Constr
: constant List_Id
:= New_List
;
3494 -- Expand_Record_Extension is called directly from the semantics, so
3495 -- we must check to see whether expansion is active before proceeding
3497 if not Expander_Active
then
3501 -- This may be a derivation of an untagged private type whose full
3502 -- view is tagged, in which case the Derived_Type_Definition has no
3503 -- extension part. Build an empty one now.
3505 if No
(Rec_Ext_Part
) then
3507 Make_Record_Definition
(Loc
,
3509 Component_List
=> Empty
,
3510 Null_Present
=> True);
3512 Set_Record_Extension_Part
(Def
, Rec_Ext_Part
);
3513 Mark_Rewrite_Insertion
(Rec_Ext_Part
);
3516 Comp_List
:= Component_List
(Rec_Ext_Part
);
3518 Parent_N
:= Make_Defining_Identifier
(Loc
, Name_uParent
);
3520 -- If the derived type inherits its discriminants the type of the
3521 -- _parent field must be constrained by the inherited discriminants
3523 if Has_Discriminants
(T
)
3524 and then Nkind
(Indic
) /= N_Subtype_Indication
3525 and then not Is_Constrained
(Entity
(Indic
))
3527 D
:= First_Discriminant
(T
);
3528 while Present
(D
) loop
3529 Append_To
(List_Constr
, New_Occurrence_Of
(D
, Loc
));
3530 Next_Discriminant
(D
);
3535 Make_Subtype_Indication
(Loc
,
3536 Subtype_Mark
=> New_Reference_To
(Entity
(Indic
), Loc
),
3538 Make_Index_Or_Discriminant_Constraint
(Loc
,
3539 Constraints
=> List_Constr
)),
3542 -- Otherwise the original subtype_indication is just what is needed
3545 Par_Subtype
:= Process_Subtype
(New_Copy_Tree
(Indic
), Def
);
3548 Set_Parent_Subtype
(T
, Par_Subtype
);
3551 Make_Component_Declaration
(Loc
,
3552 Defining_Identifier
=> Parent_N
,
3553 Component_Definition
=>
3554 Make_Component_Definition
(Loc
,
3555 Aliased_Present
=> False,
3556 Subtype_Indication
=> New_Reference_To
(Par_Subtype
, Loc
)));
3558 if Null_Present
(Rec_Ext_Part
) then
3559 Set_Component_List
(Rec_Ext_Part
,
3560 Make_Component_List
(Loc
,
3561 Component_Items
=> New_List
(Comp_Decl
),
3562 Variant_Part
=> Empty
,
3563 Null_Present
=> False));
3564 Set_Null_Present
(Rec_Ext_Part
, False);
3566 elsif Null_Present
(Comp_List
)
3567 or else Is_Empty_List
(Component_Items
(Comp_List
))
3569 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
3570 Set_Null_Present
(Comp_List
, False);
3573 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
3576 Analyze
(Comp_Decl
);
3577 end Expand_Record_Extension
;
3579 ------------------------------------
3580 -- Expand_N_Full_Type_Declaration --
3581 ------------------------------------
3583 procedure Expand_N_Full_Type_Declaration
(N
: Node_Id
) is
3584 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3585 B_Id
: constant Entity_Id
:= Base_Type
(Def_Id
);
3590 if Is_Access_Type
(Def_Id
) then
3592 -- Anonymous access types are created for the components of the
3593 -- record parameter for an entry declaration. No master is created
3596 if Has_Task
(Designated_Type
(Def_Id
))
3597 and then Comes_From_Source
(N
)
3599 Build_Master_Entity
(Def_Id
);
3600 Build_Master_Renaming
(Parent
(Def_Id
), Def_Id
);
3602 -- Create a class-wide master because a Master_Id must be generated
3603 -- for access-to-limited-class-wide types whose root may be extended
3604 -- with task components, and for access-to-limited-interfaces because
3605 -- they can be used to reference tasks implementing such interface.
3607 elsif Is_Class_Wide_Type
(Designated_Type
(Def_Id
))
3608 and then (Is_Limited_Type
(Designated_Type
(Def_Id
))
3610 (Is_Interface
(Designated_Type
(Def_Id
))
3612 Is_Limited_Interface
(Designated_Type
(Def_Id
))))
3613 and then Tasking_Allowed
3615 -- Do not create a class-wide master for types whose convention is
3616 -- Java since these types cannot embed Ada tasks anyway. Note that
3617 -- the following test cannot catch the following case:
3619 -- package java.lang.Object is
3620 -- type Typ is tagged limited private;
3621 -- type Ref is access all Typ'Class;
3623 -- type Typ is tagged limited ...;
3624 -- pragma Convention (Typ, Java)
3627 -- Because the convention appears after we have done the
3628 -- processing for type Ref.
3630 and then Convention
(Designated_Type
(Def_Id
)) /= Convention_Java
3632 Build_Class_Wide_Master
(Def_Id
);
3634 elsif Ekind
(Def_Id
) = E_Access_Protected_Subprogram_Type
then
3635 Expand_Access_Protected_Subprogram_Type
(N
);
3638 elsif Has_Task
(Def_Id
) then
3639 Expand_Previous_Access_Type
(Def_Id
);
3642 Par_Id
:= Etype
(B_Id
);
3644 -- The parent type is private then we need to inherit
3645 -- any TSS operations from the full view.
3647 if Ekind
(Par_Id
) in Private_Kind
3648 and then Present
(Full_View
(Par_Id
))
3650 Par_Id
:= Base_Type
(Full_View
(Par_Id
));
3653 if Nkind
(Type_Definition
(Original_Node
(N
)))
3654 = N_Derived_Type_Definition
3655 and then not Is_Tagged_Type
(Def_Id
)
3656 and then Present
(Freeze_Node
(Par_Id
))
3657 and then Present
(TSS_Elist
(Freeze_Node
(Par_Id
)))
3659 Ensure_Freeze_Node
(B_Id
);
3660 FN
:= Freeze_Node
(B_Id
);
3662 if No
(TSS_Elist
(FN
)) then
3663 Set_TSS_Elist
(FN
, New_Elmt_List
);
3667 T_E
: constant Elist_Id
:= TSS_Elist
(FN
);
3671 Elmt
:= First_Elmt
(TSS_Elist
(Freeze_Node
(Par_Id
)));
3673 while Present
(Elmt
) loop
3674 if Chars
(Node
(Elmt
)) /= Name_uInit
then
3675 Append_Elmt
(Node
(Elmt
), T_E
);
3681 -- If the derived type itself is private with a full view, then
3682 -- associate the full view with the inherited TSS_Elist as well.
3684 if Ekind
(B_Id
) in Private_Kind
3685 and then Present
(Full_View
(B_Id
))
3687 Ensure_Freeze_Node
(Base_Type
(Full_View
(B_Id
)));
3689 (Freeze_Node
(Base_Type
(Full_View
(B_Id
))), TSS_Elist
(FN
));
3693 end Expand_N_Full_Type_Declaration
;
3695 ---------------------------------
3696 -- Expand_N_Object_Declaration --
3697 ---------------------------------
3699 -- First we do special processing for objects of a tagged type where this
3700 -- is the point at which the type is frozen. The creation of the dispatch
3701 -- table and the initialization procedure have to be deferred to this
3702 -- point, since we reference previously declared primitive subprograms.
3704 -- For all types, we call an initialization procedure if there is one
3706 procedure Expand_N_Object_Declaration
(N
: Node_Id
) is
3707 Def_Id
: constant Entity_Id
:= Defining_Identifier
(N
);
3708 Typ
: constant Entity_Id
:= Etype
(Def_Id
);
3709 Loc
: constant Source_Ptr
:= Sloc
(N
);
3710 Expr
: constant Node_Id
:= Expression
(N
);
3716 -- Don't do anything for deferred constants. All proper actions will
3717 -- be expanded during the full declaration.
3719 if No
(Expr
) and Constant_Present
(N
) then
3723 -- Make shared memory routines for shared passive variable
3725 if Is_Shared_Passive
(Def_Id
) then
3726 Make_Shared_Var_Procs
(N
);
3729 -- If tasks being declared, make sure we have an activation chain
3730 -- defined for the tasks (has no effect if we already have one), and
3731 -- also that a Master variable is established and that the appropriate
3732 -- enclosing construct is established as a task master.
3734 if Has_Task
(Typ
) then
3735 Build_Activation_Chain_Entity
(N
);
3736 Build_Master_Entity
(Def_Id
);
3739 -- Default initialization required, and no expression present
3743 -- Expand Initialize call for controlled objects. One may wonder why
3744 -- the Initialize Call is not done in the regular Init procedure
3745 -- attached to the record type. That's because the init procedure is
3746 -- recursively called on each component, including _Parent, thus the
3747 -- Init call for a controlled object would generate not only one
3748 -- Initialize call as it is required but one for each ancestor of
3749 -- its type. This processing is suppressed if No_Initialization set.
3751 if not Controlled_Type
(Typ
)
3752 or else No_Initialization
(N
)
3756 elsif not Abort_Allowed
3757 or else not Comes_From_Source
(N
)
3759 Insert_Actions_After
(N
,
3761 Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
3762 Typ
=> Base_Type
(Typ
),
3763 Flist_Ref
=> Find_Final_List
(Def_Id
),
3764 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
3769 -- We need to protect the initialize call
3773 -- Initialize (...);
3775 -- Undefer_Abort.all;
3778 -- ??? this won't protect the initialize call for controlled
3779 -- components which are part of the init proc, so this block
3780 -- should probably also contain the call to _init_proc but this
3781 -- requires some code reorganization...
3784 L
: constant List_Id
:=
3786 Ref
=> New_Occurrence_Of
(Def_Id
, Loc
),
3787 Typ
=> Base_Type
(Typ
),
3788 Flist_Ref
=> Find_Final_List
(Def_Id
),
3789 With_Attach
=> Make_Integer_Literal
(Loc
, 1));
3791 Blk
: constant Node_Id
:=
3792 Make_Block_Statement
(Loc
,
3793 Handled_Statement_Sequence
=>
3794 Make_Handled_Sequence_Of_Statements
(Loc
, L
));
3797 Prepend_To
(L
, Build_Runtime_Call
(Loc
, RE_Abort_Defer
));
3798 Set_At_End_Proc
(Handled_Statement_Sequence
(Blk
),
3799 New_Occurrence_Of
(RTE
(RE_Abort_Undefer_Direct
), Loc
));
3800 Insert_Actions_After
(N
, New_List
(Blk
));
3801 Expand_At_End_Handler
3802 (Handled_Statement_Sequence
(Blk
), Entity
(Identifier
(Blk
)));
3806 -- Call type initialization procedure if there is one. We build the
3807 -- call and put it immediately after the object declaration, so that
3808 -- it will be expanded in the usual manner. Note that this will
3809 -- result in proper handling of defaulted discriminants. The call
3810 -- to the Init_Proc is suppressed if No_Initialization is set.
3812 if Has_Non_Null_Base_Init_Proc
(Typ
)
3813 and then not No_Initialization
(N
)
3815 -- The call to the initialization procedure does NOT freeze
3816 -- the object being initialized. This is because the call is
3817 -- not a source level call. This works fine, because the only
3818 -- possible statements depending on freeze status that can
3819 -- appear after the _Init call are rep clauses which can
3820 -- safely appear after actual references to the object.
3822 Id_Ref
:= New_Reference_To
(Def_Id
, Loc
);
3823 Set_Must_Not_Freeze
(Id_Ref
);
3824 Set_Assignment_OK
(Id_Ref
);
3826 Insert_Actions_After
(N
,
3827 Build_Initialization_Call
(Loc
, Id_Ref
, Typ
));
3829 -- If simple initialization is required, then set an appropriate
3830 -- simple initialization expression in place. This special
3831 -- initialization is required even though No_Init_Flag is present.
3833 -- An internally generated temporary needs no initialization because
3834 -- it will be assigned subsequently. In particular, there is no
3835 -- point in applying Initialize_Scalars to such a temporary.
3837 elsif Needs_Simple_Initialization
(Typ
)
3838 and then not Is_Internal
(Def_Id
)
3840 Set_No_Initialization
(N
, False);
3841 Set_Expression
(N
, Get_Simple_Init_Val
(Typ
, Loc
, Esize
(Def_Id
)));
3842 Analyze_And_Resolve
(Expression
(N
), Typ
);
3845 -- Generate attribute for Persistent_BSS if needed
3847 if Persistent_BSS_Mode
3848 and then Comes_From_Source
(N
)
3849 and then Is_Potentially_Persistent_Type
(Typ
)
3850 and then Is_Library_Level_Entity
(Def_Id
)
3856 Make_Linker_Section_Pragma
3857 (Def_Id
, Sloc
(N
), ".persistent.bss");
3858 Insert_After
(N
, Prag
);
3863 -- If access type, then we know it is null if not initialized
3865 if Is_Access_Type
(Typ
) then
3866 Set_Is_Known_Null
(Def_Id
);
3869 -- Explicit initialization present
3872 -- Obtain actual expression from qualified expression
3874 if Nkind
(Expr
) = N_Qualified_Expression
then
3875 Expr_Q
:= Expression
(Expr
);
3880 -- When we have the appropriate type of aggregate in the expression
3881 -- (it has been determined during analysis of the aggregate by
3882 -- setting the delay flag), let's perform in place assignment and
3883 -- thus avoid creating a temporary.
3885 if Is_Delayed_Aggregate
(Expr_Q
) then
3886 Convert_Aggr_In_Object_Decl
(N
);
3889 -- In most cases, we must check that the initial value meets any
3890 -- constraint imposed by the declared type. However, there is one
3891 -- very important exception to this rule. If the entity has an
3892 -- unconstrained nominal subtype, then it acquired its constraints
3893 -- from the expression in the first place, and not only does this
3894 -- mean that the constraint check is not needed, but an attempt to
3895 -- perform the constraint check can cause order order of
3896 -- elaboration problems.
3898 if not Is_Constr_Subt_For_U_Nominal
(Typ
) then
3900 -- If this is an allocator for an aggregate that has been
3901 -- allocated in place, delay checks until assignments are
3902 -- made, because the discriminants are not initialized.
3904 if Nkind
(Expr
) = N_Allocator
3905 and then No_Initialization
(Expr
)
3909 Apply_Constraint_Check
(Expr
, Typ
);
3913 -- If the type is controlled we attach the object to the final
3914 -- list and adjust the target after the copy. This
3915 -- ??? incomplete sentence
3917 if Controlled_Type
(Typ
) then
3923 -- Attach the result to a dummy final list which will never
3924 -- be finalized if Delay_Finalize_Attachis set. It is
3925 -- important to attach to a dummy final list rather than not
3926 -- attaching at all in order to reset the pointers coming
3927 -- from the initial value. Equivalent code exists in the
3928 -- sec-stack case in Exp_Ch4.Expand_N_Allocator.
3930 if Delay_Finalize_Attach
(N
) then
3932 Make_Defining_Identifier
(Loc
, New_Internal_Name
('F'));
3934 Make_Object_Declaration
(Loc
,
3935 Defining_Identifier
=> F
,
3936 Object_Definition
=>
3937 New_Reference_To
(RTE
(RE_Finalizable_Ptr
), Loc
)));
3939 Flist
:= New_Reference_To
(F
, Loc
);
3942 Flist
:= Find_Final_List
(Def_Id
);
3945 Insert_Actions_After
(N
,
3947 Ref
=> New_Reference_To
(Def_Id
, Loc
),
3948 Typ
=> Base_Type
(Typ
),
3950 With_Attach
=> Make_Integer_Literal
(Loc
, 1)));
3954 -- For tagged types, when an init value is given, the tag has to
3955 -- be re-initialized separately in order to avoid the propagation
3956 -- of a wrong tag coming from a view conversion unless the type
3957 -- is class wide (in this case the tag comes from the init value).
3958 -- Suppress the tag assignment when Java_VM because JVM tags are
3959 -- represented implicitly in objects. Ditto for types that are
3960 -- CPP_CLASS, and for initializations that are aggregates, because
3961 -- they have to have the right tag.
3963 if Is_Tagged_Type
(Typ
)
3964 and then not Is_Class_Wide_Type
(Typ
)
3965 and then not Is_CPP_Class
(Typ
)
3966 and then not Java_VM
3967 and then Nkind
(Expr
) /= N_Aggregate
3969 -- The re-assignment of the tag has to be done even if the
3970 -- object is a constant.
3973 Make_Selected_Component
(Loc
,
3974 Prefix
=> New_Reference_To
(Def_Id
, Loc
),
3976 New_Reference_To
(First_Tag_Component
(Typ
), Loc
));
3978 Set_Assignment_OK
(New_Ref
);
3981 Make_Assignment_Statement
(Loc
,
3984 Unchecked_Convert_To
(RTE
(RE_Tag
),
3988 (Access_Disp_Table
(Base_Type
(Typ
)))),
3991 -- For discrete types, set the Is_Known_Valid flag if the
3992 -- initializing value is known to be valid.
3994 elsif Is_Discrete_Type
(Typ
) and then Expr_Known_Valid
(Expr
) then
3995 Set_Is_Known_Valid
(Def_Id
);
3997 elsif Is_Access_Type
(Typ
) then
3999 -- For access types set the Is_Known_Non_Null flag if the
4000 -- initializing value is known to be non-null. We can also set
4001 -- Can_Never_Be_Null if this is a constant.
4003 if Known_Non_Null
(Expr
) then
4004 Set_Is_Known_Non_Null
(Def_Id
, True);
4006 if Constant_Present
(N
) then
4007 Set_Can_Never_Be_Null
(Def_Id
);
4012 -- If validity checking on copies, validate initial expression
4014 if Validity_Checks_On
4015 and then Validity_Check_Copies
4017 Ensure_Valid
(Expr
);
4018 Set_Is_Known_Valid
(Def_Id
);
4022 -- Cases where the back end cannot handle the initialization directly
4023 -- In such cases, we expand an assignment that will be appropriately
4024 -- handled by Expand_N_Assignment_Statement.
4026 -- The exclusion of the unconstrained case is wrong, but for now it
4027 -- is too much trouble ???
4029 if (Is_Possibly_Unaligned_Slice
(Expr
)
4030 or else (Is_Possibly_Unaligned_Object
(Expr
)
4031 and then not Represented_As_Scalar
(Etype
(Expr
))))
4033 -- The exclusion of the unconstrained case is wrong, but for now
4034 -- it is too much trouble ???
4036 and then not (Is_Array_Type
(Etype
(Expr
))
4037 and then not Is_Constrained
(Etype
(Expr
)))
4040 Stat
: constant Node_Id
:=
4041 Make_Assignment_Statement
(Loc
,
4042 Name
=> New_Reference_To
(Def_Id
, Loc
),
4043 Expression
=> Relocate_Node
(Expr
));
4045 Set_Expression
(N
, Empty
);
4046 Set_No_Initialization
(N
);
4047 Set_Assignment_OK
(Name
(Stat
));
4048 Set_No_Ctrl_Actions
(Stat
);
4049 Insert_After
(N
, Stat
);
4055 -- For array type, check for size too large
4056 -- We really need this for record types too???
4058 if Is_Array_Type
(Typ
) then
4059 Apply_Array_Size_Check
(N
, Typ
);
4063 when RE_Not_Available
=>
4065 end Expand_N_Object_Declaration
;
4067 ---------------------------------
4068 -- Expand_N_Subtype_Indication --
4069 ---------------------------------
4071 -- Add a check on the range of the subtype. The static case is partially
4072 -- duplicated by Process_Range_Expr_In_Decl in Sem_Ch3, but we still need
4073 -- to check here for the static case in order to avoid generating
4074 -- extraneous expanded code.
4076 procedure Expand_N_Subtype_Indication
(N
: Node_Id
) is
4077 Ran
: constant Node_Id
:= Range_Expression
(Constraint
(N
));
4078 Typ
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
4081 if Nkind
(Parent
(N
)) = N_Constrained_Array_Definition
or else
4082 Nkind
(Parent
(N
)) = N_Slice
4085 Apply_Range_Check
(Ran
, Typ
);
4087 end Expand_N_Subtype_Indication
;
4089 ---------------------------
4090 -- Expand_N_Variant_Part --
4091 ---------------------------
4093 -- If the last variant does not contain the Others choice, replace it with
4094 -- an N_Others_Choice node since Gigi always wants an Others. Note that we
4095 -- do not bother to call Analyze on the modified variant part, since it's
4096 -- only effect would be to compute the contents of the
4097 -- Others_Discrete_Choices node laboriously, and of course we already know
4098 -- the list of choices that corresponds to the others choice (it's the
4099 -- list we are replacing!)
4101 procedure Expand_N_Variant_Part
(N
: Node_Id
) is
4102 Last_Var
: constant Node_Id
:= Last_Non_Pragma
(Variants
(N
));
4103 Others_Node
: Node_Id
;
4105 if Nkind
(First
(Discrete_Choices
(Last_Var
))) /= N_Others_Choice
then
4106 Others_Node
:= Make_Others_Choice
(Sloc
(Last_Var
));
4107 Set_Others_Discrete_Choices
4108 (Others_Node
, Discrete_Choices
(Last_Var
));
4109 Set_Discrete_Choices
(Last_Var
, New_List
(Others_Node
));
4111 end Expand_N_Variant_Part
;
4113 ---------------------------------
4114 -- Expand_Previous_Access_Type --
4115 ---------------------------------
4117 procedure Expand_Previous_Access_Type
(Def_Id
: Entity_Id
) is
4118 T
: Entity_Id
:= First_Entity
(Current_Scope
);
4121 -- Find all access types declared in the current scope, whose
4122 -- designated type is Def_Id.
4124 while Present
(T
) loop
4125 if Is_Access_Type
(T
)
4126 and then Designated_Type
(T
) = Def_Id
4128 Build_Master_Entity
(Def_Id
);
4129 Build_Master_Renaming
(Parent
(Def_Id
), T
);
4134 end Expand_Previous_Access_Type
;
4136 ------------------------------
4137 -- Expand_Record_Controller --
4138 ------------------------------
4140 procedure Expand_Record_Controller
(T
: Entity_Id
) is
4141 Def
: Node_Id
:= Type_Definition
(Parent
(T
));
4142 Comp_List
: Node_Id
;
4143 Comp_Decl
: Node_Id
;
4145 First_Comp
: Node_Id
;
4146 Controller_Type
: Entity_Id
;
4150 if Nkind
(Def
) = N_Derived_Type_Definition
then
4151 Def
:= Record_Extension_Part
(Def
);
4154 if Null_Present
(Def
) then
4155 Set_Component_List
(Def
,
4156 Make_Component_List
(Sloc
(Def
),
4157 Component_Items
=> Empty_List
,
4158 Variant_Part
=> Empty
,
4159 Null_Present
=> True));
4162 Comp_List
:= Component_List
(Def
);
4164 if Null_Present
(Comp_List
)
4165 or else Is_Empty_List
(Component_Items
(Comp_List
))
4167 Loc
:= Sloc
(Comp_List
);
4169 Loc
:= Sloc
(First
(Component_Items
(Comp_List
)));
4172 if Is_Return_By_Reference_Type
(T
) then
4173 Controller_Type
:= RTE
(RE_Limited_Record_Controller
);
4175 Controller_Type
:= RTE
(RE_Record_Controller
);
4178 Ent
:= Make_Defining_Identifier
(Loc
, Name_uController
);
4181 Make_Component_Declaration
(Loc
,
4182 Defining_Identifier
=> Ent
,
4183 Component_Definition
=>
4184 Make_Component_Definition
(Loc
,
4185 Aliased_Present
=> False,
4186 Subtype_Indication
=> New_Reference_To
(Controller_Type
, Loc
)));
4188 if Null_Present
(Comp_List
)
4189 or else Is_Empty_List
(Component_Items
(Comp_List
))
4191 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
4192 Set_Null_Present
(Comp_List
, False);
4195 -- The controller cannot be placed before the _Parent field since
4196 -- gigi lays out field in order and _parent must be first to
4197 -- preserve the polymorphism of tagged types.
4199 First_Comp
:= First
(Component_Items
(Comp_List
));
4201 if Chars
(Defining_Identifier
(First_Comp
)) /= Name_uParent
4202 and then Chars
(Defining_Identifier
(First_Comp
)) /= Name_uTag
4204 Insert_Before
(First_Comp
, Comp_Decl
);
4206 Insert_After
(First_Comp
, Comp_Decl
);
4211 Analyze
(Comp_Decl
);
4212 Set_Ekind
(Ent
, E_Component
);
4213 Init_Component_Location
(Ent
);
4215 -- Move the _controller entity ahead in the list of internal entities
4216 -- of the enclosing record so that it is selected instead of a
4217 -- potentially inherited one.
4220 E
: constant Entity_Id
:= Last_Entity
(T
);
4224 pragma Assert
(Chars
(E
) = Name_uController
);
4226 Set_Next_Entity
(E
, First_Entity
(T
));
4227 Set_First_Entity
(T
, E
);
4229 Comp
:= Next_Entity
(E
);
4230 while Next_Entity
(Comp
) /= E
loop
4234 Set_Next_Entity
(Comp
, Empty
);
4235 Set_Last_Entity
(T
, Comp
);
4241 when RE_Not_Available
=>
4243 end Expand_Record_Controller
;
4245 ------------------------
4246 -- Expand_Tagged_Root --
4247 ------------------------
4249 procedure Expand_Tagged_Root
(T
: Entity_Id
) is
4250 Def
: constant Node_Id
:= Type_Definition
(Parent
(T
));
4251 Comp_List
: Node_Id
;
4252 Comp_Decl
: Node_Id
;
4253 Sloc_N
: Source_Ptr
;
4256 if Null_Present
(Def
) then
4257 Set_Component_List
(Def
,
4258 Make_Component_List
(Sloc
(Def
),
4259 Component_Items
=> Empty_List
,
4260 Variant_Part
=> Empty
,
4261 Null_Present
=> True));
4264 Comp_List
:= Component_List
(Def
);
4266 if Null_Present
(Comp_List
)
4267 or else Is_Empty_List
(Component_Items
(Comp_List
))
4269 Sloc_N
:= Sloc
(Comp_List
);
4271 Sloc_N
:= Sloc
(First
(Component_Items
(Comp_List
)));
4275 Make_Component_Declaration
(Sloc_N
,
4276 Defining_Identifier
=> First_Tag_Component
(T
),
4277 Component_Definition
=>
4278 Make_Component_Definition
(Sloc_N
,
4279 Aliased_Present
=> False,
4280 Subtype_Indication
=> New_Reference_To
(RTE
(RE_Tag
), Sloc_N
)));
4282 if Null_Present
(Comp_List
)
4283 or else Is_Empty_List
(Component_Items
(Comp_List
))
4285 Set_Component_Items
(Comp_List
, New_List
(Comp_Decl
));
4286 Set_Null_Present
(Comp_List
, False);
4289 Insert_Before
(First
(Component_Items
(Comp_List
)), Comp_Decl
);
4292 -- We don't Analyze the whole expansion because the tag component has
4293 -- already been analyzed previously. Here we just insure that the tree
4294 -- is coherent with the semantic decoration
4296 Find_Type
(Subtype_Indication
(Component_Definition
(Comp_Decl
)));
4299 when RE_Not_Available
=>
4301 end Expand_Tagged_Root
;
4303 -----------------------
4304 -- Freeze_Array_Type --
4305 -----------------------
4307 procedure Freeze_Array_Type
(N
: Node_Id
) is
4308 Typ
: constant Entity_Id
:= Entity
(N
);
4309 Base
: constant Entity_Id
:= Base_Type
(Typ
);
4312 if not Is_Bit_Packed_Array
(Typ
) then
4314 -- If the component contains tasks, so does the array type. This may
4315 -- not be indicated in the array type because the component may have
4316 -- been a private type at the point of definition. Same if component
4317 -- type is controlled.
4319 Set_Has_Task
(Base
, Has_Task
(Component_Type
(Typ
)));
4320 Set_Has_Controlled_Component
(Base
,
4321 Has_Controlled_Component
(Component_Type
(Typ
))
4322 or else Is_Controlled
(Component_Type
(Typ
)));
4324 if No
(Init_Proc
(Base
)) then
4326 -- If this is an anonymous array created for a declaration with
4327 -- an initial value, its init_proc will never be called. The
4328 -- initial value itself may have been expanded into assign-
4329 -- ments, in which case the object declaration is carries the
4330 -- No_Initialization flag.
4333 and then Nkind
(Associated_Node_For_Itype
(Base
)) =
4334 N_Object_Declaration
4335 and then (Present
(Expression
(Associated_Node_For_Itype
(Base
)))
4337 No_Initialization
(Associated_Node_For_Itype
(Base
)))
4341 -- We do not need an init proc for string or wide [wide] string,
4342 -- since the only time these need initialization in normalize or
4343 -- initialize scalars mode, and these types are treated specially
4344 -- and do not need initialization procedures.
4346 elsif Root_Type
(Base
) = Standard_String
4347 or else Root_Type
(Base
) = Standard_Wide_String
4348 or else Root_Type
(Base
) = Standard_Wide_Wide_String
4352 -- Otherwise we have to build an init proc for the subtype
4355 Build_Array_Init_Proc
(Base
, N
);
4359 if Typ
= Base
and then Has_Controlled_Component
(Base
) then
4360 Build_Controlling_Procs
(Base
);
4362 if not Is_Limited_Type
(Component_Type
(Typ
))
4363 and then Number_Dimensions
(Typ
) = 1
4365 Build_Slice_Assignment
(Typ
);
4369 -- For packed case, there is a default initialization, except if the
4370 -- component type is itself a packed structure with an initialization
4373 elsif Present
(Init_Proc
(Component_Type
(Base
)))
4374 and then No
(Base_Init_Proc
(Base
))
4376 Build_Array_Init_Proc
(Base
, N
);
4378 end Freeze_Array_Type
;
4380 -----------------------------
4381 -- Freeze_Enumeration_Type --
4382 -----------------------------
4384 procedure Freeze_Enumeration_Type
(N
: Node_Id
) is
4385 Typ
: constant Entity_Id
:= Entity
(N
);
4386 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
4393 Is_Contiguous
: Boolean;
4398 pragma Warnings
(Off
, Func
);
4401 -- Various optimization are possible if the given representation is
4404 Is_Contiguous
:= True;
4405 Ent
:= First_Literal
(Typ
);
4406 Last_Repval
:= Enumeration_Rep
(Ent
);
4409 while Present
(Ent
) loop
4410 if Enumeration_Rep
(Ent
) - Last_Repval
/= 1 then
4411 Is_Contiguous
:= False;
4414 Last_Repval
:= Enumeration_Rep
(Ent
);
4420 if Is_Contiguous
then
4421 Set_Has_Contiguous_Rep
(Typ
);
4422 Ent
:= First_Literal
(Typ
);
4424 Lst
:= New_List
(New_Reference_To
(Ent
, Sloc
(Ent
)));
4427 -- Build list of literal references
4432 Ent
:= First_Literal
(Typ
);
4433 while Present
(Ent
) loop
4434 Append_To
(Lst
, New_Reference_To
(Ent
, Sloc
(Ent
)));
4440 -- Now build an array declaration
4442 -- typA : array (Natural range 0 .. num - 1) of ctype :=
4443 -- (v, v, v, v, v, ....)
4445 -- where ctype is the corresponding integer type. If the representation
4446 -- is contiguous, we only keep the first literal, which provides the
4447 -- offset for Pos_To_Rep computations.
4450 Make_Defining_Identifier
(Loc
,
4451 Chars
=> New_External_Name
(Chars
(Typ
), 'A'));
4453 Append_Freeze_Action
(Typ
,
4454 Make_Object_Declaration
(Loc
,
4455 Defining_Identifier
=> Arr
,
4456 Constant_Present
=> True,
4458 Object_Definition
=>
4459 Make_Constrained_Array_Definition
(Loc
,
4460 Discrete_Subtype_Definitions
=> New_List
(
4461 Make_Subtype_Indication
(Loc
,
4462 Subtype_Mark
=> New_Reference_To
(Standard_Natural
, Loc
),
4464 Make_Range_Constraint
(Loc
,
4468 Make_Integer_Literal
(Loc
, 0),
4470 Make_Integer_Literal
(Loc
, Num
- 1))))),
4472 Component_Definition
=>
4473 Make_Component_Definition
(Loc
,
4474 Aliased_Present
=> False,
4475 Subtype_Indication
=> New_Reference_To
(Typ
, Loc
))),
4478 Make_Aggregate
(Loc
,
4479 Expressions
=> Lst
)));
4481 Set_Enum_Pos_To_Rep
(Typ
, Arr
);
4483 -- Now we build the function that converts representation values to
4484 -- position values. This function has the form:
4486 -- function _Rep_To_Pos (A : etype; F : Boolean) return Integer is
4489 -- when enum-lit'Enum_Rep => return posval;
4490 -- when enum-lit'Enum_Rep => return posval;
4493 -- [raise Constraint_Error when F "invalid data"]
4498 -- Note: the F parameter determines whether the others case (no valid
4499 -- representation) raises Constraint_Error or returns a unique value
4500 -- of minus one. The latter case is used, e.g. in 'Valid code.
4502 -- Note: the reason we use Enum_Rep values in the case here is to avoid
4503 -- the code generator making inappropriate assumptions about the range
4504 -- of the values in the case where the value is invalid. ityp is a
4505 -- signed or unsigned integer type of appropriate width.
4507 -- Note: if exceptions are not supported, then we suppress the raise
4508 -- and return -1 unconditionally (this is an erroneous program in any
4509 -- case and there is no obligation to raise Constraint_Error here!) We
4510 -- also do this if pragma Restrictions (No_Exceptions) is active.
4512 -- Representations are signed
4514 if Enumeration_Rep
(First_Literal
(Typ
)) < 0 then
4516 -- The underlying type is signed. Reset the Is_Unsigned_Type
4517 -- explicitly, because it might have been inherited from
4520 Set_Is_Unsigned_Type
(Typ
, False);
4522 if Esize
(Typ
) <= Standard_Integer_Size
then
4523 Ityp
:= Standard_Integer
;
4525 Ityp
:= Universal_Integer
;
4528 -- Representations are unsigned
4531 if Esize
(Typ
) <= Standard_Integer_Size
then
4532 Ityp
:= RTE
(RE_Unsigned
);
4534 Ityp
:= RTE
(RE_Long_Long_Unsigned
);
4538 -- The body of the function is a case statement. First collect case
4539 -- alternatives, or optimize the contiguous case.
4543 -- If representation is contiguous, Pos is computed by subtracting
4544 -- the representation of the first literal.
4546 if Is_Contiguous
then
4547 Ent
:= First_Literal
(Typ
);
4549 if Enumeration_Rep
(Ent
) = Last_Repval
then
4551 -- Another special case: for a single literal, Pos is zero
4553 Pos_Expr
:= Make_Integer_Literal
(Loc
, Uint_0
);
4557 Convert_To
(Standard_Integer
,
4558 Make_Op_Subtract
(Loc
,
4560 Unchecked_Convert_To
(Ityp
,
4561 Make_Identifier
(Loc
, Name_uA
)),
4563 Make_Integer_Literal
(Loc
,
4565 Enumeration_Rep
(First_Literal
(Typ
)))));
4569 Make_Case_Statement_Alternative
(Loc
,
4570 Discrete_Choices
=> New_List
(
4571 Make_Range
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
4573 Make_Integer_Literal
(Loc
,
4574 Intval
=> Enumeration_Rep
(Ent
)),
4576 Make_Integer_Literal
(Loc
, Intval
=> Last_Repval
))),
4578 Statements
=> New_List
(
4579 Make_Return_Statement
(Loc
,
4580 Expression
=> Pos_Expr
))));
4583 Ent
:= First_Literal
(Typ
);
4585 while Present
(Ent
) loop
4587 Make_Case_Statement_Alternative
(Loc
,
4588 Discrete_Choices
=> New_List
(
4589 Make_Integer_Literal
(Sloc
(Enumeration_Rep_Expr
(Ent
)),
4590 Intval
=> Enumeration_Rep
(Ent
))),
4592 Statements
=> New_List
(
4593 Make_Return_Statement
(Loc
,
4595 Make_Integer_Literal
(Loc
,
4596 Intval
=> Enumeration_Pos
(Ent
))))));
4602 -- In normal mode, add the others clause with the test
4604 if not Restriction_Active
(No_Exception_Handlers
) then
4606 Make_Case_Statement_Alternative
(Loc
,
4607 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
4608 Statements
=> New_List
(
4609 Make_Raise_Constraint_Error
(Loc
,
4610 Condition
=> Make_Identifier
(Loc
, Name_uF
),
4611 Reason
=> CE_Invalid_Data
),
4612 Make_Return_Statement
(Loc
,
4614 Make_Integer_Literal
(Loc
, -1)))));
4616 -- If Restriction (No_Exceptions_Handlers) is active then we always
4617 -- return -1 (since we cannot usefully raise Constraint_Error in
4618 -- this case). See description above for further details.
4622 Make_Case_Statement_Alternative
(Loc
,
4623 Discrete_Choices
=> New_List
(Make_Others_Choice
(Loc
)),
4624 Statements
=> New_List
(
4625 Make_Return_Statement
(Loc
,
4627 Make_Integer_Literal
(Loc
, -1)))));
4630 -- Now we can build the function body
4633 Make_Defining_Identifier
(Loc
, Make_TSS_Name
(Typ
, TSS_Rep_To_Pos
));
4636 Make_Subprogram_Body
(Loc
,
4638 Make_Function_Specification
(Loc
,
4639 Defining_Unit_Name
=> Fent
,
4640 Parameter_Specifications
=> New_List
(
4641 Make_Parameter_Specification
(Loc
,
4642 Defining_Identifier
=>
4643 Make_Defining_Identifier
(Loc
, Name_uA
),
4644 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)),
4645 Make_Parameter_Specification
(Loc
,
4646 Defining_Identifier
=>
4647 Make_Defining_Identifier
(Loc
, Name_uF
),
4648 Parameter_Type
=> New_Reference_To
(Standard_Boolean
, Loc
))),
4650 Result_Definition
=> New_Reference_To
(Standard_Integer
, Loc
)),
4652 Declarations
=> Empty_List
,
4654 Handled_Statement_Sequence
=>
4655 Make_Handled_Sequence_Of_Statements
(Loc
,
4656 Statements
=> New_List
(
4657 Make_Case_Statement
(Loc
,
4659 Unchecked_Convert_To
(Ityp
,
4660 Make_Identifier
(Loc
, Name_uA
)),
4661 Alternatives
=> Lst
))));
4663 Set_TSS
(Typ
, Fent
);
4666 if not Debug_Generated_Code
then
4667 Set_Debug_Info_Off
(Fent
);
4671 when RE_Not_Available
=>
4673 end Freeze_Enumeration_Type
;
4675 ------------------------
4676 -- Freeze_Record_Type --
4677 ------------------------
4679 procedure Freeze_Record_Type
(N
: Node_Id
) is
4681 Def_Id
: constant Node_Id
:= Entity
(N
);
4682 Predef_List
: List_Id
;
4683 Type_Decl
: constant Node_Id
:= Parent
(Def_Id
);
4685 Renamed_Eq
: Node_Id
:= Empty
;
4686 -- Could use some comments ???
4688 Wrapper_Decl_List
: List_Id
:= No_List
;
4689 Wrapper_Body_List
: List_Id
:= No_List
;
4692 -- Build discriminant checking functions if not a derived type (for
4693 -- derived types that are not tagged types, we always use the
4694 -- discriminant checking functions of the parent type). However, for
4695 -- untagged types the derivation may have taken place before the
4696 -- parent was frozen, so we copy explicitly the discriminant checking
4697 -- functions from the parent into the components of the derived type.
4699 if not Is_Derived_Type
(Def_Id
)
4700 or else Has_New_Non_Standard_Rep
(Def_Id
)
4701 or else Is_Tagged_Type
(Def_Id
)
4703 Build_Discr_Checking_Funcs
(Type_Decl
);
4705 elsif Is_Derived_Type
(Def_Id
)
4706 and then not Is_Tagged_Type
(Def_Id
)
4708 -- If we have a derived Unchecked_Union, we do not inherit the
4709 -- discriminant checking functions from the parent type since the
4710 -- discriminants are non existent.
4712 and then not Is_Unchecked_Union
(Def_Id
)
4713 and then Has_Discriminants
(Def_Id
)
4716 Old_Comp
: Entity_Id
;
4720 First_Component
(Base_Type
(Underlying_Type
(Etype
(Def_Id
))));
4721 Comp
:= First_Component
(Def_Id
);
4722 while Present
(Comp
) loop
4723 if Ekind
(Comp
) = E_Component
4724 and then Chars
(Comp
) = Chars
(Old_Comp
)
4726 Set_Discriminant_Checking_Func
(Comp
,
4727 Discriminant_Checking_Func
(Old_Comp
));
4730 Next_Component
(Old_Comp
);
4731 Next_Component
(Comp
);
4736 if Is_Derived_Type
(Def_Id
)
4737 and then Is_Limited_Type
(Def_Id
)
4738 and then Is_Tagged_Type
(Def_Id
)
4740 Check_Stream_Attributes
(Def_Id
);
4743 -- Update task and controlled component flags, because some of the
4744 -- component types may have been private at the point of the record
4747 Comp
:= First_Component
(Def_Id
);
4749 while Present
(Comp
) loop
4750 if Has_Task
(Etype
(Comp
)) then
4751 Set_Has_Task
(Def_Id
);
4753 elsif Has_Controlled_Component
(Etype
(Comp
))
4754 or else (Chars
(Comp
) /= Name_uParent
4755 and then Is_Controlled
(Etype
(Comp
)))
4757 Set_Has_Controlled_Component
(Def_Id
);
4760 Next_Component
(Comp
);
4763 -- Creation of the Dispatch Table. Note that a Dispatch Table is
4764 -- created for regular tagged types as well as for Ada types deriving
4765 -- from a C++ Class, but not for tagged types directly corresponding to
4766 -- the C++ classes. In the later case we assume that the Vtable is
4767 -- created in the C++ side and we just use it.
4769 if Is_Tagged_Type
(Def_Id
) then
4771 if Is_CPP_Class
(Def_Id
) then
4773 -- Because of the new C++ ABI compatibility we now allow the
4774 -- programer to use the Ada tag (and in this case we must do
4775 -- the normal expansion of the tag)
4777 if Etype
(First_Component
(Def_Id
)) = RTE
(RE_Tag
)
4778 and then Underlying_Type
(Etype
(Def_Id
)) = Def_Id
4780 Expand_Tagged_Root
(Def_Id
);
4783 Set_All_DT_Position
(Def_Id
);
4784 Set_Default_Constructor
(Def_Id
);
4787 -- Usually inherited primitives are not delayed but the first Ada
4788 -- extension of a CPP_Class is an exception since the address of
4789 -- the inherited subprogram has to be inserted in the new Ada
4790 -- Dispatch Table and this is a freezing action (usually the
4791 -- inherited primitive address is inserted in the DT by
4794 -- Similarly, if this is an inherited operation whose parent is
4795 -- not frozen yet, it is not in the DT of the parent, and we
4796 -- generate an explicit freeze node for the inherited operation,
4797 -- so that it is properly inserted in the DT of the current type.
4800 Elmt
: Elmt_Id
:= First_Elmt
(Primitive_Operations
(Def_Id
));
4804 while Present
(Elmt
) loop
4805 Subp
:= Node
(Elmt
);
4807 if Present
(Alias
(Subp
)) then
4808 if Is_CPP_Class
(Etype
(Def_Id
)) then
4809 Set_Has_Delayed_Freeze
(Subp
);
4811 elsif Has_Delayed_Freeze
(Alias
(Subp
))
4812 and then not Is_Frozen
(Alias
(Subp
))
4814 Set_Is_Frozen
(Subp
, False);
4815 Set_Has_Delayed_Freeze
(Subp
);
4823 if Underlying_Type
(Etype
(Def_Id
)) = Def_Id
then
4824 Expand_Tagged_Root
(Def_Id
);
4827 -- Unfreeze momentarily the type to add the predefined primitives
4828 -- operations. The reason we unfreeze is so that these predefined
4829 -- operations will indeed end up as primitive operations (which
4830 -- must be before the freeze point).
4832 Set_Is_Frozen
(Def_Id
, False);
4833 Make_Predefined_Primitive_Specs
4834 (Def_Id
, Predef_List
, Renamed_Eq
);
4835 Insert_List_Before_And_Analyze
(N
, Predef_List
);
4837 -- Ada 2005 (AI-391): For a nonabstract null extension, create
4838 -- wrapper functions for each nonoverridden inherited function
4839 -- with a controlling result of the type. The wrapper for such
4840 -- a function returns an extension aggregate that invokes the
4841 -- the parent function.
4843 if Ada_Version
>= Ada_05
4844 and then not Is_Abstract
(Def_Id
)
4845 and then Is_Null_Extension
(Def_Id
)
4847 Make_Controlling_Function_Wrappers
4848 (Def_Id
, Wrapper_Decl_List
, Wrapper_Body_List
);
4849 Insert_List_Before_And_Analyze
(N
, Wrapper_Decl_List
);
4852 Set_Is_Frozen
(Def_Id
, True);
4853 Set_All_DT_Position
(Def_Id
);
4855 -- Add the controlled component before the freezing actions
4856 -- referenced in those actions.
4858 if Has_New_Controlled_Component
(Def_Id
) then
4859 Expand_Record_Controller
(Def_Id
);
4862 -- Suppress creation of a dispatch table when Java_VM because the
4863 -- dispatching mechanism is handled internally by the JVM.
4867 -- Ada 2005 (AI-251): Build the secondary dispatch tables
4870 ADT
: Elist_Id
:= Access_Disp_Table
(Def_Id
);
4872 procedure Add_Secondary_Tables
(Typ
: Entity_Id
);
4873 -- Internal subprogram, recursively climb to the ancestors
4875 --------------------------
4876 -- Add_Secondary_Tables --
4877 --------------------------
4879 procedure Add_Secondary_Tables
(Typ
: Entity_Id
) is
4886 -- Climb to the ancestor (if any) handling private types
4888 if Present
(Full_View
(Etype
(Typ
))) then
4889 if Full_View
(Etype
(Typ
)) /= Typ
then
4890 Add_Secondary_Tables
(Full_View
(Etype
(Typ
)));
4893 elsif Etype
(Typ
) /= Typ
then
4894 Add_Secondary_Tables
(Etype
(Typ
));
4897 if Present
(Abstract_Interfaces
(Typ
))
4899 not Is_Empty_Elmt_List
(Abstract_Interfaces
(Typ
))
4901 Iface
:= First_Elmt
(Abstract_Interfaces
(Typ
));
4904 E
:= First_Entity
(Typ
);
4905 while Present
(E
) loop
4906 if Is_Tag
(E
) and then Chars
(E
) /= Name_uTag
then
4909 Ancestor_Typ
=> Typ
,
4910 Suffix_Index
=> Suffix_Index
,
4911 Iface
=> Node
(Iface
),
4913 Acc_Disp_Tables
=> ADT
,
4916 Append_Freeze_Actions
(Def_Id
, Result
);
4917 Suffix_Index
:= Suffix_Index
+ 1;
4924 end Add_Secondary_Tables
;
4926 -- Start of processing to build secondary dispatch tables
4929 -- Handle private types
4931 if Present
(Full_View
(Def_Id
)) then
4932 Add_Secondary_Tables
(Full_View
(Def_Id
));
4934 Add_Secondary_Tables
(Def_Id
);
4937 Set_Access_Disp_Table
(Def_Id
, ADT
);
4938 Append_Freeze_Actions
(Def_Id
, Make_DT
(Def_Id
));
4942 -- Make sure that the primitives Initialize, Adjust and Finalize
4943 -- are Frozen before other TSS subprograms. We don't want them
4946 if Is_Controlled
(Def_Id
) then
4947 if not Is_Limited_Type
(Def_Id
) then
4948 Append_Freeze_Actions
(Def_Id
,
4950 (Find_Prim_Op
(Def_Id
, Name_Adjust
), Sloc
(Def_Id
)));
4953 Append_Freeze_Actions
(Def_Id
,
4955 (Find_Prim_Op
(Def_Id
, Name_Initialize
), Sloc
(Def_Id
)));
4957 Append_Freeze_Actions
(Def_Id
,
4959 (Find_Prim_Op
(Def_Id
, Name_Finalize
), Sloc
(Def_Id
)));
4962 -- Freeze rest of primitive operations
4964 Append_Freeze_Actions
4965 (Def_Id
, Predefined_Primitive_Freeze
(Def_Id
));
4966 Append_Freeze_Actions
4967 (Def_Id
, Init_Predefined_Interface_Primitives
(Def_Id
));
4970 -- In the non-tagged case, an equality function is provided only for
4971 -- variant records (that are not unchecked unions).
4973 elsif Has_Discriminants
(Def_Id
)
4974 and then not Is_Limited_Type
(Def_Id
)
4977 Comps
: constant Node_Id
:=
4978 Component_List
(Type_Definition
(Type_Decl
));
4982 and then Present
(Variant_Part
(Comps
))
4984 Build_Variant_Record_Equality
(Def_Id
);
4989 -- Before building the record initialization procedure, if we are
4990 -- dealing with a concurrent record value type, then we must go through
4991 -- the discriminants, exchanging discriminals between the concurrent
4992 -- type and the concurrent record value type. See the section "Handling
4993 -- of Discriminants" in the Einfo spec for details.
4995 if Is_Concurrent_Record_Type
(Def_Id
)
4996 and then Has_Discriminants
(Def_Id
)
4999 Ctyp
: constant Entity_Id
:=
5000 Corresponding_Concurrent_Type
(Def_Id
);
5001 Conc_Discr
: Entity_Id
;
5002 Rec_Discr
: Entity_Id
;
5006 Conc_Discr
:= First_Discriminant
(Ctyp
);
5007 Rec_Discr
:= First_Discriminant
(Def_Id
);
5009 while Present
(Conc_Discr
) loop
5010 Temp
:= Discriminal
(Conc_Discr
);
5011 Set_Discriminal
(Conc_Discr
, Discriminal
(Rec_Discr
));
5012 Set_Discriminal
(Rec_Discr
, Temp
);
5014 Set_Discriminal_Link
(Discriminal
(Conc_Discr
), Conc_Discr
);
5015 Set_Discriminal_Link
(Discriminal
(Rec_Discr
), Rec_Discr
);
5017 Next_Discriminant
(Conc_Discr
);
5018 Next_Discriminant
(Rec_Discr
);
5023 if Has_Controlled_Component
(Def_Id
) then
5024 if No
(Controller_Component
(Def_Id
)) then
5025 Expand_Record_Controller
(Def_Id
);
5028 Build_Controlling_Procs
(Def_Id
);
5031 Adjust_Discriminants
(Def_Id
);
5032 Build_Record_Init_Proc
(Type_Decl
, Def_Id
);
5034 -- For tagged type, build bodies of primitive operations. Note that we
5035 -- do this after building the record initialization experiment, since
5036 -- the primitive operations may need the initialization routine
5038 if Is_Tagged_Type
(Def_Id
) then
5039 Predef_List
:= Predefined_Primitive_Bodies
(Def_Id
, Renamed_Eq
);
5040 Append_Freeze_Actions
(Def_Id
, Predef_List
);
5042 -- Ada 2005 (AI-391): If any wrappers were created for nonoverridden
5043 -- inherited functions, then add their bodies to the freeze actions.
5045 if Present
(Wrapper_Body_List
) then
5046 Append_Freeze_Actions
(Def_Id
, Wrapper_Body_List
);
5049 -- Populate the two auxiliary tables used for dispatching
5050 -- asynchronous, conditional and timed selects for synchronized
5051 -- types that implement a limited interface.
5053 if Ada_Version
>= Ada_05
5054 and then not Restriction_Active
(No_Dispatching_Calls
)
5055 and then Is_Concurrent_Record_Type
(Def_Id
)
5056 and then Implements_Interface
(
5058 Kind
=> Any_Limited_Interface
,
5059 Check_Parent
=> True)
5061 Append_Freeze_Actions
(Def_Id
,
5062 Make_Select_Specific_Data_Table
(Def_Id
));
5065 end Freeze_Record_Type
;
5067 ------------------------------
5068 -- Freeze_Stream_Operations --
5069 ------------------------------
5071 procedure Freeze_Stream_Operations
(N
: Node_Id
; Typ
: Entity_Id
) is
5072 Names
: constant array (1 .. 4) of TSS_Name_Type
:=
5077 Stream_Op
: Entity_Id
;
5080 -- Primitive operations of tagged types are frozen when the dispatch
5081 -- table is constructed.
5083 if not Comes_From_Source
(Typ
)
5084 or else Is_Tagged_Type
(Typ
)
5089 for J
in Names
'Range loop
5090 Stream_Op
:= TSS
(Typ
, Names
(J
));
5092 if Present
(Stream_Op
)
5093 and then Is_Subprogram
(Stream_Op
)
5094 and then Nkind
(Unit_Declaration_Node
(Stream_Op
)) =
5095 N_Subprogram_Declaration
5096 and then not Is_Frozen
(Stream_Op
)
5098 Append_Freeze_Actions
5099 (Typ
, Freeze_Entity
(Stream_Op
, Sloc
(N
)));
5102 end Freeze_Stream_Operations
;
5108 -- Full type declarations are expanded at the point at which the type is
5109 -- frozen. The formal N is the Freeze_Node for the type. Any statements or
5110 -- declarations generated by the freezing (e.g. the procedure generated
5111 -- for initialization) are chained in the Actions field list of the freeze
5112 -- node using Append_Freeze_Actions.
5114 function Freeze_Type
(N
: Node_Id
) return Boolean is
5115 Def_Id
: constant Entity_Id
:= Entity
(N
);
5116 RACW_Seen
: Boolean := False;
5117 Result
: Boolean := False;
5120 -- Process associated access types needing special processing
5122 if Present
(Access_Types_To_Process
(N
)) then
5124 E
: Elmt_Id
:= First_Elmt
(Access_Types_To_Process
(N
));
5126 while Present
(E
) loop
5128 if Is_Remote_Access_To_Class_Wide_Type
(Node
(E
)) then
5138 -- If there are RACWs designating this type, make stubs now
5140 Remote_Types_Tagged_Full_View_Encountered
(Def_Id
);
5144 -- Freeze processing for record types
5146 if Is_Record_Type
(Def_Id
) then
5147 if Ekind
(Def_Id
) = E_Record_Type
then
5148 Freeze_Record_Type
(N
);
5150 -- The subtype may have been declared before the type was frozen. If
5151 -- the type has controlled components it is necessary to create the
5152 -- entity for the controller explicitly because it did not exist at
5153 -- the point of the subtype declaration. Only the entity is needed,
5154 -- the back-end will obtain the layout from the type. This is only
5155 -- necessary if this is constrained subtype whose component list is
5156 -- not shared with the base type.
5158 elsif Ekind
(Def_Id
) = E_Record_Subtype
5159 and then Has_Discriminants
(Def_Id
)
5160 and then Last_Entity
(Def_Id
) /= Last_Entity
(Base_Type
(Def_Id
))
5161 and then Present
(Controller_Component
(Def_Id
))
5164 Old_C
: constant Entity_Id
:= Controller_Component
(Def_Id
);
5168 if Scope
(Old_C
) = Base_Type
(Def_Id
) then
5170 -- The entity is the one in the parent. Create new one
5172 New_C
:= New_Copy
(Old_C
);
5173 Set_Parent
(New_C
, Parent
(Old_C
));
5180 if Is_Itype
(Def_Id
)
5181 and then Is_Record_Type
(Underlying_Type
(Scope
(Def_Id
)))
5183 -- The freeze node is only used to introduce the controller,
5184 -- the back-end has no use for it for a discriminated
5187 Set_Freeze_Node
(Def_Id
, Empty
);
5188 Set_Has_Delayed_Freeze
(Def_Id
, False);
5192 -- Similar process if the controller of the subtype is not present
5193 -- but the parent has it. This can happen with constrained
5194 -- record components where the subtype is an itype.
5196 elsif Ekind
(Def_Id
) = E_Record_Subtype
5197 and then Is_Itype
(Def_Id
)
5198 and then No
(Controller_Component
(Def_Id
))
5199 and then Present
(Controller_Component
(Etype
(Def_Id
)))
5202 Old_C
: constant Entity_Id
:=
5203 Controller_Component
(Etype
(Def_Id
));
5204 New_C
: constant Entity_Id
:= New_Copy
(Old_C
);
5207 Set_Next_Entity
(New_C
, First_Entity
(Def_Id
));
5208 Set_First_Entity
(Def_Id
, New_C
);
5210 -- The freeze node is only used to introduce the controller,
5211 -- the back-end has no use for it for a discriminated
5214 Set_Freeze_Node
(Def_Id
, Empty
);
5215 Set_Has_Delayed_Freeze
(Def_Id
, False);
5220 -- Freeze processing for array types
5222 elsif Is_Array_Type
(Def_Id
) then
5223 Freeze_Array_Type
(N
);
5225 -- Freeze processing for access types
5227 -- For pool-specific access types, find out the pool object used for
5228 -- this type, needs actual expansion of it in some cases. Here are the
5229 -- different cases :
5231 -- 1. Rep Clause "for Def_Id'Storage_Size use 0;"
5232 -- ---> don't use any storage pool
5234 -- 2. Rep Clause : for Def_Id'Storage_Size use Expr.
5236 -- Def_Id__Pool : Stack_Bounded_Pool (Expr, DT'Size, DT'Alignment);
5238 -- 3. Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
5239 -- ---> Storage Pool is the specified one
5241 -- See GNAT Pool packages in the Run-Time for more details
5243 elsif Ekind
(Def_Id
) = E_Access_Type
5244 or else Ekind
(Def_Id
) = E_General_Access_Type
5247 Loc
: constant Source_Ptr
:= Sloc
(N
);
5248 Desig_Type
: constant Entity_Id
:= Designated_Type
(Def_Id
);
5249 Pool_Object
: Entity_Id
;
5252 Freeze_Action_Typ
: Entity_Id
;
5255 if Has_Storage_Size_Clause
(Def_Id
) then
5256 Siz_Exp
:= Expression
(Parent
(Storage_Size_Variable
(Def_Id
)));
5263 -- Rep Clause "for Def_Id'Storage_Size use 0;"
5264 -- ---> don't use any storage pool
5266 if Has_Storage_Size_Clause
(Def_Id
)
5267 and then Compile_Time_Known_Value
(Siz_Exp
)
5268 and then Expr_Value
(Siz_Exp
) = 0
5274 -- Rep Clause : for Def_Id'Storage_Size use Expr.
5276 -- Def_Id__Pool : Stack_Bounded_Pool
5277 -- (Expr, DT'Size, DT'Alignment);
5279 elsif Has_Storage_Size_Clause
(Def_Id
) then
5285 -- For unconstrained composite types we give a size of zero
5286 -- so that the pool knows that it needs a special algorithm
5287 -- for variable size object allocation.
5289 if Is_Composite_Type
(Desig_Type
)
5290 and then not Is_Constrained
(Desig_Type
)
5293 Make_Integer_Literal
(Loc
, 0);
5296 Make_Integer_Literal
(Loc
, Maximum_Alignment
);
5300 Make_Attribute_Reference
(Loc
,
5301 Prefix
=> New_Reference_To
(Desig_Type
, Loc
),
5302 Attribute_Name
=> Name_Max_Size_In_Storage_Elements
);
5305 Make_Attribute_Reference
(Loc
,
5306 Prefix
=> New_Reference_To
(Desig_Type
, Loc
),
5307 Attribute_Name
=> Name_Alignment
);
5311 Make_Defining_Identifier
(Loc
,
5312 Chars
=> New_External_Name
(Chars
(Def_Id
), 'P'));
5314 -- We put the code associated with the pools in the entity
5315 -- that has the later freeze node, usually the acces type
5316 -- but it can also be the designated_type; because the pool
5317 -- code requires both those types to be frozen
5319 if Is_Frozen
(Desig_Type
)
5320 and then (No
(Freeze_Node
(Desig_Type
))
5321 or else Analyzed
(Freeze_Node
(Desig_Type
)))
5323 Freeze_Action_Typ
:= Def_Id
;
5325 -- A Taft amendment type cannot get the freeze actions
5326 -- since the full view is not there.
5328 elsif Is_Incomplete_Or_Private_Type
(Desig_Type
)
5329 and then No
(Full_View
(Desig_Type
))
5331 Freeze_Action_Typ
:= Def_Id
;
5334 Freeze_Action_Typ
:= Desig_Type
;
5337 Append_Freeze_Action
(Freeze_Action_Typ
,
5338 Make_Object_Declaration
(Loc
,
5339 Defining_Identifier
=> Pool_Object
,
5340 Object_Definition
=>
5341 Make_Subtype_Indication
(Loc
,
5344 (RTE
(RE_Stack_Bounded_Pool
), Loc
),
5347 Make_Index_Or_Discriminant_Constraint
(Loc
,
5348 Constraints
=> New_List
(
5350 -- First discriminant is the Pool Size
5353 Storage_Size_Variable
(Def_Id
), Loc
),
5355 -- Second discriminant is the element size
5359 -- Third discriminant is the alignment
5364 Set_Associated_Storage_Pool
(Def_Id
, Pool_Object
);
5368 -- Rep Clause "for Def_Id'Storage_Pool use a_Pool_Object"
5369 -- ---> Storage Pool is the specified one
5371 elsif Present
(Associated_Storage_Pool
(Def_Id
)) then
5373 -- Nothing to do the associated storage pool has been attached
5374 -- when analyzing the rep. clause
5379 -- For access-to-controlled types (including class-wide types and
5380 -- Taft-amendment types which potentially have controlled
5381 -- components), expand the list controller object that will store
5382 -- the dynamically allocated objects. Do not do this
5383 -- transformation for expander-generated access types, but do it
5384 -- for types that are the full view of types derived from other
5385 -- private types. Also suppress the list controller in the case
5386 -- of a designated type with convention Java, since this is used
5387 -- when binding to Java API specs, where there's no equivalent of
5388 -- a finalization list and we don't want to pull in the
5389 -- finalization support if not needed.
5391 if not Comes_From_Source
(Def_Id
)
5392 and then not Has_Private_Declaration
(Def_Id
)
5396 elsif (Controlled_Type
(Desig_Type
)
5397 and then Convention
(Desig_Type
) /= Convention_Java
)
5399 (Is_Incomplete_Or_Private_Type
(Desig_Type
)
5400 and then No
(Full_View
(Desig_Type
))
5402 -- An exception is made for types defined in the run-time
5403 -- because Ada.Tags.Tag itself is such a type and cannot
5404 -- afford this unnecessary overhead that would generates a
5405 -- loop in the expansion scheme...
5407 and then not In_Runtime
(Def_Id
)
5409 -- Another exception is if Restrictions (No_Finalization)
5410 -- is active, since then we know nothing is controlled.
5412 and then not Restriction_Active
(No_Finalization
))
5414 -- If the designated type is not frozen yet, its controlled
5415 -- status must be retrieved explicitly.
5417 or else (Is_Array_Type
(Desig_Type
)
5418 and then not Is_Frozen
(Desig_Type
)
5419 and then Controlled_Type
(Component_Type
(Desig_Type
)))
5421 Set_Associated_Final_Chain
(Def_Id
,
5422 Make_Defining_Identifier
(Loc
,
5423 New_External_Name
(Chars
(Def_Id
), 'L')));
5425 Append_Freeze_Action
(Def_Id
,
5426 Make_Object_Declaration
(Loc
,
5427 Defining_Identifier
=> Associated_Final_Chain
(Def_Id
),
5428 Object_Definition
=>
5429 New_Reference_To
(RTE
(RE_List_Controller
), Loc
)));
5433 -- Freeze processing for enumeration types
5435 elsif Ekind
(Def_Id
) = E_Enumeration_Type
then
5437 -- We only have something to do if we have a non-standard
5438 -- representation (i.e. at least one literal whose pos value
5439 -- is not the same as its representation)
5441 if Has_Non_Standard_Rep
(Def_Id
) then
5442 Freeze_Enumeration_Type
(N
);
5445 -- Private types that are completed by a derivation from a private
5446 -- type have an internally generated full view, that needs to be
5447 -- frozen. This must be done explicitly because the two views share
5448 -- the freeze node, and the underlying full view is not visible when
5449 -- the freeze node is analyzed.
5451 elsif Is_Private_Type
(Def_Id
)
5452 and then Is_Derived_Type
(Def_Id
)
5453 and then Present
(Full_View
(Def_Id
))
5454 and then Is_Itype
(Full_View
(Def_Id
))
5455 and then Has_Private_Declaration
(Full_View
(Def_Id
))
5456 and then Freeze_Node
(Full_View
(Def_Id
)) = N
5458 Set_Entity
(N
, Full_View
(Def_Id
));
5459 Result
:= Freeze_Type
(N
);
5460 Set_Entity
(N
, Def_Id
);
5462 -- All other types require no expander action. There are such cases
5463 -- (e.g. task types and protected types). In such cases, the freeze
5464 -- nodes are there for use by Gigi.
5468 Freeze_Stream_Operations
(N
, Def_Id
);
5472 when RE_Not_Available
=>
5476 -------------------------
5477 -- Get_Simple_Init_Val --
5478 -------------------------
5480 function Get_Simple_Init_Val
5483 Size
: Uint
:= No_Uint
) return Node_Id
5490 -- This is the size to be used for computation of the appropriate
5491 -- initial value for the Normalize_Scalars and Initialize_Scalars case.
5495 -- These are the values computed by the procedure Check_Subtype_Bounds
5497 procedure Check_Subtype_Bounds
;
5498 -- This procedure examines the subtype T, and its ancestor subtypes and
5499 -- derived types to determine the best known information about the
5500 -- bounds of the subtype. After the call Lo_Bound is set either to
5501 -- No_Uint if no information can be determined, or to a value which
5502 -- represents a known low bound, i.e. a valid value of the subtype can
5503 -- not be less than this value. Hi_Bound is similarly set to a known
5504 -- high bound (valid value cannot be greater than this).
5506 --------------------------
5507 -- Check_Subtype_Bounds --
5508 --------------------------
5510 procedure Check_Subtype_Bounds
is
5519 Lo_Bound
:= No_Uint
;
5520 Hi_Bound
:= No_Uint
;
5522 -- Loop to climb ancestor subtypes and derived types
5526 if not Is_Discrete_Type
(ST1
) then
5530 Lo
:= Type_Low_Bound
(ST1
);
5531 Hi
:= Type_High_Bound
(ST1
);
5533 if Compile_Time_Known_Value
(Lo
) then
5534 Loval
:= Expr_Value
(Lo
);
5536 if Lo_Bound
= No_Uint
or else Lo_Bound
< Loval
then
5541 if Compile_Time_Known_Value
(Hi
) then
5542 Hival
:= Expr_Value
(Hi
);
5544 if Hi_Bound
= No_Uint
or else Hi_Bound
> Hival
then
5549 ST2
:= Ancestor_Subtype
(ST1
);
5555 exit when ST1
= ST2
;
5558 end Check_Subtype_Bounds
;
5560 -- Start of processing for Get_Simple_Init_Val
5563 -- For a private type, we should always have an underlying type
5564 -- (because this was already checked in Needs_Simple_Initialization).
5565 -- What we do is to get the value for the underlying type and then do
5566 -- an Unchecked_Convert to the private type.
5568 if Is_Private_Type
(T
) then
5569 Val
:= Get_Simple_Init_Val
(Underlying_Type
(T
), Loc
, Size
);
5571 -- A special case, if the underlying value is null, then qualify it
5572 -- with the underlying type, so that the null is properly typed
5573 -- Similarly, if it is an aggregate it must be qualified, because an
5574 -- unchecked conversion does not provide a context for it.
5576 if Nkind
(Val
) = N_Null
5577 or else Nkind
(Val
) = N_Aggregate
5580 Make_Qualified_Expression
(Loc
,
5582 New_Occurrence_Of
(Underlying_Type
(T
), Loc
),
5586 Result
:= Unchecked_Convert_To
(T
, Val
);
5588 -- Don't truncate result (important for Initialize/Normalize_Scalars)
5590 if Nkind
(Result
) = N_Unchecked_Type_Conversion
5591 and then Is_Scalar_Type
(Underlying_Type
(T
))
5593 Set_No_Truncation
(Result
);
5598 -- For scalars, we must have normalize/initialize scalars case
5600 elsif Is_Scalar_Type
(T
) then
5601 pragma Assert
(Init_Or_Norm_Scalars
);
5603 -- Compute size of object. If it is given by the caller, we can use
5604 -- it directly, otherwise we use Esize (T) as an estimate. As far as
5605 -- we know this covers all cases correctly.
5607 if Size
= No_Uint
or else Size
<= Uint_0
then
5608 Size_To_Use
:= UI_Max
(Uint_1
, Esize
(T
));
5610 Size_To_Use
:= Size
;
5613 -- Maximum size to use is 64 bits, since we will create values
5614 -- of type Unsigned_64 and the range must fit this type.
5616 if Size_To_Use
/= No_Uint
and then Size_To_Use
> Uint_64
then
5617 Size_To_Use
:= Uint_64
;
5620 -- Check known bounds of subtype
5622 Check_Subtype_Bounds
;
5624 -- Processing for Normalize_Scalars case
5626 if Normalize_Scalars
then
5628 -- If zero is invalid, it is a convenient value to use that is
5629 -- for sure an appropriate invalid value in all situations.
5631 if Lo_Bound
/= No_Uint
and then Lo_Bound
> Uint_0
then
5632 Val
:= Make_Integer_Literal
(Loc
, 0);
5634 -- Cases where all one bits is the appropriate invalid value
5636 -- For modular types, all 1 bits is either invalid or valid. If
5637 -- it is valid, then there is nothing that can be done since there
5638 -- are no invalid values (we ruled out zero already).
5640 -- For signed integer types that have no negative values, either
5641 -- there is room for negative values, or there is not. If there
5642 -- is, then all 1 bits may be interpretecd as minus one, which is
5643 -- certainly invalid. Alternatively it is treated as the largest
5644 -- positive value, in which case the observation for modular types
5647 -- For float types, all 1-bits is a NaN (not a number), which is
5648 -- certainly an appropriately invalid value.
5650 elsif Is_Unsigned_Type
(T
)
5651 or else Is_Floating_Point_Type
(T
)
5652 or else Is_Enumeration_Type
(T
)
5654 Val
:= Make_Integer_Literal
(Loc
, 2 ** Size_To_Use
- 1);
5656 -- Resolve as Unsigned_64, because the largest number we
5657 -- can generate is out of range of universal integer.
5659 Analyze_And_Resolve
(Val
, RTE
(RE_Unsigned_64
));
5661 -- Case of signed types
5665 Signed_Size
: constant Uint
:=
5666 UI_Min
(Uint_63
, Size_To_Use
- 1);
5669 -- Normally we like to use the most negative number. The
5670 -- one exception is when this number is in the known
5671 -- subtype range and the largest positive number is not in
5672 -- the known subtype range.
5674 -- For this exceptional case, use largest positive value
5676 if Lo_Bound
/= No_Uint
and then Hi_Bound
/= No_Uint
5677 and then Lo_Bound
<= (-(2 ** Signed_Size
))
5678 and then Hi_Bound
< 2 ** Signed_Size
5680 Val
:= Make_Integer_Literal
(Loc
, 2 ** Signed_Size
- 1);
5682 -- Normal case of largest negative value
5685 Val
:= Make_Integer_Literal
(Loc
, -(2 ** Signed_Size
));
5690 -- Here for Initialize_Scalars case
5693 -- For float types, use float values from System.Scalar_Values
5695 if Is_Floating_Point_Type
(T
) then
5696 if Root_Type
(T
) = Standard_Short_Float
then
5697 Val_RE
:= RE_IS_Isf
;
5698 elsif Root_Type
(T
) = Standard_Float
then
5699 Val_RE
:= RE_IS_Ifl
;
5700 elsif Root_Type
(T
) = Standard_Long_Float
then
5701 Val_RE
:= RE_IS_Ilf
;
5702 else pragma Assert
(Root_Type
(T
) = Standard_Long_Long_Float
);
5703 Val_RE
:= RE_IS_Ill
;
5706 -- If zero is invalid, use zero values from System.Scalar_Values
5708 elsif Lo_Bound
/= No_Uint
and then Lo_Bound
> Uint_0
then
5709 if Size_To_Use
<= 8 then
5710 Val_RE
:= RE_IS_Iz1
;
5711 elsif Size_To_Use
<= 16 then
5712 Val_RE
:= RE_IS_Iz2
;
5713 elsif Size_To_Use
<= 32 then
5714 Val_RE
:= RE_IS_Iz4
;
5716 Val_RE
:= RE_IS_Iz8
;
5719 -- For unsigned, use unsigned values from System.Scalar_Values
5721 elsif Is_Unsigned_Type
(T
) then
5722 if Size_To_Use
<= 8 then
5723 Val_RE
:= RE_IS_Iu1
;
5724 elsif Size_To_Use
<= 16 then
5725 Val_RE
:= RE_IS_Iu2
;
5726 elsif Size_To_Use
<= 32 then
5727 Val_RE
:= RE_IS_Iu4
;
5729 Val_RE
:= RE_IS_Iu8
;
5732 -- For signed, use signed values from System.Scalar_Values
5735 if Size_To_Use
<= 8 then
5736 Val_RE
:= RE_IS_Is1
;
5737 elsif Size_To_Use
<= 16 then
5738 Val_RE
:= RE_IS_Is2
;
5739 elsif Size_To_Use
<= 32 then
5740 Val_RE
:= RE_IS_Is4
;
5742 Val_RE
:= RE_IS_Is8
;
5746 Val
:= New_Occurrence_Of
(RTE
(Val_RE
), Loc
);
5749 -- The final expression is obtained by doing an unchecked conversion
5750 -- of this result to the base type of the required subtype. We use
5751 -- the base type to avoid the unchecked conversion from chopping
5752 -- bits, and then we set Kill_Range_Check to preserve the "bad"
5755 Result
:= Unchecked_Convert_To
(Base_Type
(T
), Val
);
5757 -- Ensure result is not truncated, since we want the "bad" bits
5758 -- and also kill range check on result.
5760 if Nkind
(Result
) = N_Unchecked_Type_Conversion
then
5761 Set_No_Truncation
(Result
);
5762 Set_Kill_Range_Check
(Result
, True);
5767 -- String or Wide_[Wide]_String (must have Initialize_Scalars set)
5769 elsif Root_Type
(T
) = Standard_String
5771 Root_Type
(T
) = Standard_Wide_String
5773 Root_Type
(T
) = Standard_Wide_Wide_String
5775 pragma Assert
(Init_Or_Norm_Scalars
);
5778 Make_Aggregate
(Loc
,
5779 Component_Associations
=> New_List
(
5780 Make_Component_Association
(Loc
,
5781 Choices
=> New_List
(
5782 Make_Others_Choice
(Loc
)),
5785 (Component_Type
(T
), Loc
, Esize
(Root_Type
(T
))))));
5787 -- Access type is initialized to null
5789 elsif Is_Access_Type
(T
) then
5793 -- No other possibilities should arise, since we should only be
5794 -- calling Get_Simple_Init_Val if Needs_Simple_Initialization
5795 -- returned True, indicating one of the above cases held.
5798 raise Program_Error
;
5802 when RE_Not_Available
=>
5804 end Get_Simple_Init_Val
;
5806 ------------------------------
5807 -- Has_New_Non_Standard_Rep --
5808 ------------------------------
5810 function Has_New_Non_Standard_Rep
(T
: Entity_Id
) return Boolean is
5812 if not Is_Derived_Type
(T
) then
5813 return Has_Non_Standard_Rep
(T
)
5814 or else Has_Non_Standard_Rep
(Root_Type
(T
));
5816 -- If Has_Non_Standard_Rep is not set on the derived type, the
5817 -- representation is fully inherited.
5819 elsif not Has_Non_Standard_Rep
(T
) then
5823 return First_Rep_Item
(T
) /= First_Rep_Item
(Root_Type
(T
));
5825 -- May need a more precise check here: the First_Rep_Item may
5826 -- be a stream attribute, which does not affect the representation
5829 end Has_New_Non_Standard_Rep
;
5835 function In_Runtime
(E
: Entity_Id
) return Boolean is
5836 S1
: Entity_Id
:= Scope
(E
);
5839 while Scope
(S1
) /= Standard_Standard
loop
5843 return Chars
(S1
) = Name_System
or else Chars
(S1
) = Name_Ada
;
5850 function Init_Formals
(Typ
: Entity_Id
) return List_Id
is
5851 Loc
: constant Source_Ptr
:= Sloc
(Typ
);
5855 -- First parameter is always _Init : in out typ. Note that we need
5856 -- this to be in/out because in the case of the task record value,
5857 -- there are default record fields (_Priority, _Size, -Task_Info)
5858 -- that may be referenced in the generated initialization routine.
5860 Formals
:= New_List
(
5861 Make_Parameter_Specification
(Loc
,
5862 Defining_Identifier
=>
5863 Make_Defining_Identifier
(Loc
, Name_uInit
),
5865 Out_Present
=> True,
5866 Parameter_Type
=> New_Reference_To
(Typ
, Loc
)));
5868 -- For task record value, or type that contains tasks, add two more
5869 -- formals, _Master : Master_Id and _Chain : in out Activation_Chain
5870 -- We also add these parameters for the task record type case.
5873 or else (Is_Record_Type
(Typ
) and then Is_Task_Record_Type
(Typ
))
5876 Make_Parameter_Specification
(Loc
,
5877 Defining_Identifier
=>
5878 Make_Defining_Identifier
(Loc
, Name_uMaster
),
5879 Parameter_Type
=> New_Reference_To
(RTE
(RE_Master_Id
), Loc
)));
5882 Make_Parameter_Specification
(Loc
,
5883 Defining_Identifier
=>
5884 Make_Defining_Identifier
(Loc
, Name_uChain
),
5886 Out_Present
=> True,
5888 New_Reference_To
(RTE
(RE_Activation_Chain
), Loc
)));
5891 Make_Parameter_Specification
(Loc
,
5892 Defining_Identifier
=>
5893 Make_Defining_Identifier
(Loc
, Name_uTask_Name
),
5896 New_Reference_To
(Standard_String
, Loc
)));
5902 when RE_Not_Available
=>
5906 -------------------------------------
5907 -- Make_Predefined_Primitive_Specs --
5908 -------------------------------------
5910 procedure Make_Controlling_Function_Wrappers
5911 (Tag_Typ
: Entity_Id
;
5912 Decl_List
: out List_Id
;
5913 Body_List
: out List_Id
)
5915 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
5916 Prim_Elmt
: Elmt_Id
;
5918 Actual_List
: List_Id
;
5919 Formal_List
: List_Id
;
5921 Par_Formal
: Entity_Id
;
5922 Formal_Node
: Node_Id
;
5923 Func_Spec
: Node_Id
;
5924 Func_Decl
: Node_Id
;
5925 Func_Body
: Node_Id
;
5926 Return_Stmt
: Node_Id
;
5929 Decl_List
:= New_List
;
5930 Body_List
:= New_List
;
5932 Prim_Elmt
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
5934 while Present
(Prim_Elmt
) loop
5935 Subp
:= Node
(Prim_Elmt
);
5937 -- If a primitive function with a controlling result of the type has
5938 -- not been overridden by the user, then we must create a wrapper
5939 -- function here that effectively overrides it and invokes the
5940 -- abstract inherited function's nonabstract parent. This can only
5941 -- occur for a null extension. Note that functions with anonymous
5942 -- controlling access results don't qualify and must be overridden.
5943 -- We also exclude Input attributes, since each type will have its
5944 -- own version of Input constructed by the expander. The test for
5945 -- Comes_From_Source is needed to distinguish inherited operations
5946 -- from renamings (which also have Alias set).
5948 if Is_Abstract
(Subp
)
5949 and then Present
(Alias
(Subp
))
5950 and then not Comes_From_Source
(Subp
)
5951 and then Ekind
(Subp
) = E_Function
5952 and then Has_Controlling_Result
(Subp
)
5953 and then not Is_Access_Type
(Etype
(Subp
))
5954 and then not Is_TSS
(Subp
, TSS_Stream_Input
)
5956 Formal_List
:= No_List
;
5957 Formal
:= First_Formal
(Subp
);
5959 if Present
(Formal
) then
5960 Formal_List
:= New_List
;
5962 while Present
(Formal
) loop
5964 (Make_Parameter_Specification
5966 Defining_Identifier
=>
5967 Make_Defining_Identifier
(Sloc
(Formal
),
5968 Chars
=> Chars
(Formal
)),
5969 In_Present
=> In_Present
(Parent
(Formal
)),
5970 Out_Present
=> Out_Present
(Parent
(Formal
)),
5972 New_Reference_To
(Etype
(Formal
), Loc
),
5974 New_Copy_Tree
(Expression
(Parent
(Formal
)))),
5977 Next_Formal
(Formal
);
5982 Make_Function_Specification
(Loc
,
5983 Defining_Unit_Name
=>
5984 Make_Defining_Identifier
(Loc
, Chars
(Subp
)),
5985 Parameter_Specifications
=>
5987 Result_Definition
=>
5988 New_Reference_To
(Etype
(Subp
), Loc
));
5990 Func_Decl
:= Make_Subprogram_Declaration
(Loc
, Func_Spec
);
5991 Append_To
(Decl_List
, Func_Decl
);
5993 -- Build a wrapper body that calls the parent function. The body
5994 -- contains a single return statement that returns an extension
5995 -- aggregate whose ancestor part is a call to the parent function,
5996 -- passing the formals as actuals (with any controlling arguments
5997 -- converted to the types of the corresponding formals of the
5998 -- parent function, which might be anonymous access types), and
5999 -- having a null extension.
6001 Formal
:= First_Formal
(Subp
);
6002 Par_Formal
:= First_Formal
(Alias
(Subp
));
6003 Formal_Node
:= First
(Formal_List
);
6005 if Present
(Formal
) then
6006 Actual_List
:= New_List
;
6008 Actual_List
:= No_List
;
6011 while Present
(Formal
) loop
6012 if Is_Controlling_Formal
(Formal
) then
6013 Append_To
(Actual_List
,
6014 Make_Type_Conversion
(Loc
,
6016 New_Occurrence_Of
(Etype
(Par_Formal
), Loc
),
6019 (Defining_Identifier
(Formal_Node
), Loc
)));
6024 (Defining_Identifier
(Formal_Node
), Loc
));
6027 Next_Formal
(Formal
);
6028 Next_Formal
(Par_Formal
);
6033 Make_Return_Statement
(Loc
,
6035 Make_Extension_Aggregate
(Loc
,
6037 Make_Function_Call
(Loc
,
6038 Name
=> New_Reference_To
(Alias
(Subp
), Loc
),
6039 Parameter_Associations
=> Actual_List
),
6040 Null_Record_Present
=> True));
6043 Make_Subprogram_Body
(Loc
,
6044 Specification
=> New_Copy_Tree
(Func_Spec
),
6045 Declarations
=> Empty_List
,
6046 Handled_Statement_Sequence
=>
6047 Make_Handled_Sequence_Of_Statements
(Loc
,
6048 Statements
=> New_List
(Return_Stmt
)));
6050 Set_Defining_Unit_Name
6051 (Specification
(Func_Body
),
6052 Make_Defining_Identifier
(Loc
, Chars
(Subp
)));
6054 Append_To
(Body_List
, Func_Body
);
6056 -- Replace the inherited function with the wrapper function
6057 -- in the primitive operations list.
6059 Override_Dispatching_Operation
6060 (Tag_Typ
, Subp
, New_Op
=> Defining_Unit_Name
(Func_Spec
));
6063 Next_Elmt
(Prim_Elmt
);
6065 end Make_Controlling_Function_Wrappers
;
6071 -- <Make_Eq_if shared components>
6073 -- when V1 => <Make_Eq_Case> on subcomponents
6075 -- when Vn => <Make_Eq_Case> on subcomponents
6078 function Make_Eq_Case
6081 Discr
: Entity_Id
:= Empty
) return List_Id
6083 Loc
: constant Source_Ptr
:= Sloc
(E
);
6084 Result
: constant List_Id
:= New_List
;
6089 Append_To
(Result
, Make_Eq_If
(E
, Component_Items
(CL
)));
6091 if No
(Variant_Part
(CL
)) then
6095 Variant
:= First_Non_Pragma
(Variants
(Variant_Part
(CL
)));
6097 if No
(Variant
) then
6101 Alt_List
:= New_List
;
6103 while Present
(Variant
) loop
6104 Append_To
(Alt_List
,
6105 Make_Case_Statement_Alternative
(Loc
,
6106 Discrete_Choices
=> New_Copy_List
(Discrete_Choices
(Variant
)),
6107 Statements
=> Make_Eq_Case
(E
, Component_List
(Variant
))));
6109 Next_Non_Pragma
(Variant
);
6112 -- If we have an Unchecked_Union, use one of the parameters that
6113 -- captures the discriminants.
6115 if Is_Unchecked_Union
(E
) then
6117 Make_Case_Statement
(Loc
,
6118 Expression
=> New_Reference_To
(Discr
, Loc
),
6119 Alternatives
=> Alt_List
));
6123 Make_Case_Statement
(Loc
,
6125 Make_Selected_Component
(Loc
,
6126 Prefix
=> Make_Identifier
(Loc
, Name_X
),
6127 Selector_Name
=> New_Copy
(Name
(Variant_Part
(CL
)))),
6128 Alternatives
=> Alt_List
));
6149 -- or a null statement if the list L is empty
6153 L
: List_Id
) return Node_Id
6155 Loc
: constant Source_Ptr
:= Sloc
(E
);
6157 Field_Name
: Name_Id
;
6162 return Make_Null_Statement
(Loc
);
6167 C
:= First_Non_Pragma
(L
);
6168 while Present
(C
) loop
6169 Field_Name
:= Chars
(Defining_Identifier
(C
));
6171 -- The tags must not be compared they are not part of the value.
6172 -- Note also that in the following, we use Make_Identifier for
6173 -- the component names. Use of New_Reference_To to identify the
6174 -- components would be incorrect because the wrong entities for
6175 -- discriminants could be picked up in the private type case.
6177 if Field_Name
/= Name_uTag
then
6178 Evolve_Or_Else
(Cond
,
6181 Make_Selected_Component
(Loc
,
6182 Prefix
=> Make_Identifier
(Loc
, Name_X
),
6184 Make_Identifier
(Loc
, Field_Name
)),
6187 Make_Selected_Component
(Loc
,
6188 Prefix
=> Make_Identifier
(Loc
, Name_Y
),
6190 Make_Identifier
(Loc
, Field_Name
))));
6193 Next_Non_Pragma
(C
);
6197 return Make_Null_Statement
(Loc
);
6201 Make_Implicit_If_Statement
(E
,
6203 Then_Statements
=> New_List
(
6204 Make_Return_Statement
(Loc
,
6205 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))));
6210 -------------------------------------
6211 -- Make_Predefined_Primitive_Specs --
6212 -------------------------------------
6214 procedure Make_Predefined_Primitive_Specs
6215 (Tag_Typ
: Entity_Id
;
6216 Predef_List
: out List_Id
;
6217 Renamed_Eq
: out Node_Id
)
6219 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
6220 Res
: constant List_Id
:= New_List
;
6222 Eq_Needed
: Boolean;
6224 Eq_Name
: Name_Id
:= Name_Op_Eq
;
6226 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean;
6227 -- Returns true if Prim is a renaming of an unresolved predefined
6228 -- equality operation.
6230 -------------------------------
6231 -- Is_Predefined_Eq_Renaming --
6232 -------------------------------
6234 function Is_Predefined_Eq_Renaming
(Prim
: Node_Id
) return Boolean is
6236 return Chars
(Prim
) /= Name_Op_Eq
6237 and then Present
(Alias
(Prim
))
6238 and then Comes_From_Source
(Prim
)
6239 and then Is_Intrinsic_Subprogram
(Alias
(Prim
))
6240 and then Chars
(Alias
(Prim
)) = Name_Op_Eq
;
6241 end Is_Predefined_Eq_Renaming
;
6243 -- Start of processing for Make_Predefined_Primitive_Specs
6246 Renamed_Eq
:= Empty
;
6250 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
6253 Profile
=> New_List
(
6254 Make_Parameter_Specification
(Loc
,
6255 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
6256 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
6258 Ret_Type
=> Standard_Long_Long_Integer
));
6260 -- Spec of _Alignment
6262 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
6264 Name
=> Name_uAlignment
,
6265 Profile
=> New_List
(
6266 Make_Parameter_Specification
(Loc
,
6267 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
6268 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
6270 Ret_Type
=> Standard_Integer
));
6272 -- Specs for dispatching stream attributes
6275 Stream_Op_TSS_Names
:
6276 constant array (Integer range <>) of TSS_Name_Type
:=
6282 for Op
in Stream_Op_TSS_Names
'Range loop
6283 if Stream_Operation_OK
(Tag_Typ
, Stream_Op_TSS_Names
(Op
)) then
6285 Predef_Stream_Attr_Spec
(Loc
, Tag_Typ
,
6286 Stream_Op_TSS_Names
(Op
)));
6291 -- Spec of "=" if expanded if the type is not limited and if a
6292 -- user defined "=" was not already declared for the non-full
6293 -- view of a private extension
6295 if not Is_Limited_Type
(Tag_Typ
) then
6298 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
6299 while Present
(Prim
) loop
6301 -- If a primitive is encountered that renames the predefined
6302 -- equality operator before reaching any explicit equality
6303 -- primitive, then we still need to create a predefined
6304 -- equality function, because calls to it can occur via
6305 -- the renaming. A new name is created for the equality
6306 -- to avoid conflicting with any user-defined equality.
6307 -- (Note that this doesn't account for renamings of
6308 -- equality nested within subpackages???)
6310 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
6311 Eq_Name
:= New_External_Name
(Chars
(Node
(Prim
)), 'E');
6313 elsif Chars
(Node
(Prim
)) = Name_Op_Eq
6314 and then (No
(Alias
(Node
(Prim
)))
6315 or else Nkind
(Unit_Declaration_Node
(Node
(Prim
))) =
6316 N_Subprogram_Renaming_Declaration
)
6317 and then Etype
(First_Formal
(Node
(Prim
))) =
6318 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
6319 and then Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
6325 -- If the parent equality is abstract, the inherited equality is
6326 -- abstract as well, and no body can be created for for it.
6328 elsif Chars
(Node
(Prim
)) = Name_Op_Eq
6329 and then Present
(Alias
(Node
(Prim
)))
6330 and then Is_Abstract
(Alias
(Node
(Prim
)))
6339 -- If a renaming of predefined equality was found
6340 -- but there was no user-defined equality (so Eq_Needed
6341 -- is still true), then set the name back to Name_Op_Eq.
6342 -- But in the case where a user-defined equality was
6343 -- located after such a renaming, then the predefined
6344 -- equality function is still needed, so Eq_Needed must
6345 -- be set back to True.
6347 if Eq_Name
/= Name_Op_Eq
then
6349 Eq_Name
:= Name_Op_Eq
;
6356 Eq_Spec
:= Predef_Spec_Or_Body
(Loc
,
6359 Profile
=> New_List
(
6360 Make_Parameter_Specification
(Loc
,
6361 Defining_Identifier
=>
6362 Make_Defining_Identifier
(Loc
, Name_X
),
6363 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
6364 Make_Parameter_Specification
(Loc
,
6365 Defining_Identifier
=>
6366 Make_Defining_Identifier
(Loc
, Name_Y
),
6367 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
6368 Ret_Type
=> Standard_Boolean
);
6369 Append_To
(Res
, Eq_Spec
);
6371 if Eq_Name
/= Name_Op_Eq
then
6372 Renamed_Eq
:= Defining_Unit_Name
(Specification
(Eq_Spec
));
6374 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
6375 while Present
(Prim
) loop
6377 -- Any renamings of equality that appeared before an
6378 -- overriding equality must be updated to refer to
6379 -- the entity for the predefined equality, otherwise
6380 -- calls via the renaming would get incorrectly
6381 -- resolved to call the user-defined equality function.
6383 if Is_Predefined_Eq_Renaming
(Node
(Prim
)) then
6384 Set_Alias
(Node
(Prim
), Renamed_Eq
);
6386 -- Exit upon encountering a user-defined equality
6388 elsif Chars
(Node
(Prim
)) = Name_Op_Eq
6389 and then No
(Alias
(Node
(Prim
)))
6399 -- Spec for dispatching assignment
6401 Append_To
(Res
, Predef_Spec_Or_Body
(Loc
,
6403 Name
=> Name_uAssign
,
6404 Profile
=> New_List
(
6405 Make_Parameter_Specification
(Loc
,
6406 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
6407 Out_Present
=> True,
6408 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
6410 Make_Parameter_Specification
(Loc
,
6411 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
6412 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)))));
6415 -- Generate the declarations for the following primitive operations:
6417 -- disp_asynchronous_select
6418 -- disp_conditional_select
6419 -- disp_get_prim_op_kind
6421 -- disp_timed_select
6423 -- for limited interfaces and synchronized types that implement a
6424 -- limited interface.
6426 if Ada_Version
>= Ada_05
6428 ((Is_Interface
(Tag_Typ
) and then Is_Limited_Record
(Tag_Typ
))
6430 (Is_Concurrent_Record_Type
(Tag_Typ
)
6431 and then Implements_Interface
(
6433 Kind
=> Any_Limited_Interface
,
6434 Check_Parent
=> True)))
6437 Make_Subprogram_Declaration
(Loc
,
6439 Make_Disp_Asynchronous_Select_Spec
(Tag_Typ
)));
6442 Make_Subprogram_Declaration
(Loc
,
6444 Make_Disp_Conditional_Select_Spec
(Tag_Typ
)));
6447 Make_Subprogram_Declaration
(Loc
,
6449 Make_Disp_Get_Prim_Op_Kind_Spec
(Tag_Typ
)));
6452 Make_Subprogram_Declaration
(Loc
,
6454 Make_Disp_Get_Task_Id_Spec
(Tag_Typ
)));
6457 Make_Subprogram_Declaration
(Loc
,
6459 Make_Disp_Timed_Select_Spec
(Tag_Typ
)));
6462 -- Specs for finalization actions that may be required in case a
6463 -- future extension contain a controlled element. We generate those
6464 -- only for root tagged types where they will get dummy bodies or
6465 -- when the type has controlled components and their body must be
6466 -- generated. It is also impossible to provide those for tagged
6467 -- types defined within s-finimp since it would involve circularity
6470 if In_Finalization_Root
(Tag_Typ
) then
6473 -- We also skip these if finalization is not available
6475 elsif Restriction_Active
(No_Finalization
) then
6478 elsif Etype
(Tag_Typ
) = Tag_Typ
or else Controlled_Type
(Tag_Typ
) then
6479 if not Is_Limited_Type
(Tag_Typ
) then
6481 Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Adjust
));
6484 Append_To
(Res
, Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Finalize
));
6488 end Make_Predefined_Primitive_Specs
;
6490 ---------------------------------
6491 -- Needs_Simple_Initialization --
6492 ---------------------------------
6494 function Needs_Simple_Initialization
(T
: Entity_Id
) return Boolean is
6496 -- Check for private type, in which case test applies to the
6497 -- underlying type of the private type.
6499 if Is_Private_Type
(T
) then
6501 RT
: constant Entity_Id
:= Underlying_Type
(T
);
6504 if Present
(RT
) then
6505 return Needs_Simple_Initialization
(RT
);
6511 -- Cases needing simple initialization are access types, and, if pragma
6512 -- Normalize_Scalars or Initialize_Scalars is in effect, then all scalar
6515 elsif Is_Access_Type
(T
)
6516 or else (Init_Or_Norm_Scalars
and then (Is_Scalar_Type
(T
)))
6520 -- If Initialize/Normalize_Scalars is in effect, string objects also
6521 -- need initialization, unless they are created in the course of
6522 -- expanding an aggregate (since in the latter case they will be
6523 -- filled with appropriate initializing values before they are used).
6525 elsif Init_Or_Norm_Scalars
6527 (Root_Type
(T
) = Standard_String
6528 or else Root_Type
(T
) = Standard_Wide_String
6529 or else Root_Type
(T
) = Standard_Wide_Wide_String
)
6532 or else Nkind
(Associated_Node_For_Itype
(T
)) /= N_Aggregate
)
6539 end Needs_Simple_Initialization
;
6541 ----------------------
6542 -- Predef_Deep_Spec --
6543 ----------------------
6545 function Predef_Deep_Spec
6547 Tag_Typ
: Entity_Id
;
6548 Name
: TSS_Name_Type
;
6549 For_Body
: Boolean := False) return Node_Id
6555 if Name
= TSS_Deep_Finalize
then
6557 Type_B
:= Standard_Boolean
;
6561 Make_Parameter_Specification
(Loc
,
6562 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_L
),
6564 Out_Present
=> True,
6566 New_Reference_To
(RTE
(RE_Finalizable_Ptr
), Loc
)));
6567 Type_B
:= Standard_Short_Short_Integer
;
6571 Make_Parameter_Specification
(Loc
,
6572 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_V
),
6574 Out_Present
=> True,
6575 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)));
6578 Make_Parameter_Specification
(Loc
,
6579 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_B
),
6580 Parameter_Type
=> New_Reference_To
(Type_B
, Loc
)));
6582 return Predef_Spec_Or_Body
(Loc
,
6583 Name
=> Make_TSS_Name
(Tag_Typ
, Name
),
6586 For_Body
=> For_Body
);
6589 when RE_Not_Available
=>
6591 end Predef_Deep_Spec
;
6593 -------------------------
6594 -- Predef_Spec_Or_Body --
6595 -------------------------
6597 function Predef_Spec_Or_Body
6599 Tag_Typ
: Entity_Id
;
6602 Ret_Type
: Entity_Id
:= Empty
;
6603 For_Body
: Boolean := False) return Node_Id
6605 Id
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name
);
6609 Set_Is_Public
(Id
, Is_Public
(Tag_Typ
));
6611 -- The internal flag is set to mark these declarations because
6612 -- they have specific properties. First they are primitives even
6613 -- if they are not defined in the type scope (the freezing point
6614 -- is not necessarily in the same scope), furthermore the
6615 -- predefined equality can be overridden by a user-defined
6616 -- equality, no body will be generated in this case.
6618 Set_Is_Internal
(Id
);
6620 if not Debug_Generated_Code
then
6621 Set_Debug_Info_Off
(Id
);
6624 if No
(Ret_Type
) then
6626 Make_Procedure_Specification
(Loc
,
6627 Defining_Unit_Name
=> Id
,
6628 Parameter_Specifications
=> Profile
);
6631 Make_Function_Specification
(Loc
,
6632 Defining_Unit_Name
=> Id
,
6633 Parameter_Specifications
=> Profile
,
6634 Result_Definition
=>
6635 New_Reference_To
(Ret_Type
, Loc
));
6638 -- If body case, return empty subprogram body. Note that this is
6639 -- ill-formed, because there is not even a null statement, and
6640 -- certainly not a return in the function case. The caller is
6641 -- expected to do surgery on the body to add the appropriate stuff.
6644 return Make_Subprogram_Body
(Loc
, Spec
, Empty_List
, Empty
);
6646 -- For the case of Input/Output attributes applied to an abstract type,
6647 -- generate abstract specifications. These will never be called,
6648 -- but we need the slots allocated in the dispatching table so
6649 -- that typ'Class'Input and typ'Class'Output will work properly.
6651 elsif (Is_TSS
(Name
, TSS_Stream_Input
)
6653 Is_TSS
(Name
, TSS_Stream_Output
))
6654 and then Is_Abstract
(Tag_Typ
)
6656 return Make_Abstract_Subprogram_Declaration
(Loc
, Spec
);
6658 -- Normal spec case, where we return a subprogram declaration
6661 return Make_Subprogram_Declaration
(Loc
, Spec
);
6663 end Predef_Spec_Or_Body
;
6665 -----------------------------
6666 -- Predef_Stream_Attr_Spec --
6667 -----------------------------
6669 function Predef_Stream_Attr_Spec
6671 Tag_Typ
: Entity_Id
;
6672 Name
: TSS_Name_Type
;
6673 For_Body
: Boolean := False) return Node_Id
6675 Ret_Type
: Entity_Id
;
6678 if Name
= TSS_Stream_Input
then
6679 Ret_Type
:= Tag_Typ
;
6684 return Predef_Spec_Or_Body
(Loc
,
6685 Name
=> Make_TSS_Name
(Tag_Typ
, Name
),
6687 Profile
=> Build_Stream_Attr_Profile
(Loc
, Tag_Typ
, Name
),
6688 Ret_Type
=> Ret_Type
,
6689 For_Body
=> For_Body
);
6690 end Predef_Stream_Attr_Spec
;
6692 ---------------------------------
6693 -- Predefined_Primitive_Bodies --
6694 ---------------------------------
6696 function Predefined_Primitive_Bodies
6697 (Tag_Typ
: Entity_Id
;
6698 Renamed_Eq
: Node_Id
) return List_Id
6700 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
6701 Res
: constant List_Id
:= New_List
;
6704 Eq_Needed
: Boolean;
6709 -- See if we have a predefined "=" operator
6711 if Present
(Renamed_Eq
) then
6713 Eq_Name
:= Chars
(Renamed_Eq
);
6719 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
6720 while Present
(Prim
) loop
6721 if Chars
(Node
(Prim
)) = Name_Op_Eq
6722 and then Is_Internal
(Node
(Prim
))
6725 Eq_Name
:= Name_Op_Eq
;
6732 -- Body of _Alignment
6734 Decl
:= Predef_Spec_Or_Body
(Loc
,
6736 Name
=> Name_uAlignment
,
6737 Profile
=> New_List
(
6738 Make_Parameter_Specification
(Loc
,
6739 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
6740 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
6742 Ret_Type
=> Standard_Integer
,
6745 Set_Handled_Statement_Sequence
(Decl
,
6746 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
6747 Make_Return_Statement
(Loc
,
6749 Make_Attribute_Reference
(Loc
,
6750 Prefix
=> Make_Identifier
(Loc
, Name_X
),
6751 Attribute_Name
=> Name_Alignment
)))));
6753 Append_To
(Res
, Decl
);
6757 Decl
:= Predef_Spec_Or_Body
(Loc
,
6760 Profile
=> New_List
(
6761 Make_Parameter_Specification
(Loc
,
6762 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
6763 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
6765 Ret_Type
=> Standard_Long_Long_Integer
,
6768 Set_Handled_Statement_Sequence
(Decl
,
6769 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
6770 Make_Return_Statement
(Loc
,
6772 Make_Attribute_Reference
(Loc
,
6773 Prefix
=> Make_Identifier
(Loc
, Name_X
),
6774 Attribute_Name
=> Name_Size
)))));
6776 Append_To
(Res
, Decl
);
6778 -- Bodies for Dispatching stream IO routines. We need these only for
6779 -- non-limited types (in the limited case there is no dispatching).
6780 -- We also skip them if dispatching or finalization are not available.
6782 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Read
)
6783 and then No
(TSS
(Tag_Typ
, TSS_Stream_Read
))
6785 Build_Record_Read_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
6786 Append_To
(Res
, Decl
);
6789 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Write
)
6790 and then No
(TSS
(Tag_Typ
, TSS_Stream_Write
))
6792 Build_Record_Write_Procedure
(Loc
, Tag_Typ
, Decl
, Ent
);
6793 Append_To
(Res
, Decl
);
6796 -- Skip bodies of _Input and _Output for the abstract case, since
6797 -- the corresponding specs are abstract (see Predef_Spec_Or_Body)
6799 if not Is_Abstract
(Tag_Typ
) then
6800 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Input
)
6801 and then No
(TSS
(Tag_Typ
, TSS_Stream_Input
))
6803 Build_Record_Or_Elementary_Input_Function
6804 (Loc
, Tag_Typ
, Decl
, Ent
);
6805 Append_To
(Res
, Decl
);
6808 if Stream_Operation_OK
(Tag_Typ
, TSS_Stream_Output
)
6809 and then No
(TSS
(Tag_Typ
, TSS_Stream_Output
))
6811 Build_Record_Or_Elementary_Output_Procedure
6812 (Loc
, Tag_Typ
, Decl
, Ent
);
6813 Append_To
(Res
, Decl
);
6817 -- Generate the bodies for the following primitive operations:
6819 -- disp_asynchronous_select
6820 -- disp_conditional_select
6821 -- disp_get_prim_op_kind
6823 -- disp_timed_select
6825 -- for limited interfaces and synchronized types that implement a
6826 -- limited interface. The interface versions will have null bodies.
6828 if Ada_Version
>= Ada_05
6830 not Restriction_Active
(No_Dispatching_Calls
)
6832 ((Is_Interface
(Tag_Typ
) and then Is_Limited_Record
(Tag_Typ
))
6834 (Is_Concurrent_Record_Type
(Tag_Typ
)
6835 and then Implements_Interface
(
6837 Kind
=> Any_Limited_Interface
,
6838 Check_Parent
=> True)))
6840 Append_To
(Res
, Make_Disp_Asynchronous_Select_Body
(Tag_Typ
));
6841 Append_To
(Res
, Make_Disp_Conditional_Select_Body
(Tag_Typ
));
6842 Append_To
(Res
, Make_Disp_Get_Prim_Op_Kind_Body
(Tag_Typ
));
6843 Append_To
(Res
, Make_Disp_Get_Task_Id_Body
(Tag_Typ
));
6844 Append_To
(Res
, Make_Disp_Timed_Select_Body
(Tag_Typ
));
6847 if not Is_Limited_Type
(Tag_Typ
) then
6849 -- Body for equality
6853 Predef_Spec_Or_Body
(Loc
,
6856 Profile
=> New_List
(
6857 Make_Parameter_Specification
(Loc
,
6858 Defining_Identifier
=>
6859 Make_Defining_Identifier
(Loc
, Name_X
),
6860 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
6862 Make_Parameter_Specification
(Loc
,
6863 Defining_Identifier
=>
6864 Make_Defining_Identifier
(Loc
, Name_Y
),
6865 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
6867 Ret_Type
=> Standard_Boolean
,
6871 Def
: constant Node_Id
:= Parent
(Tag_Typ
);
6872 Stmts
: constant List_Id
:= New_List
;
6873 Variant_Case
: Boolean := Has_Discriminants
(Tag_Typ
);
6874 Comps
: Node_Id
:= Empty
;
6875 Typ_Def
: Node_Id
:= Type_Definition
(Def
);
6878 if Variant_Case
then
6879 if Nkind
(Typ_Def
) = N_Derived_Type_Definition
then
6880 Typ_Def
:= Record_Extension_Part
(Typ_Def
);
6883 if Present
(Typ_Def
) then
6884 Comps
:= Component_List
(Typ_Def
);
6887 Variant_Case
:= Present
(Comps
)
6888 and then Present
(Variant_Part
(Comps
));
6891 if Variant_Case
then
6893 Make_Eq_If
(Tag_Typ
, Discriminant_Specifications
(Def
)));
6894 Append_List_To
(Stmts
, Make_Eq_Case
(Tag_Typ
, Comps
));
6896 Make_Return_Statement
(Loc
,
6897 Expression
=> New_Reference_To
(Standard_True
, Loc
)));
6901 Make_Return_Statement
(Loc
,
6903 Expand_Record_Equality
(Tag_Typ
,
6905 Lhs
=> Make_Identifier
(Loc
, Name_X
),
6906 Rhs
=> Make_Identifier
(Loc
, Name_Y
),
6907 Bodies
=> Declarations
(Decl
))));
6910 Set_Handled_Statement_Sequence
(Decl
,
6911 Make_Handled_Sequence_Of_Statements
(Loc
, Stmts
));
6913 Append_To
(Res
, Decl
);
6916 -- Body for dispatching assignment
6919 Predef_Spec_Or_Body
(Loc
,
6921 Name
=> Name_uAssign
,
6922 Profile
=> New_List
(
6923 Make_Parameter_Specification
(Loc
,
6924 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_X
),
6925 Out_Present
=> True,
6926 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
)),
6928 Make_Parameter_Specification
(Loc
,
6929 Defining_Identifier
=> Make_Defining_Identifier
(Loc
, Name_Y
),
6930 Parameter_Type
=> New_Reference_To
(Tag_Typ
, Loc
))),
6933 Set_Handled_Statement_Sequence
(Decl
,
6934 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
6935 Make_Assignment_Statement
(Loc
,
6936 Name
=> Make_Identifier
(Loc
, Name_X
),
6937 Expression
=> Make_Identifier
(Loc
, Name_Y
)))));
6939 Append_To
(Res
, Decl
);
6942 -- Generate dummy bodies for finalization actions of types that have
6943 -- no controlled components.
6945 -- Skip this processing if we are in the finalization routine in the
6946 -- runtime itself, otherwise we get hopelessly circularly confused!
6948 if In_Finalization_Root
(Tag_Typ
) then
6951 -- Skip this if finalization is not available
6953 elsif Restriction_Active
(No_Finalization
) then
6956 elsif (Etype
(Tag_Typ
) = Tag_Typ
or else Is_Controlled
(Tag_Typ
))
6957 and then not Has_Controlled_Component
(Tag_Typ
)
6959 if not Is_Limited_Type
(Tag_Typ
) then
6960 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Adjust
, True);
6962 if Is_Controlled
(Tag_Typ
) then
6963 Set_Handled_Statement_Sequence
(Decl
,
6964 Make_Handled_Sequence_Of_Statements
(Loc
,
6966 Ref
=> Make_Identifier
(Loc
, Name_V
),
6968 Flist_Ref
=> Make_Identifier
(Loc
, Name_L
),
6969 With_Attach
=> Make_Identifier
(Loc
, Name_B
))));
6972 Set_Handled_Statement_Sequence
(Decl
,
6973 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
6974 Make_Null_Statement
(Loc
))));
6977 Append_To
(Res
, Decl
);
6980 Decl
:= Predef_Deep_Spec
(Loc
, Tag_Typ
, TSS_Deep_Finalize
, True);
6982 if Is_Controlled
(Tag_Typ
) then
6983 Set_Handled_Statement_Sequence
(Decl
,
6984 Make_Handled_Sequence_Of_Statements
(Loc
,
6986 Ref
=> Make_Identifier
(Loc
, Name_V
),
6988 With_Detach
=> Make_Identifier
(Loc
, Name_B
))));
6991 Set_Handled_Statement_Sequence
(Decl
,
6992 Make_Handled_Sequence_Of_Statements
(Loc
, New_List
(
6993 Make_Null_Statement
(Loc
))));
6996 Append_To
(Res
, Decl
);
7000 end Predefined_Primitive_Bodies
;
7002 ---------------------------------
7003 -- Predefined_Primitive_Freeze --
7004 ---------------------------------
7006 function Predefined_Primitive_Freeze
7007 (Tag_Typ
: Entity_Id
) return List_Id
7009 Loc
: constant Source_Ptr
:= Sloc
(Tag_Typ
);
7010 Res
: constant List_Id
:= New_List
;
7015 Prim
:= First_Elmt
(Primitive_Operations
(Tag_Typ
));
7016 while Present
(Prim
) loop
7017 if Is_Internal
(Node
(Prim
)) then
7018 Frnodes
:= Freeze_Entity
(Node
(Prim
), Loc
);
7020 if Present
(Frnodes
) then
7021 Append_List_To
(Res
, Frnodes
);
7029 end Predefined_Primitive_Freeze
;
7031 -------------------------
7032 -- Stream_Operation_OK --
7033 -------------------------
7035 function Stream_Operation_OK
7037 Operation
: TSS_Name_Type
) return Boolean
7039 Has_Inheritable_Stream_Attribute
: Boolean := False;
7042 if Is_Limited_Type
(Typ
)
7043 and then Is_Tagged_Type
(Typ
)
7044 and then Is_Derived_Type
(Typ
)
7046 -- Special case of a limited type extension: a default implementation
7047 -- of the stream attributes Read and Write exists if the attribute
7048 -- has been specified for an ancestor type.
7050 Has_Inheritable_Stream_Attribute
:=
7051 Present
(Find_Inherited_TSS
(Base_Type
(Etype
(Typ
)), Operation
));
7055 not (Is_Limited_Type
(Typ
)
7056 and then not Has_Inheritable_Stream_Attribute
)
7057 and then not Has_Unknown_Discriminants
(Typ
)
7058 and then RTE_Available
(RE_Tag
)
7059 and then RTE_Available
(RE_Root_Stream_Type
)
7060 and then not Restriction_Active
(No_Dispatch
)
7061 and then not Restriction_Active
(No_Streams
);
7062 end Stream_Operation_OK
;