install.texi (mips-*-*): Recommend binutils 2.18.
[official-gcc.git] / gcc / simplify-rtx.c
blobf8756040ce0f17d6e6162ecf474f5a08d5268d6e
1 /* RTL simplification functions for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "target.h"
43 /* Simplification and canonicalization of RTL. */
45 /* Much code operates on (low, high) pairs; the low value is an
46 unsigned wide int, the high value a signed wide int. We
47 occasionally need to sign extend from low to high as if low were a
48 signed wide int. */
49 #define HWI_SIGN_EXTEND(low) \
50 ((((HOST_WIDE_INT) low) < 0) ? ((HOST_WIDE_INT) -1) : ((HOST_WIDE_INT) 0))
52 static rtx neg_const_int (enum machine_mode, const_rtx);
53 static bool plus_minus_operand_p (const_rtx);
54 static bool simplify_plus_minus_op_data_cmp (rtx, rtx);
55 static rtx simplify_plus_minus (enum rtx_code, enum machine_mode, rtx, rtx);
56 static rtx simplify_immed_subreg (enum machine_mode, rtx, enum machine_mode,
57 unsigned int);
58 static rtx simplify_associative_operation (enum rtx_code, enum machine_mode,
59 rtx, rtx);
60 static rtx simplify_relational_operation_1 (enum rtx_code, enum machine_mode,
61 enum machine_mode, rtx, rtx);
62 static rtx simplify_unary_operation_1 (enum rtx_code, enum machine_mode, rtx);
63 static rtx simplify_binary_operation_1 (enum rtx_code, enum machine_mode,
64 rtx, rtx, rtx, rtx);
66 /* Negate a CONST_INT rtx, truncating (because a conversion from a
67 maximally negative number can overflow). */
68 static rtx
69 neg_const_int (enum machine_mode mode, const_rtx i)
71 return gen_int_mode (- INTVAL (i), mode);
74 /* Test whether expression, X, is an immediate constant that represents
75 the most significant bit of machine mode MODE. */
77 bool
78 mode_signbit_p (enum machine_mode mode, const_rtx x)
80 unsigned HOST_WIDE_INT val;
81 unsigned int width;
83 if (GET_MODE_CLASS (mode) != MODE_INT)
84 return false;
86 width = GET_MODE_BITSIZE (mode);
87 if (width == 0)
88 return false;
90 if (width <= HOST_BITS_PER_WIDE_INT
91 && GET_CODE (x) == CONST_INT)
92 val = INTVAL (x);
93 else if (width <= 2 * HOST_BITS_PER_WIDE_INT
94 && GET_CODE (x) == CONST_DOUBLE
95 && CONST_DOUBLE_LOW (x) == 0)
97 val = CONST_DOUBLE_HIGH (x);
98 width -= HOST_BITS_PER_WIDE_INT;
100 else
101 return false;
103 if (width < HOST_BITS_PER_WIDE_INT)
104 val &= ((unsigned HOST_WIDE_INT) 1 << width) - 1;
105 return val == ((unsigned HOST_WIDE_INT) 1 << (width - 1));
108 /* Make a binary operation by properly ordering the operands and
109 seeing if the expression folds. */
112 simplify_gen_binary (enum rtx_code code, enum machine_mode mode, rtx op0,
113 rtx op1)
115 rtx tem;
117 /* If this simplifies, do it. */
118 tem = simplify_binary_operation (code, mode, op0, op1);
119 if (tem)
120 return tem;
122 /* Put complex operands first and constants second if commutative. */
123 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
124 && swap_commutative_operands_p (op0, op1))
125 tem = op0, op0 = op1, op1 = tem;
127 return gen_rtx_fmt_ee (code, mode, op0, op1);
130 /* If X is a MEM referencing the constant pool, return the real value.
131 Otherwise return X. */
133 avoid_constant_pool_reference (rtx x)
135 rtx c, tmp, addr;
136 enum machine_mode cmode;
137 HOST_WIDE_INT offset = 0;
139 switch (GET_CODE (x))
141 case MEM:
142 break;
144 case FLOAT_EXTEND:
145 /* Handle float extensions of constant pool references. */
146 tmp = XEXP (x, 0);
147 c = avoid_constant_pool_reference (tmp);
148 if (c != tmp && GET_CODE (c) == CONST_DOUBLE)
150 REAL_VALUE_TYPE d;
152 REAL_VALUE_FROM_CONST_DOUBLE (d, c);
153 return CONST_DOUBLE_FROM_REAL_VALUE (d, GET_MODE (x));
155 return x;
157 default:
158 return x;
161 if (GET_MODE (x) == BLKmode)
162 return x;
164 addr = XEXP (x, 0);
166 /* Call target hook to avoid the effects of -fpic etc.... */
167 addr = targetm.delegitimize_address (addr);
169 /* Split the address into a base and integer offset. */
170 if (GET_CODE (addr) == CONST
171 && GET_CODE (XEXP (addr, 0)) == PLUS
172 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
174 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
175 addr = XEXP (XEXP (addr, 0), 0);
178 if (GET_CODE (addr) == LO_SUM)
179 addr = XEXP (addr, 1);
181 /* If this is a constant pool reference, we can turn it into its
182 constant and hope that simplifications happen. */
183 if (GET_CODE (addr) == SYMBOL_REF
184 && CONSTANT_POOL_ADDRESS_P (addr))
186 c = get_pool_constant (addr);
187 cmode = get_pool_mode (addr);
189 /* If we're accessing the constant in a different mode than it was
190 originally stored, attempt to fix that up via subreg simplifications.
191 If that fails we have no choice but to return the original memory. */
192 if (offset != 0 || cmode != GET_MODE (x))
194 rtx tem = simplify_subreg (GET_MODE (x), c, cmode, offset);
195 if (tem && CONSTANT_P (tem))
196 return tem;
198 else
199 return c;
202 return x;
205 /* Make a unary operation by first seeing if it folds and otherwise making
206 the specified operation. */
209 simplify_gen_unary (enum rtx_code code, enum machine_mode mode, rtx op,
210 enum machine_mode op_mode)
212 rtx tem;
214 /* If this simplifies, use it. */
215 if ((tem = simplify_unary_operation (code, mode, op, op_mode)) != 0)
216 return tem;
218 return gen_rtx_fmt_e (code, mode, op);
221 /* Likewise for ternary operations. */
224 simplify_gen_ternary (enum rtx_code code, enum machine_mode mode,
225 enum machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
227 rtx tem;
229 /* If this simplifies, use it. */
230 if (0 != (tem = simplify_ternary_operation (code, mode, op0_mode,
231 op0, op1, op2)))
232 return tem;
234 return gen_rtx_fmt_eee (code, mode, op0, op1, op2);
237 /* Likewise, for relational operations.
238 CMP_MODE specifies mode comparison is done in. */
241 simplify_gen_relational (enum rtx_code code, enum machine_mode mode,
242 enum machine_mode cmp_mode, rtx op0, rtx op1)
244 rtx tem;
246 if (0 != (tem = simplify_relational_operation (code, mode, cmp_mode,
247 op0, op1)))
248 return tem;
250 return gen_rtx_fmt_ee (code, mode, op0, op1);
253 /* Replace all occurrences of OLD_RTX in X with NEW_RTX and try to simplify the
254 resulting RTX. Return a new RTX which is as simplified as possible. */
257 simplify_replace_rtx (rtx x, const_rtx old_rtx, rtx new_rtx)
259 enum rtx_code code = GET_CODE (x);
260 enum machine_mode mode = GET_MODE (x);
261 enum machine_mode op_mode;
262 rtx op0, op1, op2;
264 /* If X is OLD_RTX, return NEW_RTX. Otherwise, if this is an expression, try
265 to build a new expression substituting recursively. If we can't do
266 anything, return our input. */
268 if (x == old_rtx)
269 return new_rtx;
271 switch (GET_RTX_CLASS (code))
273 case RTX_UNARY:
274 op0 = XEXP (x, 0);
275 op_mode = GET_MODE (op0);
276 op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
277 if (op0 == XEXP (x, 0))
278 return x;
279 return simplify_gen_unary (code, mode, op0, op_mode);
281 case RTX_BIN_ARITH:
282 case RTX_COMM_ARITH:
283 op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
284 op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
285 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
286 return x;
287 return simplify_gen_binary (code, mode, op0, op1);
289 case RTX_COMPARE:
290 case RTX_COMM_COMPARE:
291 op0 = XEXP (x, 0);
292 op1 = XEXP (x, 1);
293 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
294 op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
295 op1 = simplify_replace_rtx (op1, old_rtx, new_rtx);
296 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
297 return x;
298 return simplify_gen_relational (code, mode, op_mode, op0, op1);
300 case RTX_TERNARY:
301 case RTX_BITFIELD_OPS:
302 op0 = XEXP (x, 0);
303 op_mode = GET_MODE (op0);
304 op0 = simplify_replace_rtx (op0, old_rtx, new_rtx);
305 op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
306 op2 = simplify_replace_rtx (XEXP (x, 2), old_rtx, new_rtx);
307 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
308 return x;
309 if (op_mode == VOIDmode)
310 op_mode = GET_MODE (op0);
311 return simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
313 case RTX_EXTRA:
314 /* The only case we try to handle is a SUBREG. */
315 if (code == SUBREG)
317 op0 = simplify_replace_rtx (SUBREG_REG (x), old_rtx, new_rtx);
318 if (op0 == SUBREG_REG (x))
319 return x;
320 op0 = simplify_gen_subreg (GET_MODE (x), op0,
321 GET_MODE (SUBREG_REG (x)),
322 SUBREG_BYTE (x));
323 return op0 ? op0 : x;
325 break;
327 case RTX_OBJ:
328 if (code == MEM)
330 op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
331 if (op0 == XEXP (x, 0))
332 return x;
333 return replace_equiv_address_nv (x, op0);
335 else if (code == LO_SUM)
337 op0 = simplify_replace_rtx (XEXP (x, 0), old_rtx, new_rtx);
338 op1 = simplify_replace_rtx (XEXP (x, 1), old_rtx, new_rtx);
340 /* (lo_sum (high x) x) -> x */
341 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
342 return op1;
344 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
345 return x;
346 return gen_rtx_LO_SUM (mode, op0, op1);
348 else if (code == REG)
350 if (rtx_equal_p (x, old_rtx))
351 return new_rtx;
353 break;
355 default:
356 break;
358 return x;
361 /* Try to simplify a unary operation CODE whose output mode is to be
362 MODE with input operand OP whose mode was originally OP_MODE.
363 Return zero if no simplification can be made. */
365 simplify_unary_operation (enum rtx_code code, enum machine_mode mode,
366 rtx op, enum machine_mode op_mode)
368 rtx trueop, tem;
370 if (GET_CODE (op) == CONST)
371 op = XEXP (op, 0);
373 trueop = avoid_constant_pool_reference (op);
375 tem = simplify_const_unary_operation (code, mode, trueop, op_mode);
376 if (tem)
377 return tem;
379 return simplify_unary_operation_1 (code, mode, op);
382 /* Perform some simplifications we can do even if the operands
383 aren't constant. */
384 static rtx
385 simplify_unary_operation_1 (enum rtx_code code, enum machine_mode mode, rtx op)
387 enum rtx_code reversed;
388 rtx temp;
390 switch (code)
392 case NOT:
393 /* (not (not X)) == X. */
394 if (GET_CODE (op) == NOT)
395 return XEXP (op, 0);
397 /* (not (eq X Y)) == (ne X Y), etc. if BImode or the result of the
398 comparison is all ones. */
399 if (COMPARISON_P (op)
400 && (mode == BImode || STORE_FLAG_VALUE == -1)
401 && ((reversed = reversed_comparison_code (op, NULL_RTX)) != UNKNOWN))
402 return simplify_gen_relational (reversed, mode, VOIDmode,
403 XEXP (op, 0), XEXP (op, 1));
405 /* (not (plus X -1)) can become (neg X). */
406 if (GET_CODE (op) == PLUS
407 && XEXP (op, 1) == constm1_rtx)
408 return simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
410 /* Similarly, (not (neg X)) is (plus X -1). */
411 if (GET_CODE (op) == NEG)
412 return plus_constant (XEXP (op, 0), -1);
414 /* (not (xor X C)) for C constant is (xor X D) with D = ~C. */
415 if (GET_CODE (op) == XOR
416 && GET_CODE (XEXP (op, 1)) == CONST_INT
417 && (temp = simplify_unary_operation (NOT, mode,
418 XEXP (op, 1), mode)) != 0)
419 return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
421 /* (not (plus X C)) for signbit C is (xor X D) with D = ~C. */
422 if (GET_CODE (op) == PLUS
423 && GET_CODE (XEXP (op, 1)) == CONST_INT
424 && mode_signbit_p (mode, XEXP (op, 1))
425 && (temp = simplify_unary_operation (NOT, mode,
426 XEXP (op, 1), mode)) != 0)
427 return simplify_gen_binary (XOR, mode, XEXP (op, 0), temp);
430 /* (not (ashift 1 X)) is (rotate ~1 X). We used to do this for
431 operands other than 1, but that is not valid. We could do a
432 similar simplification for (not (lshiftrt C X)) where C is
433 just the sign bit, but this doesn't seem common enough to
434 bother with. */
435 if (GET_CODE (op) == ASHIFT
436 && XEXP (op, 0) == const1_rtx)
438 temp = simplify_gen_unary (NOT, mode, const1_rtx, mode);
439 return simplify_gen_binary (ROTATE, mode, temp, XEXP (op, 1));
442 /* (not (ashiftrt foo C)) where C is the number of bits in FOO
443 minus 1 is (ge foo (const_int 0)) if STORE_FLAG_VALUE is -1,
444 so we can perform the above simplification. */
446 if (STORE_FLAG_VALUE == -1
447 && GET_CODE (op) == ASHIFTRT
448 && GET_CODE (XEXP (op, 1)) == CONST_INT
449 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
450 return simplify_gen_relational (GE, mode, VOIDmode,
451 XEXP (op, 0), const0_rtx);
454 if (GET_CODE (op) == SUBREG
455 && subreg_lowpart_p (op)
456 && (GET_MODE_SIZE (GET_MODE (op))
457 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
458 && GET_CODE (SUBREG_REG (op)) == ASHIFT
459 && XEXP (SUBREG_REG (op), 0) == const1_rtx)
461 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op));
462 rtx x;
464 x = gen_rtx_ROTATE (inner_mode,
465 simplify_gen_unary (NOT, inner_mode, const1_rtx,
466 inner_mode),
467 XEXP (SUBREG_REG (op), 1));
468 return rtl_hooks.gen_lowpart_no_emit (mode, x);
471 /* Apply De Morgan's laws to reduce number of patterns for machines
472 with negating logical insns (and-not, nand, etc.). If result has
473 only one NOT, put it first, since that is how the patterns are
474 coded. */
476 if (GET_CODE (op) == IOR || GET_CODE (op) == AND)
478 rtx in1 = XEXP (op, 0), in2 = XEXP (op, 1);
479 enum machine_mode op_mode;
481 op_mode = GET_MODE (in1);
482 in1 = simplify_gen_unary (NOT, op_mode, in1, op_mode);
484 op_mode = GET_MODE (in2);
485 if (op_mode == VOIDmode)
486 op_mode = mode;
487 in2 = simplify_gen_unary (NOT, op_mode, in2, op_mode);
489 if (GET_CODE (in2) == NOT && GET_CODE (in1) != NOT)
491 rtx tem = in2;
492 in2 = in1; in1 = tem;
495 return gen_rtx_fmt_ee (GET_CODE (op) == IOR ? AND : IOR,
496 mode, in1, in2);
498 break;
500 case NEG:
501 /* (neg (neg X)) == X. */
502 if (GET_CODE (op) == NEG)
503 return XEXP (op, 0);
505 /* (neg (plus X 1)) can become (not X). */
506 if (GET_CODE (op) == PLUS
507 && XEXP (op, 1) == const1_rtx)
508 return simplify_gen_unary (NOT, mode, XEXP (op, 0), mode);
510 /* Similarly, (neg (not X)) is (plus X 1). */
511 if (GET_CODE (op) == NOT)
512 return plus_constant (XEXP (op, 0), 1);
514 /* (neg (minus X Y)) can become (minus Y X). This transformation
515 isn't safe for modes with signed zeros, since if X and Y are
516 both +0, (minus Y X) is the same as (minus X Y). If the
517 rounding mode is towards +infinity (or -infinity) then the two
518 expressions will be rounded differently. */
519 if (GET_CODE (op) == MINUS
520 && !HONOR_SIGNED_ZEROS (mode)
521 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
522 return simplify_gen_binary (MINUS, mode, XEXP (op, 1), XEXP (op, 0));
524 if (GET_CODE (op) == PLUS
525 && !HONOR_SIGNED_ZEROS (mode)
526 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
528 /* (neg (plus A C)) is simplified to (minus -C A). */
529 if (GET_CODE (XEXP (op, 1)) == CONST_INT
530 || GET_CODE (XEXP (op, 1)) == CONST_DOUBLE)
532 temp = simplify_unary_operation (NEG, mode, XEXP (op, 1), mode);
533 if (temp)
534 return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 0));
537 /* (neg (plus A B)) is canonicalized to (minus (neg A) B). */
538 temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
539 return simplify_gen_binary (MINUS, mode, temp, XEXP (op, 1));
542 /* (neg (mult A B)) becomes (mult (neg A) B).
543 This works even for floating-point values. */
544 if (GET_CODE (op) == MULT
545 && !HONOR_SIGN_DEPENDENT_ROUNDING (mode))
547 temp = simplify_gen_unary (NEG, mode, XEXP (op, 0), mode);
548 return simplify_gen_binary (MULT, mode, temp, XEXP (op, 1));
551 /* NEG commutes with ASHIFT since it is multiplication. Only do
552 this if we can then eliminate the NEG (e.g., if the operand
553 is a constant). */
554 if (GET_CODE (op) == ASHIFT)
556 temp = simplify_unary_operation (NEG, mode, XEXP (op, 0), mode);
557 if (temp)
558 return simplify_gen_binary (ASHIFT, mode, temp, XEXP (op, 1));
561 /* (neg (ashiftrt X C)) can be replaced by (lshiftrt X C) when
562 C is equal to the width of MODE minus 1. */
563 if (GET_CODE (op) == ASHIFTRT
564 && GET_CODE (XEXP (op, 1)) == CONST_INT
565 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
566 return simplify_gen_binary (LSHIFTRT, mode,
567 XEXP (op, 0), XEXP (op, 1));
569 /* (neg (lshiftrt X C)) can be replaced by (ashiftrt X C) when
570 C is equal to the width of MODE minus 1. */
571 if (GET_CODE (op) == LSHIFTRT
572 && GET_CODE (XEXP (op, 1)) == CONST_INT
573 && INTVAL (XEXP (op, 1)) == GET_MODE_BITSIZE (mode) - 1)
574 return simplify_gen_binary (ASHIFTRT, mode,
575 XEXP (op, 0), XEXP (op, 1));
577 /* (neg (xor A 1)) is (plus A -1) if A is known to be either 0 or 1. */
578 if (GET_CODE (op) == XOR
579 && XEXP (op, 1) == const1_rtx
580 && nonzero_bits (XEXP (op, 0), mode) == 1)
581 return plus_constant (XEXP (op, 0), -1);
583 /* (neg (lt x 0)) is (ashiftrt X C) if STORE_FLAG_VALUE is 1. */
584 /* (neg (lt x 0)) is (lshiftrt X C) if STORE_FLAG_VALUE is -1. */
585 if (GET_CODE (op) == LT
586 && XEXP (op, 1) == const0_rtx
587 && SCALAR_INT_MODE_P (GET_MODE (XEXP (op, 0))))
589 enum machine_mode inner = GET_MODE (XEXP (op, 0));
590 int isize = GET_MODE_BITSIZE (inner);
591 if (STORE_FLAG_VALUE == 1)
593 temp = simplify_gen_binary (ASHIFTRT, inner, XEXP (op, 0),
594 GEN_INT (isize - 1));
595 if (mode == inner)
596 return temp;
597 if (GET_MODE_BITSIZE (mode) > isize)
598 return simplify_gen_unary (SIGN_EXTEND, mode, temp, inner);
599 return simplify_gen_unary (TRUNCATE, mode, temp, inner);
601 else if (STORE_FLAG_VALUE == -1)
603 temp = simplify_gen_binary (LSHIFTRT, inner, XEXP (op, 0),
604 GEN_INT (isize - 1));
605 if (mode == inner)
606 return temp;
607 if (GET_MODE_BITSIZE (mode) > isize)
608 return simplify_gen_unary (ZERO_EXTEND, mode, temp, inner);
609 return simplify_gen_unary (TRUNCATE, mode, temp, inner);
612 break;
614 case TRUNCATE:
615 /* We can't handle truncation to a partial integer mode here
616 because we don't know the real bitsize of the partial
617 integer mode. */
618 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
619 break;
621 /* (truncate:SI ({sign,zero}_extend:DI foo:SI)) == foo:SI. */
622 if ((GET_CODE (op) == SIGN_EXTEND
623 || GET_CODE (op) == ZERO_EXTEND)
624 && GET_MODE (XEXP (op, 0)) == mode)
625 return XEXP (op, 0);
627 /* (truncate:SI (OP:DI ({sign,zero}_extend:DI foo:SI))) is
628 (OP:SI foo:SI) if OP is NEG or ABS. */
629 if ((GET_CODE (op) == ABS
630 || GET_CODE (op) == NEG)
631 && (GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
632 || GET_CODE (XEXP (op, 0)) == ZERO_EXTEND)
633 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
634 return simplify_gen_unary (GET_CODE (op), mode,
635 XEXP (XEXP (op, 0), 0), mode);
637 /* (truncate:A (subreg:B (truncate:C X) 0)) is
638 (truncate:A X). */
639 if (GET_CODE (op) == SUBREG
640 && GET_CODE (SUBREG_REG (op)) == TRUNCATE
641 && subreg_lowpart_p (op))
642 return simplify_gen_unary (TRUNCATE, mode, XEXP (SUBREG_REG (op), 0),
643 GET_MODE (XEXP (SUBREG_REG (op), 0)));
645 /* If we know that the value is already truncated, we can
646 replace the TRUNCATE with a SUBREG. Note that this is also
647 valid if TRULY_NOOP_TRUNCATION is false for the corresponding
648 modes we just have to apply a different definition for
649 truncation. But don't do this for an (LSHIFTRT (MULT ...))
650 since this will cause problems with the umulXi3_highpart
651 patterns. */
652 if ((TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
653 GET_MODE_BITSIZE (GET_MODE (op)))
654 ? (num_sign_bit_copies (op, GET_MODE (op))
655 > (unsigned int) (GET_MODE_BITSIZE (GET_MODE (op))
656 - GET_MODE_BITSIZE (mode)))
657 : truncated_to_mode (mode, op))
658 && ! (GET_CODE (op) == LSHIFTRT
659 && GET_CODE (XEXP (op, 0)) == MULT))
660 return rtl_hooks.gen_lowpart_no_emit (mode, op);
662 /* A truncate of a comparison can be replaced with a subreg if
663 STORE_FLAG_VALUE permits. This is like the previous test,
664 but it works even if the comparison is done in a mode larger
665 than HOST_BITS_PER_WIDE_INT. */
666 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
667 && COMPARISON_P (op)
668 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0)
669 return rtl_hooks.gen_lowpart_no_emit (mode, op);
670 break;
672 case FLOAT_TRUNCATE:
673 if (DECIMAL_FLOAT_MODE_P (mode))
674 break;
676 /* (float_truncate:SF (float_extend:DF foo:SF)) = foo:SF. */
677 if (GET_CODE (op) == FLOAT_EXTEND
678 && GET_MODE (XEXP (op, 0)) == mode)
679 return XEXP (op, 0);
681 /* (float_truncate:SF (float_truncate:DF foo:XF))
682 = (float_truncate:SF foo:XF).
683 This may eliminate double rounding, so it is unsafe.
685 (float_truncate:SF (float_extend:XF foo:DF))
686 = (float_truncate:SF foo:DF).
688 (float_truncate:DF (float_extend:XF foo:SF))
689 = (float_extend:SF foo:DF). */
690 if ((GET_CODE (op) == FLOAT_TRUNCATE
691 && flag_unsafe_math_optimizations)
692 || GET_CODE (op) == FLOAT_EXTEND)
693 return simplify_gen_unary (GET_MODE_SIZE (GET_MODE (XEXP (op,
694 0)))
695 > GET_MODE_SIZE (mode)
696 ? FLOAT_TRUNCATE : FLOAT_EXTEND,
697 mode,
698 XEXP (op, 0), mode);
700 /* (float_truncate (float x)) is (float x) */
701 if (GET_CODE (op) == FLOAT
702 && (flag_unsafe_math_optimizations
703 || (SCALAR_FLOAT_MODE_P (GET_MODE (op))
704 && ((unsigned)significand_size (GET_MODE (op))
705 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0)))
706 - num_sign_bit_copies (XEXP (op, 0),
707 GET_MODE (XEXP (op, 0))))))))
708 return simplify_gen_unary (FLOAT, mode,
709 XEXP (op, 0),
710 GET_MODE (XEXP (op, 0)));
712 /* (float_truncate:SF (OP:DF (float_extend:DF foo:sf))) is
713 (OP:SF foo:SF) if OP is NEG or ABS. */
714 if ((GET_CODE (op) == ABS
715 || GET_CODE (op) == NEG)
716 && GET_CODE (XEXP (op, 0)) == FLOAT_EXTEND
717 && GET_MODE (XEXP (XEXP (op, 0), 0)) == mode)
718 return simplify_gen_unary (GET_CODE (op), mode,
719 XEXP (XEXP (op, 0), 0), mode);
721 /* (float_truncate:SF (subreg:DF (float_truncate:SF X) 0))
722 is (float_truncate:SF x). */
723 if (GET_CODE (op) == SUBREG
724 && subreg_lowpart_p (op)
725 && GET_CODE (SUBREG_REG (op)) == FLOAT_TRUNCATE)
726 return SUBREG_REG (op);
727 break;
729 case FLOAT_EXTEND:
730 if (DECIMAL_FLOAT_MODE_P (mode))
731 break;
733 /* (float_extend (float_extend x)) is (float_extend x)
735 (float_extend (float x)) is (float x) assuming that double
736 rounding can't happen.
738 if (GET_CODE (op) == FLOAT_EXTEND
739 || (GET_CODE (op) == FLOAT
740 && SCALAR_FLOAT_MODE_P (GET_MODE (op))
741 && ((unsigned)significand_size (GET_MODE (op))
742 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0)))
743 - num_sign_bit_copies (XEXP (op, 0),
744 GET_MODE (XEXP (op, 0)))))))
745 return simplify_gen_unary (GET_CODE (op), mode,
746 XEXP (op, 0),
747 GET_MODE (XEXP (op, 0)));
749 break;
751 case ABS:
752 /* (abs (neg <foo>)) -> (abs <foo>) */
753 if (GET_CODE (op) == NEG)
754 return simplify_gen_unary (ABS, mode, XEXP (op, 0),
755 GET_MODE (XEXP (op, 0)));
757 /* If the mode of the operand is VOIDmode (i.e. if it is ASM_OPERANDS),
758 do nothing. */
759 if (GET_MODE (op) == VOIDmode)
760 break;
762 /* If operand is something known to be positive, ignore the ABS. */
763 if (GET_CODE (op) == FFS || GET_CODE (op) == ABS
764 || ((GET_MODE_BITSIZE (GET_MODE (op))
765 <= HOST_BITS_PER_WIDE_INT)
766 && ((nonzero_bits (op, GET_MODE (op))
767 & ((HOST_WIDE_INT) 1
768 << (GET_MODE_BITSIZE (GET_MODE (op)) - 1)))
769 == 0)))
770 return op;
772 /* If operand is known to be only -1 or 0, convert ABS to NEG. */
773 if (num_sign_bit_copies (op, mode) == GET_MODE_BITSIZE (mode))
774 return gen_rtx_NEG (mode, op);
776 break;
778 case FFS:
779 /* (ffs (*_extend <X>)) = (ffs <X>) */
780 if (GET_CODE (op) == SIGN_EXTEND
781 || GET_CODE (op) == ZERO_EXTEND)
782 return simplify_gen_unary (FFS, mode, XEXP (op, 0),
783 GET_MODE (XEXP (op, 0)));
784 break;
786 case POPCOUNT:
787 switch (GET_CODE (op))
789 case BSWAP:
790 case ZERO_EXTEND:
791 /* (popcount (zero_extend <X>)) = (popcount <X>) */
792 return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
793 GET_MODE (XEXP (op, 0)));
795 case ROTATE:
796 case ROTATERT:
797 /* Rotations don't affect popcount. */
798 if (!side_effects_p (XEXP (op, 1)))
799 return simplify_gen_unary (POPCOUNT, mode, XEXP (op, 0),
800 GET_MODE (XEXP (op, 0)));
801 break;
803 default:
804 break;
806 break;
808 case PARITY:
809 switch (GET_CODE (op))
811 case NOT:
812 case BSWAP:
813 case ZERO_EXTEND:
814 case SIGN_EXTEND:
815 return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
816 GET_MODE (XEXP (op, 0)));
818 case ROTATE:
819 case ROTATERT:
820 /* Rotations don't affect parity. */
821 if (!side_effects_p (XEXP (op, 1)))
822 return simplify_gen_unary (PARITY, mode, XEXP (op, 0),
823 GET_MODE (XEXP (op, 0)));
824 break;
826 default:
827 break;
829 break;
831 case BSWAP:
832 /* (bswap (bswap x)) -> x. */
833 if (GET_CODE (op) == BSWAP)
834 return XEXP (op, 0);
835 break;
837 case FLOAT:
838 /* (float (sign_extend <X>)) = (float <X>). */
839 if (GET_CODE (op) == SIGN_EXTEND)
840 return simplify_gen_unary (FLOAT, mode, XEXP (op, 0),
841 GET_MODE (XEXP (op, 0)));
842 break;
844 case SIGN_EXTEND:
845 /* (sign_extend (truncate (minus (label_ref L1) (label_ref L2))))
846 becomes just the MINUS if its mode is MODE. This allows
847 folding switch statements on machines using casesi (such as
848 the VAX). */
849 if (GET_CODE (op) == TRUNCATE
850 && GET_MODE (XEXP (op, 0)) == mode
851 && GET_CODE (XEXP (op, 0)) == MINUS
852 && GET_CODE (XEXP (XEXP (op, 0), 0)) == LABEL_REF
853 && GET_CODE (XEXP (XEXP (op, 0), 1)) == LABEL_REF)
854 return XEXP (op, 0);
856 /* Check for a sign extension of a subreg of a promoted
857 variable, where the promotion is sign-extended, and the
858 target mode is the same as the variable's promotion. */
859 if (GET_CODE (op) == SUBREG
860 && SUBREG_PROMOTED_VAR_P (op)
861 && ! SUBREG_PROMOTED_UNSIGNED_P (op)
862 && GET_MODE (XEXP (op, 0)) == mode)
863 return XEXP (op, 0);
865 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
866 if (! POINTERS_EXTEND_UNSIGNED
867 && mode == Pmode && GET_MODE (op) == ptr_mode
868 && (CONSTANT_P (op)
869 || (GET_CODE (op) == SUBREG
870 && REG_P (SUBREG_REG (op))
871 && REG_POINTER (SUBREG_REG (op))
872 && GET_MODE (SUBREG_REG (op)) == Pmode)))
873 return convert_memory_address (Pmode, op);
874 #endif
875 break;
877 case ZERO_EXTEND:
878 /* Check for a zero extension of a subreg of a promoted
879 variable, where the promotion is zero-extended, and the
880 target mode is the same as the variable's promotion. */
881 if (GET_CODE (op) == SUBREG
882 && SUBREG_PROMOTED_VAR_P (op)
883 && SUBREG_PROMOTED_UNSIGNED_P (op) > 0
884 && GET_MODE (XEXP (op, 0)) == mode)
885 return XEXP (op, 0);
887 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
888 if (POINTERS_EXTEND_UNSIGNED > 0
889 && mode == Pmode && GET_MODE (op) == ptr_mode
890 && (CONSTANT_P (op)
891 || (GET_CODE (op) == SUBREG
892 && REG_P (SUBREG_REG (op))
893 && REG_POINTER (SUBREG_REG (op))
894 && GET_MODE (SUBREG_REG (op)) == Pmode)))
895 return convert_memory_address (Pmode, op);
896 #endif
897 break;
899 default:
900 break;
903 return 0;
906 /* Try to compute the value of a unary operation CODE whose output mode is to
907 be MODE with input operand OP whose mode was originally OP_MODE.
908 Return zero if the value cannot be computed. */
910 simplify_const_unary_operation (enum rtx_code code, enum machine_mode mode,
911 rtx op, enum machine_mode op_mode)
913 unsigned int width = GET_MODE_BITSIZE (mode);
915 if (code == VEC_DUPLICATE)
917 gcc_assert (VECTOR_MODE_P (mode));
918 if (GET_MODE (op) != VOIDmode)
920 if (!VECTOR_MODE_P (GET_MODE (op)))
921 gcc_assert (GET_MODE_INNER (mode) == GET_MODE (op));
922 else
923 gcc_assert (GET_MODE_INNER (mode) == GET_MODE_INNER
924 (GET_MODE (op)));
926 if (GET_CODE (op) == CONST_INT || GET_CODE (op) == CONST_DOUBLE
927 || GET_CODE (op) == CONST_VECTOR)
929 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
930 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
931 rtvec v = rtvec_alloc (n_elts);
932 unsigned int i;
934 if (GET_CODE (op) != CONST_VECTOR)
935 for (i = 0; i < n_elts; i++)
936 RTVEC_ELT (v, i) = op;
937 else
939 enum machine_mode inmode = GET_MODE (op);
940 int in_elt_size = GET_MODE_SIZE (GET_MODE_INNER (inmode));
941 unsigned in_n_elts = (GET_MODE_SIZE (inmode) / in_elt_size);
943 gcc_assert (in_n_elts < n_elts);
944 gcc_assert ((n_elts % in_n_elts) == 0);
945 for (i = 0; i < n_elts; i++)
946 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (op, i % in_n_elts);
948 return gen_rtx_CONST_VECTOR (mode, v);
952 if (VECTOR_MODE_P (mode) && GET_CODE (op) == CONST_VECTOR)
954 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
955 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
956 enum machine_mode opmode = GET_MODE (op);
957 int op_elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
958 unsigned op_n_elts = (GET_MODE_SIZE (opmode) / op_elt_size);
959 rtvec v = rtvec_alloc (n_elts);
960 unsigned int i;
962 gcc_assert (op_n_elts == n_elts);
963 for (i = 0; i < n_elts; i++)
965 rtx x = simplify_unary_operation (code, GET_MODE_INNER (mode),
966 CONST_VECTOR_ELT (op, i),
967 GET_MODE_INNER (opmode));
968 if (!x)
969 return 0;
970 RTVEC_ELT (v, i) = x;
972 return gen_rtx_CONST_VECTOR (mode, v);
975 /* The order of these tests is critical so that, for example, we don't
976 check the wrong mode (input vs. output) for a conversion operation,
977 such as FIX. At some point, this should be simplified. */
979 if (code == FLOAT && GET_MODE (op) == VOIDmode
980 && (GET_CODE (op) == CONST_DOUBLE || GET_CODE (op) == CONST_INT))
982 HOST_WIDE_INT hv, lv;
983 REAL_VALUE_TYPE d;
985 if (GET_CODE (op) == CONST_INT)
986 lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
987 else
988 lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
990 REAL_VALUE_FROM_INT (d, lv, hv, mode);
991 d = real_value_truncate (mode, d);
992 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
994 else if (code == UNSIGNED_FLOAT && GET_MODE (op) == VOIDmode
995 && (GET_CODE (op) == CONST_DOUBLE
996 || GET_CODE (op) == CONST_INT))
998 HOST_WIDE_INT hv, lv;
999 REAL_VALUE_TYPE d;
1001 if (GET_CODE (op) == CONST_INT)
1002 lv = INTVAL (op), hv = HWI_SIGN_EXTEND (lv);
1003 else
1004 lv = CONST_DOUBLE_LOW (op), hv = CONST_DOUBLE_HIGH (op);
1006 if (op_mode == VOIDmode)
1008 /* We don't know how to interpret negative-looking numbers in
1009 this case, so don't try to fold those. */
1010 if (hv < 0)
1011 return 0;
1013 else if (GET_MODE_BITSIZE (op_mode) >= HOST_BITS_PER_WIDE_INT * 2)
1015 else
1016 hv = 0, lv &= GET_MODE_MASK (op_mode);
1018 REAL_VALUE_FROM_UNSIGNED_INT (d, lv, hv, mode);
1019 d = real_value_truncate (mode, d);
1020 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
1023 if (GET_CODE (op) == CONST_INT
1024 && width <= HOST_BITS_PER_WIDE_INT && width > 0)
1026 HOST_WIDE_INT arg0 = INTVAL (op);
1027 HOST_WIDE_INT val;
1029 switch (code)
1031 case NOT:
1032 val = ~ arg0;
1033 break;
1035 case NEG:
1036 val = - arg0;
1037 break;
1039 case ABS:
1040 val = (arg0 >= 0 ? arg0 : - arg0);
1041 break;
1043 case FFS:
1044 /* Don't use ffs here. Instead, get low order bit and then its
1045 number. If arg0 is zero, this will return 0, as desired. */
1046 arg0 &= GET_MODE_MASK (mode);
1047 val = exact_log2 (arg0 & (- arg0)) + 1;
1048 break;
1050 case CLZ:
1051 arg0 &= GET_MODE_MASK (mode);
1052 if (arg0 == 0 && CLZ_DEFINED_VALUE_AT_ZERO (mode, val))
1054 else
1055 val = GET_MODE_BITSIZE (mode) - floor_log2 (arg0) - 1;
1056 break;
1058 case CTZ:
1059 arg0 &= GET_MODE_MASK (mode);
1060 if (arg0 == 0)
1062 /* Even if the value at zero is undefined, we have to come
1063 up with some replacement. Seems good enough. */
1064 if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, val))
1065 val = GET_MODE_BITSIZE (mode);
1067 else
1068 val = exact_log2 (arg0 & -arg0);
1069 break;
1071 case POPCOUNT:
1072 arg0 &= GET_MODE_MASK (mode);
1073 val = 0;
1074 while (arg0)
1075 val++, arg0 &= arg0 - 1;
1076 break;
1078 case PARITY:
1079 arg0 &= GET_MODE_MASK (mode);
1080 val = 0;
1081 while (arg0)
1082 val++, arg0 &= arg0 - 1;
1083 val &= 1;
1084 break;
1086 case BSWAP:
1088 unsigned int s;
1090 val = 0;
1091 for (s = 0; s < width; s += 8)
1093 unsigned int d = width - s - 8;
1094 unsigned HOST_WIDE_INT byte;
1095 byte = (arg0 >> s) & 0xff;
1096 val |= byte << d;
1099 break;
1101 case TRUNCATE:
1102 val = arg0;
1103 break;
1105 case ZERO_EXTEND:
1106 /* When zero-extending a CONST_INT, we need to know its
1107 original mode. */
1108 gcc_assert (op_mode != VOIDmode);
1109 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
1111 /* If we were really extending the mode,
1112 we would have to distinguish between zero-extension
1113 and sign-extension. */
1114 gcc_assert (width == GET_MODE_BITSIZE (op_mode));
1115 val = arg0;
1117 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
1118 val = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
1119 else
1120 return 0;
1121 break;
1123 case SIGN_EXTEND:
1124 if (op_mode == VOIDmode)
1125 op_mode = mode;
1126 if (GET_MODE_BITSIZE (op_mode) == HOST_BITS_PER_WIDE_INT)
1128 /* If we were really extending the mode,
1129 we would have to distinguish between zero-extension
1130 and sign-extension. */
1131 gcc_assert (width == GET_MODE_BITSIZE (op_mode));
1132 val = arg0;
1134 else if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT)
1137 = arg0 & ~((HOST_WIDE_INT) (-1) << GET_MODE_BITSIZE (op_mode));
1138 if (val
1139 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (op_mode) - 1)))
1140 val -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
1142 else
1143 return 0;
1144 break;
1146 case SQRT:
1147 case FLOAT_EXTEND:
1148 case FLOAT_TRUNCATE:
1149 case SS_TRUNCATE:
1150 case US_TRUNCATE:
1151 case SS_NEG:
1152 case US_NEG:
1153 return 0;
1155 default:
1156 gcc_unreachable ();
1159 return gen_int_mode (val, mode);
1162 /* We can do some operations on integer CONST_DOUBLEs. Also allow
1163 for a DImode operation on a CONST_INT. */
1164 else if (GET_MODE (op) == VOIDmode
1165 && width <= HOST_BITS_PER_WIDE_INT * 2
1166 && (GET_CODE (op) == CONST_DOUBLE
1167 || GET_CODE (op) == CONST_INT))
1169 unsigned HOST_WIDE_INT l1, lv;
1170 HOST_WIDE_INT h1, hv;
1172 if (GET_CODE (op) == CONST_DOUBLE)
1173 l1 = CONST_DOUBLE_LOW (op), h1 = CONST_DOUBLE_HIGH (op);
1174 else
1175 l1 = INTVAL (op), h1 = HWI_SIGN_EXTEND (l1);
1177 switch (code)
1179 case NOT:
1180 lv = ~ l1;
1181 hv = ~ h1;
1182 break;
1184 case NEG:
1185 neg_double (l1, h1, &lv, &hv);
1186 break;
1188 case ABS:
1189 if (h1 < 0)
1190 neg_double (l1, h1, &lv, &hv);
1191 else
1192 lv = l1, hv = h1;
1193 break;
1195 case FFS:
1196 hv = 0;
1197 if (l1 == 0)
1199 if (h1 == 0)
1200 lv = 0;
1201 else
1202 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1) + 1;
1204 else
1205 lv = exact_log2 (l1 & -l1) + 1;
1206 break;
1208 case CLZ:
1209 hv = 0;
1210 if (h1 != 0)
1211 lv = GET_MODE_BITSIZE (mode) - floor_log2 (h1) - 1
1212 - HOST_BITS_PER_WIDE_INT;
1213 else if (l1 != 0)
1214 lv = GET_MODE_BITSIZE (mode) - floor_log2 (l1) - 1;
1215 else if (! CLZ_DEFINED_VALUE_AT_ZERO (mode, lv))
1216 lv = GET_MODE_BITSIZE (mode);
1217 break;
1219 case CTZ:
1220 hv = 0;
1221 if (l1 != 0)
1222 lv = exact_log2 (l1 & -l1);
1223 else if (h1 != 0)
1224 lv = HOST_BITS_PER_WIDE_INT + exact_log2 (h1 & -h1);
1225 else if (! CTZ_DEFINED_VALUE_AT_ZERO (mode, lv))
1226 lv = GET_MODE_BITSIZE (mode);
1227 break;
1229 case POPCOUNT:
1230 hv = 0;
1231 lv = 0;
1232 while (l1)
1233 lv++, l1 &= l1 - 1;
1234 while (h1)
1235 lv++, h1 &= h1 - 1;
1236 break;
1238 case PARITY:
1239 hv = 0;
1240 lv = 0;
1241 while (l1)
1242 lv++, l1 &= l1 - 1;
1243 while (h1)
1244 lv++, h1 &= h1 - 1;
1245 lv &= 1;
1246 break;
1248 case BSWAP:
1250 unsigned int s;
1252 hv = 0;
1253 lv = 0;
1254 for (s = 0; s < width; s += 8)
1256 unsigned int d = width - s - 8;
1257 unsigned HOST_WIDE_INT byte;
1259 if (s < HOST_BITS_PER_WIDE_INT)
1260 byte = (l1 >> s) & 0xff;
1261 else
1262 byte = (h1 >> (s - HOST_BITS_PER_WIDE_INT)) & 0xff;
1264 if (d < HOST_BITS_PER_WIDE_INT)
1265 lv |= byte << d;
1266 else
1267 hv |= byte << (d - HOST_BITS_PER_WIDE_INT);
1270 break;
1272 case TRUNCATE:
1273 /* This is just a change-of-mode, so do nothing. */
1274 lv = l1, hv = h1;
1275 break;
1277 case ZERO_EXTEND:
1278 gcc_assert (op_mode != VOIDmode);
1280 if (GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
1281 return 0;
1283 hv = 0;
1284 lv = l1 & GET_MODE_MASK (op_mode);
1285 break;
1287 case SIGN_EXTEND:
1288 if (op_mode == VOIDmode
1289 || GET_MODE_BITSIZE (op_mode) > HOST_BITS_PER_WIDE_INT)
1290 return 0;
1291 else
1293 lv = l1 & GET_MODE_MASK (op_mode);
1294 if (GET_MODE_BITSIZE (op_mode) < HOST_BITS_PER_WIDE_INT
1295 && (lv & ((HOST_WIDE_INT) 1
1296 << (GET_MODE_BITSIZE (op_mode) - 1))) != 0)
1297 lv -= (HOST_WIDE_INT) 1 << GET_MODE_BITSIZE (op_mode);
1299 hv = HWI_SIGN_EXTEND (lv);
1301 break;
1303 case SQRT:
1304 return 0;
1306 default:
1307 return 0;
1310 return immed_double_const (lv, hv, mode);
1313 else if (GET_CODE (op) == CONST_DOUBLE
1314 && SCALAR_FLOAT_MODE_P (mode))
1316 REAL_VALUE_TYPE d, t;
1317 REAL_VALUE_FROM_CONST_DOUBLE (d, op);
1319 switch (code)
1321 case SQRT:
1322 if (HONOR_SNANS (mode) && real_isnan (&d))
1323 return 0;
1324 real_sqrt (&t, mode, &d);
1325 d = t;
1326 break;
1327 case ABS:
1328 d = REAL_VALUE_ABS (d);
1329 break;
1330 case NEG:
1331 d = REAL_VALUE_NEGATE (d);
1332 break;
1333 case FLOAT_TRUNCATE:
1334 d = real_value_truncate (mode, d);
1335 break;
1336 case FLOAT_EXTEND:
1337 /* All this does is change the mode. */
1338 break;
1339 case FIX:
1340 real_arithmetic (&d, FIX_TRUNC_EXPR, &d, NULL);
1341 break;
1342 case NOT:
1344 long tmp[4];
1345 int i;
1347 real_to_target (tmp, &d, GET_MODE (op));
1348 for (i = 0; i < 4; i++)
1349 tmp[i] = ~tmp[i];
1350 real_from_target (&d, tmp, mode);
1351 break;
1353 default:
1354 gcc_unreachable ();
1356 return CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
1359 else if (GET_CODE (op) == CONST_DOUBLE
1360 && SCALAR_FLOAT_MODE_P (GET_MODE (op))
1361 && GET_MODE_CLASS (mode) == MODE_INT
1362 && width <= 2*HOST_BITS_PER_WIDE_INT && width > 0)
1364 /* Although the overflow semantics of RTL's FIX and UNSIGNED_FIX
1365 operators are intentionally left unspecified (to ease implementation
1366 by target backends), for consistency, this routine implements the
1367 same semantics for constant folding as used by the middle-end. */
1369 /* This was formerly used only for non-IEEE float.
1370 eggert@twinsun.com says it is safe for IEEE also. */
1371 HOST_WIDE_INT xh, xl, th, tl;
1372 REAL_VALUE_TYPE x, t;
1373 REAL_VALUE_FROM_CONST_DOUBLE (x, op);
1374 switch (code)
1376 case FIX:
1377 if (REAL_VALUE_ISNAN (x))
1378 return const0_rtx;
1380 /* Test against the signed upper bound. */
1381 if (width > HOST_BITS_PER_WIDE_INT)
1383 th = ((unsigned HOST_WIDE_INT) 1
1384 << (width - HOST_BITS_PER_WIDE_INT - 1)) - 1;
1385 tl = -1;
1387 else
1389 th = 0;
1390 tl = ((unsigned HOST_WIDE_INT) 1 << (width - 1)) - 1;
1392 real_from_integer (&t, VOIDmode, tl, th, 0);
1393 if (REAL_VALUES_LESS (t, x))
1395 xh = th;
1396 xl = tl;
1397 break;
1400 /* Test against the signed lower bound. */
1401 if (width > HOST_BITS_PER_WIDE_INT)
1403 th = (HOST_WIDE_INT) -1 << (width - HOST_BITS_PER_WIDE_INT - 1);
1404 tl = 0;
1406 else
1408 th = -1;
1409 tl = (HOST_WIDE_INT) -1 << (width - 1);
1411 real_from_integer (&t, VOIDmode, tl, th, 0);
1412 if (REAL_VALUES_LESS (x, t))
1414 xh = th;
1415 xl = tl;
1416 break;
1418 REAL_VALUE_TO_INT (&xl, &xh, x);
1419 break;
1421 case UNSIGNED_FIX:
1422 if (REAL_VALUE_ISNAN (x) || REAL_VALUE_NEGATIVE (x))
1423 return const0_rtx;
1425 /* Test against the unsigned upper bound. */
1426 if (width == 2*HOST_BITS_PER_WIDE_INT)
1428 th = -1;
1429 tl = -1;
1431 else if (width >= HOST_BITS_PER_WIDE_INT)
1433 th = ((unsigned HOST_WIDE_INT) 1
1434 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
1435 tl = -1;
1437 else
1439 th = 0;
1440 tl = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
1442 real_from_integer (&t, VOIDmode, tl, th, 1);
1443 if (REAL_VALUES_LESS (t, x))
1445 xh = th;
1446 xl = tl;
1447 break;
1450 REAL_VALUE_TO_INT (&xl, &xh, x);
1451 break;
1453 default:
1454 gcc_unreachable ();
1456 return immed_double_const (xl, xh, mode);
1459 return NULL_RTX;
1462 /* Subroutine of simplify_binary_operation to simplify a commutative,
1463 associative binary operation CODE with result mode MODE, operating
1464 on OP0 and OP1. CODE is currently one of PLUS, MULT, AND, IOR, XOR,
1465 SMIN, SMAX, UMIN or UMAX. Return zero if no simplification or
1466 canonicalization is possible. */
1468 static rtx
1469 simplify_associative_operation (enum rtx_code code, enum machine_mode mode,
1470 rtx op0, rtx op1)
1472 rtx tem;
1474 /* Linearize the operator to the left. */
1475 if (GET_CODE (op1) == code)
1477 /* "(a op b) op (c op d)" becomes "((a op b) op c) op d)". */
1478 if (GET_CODE (op0) == code)
1480 tem = simplify_gen_binary (code, mode, op0, XEXP (op1, 0));
1481 return simplify_gen_binary (code, mode, tem, XEXP (op1, 1));
1484 /* "a op (b op c)" becomes "(b op c) op a". */
1485 if (! swap_commutative_operands_p (op1, op0))
1486 return simplify_gen_binary (code, mode, op1, op0);
1488 tem = op0;
1489 op0 = op1;
1490 op1 = tem;
1493 if (GET_CODE (op0) == code)
1495 /* Canonicalize "(x op c) op y" as "(x op y) op c". */
1496 if (swap_commutative_operands_p (XEXP (op0, 1), op1))
1498 tem = simplify_gen_binary (code, mode, XEXP (op0, 0), op1);
1499 return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
1502 /* Attempt to simplify "(a op b) op c" as "a op (b op c)". */
1503 tem = simplify_binary_operation (code, mode, XEXP (op0, 1), op1);
1504 if (tem != 0)
1505 return simplify_gen_binary (code, mode, XEXP (op0, 0), tem);
1507 /* Attempt to simplify "(a op b) op c" as "(a op c) op b". */
1508 tem = simplify_binary_operation (code, mode, XEXP (op0, 0), op1);
1509 if (tem != 0)
1510 return simplify_gen_binary (code, mode, tem, XEXP (op0, 1));
1513 return 0;
1517 /* Simplify a binary operation CODE with result mode MODE, operating on OP0
1518 and OP1. Return 0 if no simplification is possible.
1520 Don't use this for relational operations such as EQ or LT.
1521 Use simplify_relational_operation instead. */
1523 simplify_binary_operation (enum rtx_code code, enum machine_mode mode,
1524 rtx op0, rtx op1)
1526 rtx trueop0, trueop1;
1527 rtx tem;
1529 /* Relational operations don't work here. We must know the mode
1530 of the operands in order to do the comparison correctly.
1531 Assuming a full word can give incorrect results.
1532 Consider comparing 128 with -128 in QImode. */
1533 gcc_assert (GET_RTX_CLASS (code) != RTX_COMPARE);
1534 gcc_assert (GET_RTX_CLASS (code) != RTX_COMM_COMPARE);
1536 /* Make sure the constant is second. */
1537 if (GET_RTX_CLASS (code) == RTX_COMM_ARITH
1538 && swap_commutative_operands_p (op0, op1))
1540 tem = op0, op0 = op1, op1 = tem;
1543 trueop0 = avoid_constant_pool_reference (op0);
1544 trueop1 = avoid_constant_pool_reference (op1);
1546 tem = simplify_const_binary_operation (code, mode, trueop0, trueop1);
1547 if (tem)
1548 return tem;
1549 return simplify_binary_operation_1 (code, mode, op0, op1, trueop0, trueop1);
1552 /* Subroutine of simplify_binary_operation. Simplify a binary operation
1553 CODE with result mode MODE, operating on OP0 and OP1. If OP0 and/or
1554 OP1 are constant pool references, TRUEOP0 and TRUEOP1 represent the
1555 actual constants. */
1557 static rtx
1558 simplify_binary_operation_1 (enum rtx_code code, enum machine_mode mode,
1559 rtx op0, rtx op1, rtx trueop0, rtx trueop1)
1561 rtx tem, reversed, opleft, opright;
1562 HOST_WIDE_INT val;
1563 unsigned int width = GET_MODE_BITSIZE (mode);
1565 /* Even if we can't compute a constant result,
1566 there are some cases worth simplifying. */
1568 switch (code)
1570 case PLUS:
1571 /* Maybe simplify x + 0 to x. The two expressions are equivalent
1572 when x is NaN, infinite, or finite and nonzero. They aren't
1573 when x is -0 and the rounding mode is not towards -infinity,
1574 since (-0) + 0 is then 0. */
1575 if (!HONOR_SIGNED_ZEROS (mode) && trueop1 == CONST0_RTX (mode))
1576 return op0;
1578 /* ((-a) + b) -> (b - a) and similarly for (a + (-b)). These
1579 transformations are safe even for IEEE. */
1580 if (GET_CODE (op0) == NEG)
1581 return simplify_gen_binary (MINUS, mode, op1, XEXP (op0, 0));
1582 else if (GET_CODE (op1) == NEG)
1583 return simplify_gen_binary (MINUS, mode, op0, XEXP (op1, 0));
1585 /* (~a) + 1 -> -a */
1586 if (INTEGRAL_MODE_P (mode)
1587 && GET_CODE (op0) == NOT
1588 && trueop1 == const1_rtx)
1589 return simplify_gen_unary (NEG, mode, XEXP (op0, 0), mode);
1591 /* Handle both-operands-constant cases. We can only add
1592 CONST_INTs to constants since the sum of relocatable symbols
1593 can't be handled by most assemblers. Don't add CONST_INT
1594 to CONST_INT since overflow won't be computed properly if wider
1595 than HOST_BITS_PER_WIDE_INT. */
1597 if (CONSTANT_P (op0) && GET_MODE (op0) != VOIDmode
1598 && GET_CODE (op1) == CONST_INT)
1599 return plus_constant (op0, INTVAL (op1));
1600 else if (CONSTANT_P (op1) && GET_MODE (op1) != VOIDmode
1601 && GET_CODE (op0) == CONST_INT)
1602 return plus_constant (op1, INTVAL (op0));
1604 /* See if this is something like X * C - X or vice versa or
1605 if the multiplication is written as a shift. If so, we can
1606 distribute and make a new multiply, shift, or maybe just
1607 have X (if C is 2 in the example above). But don't make
1608 something more expensive than we had before. */
1610 if (SCALAR_INT_MODE_P (mode))
1612 HOST_WIDE_INT coeff0h = 0, coeff1h = 0;
1613 unsigned HOST_WIDE_INT coeff0l = 1, coeff1l = 1;
1614 rtx lhs = op0, rhs = op1;
1616 if (GET_CODE (lhs) == NEG)
1618 coeff0l = -1;
1619 coeff0h = -1;
1620 lhs = XEXP (lhs, 0);
1622 else if (GET_CODE (lhs) == MULT
1623 && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
1625 coeff0l = INTVAL (XEXP (lhs, 1));
1626 coeff0h = INTVAL (XEXP (lhs, 1)) < 0 ? -1 : 0;
1627 lhs = XEXP (lhs, 0);
1629 else if (GET_CODE (lhs) == ASHIFT
1630 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
1631 && INTVAL (XEXP (lhs, 1)) >= 0
1632 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
1634 coeff0l = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
1635 coeff0h = 0;
1636 lhs = XEXP (lhs, 0);
1639 if (GET_CODE (rhs) == NEG)
1641 coeff1l = -1;
1642 coeff1h = -1;
1643 rhs = XEXP (rhs, 0);
1645 else if (GET_CODE (rhs) == MULT
1646 && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
1648 coeff1l = INTVAL (XEXP (rhs, 1));
1649 coeff1h = INTVAL (XEXP (rhs, 1)) < 0 ? -1 : 0;
1650 rhs = XEXP (rhs, 0);
1652 else if (GET_CODE (rhs) == ASHIFT
1653 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
1654 && INTVAL (XEXP (rhs, 1)) >= 0
1655 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
1657 coeff1l = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1));
1658 coeff1h = 0;
1659 rhs = XEXP (rhs, 0);
1662 if (rtx_equal_p (lhs, rhs))
1664 rtx orig = gen_rtx_PLUS (mode, op0, op1);
1665 rtx coeff;
1666 unsigned HOST_WIDE_INT l;
1667 HOST_WIDE_INT h;
1669 add_double (coeff0l, coeff0h, coeff1l, coeff1h, &l, &h);
1670 coeff = immed_double_const (l, h, mode);
1672 tem = simplify_gen_binary (MULT, mode, lhs, coeff);
1673 return rtx_cost (tem, SET) <= rtx_cost (orig, SET)
1674 ? tem : 0;
1678 /* (plus (xor X C1) C2) is (xor X (C1^C2)) if C2 is signbit. */
1679 if ((GET_CODE (op1) == CONST_INT
1680 || GET_CODE (op1) == CONST_DOUBLE)
1681 && GET_CODE (op0) == XOR
1682 && (GET_CODE (XEXP (op0, 1)) == CONST_INT
1683 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
1684 && mode_signbit_p (mode, op1))
1685 return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
1686 simplify_gen_binary (XOR, mode, op1,
1687 XEXP (op0, 1)));
1689 /* Canonicalize (plus (mult (neg B) C) A) to (minus A (mult B C)). */
1690 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
1691 && GET_CODE (op0) == MULT
1692 && GET_CODE (XEXP (op0, 0)) == NEG)
1694 rtx in1, in2;
1696 in1 = XEXP (XEXP (op0, 0), 0);
1697 in2 = XEXP (op0, 1);
1698 return simplify_gen_binary (MINUS, mode, op1,
1699 simplify_gen_binary (MULT, mode,
1700 in1, in2));
1703 /* (plus (comparison A B) C) can become (neg (rev-comp A B)) if
1704 C is 1 and STORE_FLAG_VALUE is -1 or if C is -1 and STORE_FLAG_VALUE
1705 is 1. */
1706 if (COMPARISON_P (op0)
1707 && ((STORE_FLAG_VALUE == -1 && trueop1 == const1_rtx)
1708 || (STORE_FLAG_VALUE == 1 && trueop1 == constm1_rtx))
1709 && (reversed = reversed_comparison (op0, mode)))
1710 return
1711 simplify_gen_unary (NEG, mode, reversed, mode);
1713 /* If one of the operands is a PLUS or a MINUS, see if we can
1714 simplify this by the associative law.
1715 Don't use the associative law for floating point.
1716 The inaccuracy makes it nonassociative,
1717 and subtle programs can break if operations are associated. */
1719 if (INTEGRAL_MODE_P (mode)
1720 && (plus_minus_operand_p (op0)
1721 || plus_minus_operand_p (op1))
1722 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
1723 return tem;
1725 /* Reassociate floating point addition only when the user
1726 specifies associative math operations. */
1727 if (FLOAT_MODE_P (mode)
1728 && flag_associative_math)
1730 tem = simplify_associative_operation (code, mode, op0, op1);
1731 if (tem)
1732 return tem;
1734 break;
1736 case COMPARE:
1737 #ifdef HAVE_cc0
1738 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
1739 using cc0, in which case we want to leave it as a COMPARE
1740 so we can distinguish it from a register-register-copy.
1742 In IEEE floating point, x-0 is not the same as x. */
1744 if ((TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1745 || ! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
1746 && trueop1 == CONST0_RTX (mode))
1747 return op0;
1748 #endif
1750 /* Convert (compare (gt (flags) 0) (lt (flags) 0)) to (flags). */
1751 if (((GET_CODE (op0) == GT && GET_CODE (op1) == LT)
1752 || (GET_CODE (op0) == GTU && GET_CODE (op1) == LTU))
1753 && XEXP (op0, 1) == const0_rtx && XEXP (op1, 1) == const0_rtx)
1755 rtx xop00 = XEXP (op0, 0);
1756 rtx xop10 = XEXP (op1, 0);
1758 #ifdef HAVE_cc0
1759 if (GET_CODE (xop00) == CC0 && GET_CODE (xop10) == CC0)
1760 #else
1761 if (REG_P (xop00) && REG_P (xop10)
1762 && GET_MODE (xop00) == GET_MODE (xop10)
1763 && REGNO (xop00) == REGNO (xop10)
1764 && GET_MODE_CLASS (GET_MODE (xop00)) == MODE_CC
1765 && GET_MODE_CLASS (GET_MODE (xop10)) == MODE_CC)
1766 #endif
1767 return xop00;
1769 break;
1771 case MINUS:
1772 /* We can't assume x-x is 0 even with non-IEEE floating point,
1773 but since it is zero except in very strange circumstances, we
1774 will treat it as zero with -ffinite-math-only. */
1775 if (rtx_equal_p (trueop0, trueop1)
1776 && ! side_effects_p (op0)
1777 && (!FLOAT_MODE_P (mode) || !HONOR_NANS (mode)))
1778 return CONST0_RTX (mode);
1780 /* Change subtraction from zero into negation. (0 - x) is the
1781 same as -x when x is NaN, infinite, or finite and nonzero.
1782 But if the mode has signed zeros, and does not round towards
1783 -infinity, then 0 - 0 is 0, not -0. */
1784 if (!HONOR_SIGNED_ZEROS (mode) && trueop0 == CONST0_RTX (mode))
1785 return simplify_gen_unary (NEG, mode, op1, mode);
1787 /* (-1 - a) is ~a. */
1788 if (trueop0 == constm1_rtx)
1789 return simplify_gen_unary (NOT, mode, op1, mode);
1791 /* Subtracting 0 has no effect unless the mode has signed zeros
1792 and supports rounding towards -infinity. In such a case,
1793 0 - 0 is -0. */
1794 if (!(HONOR_SIGNED_ZEROS (mode)
1795 && HONOR_SIGN_DEPENDENT_ROUNDING (mode))
1796 && trueop1 == CONST0_RTX (mode))
1797 return op0;
1799 /* See if this is something like X * C - X or vice versa or
1800 if the multiplication is written as a shift. If so, we can
1801 distribute and make a new multiply, shift, or maybe just
1802 have X (if C is 2 in the example above). But don't make
1803 something more expensive than we had before. */
1805 if (SCALAR_INT_MODE_P (mode))
1807 HOST_WIDE_INT coeff0h = 0, negcoeff1h = -1;
1808 unsigned HOST_WIDE_INT coeff0l = 1, negcoeff1l = -1;
1809 rtx lhs = op0, rhs = op1;
1811 if (GET_CODE (lhs) == NEG)
1813 coeff0l = -1;
1814 coeff0h = -1;
1815 lhs = XEXP (lhs, 0);
1817 else if (GET_CODE (lhs) == MULT
1818 && GET_CODE (XEXP (lhs, 1)) == CONST_INT)
1820 coeff0l = INTVAL (XEXP (lhs, 1));
1821 coeff0h = INTVAL (XEXP (lhs, 1)) < 0 ? -1 : 0;
1822 lhs = XEXP (lhs, 0);
1824 else if (GET_CODE (lhs) == ASHIFT
1825 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
1826 && INTVAL (XEXP (lhs, 1)) >= 0
1827 && INTVAL (XEXP (lhs, 1)) < HOST_BITS_PER_WIDE_INT)
1829 coeff0l = ((HOST_WIDE_INT) 1) << INTVAL (XEXP (lhs, 1));
1830 coeff0h = 0;
1831 lhs = XEXP (lhs, 0);
1834 if (GET_CODE (rhs) == NEG)
1836 negcoeff1l = 1;
1837 negcoeff1h = 0;
1838 rhs = XEXP (rhs, 0);
1840 else if (GET_CODE (rhs) == MULT
1841 && GET_CODE (XEXP (rhs, 1)) == CONST_INT)
1843 negcoeff1l = -INTVAL (XEXP (rhs, 1));
1844 negcoeff1h = INTVAL (XEXP (rhs, 1)) <= 0 ? 0 : -1;
1845 rhs = XEXP (rhs, 0);
1847 else if (GET_CODE (rhs) == ASHIFT
1848 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
1849 && INTVAL (XEXP (rhs, 1)) >= 0
1850 && INTVAL (XEXP (rhs, 1)) < HOST_BITS_PER_WIDE_INT)
1852 negcoeff1l = -(((HOST_WIDE_INT) 1) << INTVAL (XEXP (rhs, 1)));
1853 negcoeff1h = -1;
1854 rhs = XEXP (rhs, 0);
1857 if (rtx_equal_p (lhs, rhs))
1859 rtx orig = gen_rtx_MINUS (mode, op0, op1);
1860 rtx coeff;
1861 unsigned HOST_WIDE_INT l;
1862 HOST_WIDE_INT h;
1864 add_double (coeff0l, coeff0h, negcoeff1l, negcoeff1h, &l, &h);
1865 coeff = immed_double_const (l, h, mode);
1867 tem = simplify_gen_binary (MULT, mode, lhs, coeff);
1868 return rtx_cost (tem, SET) <= rtx_cost (orig, SET)
1869 ? tem : 0;
1873 /* (a - (-b)) -> (a + b). True even for IEEE. */
1874 if (GET_CODE (op1) == NEG)
1875 return simplify_gen_binary (PLUS, mode, op0, XEXP (op1, 0));
1877 /* (-x - c) may be simplified as (-c - x). */
1878 if (GET_CODE (op0) == NEG
1879 && (GET_CODE (op1) == CONST_INT
1880 || GET_CODE (op1) == CONST_DOUBLE))
1882 tem = simplify_unary_operation (NEG, mode, op1, mode);
1883 if (tem)
1884 return simplify_gen_binary (MINUS, mode, tem, XEXP (op0, 0));
1887 /* Don't let a relocatable value get a negative coeff. */
1888 if (GET_CODE (op1) == CONST_INT && GET_MODE (op0) != VOIDmode)
1889 return simplify_gen_binary (PLUS, mode,
1890 op0,
1891 neg_const_int (mode, op1));
1893 /* (x - (x & y)) -> (x & ~y) */
1894 if (GET_CODE (op1) == AND)
1896 if (rtx_equal_p (op0, XEXP (op1, 0)))
1898 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 1),
1899 GET_MODE (XEXP (op1, 1)));
1900 return simplify_gen_binary (AND, mode, op0, tem);
1902 if (rtx_equal_p (op0, XEXP (op1, 1)))
1904 tem = simplify_gen_unary (NOT, mode, XEXP (op1, 0),
1905 GET_MODE (XEXP (op1, 0)));
1906 return simplify_gen_binary (AND, mode, op0, tem);
1910 /* If STORE_FLAG_VALUE is 1, (minus 1 (comparison foo bar)) can be done
1911 by reversing the comparison code if valid. */
1912 if (STORE_FLAG_VALUE == 1
1913 && trueop0 == const1_rtx
1914 && COMPARISON_P (op1)
1915 && (reversed = reversed_comparison (op1, mode)))
1916 return reversed;
1918 /* Canonicalize (minus A (mult (neg B) C)) to (plus (mult B C) A). */
1919 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
1920 && GET_CODE (op1) == MULT
1921 && GET_CODE (XEXP (op1, 0)) == NEG)
1923 rtx in1, in2;
1925 in1 = XEXP (XEXP (op1, 0), 0);
1926 in2 = XEXP (op1, 1);
1927 return simplify_gen_binary (PLUS, mode,
1928 simplify_gen_binary (MULT, mode,
1929 in1, in2),
1930 op0);
1933 /* Canonicalize (minus (neg A) (mult B C)) to
1934 (minus (mult (neg B) C) A). */
1935 if (!HONOR_SIGN_DEPENDENT_ROUNDING (mode)
1936 && GET_CODE (op1) == MULT
1937 && GET_CODE (op0) == NEG)
1939 rtx in1, in2;
1941 in1 = simplify_gen_unary (NEG, mode, XEXP (op1, 0), mode);
1942 in2 = XEXP (op1, 1);
1943 return simplify_gen_binary (MINUS, mode,
1944 simplify_gen_binary (MULT, mode,
1945 in1, in2),
1946 XEXP (op0, 0));
1949 /* If one of the operands is a PLUS or a MINUS, see if we can
1950 simplify this by the associative law. This will, for example,
1951 canonicalize (minus A (plus B C)) to (minus (minus A B) C).
1952 Don't use the associative law for floating point.
1953 The inaccuracy makes it nonassociative,
1954 and subtle programs can break if operations are associated. */
1956 if (INTEGRAL_MODE_P (mode)
1957 && (plus_minus_operand_p (op0)
1958 || plus_minus_operand_p (op1))
1959 && (tem = simplify_plus_minus (code, mode, op0, op1)) != 0)
1960 return tem;
1961 break;
1963 case MULT:
1964 if (trueop1 == constm1_rtx)
1965 return simplify_gen_unary (NEG, mode, op0, mode);
1967 /* Maybe simplify x * 0 to 0. The reduction is not valid if
1968 x is NaN, since x * 0 is then also NaN. Nor is it valid
1969 when the mode has signed zeros, since multiplying a negative
1970 number by 0 will give -0, not 0. */
1971 if (!HONOR_NANS (mode)
1972 && !HONOR_SIGNED_ZEROS (mode)
1973 && trueop1 == CONST0_RTX (mode)
1974 && ! side_effects_p (op0))
1975 return op1;
1977 /* In IEEE floating point, x*1 is not equivalent to x for
1978 signalling NaNs. */
1979 if (!HONOR_SNANS (mode)
1980 && trueop1 == CONST1_RTX (mode))
1981 return op0;
1983 /* Convert multiply by constant power of two into shift unless
1984 we are still generating RTL. This test is a kludge. */
1985 if (GET_CODE (trueop1) == CONST_INT
1986 && (val = exact_log2 (INTVAL (trueop1))) >= 0
1987 /* If the mode is larger than the host word size, and the
1988 uppermost bit is set, then this isn't a power of two due
1989 to implicit sign extension. */
1990 && (width <= HOST_BITS_PER_WIDE_INT
1991 || val != HOST_BITS_PER_WIDE_INT - 1))
1992 return simplify_gen_binary (ASHIFT, mode, op0, GEN_INT (val));
1994 /* Likewise for multipliers wider than a word. */
1995 if (GET_CODE (trueop1) == CONST_DOUBLE
1996 && (GET_MODE (trueop1) == VOIDmode
1997 || GET_MODE_CLASS (GET_MODE (trueop1)) == MODE_INT)
1998 && GET_MODE (op0) == mode
1999 && CONST_DOUBLE_LOW (trueop1) == 0
2000 && (val = exact_log2 (CONST_DOUBLE_HIGH (trueop1))) >= 0)
2001 return simplify_gen_binary (ASHIFT, mode, op0,
2002 GEN_INT (val + HOST_BITS_PER_WIDE_INT));
2004 /* x*2 is x+x and x*(-1) is -x */
2005 if (GET_CODE (trueop1) == CONST_DOUBLE
2006 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop1))
2007 && GET_MODE (op0) == mode)
2009 REAL_VALUE_TYPE d;
2010 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
2012 if (REAL_VALUES_EQUAL (d, dconst2))
2013 return simplify_gen_binary (PLUS, mode, op0, copy_rtx (op0));
2015 if (!HONOR_SNANS (mode)
2016 && REAL_VALUES_EQUAL (d, dconstm1))
2017 return simplify_gen_unary (NEG, mode, op0, mode);
2020 /* Optimize -x * -x as x * x. */
2021 if (FLOAT_MODE_P (mode)
2022 && GET_CODE (op0) == NEG
2023 && GET_CODE (op1) == NEG
2024 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
2025 && !side_effects_p (XEXP (op0, 0)))
2026 return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
2028 /* Likewise, optimize abs(x) * abs(x) as x * x. */
2029 if (SCALAR_FLOAT_MODE_P (mode)
2030 && GET_CODE (op0) == ABS
2031 && GET_CODE (op1) == ABS
2032 && rtx_equal_p (XEXP (op0, 0), XEXP (op1, 0))
2033 && !side_effects_p (XEXP (op0, 0)))
2034 return simplify_gen_binary (MULT, mode, XEXP (op0, 0), XEXP (op1, 0));
2036 /* Reassociate multiplication, but for floating point MULTs
2037 only when the user specifies unsafe math optimizations. */
2038 if (! FLOAT_MODE_P (mode)
2039 || flag_unsafe_math_optimizations)
2041 tem = simplify_associative_operation (code, mode, op0, op1);
2042 if (tem)
2043 return tem;
2045 break;
2047 case IOR:
2048 if (trueop1 == const0_rtx)
2049 return op0;
2050 if (GET_CODE (trueop1) == CONST_INT
2051 && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
2052 == GET_MODE_MASK (mode)))
2053 return op1;
2054 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2055 return op0;
2056 /* A | (~A) -> -1 */
2057 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
2058 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
2059 && ! side_effects_p (op0)
2060 && SCALAR_INT_MODE_P (mode))
2061 return constm1_rtx;
2063 /* (ior A C) is C if all bits of A that might be nonzero are on in C. */
2064 if (GET_CODE (op1) == CONST_INT
2065 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2066 && (nonzero_bits (op0, mode) & ~INTVAL (op1)) == 0)
2067 return op1;
2069 /* Canonicalize (X & C1) | C2. */
2070 if (GET_CODE (op0) == AND
2071 && GET_CODE (trueop1) == CONST_INT
2072 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
2074 HOST_WIDE_INT mask = GET_MODE_MASK (mode);
2075 HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
2076 HOST_WIDE_INT c2 = INTVAL (trueop1);
2078 /* If (C1&C2) == C1, then (X&C1)|C2 becomes X. */
2079 if ((c1 & c2) == c1
2080 && !side_effects_p (XEXP (op0, 0)))
2081 return trueop1;
2083 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
2084 if (((c1|c2) & mask) == mask)
2085 return simplify_gen_binary (IOR, mode, XEXP (op0, 0), op1);
2087 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2. */
2088 if (((c1 & ~c2) & mask) != (c1 & mask))
2090 tem = simplify_gen_binary (AND, mode, XEXP (op0, 0),
2091 gen_int_mode (c1 & ~c2, mode));
2092 return simplify_gen_binary (IOR, mode, tem, op1);
2096 /* Convert (A & B) | A to A. */
2097 if (GET_CODE (op0) == AND
2098 && (rtx_equal_p (XEXP (op0, 0), op1)
2099 || rtx_equal_p (XEXP (op0, 1), op1))
2100 && ! side_effects_p (XEXP (op0, 0))
2101 && ! side_effects_p (XEXP (op0, 1)))
2102 return op1;
2104 /* Convert (ior (ashift A CX) (lshiftrt A CY)) where CX+CY equals the
2105 mode size to (rotate A CX). */
2107 if (GET_CODE (op1) == ASHIFT
2108 || GET_CODE (op1) == SUBREG)
2110 opleft = op1;
2111 opright = op0;
2113 else
2115 opright = op1;
2116 opleft = op0;
2119 if (GET_CODE (opleft) == ASHIFT && GET_CODE (opright) == LSHIFTRT
2120 && rtx_equal_p (XEXP (opleft, 0), XEXP (opright, 0))
2121 && GET_CODE (XEXP (opleft, 1)) == CONST_INT
2122 && GET_CODE (XEXP (opright, 1)) == CONST_INT
2123 && (INTVAL (XEXP (opleft, 1)) + INTVAL (XEXP (opright, 1))
2124 == GET_MODE_BITSIZE (mode)))
2125 return gen_rtx_ROTATE (mode, XEXP (opright, 0), XEXP (opleft, 1));
2127 /* Same, but for ashift that has been "simplified" to a wider mode
2128 by simplify_shift_const. */
2130 if (GET_CODE (opleft) == SUBREG
2131 && GET_CODE (SUBREG_REG (opleft)) == ASHIFT
2132 && GET_CODE (opright) == LSHIFTRT
2133 && GET_CODE (XEXP (opright, 0)) == SUBREG
2134 && GET_MODE (opleft) == GET_MODE (XEXP (opright, 0))
2135 && SUBREG_BYTE (opleft) == SUBREG_BYTE (XEXP (opright, 0))
2136 && (GET_MODE_SIZE (GET_MODE (opleft))
2137 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (opleft))))
2138 && rtx_equal_p (XEXP (SUBREG_REG (opleft), 0),
2139 SUBREG_REG (XEXP (opright, 0)))
2140 && GET_CODE (XEXP (SUBREG_REG (opleft), 1)) == CONST_INT
2141 && GET_CODE (XEXP (opright, 1)) == CONST_INT
2142 && (INTVAL (XEXP (SUBREG_REG (opleft), 1)) + INTVAL (XEXP (opright, 1))
2143 == GET_MODE_BITSIZE (mode)))
2144 return gen_rtx_ROTATE (mode, XEXP (opright, 0),
2145 XEXP (SUBREG_REG (opleft), 1));
2147 /* If we have (ior (and (X C1) C2)), simplify this by making
2148 C1 as small as possible if C1 actually changes. */
2149 if (GET_CODE (op1) == CONST_INT
2150 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2151 || INTVAL (op1) > 0)
2152 && GET_CODE (op0) == AND
2153 && GET_CODE (XEXP (op0, 1)) == CONST_INT
2154 && GET_CODE (op1) == CONST_INT
2155 && (INTVAL (XEXP (op0, 1)) & INTVAL (op1)) != 0)
2156 return simplify_gen_binary (IOR, mode,
2157 simplify_gen_binary
2158 (AND, mode, XEXP (op0, 0),
2159 GEN_INT (INTVAL (XEXP (op0, 1))
2160 & ~INTVAL (op1))),
2161 op1);
2163 /* If OP0 is (ashiftrt (plus ...) C), it might actually be
2164 a (sign_extend (plus ...)). Then check if OP1 is a CONST_INT and
2165 the PLUS does not affect any of the bits in OP1: then we can do
2166 the IOR as a PLUS and we can associate. This is valid if OP1
2167 can be safely shifted left C bits. */
2168 if (GET_CODE (trueop1) == CONST_INT && GET_CODE (op0) == ASHIFTRT
2169 && GET_CODE (XEXP (op0, 0)) == PLUS
2170 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
2171 && GET_CODE (XEXP (op0, 1)) == CONST_INT
2172 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT)
2174 int count = INTVAL (XEXP (op0, 1));
2175 HOST_WIDE_INT mask = INTVAL (trueop1) << count;
2177 if (mask >> count == INTVAL (trueop1)
2178 && (mask & nonzero_bits (XEXP (op0, 0), mode)) == 0)
2179 return simplify_gen_binary (ASHIFTRT, mode,
2180 plus_constant (XEXP (op0, 0), mask),
2181 XEXP (op0, 1));
2184 tem = simplify_associative_operation (code, mode, op0, op1);
2185 if (tem)
2186 return tem;
2187 break;
2189 case XOR:
2190 if (trueop1 == const0_rtx)
2191 return op0;
2192 if (GET_CODE (trueop1) == CONST_INT
2193 && ((INTVAL (trueop1) & GET_MODE_MASK (mode))
2194 == GET_MODE_MASK (mode)))
2195 return simplify_gen_unary (NOT, mode, op0, mode);
2196 if (rtx_equal_p (trueop0, trueop1)
2197 && ! side_effects_p (op0)
2198 && GET_MODE_CLASS (mode) != MODE_CC)
2199 return CONST0_RTX (mode);
2201 /* Canonicalize XOR of the most significant bit to PLUS. */
2202 if ((GET_CODE (op1) == CONST_INT
2203 || GET_CODE (op1) == CONST_DOUBLE)
2204 && mode_signbit_p (mode, op1))
2205 return simplify_gen_binary (PLUS, mode, op0, op1);
2206 /* (xor (plus X C1) C2) is (xor X (C1^C2)) if C1 is signbit. */
2207 if ((GET_CODE (op1) == CONST_INT
2208 || GET_CODE (op1) == CONST_DOUBLE)
2209 && GET_CODE (op0) == PLUS
2210 && (GET_CODE (XEXP (op0, 1)) == CONST_INT
2211 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE)
2212 && mode_signbit_p (mode, XEXP (op0, 1)))
2213 return simplify_gen_binary (XOR, mode, XEXP (op0, 0),
2214 simplify_gen_binary (XOR, mode, op1,
2215 XEXP (op0, 1)));
2217 /* If we are XORing two things that have no bits in common,
2218 convert them into an IOR. This helps to detect rotation encoded
2219 using those methods and possibly other simplifications. */
2221 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2222 && (nonzero_bits (op0, mode)
2223 & nonzero_bits (op1, mode)) == 0)
2224 return (simplify_gen_binary (IOR, mode, op0, op1));
2226 /* Convert (XOR (NOT x) (NOT y)) to (XOR x y).
2227 Also convert (XOR (NOT x) y) to (NOT (XOR x y)), similarly for
2228 (NOT y). */
2230 int num_negated = 0;
2232 if (GET_CODE (op0) == NOT)
2233 num_negated++, op0 = XEXP (op0, 0);
2234 if (GET_CODE (op1) == NOT)
2235 num_negated++, op1 = XEXP (op1, 0);
2237 if (num_negated == 2)
2238 return simplify_gen_binary (XOR, mode, op0, op1);
2239 else if (num_negated == 1)
2240 return simplify_gen_unary (NOT, mode,
2241 simplify_gen_binary (XOR, mode, op0, op1),
2242 mode);
2245 /* Convert (xor (and A B) B) to (and (not A) B). The latter may
2246 correspond to a machine insn or result in further simplifications
2247 if B is a constant. */
2249 if (GET_CODE (op0) == AND
2250 && rtx_equal_p (XEXP (op0, 1), op1)
2251 && ! side_effects_p (op1))
2252 return simplify_gen_binary (AND, mode,
2253 simplify_gen_unary (NOT, mode,
2254 XEXP (op0, 0), mode),
2255 op1);
2257 else if (GET_CODE (op0) == AND
2258 && rtx_equal_p (XEXP (op0, 0), op1)
2259 && ! side_effects_p (op1))
2260 return simplify_gen_binary (AND, mode,
2261 simplify_gen_unary (NOT, mode,
2262 XEXP (op0, 1), mode),
2263 op1);
2265 /* (xor (comparison foo bar) (const_int 1)) can become the reversed
2266 comparison if STORE_FLAG_VALUE is 1. */
2267 if (STORE_FLAG_VALUE == 1
2268 && trueop1 == const1_rtx
2269 && COMPARISON_P (op0)
2270 && (reversed = reversed_comparison (op0, mode)))
2271 return reversed;
2273 /* (lshiftrt foo C) where C is the number of bits in FOO minus 1
2274 is (lt foo (const_int 0)), so we can perform the above
2275 simplification if STORE_FLAG_VALUE is 1. */
2277 if (STORE_FLAG_VALUE == 1
2278 && trueop1 == const1_rtx
2279 && GET_CODE (op0) == LSHIFTRT
2280 && GET_CODE (XEXP (op0, 1)) == CONST_INT
2281 && INTVAL (XEXP (op0, 1)) == GET_MODE_BITSIZE (mode) - 1)
2282 return gen_rtx_GE (mode, XEXP (op0, 0), const0_rtx);
2284 /* (xor (comparison foo bar) (const_int sign-bit))
2285 when STORE_FLAG_VALUE is the sign bit. */
2286 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2287 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
2288 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
2289 && trueop1 == const_true_rtx
2290 && COMPARISON_P (op0)
2291 && (reversed = reversed_comparison (op0, mode)))
2292 return reversed;
2294 tem = simplify_associative_operation (code, mode, op0, op1);
2295 if (tem)
2296 return tem;
2297 break;
2299 case AND:
2300 if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
2301 return trueop1;
2302 /* If we are turning off bits already known off in OP0, we need
2303 not do an AND. */
2304 if (GET_CODE (trueop1) == CONST_INT
2305 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2306 && (nonzero_bits (trueop0, mode) & ~INTVAL (trueop1)) == 0)
2307 return op0;
2308 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0)
2309 && GET_MODE_CLASS (mode) != MODE_CC)
2310 return op0;
2311 /* A & (~A) -> 0 */
2312 if (((GET_CODE (op0) == NOT && rtx_equal_p (XEXP (op0, 0), op1))
2313 || (GET_CODE (op1) == NOT && rtx_equal_p (XEXP (op1, 0), op0)))
2314 && ! side_effects_p (op0)
2315 && GET_MODE_CLASS (mode) != MODE_CC)
2316 return CONST0_RTX (mode);
2318 /* Transform (and (extend X) C) into (zero_extend (and X C)) if
2319 there are no nonzero bits of C outside of X's mode. */
2320 if ((GET_CODE (op0) == SIGN_EXTEND
2321 || GET_CODE (op0) == ZERO_EXTEND)
2322 && GET_CODE (trueop1) == CONST_INT
2323 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2324 && (~GET_MODE_MASK (GET_MODE (XEXP (op0, 0)))
2325 & INTVAL (trueop1)) == 0)
2327 enum machine_mode imode = GET_MODE (XEXP (op0, 0));
2328 tem = simplify_gen_binary (AND, imode, XEXP (op0, 0),
2329 gen_int_mode (INTVAL (trueop1),
2330 imode));
2331 return simplify_gen_unary (ZERO_EXTEND, mode, tem, imode);
2334 /* Canonicalize (A | C1) & C2 as (A & C2) | (C1 & C2). */
2335 if (GET_CODE (op0) == IOR
2336 && GET_CODE (trueop1) == CONST_INT
2337 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
2339 HOST_WIDE_INT tmp = INTVAL (trueop1) & INTVAL (XEXP (op0, 1));
2340 return simplify_gen_binary (IOR, mode,
2341 simplify_gen_binary (AND, mode,
2342 XEXP (op0, 0), op1),
2343 gen_int_mode (tmp, mode));
2346 /* Convert (A ^ B) & A to A & (~B) since the latter is often a single
2347 insn (and may simplify more). */
2348 if (GET_CODE (op0) == XOR
2349 && rtx_equal_p (XEXP (op0, 0), op1)
2350 && ! side_effects_p (op1))
2351 return simplify_gen_binary (AND, mode,
2352 simplify_gen_unary (NOT, mode,
2353 XEXP (op0, 1), mode),
2354 op1);
2356 if (GET_CODE (op0) == XOR
2357 && rtx_equal_p (XEXP (op0, 1), op1)
2358 && ! side_effects_p (op1))
2359 return simplify_gen_binary (AND, mode,
2360 simplify_gen_unary (NOT, mode,
2361 XEXP (op0, 0), mode),
2362 op1);
2364 /* Similarly for (~(A ^ B)) & A. */
2365 if (GET_CODE (op0) == NOT
2366 && GET_CODE (XEXP (op0, 0)) == XOR
2367 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), op1)
2368 && ! side_effects_p (op1))
2369 return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 1), op1);
2371 if (GET_CODE (op0) == NOT
2372 && GET_CODE (XEXP (op0, 0)) == XOR
2373 && rtx_equal_p (XEXP (XEXP (op0, 0), 1), op1)
2374 && ! side_effects_p (op1))
2375 return simplify_gen_binary (AND, mode, XEXP (XEXP (op0, 0), 0), op1);
2377 /* Convert (A | B) & A to A. */
2378 if (GET_CODE (op0) == IOR
2379 && (rtx_equal_p (XEXP (op0, 0), op1)
2380 || rtx_equal_p (XEXP (op0, 1), op1))
2381 && ! side_effects_p (XEXP (op0, 0))
2382 && ! side_effects_p (XEXP (op0, 1)))
2383 return op1;
2385 /* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M,
2386 ((A & N) + B) & M -> (A + B) & M
2387 Similarly if (N & M) == 0,
2388 ((A | N) + B) & M -> (A + B) & M
2389 and for - instead of + and/or ^ instead of |. */
2390 if (GET_CODE (trueop1) == CONST_INT
2391 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2392 && ~INTVAL (trueop1)
2393 && (INTVAL (trueop1) & (INTVAL (trueop1) + 1)) == 0
2394 && (GET_CODE (op0) == PLUS || GET_CODE (op0) == MINUS))
2396 rtx pmop[2];
2397 int which;
2399 pmop[0] = XEXP (op0, 0);
2400 pmop[1] = XEXP (op0, 1);
2402 for (which = 0; which < 2; which++)
2404 tem = pmop[which];
2405 switch (GET_CODE (tem))
2407 case AND:
2408 if (GET_CODE (XEXP (tem, 1)) == CONST_INT
2409 && (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1))
2410 == INTVAL (trueop1))
2411 pmop[which] = XEXP (tem, 0);
2412 break;
2413 case IOR:
2414 case XOR:
2415 if (GET_CODE (XEXP (tem, 1)) == CONST_INT
2416 && (INTVAL (XEXP (tem, 1)) & INTVAL (trueop1)) == 0)
2417 pmop[which] = XEXP (tem, 0);
2418 break;
2419 default:
2420 break;
2424 if (pmop[0] != XEXP (op0, 0) || pmop[1] != XEXP (op0, 1))
2426 tem = simplify_gen_binary (GET_CODE (op0), mode,
2427 pmop[0], pmop[1]);
2428 return simplify_gen_binary (code, mode, tem, op1);
2431 tem = simplify_associative_operation (code, mode, op0, op1);
2432 if (tem)
2433 return tem;
2434 break;
2436 case UDIV:
2437 /* 0/x is 0 (or x&0 if x has side-effects). */
2438 if (trueop0 == CONST0_RTX (mode))
2440 if (side_effects_p (op1))
2441 return simplify_gen_binary (AND, mode, op1, trueop0);
2442 return trueop0;
2444 /* x/1 is x. */
2445 if (trueop1 == CONST1_RTX (mode))
2446 return rtl_hooks.gen_lowpart_no_emit (mode, op0);
2447 /* Convert divide by power of two into shift. */
2448 if (GET_CODE (trueop1) == CONST_INT
2449 && (val = exact_log2 (INTVAL (trueop1))) > 0)
2450 return simplify_gen_binary (LSHIFTRT, mode, op0, GEN_INT (val));
2451 break;
2453 case DIV:
2454 /* Handle floating point and integers separately. */
2455 if (SCALAR_FLOAT_MODE_P (mode))
2457 /* Maybe change 0.0 / x to 0.0. This transformation isn't
2458 safe for modes with NaNs, since 0.0 / 0.0 will then be
2459 NaN rather than 0.0. Nor is it safe for modes with signed
2460 zeros, since dividing 0 by a negative number gives -0.0 */
2461 if (trueop0 == CONST0_RTX (mode)
2462 && !HONOR_NANS (mode)
2463 && !HONOR_SIGNED_ZEROS (mode)
2464 && ! side_effects_p (op1))
2465 return op0;
2466 /* x/1.0 is x. */
2467 if (trueop1 == CONST1_RTX (mode)
2468 && !HONOR_SNANS (mode))
2469 return op0;
2471 if (GET_CODE (trueop1) == CONST_DOUBLE
2472 && trueop1 != CONST0_RTX (mode))
2474 REAL_VALUE_TYPE d;
2475 REAL_VALUE_FROM_CONST_DOUBLE (d, trueop1);
2477 /* x/-1.0 is -x. */
2478 if (REAL_VALUES_EQUAL (d, dconstm1)
2479 && !HONOR_SNANS (mode))
2480 return simplify_gen_unary (NEG, mode, op0, mode);
2482 /* Change FP division by a constant into multiplication.
2483 Only do this with -freciprocal-math. */
2484 if (flag_reciprocal_math
2485 && !REAL_VALUES_EQUAL (d, dconst0))
2487 REAL_ARITHMETIC (d, RDIV_EXPR, dconst1, d);
2488 tem = CONST_DOUBLE_FROM_REAL_VALUE (d, mode);
2489 return simplify_gen_binary (MULT, mode, op0, tem);
2493 else
2495 /* 0/x is 0 (or x&0 if x has side-effects). */
2496 if (trueop0 == CONST0_RTX (mode))
2498 if (side_effects_p (op1))
2499 return simplify_gen_binary (AND, mode, op1, trueop0);
2500 return trueop0;
2502 /* x/1 is x. */
2503 if (trueop1 == CONST1_RTX (mode))
2504 return rtl_hooks.gen_lowpart_no_emit (mode, op0);
2505 /* x/-1 is -x. */
2506 if (trueop1 == constm1_rtx)
2508 rtx x = rtl_hooks.gen_lowpart_no_emit (mode, op0);
2509 return simplify_gen_unary (NEG, mode, x, mode);
2512 break;
2514 case UMOD:
2515 /* 0%x is 0 (or x&0 if x has side-effects). */
2516 if (trueop0 == CONST0_RTX (mode))
2518 if (side_effects_p (op1))
2519 return simplify_gen_binary (AND, mode, op1, trueop0);
2520 return trueop0;
2522 /* x%1 is 0 (of x&0 if x has side-effects). */
2523 if (trueop1 == CONST1_RTX (mode))
2525 if (side_effects_p (op0))
2526 return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
2527 return CONST0_RTX (mode);
2529 /* Implement modulus by power of two as AND. */
2530 if (GET_CODE (trueop1) == CONST_INT
2531 && exact_log2 (INTVAL (trueop1)) > 0)
2532 return simplify_gen_binary (AND, mode, op0,
2533 GEN_INT (INTVAL (op1) - 1));
2534 break;
2536 case MOD:
2537 /* 0%x is 0 (or x&0 if x has side-effects). */
2538 if (trueop0 == CONST0_RTX (mode))
2540 if (side_effects_p (op1))
2541 return simplify_gen_binary (AND, mode, op1, trueop0);
2542 return trueop0;
2544 /* x%1 and x%-1 is 0 (or x&0 if x has side-effects). */
2545 if (trueop1 == CONST1_RTX (mode) || trueop1 == constm1_rtx)
2547 if (side_effects_p (op0))
2548 return simplify_gen_binary (AND, mode, op0, CONST0_RTX (mode));
2549 return CONST0_RTX (mode);
2551 break;
2553 case ROTATERT:
2554 case ROTATE:
2555 case ASHIFTRT:
2556 if (trueop1 == CONST0_RTX (mode))
2557 return op0;
2558 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
2559 return op0;
2560 /* Rotating ~0 always results in ~0. */
2561 if (GET_CODE (trueop0) == CONST_INT && width <= HOST_BITS_PER_WIDE_INT
2562 && (unsigned HOST_WIDE_INT) INTVAL (trueop0) == GET_MODE_MASK (mode)
2563 && ! side_effects_p (op1))
2564 return op0;
2565 canonicalize_shift:
2566 if (SHIFT_COUNT_TRUNCATED && GET_CODE (op1) == CONST_INT)
2568 val = INTVAL (op1) & (GET_MODE_BITSIZE (mode) - 1);
2569 if (val != INTVAL (op1))
2570 return simplify_gen_binary (code, mode, op0, GEN_INT (val));
2572 break;
2574 case ASHIFT:
2575 case SS_ASHIFT:
2576 case US_ASHIFT:
2577 if (trueop1 == CONST0_RTX (mode))
2578 return op0;
2579 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
2580 return op0;
2581 goto canonicalize_shift;
2583 case LSHIFTRT:
2584 if (trueop1 == CONST0_RTX (mode))
2585 return op0;
2586 if (trueop0 == CONST0_RTX (mode) && ! side_effects_p (op1))
2587 return op0;
2588 /* Optimize (lshiftrt (clz X) C) as (eq X 0). */
2589 if (GET_CODE (op0) == CLZ
2590 && GET_CODE (trueop1) == CONST_INT
2591 && STORE_FLAG_VALUE == 1
2592 && INTVAL (trueop1) < (HOST_WIDE_INT)width)
2594 enum machine_mode imode = GET_MODE (XEXP (op0, 0));
2595 unsigned HOST_WIDE_INT zero_val = 0;
2597 if (CLZ_DEFINED_VALUE_AT_ZERO (imode, zero_val)
2598 && zero_val == GET_MODE_BITSIZE (imode)
2599 && INTVAL (trueop1) == exact_log2 (zero_val))
2600 return simplify_gen_relational (EQ, mode, imode,
2601 XEXP (op0, 0), const0_rtx);
2603 goto canonicalize_shift;
2605 case SMIN:
2606 if (width <= HOST_BITS_PER_WIDE_INT
2607 && GET_CODE (trueop1) == CONST_INT
2608 && INTVAL (trueop1) == (HOST_WIDE_INT) 1 << (width -1)
2609 && ! side_effects_p (op0))
2610 return op1;
2611 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2612 return op0;
2613 tem = simplify_associative_operation (code, mode, op0, op1);
2614 if (tem)
2615 return tem;
2616 break;
2618 case SMAX:
2619 if (width <= HOST_BITS_PER_WIDE_INT
2620 && GET_CODE (trueop1) == CONST_INT
2621 && ((unsigned HOST_WIDE_INT) INTVAL (trueop1)
2622 == (unsigned HOST_WIDE_INT) GET_MODE_MASK (mode) >> 1)
2623 && ! side_effects_p (op0))
2624 return op1;
2625 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2626 return op0;
2627 tem = simplify_associative_operation (code, mode, op0, op1);
2628 if (tem)
2629 return tem;
2630 break;
2632 case UMIN:
2633 if (trueop1 == CONST0_RTX (mode) && ! side_effects_p (op0))
2634 return op1;
2635 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2636 return op0;
2637 tem = simplify_associative_operation (code, mode, op0, op1);
2638 if (tem)
2639 return tem;
2640 break;
2642 case UMAX:
2643 if (trueop1 == constm1_rtx && ! side_effects_p (op0))
2644 return op1;
2645 if (rtx_equal_p (trueop0, trueop1) && ! side_effects_p (op0))
2646 return op0;
2647 tem = simplify_associative_operation (code, mode, op0, op1);
2648 if (tem)
2649 return tem;
2650 break;
2652 case SS_PLUS:
2653 case US_PLUS:
2654 case SS_MINUS:
2655 case US_MINUS:
2656 case SS_MULT:
2657 case US_MULT:
2658 case SS_DIV:
2659 case US_DIV:
2660 /* ??? There are simplifications that can be done. */
2661 return 0;
2663 case VEC_SELECT:
2664 if (!VECTOR_MODE_P (mode))
2666 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
2667 gcc_assert (mode == GET_MODE_INNER (GET_MODE (trueop0)));
2668 gcc_assert (GET_CODE (trueop1) == PARALLEL);
2669 gcc_assert (XVECLEN (trueop1, 0) == 1);
2670 gcc_assert (GET_CODE (XVECEXP (trueop1, 0, 0)) == CONST_INT);
2672 if (GET_CODE (trueop0) == CONST_VECTOR)
2673 return CONST_VECTOR_ELT (trueop0, INTVAL (XVECEXP
2674 (trueop1, 0, 0)));
2676 /* Extract a scalar element from a nested VEC_SELECT expression
2677 (with optional nested VEC_CONCAT expression). Some targets
2678 (i386) extract scalar element from a vector using chain of
2679 nested VEC_SELECT expressions. When input operand is a memory
2680 operand, this operation can be simplified to a simple scalar
2681 load from an offseted memory address. */
2682 if (GET_CODE (trueop0) == VEC_SELECT)
2684 rtx op0 = XEXP (trueop0, 0);
2685 rtx op1 = XEXP (trueop0, 1);
2687 enum machine_mode opmode = GET_MODE (op0);
2688 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (opmode));
2689 int n_elts = GET_MODE_SIZE (opmode) / elt_size;
2691 int i = INTVAL (XVECEXP (trueop1, 0, 0));
2692 int elem;
2694 rtvec vec;
2695 rtx tmp_op, tmp;
2697 gcc_assert (GET_CODE (op1) == PARALLEL);
2698 gcc_assert (i < n_elts);
2700 /* Select element, pointed by nested selector. */
2701 elem = INTVAL (XVECEXP (op1, 0, i));
2703 /* Handle the case when nested VEC_SELECT wraps VEC_CONCAT. */
2704 if (GET_CODE (op0) == VEC_CONCAT)
2706 rtx op00 = XEXP (op0, 0);
2707 rtx op01 = XEXP (op0, 1);
2709 enum machine_mode mode00, mode01;
2710 int n_elts00, n_elts01;
2712 mode00 = GET_MODE (op00);
2713 mode01 = GET_MODE (op01);
2715 /* Find out number of elements of each operand. */
2716 if (VECTOR_MODE_P (mode00))
2718 elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode00));
2719 n_elts00 = GET_MODE_SIZE (mode00) / elt_size;
2721 else
2722 n_elts00 = 1;
2724 if (VECTOR_MODE_P (mode01))
2726 elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode01));
2727 n_elts01 = GET_MODE_SIZE (mode01) / elt_size;
2729 else
2730 n_elts01 = 1;
2732 gcc_assert (n_elts == n_elts00 + n_elts01);
2734 /* Select correct operand of VEC_CONCAT
2735 and adjust selector. */
2736 if (elem < n_elts01)
2737 tmp_op = op00;
2738 else
2740 tmp_op = op01;
2741 elem -= n_elts00;
2744 else
2745 tmp_op = op0;
2747 vec = rtvec_alloc (1);
2748 RTVEC_ELT (vec, 0) = GEN_INT (elem);
2750 tmp = gen_rtx_fmt_ee (code, mode,
2751 tmp_op, gen_rtx_PARALLEL (VOIDmode, vec));
2752 return tmp;
2755 else
2757 gcc_assert (VECTOR_MODE_P (GET_MODE (trueop0)));
2758 gcc_assert (GET_MODE_INNER (mode)
2759 == GET_MODE_INNER (GET_MODE (trueop0)));
2760 gcc_assert (GET_CODE (trueop1) == PARALLEL);
2762 if (GET_CODE (trueop0) == CONST_VECTOR)
2764 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
2765 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
2766 rtvec v = rtvec_alloc (n_elts);
2767 unsigned int i;
2769 gcc_assert (XVECLEN (trueop1, 0) == (int) n_elts);
2770 for (i = 0; i < n_elts; i++)
2772 rtx x = XVECEXP (trueop1, 0, i);
2774 gcc_assert (GET_CODE (x) == CONST_INT);
2775 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0,
2776 INTVAL (x));
2779 return gen_rtx_CONST_VECTOR (mode, v);
2783 if (XVECLEN (trueop1, 0) == 1
2784 && GET_CODE (XVECEXP (trueop1, 0, 0)) == CONST_INT
2785 && GET_CODE (trueop0) == VEC_CONCAT)
2787 rtx vec = trueop0;
2788 int offset = INTVAL (XVECEXP (trueop1, 0, 0)) * GET_MODE_SIZE (mode);
2790 /* Try to find the element in the VEC_CONCAT. */
2791 while (GET_MODE (vec) != mode
2792 && GET_CODE (vec) == VEC_CONCAT)
2794 HOST_WIDE_INT vec_size = GET_MODE_SIZE (GET_MODE (XEXP (vec, 0)));
2795 if (offset < vec_size)
2796 vec = XEXP (vec, 0);
2797 else
2799 offset -= vec_size;
2800 vec = XEXP (vec, 1);
2802 vec = avoid_constant_pool_reference (vec);
2805 if (GET_MODE (vec) == mode)
2806 return vec;
2809 return 0;
2810 case VEC_CONCAT:
2812 enum machine_mode op0_mode = (GET_MODE (trueop0) != VOIDmode
2813 ? GET_MODE (trueop0)
2814 : GET_MODE_INNER (mode));
2815 enum machine_mode op1_mode = (GET_MODE (trueop1) != VOIDmode
2816 ? GET_MODE (trueop1)
2817 : GET_MODE_INNER (mode));
2819 gcc_assert (VECTOR_MODE_P (mode));
2820 gcc_assert (GET_MODE_SIZE (op0_mode) + GET_MODE_SIZE (op1_mode)
2821 == GET_MODE_SIZE (mode));
2823 if (VECTOR_MODE_P (op0_mode))
2824 gcc_assert (GET_MODE_INNER (mode)
2825 == GET_MODE_INNER (op0_mode));
2826 else
2827 gcc_assert (GET_MODE_INNER (mode) == op0_mode);
2829 if (VECTOR_MODE_P (op1_mode))
2830 gcc_assert (GET_MODE_INNER (mode)
2831 == GET_MODE_INNER (op1_mode));
2832 else
2833 gcc_assert (GET_MODE_INNER (mode) == op1_mode);
2835 if ((GET_CODE (trueop0) == CONST_VECTOR
2836 || GET_CODE (trueop0) == CONST_INT
2837 || GET_CODE (trueop0) == CONST_DOUBLE)
2838 && (GET_CODE (trueop1) == CONST_VECTOR
2839 || GET_CODE (trueop1) == CONST_INT
2840 || GET_CODE (trueop1) == CONST_DOUBLE))
2842 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
2843 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
2844 rtvec v = rtvec_alloc (n_elts);
2845 unsigned int i;
2846 unsigned in_n_elts = 1;
2848 if (VECTOR_MODE_P (op0_mode))
2849 in_n_elts = (GET_MODE_SIZE (op0_mode) / elt_size);
2850 for (i = 0; i < n_elts; i++)
2852 if (i < in_n_elts)
2854 if (!VECTOR_MODE_P (op0_mode))
2855 RTVEC_ELT (v, i) = trueop0;
2856 else
2857 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop0, i);
2859 else
2861 if (!VECTOR_MODE_P (op1_mode))
2862 RTVEC_ELT (v, i) = trueop1;
2863 else
2864 RTVEC_ELT (v, i) = CONST_VECTOR_ELT (trueop1,
2865 i - in_n_elts);
2869 return gen_rtx_CONST_VECTOR (mode, v);
2872 return 0;
2874 default:
2875 gcc_unreachable ();
2878 return 0;
2882 simplify_const_binary_operation (enum rtx_code code, enum machine_mode mode,
2883 rtx op0, rtx op1)
2885 HOST_WIDE_INT arg0, arg1, arg0s, arg1s;
2886 HOST_WIDE_INT val;
2887 unsigned int width = GET_MODE_BITSIZE (mode);
2889 if (VECTOR_MODE_P (mode)
2890 && code != VEC_CONCAT
2891 && GET_CODE (op0) == CONST_VECTOR
2892 && GET_CODE (op1) == CONST_VECTOR)
2894 unsigned n_elts = GET_MODE_NUNITS (mode);
2895 enum machine_mode op0mode = GET_MODE (op0);
2896 unsigned op0_n_elts = GET_MODE_NUNITS (op0mode);
2897 enum machine_mode op1mode = GET_MODE (op1);
2898 unsigned op1_n_elts = GET_MODE_NUNITS (op1mode);
2899 rtvec v = rtvec_alloc (n_elts);
2900 unsigned int i;
2902 gcc_assert (op0_n_elts == n_elts);
2903 gcc_assert (op1_n_elts == n_elts);
2904 for (i = 0; i < n_elts; i++)
2906 rtx x = simplify_binary_operation (code, GET_MODE_INNER (mode),
2907 CONST_VECTOR_ELT (op0, i),
2908 CONST_VECTOR_ELT (op1, i));
2909 if (!x)
2910 return 0;
2911 RTVEC_ELT (v, i) = x;
2914 return gen_rtx_CONST_VECTOR (mode, v);
2917 if (VECTOR_MODE_P (mode)
2918 && code == VEC_CONCAT
2919 && (CONST_INT_P (op0)
2920 || GET_CODE (op0) == CONST_DOUBLE
2921 || GET_CODE (op0) == CONST_FIXED)
2922 && (CONST_INT_P (op1)
2923 || GET_CODE (op1) == CONST_DOUBLE
2924 || GET_CODE (op1) == CONST_FIXED))
2926 unsigned n_elts = GET_MODE_NUNITS (mode);
2927 rtvec v = rtvec_alloc (n_elts);
2929 gcc_assert (n_elts >= 2);
2930 if (n_elts == 2)
2932 gcc_assert (GET_CODE (op0) != CONST_VECTOR);
2933 gcc_assert (GET_CODE (op1) != CONST_VECTOR);
2935 RTVEC_ELT (v, 0) = op0;
2936 RTVEC_ELT (v, 1) = op1;
2938 else
2940 unsigned op0_n_elts = GET_MODE_NUNITS (GET_MODE (op0));
2941 unsigned op1_n_elts = GET_MODE_NUNITS (GET_MODE (op1));
2942 unsigned i;
2944 gcc_assert (GET_CODE (op0) == CONST_VECTOR);
2945 gcc_assert (GET_CODE (op1) == CONST_VECTOR);
2946 gcc_assert (op0_n_elts + op1_n_elts == n_elts);
2948 for (i = 0; i < op0_n_elts; ++i)
2949 RTVEC_ELT (v, i) = XVECEXP (op0, 0, i);
2950 for (i = 0; i < op1_n_elts; ++i)
2951 RTVEC_ELT (v, op0_n_elts+i) = XVECEXP (op1, 0, i);
2954 return gen_rtx_CONST_VECTOR (mode, v);
2957 if (SCALAR_FLOAT_MODE_P (mode)
2958 && GET_CODE (op0) == CONST_DOUBLE
2959 && GET_CODE (op1) == CONST_DOUBLE
2960 && mode == GET_MODE (op0) && mode == GET_MODE (op1))
2962 if (code == AND
2963 || code == IOR
2964 || code == XOR)
2966 long tmp0[4];
2967 long tmp1[4];
2968 REAL_VALUE_TYPE r;
2969 int i;
2971 real_to_target (tmp0, CONST_DOUBLE_REAL_VALUE (op0),
2972 GET_MODE (op0));
2973 real_to_target (tmp1, CONST_DOUBLE_REAL_VALUE (op1),
2974 GET_MODE (op1));
2975 for (i = 0; i < 4; i++)
2977 switch (code)
2979 case AND:
2980 tmp0[i] &= tmp1[i];
2981 break;
2982 case IOR:
2983 tmp0[i] |= tmp1[i];
2984 break;
2985 case XOR:
2986 tmp0[i] ^= tmp1[i];
2987 break;
2988 default:
2989 gcc_unreachable ();
2992 real_from_target (&r, tmp0, mode);
2993 return CONST_DOUBLE_FROM_REAL_VALUE (r, mode);
2995 else
2997 REAL_VALUE_TYPE f0, f1, value, result;
2998 bool inexact;
3000 REAL_VALUE_FROM_CONST_DOUBLE (f0, op0);
3001 REAL_VALUE_FROM_CONST_DOUBLE (f1, op1);
3002 real_convert (&f0, mode, &f0);
3003 real_convert (&f1, mode, &f1);
3005 if (HONOR_SNANS (mode)
3006 && (REAL_VALUE_ISNAN (f0) || REAL_VALUE_ISNAN (f1)))
3007 return 0;
3009 if (code == DIV
3010 && REAL_VALUES_EQUAL (f1, dconst0)
3011 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
3012 return 0;
3014 if (MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
3015 && flag_trapping_math
3016 && REAL_VALUE_ISINF (f0) && REAL_VALUE_ISINF (f1))
3018 int s0 = REAL_VALUE_NEGATIVE (f0);
3019 int s1 = REAL_VALUE_NEGATIVE (f1);
3021 switch (code)
3023 case PLUS:
3024 /* Inf + -Inf = NaN plus exception. */
3025 if (s0 != s1)
3026 return 0;
3027 break;
3028 case MINUS:
3029 /* Inf - Inf = NaN plus exception. */
3030 if (s0 == s1)
3031 return 0;
3032 break;
3033 case DIV:
3034 /* Inf / Inf = NaN plus exception. */
3035 return 0;
3036 default:
3037 break;
3041 if (code == MULT && MODE_HAS_INFINITIES (mode) && HONOR_NANS (mode)
3042 && flag_trapping_math
3043 && ((REAL_VALUE_ISINF (f0) && REAL_VALUES_EQUAL (f1, dconst0))
3044 || (REAL_VALUE_ISINF (f1)
3045 && REAL_VALUES_EQUAL (f0, dconst0))))
3046 /* Inf * 0 = NaN plus exception. */
3047 return 0;
3049 inexact = real_arithmetic (&value, rtx_to_tree_code (code),
3050 &f0, &f1);
3051 real_convert (&result, mode, &value);
3053 /* Don't constant fold this floating point operation if
3054 the result has overflowed and flag_trapping_math. */
3056 if (flag_trapping_math
3057 && MODE_HAS_INFINITIES (mode)
3058 && REAL_VALUE_ISINF (result)
3059 && !REAL_VALUE_ISINF (f0)
3060 && !REAL_VALUE_ISINF (f1))
3061 /* Overflow plus exception. */
3062 return 0;
3064 /* Don't constant fold this floating point operation if the
3065 result may dependent upon the run-time rounding mode and
3066 flag_rounding_math is set, or if GCC's software emulation
3067 is unable to accurately represent the result. */
3069 if ((flag_rounding_math
3070 || (REAL_MODE_FORMAT_COMPOSITE_P (mode)
3071 && !flag_unsafe_math_optimizations))
3072 && (inexact || !real_identical (&result, &value)))
3073 return NULL_RTX;
3075 return CONST_DOUBLE_FROM_REAL_VALUE (result, mode);
3079 /* We can fold some multi-word operations. */
3080 if (GET_MODE_CLASS (mode) == MODE_INT
3081 && width == HOST_BITS_PER_WIDE_INT * 2
3082 && (GET_CODE (op0) == CONST_DOUBLE || GET_CODE (op0) == CONST_INT)
3083 && (GET_CODE (op1) == CONST_DOUBLE || GET_CODE (op1) == CONST_INT))
3085 unsigned HOST_WIDE_INT l1, l2, lv, lt;
3086 HOST_WIDE_INT h1, h2, hv, ht;
3088 if (GET_CODE (op0) == CONST_DOUBLE)
3089 l1 = CONST_DOUBLE_LOW (op0), h1 = CONST_DOUBLE_HIGH (op0);
3090 else
3091 l1 = INTVAL (op0), h1 = HWI_SIGN_EXTEND (l1);
3093 if (GET_CODE (op1) == CONST_DOUBLE)
3094 l2 = CONST_DOUBLE_LOW (op1), h2 = CONST_DOUBLE_HIGH (op1);
3095 else
3096 l2 = INTVAL (op1), h2 = HWI_SIGN_EXTEND (l2);
3098 switch (code)
3100 case MINUS:
3101 /* A - B == A + (-B). */
3102 neg_double (l2, h2, &lv, &hv);
3103 l2 = lv, h2 = hv;
3105 /* Fall through.... */
3107 case PLUS:
3108 add_double (l1, h1, l2, h2, &lv, &hv);
3109 break;
3111 case MULT:
3112 mul_double (l1, h1, l2, h2, &lv, &hv);
3113 break;
3115 case DIV:
3116 if (div_and_round_double (TRUNC_DIV_EXPR, 0, l1, h1, l2, h2,
3117 &lv, &hv, &lt, &ht))
3118 return 0;
3119 break;
3121 case MOD:
3122 if (div_and_round_double (TRUNC_DIV_EXPR, 0, l1, h1, l2, h2,
3123 &lt, &ht, &lv, &hv))
3124 return 0;
3125 break;
3127 case UDIV:
3128 if (div_and_round_double (TRUNC_DIV_EXPR, 1, l1, h1, l2, h2,
3129 &lv, &hv, &lt, &ht))
3130 return 0;
3131 break;
3133 case UMOD:
3134 if (div_and_round_double (TRUNC_DIV_EXPR, 1, l1, h1, l2, h2,
3135 &lt, &ht, &lv, &hv))
3136 return 0;
3137 break;
3139 case AND:
3140 lv = l1 & l2, hv = h1 & h2;
3141 break;
3143 case IOR:
3144 lv = l1 | l2, hv = h1 | h2;
3145 break;
3147 case XOR:
3148 lv = l1 ^ l2, hv = h1 ^ h2;
3149 break;
3151 case SMIN:
3152 if (h1 < h2
3153 || (h1 == h2
3154 && ((unsigned HOST_WIDE_INT) l1
3155 < (unsigned HOST_WIDE_INT) l2)))
3156 lv = l1, hv = h1;
3157 else
3158 lv = l2, hv = h2;
3159 break;
3161 case SMAX:
3162 if (h1 > h2
3163 || (h1 == h2
3164 && ((unsigned HOST_WIDE_INT) l1
3165 > (unsigned HOST_WIDE_INT) l2)))
3166 lv = l1, hv = h1;
3167 else
3168 lv = l2, hv = h2;
3169 break;
3171 case UMIN:
3172 if ((unsigned HOST_WIDE_INT) h1 < (unsigned HOST_WIDE_INT) h2
3173 || (h1 == h2
3174 && ((unsigned HOST_WIDE_INT) l1
3175 < (unsigned HOST_WIDE_INT) l2)))
3176 lv = l1, hv = h1;
3177 else
3178 lv = l2, hv = h2;
3179 break;
3181 case UMAX:
3182 if ((unsigned HOST_WIDE_INT) h1 > (unsigned HOST_WIDE_INT) h2
3183 || (h1 == h2
3184 && ((unsigned HOST_WIDE_INT) l1
3185 > (unsigned HOST_WIDE_INT) l2)))
3186 lv = l1, hv = h1;
3187 else
3188 lv = l2, hv = h2;
3189 break;
3191 case LSHIFTRT: case ASHIFTRT:
3192 case ASHIFT:
3193 case ROTATE: case ROTATERT:
3194 if (SHIFT_COUNT_TRUNCATED)
3195 l2 &= (GET_MODE_BITSIZE (mode) - 1), h2 = 0;
3197 if (h2 != 0 || l2 >= GET_MODE_BITSIZE (mode))
3198 return 0;
3200 if (code == LSHIFTRT || code == ASHIFTRT)
3201 rshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv,
3202 code == ASHIFTRT);
3203 else if (code == ASHIFT)
3204 lshift_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv, 1);
3205 else if (code == ROTATE)
3206 lrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
3207 else /* code == ROTATERT */
3208 rrotate_double (l1, h1, l2, GET_MODE_BITSIZE (mode), &lv, &hv);
3209 break;
3211 default:
3212 return 0;
3215 return immed_double_const (lv, hv, mode);
3218 if (GET_CODE (op0) == CONST_INT && GET_CODE (op1) == CONST_INT
3219 && width <= HOST_BITS_PER_WIDE_INT && width != 0)
3221 /* Get the integer argument values in two forms:
3222 zero-extended in ARG0, ARG1 and sign-extended in ARG0S, ARG1S. */
3224 arg0 = INTVAL (op0);
3225 arg1 = INTVAL (op1);
3227 if (width < HOST_BITS_PER_WIDE_INT)
3229 arg0 &= ((HOST_WIDE_INT) 1 << width) - 1;
3230 arg1 &= ((HOST_WIDE_INT) 1 << width) - 1;
3232 arg0s = arg0;
3233 if (arg0s & ((HOST_WIDE_INT) 1 << (width - 1)))
3234 arg0s |= ((HOST_WIDE_INT) (-1) << width);
3236 arg1s = arg1;
3237 if (arg1s & ((HOST_WIDE_INT) 1 << (width - 1)))
3238 arg1s |= ((HOST_WIDE_INT) (-1) << width);
3240 else
3242 arg0s = arg0;
3243 arg1s = arg1;
3246 /* Compute the value of the arithmetic. */
3248 switch (code)
3250 case PLUS:
3251 val = arg0s + arg1s;
3252 break;
3254 case MINUS:
3255 val = arg0s - arg1s;
3256 break;
3258 case MULT:
3259 val = arg0s * arg1s;
3260 break;
3262 case DIV:
3263 if (arg1s == 0
3264 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3265 && arg1s == -1))
3266 return 0;
3267 val = arg0s / arg1s;
3268 break;
3270 case MOD:
3271 if (arg1s == 0
3272 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3273 && arg1s == -1))
3274 return 0;
3275 val = arg0s % arg1s;
3276 break;
3278 case UDIV:
3279 if (arg1 == 0
3280 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3281 && arg1s == -1))
3282 return 0;
3283 val = (unsigned HOST_WIDE_INT) arg0 / arg1;
3284 break;
3286 case UMOD:
3287 if (arg1 == 0
3288 || (arg0s == (HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)
3289 && arg1s == -1))
3290 return 0;
3291 val = (unsigned HOST_WIDE_INT) arg0 % arg1;
3292 break;
3294 case AND:
3295 val = arg0 & arg1;
3296 break;
3298 case IOR:
3299 val = arg0 | arg1;
3300 break;
3302 case XOR:
3303 val = arg0 ^ arg1;
3304 break;
3306 case LSHIFTRT:
3307 case ASHIFT:
3308 case ASHIFTRT:
3309 /* Truncate the shift if SHIFT_COUNT_TRUNCATED, otherwise make sure
3310 the value is in range. We can't return any old value for
3311 out-of-range arguments because either the middle-end (via
3312 shift_truncation_mask) or the back-end might be relying on
3313 target-specific knowledge. Nor can we rely on
3314 shift_truncation_mask, since the shift might not be part of an
3315 ashlM3, lshrM3 or ashrM3 instruction. */
3316 if (SHIFT_COUNT_TRUNCATED)
3317 arg1 = (unsigned HOST_WIDE_INT) arg1 % width;
3318 else if (arg1 < 0 || arg1 >= GET_MODE_BITSIZE (mode))
3319 return 0;
3321 val = (code == ASHIFT
3322 ? ((unsigned HOST_WIDE_INT) arg0) << arg1
3323 : ((unsigned HOST_WIDE_INT) arg0) >> arg1);
3325 /* Sign-extend the result for arithmetic right shifts. */
3326 if (code == ASHIFTRT && arg0s < 0 && arg1 > 0)
3327 val |= ((HOST_WIDE_INT) -1) << (width - arg1);
3328 break;
3330 case ROTATERT:
3331 if (arg1 < 0)
3332 return 0;
3334 arg1 %= width;
3335 val = ((((unsigned HOST_WIDE_INT) arg0) << (width - arg1))
3336 | (((unsigned HOST_WIDE_INT) arg0) >> arg1));
3337 break;
3339 case ROTATE:
3340 if (arg1 < 0)
3341 return 0;
3343 arg1 %= width;
3344 val = ((((unsigned HOST_WIDE_INT) arg0) << arg1)
3345 | (((unsigned HOST_WIDE_INT) arg0) >> (width - arg1)));
3346 break;
3348 case COMPARE:
3349 /* Do nothing here. */
3350 return 0;
3352 case SMIN:
3353 val = arg0s <= arg1s ? arg0s : arg1s;
3354 break;
3356 case UMIN:
3357 val = ((unsigned HOST_WIDE_INT) arg0
3358 <= (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
3359 break;
3361 case SMAX:
3362 val = arg0s > arg1s ? arg0s : arg1s;
3363 break;
3365 case UMAX:
3366 val = ((unsigned HOST_WIDE_INT) arg0
3367 > (unsigned HOST_WIDE_INT) arg1 ? arg0 : arg1);
3368 break;
3370 case SS_PLUS:
3371 case US_PLUS:
3372 case SS_MINUS:
3373 case US_MINUS:
3374 case SS_MULT:
3375 case US_MULT:
3376 case SS_DIV:
3377 case US_DIV:
3378 case SS_ASHIFT:
3379 case US_ASHIFT:
3380 /* ??? There are simplifications that can be done. */
3381 return 0;
3383 default:
3384 gcc_unreachable ();
3387 return gen_int_mode (val, mode);
3390 return NULL_RTX;
3395 /* Simplify a PLUS or MINUS, at least one of whose operands may be another
3396 PLUS or MINUS.
3398 Rather than test for specific case, we do this by a brute-force method
3399 and do all possible simplifications until no more changes occur. Then
3400 we rebuild the operation. */
3402 struct simplify_plus_minus_op_data
3404 rtx op;
3405 short neg;
3408 static bool
3409 simplify_plus_minus_op_data_cmp (rtx x, rtx y)
3411 int result;
3413 result = (commutative_operand_precedence (y)
3414 - commutative_operand_precedence (x));
3415 if (result)
3416 return result > 0;
3418 /* Group together equal REGs to do more simplification. */
3419 if (REG_P (x) && REG_P (y))
3420 return REGNO (x) > REGNO (y);
3421 else
3422 return false;
3425 static rtx
3426 simplify_plus_minus (enum rtx_code code, enum machine_mode mode, rtx op0,
3427 rtx op1)
3429 struct simplify_plus_minus_op_data ops[8];
3430 rtx result, tem;
3431 int n_ops = 2, input_ops = 2;
3432 int changed, n_constants = 0, canonicalized = 0;
3433 int i, j;
3435 memset (ops, 0, sizeof ops);
3437 /* Set up the two operands and then expand them until nothing has been
3438 changed. If we run out of room in our array, give up; this should
3439 almost never happen. */
3441 ops[0].op = op0;
3442 ops[0].neg = 0;
3443 ops[1].op = op1;
3444 ops[1].neg = (code == MINUS);
3448 changed = 0;
3450 for (i = 0; i < n_ops; i++)
3452 rtx this_op = ops[i].op;
3453 int this_neg = ops[i].neg;
3454 enum rtx_code this_code = GET_CODE (this_op);
3456 switch (this_code)
3458 case PLUS:
3459 case MINUS:
3460 if (n_ops == 7)
3461 return NULL_RTX;
3463 ops[n_ops].op = XEXP (this_op, 1);
3464 ops[n_ops].neg = (this_code == MINUS) ^ this_neg;
3465 n_ops++;
3467 ops[i].op = XEXP (this_op, 0);
3468 input_ops++;
3469 changed = 1;
3470 canonicalized |= this_neg;
3471 break;
3473 case NEG:
3474 ops[i].op = XEXP (this_op, 0);
3475 ops[i].neg = ! this_neg;
3476 changed = 1;
3477 canonicalized = 1;
3478 break;
3480 case CONST:
3481 if (n_ops < 7
3482 && GET_CODE (XEXP (this_op, 0)) == PLUS
3483 && CONSTANT_P (XEXP (XEXP (this_op, 0), 0))
3484 && CONSTANT_P (XEXP (XEXP (this_op, 0), 1)))
3486 ops[i].op = XEXP (XEXP (this_op, 0), 0);
3487 ops[n_ops].op = XEXP (XEXP (this_op, 0), 1);
3488 ops[n_ops].neg = this_neg;
3489 n_ops++;
3490 changed = 1;
3491 canonicalized = 1;
3493 break;
3495 case NOT:
3496 /* ~a -> (-a - 1) */
3497 if (n_ops != 7)
3499 ops[n_ops].op = constm1_rtx;
3500 ops[n_ops++].neg = this_neg;
3501 ops[i].op = XEXP (this_op, 0);
3502 ops[i].neg = !this_neg;
3503 changed = 1;
3504 canonicalized = 1;
3506 break;
3508 case CONST_INT:
3509 n_constants++;
3510 if (this_neg)
3512 ops[i].op = neg_const_int (mode, this_op);
3513 ops[i].neg = 0;
3514 changed = 1;
3515 canonicalized = 1;
3517 break;
3519 default:
3520 break;
3524 while (changed);
3526 if (n_constants > 1)
3527 canonicalized = 1;
3529 gcc_assert (n_ops >= 2);
3531 /* If we only have two operands, we can avoid the loops. */
3532 if (n_ops == 2)
3534 enum rtx_code code = ops[0].neg || ops[1].neg ? MINUS : PLUS;
3535 rtx lhs, rhs;
3537 /* Get the two operands. Be careful with the order, especially for
3538 the cases where code == MINUS. */
3539 if (ops[0].neg && ops[1].neg)
3541 lhs = gen_rtx_NEG (mode, ops[0].op);
3542 rhs = ops[1].op;
3544 else if (ops[0].neg)
3546 lhs = ops[1].op;
3547 rhs = ops[0].op;
3549 else
3551 lhs = ops[0].op;
3552 rhs = ops[1].op;
3555 return simplify_const_binary_operation (code, mode, lhs, rhs);
3558 /* Now simplify each pair of operands until nothing changes. */
3561 /* Insertion sort is good enough for an eight-element array. */
3562 for (i = 1; i < n_ops; i++)
3564 struct simplify_plus_minus_op_data save;
3565 j = i - 1;
3566 if (!simplify_plus_minus_op_data_cmp (ops[j].op, ops[i].op))
3567 continue;
3569 canonicalized = 1;
3570 save = ops[i];
3572 ops[j + 1] = ops[j];
3573 while (j-- && simplify_plus_minus_op_data_cmp (ops[j].op, save.op));
3574 ops[j + 1] = save;
3577 /* This is only useful the first time through. */
3578 if (!canonicalized)
3579 return NULL_RTX;
3581 changed = 0;
3582 for (i = n_ops - 1; i > 0; i--)
3583 for (j = i - 1; j >= 0; j--)
3585 rtx lhs = ops[j].op, rhs = ops[i].op;
3586 int lneg = ops[j].neg, rneg = ops[i].neg;
3588 if (lhs != 0 && rhs != 0)
3590 enum rtx_code ncode = PLUS;
3592 if (lneg != rneg)
3594 ncode = MINUS;
3595 if (lneg)
3596 tem = lhs, lhs = rhs, rhs = tem;
3598 else if (swap_commutative_operands_p (lhs, rhs))
3599 tem = lhs, lhs = rhs, rhs = tem;
3601 if ((GET_CODE (lhs) == CONST || GET_CODE (lhs) == CONST_INT)
3602 && (GET_CODE (rhs) == CONST || GET_CODE (rhs) == CONST_INT))
3604 rtx tem_lhs, tem_rhs;
3606 tem_lhs = GET_CODE (lhs) == CONST ? XEXP (lhs, 0) : lhs;
3607 tem_rhs = GET_CODE (rhs) == CONST ? XEXP (rhs, 0) : rhs;
3608 tem = simplify_binary_operation (ncode, mode, tem_lhs, tem_rhs);
3610 if (tem && !CONSTANT_P (tem))
3611 tem = gen_rtx_CONST (GET_MODE (tem), tem);
3613 else
3614 tem = simplify_binary_operation (ncode, mode, lhs, rhs);
3616 /* Reject "simplifications" that just wrap the two
3617 arguments in a CONST. Failure to do so can result
3618 in infinite recursion with simplify_binary_operation
3619 when it calls us to simplify CONST operations. */
3620 if (tem
3621 && ! (GET_CODE (tem) == CONST
3622 && GET_CODE (XEXP (tem, 0)) == ncode
3623 && XEXP (XEXP (tem, 0), 0) == lhs
3624 && XEXP (XEXP (tem, 0), 1) == rhs))
3626 lneg &= rneg;
3627 if (GET_CODE (tem) == NEG)
3628 tem = XEXP (tem, 0), lneg = !lneg;
3629 if (GET_CODE (tem) == CONST_INT && lneg)
3630 tem = neg_const_int (mode, tem), lneg = 0;
3632 ops[i].op = tem;
3633 ops[i].neg = lneg;
3634 ops[j].op = NULL_RTX;
3635 changed = 1;
3640 /* Pack all the operands to the lower-numbered entries. */
3641 for (i = 0, j = 0; j < n_ops; j++)
3642 if (ops[j].op)
3644 ops[i] = ops[j];
3645 i++;
3647 n_ops = i;
3649 while (changed);
3651 /* Create (minus -C X) instead of (neg (const (plus X C))). */
3652 if (n_ops == 2
3653 && GET_CODE (ops[1].op) == CONST_INT
3654 && CONSTANT_P (ops[0].op)
3655 && ops[0].neg)
3656 return gen_rtx_fmt_ee (MINUS, mode, ops[1].op, ops[0].op);
3658 /* We suppressed creation of trivial CONST expressions in the
3659 combination loop to avoid recursion. Create one manually now.
3660 The combination loop should have ensured that there is exactly
3661 one CONST_INT, and the sort will have ensured that it is last
3662 in the array and that any other constant will be next-to-last. */
3664 if (n_ops > 1
3665 && GET_CODE (ops[n_ops - 1].op) == CONST_INT
3666 && CONSTANT_P (ops[n_ops - 2].op))
3668 rtx value = ops[n_ops - 1].op;
3669 if (ops[n_ops - 1].neg ^ ops[n_ops - 2].neg)
3670 value = neg_const_int (mode, value);
3671 ops[n_ops - 2].op = plus_constant (ops[n_ops - 2].op, INTVAL (value));
3672 n_ops--;
3675 /* Put a non-negated operand first, if possible. */
3677 for (i = 0; i < n_ops && ops[i].neg; i++)
3678 continue;
3679 if (i == n_ops)
3680 ops[0].op = gen_rtx_NEG (mode, ops[0].op);
3681 else if (i != 0)
3683 tem = ops[0].op;
3684 ops[0] = ops[i];
3685 ops[i].op = tem;
3686 ops[i].neg = 1;
3689 /* Now make the result by performing the requested operations. */
3690 result = ops[0].op;
3691 for (i = 1; i < n_ops; i++)
3692 result = gen_rtx_fmt_ee (ops[i].neg ? MINUS : PLUS,
3693 mode, result, ops[i].op);
3695 return result;
3698 /* Check whether an operand is suitable for calling simplify_plus_minus. */
3699 static bool
3700 plus_minus_operand_p (const_rtx x)
3702 return GET_CODE (x) == PLUS
3703 || GET_CODE (x) == MINUS
3704 || (GET_CODE (x) == CONST
3705 && GET_CODE (XEXP (x, 0)) == PLUS
3706 && CONSTANT_P (XEXP (XEXP (x, 0), 0))
3707 && CONSTANT_P (XEXP (XEXP (x, 0), 1)));
3710 /* Like simplify_binary_operation except used for relational operators.
3711 MODE is the mode of the result. If MODE is VOIDmode, both operands must
3712 not also be VOIDmode.
3714 CMP_MODE specifies in which mode the comparison is done in, so it is
3715 the mode of the operands. If CMP_MODE is VOIDmode, it is taken from
3716 the operands or, if both are VOIDmode, the operands are compared in
3717 "infinite precision". */
3719 simplify_relational_operation (enum rtx_code code, enum machine_mode mode,
3720 enum machine_mode cmp_mode, rtx op0, rtx op1)
3722 rtx tem, trueop0, trueop1;
3724 if (cmp_mode == VOIDmode)
3725 cmp_mode = GET_MODE (op0);
3726 if (cmp_mode == VOIDmode)
3727 cmp_mode = GET_MODE (op1);
3729 tem = simplify_const_relational_operation (code, cmp_mode, op0, op1);
3730 if (tem)
3732 if (SCALAR_FLOAT_MODE_P (mode))
3734 if (tem == const0_rtx)
3735 return CONST0_RTX (mode);
3736 #ifdef FLOAT_STORE_FLAG_VALUE
3738 REAL_VALUE_TYPE val;
3739 val = FLOAT_STORE_FLAG_VALUE (mode);
3740 return CONST_DOUBLE_FROM_REAL_VALUE (val, mode);
3742 #else
3743 return NULL_RTX;
3744 #endif
3746 if (VECTOR_MODE_P (mode))
3748 if (tem == const0_rtx)
3749 return CONST0_RTX (mode);
3750 #ifdef VECTOR_STORE_FLAG_VALUE
3752 int i, units;
3753 rtvec v;
3755 rtx val = VECTOR_STORE_FLAG_VALUE (mode);
3756 if (val == NULL_RTX)
3757 return NULL_RTX;
3758 if (val == const1_rtx)
3759 return CONST1_RTX (mode);
3761 units = GET_MODE_NUNITS (mode);
3762 v = rtvec_alloc (units);
3763 for (i = 0; i < units; i++)
3764 RTVEC_ELT (v, i) = val;
3765 return gen_rtx_raw_CONST_VECTOR (mode, v);
3767 #else
3768 return NULL_RTX;
3769 #endif
3772 return tem;
3775 /* For the following tests, ensure const0_rtx is op1. */
3776 if (swap_commutative_operands_p (op0, op1)
3777 || (op0 == const0_rtx && op1 != const0_rtx))
3778 tem = op0, op0 = op1, op1 = tem, code = swap_condition (code);
3780 /* If op0 is a compare, extract the comparison arguments from it. */
3781 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
3782 return simplify_relational_operation (code, mode, VOIDmode,
3783 XEXP (op0, 0), XEXP (op0, 1));
3785 if (GET_MODE_CLASS (cmp_mode) == MODE_CC
3786 || CC0_P (op0))
3787 return NULL_RTX;
3789 trueop0 = avoid_constant_pool_reference (op0);
3790 trueop1 = avoid_constant_pool_reference (op1);
3791 return simplify_relational_operation_1 (code, mode, cmp_mode,
3792 trueop0, trueop1);
3795 /* This part of simplify_relational_operation is only used when CMP_MODE
3796 is not in class MODE_CC (i.e. it is a real comparison).
3798 MODE is the mode of the result, while CMP_MODE specifies in which
3799 mode the comparison is done in, so it is the mode of the operands. */
3801 static rtx
3802 simplify_relational_operation_1 (enum rtx_code code, enum machine_mode mode,
3803 enum machine_mode cmp_mode, rtx op0, rtx op1)
3805 enum rtx_code op0code = GET_CODE (op0);
3807 if (op1 == const0_rtx && COMPARISON_P (op0))
3809 /* If op0 is a comparison, extract the comparison arguments
3810 from it. */
3811 if (code == NE)
3813 if (GET_MODE (op0) == mode)
3814 return simplify_rtx (op0);
3815 else
3816 return simplify_gen_relational (GET_CODE (op0), mode, VOIDmode,
3817 XEXP (op0, 0), XEXP (op0, 1));
3819 else if (code == EQ)
3821 enum rtx_code new_code = reversed_comparison_code (op0, NULL_RTX);
3822 if (new_code != UNKNOWN)
3823 return simplify_gen_relational (new_code, mode, VOIDmode,
3824 XEXP (op0, 0), XEXP (op0, 1));
3828 /* Canonicalize (LTU/GEU (PLUS a b) b) as (LTU/GEU (PLUS a b) a). */
3829 if ((code == LTU || code == GEU)
3830 && GET_CODE (op0) == PLUS
3831 && rtx_equal_p (op1, XEXP (op0, 1))
3832 /* Don't recurse "infinitely" for (LTU/GEU (PLUS b b) b). */
3833 && !rtx_equal_p (op1, XEXP (op0, 0)))
3834 return simplify_gen_relational (code, mode, cmp_mode, op0, XEXP (op0, 0));
3836 if (op1 == const0_rtx)
3838 /* Canonicalize (GTU x 0) as (NE x 0). */
3839 if (code == GTU)
3840 return simplify_gen_relational (NE, mode, cmp_mode, op0, op1);
3841 /* Canonicalize (LEU x 0) as (EQ x 0). */
3842 if (code == LEU)
3843 return simplify_gen_relational (EQ, mode, cmp_mode, op0, op1);
3845 else if (op1 == const1_rtx)
3847 switch (code)
3849 case GE:
3850 /* Canonicalize (GE x 1) as (GT x 0). */
3851 return simplify_gen_relational (GT, mode, cmp_mode,
3852 op0, const0_rtx);
3853 case GEU:
3854 /* Canonicalize (GEU x 1) as (NE x 0). */
3855 return simplify_gen_relational (NE, mode, cmp_mode,
3856 op0, const0_rtx);
3857 case LT:
3858 /* Canonicalize (LT x 1) as (LE x 0). */
3859 return simplify_gen_relational (LE, mode, cmp_mode,
3860 op0, const0_rtx);
3861 case LTU:
3862 /* Canonicalize (LTU x 1) as (EQ x 0). */
3863 return simplify_gen_relational (EQ, mode, cmp_mode,
3864 op0, const0_rtx);
3865 default:
3866 break;
3869 else if (op1 == constm1_rtx)
3871 /* Canonicalize (LE x -1) as (LT x 0). */
3872 if (code == LE)
3873 return simplify_gen_relational (LT, mode, cmp_mode, op0, const0_rtx);
3874 /* Canonicalize (GT x -1) as (GE x 0). */
3875 if (code == GT)
3876 return simplify_gen_relational (GE, mode, cmp_mode, op0, const0_rtx);
3879 /* (eq/ne (plus x cst1) cst2) simplifies to (eq/ne x (cst2 - cst1)) */
3880 if ((code == EQ || code == NE)
3881 && (op0code == PLUS || op0code == MINUS)
3882 && CONSTANT_P (op1)
3883 && CONSTANT_P (XEXP (op0, 1))
3884 && (INTEGRAL_MODE_P (cmp_mode) || flag_unsafe_math_optimizations))
3886 rtx x = XEXP (op0, 0);
3887 rtx c = XEXP (op0, 1);
3889 c = simplify_gen_binary (op0code == PLUS ? MINUS : PLUS,
3890 cmp_mode, op1, c);
3891 return simplify_gen_relational (code, mode, cmp_mode, x, c);
3894 /* (ne:SI (zero_extract:SI FOO (const_int 1) BAR) (const_int 0))) is
3895 the same as (zero_extract:SI FOO (const_int 1) BAR). */
3896 if (code == NE
3897 && op1 == const0_rtx
3898 && GET_MODE_CLASS (mode) == MODE_INT
3899 && cmp_mode != VOIDmode
3900 /* ??? Work-around BImode bugs in the ia64 backend. */
3901 && mode != BImode
3902 && cmp_mode != BImode
3903 && nonzero_bits (op0, cmp_mode) == 1
3904 && STORE_FLAG_VALUE == 1)
3905 return GET_MODE_SIZE (mode) > GET_MODE_SIZE (cmp_mode)
3906 ? simplify_gen_unary (ZERO_EXTEND, mode, op0, cmp_mode)
3907 : lowpart_subreg (mode, op0, cmp_mode);
3909 /* (eq/ne (xor x y) 0) simplifies to (eq/ne x y). */
3910 if ((code == EQ || code == NE)
3911 && op1 == const0_rtx
3912 && op0code == XOR)
3913 return simplify_gen_relational (code, mode, cmp_mode,
3914 XEXP (op0, 0), XEXP (op0, 1));
3916 /* (eq/ne (xor x y) x) simplifies to (eq/ne y 0). */
3917 if ((code == EQ || code == NE)
3918 && op0code == XOR
3919 && rtx_equal_p (XEXP (op0, 0), op1)
3920 && !side_effects_p (XEXP (op0, 0)))
3921 return simplify_gen_relational (code, mode, cmp_mode,
3922 XEXP (op0, 1), const0_rtx);
3924 /* Likewise (eq/ne (xor x y) y) simplifies to (eq/ne x 0). */
3925 if ((code == EQ || code == NE)
3926 && op0code == XOR
3927 && rtx_equal_p (XEXP (op0, 1), op1)
3928 && !side_effects_p (XEXP (op0, 1)))
3929 return simplify_gen_relational (code, mode, cmp_mode,
3930 XEXP (op0, 0), const0_rtx);
3932 /* (eq/ne (xor x C1) C2) simplifies to (eq/ne x (C1^C2)). */
3933 if ((code == EQ || code == NE)
3934 && op0code == XOR
3935 && (GET_CODE (op1) == CONST_INT
3936 || GET_CODE (op1) == CONST_DOUBLE)
3937 && (GET_CODE (XEXP (op0, 1)) == CONST_INT
3938 || GET_CODE (XEXP (op0, 1)) == CONST_DOUBLE))
3939 return simplify_gen_relational (code, mode, cmp_mode, XEXP (op0, 0),
3940 simplify_gen_binary (XOR, cmp_mode,
3941 XEXP (op0, 1), op1));
3943 if (op0code == POPCOUNT && op1 == const0_rtx)
3944 switch (code)
3946 case EQ:
3947 case LE:
3948 case LEU:
3949 /* (eq (popcount x) (const_int 0)) -> (eq x (const_int 0)). */
3950 return simplify_gen_relational (EQ, mode, GET_MODE (XEXP (op0, 0)),
3951 XEXP (op0, 0), const0_rtx);
3953 case NE:
3954 case GT:
3955 case GTU:
3956 /* (ne (popcount x) (const_int 0)) -> (ne x (const_int 0)). */
3957 return simplify_gen_relational (NE, mode, GET_MODE (XEXP (op0, 0)),
3958 XEXP (op0, 0), const0_rtx);
3960 default:
3961 break;
3964 return NULL_RTX;
3967 enum
3969 CMP_EQ = 1,
3970 CMP_LT = 2,
3971 CMP_GT = 4,
3972 CMP_LTU = 8,
3973 CMP_GTU = 16
3977 /* Convert the known results for EQ, LT, GT, LTU, GTU contained in
3978 KNOWN_RESULT to a CONST_INT, based on the requested comparison CODE
3979 For KNOWN_RESULT to make sense it should be either CMP_EQ, or the
3980 logical OR of one of (CMP_LT, CMP_GT) and one of (CMP_LTU, CMP_GTU).
3981 For floating-point comparisons, assume that the operands were ordered. */
3983 static rtx
3984 comparison_result (enum rtx_code code, int known_results)
3986 switch (code)
3988 case EQ:
3989 case UNEQ:
3990 return (known_results & CMP_EQ) ? const_true_rtx : const0_rtx;
3991 case NE:
3992 case LTGT:
3993 return (known_results & CMP_EQ) ? const0_rtx : const_true_rtx;
3995 case LT:
3996 case UNLT:
3997 return (known_results & CMP_LT) ? const_true_rtx : const0_rtx;
3998 case GE:
3999 case UNGE:
4000 return (known_results & CMP_LT) ? const0_rtx : const_true_rtx;
4002 case GT:
4003 case UNGT:
4004 return (known_results & CMP_GT) ? const_true_rtx : const0_rtx;
4005 case LE:
4006 case UNLE:
4007 return (known_results & CMP_GT) ? const0_rtx : const_true_rtx;
4009 case LTU:
4010 return (known_results & CMP_LTU) ? const_true_rtx : const0_rtx;
4011 case GEU:
4012 return (known_results & CMP_LTU) ? const0_rtx : const_true_rtx;
4014 case GTU:
4015 return (known_results & CMP_GTU) ? const_true_rtx : const0_rtx;
4016 case LEU:
4017 return (known_results & CMP_GTU) ? const0_rtx : const_true_rtx;
4019 case ORDERED:
4020 return const_true_rtx;
4021 case UNORDERED:
4022 return const0_rtx;
4023 default:
4024 gcc_unreachable ();
4028 /* Check if the given comparison (done in the given MODE) is actually a
4029 tautology or a contradiction.
4030 If no simplification is possible, this function returns zero.
4031 Otherwise, it returns either const_true_rtx or const0_rtx. */
4034 simplify_const_relational_operation (enum rtx_code code,
4035 enum machine_mode mode,
4036 rtx op0, rtx op1)
4038 rtx tem;
4039 rtx trueop0;
4040 rtx trueop1;
4042 gcc_assert (mode != VOIDmode
4043 || (GET_MODE (op0) == VOIDmode
4044 && GET_MODE (op1) == VOIDmode));
4046 /* If op0 is a compare, extract the comparison arguments from it. */
4047 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
4049 op1 = XEXP (op0, 1);
4050 op0 = XEXP (op0, 0);
4052 if (GET_MODE (op0) != VOIDmode)
4053 mode = GET_MODE (op0);
4054 else if (GET_MODE (op1) != VOIDmode)
4055 mode = GET_MODE (op1);
4056 else
4057 return 0;
4060 /* We can't simplify MODE_CC values since we don't know what the
4061 actual comparison is. */
4062 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC || CC0_P (op0))
4063 return 0;
4065 /* Make sure the constant is second. */
4066 if (swap_commutative_operands_p (op0, op1))
4068 tem = op0, op0 = op1, op1 = tem;
4069 code = swap_condition (code);
4072 trueop0 = avoid_constant_pool_reference (op0);
4073 trueop1 = avoid_constant_pool_reference (op1);
4075 /* For integer comparisons of A and B maybe we can simplify A - B and can
4076 then simplify a comparison of that with zero. If A and B are both either
4077 a register or a CONST_INT, this can't help; testing for these cases will
4078 prevent infinite recursion here and speed things up.
4080 We can only do this for EQ and NE comparisons as otherwise we may
4081 lose or introduce overflow which we cannot disregard as undefined as
4082 we do not know the signedness of the operation on either the left or
4083 the right hand side of the comparison. */
4085 if (INTEGRAL_MODE_P (mode) && trueop1 != const0_rtx
4086 && (code == EQ || code == NE)
4087 && ! ((REG_P (op0) || GET_CODE (trueop0) == CONST_INT)
4088 && (REG_P (op1) || GET_CODE (trueop1) == CONST_INT))
4089 && 0 != (tem = simplify_binary_operation (MINUS, mode, op0, op1))
4090 /* We cannot do this if tem is a nonzero address. */
4091 && ! nonzero_address_p (tem))
4092 return simplify_const_relational_operation (signed_condition (code),
4093 mode, tem, const0_rtx);
4095 if (! HONOR_NANS (mode) && code == ORDERED)
4096 return const_true_rtx;
4098 if (! HONOR_NANS (mode) && code == UNORDERED)
4099 return const0_rtx;
4101 /* For modes without NaNs, if the two operands are equal, we know the
4102 result except if they have side-effects. Even with NaNs we know
4103 the result of unordered comparisons and, if signaling NaNs are
4104 irrelevant, also the result of LT/GT/LTGT. */
4105 if ((! HONOR_NANS (GET_MODE (trueop0))
4106 || code == UNEQ || code == UNLE || code == UNGE
4107 || ((code == LT || code == GT || code == LTGT)
4108 && ! HONOR_SNANS (GET_MODE (trueop0))))
4109 && rtx_equal_p (trueop0, trueop1)
4110 && ! side_effects_p (trueop0))
4111 return comparison_result (code, CMP_EQ);
4113 /* If the operands are floating-point constants, see if we can fold
4114 the result. */
4115 if (GET_CODE (trueop0) == CONST_DOUBLE
4116 && GET_CODE (trueop1) == CONST_DOUBLE
4117 && SCALAR_FLOAT_MODE_P (GET_MODE (trueop0)))
4119 REAL_VALUE_TYPE d0, d1;
4121 REAL_VALUE_FROM_CONST_DOUBLE (d0, trueop0);
4122 REAL_VALUE_FROM_CONST_DOUBLE (d1, trueop1);
4124 /* Comparisons are unordered iff at least one of the values is NaN. */
4125 if (REAL_VALUE_ISNAN (d0) || REAL_VALUE_ISNAN (d1))
4126 switch (code)
4128 case UNEQ:
4129 case UNLT:
4130 case UNGT:
4131 case UNLE:
4132 case UNGE:
4133 case NE:
4134 case UNORDERED:
4135 return const_true_rtx;
4136 case EQ:
4137 case LT:
4138 case GT:
4139 case LE:
4140 case GE:
4141 case LTGT:
4142 case ORDERED:
4143 return const0_rtx;
4144 default:
4145 return 0;
4148 return comparison_result (code,
4149 (REAL_VALUES_EQUAL (d0, d1) ? CMP_EQ :
4150 REAL_VALUES_LESS (d0, d1) ? CMP_LT : CMP_GT));
4153 /* Otherwise, see if the operands are both integers. */
4154 if ((GET_MODE_CLASS (mode) == MODE_INT || mode == VOIDmode)
4155 && (GET_CODE (trueop0) == CONST_DOUBLE
4156 || GET_CODE (trueop0) == CONST_INT)
4157 && (GET_CODE (trueop1) == CONST_DOUBLE
4158 || GET_CODE (trueop1) == CONST_INT))
4160 int width = GET_MODE_BITSIZE (mode);
4161 HOST_WIDE_INT l0s, h0s, l1s, h1s;
4162 unsigned HOST_WIDE_INT l0u, h0u, l1u, h1u;
4164 /* Get the two words comprising each integer constant. */
4165 if (GET_CODE (trueop0) == CONST_DOUBLE)
4167 l0u = l0s = CONST_DOUBLE_LOW (trueop0);
4168 h0u = h0s = CONST_DOUBLE_HIGH (trueop0);
4170 else
4172 l0u = l0s = INTVAL (trueop0);
4173 h0u = h0s = HWI_SIGN_EXTEND (l0s);
4176 if (GET_CODE (trueop1) == CONST_DOUBLE)
4178 l1u = l1s = CONST_DOUBLE_LOW (trueop1);
4179 h1u = h1s = CONST_DOUBLE_HIGH (trueop1);
4181 else
4183 l1u = l1s = INTVAL (trueop1);
4184 h1u = h1s = HWI_SIGN_EXTEND (l1s);
4187 /* If WIDTH is nonzero and smaller than HOST_BITS_PER_WIDE_INT,
4188 we have to sign or zero-extend the values. */
4189 if (width != 0 && width < HOST_BITS_PER_WIDE_INT)
4191 l0u &= ((HOST_WIDE_INT) 1 << width) - 1;
4192 l1u &= ((HOST_WIDE_INT) 1 << width) - 1;
4194 if (l0s & ((HOST_WIDE_INT) 1 << (width - 1)))
4195 l0s |= ((HOST_WIDE_INT) (-1) << width);
4197 if (l1s & ((HOST_WIDE_INT) 1 << (width - 1)))
4198 l1s |= ((HOST_WIDE_INT) (-1) << width);
4200 if (width != 0 && width <= HOST_BITS_PER_WIDE_INT)
4201 h0u = h1u = 0, h0s = HWI_SIGN_EXTEND (l0s), h1s = HWI_SIGN_EXTEND (l1s);
4203 if (h0u == h1u && l0u == l1u)
4204 return comparison_result (code, CMP_EQ);
4205 else
4207 int cr;
4208 cr = (h0s < h1s || (h0s == h1s && l0u < l1u)) ? CMP_LT : CMP_GT;
4209 cr |= (h0u < h1u || (h0u == h1u && l0u < l1u)) ? CMP_LTU : CMP_GTU;
4210 return comparison_result (code, cr);
4214 /* Optimize comparisons with upper and lower bounds. */
4215 if (SCALAR_INT_MODE_P (mode)
4216 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4217 && GET_CODE (trueop1) == CONST_INT)
4219 int sign;
4220 unsigned HOST_WIDE_INT nonzero = nonzero_bits (trueop0, mode);
4221 HOST_WIDE_INT val = INTVAL (trueop1);
4222 HOST_WIDE_INT mmin, mmax;
4224 if (code == GEU
4225 || code == LEU
4226 || code == GTU
4227 || code == LTU)
4228 sign = 0;
4229 else
4230 sign = 1;
4232 /* Get a reduced range if the sign bit is zero. */
4233 if (nonzero <= (GET_MODE_MASK (mode) >> 1))
4235 mmin = 0;
4236 mmax = nonzero;
4238 else
4240 rtx mmin_rtx, mmax_rtx;
4241 get_mode_bounds (mode, sign, mode, &mmin_rtx, &mmax_rtx);
4243 mmin = INTVAL (mmin_rtx);
4244 mmax = INTVAL (mmax_rtx);
4245 if (sign)
4247 unsigned int sign_copies = num_sign_bit_copies (trueop0, mode);
4249 mmin >>= (sign_copies - 1);
4250 mmax >>= (sign_copies - 1);
4254 switch (code)
4256 /* x >= y is always true for y <= mmin, always false for y > mmax. */
4257 case GEU:
4258 if ((unsigned HOST_WIDE_INT) val <= (unsigned HOST_WIDE_INT) mmin)
4259 return const_true_rtx;
4260 if ((unsigned HOST_WIDE_INT) val > (unsigned HOST_WIDE_INT) mmax)
4261 return const0_rtx;
4262 break;
4263 case GE:
4264 if (val <= mmin)
4265 return const_true_rtx;
4266 if (val > mmax)
4267 return const0_rtx;
4268 break;
4270 /* x <= y is always true for y >= mmax, always false for y < mmin. */
4271 case LEU:
4272 if ((unsigned HOST_WIDE_INT) val >= (unsigned HOST_WIDE_INT) mmax)
4273 return const_true_rtx;
4274 if ((unsigned HOST_WIDE_INT) val < (unsigned HOST_WIDE_INT) mmin)
4275 return const0_rtx;
4276 break;
4277 case LE:
4278 if (val >= mmax)
4279 return const_true_rtx;
4280 if (val < mmin)
4281 return const0_rtx;
4282 break;
4284 case EQ:
4285 /* x == y is always false for y out of range. */
4286 if (val < mmin || val > mmax)
4287 return const0_rtx;
4288 break;
4290 /* x > y is always false for y >= mmax, always true for y < mmin. */
4291 case GTU:
4292 if ((unsigned HOST_WIDE_INT) val >= (unsigned HOST_WIDE_INT) mmax)
4293 return const0_rtx;
4294 if ((unsigned HOST_WIDE_INT) val < (unsigned HOST_WIDE_INT) mmin)
4295 return const_true_rtx;
4296 break;
4297 case GT:
4298 if (val >= mmax)
4299 return const0_rtx;
4300 if (val < mmin)
4301 return const_true_rtx;
4302 break;
4304 /* x < y is always false for y <= mmin, always true for y > mmax. */
4305 case LTU:
4306 if ((unsigned HOST_WIDE_INT) val <= (unsigned HOST_WIDE_INT) mmin)
4307 return const0_rtx;
4308 if ((unsigned HOST_WIDE_INT) val > (unsigned HOST_WIDE_INT) mmax)
4309 return const_true_rtx;
4310 break;
4311 case LT:
4312 if (val <= mmin)
4313 return const0_rtx;
4314 if (val > mmax)
4315 return const_true_rtx;
4316 break;
4318 case NE:
4319 /* x != y is always true for y out of range. */
4320 if (val < mmin || val > mmax)
4321 return const_true_rtx;
4322 break;
4324 default:
4325 break;
4329 /* Optimize integer comparisons with zero. */
4330 if (trueop1 == const0_rtx)
4332 /* Some addresses are known to be nonzero. We don't know
4333 their sign, but equality comparisons are known. */
4334 if (nonzero_address_p (trueop0))
4336 if (code == EQ || code == LEU)
4337 return const0_rtx;
4338 if (code == NE || code == GTU)
4339 return const_true_rtx;
4342 /* See if the first operand is an IOR with a constant. If so, we
4343 may be able to determine the result of this comparison. */
4344 if (GET_CODE (op0) == IOR)
4346 rtx inner_const = avoid_constant_pool_reference (XEXP (op0, 1));
4347 if (GET_CODE (inner_const) == CONST_INT && inner_const != const0_rtx)
4349 int sign_bitnum = GET_MODE_BITSIZE (mode) - 1;
4350 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
4351 && (INTVAL (inner_const)
4352 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4354 switch (code)
4356 case EQ:
4357 case LEU:
4358 return const0_rtx;
4359 case NE:
4360 case GTU:
4361 return const_true_rtx;
4362 case LT:
4363 case LE:
4364 if (has_sign)
4365 return const_true_rtx;
4366 break;
4367 case GT:
4368 case GE:
4369 if (has_sign)
4370 return const0_rtx;
4371 break;
4372 default:
4373 break;
4379 /* Optimize comparison of ABS with zero. */
4380 if (trueop1 == CONST0_RTX (mode)
4381 && (GET_CODE (trueop0) == ABS
4382 || (GET_CODE (trueop0) == FLOAT_EXTEND
4383 && GET_CODE (XEXP (trueop0, 0)) == ABS)))
4385 switch (code)
4387 case LT:
4388 /* Optimize abs(x) < 0.0. */
4389 if (!HONOR_SNANS (mode)
4390 && (!INTEGRAL_MODE_P (mode)
4391 || (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
4393 if (INTEGRAL_MODE_P (mode)
4394 && (issue_strict_overflow_warning
4395 (WARN_STRICT_OVERFLOW_CONDITIONAL)))
4396 warning (OPT_Wstrict_overflow,
4397 ("assuming signed overflow does not occur when "
4398 "assuming abs (x) < 0 is false"));
4399 return const0_rtx;
4401 break;
4403 case GE:
4404 /* Optimize abs(x) >= 0.0. */
4405 if (!HONOR_NANS (mode)
4406 && (!INTEGRAL_MODE_P (mode)
4407 || (!flag_wrapv && !flag_trapv && flag_strict_overflow)))
4409 if (INTEGRAL_MODE_P (mode)
4410 && (issue_strict_overflow_warning
4411 (WARN_STRICT_OVERFLOW_CONDITIONAL)))
4412 warning (OPT_Wstrict_overflow,
4413 ("assuming signed overflow does not occur when "
4414 "assuming abs (x) >= 0 is true"));
4415 return const_true_rtx;
4417 break;
4419 case UNGE:
4420 /* Optimize ! (abs(x) < 0.0). */
4421 return const_true_rtx;
4423 default:
4424 break;
4428 return 0;
4431 /* Simplify CODE, an operation with result mode MODE and three operands,
4432 OP0, OP1, and OP2. OP0_MODE was the mode of OP0 before it became
4433 a constant. Return 0 if no simplifications is possible. */
4436 simplify_ternary_operation (enum rtx_code code, enum machine_mode mode,
4437 enum machine_mode op0_mode, rtx op0, rtx op1,
4438 rtx op2)
4440 unsigned int width = GET_MODE_BITSIZE (mode);
4442 /* VOIDmode means "infinite" precision. */
4443 if (width == 0)
4444 width = HOST_BITS_PER_WIDE_INT;
4446 switch (code)
4448 case SIGN_EXTRACT:
4449 case ZERO_EXTRACT:
4450 if (GET_CODE (op0) == CONST_INT
4451 && GET_CODE (op1) == CONST_INT
4452 && GET_CODE (op2) == CONST_INT
4453 && ((unsigned) INTVAL (op1) + (unsigned) INTVAL (op2) <= width)
4454 && width <= (unsigned) HOST_BITS_PER_WIDE_INT)
4456 /* Extracting a bit-field from a constant */
4457 HOST_WIDE_INT val = INTVAL (op0);
4459 if (BITS_BIG_ENDIAN)
4460 val >>= (GET_MODE_BITSIZE (op0_mode)
4461 - INTVAL (op2) - INTVAL (op1));
4462 else
4463 val >>= INTVAL (op2);
4465 if (HOST_BITS_PER_WIDE_INT != INTVAL (op1))
4467 /* First zero-extend. */
4468 val &= ((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1;
4469 /* If desired, propagate sign bit. */
4470 if (code == SIGN_EXTRACT
4471 && (val & ((HOST_WIDE_INT) 1 << (INTVAL (op1) - 1))))
4472 val |= ~ (((HOST_WIDE_INT) 1 << INTVAL (op1)) - 1);
4475 /* Clear the bits that don't belong in our mode,
4476 unless they and our sign bit are all one.
4477 So we get either a reasonable negative value or a reasonable
4478 unsigned value for this mode. */
4479 if (width < HOST_BITS_PER_WIDE_INT
4480 && ((val & ((HOST_WIDE_INT) (-1) << (width - 1)))
4481 != ((HOST_WIDE_INT) (-1) << (width - 1))))
4482 val &= ((HOST_WIDE_INT) 1 << width) - 1;
4484 return gen_int_mode (val, mode);
4486 break;
4488 case IF_THEN_ELSE:
4489 if (GET_CODE (op0) == CONST_INT)
4490 return op0 != const0_rtx ? op1 : op2;
4492 /* Convert c ? a : a into "a". */
4493 if (rtx_equal_p (op1, op2) && ! side_effects_p (op0))
4494 return op1;
4496 /* Convert a != b ? a : b into "a". */
4497 if (GET_CODE (op0) == NE
4498 && ! side_effects_p (op0)
4499 && ! HONOR_NANS (mode)
4500 && ! HONOR_SIGNED_ZEROS (mode)
4501 && ((rtx_equal_p (XEXP (op0, 0), op1)
4502 && rtx_equal_p (XEXP (op0, 1), op2))
4503 || (rtx_equal_p (XEXP (op0, 0), op2)
4504 && rtx_equal_p (XEXP (op0, 1), op1))))
4505 return op1;
4507 /* Convert a == b ? a : b into "b". */
4508 if (GET_CODE (op0) == EQ
4509 && ! side_effects_p (op0)
4510 && ! HONOR_NANS (mode)
4511 && ! HONOR_SIGNED_ZEROS (mode)
4512 && ((rtx_equal_p (XEXP (op0, 0), op1)
4513 && rtx_equal_p (XEXP (op0, 1), op2))
4514 || (rtx_equal_p (XEXP (op0, 0), op2)
4515 && rtx_equal_p (XEXP (op0, 1), op1))))
4516 return op2;
4518 if (COMPARISON_P (op0) && ! side_effects_p (op0))
4520 enum machine_mode cmp_mode = (GET_MODE (XEXP (op0, 0)) == VOIDmode
4521 ? GET_MODE (XEXP (op0, 1))
4522 : GET_MODE (XEXP (op0, 0)));
4523 rtx temp;
4525 /* Look for happy constants in op1 and op2. */
4526 if (GET_CODE (op1) == CONST_INT && GET_CODE (op2) == CONST_INT)
4528 HOST_WIDE_INT t = INTVAL (op1);
4529 HOST_WIDE_INT f = INTVAL (op2);
4531 if (t == STORE_FLAG_VALUE && f == 0)
4532 code = GET_CODE (op0);
4533 else if (t == 0 && f == STORE_FLAG_VALUE)
4535 enum rtx_code tmp;
4536 tmp = reversed_comparison_code (op0, NULL_RTX);
4537 if (tmp == UNKNOWN)
4538 break;
4539 code = tmp;
4541 else
4542 break;
4544 return simplify_gen_relational (code, mode, cmp_mode,
4545 XEXP (op0, 0), XEXP (op0, 1));
4548 if (cmp_mode == VOIDmode)
4549 cmp_mode = op0_mode;
4550 temp = simplify_relational_operation (GET_CODE (op0), op0_mode,
4551 cmp_mode, XEXP (op0, 0),
4552 XEXP (op0, 1));
4554 /* See if any simplifications were possible. */
4555 if (temp)
4557 if (GET_CODE (temp) == CONST_INT)
4558 return temp == const0_rtx ? op2 : op1;
4559 else if (temp)
4560 return gen_rtx_IF_THEN_ELSE (mode, temp, op1, op2);
4563 break;
4565 case VEC_MERGE:
4566 gcc_assert (GET_MODE (op0) == mode);
4567 gcc_assert (GET_MODE (op1) == mode);
4568 gcc_assert (VECTOR_MODE_P (mode));
4569 op2 = avoid_constant_pool_reference (op2);
4570 if (GET_CODE (op2) == CONST_INT)
4572 int elt_size = GET_MODE_SIZE (GET_MODE_INNER (mode));
4573 unsigned n_elts = (GET_MODE_SIZE (mode) / elt_size);
4574 int mask = (1 << n_elts) - 1;
4576 if (!(INTVAL (op2) & mask))
4577 return op1;
4578 if ((INTVAL (op2) & mask) == mask)
4579 return op0;
4581 op0 = avoid_constant_pool_reference (op0);
4582 op1 = avoid_constant_pool_reference (op1);
4583 if (GET_CODE (op0) == CONST_VECTOR
4584 && GET_CODE (op1) == CONST_VECTOR)
4586 rtvec v = rtvec_alloc (n_elts);
4587 unsigned int i;
4589 for (i = 0; i < n_elts; i++)
4590 RTVEC_ELT (v, i) = (INTVAL (op2) & (1 << i)
4591 ? CONST_VECTOR_ELT (op0, i)
4592 : CONST_VECTOR_ELT (op1, i));
4593 return gen_rtx_CONST_VECTOR (mode, v);
4596 break;
4598 default:
4599 gcc_unreachable ();
4602 return 0;
4605 /* Evaluate a SUBREG of a CONST_INT or CONST_DOUBLE or CONST_FIXED
4606 or CONST_VECTOR,
4607 returning another CONST_INT or CONST_DOUBLE or CONST_FIXED or CONST_VECTOR.
4609 Works by unpacking OP into a collection of 8-bit values
4610 represented as a little-endian array of 'unsigned char', selecting by BYTE,
4611 and then repacking them again for OUTERMODE. */
4613 static rtx
4614 simplify_immed_subreg (enum machine_mode outermode, rtx op,
4615 enum machine_mode innermode, unsigned int byte)
4617 /* We support up to 512-bit values (for V8DFmode). */
4618 enum {
4619 max_bitsize = 512,
4620 value_bit = 8,
4621 value_mask = (1 << value_bit) - 1
4623 unsigned char value[max_bitsize / value_bit];
4624 int value_start;
4625 int i;
4626 int elem;
4628 int num_elem;
4629 rtx * elems;
4630 int elem_bitsize;
4631 rtx result_s;
4632 rtvec result_v = NULL;
4633 enum mode_class outer_class;
4634 enum machine_mode outer_submode;
4636 /* Some ports misuse CCmode. */
4637 if (GET_MODE_CLASS (outermode) == MODE_CC && GET_CODE (op) == CONST_INT)
4638 return op;
4640 /* We have no way to represent a complex constant at the rtl level. */
4641 if (COMPLEX_MODE_P (outermode))
4642 return NULL_RTX;
4644 /* Unpack the value. */
4646 if (GET_CODE (op) == CONST_VECTOR)
4648 num_elem = CONST_VECTOR_NUNITS (op);
4649 elems = &CONST_VECTOR_ELT (op, 0);
4650 elem_bitsize = GET_MODE_BITSIZE (GET_MODE_INNER (innermode));
4652 else
4654 num_elem = 1;
4655 elems = &op;
4656 elem_bitsize = max_bitsize;
4658 /* If this asserts, it is too complicated; reducing value_bit may help. */
4659 gcc_assert (BITS_PER_UNIT % value_bit == 0);
4660 /* I don't know how to handle endianness of sub-units. */
4661 gcc_assert (elem_bitsize % BITS_PER_UNIT == 0);
4663 for (elem = 0; elem < num_elem; elem++)
4665 unsigned char * vp;
4666 rtx el = elems[elem];
4668 /* Vectors are kept in target memory order. (This is probably
4669 a mistake.) */
4671 unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
4672 unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
4673 / BITS_PER_UNIT);
4674 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
4675 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
4676 unsigned bytele = (subword_byte % UNITS_PER_WORD
4677 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
4678 vp = value + (bytele * BITS_PER_UNIT) / value_bit;
4681 switch (GET_CODE (el))
4683 case CONST_INT:
4684 for (i = 0;
4685 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
4686 i += value_bit)
4687 *vp++ = INTVAL (el) >> i;
4688 /* CONST_INTs are always logically sign-extended. */
4689 for (; i < elem_bitsize; i += value_bit)
4690 *vp++ = INTVAL (el) < 0 ? -1 : 0;
4691 break;
4693 case CONST_DOUBLE:
4694 if (GET_MODE (el) == VOIDmode)
4696 /* If this triggers, someone should have generated a
4697 CONST_INT instead. */
4698 gcc_assert (elem_bitsize > HOST_BITS_PER_WIDE_INT);
4700 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
4701 *vp++ = CONST_DOUBLE_LOW (el) >> i;
4702 while (i < HOST_BITS_PER_WIDE_INT * 2 && i < elem_bitsize)
4704 *vp++
4705 = CONST_DOUBLE_HIGH (el) >> (i - HOST_BITS_PER_WIDE_INT);
4706 i += value_bit;
4708 /* It shouldn't matter what's done here, so fill it with
4709 zero. */
4710 for (; i < elem_bitsize; i += value_bit)
4711 *vp++ = 0;
4713 else
4715 long tmp[max_bitsize / 32];
4716 int bitsize = GET_MODE_BITSIZE (GET_MODE (el));
4718 gcc_assert (SCALAR_FLOAT_MODE_P (GET_MODE (el)));
4719 gcc_assert (bitsize <= elem_bitsize);
4720 gcc_assert (bitsize % value_bit == 0);
4722 real_to_target (tmp, CONST_DOUBLE_REAL_VALUE (el),
4723 GET_MODE (el));
4725 /* real_to_target produces its result in words affected by
4726 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
4727 and use WORDS_BIG_ENDIAN instead; see the documentation
4728 of SUBREG in rtl.texi. */
4729 for (i = 0; i < bitsize; i += value_bit)
4731 int ibase;
4732 if (WORDS_BIG_ENDIAN)
4733 ibase = bitsize - 1 - i;
4734 else
4735 ibase = i;
4736 *vp++ = tmp[ibase / 32] >> i % 32;
4739 /* It shouldn't matter what's done here, so fill it with
4740 zero. */
4741 for (; i < elem_bitsize; i += value_bit)
4742 *vp++ = 0;
4744 break;
4746 case CONST_FIXED:
4747 if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
4749 for (i = 0; i < elem_bitsize; i += value_bit)
4750 *vp++ = CONST_FIXED_VALUE_LOW (el) >> i;
4752 else
4754 for (i = 0; i < HOST_BITS_PER_WIDE_INT; i += value_bit)
4755 *vp++ = CONST_FIXED_VALUE_LOW (el) >> i;
4756 for (; i < 2 * HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
4757 i += value_bit)
4758 *vp++ = CONST_FIXED_VALUE_HIGH (el)
4759 >> (i - HOST_BITS_PER_WIDE_INT);
4760 for (; i < elem_bitsize; i += value_bit)
4761 *vp++ = 0;
4763 break;
4765 default:
4766 gcc_unreachable ();
4770 /* Now, pick the right byte to start with. */
4771 /* Renumber BYTE so that the least-significant byte is byte 0. A special
4772 case is paradoxical SUBREGs, which shouldn't be adjusted since they
4773 will already have offset 0. */
4774 if (GET_MODE_SIZE (innermode) >= GET_MODE_SIZE (outermode))
4776 unsigned ibyte = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode)
4777 - byte);
4778 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
4779 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
4780 byte = (subword_byte % UNITS_PER_WORD
4781 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
4784 /* BYTE should still be inside OP. (Note that BYTE is unsigned,
4785 so if it's become negative it will instead be very large.) */
4786 gcc_assert (byte < GET_MODE_SIZE (innermode));
4788 /* Convert from bytes to chunks of size value_bit. */
4789 value_start = byte * (BITS_PER_UNIT / value_bit);
4791 /* Re-pack the value. */
4793 if (VECTOR_MODE_P (outermode))
4795 num_elem = GET_MODE_NUNITS (outermode);
4796 result_v = rtvec_alloc (num_elem);
4797 elems = &RTVEC_ELT (result_v, 0);
4798 outer_submode = GET_MODE_INNER (outermode);
4800 else
4802 num_elem = 1;
4803 elems = &result_s;
4804 outer_submode = outermode;
4807 outer_class = GET_MODE_CLASS (outer_submode);
4808 elem_bitsize = GET_MODE_BITSIZE (outer_submode);
4810 gcc_assert (elem_bitsize % value_bit == 0);
4811 gcc_assert (elem_bitsize + value_start * value_bit <= max_bitsize);
4813 for (elem = 0; elem < num_elem; elem++)
4815 unsigned char *vp;
4817 /* Vectors are stored in target memory order. (This is probably
4818 a mistake.) */
4820 unsigned byte = (elem * elem_bitsize) / BITS_PER_UNIT;
4821 unsigned ibyte = (((num_elem - 1 - elem) * elem_bitsize)
4822 / BITS_PER_UNIT);
4823 unsigned word_byte = WORDS_BIG_ENDIAN ? ibyte : byte;
4824 unsigned subword_byte = BYTES_BIG_ENDIAN ? ibyte : byte;
4825 unsigned bytele = (subword_byte % UNITS_PER_WORD
4826 + (word_byte / UNITS_PER_WORD) * UNITS_PER_WORD);
4827 vp = value + value_start + (bytele * BITS_PER_UNIT) / value_bit;
4830 switch (outer_class)
4832 case MODE_INT:
4833 case MODE_PARTIAL_INT:
4835 unsigned HOST_WIDE_INT hi = 0, lo = 0;
4837 for (i = 0;
4838 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
4839 i += value_bit)
4840 lo |= (HOST_WIDE_INT)(*vp++ & value_mask) << i;
4841 for (; i < elem_bitsize; i += value_bit)
4842 hi |= ((HOST_WIDE_INT)(*vp++ & value_mask)
4843 << (i - HOST_BITS_PER_WIDE_INT));
4845 /* immed_double_const doesn't call trunc_int_for_mode. I don't
4846 know why. */
4847 if (elem_bitsize <= HOST_BITS_PER_WIDE_INT)
4848 elems[elem] = gen_int_mode (lo, outer_submode);
4849 else if (elem_bitsize <= 2 * HOST_BITS_PER_WIDE_INT)
4850 elems[elem] = immed_double_const (lo, hi, outer_submode);
4851 else
4852 return NULL_RTX;
4854 break;
4856 case MODE_FLOAT:
4857 case MODE_DECIMAL_FLOAT:
4859 REAL_VALUE_TYPE r;
4860 long tmp[max_bitsize / 32];
4862 /* real_from_target wants its input in words affected by
4863 FLOAT_WORDS_BIG_ENDIAN. However, we ignore this,
4864 and use WORDS_BIG_ENDIAN instead; see the documentation
4865 of SUBREG in rtl.texi. */
4866 for (i = 0; i < max_bitsize / 32; i++)
4867 tmp[i] = 0;
4868 for (i = 0; i < elem_bitsize; i += value_bit)
4870 int ibase;
4871 if (WORDS_BIG_ENDIAN)
4872 ibase = elem_bitsize - 1 - i;
4873 else
4874 ibase = i;
4875 tmp[ibase / 32] |= (*vp++ & value_mask) << i % 32;
4878 real_from_target (&r, tmp, outer_submode);
4879 elems[elem] = CONST_DOUBLE_FROM_REAL_VALUE (r, outer_submode);
4881 break;
4883 case MODE_FRACT:
4884 case MODE_UFRACT:
4885 case MODE_ACCUM:
4886 case MODE_UACCUM:
4888 FIXED_VALUE_TYPE f;
4889 f.data.low = 0;
4890 f.data.high = 0;
4891 f.mode = outer_submode;
4893 for (i = 0;
4894 i < HOST_BITS_PER_WIDE_INT && i < elem_bitsize;
4895 i += value_bit)
4896 f.data.low |= (HOST_WIDE_INT)(*vp++ & value_mask) << i;
4897 for (; i < elem_bitsize; i += value_bit)
4898 f.data.high |= ((HOST_WIDE_INT)(*vp++ & value_mask)
4899 << (i - HOST_BITS_PER_WIDE_INT));
4901 elems[elem] = CONST_FIXED_FROM_FIXED_VALUE (f, outer_submode);
4903 break;
4905 default:
4906 gcc_unreachable ();
4909 if (VECTOR_MODE_P (outermode))
4910 return gen_rtx_CONST_VECTOR (outermode, result_v);
4911 else
4912 return result_s;
4915 /* Simplify SUBREG:OUTERMODE(OP:INNERMODE, BYTE)
4916 Return 0 if no simplifications are possible. */
4918 simplify_subreg (enum machine_mode outermode, rtx op,
4919 enum machine_mode innermode, unsigned int byte)
4921 /* Little bit of sanity checking. */
4922 gcc_assert (innermode != VOIDmode);
4923 gcc_assert (outermode != VOIDmode);
4924 gcc_assert (innermode != BLKmode);
4925 gcc_assert (outermode != BLKmode);
4927 gcc_assert (GET_MODE (op) == innermode
4928 || GET_MODE (op) == VOIDmode);
4930 gcc_assert ((byte % GET_MODE_SIZE (outermode)) == 0);
4931 gcc_assert (byte < GET_MODE_SIZE (innermode));
4933 if (outermode == innermode && !byte)
4934 return op;
4936 if (GET_CODE (op) == CONST_INT
4937 || GET_CODE (op) == CONST_DOUBLE
4938 || GET_CODE (op) == CONST_FIXED
4939 || GET_CODE (op) == CONST_VECTOR)
4940 return simplify_immed_subreg (outermode, op, innermode, byte);
4942 /* Changing mode twice with SUBREG => just change it once,
4943 or not at all if changing back op starting mode. */
4944 if (GET_CODE (op) == SUBREG)
4946 enum machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
4947 int final_offset = byte + SUBREG_BYTE (op);
4948 rtx newx;
4950 if (outermode == innermostmode
4951 && byte == 0 && SUBREG_BYTE (op) == 0)
4952 return SUBREG_REG (op);
4954 /* The SUBREG_BYTE represents offset, as if the value were stored
4955 in memory. Irritating exception is paradoxical subreg, where
4956 we define SUBREG_BYTE to be 0. On big endian machines, this
4957 value should be negative. For a moment, undo this exception. */
4958 if (byte == 0 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
4960 int difference = (GET_MODE_SIZE (innermode) - GET_MODE_SIZE (outermode));
4961 if (WORDS_BIG_ENDIAN)
4962 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
4963 if (BYTES_BIG_ENDIAN)
4964 final_offset += difference % UNITS_PER_WORD;
4966 if (SUBREG_BYTE (op) == 0
4967 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
4969 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
4970 if (WORDS_BIG_ENDIAN)
4971 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
4972 if (BYTES_BIG_ENDIAN)
4973 final_offset += difference % UNITS_PER_WORD;
4976 /* See whether resulting subreg will be paradoxical. */
4977 if (GET_MODE_SIZE (innermostmode) > GET_MODE_SIZE (outermode))
4979 /* In nonparadoxical subregs we can't handle negative offsets. */
4980 if (final_offset < 0)
4981 return NULL_RTX;
4982 /* Bail out in case resulting subreg would be incorrect. */
4983 if (final_offset % GET_MODE_SIZE (outermode)
4984 || (unsigned) final_offset >= GET_MODE_SIZE (innermostmode))
4985 return NULL_RTX;
4987 else
4989 int offset = 0;
4990 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (outermode));
4992 /* In paradoxical subreg, see if we are still looking on lower part.
4993 If so, our SUBREG_BYTE will be 0. */
4994 if (WORDS_BIG_ENDIAN)
4995 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
4996 if (BYTES_BIG_ENDIAN)
4997 offset += difference % UNITS_PER_WORD;
4998 if (offset == final_offset)
4999 final_offset = 0;
5000 else
5001 return NULL_RTX;
5004 /* Recurse for further possible simplifications. */
5005 newx = simplify_subreg (outermode, SUBREG_REG (op), innermostmode,
5006 final_offset);
5007 if (newx)
5008 return newx;
5009 if (validate_subreg (outermode, innermostmode,
5010 SUBREG_REG (op), final_offset))
5011 return gen_rtx_SUBREG (outermode, SUBREG_REG (op), final_offset);
5012 return NULL_RTX;
5015 /* Merge implicit and explicit truncations. */
5017 if (GET_CODE (op) == TRUNCATE
5018 && GET_MODE_SIZE (outermode) < GET_MODE_SIZE (innermode)
5019 && subreg_lowpart_offset (outermode, innermode) == byte)
5020 return simplify_gen_unary (TRUNCATE, outermode, XEXP (op, 0),
5021 GET_MODE (XEXP (op, 0)));
5023 /* SUBREG of a hard register => just change the register number
5024 and/or mode. If the hard register is not valid in that mode,
5025 suppress this simplification. If the hard register is the stack,
5026 frame, or argument pointer, leave this as a SUBREG. */
5028 if (REG_P (op)
5029 && REGNO (op) < FIRST_PSEUDO_REGISTER
5030 #ifdef CANNOT_CHANGE_MODE_CLASS
5031 && ! (REG_CANNOT_CHANGE_MODE_P (REGNO (op), innermode, outermode)
5032 && GET_MODE_CLASS (innermode) != MODE_COMPLEX_INT
5033 && GET_MODE_CLASS (innermode) != MODE_COMPLEX_FLOAT)
5034 #endif
5035 && ((reload_completed && !frame_pointer_needed)
5036 || (REGNO (op) != FRAME_POINTER_REGNUM
5037 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
5038 && REGNO (op) != HARD_FRAME_POINTER_REGNUM
5039 #endif
5041 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5042 && REGNO (op) != ARG_POINTER_REGNUM
5043 #endif
5044 && REGNO (op) != STACK_POINTER_REGNUM
5045 && subreg_offset_representable_p (REGNO (op), innermode,
5046 byte, outermode))
5048 unsigned int regno = REGNO (op);
5049 unsigned int final_regno
5050 = regno + subreg_regno_offset (regno, innermode, byte, outermode);
5052 /* ??? We do allow it if the current REG is not valid for
5053 its mode. This is a kludge to work around how float/complex
5054 arguments are passed on 32-bit SPARC and should be fixed. */
5055 if (HARD_REGNO_MODE_OK (final_regno, outermode)
5056 || ! HARD_REGNO_MODE_OK (regno, innermode))
5058 rtx x;
5059 int final_offset = byte;
5061 /* Adjust offset for paradoxical subregs. */
5062 if (byte == 0
5063 && GET_MODE_SIZE (innermode) < GET_MODE_SIZE (outermode))
5065 int difference = (GET_MODE_SIZE (innermode)
5066 - GET_MODE_SIZE (outermode));
5067 if (WORDS_BIG_ENDIAN)
5068 final_offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
5069 if (BYTES_BIG_ENDIAN)
5070 final_offset += difference % UNITS_PER_WORD;
5073 x = gen_rtx_REG_offset (op, outermode, final_regno, final_offset);
5075 /* Propagate original regno. We don't have any way to specify
5076 the offset inside original regno, so do so only for lowpart.
5077 The information is used only by alias analysis that can not
5078 grog partial register anyway. */
5080 if (subreg_lowpart_offset (outermode, innermode) == byte)
5081 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (op);
5082 return x;
5086 /* If we have a SUBREG of a register that we are replacing and we are
5087 replacing it with a MEM, make a new MEM and try replacing the
5088 SUBREG with it. Don't do this if the MEM has a mode-dependent address
5089 or if we would be widening it. */
5091 if (MEM_P (op)
5092 && ! mode_dependent_address_p (XEXP (op, 0))
5093 /* Allow splitting of volatile memory references in case we don't
5094 have instruction to move the whole thing. */
5095 && (! MEM_VOLATILE_P (op)
5096 || ! have_insn_for (SET, innermode))
5097 && GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (GET_MODE (op)))
5098 return adjust_address_nv (op, outermode, byte);
5100 /* Handle complex values represented as CONCAT
5101 of real and imaginary part. */
5102 if (GET_CODE (op) == CONCAT)
5104 unsigned int part_size, final_offset;
5105 rtx part, res;
5107 part_size = GET_MODE_UNIT_SIZE (GET_MODE (XEXP (op, 0)));
5108 if (byte < part_size)
5110 part = XEXP (op, 0);
5111 final_offset = byte;
5113 else
5115 part = XEXP (op, 1);
5116 final_offset = byte - part_size;
5119 if (final_offset + GET_MODE_SIZE (outermode) > part_size)
5120 return NULL_RTX;
5122 res = simplify_subreg (outermode, part, GET_MODE (part), final_offset);
5123 if (res)
5124 return res;
5125 if (validate_subreg (outermode, GET_MODE (part), part, final_offset))
5126 return gen_rtx_SUBREG (outermode, part, final_offset);
5127 return NULL_RTX;
5130 /* Optimize SUBREG truncations of zero and sign extended values. */
5131 if ((GET_CODE (op) == ZERO_EXTEND
5132 || GET_CODE (op) == SIGN_EXTEND)
5133 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode))
5135 unsigned int bitpos = subreg_lsb_1 (outermode, innermode, byte);
5137 /* If we're requesting the lowpart of a zero or sign extension,
5138 there are three possibilities. If the outermode is the same
5139 as the origmode, we can omit both the extension and the subreg.
5140 If the outermode is not larger than the origmode, we can apply
5141 the truncation without the extension. Finally, if the outermode
5142 is larger than the origmode, but both are integer modes, we
5143 can just extend to the appropriate mode. */
5144 if (bitpos == 0)
5146 enum machine_mode origmode = GET_MODE (XEXP (op, 0));
5147 if (outermode == origmode)
5148 return XEXP (op, 0);
5149 if (GET_MODE_BITSIZE (outermode) <= GET_MODE_BITSIZE (origmode))
5150 return simplify_gen_subreg (outermode, XEXP (op, 0), origmode,
5151 subreg_lowpart_offset (outermode,
5152 origmode));
5153 if (SCALAR_INT_MODE_P (outermode))
5154 return simplify_gen_unary (GET_CODE (op), outermode,
5155 XEXP (op, 0), origmode);
5158 /* A SUBREG resulting from a zero extension may fold to zero if
5159 it extracts higher bits that the ZERO_EXTEND's source bits. */
5160 if (GET_CODE (op) == ZERO_EXTEND
5161 && bitpos >= GET_MODE_BITSIZE (GET_MODE (XEXP (op, 0))))
5162 return CONST0_RTX (outermode);
5165 /* Simplify (subreg:QI (lshiftrt:SI (sign_extend:SI (x:QI)) C), 0) into
5166 to (ashiftrt:QI (x:QI) C), where C is a suitable small constant and
5167 the outer subreg is effectively a truncation to the original mode. */
5168 if ((GET_CODE (op) == LSHIFTRT
5169 || GET_CODE (op) == ASHIFTRT)
5170 && SCALAR_INT_MODE_P (outermode)
5171 /* Ensure that OUTERMODE is at least twice as wide as the INNERMODE
5172 to avoid the possibility that an outer LSHIFTRT shifts by more
5173 than the sign extension's sign_bit_copies and introduces zeros
5174 into the high bits of the result. */
5175 && (2 * GET_MODE_BITSIZE (outermode)) <= GET_MODE_BITSIZE (innermode)
5176 && GET_CODE (XEXP (op, 1)) == CONST_INT
5177 && GET_CODE (XEXP (op, 0)) == SIGN_EXTEND
5178 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
5179 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
5180 && subreg_lsb_1 (outermode, innermode, byte) == 0)
5181 return simplify_gen_binary (ASHIFTRT, outermode,
5182 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
5184 /* Likewise (subreg:QI (lshiftrt:SI (zero_extend:SI (x:QI)) C), 0) into
5185 to (lshiftrt:QI (x:QI) C), where C is a suitable small constant and
5186 the outer subreg is effectively a truncation to the original mode. */
5187 if ((GET_CODE (op) == LSHIFTRT
5188 || GET_CODE (op) == ASHIFTRT)
5189 && SCALAR_INT_MODE_P (outermode)
5190 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode)
5191 && GET_CODE (XEXP (op, 1)) == CONST_INT
5192 && GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
5193 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
5194 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
5195 && subreg_lsb_1 (outermode, innermode, byte) == 0)
5196 return simplify_gen_binary (LSHIFTRT, outermode,
5197 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
5199 /* Likewise (subreg:QI (ashift:SI (zero_extend:SI (x:QI)) C), 0) into
5200 to (ashift:QI (x:QI) C), where C is a suitable small constant and
5201 the outer subreg is effectively a truncation to the original mode. */
5202 if (GET_CODE (op) == ASHIFT
5203 && SCALAR_INT_MODE_P (outermode)
5204 && GET_MODE_BITSIZE (outermode) < GET_MODE_BITSIZE (innermode)
5205 && GET_CODE (XEXP (op, 1)) == CONST_INT
5206 && (GET_CODE (XEXP (op, 0)) == ZERO_EXTEND
5207 || GET_CODE (XEXP (op, 0)) == SIGN_EXTEND)
5208 && GET_MODE (XEXP (XEXP (op, 0), 0)) == outermode
5209 && INTVAL (XEXP (op, 1)) < GET_MODE_BITSIZE (outermode)
5210 && subreg_lsb_1 (outermode, innermode, byte) == 0)
5211 return simplify_gen_binary (ASHIFT, outermode,
5212 XEXP (XEXP (op, 0), 0), XEXP (op, 1));
5214 return NULL_RTX;
5217 /* Make a SUBREG operation or equivalent if it folds. */
5220 simplify_gen_subreg (enum machine_mode outermode, rtx op,
5221 enum machine_mode innermode, unsigned int byte)
5223 rtx newx;
5225 newx = simplify_subreg (outermode, op, innermode, byte);
5226 if (newx)
5227 return newx;
5229 if (GET_CODE (op) == SUBREG
5230 || GET_CODE (op) == CONCAT
5231 || GET_MODE (op) == VOIDmode)
5232 return NULL_RTX;
5234 if (validate_subreg (outermode, innermode, op, byte))
5235 return gen_rtx_SUBREG (outermode, op, byte);
5237 return NULL_RTX;
5240 /* Simplify X, an rtx expression.
5242 Return the simplified expression or NULL if no simplifications
5243 were possible.
5245 This is the preferred entry point into the simplification routines;
5246 however, we still allow passes to call the more specific routines.
5248 Right now GCC has three (yes, three) major bodies of RTL simplification
5249 code that need to be unified.
5251 1. fold_rtx in cse.c. This code uses various CSE specific
5252 information to aid in RTL simplification.
5254 2. simplify_rtx in combine.c. Similar to fold_rtx, except that
5255 it uses combine specific information to aid in RTL
5256 simplification.
5258 3. The routines in this file.
5261 Long term we want to only have one body of simplification code; to
5262 get to that state I recommend the following steps:
5264 1. Pour over fold_rtx & simplify_rtx and move any simplifications
5265 which are not pass dependent state into these routines.
5267 2. As code is moved by #1, change fold_rtx & simplify_rtx to
5268 use this routine whenever possible.
5270 3. Allow for pass dependent state to be provided to these
5271 routines and add simplifications based on the pass dependent
5272 state. Remove code from cse.c & combine.c that becomes
5273 redundant/dead.
5275 It will take time, but ultimately the compiler will be easier to
5276 maintain and improve. It's totally silly that when we add a
5277 simplification that it needs to be added to 4 places (3 for RTL
5278 simplification and 1 for tree simplification. */
5281 simplify_rtx (const_rtx x)
5283 const enum rtx_code code = GET_CODE (x);
5284 const enum machine_mode mode = GET_MODE (x);
5286 switch (GET_RTX_CLASS (code))
5288 case RTX_UNARY:
5289 return simplify_unary_operation (code, mode,
5290 XEXP (x, 0), GET_MODE (XEXP (x, 0)));
5291 case RTX_COMM_ARITH:
5292 if (swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5293 return simplify_gen_binary (code, mode, XEXP (x, 1), XEXP (x, 0));
5295 /* Fall through.... */
5297 case RTX_BIN_ARITH:
5298 return simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5300 case RTX_TERNARY:
5301 case RTX_BITFIELD_OPS:
5302 return simplify_ternary_operation (code, mode, GET_MODE (XEXP (x, 0)),
5303 XEXP (x, 0), XEXP (x, 1),
5304 XEXP (x, 2));
5306 case RTX_COMPARE:
5307 case RTX_COMM_COMPARE:
5308 return simplify_relational_operation (code, mode,
5309 ((GET_MODE (XEXP (x, 0))
5310 != VOIDmode)
5311 ? GET_MODE (XEXP (x, 0))
5312 : GET_MODE (XEXP (x, 1))),
5313 XEXP (x, 0),
5314 XEXP (x, 1));
5316 case RTX_EXTRA:
5317 if (code == SUBREG)
5318 return simplify_subreg (mode, SUBREG_REG (x),
5319 GET_MODE (SUBREG_REG (x)),
5320 SUBREG_BYTE (x));
5321 break;
5323 case RTX_OBJ:
5324 if (code == LO_SUM)
5326 /* Convert (lo_sum (high FOO) FOO) to FOO. */
5327 if (GET_CODE (XEXP (x, 0)) == HIGH
5328 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5329 return XEXP (x, 1);
5331 break;
5333 default:
5334 break;
5336 return NULL;