1 /* Backend support for Fortran 95 basic types and derived types.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007 Free Software
4 Contributed by Paul Brook <paul@nowt.org>
5 and Steven Bosscher <s.bosscher@student.tudelft.nl>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
24 /* trans-types.c -- gfortran backend types */
28 #include "coretypes.h"
30 #include "langhooks.h"
37 #include "trans-types.h"
38 #include "trans-const.h"
42 #if (GFC_MAX_DIMENSIONS < 10)
43 #define GFC_RANK_DIGITS 1
44 #define GFC_RANK_PRINTF_FORMAT "%01d"
45 #elif (GFC_MAX_DIMENSIONS < 100)
46 #define GFC_RANK_DIGITS 2
47 #define GFC_RANK_PRINTF_FORMAT "%02d"
49 #error If you really need >99 dimensions, continue the sequence above...
52 /* array of structs so we don't have to worry about xmalloc or free */
53 CInteropKind_t c_interop_kinds_table
[ISOCBINDING_NUMBER
];
55 static tree
gfc_get_derived_type (gfc_symbol
* derived
);
57 tree gfc_array_index_type
;
58 tree gfc_array_range_type
;
59 tree gfc_character1_type_node
;
61 tree ppvoid_type_node
;
64 tree gfc_charlen_type_node
;
66 static GTY(()) tree gfc_desc_dim_type
;
67 static GTY(()) tree gfc_max_array_element_size
;
68 static GTY(()) tree gfc_array_descriptor_base
[GFC_MAX_DIMENSIONS
];
70 /* Arrays for all integral and real kinds. We'll fill this in at runtime
71 after the target has a chance to process command-line options. */
73 #define MAX_INT_KINDS 5
74 gfc_integer_info gfc_integer_kinds
[MAX_INT_KINDS
+ 1];
75 gfc_logical_info gfc_logical_kinds
[MAX_INT_KINDS
+ 1];
76 static GTY(()) tree gfc_integer_types
[MAX_INT_KINDS
+ 1];
77 static GTY(()) tree gfc_logical_types
[MAX_INT_KINDS
+ 1];
79 #define MAX_REAL_KINDS 5
80 gfc_real_info gfc_real_kinds
[MAX_REAL_KINDS
+ 1];
81 static GTY(()) tree gfc_real_types
[MAX_REAL_KINDS
+ 1];
82 static GTY(()) tree gfc_complex_types
[MAX_REAL_KINDS
+ 1];
85 /* The integer kind to use for array indices. This will be set to the
86 proper value based on target information from the backend. */
88 int gfc_index_integer_kind
;
90 /* The default kinds of the various types. */
92 int gfc_default_integer_kind
;
93 int gfc_max_integer_kind
;
94 int gfc_default_real_kind
;
95 int gfc_default_double_kind
;
96 int gfc_default_character_kind
;
97 int gfc_default_logical_kind
;
98 int gfc_default_complex_kind
;
101 /* The kind size used for record offsets. If the target system supports
102 kind=8, this will be set to 8, otherwise it is set to 4. */
105 /* The integer kind used to store character lengths. */
106 int gfc_charlen_int_kind
;
108 /* The size of the numeric storage unit and character storage unit. */
109 int gfc_numeric_storage_size
;
110 int gfc_character_storage_size
;
113 /* Validate that the f90_type of the given gfc_typespec is valid for
114 the type it represents. The f90_type represents the Fortran types
115 this C kind can be used with. For example, c_int has a f90_type of
116 BT_INTEGER and c_float has a f90_type of BT_REAL. Returns FAILURE
117 if a mismatch occurs between ts->f90_type and ts->type; SUCCESS if
121 gfc_validate_c_kind (gfc_typespec
*ts
)
123 return ((ts
->type
== ts
->f90_type
) ? SUCCESS
: FAILURE
);
128 gfc_check_any_c_kind (gfc_typespec
*ts
)
132 for (i
= 0; i
< ISOCBINDING_NUMBER
; i
++)
134 /* Check for any C interoperable kind for the given type/kind in ts.
135 This can be used after verify_c_interop to make sure that the
136 Fortran kind being used exists in at least some form for C. */
137 if (c_interop_kinds_table
[i
].f90_type
== ts
->type
&&
138 c_interop_kinds_table
[i
].value
== ts
->kind
)
147 get_real_kind_from_node (tree type
)
151 for (i
= 0; gfc_real_kinds
[i
].kind
!= 0; i
++)
152 if (gfc_real_kinds
[i
].mode_precision
== TYPE_PRECISION (type
))
153 return gfc_real_kinds
[i
].kind
;
159 get_int_kind_from_node (tree type
)
166 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
167 if (gfc_integer_kinds
[i
].bit_size
== TYPE_PRECISION (type
))
168 return gfc_integer_kinds
[i
].kind
;
174 get_int_kind_from_width (int size
)
178 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
179 if (gfc_integer_kinds
[i
].bit_size
== size
)
180 return gfc_integer_kinds
[i
].kind
;
186 get_int_kind_from_minimal_width (int size
)
190 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
191 if (gfc_integer_kinds
[i
].bit_size
>= size
)
192 return gfc_integer_kinds
[i
].kind
;
198 /* Generate the CInteropKind_t objects for the C interoperable
202 void init_c_interop_kinds (void)
205 tree intmax_type_node
= INT_TYPE_SIZE
== LONG_LONG_TYPE_SIZE
?
207 (LONG_TYPE_SIZE
== LONG_LONG_TYPE_SIZE
?
208 long_integer_type_node
:
209 long_long_integer_type_node
);
211 /* init all pointers in the list to NULL */
212 for (i
= 0; i
< ISOCBINDING_NUMBER
; i
++)
214 /* Initialize the name and value fields. */
215 c_interop_kinds_table
[i
].name
[0] = '\0';
216 c_interop_kinds_table
[i
].value
= -100;
217 c_interop_kinds_table
[i
].f90_type
= BT_UNKNOWN
;
220 #define NAMED_INTCST(a,b,c) \
221 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
222 c_interop_kinds_table[a].f90_type = BT_INTEGER; \
223 c_interop_kinds_table[a].value = c;
224 #define NAMED_REALCST(a,b,c) \
225 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
226 c_interop_kinds_table[a].f90_type = BT_REAL; \
227 c_interop_kinds_table[a].value = c;
228 #define NAMED_CMPXCST(a,b,c) \
229 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
230 c_interop_kinds_table[a].f90_type = BT_COMPLEX; \
231 c_interop_kinds_table[a].value = c;
232 #define NAMED_LOGCST(a,b,c) \
233 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
234 c_interop_kinds_table[a].f90_type = BT_LOGICAL; \
235 c_interop_kinds_table[a].value = c;
236 #define NAMED_CHARKNDCST(a,b,c) \
237 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
238 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
239 c_interop_kinds_table[a].value = c;
240 #define NAMED_CHARCST(a,b,c) \
241 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
242 c_interop_kinds_table[a].f90_type = BT_CHARACTER; \
243 c_interop_kinds_table[a].value = c;
244 #define DERIVED_TYPE(a,b,c) \
245 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
246 c_interop_kinds_table[a].f90_type = BT_DERIVED; \
247 c_interop_kinds_table[a].value = c;
248 #define PROCEDURE(a,b) \
249 strncpy (c_interop_kinds_table[a].name, b, strlen(b) + 1); \
250 c_interop_kinds_table[a].f90_type = BT_PROCEDURE; \
251 c_interop_kinds_table[a].value = 0;
252 #include "iso-c-binding.def"
256 /* Query the target to determine which machine modes are available for
257 computation. Choose KIND numbers for them. */
260 gfc_init_kinds (void)
262 enum machine_mode mode
;
263 int i_index
, r_index
;
264 bool saw_i4
= false, saw_i8
= false;
265 bool saw_r4
= false, saw_r8
= false, saw_r16
= false;
267 for (i_index
= 0, mode
= MIN_MODE_INT
; mode
<= MAX_MODE_INT
; mode
++)
271 if (!targetm
.scalar_mode_supported_p (mode
))
274 /* The middle end doesn't support constants larger than 2*HWI.
275 Perhaps the target hook shouldn't have accepted these either,
276 but just to be safe... */
277 bitsize
= GET_MODE_BITSIZE (mode
);
278 if (bitsize
> 2*HOST_BITS_PER_WIDE_INT
)
281 gcc_assert (i_index
!= MAX_INT_KINDS
);
283 /* Let the kind equal the bit size divided by 8. This insulates the
284 programmer from the underlying byte size. */
292 gfc_integer_kinds
[i_index
].kind
= kind
;
293 gfc_integer_kinds
[i_index
].radix
= 2;
294 gfc_integer_kinds
[i_index
].digits
= bitsize
- 1;
295 gfc_integer_kinds
[i_index
].bit_size
= bitsize
;
297 gfc_logical_kinds
[i_index
].kind
= kind
;
298 gfc_logical_kinds
[i_index
].bit_size
= bitsize
;
303 /* Set the kind used to match GFC_INT_IO in libgfortran. This is
304 used for large file access. */
311 /* If we do not at least have kind = 4, everything is pointless. */
314 /* Set the maximum integer kind. Used with at least BOZ constants. */
315 gfc_max_integer_kind
= gfc_integer_kinds
[i_index
- 1].kind
;
317 for (r_index
= 0, mode
= MIN_MODE_FLOAT
; mode
<= MAX_MODE_FLOAT
; mode
++)
319 const struct real_format
*fmt
= REAL_MODE_FORMAT (mode
);
324 if (!targetm
.scalar_mode_supported_p (mode
))
327 /* Only let float/double/long double go through because the fortran
328 library assumes these are the only floating point types. */
330 if (mode
!= TYPE_MODE (float_type_node
)
331 && (mode
!= TYPE_MODE (double_type_node
))
332 && (mode
!= TYPE_MODE (long_double_type_node
)))
335 /* Let the kind equal the precision divided by 8, rounding up. Again,
336 this insulates the programmer from the underlying byte size.
338 Also, it effectively deals with IEEE extended formats. There, the
339 total size of the type may equal 16, but it's got 6 bytes of padding
340 and the increased size can get in the way of a real IEEE quad format
341 which may also be supported by the target.
343 We round up so as to handle IA-64 __floatreg (RFmode), which is an
344 82 bit type. Not to be confused with __float80 (XFmode), which is
345 an 80 bit type also supported by IA-64. So XFmode should come out
346 to be kind=10, and RFmode should come out to be kind=11. Egads. */
348 kind
= (GET_MODE_PRECISION (mode
) + 7) / 8;
357 /* Careful we don't stumble a wierd internal mode. */
358 gcc_assert (r_index
<= 0 || gfc_real_kinds
[r_index
-1].kind
!= kind
);
359 /* Or have too many modes for the allocated space. */
360 gcc_assert (r_index
!= MAX_REAL_KINDS
);
362 gfc_real_kinds
[r_index
].kind
= kind
;
363 gfc_real_kinds
[r_index
].radix
= fmt
->b
;
364 gfc_real_kinds
[r_index
].digits
= fmt
->p
;
365 gfc_real_kinds
[r_index
].min_exponent
= fmt
->emin
;
366 gfc_real_kinds
[r_index
].max_exponent
= fmt
->emax
;
367 if (fmt
->pnan
< fmt
->p
)
368 /* This is an IBM extended double format (or the MIPS variant)
369 made up of two IEEE doubles. The value of the long double is
370 the sum of the values of the two parts. The most significant
371 part is required to be the value of the long double rounded
372 to the nearest double. If we use emax of 1024 then we can't
373 represent huge(x) = (1 - b**(-p)) * b**(emax-1) * b, because
374 rounding will make the most significant part overflow. */
375 gfc_real_kinds
[r_index
].max_exponent
= fmt
->emax
- 1;
376 gfc_real_kinds
[r_index
].mode_precision
= GET_MODE_PRECISION (mode
);
380 /* Choose the default integer kind. We choose 4 unless the user
381 directs us otherwise. */
382 if (gfc_option
.flag_default_integer
)
385 fatal_error ("integer kind=8 not available for -fdefault-integer-8 option");
386 gfc_default_integer_kind
= 8;
388 /* Even if the user specified that the default integer kind be 8,
389 the numerica storage size isn't 64. In this case, a warning will
390 be issued when NUMERIC_STORAGE_SIZE is used. */
391 gfc_numeric_storage_size
= 4 * 8;
395 gfc_default_integer_kind
= 4;
396 gfc_numeric_storage_size
= 4 * 8;
400 gfc_default_integer_kind
= gfc_integer_kinds
[i_index
- 1].kind
;
401 gfc_numeric_storage_size
= gfc_integer_kinds
[i_index
- 1].bit_size
;
404 /* Choose the default real kind. Again, we choose 4 when possible. */
405 if (gfc_option
.flag_default_real
)
408 fatal_error ("real kind=8 not available for -fdefault-real-8 option");
409 gfc_default_real_kind
= 8;
412 gfc_default_real_kind
= 4;
414 gfc_default_real_kind
= gfc_real_kinds
[0].kind
;
416 /* Choose the default double kind. If -fdefault-real and -fdefault-double
417 are specified, we use kind=8, if it's available. If -fdefault-real is
418 specified without -fdefault-double, we use kind=16, if it's available.
419 Otherwise we do not change anything. */
420 if (gfc_option
.flag_default_double
&& !gfc_option
.flag_default_real
)
421 fatal_error ("Use of -fdefault-double-8 requires -fdefault-real-8");
423 if (gfc_option
.flag_default_real
&& gfc_option
.flag_default_double
&& saw_r8
)
424 gfc_default_double_kind
= 8;
425 else if (gfc_option
.flag_default_real
&& saw_r16
)
426 gfc_default_double_kind
= 16;
427 else if (saw_r4
&& saw_r8
)
428 gfc_default_double_kind
= 8;
431 /* F95 14.6.3.1: A nonpointer scalar object of type double precision
432 real ... occupies two contiguous numeric storage units.
434 Therefore we must be supplied a kind twice as large as we chose
435 for single precision. There are loopholes, in that double
436 precision must *occupy* two storage units, though it doesn't have
437 to *use* two storage units. Which means that you can make this
438 kind artificially wide by padding it. But at present there are
439 no GCC targets for which a two-word type does not exist, so we
440 just let gfc_validate_kind abort and tell us if something breaks. */
442 gfc_default_double_kind
443 = gfc_validate_kind (BT_REAL
, gfc_default_real_kind
* 2, false);
446 /* The default logical kind is constrained to be the same as the
447 default integer kind. Similarly with complex and real. */
448 gfc_default_logical_kind
= gfc_default_integer_kind
;
449 gfc_default_complex_kind
= gfc_default_real_kind
;
451 /* Choose the smallest integer kind for our default character. */
452 gfc_default_character_kind
= gfc_integer_kinds
[0].kind
;
453 gfc_character_storage_size
= gfc_default_character_kind
* 8;
455 /* Choose the integer kind the same size as "void*" for our index kind. */
456 gfc_index_integer_kind
= POINTER_SIZE
/ 8;
457 /* Pick a kind the same size as the C "int" type. */
458 gfc_c_int_kind
= INT_TYPE_SIZE
/ 8;
460 /* initialize the C interoperable kinds */
461 init_c_interop_kinds();
464 /* Make sure that a valid kind is present. Returns an index into the
465 associated kinds array, -1 if the kind is not present. */
468 validate_integer (int kind
)
472 for (i
= 0; gfc_integer_kinds
[i
].kind
!= 0; i
++)
473 if (gfc_integer_kinds
[i
].kind
== kind
)
480 validate_real (int kind
)
484 for (i
= 0; gfc_real_kinds
[i
].kind
!= 0; i
++)
485 if (gfc_real_kinds
[i
].kind
== kind
)
492 validate_logical (int kind
)
496 for (i
= 0; gfc_logical_kinds
[i
].kind
; i
++)
497 if (gfc_logical_kinds
[i
].kind
== kind
)
504 validate_character (int kind
)
506 return kind
== gfc_default_character_kind
? 0 : -1;
509 /* Validate a kind given a basic type. The return value is the same
510 for the child functions, with -1 indicating nonexistence of the
511 type. If MAY_FAIL is false, then -1 is never returned, and we ICE. */
514 gfc_validate_kind (bt type
, int kind
, bool may_fail
)
520 case BT_REAL
: /* Fall through */
522 rc
= validate_real (kind
);
525 rc
= validate_integer (kind
);
528 rc
= validate_logical (kind
);
531 rc
= validate_character (kind
);
535 gfc_internal_error ("gfc_validate_kind(): Got bad type");
538 if (rc
< 0 && !may_fail
)
539 gfc_internal_error ("gfc_validate_kind(): Got bad kind");
545 /* Four subroutines of gfc_init_types. Create type nodes for the given kind.
546 Reuse common type nodes where possible. Recognize if the kind matches up
547 with a C type. This will be used later in determining which routines may
548 be scarfed from libm. */
551 gfc_build_int_type (gfc_integer_info
*info
)
553 int mode_precision
= info
->bit_size
;
555 if (mode_precision
== CHAR_TYPE_SIZE
)
557 if (mode_precision
== SHORT_TYPE_SIZE
)
559 if (mode_precision
== INT_TYPE_SIZE
)
561 if (mode_precision
== LONG_TYPE_SIZE
)
563 if (mode_precision
== LONG_LONG_TYPE_SIZE
)
564 info
->c_long_long
= 1;
566 if (TYPE_PRECISION (intQI_type_node
) == mode_precision
)
567 return intQI_type_node
;
568 if (TYPE_PRECISION (intHI_type_node
) == mode_precision
)
569 return intHI_type_node
;
570 if (TYPE_PRECISION (intSI_type_node
) == mode_precision
)
571 return intSI_type_node
;
572 if (TYPE_PRECISION (intDI_type_node
) == mode_precision
)
573 return intDI_type_node
;
574 if (TYPE_PRECISION (intTI_type_node
) == mode_precision
)
575 return intTI_type_node
;
577 return make_signed_type (mode_precision
);
581 gfc_build_real_type (gfc_real_info
*info
)
583 int mode_precision
= info
->mode_precision
;
586 if (mode_precision
== FLOAT_TYPE_SIZE
)
588 if (mode_precision
== DOUBLE_TYPE_SIZE
)
590 if (mode_precision
== LONG_DOUBLE_TYPE_SIZE
)
591 info
->c_long_double
= 1;
593 if (TYPE_PRECISION (float_type_node
) == mode_precision
)
594 return float_type_node
;
595 if (TYPE_PRECISION (double_type_node
) == mode_precision
)
596 return double_type_node
;
597 if (TYPE_PRECISION (long_double_type_node
) == mode_precision
)
598 return long_double_type_node
;
600 new_type
= make_node (REAL_TYPE
);
601 TYPE_PRECISION (new_type
) = mode_precision
;
602 layout_type (new_type
);
607 gfc_build_complex_type (tree scalar_type
)
611 if (scalar_type
== NULL
)
613 if (scalar_type
== float_type_node
)
614 return complex_float_type_node
;
615 if (scalar_type
== double_type_node
)
616 return complex_double_type_node
;
617 if (scalar_type
== long_double_type_node
)
618 return complex_long_double_type_node
;
620 new_type
= make_node (COMPLEX_TYPE
);
621 TREE_TYPE (new_type
) = scalar_type
;
622 layout_type (new_type
);
627 gfc_build_logical_type (gfc_logical_info
*info
)
629 int bit_size
= info
->bit_size
;
632 if (bit_size
== BOOL_TYPE_SIZE
)
635 return boolean_type_node
;
638 new_type
= make_unsigned_type (bit_size
);
639 TREE_SET_CODE (new_type
, BOOLEAN_TYPE
);
640 TYPE_MAX_VALUE (new_type
) = build_int_cst (new_type
, 1);
641 TYPE_PRECISION (new_type
) = 1;
647 /* Return the bit size of the C "size_t". */
653 if (strcmp (SIZE_TYPE
, "unsigned int") == 0)
654 return INT_TYPE_SIZE
;
655 if (strcmp (SIZE_TYPE
, "long unsigned int") == 0)
656 return LONG_TYPE_SIZE
;
657 if (strcmp (SIZE_TYPE
, "short unsigned int") == 0)
658 return SHORT_TYPE_SIZE
;
661 return LONG_TYPE_SIZE
;
666 /* Create the backend type nodes. We map them to their
667 equivalent C type, at least for now. We also give
668 names to the types here, and we push them in the
669 global binding level context.*/
672 gfc_init_types (void)
678 unsigned HOST_WIDE_INT hi
;
679 unsigned HOST_WIDE_INT lo
;
681 /* Create and name the types. */
682 #define PUSH_TYPE(name, node) \
683 pushdecl (build_decl (TYPE_DECL, get_identifier (name), node))
685 for (index
= 0; gfc_integer_kinds
[index
].kind
!= 0; ++index
)
687 type
= gfc_build_int_type (&gfc_integer_kinds
[index
]);
688 gfc_integer_types
[index
] = type
;
689 snprintf (name_buf
, sizeof(name_buf
), "int%d",
690 gfc_integer_kinds
[index
].kind
);
691 PUSH_TYPE (name_buf
, type
);
694 for (index
= 0; gfc_logical_kinds
[index
].kind
!= 0; ++index
)
696 type
= gfc_build_logical_type (&gfc_logical_kinds
[index
]);
697 gfc_logical_types
[index
] = type
;
698 snprintf (name_buf
, sizeof(name_buf
), "logical%d",
699 gfc_logical_kinds
[index
].kind
);
700 PUSH_TYPE (name_buf
, type
);
703 for (index
= 0; gfc_real_kinds
[index
].kind
!= 0; index
++)
705 type
= gfc_build_real_type (&gfc_real_kinds
[index
]);
706 gfc_real_types
[index
] = type
;
707 snprintf (name_buf
, sizeof(name_buf
), "real%d",
708 gfc_real_kinds
[index
].kind
);
709 PUSH_TYPE (name_buf
, type
);
711 type
= gfc_build_complex_type (type
);
712 gfc_complex_types
[index
] = type
;
713 snprintf (name_buf
, sizeof(name_buf
), "complex%d",
714 gfc_real_kinds
[index
].kind
);
715 PUSH_TYPE (name_buf
, type
);
718 gfc_character1_type_node
= build_type_variant (unsigned_char_type_node
,
720 PUSH_TYPE ("char", gfc_character1_type_node
);
722 PUSH_TYPE ("byte", unsigned_char_type_node
);
723 PUSH_TYPE ("void", void_type_node
);
725 /* DBX debugging output gets upset if these aren't set. */
726 if (!TYPE_NAME (integer_type_node
))
727 PUSH_TYPE ("c_integer", integer_type_node
);
728 if (!TYPE_NAME (char_type_node
))
729 PUSH_TYPE ("c_char", char_type_node
);
733 pvoid_type_node
= build_pointer_type (void_type_node
);
734 ppvoid_type_node
= build_pointer_type (pvoid_type_node
);
735 pchar_type_node
= build_pointer_type (gfc_character1_type_node
);
737 gfc_array_index_type
= gfc_get_int_type (gfc_index_integer_kind
);
738 /* We cannot use gfc_index_zero_node in definition of gfc_array_range_type,
739 since this function is called before gfc_init_constants. */
741 = build_range_type (gfc_array_index_type
,
742 build_int_cst (gfc_array_index_type
, 0),
745 /* The maximum array element size that can be handled is determined
746 by the number of bits available to store this field in the array
749 n
= TYPE_PRECISION (gfc_array_index_type
) - GFC_DTYPE_SIZE_SHIFT
;
750 lo
= ~ (unsigned HOST_WIDE_INT
) 0;
751 if (n
> HOST_BITS_PER_WIDE_INT
)
752 hi
= lo
>> (2*HOST_BITS_PER_WIDE_INT
- n
);
754 hi
= 0, lo
>>= HOST_BITS_PER_WIDE_INT
- n
;
755 gfc_max_array_element_size
756 = build_int_cst_wide (long_unsigned_type_node
, lo
, hi
);
758 size_type_node
= gfc_array_index_type
;
760 boolean_type_node
= gfc_get_logical_type (gfc_default_logical_kind
);
761 boolean_true_node
= build_int_cst (boolean_type_node
, 1);
762 boolean_false_node
= build_int_cst (boolean_type_node
, 0);
764 /* ??? Shouldn't this be based on gfc_index_integer_kind or so? */
765 gfc_charlen_int_kind
= 4;
766 gfc_charlen_type_node
= gfc_get_int_type (gfc_charlen_int_kind
);
769 /* Get the type node for the given type and kind. */
772 gfc_get_int_type (int kind
)
774 int index
= gfc_validate_kind (BT_INTEGER
, kind
, true);
775 return index
< 0 ? 0 : gfc_integer_types
[index
];
779 gfc_get_real_type (int kind
)
781 int index
= gfc_validate_kind (BT_REAL
, kind
, true);
782 return index
< 0 ? 0 : gfc_real_types
[index
];
786 gfc_get_complex_type (int kind
)
788 int index
= gfc_validate_kind (BT_COMPLEX
, kind
, true);
789 return index
< 0 ? 0 : gfc_complex_types
[index
];
793 gfc_get_logical_type (int kind
)
795 int index
= gfc_validate_kind (BT_LOGICAL
, kind
, true);
796 return index
< 0 ? 0 : gfc_logical_types
[index
];
799 /* Create a character type with the given kind and length. */
802 gfc_get_character_type_len (int kind
, tree len
)
806 gfc_validate_kind (BT_CHARACTER
, kind
, false);
808 bounds
= build_range_type (gfc_charlen_type_node
, gfc_index_one_node
, len
);
809 type
= build_array_type (gfc_character1_type_node
, bounds
);
810 TYPE_STRING_FLAG (type
) = 1;
816 /* Get a type node for a character kind. */
819 gfc_get_character_type (int kind
, gfc_charlen
* cl
)
823 len
= (cl
== NULL
) ? NULL_TREE
: cl
->backend_decl
;
825 return gfc_get_character_type_len (kind
, len
);
828 /* Covert a basic type. This will be an array for character types. */
831 gfc_typenode_for_spec (gfc_typespec
* spec
)
841 /* We use INTEGER(c_intptr_t) for C_PTR and C_FUNPTR once the symbol
842 has been resolved. This is done so we can convert C_PTR and
843 C_FUNPTR to simple variables that get translated to (void *). */
844 if (spec
->f90_type
== BT_VOID
)
845 basetype
= ptr_type_node
;
847 basetype
= gfc_get_int_type (spec
->kind
);
851 basetype
= gfc_get_real_type (spec
->kind
);
855 basetype
= gfc_get_complex_type (spec
->kind
);
859 basetype
= gfc_get_logical_type (spec
->kind
);
863 basetype
= gfc_get_character_type (spec
->kind
, spec
->cl
);
867 basetype
= gfc_get_derived_type (spec
->derived
);
869 /* If we're dealing with either C_PTR or C_FUNPTR, we modified the
870 type and kind to fit a (void *) and the basetype returned was a
871 ptr_type_node. We need to pass up this new information to the
872 symbol that was declared of type C_PTR or C_FUNPTR. */
873 if (spec
->derived
->attr
.is_iso_c
)
875 spec
->type
= spec
->derived
->ts
.type
;
876 spec
->kind
= spec
->derived
->ts
.kind
;
877 spec
->f90_type
= spec
->derived
->ts
.f90_type
;
881 /* This is for the second arg to c_f_pointer and c_f_procpointer
882 of the iso_c_binding module, to accept any ptr type. */
883 basetype
= ptr_type_node
;
891 /* Build an INT_CST for constant expressions, otherwise return NULL_TREE. */
894 gfc_conv_array_bound (gfc_expr
* expr
)
896 /* If expr is an integer constant, return that. */
897 if (expr
!= NULL
&& expr
->expr_type
== EXPR_CONSTANT
)
898 return gfc_conv_mpz_to_tree (expr
->value
.integer
, gfc_index_integer_kind
);
900 /* Otherwise return NULL. */
905 gfc_get_element_type (tree type
)
909 if (GFC_ARRAY_TYPE_P (type
))
911 if (TREE_CODE (type
) == POINTER_TYPE
)
912 type
= TREE_TYPE (type
);
913 gcc_assert (TREE_CODE (type
) == ARRAY_TYPE
);
914 element
= TREE_TYPE (type
);
918 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
));
919 element
= GFC_TYPE_ARRAY_DATAPTR_TYPE (type
);
921 gcc_assert (TREE_CODE (element
) == POINTER_TYPE
);
922 element
= TREE_TYPE (element
);
924 gcc_assert (TREE_CODE (element
) == ARRAY_TYPE
);
925 element
= TREE_TYPE (element
);
931 /* Build an array. This function is called from gfc_sym_type().
932 Actually returns array descriptor type.
934 Format of array descriptors is as follows:
936 struct gfc_array_descriptor
941 struct descriptor_dimension dimension[N_DIM];
944 struct descriptor_dimension
951 Translation code should use gfc_conv_descriptor_* rather than
952 accessing the descriptor directly. Any changes to the array
953 descriptor type will require changes in gfc_conv_descriptor_* and
954 gfc_build_array_initializer.
956 This is represented internally as a RECORD_TYPE. The index nodes
957 are gfc_array_index_type and the data node is a pointer to the
958 data. See below for the handling of character types.
960 The dtype member is formatted as follows:
961 rank = dtype & GFC_DTYPE_RANK_MASK // 3 bits
962 type = (dtype & GFC_DTYPE_TYPE_MASK) >> GFC_DTYPE_TYPE_SHIFT // 3 bits
963 size = dtype >> GFC_DTYPE_SIZE_SHIFT
965 I originally used nested ARRAY_TYPE nodes to represent arrays, but
966 this generated poor code for assumed/deferred size arrays. These
967 require use of PLACEHOLDER_EXPR/WITH_RECORD_EXPR, which isn't part
968 of the GENERIC grammar. Also, there is no way to explicitly set
969 the array stride, so all data must be packed(1). I've tried to
970 mark all the functions which would require modification with a GCC
973 The data component points to the first element in the array. The
974 offset field is the position of the origin of the array (ie element
975 (0, 0 ...)). This may be outsite the bounds of the array.
977 An element is accessed by
978 data[offset + index0*stride0 + index1*stride1 + index2*stride2]
979 This gives good performance as the computation does not involve the
980 bounds of the array. For packed arrays, this is optimized further
981 by substituting the known strides.
983 This system has one problem: all array bounds must be within 2^31
984 elements of the origin (2^63 on 64-bit machines). For example
985 integer, dimension (80000:90000, 80000:90000, 2) :: array
986 may not work properly on 32-bit machines because 80000*80000 >
987 2^31, so the calculation for stride02 would overflow. This may
988 still work, but I haven't checked, and it relies on the overflow
989 doing the right thing.
991 The way to fix this problem is to access elements as follows:
992 data[(index0-lbound0)*stride0 + (index1-lbound1)*stride1]
993 Obviously this is much slower. I will make this a compile time
994 option, something like -fsmall-array-offsets. Mixing code compiled
995 with and without this switch will work.
997 (1) This can be worked around by modifying the upper bound of the
998 previous dimension. This requires extra fields in the descriptor
999 (both real_ubound and fake_ubound). */
1002 /* Returns true if the array sym does not require a descriptor. */
1005 gfc_is_nodesc_array (gfc_symbol
* sym
)
1007 gcc_assert (sym
->attr
.dimension
);
1009 /* We only want local arrays. */
1010 if (sym
->attr
.pointer
|| sym
->attr
.allocatable
)
1013 if (sym
->attr
.dummy
)
1015 if (sym
->as
->type
!= AS_ASSUMED_SHAPE
)
1021 if (sym
->attr
.result
|| sym
->attr
.function
)
1024 gcc_assert (sym
->as
->type
== AS_EXPLICIT
);
1030 /* Create an array descriptor type. */
1033 gfc_build_array_type (tree type
, gfc_array_spec
* as
)
1035 tree lbound
[GFC_MAX_DIMENSIONS
];
1036 tree ubound
[GFC_MAX_DIMENSIONS
];
1039 for (n
= 0; n
< as
->rank
; n
++)
1041 /* Create expressions for the known bounds of the array. */
1042 if (as
->type
== AS_ASSUMED_SHAPE
&& as
->lower
[n
] == NULL
)
1043 lbound
[n
] = gfc_index_one_node
;
1045 lbound
[n
] = gfc_conv_array_bound (as
->lower
[n
]);
1046 ubound
[n
] = gfc_conv_array_bound (as
->upper
[n
]);
1049 return gfc_get_array_type_bounds (type
, as
->rank
, lbound
, ubound
, 0);
1052 /* Returns the struct descriptor_dimension type. */
1055 gfc_get_desc_dim_type (void)
1061 if (gfc_desc_dim_type
)
1062 return gfc_desc_dim_type
;
1064 /* Build the type node. */
1065 type
= make_node (RECORD_TYPE
);
1067 TYPE_NAME (type
) = get_identifier ("descriptor_dimension");
1068 TYPE_PACKED (type
) = 1;
1070 /* Consists of the stride, lbound and ubound members. */
1071 decl
= build_decl (FIELD_DECL
,
1072 get_identifier ("stride"), gfc_array_index_type
);
1073 DECL_CONTEXT (decl
) = type
;
1076 decl
= build_decl (FIELD_DECL
,
1077 get_identifier ("lbound"), gfc_array_index_type
);
1078 DECL_CONTEXT (decl
) = type
;
1079 fieldlist
= chainon (fieldlist
, decl
);
1081 decl
= build_decl (FIELD_DECL
,
1082 get_identifier ("ubound"), gfc_array_index_type
);
1083 DECL_CONTEXT (decl
) = type
;
1084 fieldlist
= chainon (fieldlist
, decl
);
1086 /* Finish off the type. */
1087 TYPE_FIELDS (type
) = fieldlist
;
1089 gfc_finish_type (type
);
1091 gfc_desc_dim_type
= type
;
1096 /* Return the DTYPE for an array. This describes the type and type parameters
1098 /* TODO: Only call this when the value is actually used, and make all the
1099 unknown cases abort. */
1102 gfc_get_dtype (tree type
)
1112 gcc_assert (GFC_DESCRIPTOR_TYPE_P (type
) || GFC_ARRAY_TYPE_P (type
));
1114 if (GFC_TYPE_ARRAY_DTYPE (type
))
1115 return GFC_TYPE_ARRAY_DTYPE (type
);
1117 rank
= GFC_TYPE_ARRAY_RANK (type
);
1118 etype
= gfc_get_element_type (type
);
1120 switch (TREE_CODE (etype
))
1123 n
= GFC_DTYPE_INTEGER
;
1127 n
= GFC_DTYPE_LOGICAL
;
1135 n
= GFC_DTYPE_COMPLEX
;
1138 /* We will never have arrays of arrays. */
1140 n
= GFC_DTYPE_DERIVED
;
1144 n
= GFC_DTYPE_CHARACTER
;
1148 /* TODO: Don't do dtype for temporary descriptorless arrays. */
1149 /* We can strange array types for temporary arrays. */
1150 return gfc_index_zero_node
;
1153 gcc_assert (rank
<= GFC_DTYPE_RANK_MASK
);
1154 size
= TYPE_SIZE_UNIT (etype
);
1156 i
= rank
| (n
<< GFC_DTYPE_TYPE_SHIFT
);
1157 if (size
&& INTEGER_CST_P (size
))
1159 if (tree_int_cst_lt (gfc_max_array_element_size
, size
))
1160 internal_error ("Array element size too big");
1162 i
+= TREE_INT_CST_LOW (size
) << GFC_DTYPE_SIZE_SHIFT
;
1164 dtype
= build_int_cst (gfc_array_index_type
, i
);
1166 if (size
&& !INTEGER_CST_P (size
))
1168 tmp
= build_int_cst (gfc_array_index_type
, GFC_DTYPE_SIZE_SHIFT
);
1169 tmp
= fold_build2 (LSHIFT_EXPR
, gfc_array_index_type
,
1170 fold_convert (gfc_array_index_type
, size
), tmp
);
1171 dtype
= fold_build2 (PLUS_EXPR
, gfc_array_index_type
, tmp
, dtype
);
1173 /* If we don't know the size we leave it as zero. This should never happen
1174 for anything that is actually used. */
1175 /* TODO: Check this is actually true, particularly when repacking
1176 assumed size parameters. */
1178 GFC_TYPE_ARRAY_DTYPE (type
) = dtype
;
1183 /* Build an array type for use without a descriptor, packed according
1184 to the value of PACKED. */
1187 gfc_get_nodesc_array_type (tree etype
, gfc_array_spec
* as
, gfc_packed packed
)
1200 mpz_init_set_ui (offset
, 0);
1201 mpz_init_set_ui (stride
, 1);
1204 /* We don't use build_array_type because this does not include include
1205 lang-specific information (i.e. the bounds of the array) when checking
1207 type
= make_node (ARRAY_TYPE
);
1209 GFC_ARRAY_TYPE_P (type
) = 1;
1210 TYPE_LANG_SPECIFIC (type
) = (struct lang_type
*)
1211 ggc_alloc_cleared (sizeof (struct lang_type
));
1213 known_stride
= (packed
!= PACKED_NO
);
1215 for (n
= 0; n
< as
->rank
; n
++)
1217 /* Fill in the stride and bound components of the type. */
1219 tmp
= gfc_conv_mpz_to_tree (stride
, gfc_index_integer_kind
);
1222 GFC_TYPE_ARRAY_STRIDE (type
, n
) = tmp
;
1224 expr
= as
->lower
[n
];
1225 if (expr
->expr_type
== EXPR_CONSTANT
)
1227 tmp
= gfc_conv_mpz_to_tree (expr
->value
.integer
,
1228 gfc_index_integer_kind
);
1235 GFC_TYPE_ARRAY_LBOUND (type
, n
) = tmp
;
1239 /* Calculate the offset. */
1240 mpz_mul (delta
, stride
, as
->lower
[n
]->value
.integer
);
1241 mpz_sub (offset
, offset
, delta
);
1246 expr
= as
->upper
[n
];
1247 if (expr
&& expr
->expr_type
== EXPR_CONSTANT
)
1249 tmp
= gfc_conv_mpz_to_tree (expr
->value
.integer
,
1250 gfc_index_integer_kind
);
1257 GFC_TYPE_ARRAY_UBOUND (type
, n
) = tmp
;
1261 /* Calculate the stride. */
1262 mpz_sub (delta
, as
->upper
[n
]->value
.integer
,
1263 as
->lower
[n
]->value
.integer
);
1264 mpz_add_ui (delta
, delta
, 1);
1265 mpz_mul (stride
, stride
, delta
);
1268 /* Only the first stride is known for partial packed arrays. */
1269 if (packed
== PACKED_NO
|| packed
== PACKED_PARTIAL
)
1275 GFC_TYPE_ARRAY_OFFSET (type
) =
1276 gfc_conv_mpz_to_tree (offset
, gfc_index_integer_kind
);
1279 GFC_TYPE_ARRAY_OFFSET (type
) = NULL_TREE
;
1283 GFC_TYPE_ARRAY_SIZE (type
) =
1284 gfc_conv_mpz_to_tree (stride
, gfc_index_integer_kind
);
1287 GFC_TYPE_ARRAY_SIZE (type
) = NULL_TREE
;
1289 GFC_TYPE_ARRAY_RANK (type
) = as
->rank
;
1290 GFC_TYPE_ARRAY_DTYPE (type
) = NULL_TREE
;
1291 range
= build_range_type (gfc_array_index_type
, gfc_index_zero_node
,
1293 /* TODO: use main type if it is unbounded. */
1294 GFC_TYPE_ARRAY_DATAPTR_TYPE (type
) =
1295 build_pointer_type (build_array_type (etype
, range
));
1299 mpz_sub_ui (stride
, stride
, 1);
1300 range
= gfc_conv_mpz_to_tree (stride
, gfc_index_integer_kind
);
1305 range
= build_range_type (gfc_array_index_type
, gfc_index_zero_node
, range
);
1306 TYPE_DOMAIN (type
) = range
;
1308 build_pointer_type (etype
);
1309 TREE_TYPE (type
) = etype
;
1317 if (packed
!= PACKED_STATIC
|| !known_stride
)
1319 /* For dummy arrays and automatic (heap allocated) arrays we
1320 want a pointer to the array. */
1321 type
= build_pointer_type (type
);
1322 GFC_ARRAY_TYPE_P (type
) = 1;
1323 TYPE_LANG_SPECIFIC (type
) = TYPE_LANG_SPECIFIC (TREE_TYPE (type
));
1328 /* Return or create the base type for an array descriptor. */
1331 gfc_get_array_descriptor_base (int dimen
)
1333 tree fat_type
, fieldlist
, decl
, arraytype
;
1334 char name
[16 + GFC_RANK_DIGITS
+ 1];
1336 gcc_assert (dimen
>= 1 && dimen
<= GFC_MAX_DIMENSIONS
);
1337 if (gfc_array_descriptor_base
[dimen
- 1])
1338 return gfc_array_descriptor_base
[dimen
- 1];
1340 /* Build the type node. */
1341 fat_type
= make_node (RECORD_TYPE
);
1343 sprintf (name
, "array_descriptor" GFC_RANK_PRINTF_FORMAT
, dimen
);
1344 TYPE_NAME (fat_type
) = get_identifier (name
);
1346 /* Add the data member as the first element of the descriptor. */
1347 decl
= build_decl (FIELD_DECL
, get_identifier ("data"), ptr_type_node
);
1349 DECL_CONTEXT (decl
) = fat_type
;
1352 /* Add the base component. */
1353 decl
= build_decl (FIELD_DECL
, get_identifier ("offset"),
1354 gfc_array_index_type
);
1355 DECL_CONTEXT (decl
) = fat_type
;
1356 fieldlist
= chainon (fieldlist
, decl
);
1358 /* Add the dtype component. */
1359 decl
= build_decl (FIELD_DECL
, get_identifier ("dtype"),
1360 gfc_array_index_type
);
1361 DECL_CONTEXT (decl
) = fat_type
;
1362 fieldlist
= chainon (fieldlist
, decl
);
1364 /* Build the array type for the stride and bound components. */
1366 build_array_type (gfc_get_desc_dim_type (),
1367 build_range_type (gfc_array_index_type
,
1368 gfc_index_zero_node
,
1369 gfc_rank_cst
[dimen
- 1]));
1371 decl
= build_decl (FIELD_DECL
, get_identifier ("dim"), arraytype
);
1372 DECL_CONTEXT (decl
) = fat_type
;
1373 fieldlist
= chainon (fieldlist
, decl
);
1375 /* Finish off the type. */
1376 TYPE_FIELDS (fat_type
) = fieldlist
;
1378 gfc_finish_type (fat_type
);
1380 gfc_array_descriptor_base
[dimen
- 1] = fat_type
;
1384 /* Build an array (descriptor) type with given bounds. */
1387 gfc_get_array_type_bounds (tree etype
, int dimen
, tree
* lbound
,
1388 tree
* ubound
, int packed
)
1390 char name
[8 + GFC_RANK_DIGITS
+ GFC_MAX_SYMBOL_LEN
];
1391 tree fat_type
, base_type
, arraytype
, lower
, upper
, stride
, tmp
;
1392 const char *typename
;
1395 base_type
= gfc_get_array_descriptor_base (dimen
);
1396 fat_type
= build_variant_type_copy (base_type
);
1398 tmp
= TYPE_NAME (etype
);
1399 if (tmp
&& TREE_CODE (tmp
) == TYPE_DECL
)
1400 tmp
= DECL_NAME (tmp
);
1402 typename
= IDENTIFIER_POINTER (tmp
);
1404 typename
= "unknown";
1405 sprintf (name
, "array" GFC_RANK_PRINTF_FORMAT
"_%.*s", dimen
,
1406 GFC_MAX_SYMBOL_LEN
, typename
);
1407 TYPE_NAME (fat_type
) = get_identifier (name
);
1409 GFC_DESCRIPTOR_TYPE_P (fat_type
) = 1;
1410 TYPE_LANG_SPECIFIC (fat_type
) = (struct lang_type
*)
1411 ggc_alloc_cleared (sizeof (struct lang_type
));
1413 GFC_TYPE_ARRAY_RANK (fat_type
) = dimen
;
1414 GFC_TYPE_ARRAY_DTYPE (fat_type
) = NULL_TREE
;
1416 /* Build an array descriptor record type. */
1418 stride
= gfc_index_one_node
;
1421 for (n
= 0; n
< dimen
; n
++)
1423 GFC_TYPE_ARRAY_STRIDE (fat_type
, n
) = stride
;
1430 if (lower
!= NULL_TREE
)
1432 if (INTEGER_CST_P (lower
))
1433 GFC_TYPE_ARRAY_LBOUND (fat_type
, n
) = lower
;
1439 if (upper
!= NULL_TREE
)
1441 if (INTEGER_CST_P (upper
))
1442 GFC_TYPE_ARRAY_UBOUND (fat_type
, n
) = upper
;
1447 if (upper
!= NULL_TREE
&& lower
!= NULL_TREE
&& stride
!= NULL_TREE
)
1449 tmp
= fold_build2 (MINUS_EXPR
, gfc_array_index_type
, upper
, lower
);
1450 tmp
= fold_build2 (PLUS_EXPR
, gfc_array_index_type
, tmp
,
1451 gfc_index_one_node
);
1453 fold_build2 (MULT_EXPR
, gfc_array_index_type
, tmp
, stride
);
1454 /* Check the folding worked. */
1455 gcc_assert (INTEGER_CST_P (stride
));
1460 GFC_TYPE_ARRAY_SIZE (fat_type
) = stride
;
1462 /* TODO: known offsets for descriptors. */
1463 GFC_TYPE_ARRAY_OFFSET (fat_type
) = NULL_TREE
;
1465 /* We define data as an unknown size array. Much better than doing
1466 pointer arithmetic. */
1468 build_array_type (etype
, gfc_array_range_type
);
1469 arraytype
= build_pointer_type (arraytype
);
1470 GFC_TYPE_ARRAY_DATAPTR_TYPE (fat_type
) = arraytype
;
1475 /* Build a pointer type. This function is called from gfc_sym_type(). */
1478 gfc_build_pointer_type (gfc_symbol
* sym
, tree type
)
1480 /* Array pointer types aren't actually pointers. */
1481 if (sym
->attr
.dimension
)
1484 return build_pointer_type (type
);
1487 /* Return the type for a symbol. Special handling is required for character
1488 types to get the correct level of indirection.
1489 For functions return the return type.
1490 For subroutines return void_type_node.
1491 Calling this multiple times for the same symbol should be avoided,
1492 especially for character and array types. */
1495 gfc_sym_type (gfc_symbol
* sym
)
1500 if (sym
->attr
.flavor
== FL_PROCEDURE
&& !sym
->attr
.function
)
1501 return void_type_node
;
1503 /* In the case of a function the fake result variable may have a
1504 type different from the function type, so don't return early in
1506 if (sym
->backend_decl
&& !sym
->attr
.function
)
1507 return TREE_TYPE (sym
->backend_decl
);
1509 type
= gfc_typenode_for_spec (&sym
->ts
);
1511 if (sym
->attr
.dummy
&& !sym
->attr
.function
&& !sym
->attr
.value
)
1516 if (sym
->attr
.dimension
)
1518 if (gfc_is_nodesc_array (sym
))
1520 /* If this is a character argument of unknown length, just use the
1522 if (sym
->ts
.type
!= BT_CHARACTER
1523 || !(sym
->attr
.dummy
|| sym
->attr
.function
)
1524 || sym
->ts
.cl
->backend_decl
)
1526 type
= gfc_get_nodesc_array_type (type
, sym
->as
,
1534 type
= gfc_build_array_type (type
, sym
->as
);
1539 if (sym
->attr
.allocatable
|| sym
->attr
.pointer
)
1540 type
= gfc_build_pointer_type (sym
, type
);
1543 /* We currently pass all parameters by reference.
1544 See f95_get_function_decl. For dummy function parameters return the
1548 /* We must use pointer types for potentially absent variables. The
1549 optimizers assume a reference type argument is never NULL. */
1550 if (sym
->attr
.optional
|| sym
->ns
->proc_name
->attr
.entry_master
)
1551 type
= build_pointer_type (type
);
1553 type
= build_reference_type (type
);
1559 /* Layout and output debug info for a record type. */
1562 gfc_finish_type (tree type
)
1566 decl
= build_decl (TYPE_DECL
, NULL_TREE
, type
);
1567 TYPE_STUB_DECL (type
) = decl
;
1569 rest_of_type_compilation (type
, 1);
1570 rest_of_decl_compilation (decl
, 1, 0);
1573 /* Add a field of given NAME and TYPE to the context of a UNION_TYPE
1574 or RECORD_TYPE pointed to by STYPE. The new field is chained
1575 to the fieldlist pointed to by FIELDLIST.
1577 Returns a pointer to the new field. */
1580 gfc_add_field_to_struct (tree
*fieldlist
, tree context
,
1581 tree name
, tree type
)
1585 decl
= build_decl (FIELD_DECL
, name
, type
);
1587 DECL_CONTEXT (decl
) = context
;
1588 DECL_INITIAL (decl
) = 0;
1589 DECL_ALIGN (decl
) = 0;
1590 DECL_USER_ALIGN (decl
) = 0;
1591 TREE_CHAIN (decl
) = NULL_TREE
;
1592 *fieldlist
= chainon (*fieldlist
, decl
);
1598 /* Copy the backend_decl and component backend_decls if
1599 the two derived type symbols are "equal", as described
1600 in 4.4.2 and resolved by gfc_compare_derived_types. */
1603 copy_dt_decls_ifequal (gfc_symbol
*from
, gfc_symbol
*to
)
1605 gfc_component
*to_cm
;
1606 gfc_component
*from_cm
;
1608 if (from
->backend_decl
== NULL
1609 || !gfc_compare_derived_types (from
, to
))
1612 to
->backend_decl
= from
->backend_decl
;
1614 to_cm
= to
->components
;
1615 from_cm
= from
->components
;
1617 /* Copy the component declarations. If a component is itself
1618 a derived type, we need a copy of its component declarations.
1619 This is done by recursing into gfc_get_derived_type and
1620 ensures that the component's component declarations have
1621 been built. If it is a character, we need the character
1623 for (; to_cm
; to_cm
= to_cm
->next
, from_cm
= from_cm
->next
)
1625 to_cm
->backend_decl
= from_cm
->backend_decl
;
1626 if (!from_cm
->pointer
&& from_cm
->ts
.type
== BT_DERIVED
)
1627 gfc_get_derived_type (to_cm
->ts
.derived
);
1629 else if (from_cm
->ts
.type
== BT_CHARACTER
)
1630 to_cm
->ts
.cl
->backend_decl
= from_cm
->ts
.cl
->backend_decl
;
1637 /* Build a tree node for a derived type. If there are equal
1638 derived types, with different local names, these are built
1639 at the same time. If an equal derived type has been built
1640 in a parent namespace, this is used. */
1643 gfc_get_derived_type (gfc_symbol
* derived
)
1645 tree typenode
= NULL
, field
= NULL
, field_type
= NULL
, fieldlist
= NULL
;
1649 gcc_assert (derived
&& derived
->attr
.flavor
== FL_DERIVED
);
1651 /* See if it's one of the iso_c_binding derived types. */
1652 if (derived
->attr
.is_iso_c
== 1)
1654 derived
->backend_decl
= ptr_type_node
;
1655 derived
->ts
.kind
= gfc_index_integer_kind
;
1656 derived
->ts
.type
= BT_INTEGER
;
1657 /* Set the f90_type to BT_VOID as a way to recognize something of type
1658 BT_INTEGER that needs to fit a void * for the purpose of the
1659 iso_c_binding derived types. */
1660 derived
->ts
.f90_type
= BT_VOID
;
1661 return derived
->backend_decl
;
1664 /* derived->backend_decl != 0 means we saw it before, but its
1665 components' backend_decl may have not been built. */
1666 if (derived
->backend_decl
)
1668 /* Its components' backend_decl have been built. */
1669 if (TYPE_FIELDS (derived
->backend_decl
))
1670 return derived
->backend_decl
;
1672 typenode
= derived
->backend_decl
;
1677 /* We see this derived type first time, so build the type node. */
1678 typenode
= make_node (RECORD_TYPE
);
1679 TYPE_NAME (typenode
) = get_identifier (derived
->name
);
1680 TYPE_PACKED (typenode
) = gfc_option
.flag_pack_derived
;
1681 derived
->backend_decl
= typenode
;
1684 /* Go through the derived type components, building them as
1685 necessary. The reason for doing this now is that it is
1686 possible to recurse back to this derived type through a
1687 pointer component (PR24092). If this happens, the fields
1688 will be built and so we can return the type. */
1689 for (c
= derived
->components
; c
; c
= c
->next
)
1691 if (c
->ts
.type
!= BT_DERIVED
)
1694 if (!c
->pointer
|| c
->ts
.derived
->backend_decl
== NULL
)
1695 c
->ts
.derived
->backend_decl
= gfc_get_derived_type (c
->ts
.derived
);
1697 if (c
->ts
.derived
&& c
->ts
.derived
->attr
.is_iso_c
)
1699 /* Need to copy the modified ts from the derived type. The
1700 typespec was modified because C_PTR/C_FUNPTR are translated
1701 into (void *) from derived types. */
1702 c
->ts
.type
= c
->ts
.derived
->ts
.type
;
1703 c
->ts
.kind
= c
->ts
.derived
->ts
.kind
;
1704 c
->ts
.f90_type
= c
->ts
.derived
->ts
.f90_type
;
1708 if (TYPE_FIELDS (derived
->backend_decl
))
1709 return derived
->backend_decl
;
1711 /* Build the type member list. Install the newly created RECORD_TYPE
1712 node as DECL_CONTEXT of each FIELD_DECL. */
1713 fieldlist
= NULL_TREE
;
1714 for (c
= derived
->components
; c
; c
= c
->next
)
1716 if (c
->ts
.type
== BT_DERIVED
)
1717 field_type
= c
->ts
.derived
->backend_decl
;
1720 if (c
->ts
.type
== BT_CHARACTER
)
1722 /* Evaluate the string length. */
1723 gfc_conv_const_charlen (c
->ts
.cl
);
1724 gcc_assert (c
->ts
.cl
->backend_decl
);
1727 field_type
= gfc_typenode_for_spec (&c
->ts
);
1730 /* This returns an array descriptor type. Initialization may be
1734 if (c
->pointer
|| c
->allocatable
)
1736 /* Pointers to arrays aren't actually pointer types. The
1737 descriptors are separate, but the data is common. */
1738 field_type
= gfc_build_array_type (field_type
, c
->as
);
1741 field_type
= gfc_get_nodesc_array_type (field_type
, c
->as
,
1744 else if (c
->pointer
)
1745 field_type
= build_pointer_type (field_type
);
1747 field
= gfc_add_field_to_struct (&fieldlist
, typenode
,
1748 get_identifier (c
->name
),
1751 DECL_PACKED (field
) |= TYPE_PACKED (typenode
);
1754 if (!c
->backend_decl
)
1755 c
->backend_decl
= field
;
1758 /* Now we have the final fieldlist. Record it, then lay out the
1759 derived type, including the fields. */
1760 TYPE_FIELDS (typenode
) = fieldlist
;
1762 gfc_finish_type (typenode
);
1764 derived
->backend_decl
= typenode
;
1766 /* Add this backend_decl to all the other, equal derived types. */
1767 for (dt
= gfc_derived_types
; dt
; dt
= dt
->next
)
1768 copy_dt_decls_ifequal (derived
, dt
->derived
);
1770 return derived
->backend_decl
;
1775 gfc_return_by_reference (gfc_symbol
* sym
)
1777 if (!sym
->attr
.function
)
1780 if (sym
->attr
.dimension
)
1783 if (sym
->ts
.type
== BT_CHARACTER
)
1786 /* Possibly return complex numbers by reference for g77 compatibility.
1787 We don't do this for calls to intrinsics (as the library uses the
1788 -fno-f2c calling convention), nor for calls to functions which always
1789 require an explicit interface, as no compatibility problems can
1791 if (gfc_option
.flag_f2c
1792 && sym
->ts
.type
== BT_COMPLEX
1793 && !sym
->attr
.intrinsic
&& !sym
->attr
.always_explicit
)
1800 gfc_get_mixed_entry_union (gfc_namespace
*ns
)
1805 char name
[GFC_MAX_SYMBOL_LEN
+ 1];
1806 gfc_entry_list
*el
, *el2
;
1808 gcc_assert (ns
->proc_name
->attr
.mixed_entry_master
);
1809 gcc_assert (memcmp (ns
->proc_name
->name
, "master.", 7) == 0);
1811 snprintf (name
, GFC_MAX_SYMBOL_LEN
, "munion.%s", ns
->proc_name
->name
+ 7);
1813 /* Build the type node. */
1814 type
= make_node (UNION_TYPE
);
1816 TYPE_NAME (type
) = get_identifier (name
);
1819 for (el
= ns
->entries
; el
; el
= el
->next
)
1821 /* Search for duplicates. */
1822 for (el2
= ns
->entries
; el2
!= el
; el2
= el2
->next
)
1823 if (el2
->sym
->result
== el
->sym
->result
)
1828 decl
= build_decl (FIELD_DECL
,
1829 get_identifier (el
->sym
->result
->name
),
1830 gfc_sym_type (el
->sym
->result
));
1831 DECL_CONTEXT (decl
) = type
;
1832 fieldlist
= chainon (fieldlist
, decl
);
1836 /* Finish off the type. */
1837 TYPE_FIELDS (type
) = fieldlist
;
1839 gfc_finish_type (type
);
1844 gfc_get_function_type (gfc_symbol
* sym
)
1848 gfc_formal_arglist
*f
;
1851 int alternate_return
;
1853 /* Make sure this symbol is a function or a subroutine. */
1854 gcc_assert (sym
->attr
.flavor
== FL_PROCEDURE
);
1856 if (sym
->backend_decl
)
1857 return TREE_TYPE (sym
->backend_decl
);
1860 alternate_return
= 0;
1861 typelist
= NULL_TREE
;
1863 if (sym
->attr
.entry_master
)
1865 /* Additional parameter for selecting an entry point. */
1866 typelist
= gfc_chainon_list (typelist
, gfc_array_index_type
);
1869 /* Some functions we use an extra parameter for the return value. */
1870 if (gfc_return_by_reference (sym
))
1877 if (arg
->ts
.type
== BT_CHARACTER
)
1878 gfc_conv_const_charlen (arg
->ts
.cl
);
1880 type
= gfc_sym_type (arg
);
1881 if (arg
->ts
.type
== BT_COMPLEX
1882 || arg
->attr
.dimension
1883 || arg
->ts
.type
== BT_CHARACTER
)
1884 type
= build_reference_type (type
);
1886 typelist
= gfc_chainon_list (typelist
, type
);
1887 if (arg
->ts
.type
== BT_CHARACTER
)
1888 typelist
= gfc_chainon_list (typelist
, gfc_charlen_type_node
);
1891 /* Build the argument types for the function. */
1892 for (f
= sym
->formal
; f
; f
= f
->next
)
1897 /* Evaluate constant character lengths here so that they can be
1898 included in the type. */
1899 if (arg
->ts
.type
== BT_CHARACTER
)
1900 gfc_conv_const_charlen (arg
->ts
.cl
);
1902 if (arg
->attr
.flavor
== FL_PROCEDURE
)
1904 type
= gfc_get_function_type (arg
);
1905 type
= build_pointer_type (type
);
1908 type
= gfc_sym_type (arg
);
1910 /* Parameter Passing Convention
1912 We currently pass all parameters by reference.
1913 Parameters with INTENT(IN) could be passed by value.
1914 The problem arises if a function is called via an implicit
1915 prototype. In this situation the INTENT is not known.
1916 For this reason all parameters to global functions must be
1917 passed by reference. Passing by value would potentially
1918 generate bad code. Worse there would be no way of telling that
1919 this code was bad, except that it would give incorrect results.
1921 Contained procedures could pass by value as these are never
1922 used without an explicit interface, and cannot be passed as
1923 actual parameters for a dummy procedure. */
1924 if (arg
->ts
.type
== BT_CHARACTER
)
1926 typelist
= gfc_chainon_list (typelist
, type
);
1930 if (sym
->attr
.subroutine
)
1931 alternate_return
= 1;
1935 /* Add hidden string length parameters. */
1937 typelist
= gfc_chainon_list (typelist
, gfc_charlen_type_node
);
1940 typelist
= gfc_chainon_list (typelist
, void_type_node
);
1942 if (alternate_return
)
1943 type
= integer_type_node
;
1944 else if (!sym
->attr
.function
|| gfc_return_by_reference (sym
))
1945 type
= void_type_node
;
1946 else if (sym
->attr
.mixed_entry_master
)
1947 type
= gfc_get_mixed_entry_union (sym
->ns
);
1948 else if (gfc_option
.flag_f2c
1949 && sym
->ts
.type
== BT_REAL
1950 && sym
->ts
.kind
== gfc_default_real_kind
1951 && !sym
->attr
.always_explicit
)
1953 /* Special case: f2c calling conventions require that (scalar)
1954 default REAL functions return the C type double instead. f2c
1955 compatibility is only an issue with functions that don't
1956 require an explicit interface, as only these could be
1957 implemented in Fortran 77. */
1958 sym
->ts
.kind
= gfc_default_double_kind
;
1959 type
= gfc_typenode_for_spec (&sym
->ts
);
1960 sym
->ts
.kind
= gfc_default_real_kind
;
1963 type
= gfc_sym_type (sym
);
1965 type
= build_function_type (type
, typelist
);
1970 /* Language hooks for middle-end access to type nodes. */
1972 /* Return an integer type with BITS bits of precision,
1973 that is unsigned if UNSIGNEDP is nonzero, otherwise signed. */
1976 gfc_type_for_size (unsigned bits
, int unsignedp
)
1981 for (i
= 0; i
<= MAX_INT_KINDS
; ++i
)
1983 tree type
= gfc_integer_types
[i
];
1984 if (type
&& bits
== TYPE_PRECISION (type
))
1988 /* Handle TImode as a special case because it is used by some backends
1989 (eg. ARM) even though it is not available for normal use. */
1990 #if HOST_BITS_PER_WIDE_INT >= 64
1991 if (bits
== TYPE_PRECISION (intTI_type_node
))
1992 return intTI_type_node
;
1997 if (bits
== TYPE_PRECISION (unsigned_intQI_type_node
))
1998 return unsigned_intQI_type_node
;
1999 if (bits
== TYPE_PRECISION (unsigned_intHI_type_node
))
2000 return unsigned_intHI_type_node
;
2001 if (bits
== TYPE_PRECISION (unsigned_intSI_type_node
))
2002 return unsigned_intSI_type_node
;
2003 if (bits
== TYPE_PRECISION (unsigned_intDI_type_node
))
2004 return unsigned_intDI_type_node
;
2005 if (bits
== TYPE_PRECISION (unsigned_intTI_type_node
))
2006 return unsigned_intTI_type_node
;
2012 /* Return a data type that has machine mode MODE. If the mode is an
2013 integer, then UNSIGNEDP selects between signed and unsigned types. */
2016 gfc_type_for_mode (enum machine_mode mode
, int unsignedp
)
2021 if (GET_MODE_CLASS (mode
) == MODE_FLOAT
)
2022 base
= gfc_real_types
;
2023 else if (GET_MODE_CLASS (mode
) == MODE_COMPLEX_FLOAT
)
2024 base
= gfc_complex_types
;
2025 else if (SCALAR_INT_MODE_P (mode
))
2026 return gfc_type_for_size (GET_MODE_PRECISION (mode
), unsignedp
);
2027 else if (VECTOR_MODE_P (mode
))
2029 enum machine_mode inner_mode
= GET_MODE_INNER (mode
);
2030 tree inner_type
= gfc_type_for_mode (inner_mode
, unsignedp
);
2031 if (inner_type
!= NULL_TREE
)
2032 return build_vector_type_for_mode (inner_type
, mode
);
2038 for (i
= 0; i
<= MAX_REAL_KINDS
; ++i
)
2040 tree type
= base
[i
];
2041 if (type
&& mode
== TYPE_MODE (type
))
2048 #include "gt-fortran-trans-types.h"