1 /* Functions related to invoking methods and overloaded functions.
2 Copyright (C) 1987, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) and
5 modified by Brendan Kehoe (brendan@cygnus.com).
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2, or (at your option)
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to
21 the Free Software Foundation, 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
25 /* High-level class interface. */
29 #include "coretypes.h"
38 #include "diagnostic.h"
43 /* The various kinds of conversion. */
45 typedef enum conversion_kind
{
59 /* The rank of the conversion. Order of the enumerals matters; better
60 conversions should come earlier in the list. */
62 typedef enum conversion_rank
{
73 /* An implicit conversion sequence, in the sense of [over.best.ics].
74 The first conversion to be performed is at the end of the chain.
75 That conversion is always an cr_identity conversion. */
77 typedef struct conversion conversion
;
79 /* The kind of conversion represented by this step. */
81 /* The rank of this conversion. */
83 BOOL_BITFIELD user_conv_p
: 1;
84 BOOL_BITFIELD ellipsis_p
: 1;
85 BOOL_BITFIELD this_p
: 1;
86 BOOL_BITFIELD bad_p
: 1;
87 /* If KIND is ck_ref_bind ck_base_conv, true to indicate that a
88 temporary should be created to hold the result of the
90 BOOL_BITFIELD need_temporary_p
: 1;
91 /* If KIND is ck_identity or ck_base_conv, true to indicate that the
92 copy constructor must be accessible, even though it is not being
94 BOOL_BITFIELD check_copy_constructor_p
: 1;
95 /* If KIND is ck_ptr or ck_pmem, true to indicate that a conversion
96 from a pointer-to-derived to pointer-to-base is being performed. */
97 BOOL_BITFIELD base_p
: 1;
98 /* The type of the expression resulting from the conversion. */
101 /* The next conversion in the chain. Since the conversions are
102 arranged from outermost to innermost, the NEXT conversion will
103 actually be performed before this conversion. This variant is
104 used only when KIND is neither ck_identity nor ck_ambig. */
106 /* The expression at the beginning of the conversion chain. This
107 variant is used only if KIND is ck_identity or ck_ambig. */
110 /* The function candidate corresponding to this conversion
111 sequence. This field is only used if KIND is ck_user. */
112 struct z_candidate
*cand
;
115 #define CONVERSION_RANK(NODE) \
116 ((NODE)->bad_p ? cr_bad \
117 : (NODE)->ellipsis_p ? cr_ellipsis \
118 : (NODE)->user_conv_p ? cr_user \
121 static struct obstack conversion_obstack
;
122 static bool conversion_obstack_initialized
;
124 static struct z_candidate
* tourney (struct z_candidate
*);
125 static int equal_functions (tree
, tree
);
126 static int joust (struct z_candidate
*, struct z_candidate
*, bool);
127 static int compare_ics (conversion
*, conversion
*);
128 static tree
build_over_call (struct z_candidate
*, int);
129 static tree
build_java_interface_fn_ref (tree
, tree
);
130 #define convert_like(CONV, EXPR) \
131 convert_like_real ((CONV), (EXPR), NULL_TREE, 0, 0, \
132 /*issue_conversion_warnings=*/true, \
134 #define convert_like_with_context(CONV, EXPR, FN, ARGNO) \
135 convert_like_real ((CONV), (EXPR), (FN), (ARGNO), 0, \
136 /*issue_conversion_warnings=*/true, \
138 static tree
convert_like_real (conversion
*, tree
, tree
, int, int, bool,
140 static void op_error (enum tree_code
, enum tree_code
, tree
, tree
,
142 static tree
build_object_call (tree
, tree
);
143 static tree
resolve_args (tree
);
144 static struct z_candidate
*build_user_type_conversion_1 (tree
, tree
, int);
145 static void print_z_candidate (const char *, struct z_candidate
*);
146 static void print_z_candidates (struct z_candidate
*);
147 static tree
build_this (tree
);
148 static struct z_candidate
*splice_viable (struct z_candidate
*, bool, bool *);
149 static bool any_strictly_viable (struct z_candidate
*);
150 static struct z_candidate
*add_template_candidate
151 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
,
152 tree
, tree
, int, unification_kind_t
);
153 static struct z_candidate
*add_template_candidate_real
154 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
,
155 tree
, tree
, int, tree
, unification_kind_t
);
156 static struct z_candidate
*add_template_conv_candidate
157 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
, tree
);
158 static void add_builtin_candidates
159 (struct z_candidate
**, enum tree_code
, enum tree_code
,
161 static void add_builtin_candidate
162 (struct z_candidate
**, enum tree_code
, enum tree_code
,
163 tree
, tree
, tree
, tree
*, tree
*, int);
164 static bool is_complete (tree
);
165 static void build_builtin_candidate
166 (struct z_candidate
**, tree
, tree
, tree
, tree
*, tree
*,
168 static struct z_candidate
*add_conv_candidate
169 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
);
170 static struct z_candidate
*add_function_candidate
171 (struct z_candidate
**, tree
, tree
, tree
, tree
, tree
, int);
172 static conversion
*implicit_conversion (tree
, tree
, tree
, int);
173 static conversion
*standard_conversion (tree
, tree
, tree
, int);
174 static conversion
*reference_binding (tree
, tree
, tree
, int);
175 static conversion
*build_conv (conversion_kind
, tree
, conversion
*);
176 static bool is_subseq (conversion
*, conversion
*);
177 static tree
maybe_handle_ref_bind (conversion
**);
178 static void maybe_handle_implicit_object (conversion
**);
179 static struct z_candidate
*add_candidate
180 (struct z_candidate
**, tree
, tree
, size_t,
181 conversion
**, tree
, tree
, int);
182 static tree
source_type (conversion
*);
183 static void add_warning (struct z_candidate
*, struct z_candidate
*);
184 static bool reference_related_p (tree
, tree
);
185 static bool reference_compatible_p (tree
, tree
);
186 static conversion
*convert_class_to_reference (tree
, tree
, tree
);
187 static conversion
*direct_reference_binding (tree
, conversion
*);
188 static bool promoted_arithmetic_type_p (tree
);
189 static conversion
*conditional_conversion (tree
, tree
);
190 static char *name_as_c_string (tree
, tree
, bool *);
191 static tree
call_builtin_trap (void);
192 static tree
prep_operand (tree
);
193 static void add_candidates (tree
, tree
, tree
, bool, tree
, tree
,
194 int, struct z_candidate
**);
195 static conversion
*merge_conversion_sequences (conversion
*, conversion
*);
196 static bool magic_varargs_p (tree
);
197 static tree
build_temp (tree
, tree
, int, void (**)(const char *, ...));
198 static void check_constructor_callable (tree
, tree
);
200 /* Returns nonzero iff the destructor name specified in NAME
201 (a BIT_NOT_EXPR) matches BASETYPE. The operand of NAME can take many
205 check_dtor_name (tree basetype
, tree name
)
207 name
= TREE_OPERAND (name
, 0);
209 /* Just accept something we've already complained about. */
210 if (name
== error_mark_node
)
213 if (TREE_CODE (name
) == TYPE_DECL
)
214 name
= TREE_TYPE (name
);
215 else if (TYPE_P (name
))
217 else if (TREE_CODE (name
) == IDENTIFIER_NODE
)
219 if ((IS_AGGR_TYPE (basetype
) && name
== constructor_name (basetype
))
220 || (TREE_CODE (basetype
) == ENUMERAL_TYPE
221 && name
== TYPE_IDENTIFIER (basetype
)))
224 name
= get_type_value (name
);
230 template <class T> struct S { ~S(); };
234 NAME will be a class template. */
235 gcc_assert (DECL_CLASS_TEMPLATE_P (name
));
239 if (name
&& TYPE_MAIN_VARIANT (basetype
) == TYPE_MAIN_VARIANT (name
))
244 /* We want the address of a function or method. We avoid creating a
245 pointer-to-member function. */
248 build_addr_func (tree function
)
250 tree type
= TREE_TYPE (function
);
252 /* We have to do these by hand to avoid real pointer to member
254 if (TREE_CODE (type
) == METHOD_TYPE
)
256 if (TREE_CODE (function
) == OFFSET_REF
)
258 tree object
= build_address (TREE_OPERAND (function
, 0));
259 return get_member_function_from_ptrfunc (&object
,
260 TREE_OPERAND (function
, 1));
262 function
= build_address (function
);
265 function
= decay_conversion (function
);
270 /* Build a CALL_EXPR, we can handle FUNCTION_TYPEs, METHOD_TYPEs, or
271 POINTER_TYPE to those. Note, pointer to member function types
272 (TYPE_PTRMEMFUNC_P) must be handled by our callers. */
275 build_call (tree function
, tree parms
)
277 int is_constructor
= 0;
284 function
= build_addr_func (function
);
286 if (TYPE_PTRMEMFUNC_P (TREE_TYPE (function
)))
288 sorry ("unable to call pointer to member function here");
289 return error_mark_node
;
292 fntype
= TREE_TYPE (TREE_TYPE (function
));
293 result_type
= TREE_TYPE (fntype
);
295 if (TREE_CODE (function
) == ADDR_EXPR
296 && TREE_CODE (TREE_OPERAND (function
, 0)) == FUNCTION_DECL
)
297 decl
= TREE_OPERAND (function
, 0);
301 /* We check both the decl and the type; a function may be known not to
302 throw without being declared throw(). */
303 nothrow
= ((decl
&& TREE_NOTHROW (decl
))
304 || TYPE_NOTHROW_P (TREE_TYPE (TREE_TYPE (function
))));
306 if (decl
&& TREE_THIS_VOLATILE (decl
) && cfun
)
307 current_function_returns_abnormally
= 1;
309 if (decl
&& TREE_DEPRECATED (decl
))
310 warn_deprecated_use (decl
);
311 require_complete_eh_spec_types (fntype
, decl
);
313 if (decl
&& DECL_CONSTRUCTOR_P (decl
))
316 if (decl
&& ! TREE_USED (decl
))
318 /* We invoke build_call directly for several library functions.
319 These may have been declared normally if we're building libgcc,
320 so we can't just check DECL_ARTIFICIAL. */
321 gcc_assert (DECL_ARTIFICIAL (decl
)
322 || !strncmp (IDENTIFIER_POINTER (DECL_NAME (decl
)),
327 /* Don't pass empty class objects by value. This is useful
328 for tags in STL, which are used to control overload resolution.
329 We don't need to handle other cases of copying empty classes. */
330 if (! decl
|| ! DECL_BUILT_IN (decl
))
331 for (tmp
= parms
; tmp
; tmp
= TREE_CHAIN (tmp
))
332 if (is_empty_class (TREE_TYPE (TREE_VALUE (tmp
)))
333 && ! TREE_ADDRESSABLE (TREE_TYPE (TREE_VALUE (tmp
))))
335 tree t
= build0 (EMPTY_CLASS_EXPR
, TREE_TYPE (TREE_VALUE (tmp
)));
336 TREE_VALUE (tmp
) = build2 (COMPOUND_EXPR
, TREE_TYPE (t
),
337 TREE_VALUE (tmp
), t
);
340 function
= build3 (CALL_EXPR
, result_type
, function
, parms
, NULL_TREE
);
341 TREE_HAS_CONSTRUCTOR (function
) = is_constructor
;
342 TREE_NOTHROW (function
) = nothrow
;
347 /* Build something of the form ptr->method (args)
348 or object.method (args). This can also build
349 calls to constructors, and find friends.
351 Member functions always take their class variable
354 INSTANCE is a class instance.
356 NAME is the name of the method desired, usually an IDENTIFIER_NODE.
358 PARMS help to figure out what that NAME really refers to.
360 BASETYPE_PATH, if non-NULL, contains a chain from the type of INSTANCE
361 down to the real instance type to use for access checking. We need this
362 information to get protected accesses correct.
364 FLAGS is the logical disjunction of zero or more LOOKUP_
365 flags. See cp-tree.h for more info.
367 If this is all OK, calls build_function_call with the resolved
370 This function must also handle being called to perform
371 initialization, promotion/coercion of arguments, and
372 instantiation of default parameters.
374 Note that NAME may refer to an instance variable name. If
375 `operator()()' is defined for the type of that field, then we return
378 /* New overloading code. */
380 typedef struct z_candidate z_candidate
;
382 typedef struct candidate_warning candidate_warning
;
383 struct candidate_warning
{
385 candidate_warning
*next
;
389 /* The FUNCTION_DECL that will be called if this candidate is
390 selected by overload resolution. */
392 /* The arguments to use when calling this function. */
394 /* The implicit conversion sequences for each of the arguments to
397 /* The number of implicit conversion sequences. */
399 /* If FN is a user-defined conversion, the standard conversion
400 sequence from the type returned by FN to the desired destination
402 conversion
*second_conv
;
404 /* If FN is a member function, the binfo indicating the path used to
405 qualify the name of FN at the call site. This path is used to
406 determine whether or not FN is accessible if it is selected by
407 overload resolution. The DECL_CONTEXT of FN will always be a
408 (possibly improper) base of this binfo. */
410 /* If FN is a non-static member function, the binfo indicating the
411 subobject to which the `this' pointer should be converted if FN
412 is selected by overload resolution. The type pointed to the by
413 the `this' pointer must correspond to the most derived class
414 indicated by the CONVERSION_PATH. */
415 tree conversion_path
;
417 candidate_warning
*warnings
;
421 /* Returns true iff T is a null pointer constant in the sense of
425 null_ptr_cst_p (tree t
)
429 A null pointer constant is an integral constant expression
430 (_expr.const_) rvalue of integer type that evaluates to zero. */
431 t
= integral_constant_value (t
);
433 || (CP_INTEGRAL_TYPE_P (TREE_TYPE (t
)) && integer_zerop (t
)))
438 /* Returns nonzero if PARMLIST consists of only default parms and/or
442 sufficient_parms_p (tree parmlist
)
444 for (; parmlist
&& parmlist
!= void_list_node
;
445 parmlist
= TREE_CHAIN (parmlist
))
446 if (!TREE_PURPOSE (parmlist
))
451 /* Allocate N bytes of memory from the conversion obstack. The memory
452 is zeroed before being returned. */
455 conversion_obstack_alloc (size_t n
)
458 if (!conversion_obstack_initialized
)
460 gcc_obstack_init (&conversion_obstack
);
461 conversion_obstack_initialized
= true;
463 p
= obstack_alloc (&conversion_obstack
, n
);
468 /* Dynamically allocate a conversion. */
471 alloc_conversion (conversion_kind kind
)
474 c
= conversion_obstack_alloc (sizeof (conversion
));
479 #ifdef ENABLE_CHECKING
481 /* Make sure that all memory on the conversion obstack has been
485 validate_conversion_obstack (void)
487 if (conversion_obstack_initialized
)
488 gcc_assert ((obstack_next_free (&conversion_obstack
)
489 == obstack_base (&conversion_obstack
)));
492 #endif /* ENABLE_CHECKING */
494 /* Dynamically allocate an array of N conversions. */
497 alloc_conversions (size_t n
)
499 return conversion_obstack_alloc (n
* sizeof (conversion
*));
503 build_conv (conversion_kind code
, tree type
, conversion
*from
)
506 conversion_rank rank
= CONVERSION_RANK (from
);
508 /* We can't use buildl1 here because CODE could be USER_CONV, which
509 takes two arguments. In that case, the caller is responsible for
510 filling in the second argument. */
511 t
= alloc_conversion (code
);
534 t
->user_conv_p
= (code
== ck_user
|| from
->user_conv_p
);
535 t
->bad_p
= from
->bad_p
;
540 /* Build a representation of the identity conversion from EXPR to
541 itself. The TYPE should match the type of EXPR, if EXPR is non-NULL. */
544 build_identity_conv (tree type
, tree expr
)
548 c
= alloc_conversion (ck_identity
);
555 /* Converting from EXPR to TYPE was ambiguous in the sense that there
556 were multiple user-defined conversions to accomplish the job.
557 Build a conversion that indicates that ambiguity. */
560 build_ambiguous_conv (tree type
, tree expr
)
564 c
= alloc_conversion (ck_ambig
);
572 strip_top_quals (tree t
)
574 if (TREE_CODE (t
) == ARRAY_TYPE
)
576 return cp_build_qualified_type (t
, 0);
579 /* Returns the standard conversion path (see [conv]) from type FROM to type
580 TO, if any. For proper handling of null pointer constants, you must
581 also pass the expression EXPR to convert from. */
584 standard_conversion (tree to
, tree from
, tree expr
, int flags
)
586 enum tree_code fcode
, tcode
;
588 bool fromref
= false;
590 to
= non_reference (to
);
591 if (TREE_CODE (from
) == REFERENCE_TYPE
)
594 from
= TREE_TYPE (from
);
596 to
= strip_top_quals (to
);
597 from
= strip_top_quals (from
);
599 if ((TYPE_PTRFN_P (to
) || TYPE_PTRMEMFUNC_P (to
))
600 && expr
&& type_unknown_p (expr
))
602 expr
= instantiate_type (to
, expr
, tf_conv
);
603 if (expr
== error_mark_node
)
605 from
= TREE_TYPE (expr
);
608 fcode
= TREE_CODE (from
);
609 tcode
= TREE_CODE (to
);
611 conv
= build_identity_conv (from
, expr
);
612 if (fcode
== FUNCTION_TYPE
)
614 from
= build_pointer_type (from
);
615 fcode
= TREE_CODE (from
);
616 conv
= build_conv (ck_lvalue
, from
, conv
);
618 else if (fcode
== ARRAY_TYPE
)
620 from
= build_pointer_type (TREE_TYPE (from
));
621 fcode
= TREE_CODE (from
);
622 conv
= build_conv (ck_lvalue
, from
, conv
);
624 else if (fromref
|| (expr
&& lvalue_p (expr
)))
625 conv
= build_conv (ck_rvalue
, from
, conv
);
627 /* Allow conversion between `__complex__' data types. */
628 if (tcode
== COMPLEX_TYPE
&& fcode
== COMPLEX_TYPE
)
630 /* The standard conversion sequence to convert FROM to TO is
631 the standard conversion sequence to perform componentwise
633 conversion
*part_conv
= standard_conversion
634 (TREE_TYPE (to
), TREE_TYPE (from
), NULL_TREE
, flags
);
638 conv
= build_conv (part_conv
->kind
, to
, conv
);
639 conv
->rank
= part_conv
->rank
;
647 if (same_type_p (from
, to
))
650 if ((tcode
== POINTER_TYPE
|| TYPE_PTR_TO_MEMBER_P (to
))
651 && expr
&& null_ptr_cst_p (expr
))
652 conv
= build_conv (ck_std
, to
, conv
);
653 else if ((tcode
== INTEGER_TYPE
&& fcode
== POINTER_TYPE
)
654 || (tcode
== POINTER_TYPE
&& fcode
== INTEGER_TYPE
))
656 /* For backwards brain damage compatibility, allow interconversion of
657 pointers and integers with a pedwarn. */
658 conv
= build_conv (ck_std
, to
, conv
);
661 else if (tcode
== ENUMERAL_TYPE
&& fcode
== INTEGER_TYPE
)
663 /* For backwards brain damage compatibility, allow interconversion of
664 enums and integers with a pedwarn. */
665 conv
= build_conv (ck_std
, to
, conv
);
668 else if ((tcode
== POINTER_TYPE
&& fcode
== POINTER_TYPE
)
669 || (TYPE_PTRMEM_P (to
) && TYPE_PTRMEM_P (from
)))
674 if (tcode
== POINTER_TYPE
675 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (from
),
678 else if (VOID_TYPE_P (TREE_TYPE (to
))
679 && !TYPE_PTRMEM_P (from
)
680 && TREE_CODE (TREE_TYPE (from
)) != FUNCTION_TYPE
)
682 from
= build_pointer_type
683 (cp_build_qualified_type (void_type_node
,
684 cp_type_quals (TREE_TYPE (from
))));
685 conv
= build_conv (ck_ptr
, from
, conv
);
687 else if (TYPE_PTRMEM_P (from
))
689 tree fbase
= TYPE_PTRMEM_CLASS_TYPE (from
);
690 tree tbase
= TYPE_PTRMEM_CLASS_TYPE (to
);
692 if (DERIVED_FROM_P (fbase
, tbase
)
693 && (same_type_ignoring_top_level_qualifiers_p
694 (TYPE_PTRMEM_POINTED_TO_TYPE (from
),
695 TYPE_PTRMEM_POINTED_TO_TYPE (to
))))
697 from
= build_ptrmem_type (tbase
,
698 TYPE_PTRMEM_POINTED_TO_TYPE (from
));
699 conv
= build_conv (ck_pmem
, from
, conv
);
701 else if (!same_type_p (fbase
, tbase
))
704 else if (IS_AGGR_TYPE (TREE_TYPE (from
))
705 && IS_AGGR_TYPE (TREE_TYPE (to
))
708 An rvalue of type "pointer to cv D," where D is a
709 class type, can be converted to an rvalue of type
710 "pointer to cv B," where B is a base class (clause
711 _class.derived_) of D. If B is an inaccessible
712 (clause _class.access_) or ambiguous
713 (_class.member.lookup_) base class of D, a program
714 that necessitates this conversion is ill-formed.
715 Therefore, we use DERIVED_FROM_P, and do not check
716 access or uniqueness. */
717 && DERIVED_FROM_P (TREE_TYPE (to
), TREE_TYPE (from
)))
720 cp_build_qualified_type (TREE_TYPE (to
),
721 cp_type_quals (TREE_TYPE (from
)));
722 from
= build_pointer_type (from
);
723 conv
= build_conv (ck_ptr
, from
, conv
);
727 if (tcode
== POINTER_TYPE
)
729 to_pointee
= TREE_TYPE (to
);
730 from_pointee
= TREE_TYPE (from
);
734 to_pointee
= TYPE_PTRMEM_POINTED_TO_TYPE (to
);
735 from_pointee
= TYPE_PTRMEM_POINTED_TO_TYPE (from
);
738 if (same_type_p (from
, to
))
740 else if (comp_ptr_ttypes (to_pointee
, from_pointee
))
741 conv
= build_conv (ck_qual
, to
, conv
);
742 else if (expr
&& string_conv_p (to
, expr
, 0))
743 /* converting from string constant to char *. */
744 conv
= build_conv (ck_qual
, to
, conv
);
745 else if (ptr_reasonably_similar (to_pointee
, from_pointee
))
747 conv
= build_conv (ck_ptr
, to
, conv
);
755 else if (TYPE_PTRMEMFUNC_P (to
) && TYPE_PTRMEMFUNC_P (from
))
757 tree fromfn
= TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (from
));
758 tree tofn
= TREE_TYPE (TYPE_PTRMEMFUNC_FN_TYPE (to
));
759 tree fbase
= TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (fromfn
)));
760 tree tbase
= TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (tofn
)));
762 if (!DERIVED_FROM_P (fbase
, tbase
)
763 || !same_type_p (TREE_TYPE (fromfn
), TREE_TYPE (tofn
))
764 || !compparms (TREE_CHAIN (TYPE_ARG_TYPES (fromfn
)),
765 TREE_CHAIN (TYPE_ARG_TYPES (tofn
)))
766 || cp_type_quals (fbase
) != cp_type_quals (tbase
))
769 from
= cp_build_qualified_type (tbase
, cp_type_quals (fbase
));
770 from
= build_method_type_directly (from
,
772 TREE_CHAIN (TYPE_ARG_TYPES (fromfn
)));
773 from
= build_ptrmemfunc_type (build_pointer_type (from
));
774 conv
= build_conv (ck_pmem
, from
, conv
);
777 else if (tcode
== BOOLEAN_TYPE
)
781 An rvalue of arithmetic, enumeration, pointer, or pointer to
782 member type can be converted to an rvalue of type bool. */
783 if (ARITHMETIC_TYPE_P (from
)
784 || fcode
== ENUMERAL_TYPE
785 || fcode
== POINTER_TYPE
786 || TYPE_PTR_TO_MEMBER_P (from
))
788 conv
= build_conv (ck_std
, to
, conv
);
789 if (fcode
== POINTER_TYPE
790 || TYPE_PTRMEM_P (from
)
791 || (TYPE_PTRMEMFUNC_P (from
)
792 && conv
->rank
< cr_pbool
))
793 conv
->rank
= cr_pbool
;
799 /* We don't check for ENUMERAL_TYPE here because there are no standard
800 conversions to enum type. */
801 else if (tcode
== INTEGER_TYPE
|| tcode
== BOOLEAN_TYPE
802 || tcode
== REAL_TYPE
)
804 if (! (INTEGRAL_CODE_P (fcode
) || fcode
== REAL_TYPE
))
806 conv
= build_conv (ck_std
, to
, conv
);
808 /* Give this a better rank if it's a promotion. */
809 if (same_type_p (to
, type_promotes_to (from
))
810 && conv
->u
.next
->rank
<= cr_promotion
)
811 conv
->rank
= cr_promotion
;
813 else if (fcode
== VECTOR_TYPE
&& tcode
== VECTOR_TYPE
814 && vector_types_convertible_p (from
, to
))
815 return build_conv (ck_std
, to
, conv
);
816 else if (!(flags
& LOOKUP_CONSTRUCTOR_CALLABLE
)
817 && IS_AGGR_TYPE (to
) && IS_AGGR_TYPE (from
)
818 && is_properly_derived_from (from
, to
))
820 if (conv
->kind
== ck_rvalue
)
822 conv
= build_conv (ck_base
, to
, conv
);
823 /* The derived-to-base conversion indicates the initialization
824 of a parameter with base type from an object of a derived
825 type. A temporary object is created to hold the result of
827 conv
->need_temporary_p
= true;
835 /* Returns nonzero if T1 is reference-related to T2. */
838 reference_related_p (tree t1
, tree t2
)
840 t1
= TYPE_MAIN_VARIANT (t1
);
841 t2
= TYPE_MAIN_VARIANT (t2
);
845 Given types "cv1 T1" and "cv2 T2," "cv1 T1" is reference-related
846 to "cv2 T2" if T1 is the same type as T2, or T1 is a base class
848 return (same_type_p (t1
, t2
)
849 || (CLASS_TYPE_P (t1
) && CLASS_TYPE_P (t2
)
850 && DERIVED_FROM_P (t1
, t2
)));
853 /* Returns nonzero if T1 is reference-compatible with T2. */
856 reference_compatible_p (tree t1
, tree t2
)
860 "cv1 T1" is reference compatible with "cv2 T2" if T1 is
861 reference-related to T2 and cv1 is the same cv-qualification as,
862 or greater cv-qualification than, cv2. */
863 return (reference_related_p (t1
, t2
)
864 && at_least_as_qualified_p (t1
, t2
));
867 /* Determine whether or not the EXPR (of class type S) can be
868 converted to T as in [over.match.ref]. */
871 convert_class_to_reference (tree t
, tree s
, tree expr
)
877 struct z_candidate
*candidates
;
878 struct z_candidate
*cand
;
881 conversions
= lookup_conversions (s
);
887 Assuming that "cv1 T" is the underlying type of the reference
888 being initialized, and "cv S" is the type of the initializer
889 expression, with S a class type, the candidate functions are
892 --The conversion functions of S and its base classes are
893 considered. Those that are not hidden within S and yield type
894 "reference to cv2 T2", where "cv1 T" is reference-compatible
895 (_dcl.init.ref_) with "cv2 T2", are candidate functions.
897 The argument list has one argument, which is the initializer
902 /* Conceptually, we should take the address of EXPR and put it in
903 the argument list. Unfortunately, however, that can result in
904 error messages, which we should not issue now because we are just
905 trying to find a conversion operator. Therefore, we use NULL,
906 cast to the appropriate type. */
907 arglist
= build_int_cst (build_pointer_type (s
), 0);
908 arglist
= build_tree_list (NULL_TREE
, arglist
);
910 reference_type
= build_reference_type (t
);
914 tree fns
= TREE_VALUE (conversions
);
916 for (; fns
; fns
= OVL_NEXT (fns
))
918 tree f
= OVL_CURRENT (fns
);
919 tree t2
= TREE_TYPE (TREE_TYPE (f
));
923 /* If this is a template function, try to get an exact
925 if (TREE_CODE (f
) == TEMPLATE_DECL
)
927 cand
= add_template_candidate (&candidates
,
933 TREE_PURPOSE (conversions
),
939 /* Now, see if the conversion function really returns
940 an lvalue of the appropriate type. From the
941 point of view of unification, simply returning an
942 rvalue of the right type is good enough. */
944 t2
= TREE_TYPE (TREE_TYPE (f
));
945 if (TREE_CODE (t2
) != REFERENCE_TYPE
946 || !reference_compatible_p (t
, TREE_TYPE (t2
)))
948 candidates
= candidates
->next
;
953 else if (TREE_CODE (t2
) == REFERENCE_TYPE
954 && reference_compatible_p (t
, TREE_TYPE (t2
)))
955 cand
= add_function_candidate (&candidates
, f
, s
, arglist
,
957 TREE_PURPOSE (conversions
),
962 conversion
*identity_conv
;
963 /* Build a standard conversion sequence indicating the
964 binding from the reference type returned by the
965 function to the desired REFERENCE_TYPE. */
967 = build_identity_conv (TREE_TYPE (TREE_TYPE
968 (TREE_TYPE (cand
->fn
))),
971 = (direct_reference_binding
972 (reference_type
, identity_conv
));
973 cand
->second_conv
->bad_p
|= cand
->convs
[0]->bad_p
;
976 conversions
= TREE_CHAIN (conversions
);
979 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
980 /* If none of the conversion functions worked out, let our caller
985 cand
= tourney (candidates
);
989 /* Now that we know that this is the function we're going to use fix
990 the dummy first argument. */
991 cand
->args
= tree_cons (NULL_TREE
,
993 TREE_CHAIN (cand
->args
));
995 /* Build a user-defined conversion sequence representing the
997 conv
= build_conv (ck_user
,
998 TREE_TYPE (TREE_TYPE (cand
->fn
)),
999 build_identity_conv (TREE_TYPE (expr
), expr
));
1002 /* Merge it with the standard conversion sequence from the
1003 conversion function's return type to the desired type. */
1004 cand
->second_conv
= merge_conversion_sequences (conv
, cand
->second_conv
);
1006 if (cand
->viable
== -1)
1009 return cand
->second_conv
;
1012 /* A reference of the indicated TYPE is being bound directly to the
1013 expression represented by the implicit conversion sequence CONV.
1014 Return a conversion sequence for this binding. */
1017 direct_reference_binding (tree type
, conversion
*conv
)
1021 gcc_assert (TREE_CODE (type
) == REFERENCE_TYPE
);
1022 gcc_assert (TREE_CODE (conv
->type
) != REFERENCE_TYPE
);
1024 t
= TREE_TYPE (type
);
1028 When a parameter of reference type binds directly
1029 (_dcl.init.ref_) to an argument expression, the implicit
1030 conversion sequence is the identity conversion, unless the
1031 argument expression has a type that is a derived class of the
1032 parameter type, in which case the implicit conversion sequence is
1033 a derived-to-base Conversion.
1035 If the parameter binds directly to the result of applying a
1036 conversion function to the argument expression, the implicit
1037 conversion sequence is a user-defined conversion sequence
1038 (_over.ics.user_), with the second standard conversion sequence
1039 either an identity conversion or, if the conversion function
1040 returns an entity of a type that is a derived class of the
1041 parameter type, a derived-to-base conversion. */
1042 if (!same_type_ignoring_top_level_qualifiers_p (t
, conv
->type
))
1044 /* Represent the derived-to-base conversion. */
1045 conv
= build_conv (ck_base
, t
, conv
);
1046 /* We will actually be binding to the base-class subobject in
1047 the derived class, so we mark this conversion appropriately.
1048 That way, convert_like knows not to generate a temporary. */
1049 conv
->need_temporary_p
= false;
1051 return build_conv (ck_ref_bind
, type
, conv
);
1054 /* Returns the conversion path from type FROM to reference type TO for
1055 purposes of reference binding. For lvalue binding, either pass a
1056 reference type to FROM or an lvalue expression to EXPR. If the
1057 reference will be bound to a temporary, NEED_TEMPORARY_P is set for
1058 the conversion returned. */
1061 reference_binding (tree rto
, tree rfrom
, tree expr
, int flags
)
1063 conversion
*conv
= NULL
;
1064 tree to
= TREE_TYPE (rto
);
1068 cp_lvalue_kind lvalue_p
= clk_none
;
1070 if (TREE_CODE (to
) == FUNCTION_TYPE
&& expr
&& type_unknown_p (expr
))
1072 expr
= instantiate_type (to
, expr
, tf_none
);
1073 if (expr
== error_mark_node
)
1075 from
= TREE_TYPE (expr
);
1078 if (TREE_CODE (from
) == REFERENCE_TYPE
)
1080 /* Anything with reference type is an lvalue. */
1081 lvalue_p
= clk_ordinary
;
1082 from
= TREE_TYPE (from
);
1085 lvalue_p
= real_lvalue_p (expr
);
1087 /* Figure out whether or not the types are reference-related and
1088 reference compatible. We have do do this after stripping
1089 references from FROM. */
1090 related_p
= reference_related_p (to
, from
);
1091 compatible_p
= reference_compatible_p (to
, from
);
1093 if (lvalue_p
&& compatible_p
)
1097 If the initializer expression
1099 -- is an lvalue (but not an lvalue for a bit-field), and "cv1 T1"
1100 is reference-compatible with "cv2 T2,"
1102 the reference is bound directly to the initializer expression
1104 conv
= build_identity_conv (from
, expr
);
1105 conv
= direct_reference_binding (rto
, conv
);
1106 if ((lvalue_p
& clk_bitfield
) != 0
1107 || ((lvalue_p
& clk_packed
) != 0 && !TYPE_PACKED (to
)))
1108 /* For the purposes of overload resolution, we ignore the fact
1109 this expression is a bitfield or packed field. (In particular,
1110 [over.ics.ref] says specifically that a function with a
1111 non-const reference parameter is viable even if the
1112 argument is a bitfield.)
1114 However, when we actually call the function we must create
1115 a temporary to which to bind the reference. If the
1116 reference is volatile, or isn't const, then we cannot make
1117 a temporary, so we just issue an error when the conversion
1119 conv
->need_temporary_p
= true;
1123 else if (CLASS_TYPE_P (from
) && !(flags
& LOOKUP_NO_CONVERSION
))
1127 If the initializer expression
1129 -- has a class type (i.e., T2 is a class type) can be
1130 implicitly converted to an lvalue of type "cv3 T3," where
1131 "cv1 T1" is reference-compatible with "cv3 T3". (this
1132 conversion is selected by enumerating the applicable
1133 conversion functions (_over.match.ref_) and choosing the
1134 best one through overload resolution. (_over.match_).
1136 the reference is bound to the lvalue result of the conversion
1137 in the second case. */
1138 conv
= convert_class_to_reference (to
, from
, expr
);
1143 /* From this point on, we conceptually need temporaries, even if we
1144 elide them. Only the cases above are "direct bindings". */
1145 if (flags
& LOOKUP_NO_TEMP_BIND
)
1150 When a parameter of reference type is not bound directly to an
1151 argument expression, the conversion sequence is the one required
1152 to convert the argument expression to the underlying type of the
1153 reference according to _over.best.ics_. Conceptually, this
1154 conversion sequence corresponds to copy-initializing a temporary
1155 of the underlying type with the argument expression. Any
1156 difference in top-level cv-qualification is subsumed by the
1157 initialization itself and does not constitute a conversion. */
1161 Otherwise, the reference shall be to a non-volatile const type. */
1162 if (!CP_TYPE_CONST_NON_VOLATILE_P (to
))
1167 If the initializer expression is an rvalue, with T2 a class type,
1168 and "cv1 T1" is reference-compatible with "cv2 T2", the reference
1169 is bound in one of the following ways:
1171 -- The reference is bound to the object represented by the rvalue
1172 or to a sub-object within that object.
1176 We use the first alternative. The implicit conversion sequence
1177 is supposed to be same as we would obtain by generating a
1178 temporary. Fortunately, if the types are reference compatible,
1179 then this is either an identity conversion or the derived-to-base
1180 conversion, just as for direct binding. */
1181 if (CLASS_TYPE_P (from
) && compatible_p
)
1183 conv
= build_identity_conv (from
, expr
);
1184 conv
= direct_reference_binding (rto
, conv
);
1185 if (!(flags
& LOOKUP_CONSTRUCTOR_CALLABLE
))
1186 conv
->u
.next
->check_copy_constructor_p
= true;
1192 Otherwise, a temporary of type "cv1 T1" is created and
1193 initialized from the initializer expression using the rules for a
1194 non-reference copy initialization. If T1 is reference-related to
1195 T2, cv1 must be the same cv-qualification as, or greater
1196 cv-qualification than, cv2; otherwise, the program is ill-formed. */
1197 if (related_p
&& !at_least_as_qualified_p (to
, from
))
1200 conv
= implicit_conversion (to
, from
, expr
, flags
);
1204 conv
= build_conv (ck_ref_bind
, rto
, conv
);
1205 /* This reference binding, unlike those above, requires the
1206 creation of a temporary. */
1207 conv
->need_temporary_p
= true;
1212 /* Returns the implicit conversion sequence (see [over.ics]) from type FROM
1213 to type TO. The optional expression EXPR may affect the conversion.
1214 FLAGS are the usual overloading flags. Only LOOKUP_NO_CONVERSION is
1218 implicit_conversion (tree to
, tree from
, tree expr
, int flags
)
1222 if (from
== error_mark_node
|| to
== error_mark_node
1223 || expr
== error_mark_node
)
1226 if (TREE_CODE (to
) == REFERENCE_TYPE
)
1227 conv
= reference_binding (to
, from
, expr
, flags
);
1229 conv
= standard_conversion (to
, from
, expr
, flags
);
1234 if (expr
!= NULL_TREE
1235 && (IS_AGGR_TYPE (from
)
1236 || IS_AGGR_TYPE (to
))
1237 && (flags
& LOOKUP_NO_CONVERSION
) == 0)
1239 struct z_candidate
*cand
;
1241 cand
= build_user_type_conversion_1
1242 (to
, expr
, LOOKUP_ONLYCONVERTING
);
1244 conv
= cand
->second_conv
;
1246 /* We used to try to bind a reference to a temporary here, but that
1247 is now handled by the recursive call to this function at the end
1248 of reference_binding. */
1255 /* Add a new entry to the list of candidates. Used by the add_*_candidate
1258 static struct z_candidate
*
1259 add_candidate (struct z_candidate
**candidates
,
1261 size_t num_convs
, conversion
**convs
,
1262 tree access_path
, tree conversion_path
,
1265 struct z_candidate
*cand
1266 = conversion_obstack_alloc (sizeof (struct z_candidate
));
1270 cand
->convs
= convs
;
1271 cand
->num_convs
= num_convs
;
1272 cand
->access_path
= access_path
;
1273 cand
->conversion_path
= conversion_path
;
1274 cand
->viable
= viable
;
1275 cand
->next
= *candidates
;
1281 /* Create an overload candidate for the function or method FN called with
1282 the argument list ARGLIST and add it to CANDIDATES. FLAGS is passed on
1283 to implicit_conversion.
1285 CTYPE, if non-NULL, is the type we want to pretend this function
1286 comes from for purposes of overload resolution. */
1288 static struct z_candidate
*
1289 add_function_candidate (struct z_candidate
**candidates
,
1290 tree fn
, tree ctype
, tree arglist
,
1291 tree access_path
, tree conversion_path
,
1294 tree parmlist
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
1297 tree parmnode
, argnode
;
1301 /* Built-in functions that haven't been declared don't really
1303 if (DECL_ANTICIPATED (fn
))
1306 /* The `this', `in_chrg' and VTT arguments to constructors are not
1307 considered in overload resolution. */
1308 if (DECL_CONSTRUCTOR_P (fn
))
1310 parmlist
= skip_artificial_parms_for (fn
, parmlist
);
1311 orig_arglist
= arglist
;
1312 arglist
= skip_artificial_parms_for (fn
, arglist
);
1315 orig_arglist
= arglist
;
1317 len
= list_length (arglist
);
1318 convs
= alloc_conversions (len
);
1320 /* 13.3.2 - Viable functions [over.match.viable]
1321 First, to be a viable function, a candidate function shall have enough
1322 parameters to agree in number with the arguments in the list.
1324 We need to check this first; otherwise, checking the ICSes might cause
1325 us to produce an ill-formed template instantiation. */
1327 parmnode
= parmlist
;
1328 for (i
= 0; i
< len
; ++i
)
1330 if (parmnode
== NULL_TREE
|| parmnode
== void_list_node
)
1332 parmnode
= TREE_CHAIN (parmnode
);
1335 if (i
< len
&& parmnode
)
1338 /* Make sure there are default args for the rest of the parms. */
1339 else if (!sufficient_parms_p (parmnode
))
1345 /* Second, for F to be a viable function, there shall exist for each
1346 argument an implicit conversion sequence that converts that argument
1347 to the corresponding parameter of F. */
1349 parmnode
= parmlist
;
1352 for (i
= 0; i
< len
; ++i
)
1354 tree arg
= TREE_VALUE (argnode
);
1355 tree argtype
= lvalue_type (arg
);
1359 if (parmnode
== void_list_node
)
1362 is_this
= (i
== 0 && DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
)
1363 && ! DECL_CONSTRUCTOR_P (fn
));
1367 tree parmtype
= TREE_VALUE (parmnode
);
1369 /* The type of the implicit object parameter ('this') for
1370 overload resolution is not always the same as for the
1371 function itself; conversion functions are considered to
1372 be members of the class being converted, and functions
1373 introduced by a using-declaration are considered to be
1374 members of the class that uses them.
1376 Since build_over_call ignores the ICS for the `this'
1377 parameter, we can just change the parm type. */
1378 if (ctype
&& is_this
)
1381 = build_qualified_type (ctype
,
1382 TYPE_QUALS (TREE_TYPE (parmtype
)));
1383 parmtype
= build_pointer_type (parmtype
);
1386 t
= implicit_conversion (parmtype
, argtype
, arg
, flags
);
1390 t
= build_identity_conv (argtype
, arg
);
1391 t
->ellipsis_p
= true;
1408 parmnode
= TREE_CHAIN (parmnode
);
1409 argnode
= TREE_CHAIN (argnode
);
1413 return add_candidate (candidates
, fn
, orig_arglist
, len
, convs
,
1414 access_path
, conversion_path
, viable
);
1417 /* Create an overload candidate for the conversion function FN which will
1418 be invoked for expression OBJ, producing a pointer-to-function which
1419 will in turn be called with the argument list ARGLIST, and add it to
1420 CANDIDATES. FLAGS is passed on to implicit_conversion.
1422 Actually, we don't really care about FN; we care about the type it
1423 converts to. There may be multiple conversion functions that will
1424 convert to that type, and we rely on build_user_type_conversion_1 to
1425 choose the best one; so when we create our candidate, we record the type
1426 instead of the function. */
1428 static struct z_candidate
*
1429 add_conv_candidate (struct z_candidate
**candidates
, tree fn
, tree obj
,
1430 tree arglist
, tree access_path
, tree conversion_path
)
1432 tree totype
= TREE_TYPE (TREE_TYPE (fn
));
1433 int i
, len
, viable
, flags
;
1434 tree parmlist
, parmnode
, argnode
;
1437 for (parmlist
= totype
; TREE_CODE (parmlist
) != FUNCTION_TYPE
; )
1438 parmlist
= TREE_TYPE (parmlist
);
1439 parmlist
= TYPE_ARG_TYPES (parmlist
);
1441 len
= list_length (arglist
) + 1;
1442 convs
= alloc_conversions (len
);
1443 parmnode
= parmlist
;
1446 flags
= LOOKUP_NORMAL
;
1448 /* Don't bother looking up the same type twice. */
1449 if (*candidates
&& (*candidates
)->fn
== totype
)
1452 for (i
= 0; i
< len
; ++i
)
1454 tree arg
= i
== 0 ? obj
: TREE_VALUE (argnode
);
1455 tree argtype
= lvalue_type (arg
);
1459 t
= implicit_conversion (totype
, argtype
, arg
, flags
);
1460 else if (parmnode
== void_list_node
)
1463 t
= implicit_conversion (TREE_VALUE (parmnode
), argtype
, arg
, flags
);
1466 t
= build_identity_conv (argtype
, arg
);
1467 t
->ellipsis_p
= true;
1481 parmnode
= TREE_CHAIN (parmnode
);
1482 argnode
= TREE_CHAIN (argnode
);
1488 if (!sufficient_parms_p (parmnode
))
1491 return add_candidate (candidates
, totype
, arglist
, len
, convs
,
1492 access_path
, conversion_path
, viable
);
1496 build_builtin_candidate (struct z_candidate
**candidates
, tree fnname
,
1497 tree type1
, tree type2
, tree
*args
, tree
*argtypes
,
1509 num_convs
= args
[2] ? 3 : (args
[1] ? 2 : 1);
1510 convs
= alloc_conversions (num_convs
);
1512 for (i
= 0; i
< 2; ++i
)
1517 t
= implicit_conversion (types
[i
], argtypes
[i
], args
[i
], flags
);
1521 /* We need something for printing the candidate. */
1522 t
= build_identity_conv (types
[i
], NULL_TREE
);
1529 /* For COND_EXPR we rearranged the arguments; undo that now. */
1532 convs
[2] = convs
[1];
1533 convs
[1] = convs
[0];
1534 t
= implicit_conversion (boolean_type_node
, argtypes
[2], args
[2], flags
);
1541 add_candidate (candidates
, fnname
, /*args=*/NULL_TREE
,
1543 /*access_path=*/NULL_TREE
,
1544 /*conversion_path=*/NULL_TREE
,
1549 is_complete (tree t
)
1551 return COMPLETE_TYPE_P (complete_type (t
));
1554 /* Returns nonzero if TYPE is a promoted arithmetic type. */
1557 promoted_arithmetic_type_p (tree type
)
1561 In this section, the term promoted integral type is used to refer
1562 to those integral types which are preserved by integral promotion
1563 (including e.g. int and long but excluding e.g. char).
1564 Similarly, the term promoted arithmetic type refers to promoted
1565 integral types plus floating types. */
1566 return ((INTEGRAL_TYPE_P (type
)
1567 && same_type_p (type_promotes_to (type
), type
))
1568 || TREE_CODE (type
) == REAL_TYPE
);
1571 /* Create any builtin operator overload candidates for the operator in
1572 question given the converted operand types TYPE1 and TYPE2. The other
1573 args are passed through from add_builtin_candidates to
1574 build_builtin_candidate.
1576 TYPE1 and TYPE2 may not be permissible, and we must filter them.
1577 If CODE is requires candidates operands of the same type of the kind
1578 of which TYPE1 and TYPE2 are, we add both candidates
1579 CODE (TYPE1, TYPE1) and CODE (TYPE2, TYPE2). */
1582 add_builtin_candidate (struct z_candidate
**candidates
, enum tree_code code
,
1583 enum tree_code code2
, tree fnname
, tree type1
,
1584 tree type2
, tree
*args
, tree
*argtypes
, int flags
)
1588 case POSTINCREMENT_EXPR
:
1589 case POSTDECREMENT_EXPR
:
1590 args
[1] = integer_zero_node
;
1591 type2
= integer_type_node
;
1600 /* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
1601 and VQ is either volatile or empty, there exist candidate operator
1602 functions of the form
1603 VQ T& operator++(VQ T&);
1604 T operator++(VQ T&, int);
1605 5 For every pair T, VQ), where T is an enumeration type or an arithmetic
1606 type other than bool, and VQ is either volatile or empty, there exist
1607 candidate operator functions of the form
1608 VQ T& operator--(VQ T&);
1609 T operator--(VQ T&, int);
1610 6 For every pair T, VQ), where T is a cv-qualified or cv-unqualified
1611 complete object type, and VQ is either volatile or empty, there exist
1612 candidate operator functions of the form
1613 T*VQ& operator++(T*VQ&);
1614 T*VQ& operator--(T*VQ&);
1615 T* operator++(T*VQ&, int);
1616 T* operator--(T*VQ&, int); */
1618 case POSTDECREMENT_EXPR
:
1619 case PREDECREMENT_EXPR
:
1620 if (TREE_CODE (type1
) == BOOLEAN_TYPE
)
1622 case POSTINCREMENT_EXPR
:
1623 case PREINCREMENT_EXPR
:
1624 if (ARITHMETIC_TYPE_P (type1
) || TYPE_PTROB_P (type1
))
1626 type1
= build_reference_type (type1
);
1631 /* 7 For every cv-qualified or cv-unqualified complete object type T, there
1632 exist candidate operator functions of the form
1636 8 For every function type T, there exist candidate operator functions of
1638 T& operator*(T*); */
1641 if (TREE_CODE (type1
) == POINTER_TYPE
1642 && (TYPE_PTROB_P (type1
)
1643 || TREE_CODE (TREE_TYPE (type1
)) == FUNCTION_TYPE
))
1647 /* 9 For every type T, there exist candidate operator functions of the form
1650 10For every promoted arithmetic type T, there exist candidate operator
1651 functions of the form
1655 case CONVERT_EXPR
: /* unary + */
1656 if (TREE_CODE (type1
) == POINTER_TYPE
)
1659 if (ARITHMETIC_TYPE_P (type1
))
1663 /* 11For every promoted integral type T, there exist candidate operator
1664 functions of the form
1668 if (INTEGRAL_TYPE_P (type1
))
1672 /* 12For every quintuple C1, C2, T, CV1, CV2), where C2 is a class type, C1
1673 is the same type as C2 or is a derived class of C2, T is a complete
1674 object type or a function type, and CV1 and CV2 are cv-qualifier-seqs,
1675 there exist candidate operator functions of the form
1676 CV12 T& operator->*(CV1 C1*, CV2 T C2::*);
1677 where CV12 is the union of CV1 and CV2. */
1680 if (TREE_CODE (type1
) == POINTER_TYPE
1681 && TYPE_PTR_TO_MEMBER_P (type2
))
1683 tree c1
= TREE_TYPE (type1
);
1684 tree c2
= TYPE_PTRMEM_CLASS_TYPE (type2
);
1686 if (IS_AGGR_TYPE (c1
) && DERIVED_FROM_P (c2
, c1
)
1687 && (TYPE_PTRMEMFUNC_P (type2
)
1688 || is_complete (TREE_TYPE (TREE_TYPE (type2
)))))
1693 /* 13For every pair of promoted arithmetic types L and R, there exist can-
1694 didate operator functions of the form
1699 bool operator<(L, R);
1700 bool operator>(L, R);
1701 bool operator<=(L, R);
1702 bool operator>=(L, R);
1703 bool operator==(L, R);
1704 bool operator!=(L, R);
1705 where LR is the result of the usual arithmetic conversions between
1708 14For every pair of types T and I, where T is a cv-qualified or cv-
1709 unqualified complete object type and I is a promoted integral type,
1710 there exist candidate operator functions of the form
1711 T* operator+(T*, I);
1712 T& operator[](T*, I);
1713 T* operator-(T*, I);
1714 T* operator+(I, T*);
1715 T& operator[](I, T*);
1717 15For every T, where T is a pointer to complete object type, there exist
1718 candidate operator functions of the form112)
1719 ptrdiff_t operator-(T, T);
1721 16For every pointer or enumeration type T, there exist candidate operator
1722 functions of the form
1723 bool operator<(T, T);
1724 bool operator>(T, T);
1725 bool operator<=(T, T);
1726 bool operator>=(T, T);
1727 bool operator==(T, T);
1728 bool operator!=(T, T);
1730 17For every pointer to member type T, there exist candidate operator
1731 functions of the form
1732 bool operator==(T, T);
1733 bool operator!=(T, T); */
1736 if (TYPE_PTROB_P (type1
) && TYPE_PTROB_P (type2
))
1738 if (TYPE_PTROB_P (type1
) && INTEGRAL_TYPE_P (type2
))
1740 type2
= ptrdiff_type_node
;
1744 case TRUNC_DIV_EXPR
:
1745 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1751 if ((TYPE_PTRMEMFUNC_P (type1
) && TYPE_PTRMEMFUNC_P (type2
))
1752 || (TYPE_PTRMEM_P (type1
) && TYPE_PTRMEM_P (type2
)))
1754 if (TYPE_PTR_TO_MEMBER_P (type1
) && null_ptr_cst_p (args
[1]))
1759 if (TYPE_PTR_TO_MEMBER_P (type2
) && null_ptr_cst_p (args
[0]))
1771 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1773 if (TYPE_PTR_P (type1
) && TYPE_PTR_P (type2
))
1775 if (TREE_CODE (type1
) == ENUMERAL_TYPE
&& TREE_CODE (type2
) == ENUMERAL_TYPE
)
1777 if (TYPE_PTR_P (type1
) && null_ptr_cst_p (args
[1]))
1782 if (null_ptr_cst_p (args
[0]) && TYPE_PTR_P (type2
))
1790 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1793 if (INTEGRAL_TYPE_P (type1
) && TYPE_PTROB_P (type2
))
1795 type1
= ptrdiff_type_node
;
1798 if (TYPE_PTROB_P (type1
) && INTEGRAL_TYPE_P (type2
))
1800 type2
= ptrdiff_type_node
;
1805 /* 18For every pair of promoted integral types L and R, there exist candi-
1806 date operator functions of the form
1813 where LR is the result of the usual arithmetic conversions between
1816 case TRUNC_MOD_EXPR
:
1822 if (INTEGRAL_TYPE_P (type1
) && INTEGRAL_TYPE_P (type2
))
1826 /* 19For every triple L, VQ, R), where L is an arithmetic or enumeration
1827 type, VQ is either volatile or empty, and R is a promoted arithmetic
1828 type, there exist candidate operator functions of the form
1829 VQ L& operator=(VQ L&, R);
1830 VQ L& operator*=(VQ L&, R);
1831 VQ L& operator/=(VQ L&, R);
1832 VQ L& operator+=(VQ L&, R);
1833 VQ L& operator-=(VQ L&, R);
1835 20For every pair T, VQ), where T is any type and VQ is either volatile
1836 or empty, there exist candidate operator functions of the form
1837 T*VQ& operator=(T*VQ&, T*);
1839 21For every pair T, VQ), where T is a pointer to member type and VQ is
1840 either volatile or empty, there exist candidate operator functions of
1842 VQ T& operator=(VQ T&, T);
1844 22For every triple T, VQ, I), where T is a cv-qualified or cv-
1845 unqualified complete object type, VQ is either volatile or empty, and
1846 I is a promoted integral type, there exist candidate operator func-
1848 T*VQ& operator+=(T*VQ&, I);
1849 T*VQ& operator-=(T*VQ&, I);
1851 23For every triple L, VQ, R), where L is an integral or enumeration
1852 type, VQ is either volatile or empty, and R is a promoted integral
1853 type, there exist candidate operator functions of the form
1855 VQ L& operator%=(VQ L&, R);
1856 VQ L& operator<<=(VQ L&, R);
1857 VQ L& operator>>=(VQ L&, R);
1858 VQ L& operator&=(VQ L&, R);
1859 VQ L& operator^=(VQ L&, R);
1860 VQ L& operator|=(VQ L&, R); */
1867 if (TYPE_PTROB_P (type1
) && INTEGRAL_TYPE_P (type2
))
1869 type2
= ptrdiff_type_node
;
1873 case TRUNC_DIV_EXPR
:
1874 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1878 case TRUNC_MOD_EXPR
:
1884 if (INTEGRAL_TYPE_P (type1
) && INTEGRAL_TYPE_P (type2
))
1889 if (ARITHMETIC_TYPE_P (type1
) && ARITHMETIC_TYPE_P (type2
))
1891 if ((TYPE_PTRMEMFUNC_P (type1
) && TYPE_PTRMEMFUNC_P (type2
))
1892 || (TYPE_PTR_P (type1
) && TYPE_PTR_P (type2
))
1893 || (TYPE_PTRMEM_P (type1
) && TYPE_PTRMEM_P (type2
))
1894 || ((TYPE_PTRMEMFUNC_P (type1
)
1895 || TREE_CODE (type1
) == POINTER_TYPE
)
1896 && null_ptr_cst_p (args
[1])))
1906 type1
= build_reference_type (type1
);
1912 For every pair of promoted arithmetic types L and R, there
1913 exist candidate operator functions of the form
1915 LR operator?(bool, L, R);
1917 where LR is the result of the usual arithmetic conversions
1918 between types L and R.
1920 For every type T, where T is a pointer or pointer-to-member
1921 type, there exist candidate operator functions of the form T
1922 operator?(bool, T, T); */
1924 if (promoted_arithmetic_type_p (type1
)
1925 && promoted_arithmetic_type_p (type2
))
1929 /* Otherwise, the types should be pointers. */
1930 if (!(TYPE_PTR_P (type1
) || TYPE_PTR_TO_MEMBER_P (type1
))
1931 || !(TYPE_PTR_P (type2
) || TYPE_PTR_TO_MEMBER_P (type2
)))
1934 /* We don't check that the two types are the same; the logic
1935 below will actually create two candidates; one in which both
1936 parameter types are TYPE1, and one in which both parameter
1944 /* If we're dealing with two pointer types or two enumeral types,
1945 we need candidates for both of them. */
1946 if (type2
&& !same_type_p (type1
, type2
)
1947 && TREE_CODE (type1
) == TREE_CODE (type2
)
1948 && (TREE_CODE (type1
) == REFERENCE_TYPE
1949 || (TYPE_PTR_P (type1
) && TYPE_PTR_P (type2
))
1950 || (TYPE_PTRMEM_P (type1
) && TYPE_PTRMEM_P (type2
))
1951 || TYPE_PTRMEMFUNC_P (type1
)
1952 || IS_AGGR_TYPE (type1
)
1953 || TREE_CODE (type1
) == ENUMERAL_TYPE
))
1955 build_builtin_candidate
1956 (candidates
, fnname
, type1
, type1
, args
, argtypes
, flags
);
1957 build_builtin_candidate
1958 (candidates
, fnname
, type2
, type2
, args
, argtypes
, flags
);
1962 build_builtin_candidate
1963 (candidates
, fnname
, type1
, type2
, args
, argtypes
, flags
);
1967 type_decays_to (tree type
)
1969 if (TREE_CODE (type
) == ARRAY_TYPE
)
1970 return build_pointer_type (TREE_TYPE (type
));
1971 if (TREE_CODE (type
) == FUNCTION_TYPE
)
1972 return build_pointer_type (type
);
1976 /* There are three conditions of builtin candidates:
1978 1) bool-taking candidates. These are the same regardless of the input.
1979 2) pointer-pair taking candidates. These are generated for each type
1980 one of the input types converts to.
1981 3) arithmetic candidates. According to the standard, we should generate
1982 all of these, but I'm trying not to...
1984 Here we generate a superset of the possible candidates for this particular
1985 case. That is a subset of the full set the standard defines, plus some
1986 other cases which the standard disallows. add_builtin_candidate will
1987 filter out the invalid set. */
1990 add_builtin_candidates (struct z_candidate
**candidates
, enum tree_code code
,
1991 enum tree_code code2
, tree fnname
, tree
*args
,
1996 tree type
, argtypes
[3];
1997 /* TYPES[i] is the set of possible builtin-operator parameter types
1998 we will consider for the Ith argument. These are represented as
1999 a TREE_LIST; the TREE_VALUE of each node is the potential
2003 for (i
= 0; i
< 3; ++i
)
2006 argtypes
[i
] = lvalue_type (args
[i
]);
2008 argtypes
[i
] = NULL_TREE
;
2013 /* 4 For every pair T, VQ), where T is an arithmetic or enumeration type,
2014 and VQ is either volatile or empty, there exist candidate operator
2015 functions of the form
2016 VQ T& operator++(VQ T&); */
2018 case POSTINCREMENT_EXPR
:
2019 case PREINCREMENT_EXPR
:
2020 case POSTDECREMENT_EXPR
:
2021 case PREDECREMENT_EXPR
:
2026 /* 24There also exist candidate operator functions of the form
2027 bool operator!(bool);
2028 bool operator&&(bool, bool);
2029 bool operator||(bool, bool); */
2031 case TRUTH_NOT_EXPR
:
2032 build_builtin_candidate
2033 (candidates
, fnname
, boolean_type_node
,
2034 NULL_TREE
, args
, argtypes
, flags
);
2037 case TRUTH_ORIF_EXPR
:
2038 case TRUTH_ANDIF_EXPR
:
2039 build_builtin_candidate
2040 (candidates
, fnname
, boolean_type_node
,
2041 boolean_type_node
, args
, argtypes
, flags
);
2063 types
[0] = types
[1] = NULL_TREE
;
2065 for (i
= 0; i
< 2; ++i
)
2069 else if (IS_AGGR_TYPE (argtypes
[i
]))
2073 if (i
== 0 && code
== MODIFY_EXPR
&& code2
== NOP_EXPR
)
2076 convs
= lookup_conversions (argtypes
[i
]);
2078 if (code
== COND_EXPR
)
2080 if (real_lvalue_p (args
[i
]))
2081 types
[i
] = tree_cons
2082 (NULL_TREE
, build_reference_type (argtypes
[i
]), types
[i
]);
2084 types
[i
] = tree_cons
2085 (NULL_TREE
, TYPE_MAIN_VARIANT (argtypes
[i
]), types
[i
]);
2091 for (; convs
; convs
= TREE_CHAIN (convs
))
2093 type
= TREE_TYPE (TREE_TYPE (OVL_CURRENT (TREE_VALUE (convs
))));
2096 && (TREE_CODE (type
) != REFERENCE_TYPE
2097 || CP_TYPE_CONST_P (TREE_TYPE (type
))))
2100 if (code
== COND_EXPR
&& TREE_CODE (type
) == REFERENCE_TYPE
)
2101 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2103 type
= non_reference (type
);
2104 if (i
!= 0 || ! ref1
)
2106 type
= TYPE_MAIN_VARIANT (type_decays_to (type
));
2107 if (enum_p
&& TREE_CODE (type
) == ENUMERAL_TYPE
)
2108 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2109 if (INTEGRAL_TYPE_P (type
))
2110 type
= type_promotes_to (type
);
2113 if (! value_member (type
, types
[i
]))
2114 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2119 if (code
== COND_EXPR
&& real_lvalue_p (args
[i
]))
2120 types
[i
] = tree_cons
2121 (NULL_TREE
, build_reference_type (argtypes
[i
]), types
[i
]);
2122 type
= non_reference (argtypes
[i
]);
2123 if (i
!= 0 || ! ref1
)
2125 type
= TYPE_MAIN_VARIANT (type_decays_to (type
));
2126 if (enum_p
&& TREE_CODE (type
) == ENUMERAL_TYPE
)
2127 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2128 if (INTEGRAL_TYPE_P (type
))
2129 type
= type_promotes_to (type
);
2131 types
[i
] = tree_cons (NULL_TREE
, type
, types
[i
]);
2135 /* Run through the possible parameter types of both arguments,
2136 creating candidates with those parameter types. */
2137 for (; types
[0]; types
[0] = TREE_CHAIN (types
[0]))
2140 for (type
= types
[1]; type
; type
= TREE_CHAIN (type
))
2141 add_builtin_candidate
2142 (candidates
, code
, code2
, fnname
, TREE_VALUE (types
[0]),
2143 TREE_VALUE (type
), args
, argtypes
, flags
);
2145 add_builtin_candidate
2146 (candidates
, code
, code2
, fnname
, TREE_VALUE (types
[0]),
2147 NULL_TREE
, args
, argtypes
, flags
);
2154 /* If TMPL can be successfully instantiated as indicated by
2155 EXPLICIT_TARGS and ARGLIST, adds the instantiation to CANDIDATES.
2157 TMPL is the template. EXPLICIT_TARGS are any explicit template
2158 arguments. ARGLIST is the arguments provided at the call-site.
2159 The RETURN_TYPE is the desired type for conversion operators. If
2160 OBJ is NULL_TREE, FLAGS and CTYPE are as for add_function_candidate.
2161 If an OBJ is supplied, FLAGS and CTYPE are ignored, and OBJ is as for
2162 add_conv_candidate. */
2164 static struct z_candidate
*
2165 add_template_candidate_real (struct z_candidate
**candidates
, tree tmpl
,
2166 tree ctype
, tree explicit_targs
, tree arglist
,
2167 tree return_type
, tree access_path
,
2168 tree conversion_path
, int flags
, tree obj
,
2169 unification_kind_t strict
)
2171 int ntparms
= DECL_NTPARMS (tmpl
);
2172 tree targs
= make_tree_vec (ntparms
);
2173 tree args_without_in_chrg
= arglist
;
2174 struct z_candidate
*cand
;
2178 /* We don't do deduction on the in-charge parameter, the VTT
2179 parameter or 'this'. */
2180 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (tmpl
))
2181 args_without_in_chrg
= TREE_CHAIN (args_without_in_chrg
);
2183 if ((DECL_MAYBE_IN_CHARGE_CONSTRUCTOR_P (tmpl
)
2184 || DECL_BASE_CONSTRUCTOR_P (tmpl
))
2185 && CLASSTYPE_VBASECLASSES (DECL_CONTEXT (tmpl
)))
2186 args_without_in_chrg
= TREE_CHAIN (args_without_in_chrg
);
2188 i
= fn_type_unification (tmpl
, explicit_targs
, targs
,
2189 args_without_in_chrg
,
2190 return_type
, strict
, -1);
2195 fn
= instantiate_template (tmpl
, targs
, tf_none
);
2196 if (fn
== error_mark_node
)
2201 A member function template is never instantiated to perform the
2202 copy of a class object to an object of its class type.
2204 It's a little unclear what this means; the standard explicitly
2205 does allow a template to be used to copy a class. For example,
2210 template <class T> A(const T&);
2213 void g () { A a (f ()); }
2215 the member template will be used to make the copy. The section
2216 quoted above appears in the paragraph that forbids constructors
2217 whose only parameter is (a possibly cv-qualified variant of) the
2218 class type, and a logical interpretation is that the intent was
2219 to forbid the instantiation of member templates which would then
2221 if (DECL_CONSTRUCTOR_P (fn
) && list_length (arglist
) == 2)
2223 tree arg_types
= FUNCTION_FIRST_USER_PARMTYPE (fn
);
2224 if (arg_types
&& same_type_p (TYPE_MAIN_VARIANT (TREE_VALUE (arg_types
)),
2229 if (obj
!= NULL_TREE
)
2230 /* Aha, this is a conversion function. */
2231 cand
= add_conv_candidate (candidates
, fn
, obj
, access_path
,
2232 conversion_path
, arglist
);
2234 cand
= add_function_candidate (candidates
, fn
, ctype
,
2235 arglist
, access_path
,
2236 conversion_path
, flags
);
2237 if (DECL_TI_TEMPLATE (fn
) != tmpl
)
2238 /* This situation can occur if a member template of a template
2239 class is specialized. Then, instantiate_template might return
2240 an instantiation of the specialization, in which case the
2241 DECL_TI_TEMPLATE field will point at the original
2242 specialization. For example:
2244 template <class T> struct S { template <class U> void f(U);
2245 template <> void f(int) {}; };
2249 Here, TMPL will be template <class U> S<double>::f(U).
2250 And, instantiate template will give us the specialization
2251 template <> S<double>::f(int). But, the DECL_TI_TEMPLATE field
2252 for this will point at template <class T> template <> S<T>::f(int),
2253 so that we can find the definition. For the purposes of
2254 overload resolution, however, we want the original TMPL. */
2255 cand
->template_decl
= tree_cons (tmpl
, targs
, NULL_TREE
);
2257 cand
->template_decl
= DECL_TEMPLATE_INFO (fn
);
2263 static struct z_candidate
*
2264 add_template_candidate (struct z_candidate
**candidates
, tree tmpl
, tree ctype
,
2265 tree explicit_targs
, tree arglist
, tree return_type
,
2266 tree access_path
, tree conversion_path
, int flags
,
2267 unification_kind_t strict
)
2270 add_template_candidate_real (candidates
, tmpl
, ctype
,
2271 explicit_targs
, arglist
, return_type
,
2272 access_path
, conversion_path
,
2273 flags
, NULL_TREE
, strict
);
2277 static struct z_candidate
*
2278 add_template_conv_candidate (struct z_candidate
**candidates
, tree tmpl
,
2279 tree obj
, tree arglist
, tree return_type
,
2280 tree access_path
, tree conversion_path
)
2283 add_template_candidate_real (candidates
, tmpl
, NULL_TREE
, NULL_TREE
,
2284 arglist
, return_type
, access_path
,
2285 conversion_path
, 0, obj
, DEDUCE_CONV
);
2288 /* The CANDS are the set of candidates that were considered for
2289 overload resolution. Return the set of viable candidates. If none
2290 of the candidates were viable, set *ANY_VIABLE_P to true. STRICT_P
2291 is true if a candidate should be considered viable only if it is
2294 static struct z_candidate
*
2295 splice_viable (struct z_candidate
*cands
,
2299 struct z_candidate
*viable
;
2300 struct z_candidate
**last_viable
;
2301 struct z_candidate
**cand
;
2304 last_viable
= &viable
;
2305 *any_viable_p
= false;
2310 struct z_candidate
*c
= *cand
;
2311 if (strict_p
? c
->viable
== 1 : c
->viable
)
2316 last_viable
= &c
->next
;
2317 *any_viable_p
= true;
2323 return viable
? viable
: cands
;
2327 any_strictly_viable (struct z_candidate
*cands
)
2329 for (; cands
; cands
= cands
->next
)
2330 if (cands
->viable
== 1)
2335 /* OBJ is being used in an expression like "OBJ.f (...)". In other
2336 words, it is about to become the "this" pointer for a member
2337 function call. Take the address of the object. */
2340 build_this (tree obj
)
2342 /* In a template, we are only concerned about the type of the
2343 expression, so we can take a shortcut. */
2344 if (processing_template_decl
)
2345 return build_address (obj
);
2347 return build_unary_op (ADDR_EXPR
, obj
, 0);
2350 /* Returns true iff functions are equivalent. Equivalent functions are
2351 not '==' only if one is a function-local extern function or if
2352 both are extern "C". */
2355 equal_functions (tree fn1
, tree fn2
)
2357 if (DECL_LOCAL_FUNCTION_P (fn1
) || DECL_LOCAL_FUNCTION_P (fn2
)
2358 || DECL_EXTERN_C_FUNCTION_P (fn1
))
2359 return decls_match (fn1
, fn2
);
2363 /* Print information about one overload candidate CANDIDATE. MSGSTR
2364 is the text to print before the candidate itself.
2366 NOTE: Unlike most diagnostic functions in GCC, MSGSTR is expected
2367 to have been run through gettext by the caller. This wart makes
2368 life simpler in print_z_candidates and for the translators. */
2371 print_z_candidate (const char *msgstr
, struct z_candidate
*candidate
)
2373 if (TREE_CODE (candidate
->fn
) == IDENTIFIER_NODE
)
2375 if (candidate
->num_convs
== 3)
2376 inform ("%s %D(%T, %T, %T) <built-in>", msgstr
, candidate
->fn
,
2377 candidate
->convs
[0]->type
,
2378 candidate
->convs
[1]->type
,
2379 candidate
->convs
[2]->type
);
2380 else if (candidate
->num_convs
== 2)
2381 inform ("%s %D(%T, %T) <built-in>", msgstr
, candidate
->fn
,
2382 candidate
->convs
[0]->type
,
2383 candidate
->convs
[1]->type
);
2385 inform ("%s %D(%T) <built-in>", msgstr
, candidate
->fn
,
2386 candidate
->convs
[0]->type
);
2388 else if (TYPE_P (candidate
->fn
))
2389 inform ("%s %T <conversion>", msgstr
, candidate
->fn
);
2390 else if (candidate
->viable
== -1)
2391 inform ("%J%s %+#D <near match>", candidate
->fn
, msgstr
, candidate
->fn
);
2393 inform ("%J%s %+#D", candidate
->fn
, msgstr
, candidate
->fn
);
2397 print_z_candidates (struct z_candidate
*candidates
)
2400 struct z_candidate
*cand1
;
2401 struct z_candidate
**cand2
;
2403 /* There may be duplicates in the set of candidates. We put off
2404 checking this condition as long as possible, since we have no way
2405 to eliminate duplicates from a set of functions in less than n^2
2406 time. Now we are about to emit an error message, so it is more
2407 permissible to go slowly. */
2408 for (cand1
= candidates
; cand1
; cand1
= cand1
->next
)
2410 tree fn
= cand1
->fn
;
2411 /* Skip builtin candidates and conversion functions. */
2412 if (TREE_CODE (fn
) != FUNCTION_DECL
)
2414 cand2
= &cand1
->next
;
2417 if (TREE_CODE ((*cand2
)->fn
) == FUNCTION_DECL
2418 && equal_functions (fn
, (*cand2
)->fn
))
2419 *cand2
= (*cand2
)->next
;
2421 cand2
= &(*cand2
)->next
;
2428 str
= _("candidates are:");
2429 print_z_candidate (str
, candidates
);
2430 if (candidates
->next
)
2432 /* Indent successive candidates by the width of the translation
2433 of the above string. */
2434 size_t len
= gcc_gettext_width (str
) + 1;
2435 char *spaces
= alloca (len
);
2436 memset (spaces
, ' ', len
-1);
2437 spaces
[len
- 1] = '\0';
2439 candidates
= candidates
->next
;
2442 print_z_candidate (spaces
, candidates
);
2443 candidates
= candidates
->next
;
2449 /* USER_SEQ is a user-defined conversion sequence, beginning with a
2450 USER_CONV. STD_SEQ is the standard conversion sequence applied to
2451 the result of the conversion function to convert it to the final
2452 desired type. Merge the two sequences into a single sequence,
2453 and return the merged sequence. */
2456 merge_conversion_sequences (conversion
*user_seq
, conversion
*std_seq
)
2460 gcc_assert (user_seq
->kind
== ck_user
);
2462 /* Find the end of the second conversion sequence. */
2464 while ((*t
)->kind
!= ck_identity
)
2465 t
= &((*t
)->u
.next
);
2467 /* Replace the identity conversion with the user conversion
2471 /* The entire sequence is a user-conversion sequence. */
2472 std_seq
->user_conv_p
= true;
2477 /* Returns the best overload candidate to perform the requested
2478 conversion. This function is used for three the overloading situations
2479 described in [over.match.copy], [over.match.conv], and [over.match.ref].
2480 If TOTYPE is a REFERENCE_TYPE, we're trying to find an lvalue binding as
2481 per [dcl.init.ref], so we ignore temporary bindings. */
2483 static struct z_candidate
*
2484 build_user_type_conversion_1 (tree totype
, tree expr
, int flags
)
2486 struct z_candidate
*candidates
, *cand
;
2487 tree fromtype
= TREE_TYPE (expr
);
2488 tree ctors
= NULL_TREE
;
2489 tree conv_fns
= NULL_TREE
;
2490 conversion
*conv
= NULL
;
2491 tree args
= NULL_TREE
;
2494 /* We represent conversion within a hierarchy using RVALUE_CONV and
2495 BASE_CONV, as specified by [over.best.ics]; these become plain
2496 constructor calls, as specified in [dcl.init]. */
2497 gcc_assert (!IS_AGGR_TYPE (fromtype
) || !IS_AGGR_TYPE (totype
)
2498 || !DERIVED_FROM_P (totype
, fromtype
));
2500 if (IS_AGGR_TYPE (totype
))
2501 ctors
= lookup_fnfields (totype
, complete_ctor_identifier
, 0);
2503 if (IS_AGGR_TYPE (fromtype
))
2504 conv_fns
= lookup_conversions (fromtype
);
2507 flags
|= LOOKUP_NO_CONVERSION
;
2513 ctors
= BASELINK_FUNCTIONS (ctors
);
2515 t
= build_int_cst (build_pointer_type (totype
), 0);
2516 args
= build_tree_list (NULL_TREE
, expr
);
2517 /* We should never try to call the abstract or base constructor
2519 gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (OVL_CURRENT (ctors
))
2520 && !DECL_HAS_VTT_PARM_P (OVL_CURRENT (ctors
)));
2521 args
= tree_cons (NULL_TREE
, t
, args
);
2523 for (; ctors
; ctors
= OVL_NEXT (ctors
))
2525 tree ctor
= OVL_CURRENT (ctors
);
2526 if (DECL_NONCONVERTING_P (ctor
))
2529 if (TREE_CODE (ctor
) == TEMPLATE_DECL
)
2530 cand
= add_template_candidate (&candidates
, ctor
, totype
,
2531 NULL_TREE
, args
, NULL_TREE
,
2532 TYPE_BINFO (totype
),
2533 TYPE_BINFO (totype
),
2537 cand
= add_function_candidate (&candidates
, ctor
, totype
,
2538 args
, TYPE_BINFO (totype
),
2539 TYPE_BINFO (totype
),
2543 cand
->second_conv
= build_identity_conv (totype
, NULL_TREE
);
2547 args
= build_tree_list (NULL_TREE
, build_this (expr
));
2549 for (; conv_fns
; conv_fns
= TREE_CHAIN (conv_fns
))
2552 tree conversion_path
= TREE_PURPOSE (conv_fns
);
2553 int convflags
= LOOKUP_NO_CONVERSION
;
2555 /* If we are called to convert to a reference type, we are trying to
2556 find an lvalue binding, so don't even consider temporaries. If
2557 we don't find an lvalue binding, the caller will try again to
2558 look for a temporary binding. */
2559 if (TREE_CODE (totype
) == REFERENCE_TYPE
)
2560 convflags
|= LOOKUP_NO_TEMP_BIND
;
2562 for (fns
= TREE_VALUE (conv_fns
); fns
; fns
= OVL_NEXT (fns
))
2564 tree fn
= OVL_CURRENT (fns
);
2566 /* [over.match.funcs] For conversion functions, the function
2567 is considered to be a member of the class of the implicit
2568 object argument for the purpose of defining the type of
2569 the implicit object parameter.
2571 So we pass fromtype as CTYPE to add_*_candidate. */
2573 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
2574 cand
= add_template_candidate (&candidates
, fn
, fromtype
,
2577 TYPE_BINFO (fromtype
),
2582 cand
= add_function_candidate (&candidates
, fn
, fromtype
,
2584 TYPE_BINFO (fromtype
),
2591 = implicit_conversion (totype
,
2592 TREE_TYPE (TREE_TYPE (cand
->fn
)),
2595 cand
->second_conv
= ics
;
2599 else if (candidates
->viable
== 1 && ics
->bad_p
)
2605 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
2609 cand
= tourney (candidates
);
2612 if (flags
& LOOKUP_COMPLAIN
)
2614 error ("conversion from %qT to %qT is ambiguous",
2616 print_z_candidates (candidates
);
2619 cand
= candidates
; /* any one will do */
2620 cand
->second_conv
= build_ambiguous_conv (totype
, expr
);
2621 cand
->second_conv
->user_conv_p
= true;
2622 if (!any_strictly_viable (candidates
))
2623 cand
->second_conv
->bad_p
= true;
2624 /* If there are viable candidates, don't set ICS_BAD_FLAG; an
2625 ambiguous conversion is no worse than another user-defined
2631 /* Build the user conversion sequence. */
2634 (DECL_CONSTRUCTOR_P (cand
->fn
)
2635 ? totype
: non_reference (TREE_TYPE (TREE_TYPE (cand
->fn
)))),
2636 build_identity_conv (TREE_TYPE (expr
), expr
));
2639 /* Combine it with the second conversion sequence. */
2640 cand
->second_conv
= merge_conversion_sequences (conv
,
2643 if (cand
->viable
== -1)
2644 cand
->second_conv
->bad_p
= true;
2650 build_user_type_conversion (tree totype
, tree expr
, int flags
)
2652 struct z_candidate
*cand
2653 = build_user_type_conversion_1 (totype
, expr
, flags
);
2657 if (cand
->second_conv
->kind
== ck_ambig
)
2658 return error_mark_node
;
2659 expr
= convert_like (cand
->second_conv
, expr
);
2660 return convert_from_reference (expr
);
2665 /* Do any initial processing on the arguments to a function call. */
2668 resolve_args (tree args
)
2671 for (t
= args
; t
; t
= TREE_CHAIN (t
))
2673 tree arg
= TREE_VALUE (t
);
2675 if (arg
== error_mark_node
)
2676 return error_mark_node
;
2677 else if (VOID_TYPE_P (TREE_TYPE (arg
)))
2679 error ("invalid use of void expression");
2680 return error_mark_node
;
2686 /* Perform overload resolution on FN, which is called with the ARGS.
2688 Return the candidate function selected by overload resolution, or
2689 NULL if the event that overload resolution failed. In the case
2690 that overload resolution fails, *CANDIDATES will be the set of
2691 candidates considered, and ANY_VIABLE_P will be set to true or
2692 false to indicate whether or not any of the candidates were
2695 The ARGS should already have gone through RESOLVE_ARGS before this
2696 function is called. */
2698 static struct z_candidate
*
2699 perform_overload_resolution (tree fn
,
2701 struct z_candidate
**candidates
,
2704 struct z_candidate
*cand
;
2705 tree explicit_targs
= NULL_TREE
;
2706 int template_only
= 0;
2709 *any_viable_p
= true;
2711 /* Check FN and ARGS. */
2712 gcc_assert (TREE_CODE (fn
) == FUNCTION_DECL
2713 || TREE_CODE (fn
) == TEMPLATE_DECL
2714 || TREE_CODE (fn
) == OVERLOAD
2715 || TREE_CODE (fn
) == TEMPLATE_ID_EXPR
);
2716 gcc_assert (!args
|| TREE_CODE (args
) == TREE_LIST
);
2718 if (TREE_CODE (fn
) == TEMPLATE_ID_EXPR
)
2720 explicit_targs
= TREE_OPERAND (fn
, 1);
2721 fn
= TREE_OPERAND (fn
, 0);
2725 /* Add the various candidate functions. */
2726 add_candidates (fn
, args
, explicit_targs
, template_only
,
2727 /*conversion_path=*/NULL_TREE
,
2728 /*access_path=*/NULL_TREE
,
2732 *candidates
= splice_viable (*candidates
, pedantic
, any_viable_p
);
2736 cand
= tourney (*candidates
);
2740 /* Return an expression for a call to FN (a namespace-scope function,
2741 or a static member function) with the ARGS. */
2744 build_new_function_call (tree fn
, tree args
)
2746 struct z_candidate
*candidates
, *cand
;
2751 args
= resolve_args (args
);
2752 if (args
== error_mark_node
)
2753 return error_mark_node
;
2755 /* Get the high-water mark for the CONVERSION_OBSTACK. */
2756 p
= conversion_obstack_alloc (0);
2758 cand
= perform_overload_resolution (fn
, args
, &candidates
, &any_viable_p
);
2762 if (!any_viable_p
&& candidates
&& ! candidates
->next
)
2763 return build_function_call (candidates
->fn
, args
);
2764 if (TREE_CODE (fn
) == TEMPLATE_ID_EXPR
)
2765 fn
= TREE_OPERAND (fn
, 0);
2767 error ("no matching function for call to %<%D(%A)%>",
2768 DECL_NAME (OVL_CURRENT (fn
)), args
);
2770 error ("call of overloaded %<%D(%A)%> is ambiguous",
2771 DECL_NAME (OVL_CURRENT (fn
)), args
);
2773 print_z_candidates (candidates
);
2774 result
= error_mark_node
;
2777 result
= build_over_call (cand
, LOOKUP_NORMAL
);
2779 /* Free all the conversions we allocated. */
2780 obstack_free (&conversion_obstack
, p
);
2785 /* Build a call to a global operator new. FNNAME is the name of the
2786 operator (either "operator new" or "operator new[]") and ARGS are
2787 the arguments provided. *SIZE points to the total number of bytes
2788 required by the allocation, and is updated if that is changed here.
2789 *COOKIE_SIZE is non-NULL if a cookie should be used. If this
2790 function determines that no cookie should be used, after all,
2791 *COOKIE_SIZE is set to NULL_TREE. */
2794 build_operator_new_call (tree fnname
, tree args
, tree
*size
, tree
*cookie_size
)
2797 struct z_candidate
*candidates
;
2798 struct z_candidate
*cand
;
2801 args
= tree_cons (NULL_TREE
, *size
, args
);
2802 args
= resolve_args (args
);
2803 if (args
== error_mark_node
)
2810 If this lookup fails to find the name, or if the allocated type
2811 is not a class type, the allocation function's name is looked
2812 up in the global scope.
2814 we disregard block-scope declarations of "operator new". */
2815 fns
= lookup_function_nonclass (fnname
, args
, /*block_p=*/false);
2817 /* Figure out what function is being called. */
2818 cand
= perform_overload_resolution (fns
, args
, &candidates
, &any_viable_p
);
2820 /* If no suitable function could be found, issue an error message
2825 error ("no matching function for call to %<%D(%A)%>",
2826 DECL_NAME (OVL_CURRENT (fns
)), args
);
2828 error ("call of overloaded %<%D(%A)%> is ambiguous",
2829 DECL_NAME (OVL_CURRENT (fns
)), args
);
2831 print_z_candidates (candidates
);
2832 return error_mark_node
;
2835 /* If a cookie is required, add some extra space. Whether
2836 or not a cookie is required cannot be determined until
2837 after we know which function was called. */
2840 bool use_cookie
= true;
2841 if (!abi_version_at_least (2))
2843 tree placement
= TREE_CHAIN (args
);
2844 /* In G++ 3.2, the check was implemented incorrectly; it
2845 looked at the placement expression, rather than the
2846 type of the function. */
2847 if (placement
&& !TREE_CHAIN (placement
)
2848 && same_type_p (TREE_TYPE (TREE_VALUE (placement
)),
2856 arg_types
= TYPE_ARG_TYPES (TREE_TYPE (cand
->fn
));
2857 /* Skip the size_t parameter. */
2858 arg_types
= TREE_CHAIN (arg_types
);
2859 /* Check the remaining parameters (if any). */
2861 && TREE_CHAIN (arg_types
) == void_list_node
2862 && same_type_p (TREE_VALUE (arg_types
),
2866 /* If we need a cookie, adjust the number of bytes allocated. */
2869 /* Update the total size. */
2870 *size
= size_binop (PLUS_EXPR
, *size
, *cookie_size
);
2871 /* Update the argument list to reflect the adjusted size. */
2872 TREE_VALUE (args
) = *size
;
2875 *cookie_size
= NULL_TREE
;
2878 /* Build the CALL_EXPR. */
2879 return build_over_call (cand
, LOOKUP_NORMAL
);
2883 build_object_call (tree obj
, tree args
)
2885 struct z_candidate
*candidates
= 0, *cand
;
2886 tree fns
, convs
, mem_args
= NULL_TREE
;
2887 tree type
= TREE_TYPE (obj
);
2889 tree result
= NULL_TREE
;
2892 if (TYPE_PTRMEMFUNC_P (type
))
2894 /* It's no good looking for an overloaded operator() on a
2895 pointer-to-member-function. */
2896 error ("pointer-to-member function %E cannot be called without an object; consider using .* or ->*", obj
);
2897 return error_mark_node
;
2900 fns
= lookup_fnfields (TYPE_BINFO (type
), ansi_opname (CALL_EXPR
), 1);
2901 if (fns
== error_mark_node
)
2902 return error_mark_node
;
2904 args
= resolve_args (args
);
2906 if (args
== error_mark_node
)
2907 return error_mark_node
;
2909 /* Get the high-water mark for the CONVERSION_OBSTACK. */
2910 p
= conversion_obstack_alloc (0);
2914 tree base
= BINFO_TYPE (BASELINK_BINFO (fns
));
2915 mem_args
= tree_cons (NULL_TREE
, build_this (obj
), args
);
2917 for (fns
= BASELINK_FUNCTIONS (fns
); fns
; fns
= OVL_NEXT (fns
))
2919 tree fn
= OVL_CURRENT (fns
);
2920 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
2921 add_template_candidate (&candidates
, fn
, base
, NULL_TREE
,
2922 mem_args
, NULL_TREE
,
2925 LOOKUP_NORMAL
, DEDUCE_CALL
);
2927 add_function_candidate
2928 (&candidates
, fn
, base
, mem_args
, TYPE_BINFO (type
),
2929 TYPE_BINFO (type
), LOOKUP_NORMAL
);
2933 convs
= lookup_conversions (type
);
2935 for (; convs
; convs
= TREE_CHAIN (convs
))
2937 tree fns
= TREE_VALUE (convs
);
2938 tree totype
= TREE_TYPE (TREE_TYPE (OVL_CURRENT (fns
)));
2940 if ((TREE_CODE (totype
) == POINTER_TYPE
2941 && TREE_CODE (TREE_TYPE (totype
)) == FUNCTION_TYPE
)
2942 || (TREE_CODE (totype
) == REFERENCE_TYPE
2943 && TREE_CODE (TREE_TYPE (totype
)) == FUNCTION_TYPE
)
2944 || (TREE_CODE (totype
) == REFERENCE_TYPE
2945 && TREE_CODE (TREE_TYPE (totype
)) == POINTER_TYPE
2946 && TREE_CODE (TREE_TYPE (TREE_TYPE (totype
))) == FUNCTION_TYPE
))
2947 for (; fns
; fns
= OVL_NEXT (fns
))
2949 tree fn
= OVL_CURRENT (fns
);
2950 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
2951 add_template_conv_candidate
2952 (&candidates
, fn
, obj
, args
, totype
,
2953 /*access_path=*/NULL_TREE
,
2954 /*conversion_path=*/NULL_TREE
);
2956 add_conv_candidate (&candidates
, fn
, obj
, args
,
2957 /*conversion_path=*/NULL_TREE
,
2958 /*access_path=*/NULL_TREE
);
2962 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
2965 error ("no match for call to %<(%T) (%A)%>", TREE_TYPE (obj
), args
);
2966 print_z_candidates (candidates
);
2967 result
= error_mark_node
;
2971 cand
= tourney (candidates
);
2974 error ("call of %<(%T) (%A)%> is ambiguous", TREE_TYPE (obj
), args
);
2975 print_z_candidates (candidates
);
2976 result
= error_mark_node
;
2978 /* Since cand->fn will be a type, not a function, for a conversion
2979 function, we must be careful not to unconditionally look at
2981 else if (TREE_CODE (cand
->fn
) == FUNCTION_DECL
2982 && DECL_OVERLOADED_OPERATOR_P (cand
->fn
) == CALL_EXPR
)
2983 result
= build_over_call (cand
, LOOKUP_NORMAL
);
2986 obj
= convert_like_with_context (cand
->convs
[0], obj
, cand
->fn
, -1);
2987 obj
= convert_from_reference (obj
);
2988 result
= build_function_call (obj
, args
);
2992 /* Free all the conversions we allocated. */
2993 obstack_free (&conversion_obstack
, p
);
2999 op_error (enum tree_code code
, enum tree_code code2
,
3000 tree arg1
, tree arg2
, tree arg3
, const char *problem
)
3004 if (code
== MODIFY_EXPR
)
3005 opname
= assignment_operator_name_info
[code2
].name
;
3007 opname
= operator_name_info
[code
].name
;
3012 error ("%s for ternary %<operator?:%> in %<%E ? %E : %E%>",
3013 problem
, arg1
, arg2
, arg3
);
3016 case POSTINCREMENT_EXPR
:
3017 case POSTDECREMENT_EXPR
:
3018 error ("%s for %<operator%s%> in %<%E%s%>", problem
, opname
, arg1
, opname
);
3022 error ("%s for %<operator[]%> in %<%E[%E]%>", problem
, arg1
, arg2
);
3027 error ("%s for %qs in %<%s %E%>", problem
, opname
, opname
, arg1
);
3032 error ("%s for %<operator%s%> in %<%E %s %E%>",
3033 problem
, opname
, arg1
, opname
, arg2
);
3035 error ("%s for %<operator%s%> in %<%s%E%>",
3036 problem
, opname
, opname
, arg1
);
3041 /* Return the implicit conversion sequence that could be used to
3042 convert E1 to E2 in [expr.cond]. */
3045 conditional_conversion (tree e1
, tree e2
)
3047 tree t1
= non_reference (TREE_TYPE (e1
));
3048 tree t2
= non_reference (TREE_TYPE (e2
));
3054 If E2 is an lvalue: E1 can be converted to match E2 if E1 can be
3055 implicitly converted (clause _conv_) to the type "reference to
3056 T2", subject to the constraint that in the conversion the
3057 reference must bind directly (_dcl.init.ref_) to E1. */
3058 if (real_lvalue_p (e2
))
3060 conv
= implicit_conversion (build_reference_type (t2
),
3063 LOOKUP_NO_TEMP_BIND
);
3070 If E1 and E2 have class type, and the underlying class types are
3071 the same or one is a base class of the other: E1 can be converted
3072 to match E2 if the class of T2 is the same type as, or a base
3073 class of, the class of T1, and the cv-qualification of T2 is the
3074 same cv-qualification as, or a greater cv-qualification than, the
3075 cv-qualification of T1. If the conversion is applied, E1 is
3076 changed to an rvalue of type T2 that still refers to the original
3077 source class object (or the appropriate subobject thereof). */
3078 if (CLASS_TYPE_P (t1
) && CLASS_TYPE_P (t2
)
3079 && ((good_base
= DERIVED_FROM_P (t2
, t1
)) || DERIVED_FROM_P (t1
, t2
)))
3081 if (good_base
&& at_least_as_qualified_p (t2
, t1
))
3083 conv
= build_identity_conv (t1
, e1
);
3084 if (!same_type_p (TYPE_MAIN_VARIANT (t1
),
3085 TYPE_MAIN_VARIANT (t2
)))
3086 conv
= build_conv (ck_base
, t2
, conv
);
3088 conv
= build_conv (ck_rvalue
, t2
, conv
);
3097 Otherwise: E1 can be converted to match E2 if E1 can be implicitly
3098 converted to the type that expression E2 would have if E2 were
3099 converted to an rvalue (or the type it has, if E2 is an rvalue). */
3100 return implicit_conversion (t2
, t1
, e1
, LOOKUP_NORMAL
);
3103 /* Implement [expr.cond]. ARG1, ARG2, and ARG3 are the three
3104 arguments to the conditional expression. */
3107 build_conditional_expr (tree arg1
, tree arg2
, tree arg3
)
3111 tree result
= NULL_TREE
;
3112 tree result_type
= NULL_TREE
;
3113 bool lvalue_p
= true;
3114 struct z_candidate
*candidates
= 0;
3115 struct z_candidate
*cand
;
3118 /* As a G++ extension, the second argument to the conditional can be
3119 omitted. (So that `a ? : c' is roughly equivalent to `a ? a :
3120 c'.) If the second operand is omitted, make sure it is
3121 calculated only once. */
3125 pedwarn ("ISO C++ forbids omitting the middle term of a ?: expression");
3127 /* Make sure that lvalues remain lvalues. See g++.oliva/ext1.C. */
3128 if (real_lvalue_p (arg1
))
3129 arg2
= arg1
= stabilize_reference (arg1
);
3131 arg2
= arg1
= save_expr (arg1
);
3136 The first expr ession is implicitly converted to bool (clause
3138 arg1
= perform_implicit_conversion (boolean_type_node
, arg1
);
3140 /* If something has already gone wrong, just pass that fact up the
3142 if (error_operand_p (arg1
)
3143 || error_operand_p (arg2
)
3144 || error_operand_p (arg3
))
3145 return error_mark_node
;
3149 If either the second or the third operand has type (possibly
3150 cv-qualified) void, then the lvalue-to-rvalue (_conv.lval_),
3151 array-to-pointer (_conv.array_), and function-to-pointer
3152 (_conv.func_) standard conversions are performed on the second
3153 and third operands. */
3154 arg2_type
= TREE_TYPE (arg2
);
3155 arg3_type
= TREE_TYPE (arg3
);
3156 if (VOID_TYPE_P (arg2_type
) || VOID_TYPE_P (arg3_type
))
3158 /* Do the conversions. We don't these for `void' type arguments
3159 since it can't have any effect and since decay_conversion
3160 does not handle that case gracefully. */
3161 if (!VOID_TYPE_P (arg2_type
))
3162 arg2
= decay_conversion (arg2
);
3163 if (!VOID_TYPE_P (arg3_type
))
3164 arg3
= decay_conversion (arg3
);
3165 arg2_type
= TREE_TYPE (arg2
);
3166 arg3_type
= TREE_TYPE (arg3
);
3170 One of the following shall hold:
3172 --The second or the third operand (but not both) is a
3173 throw-expression (_except.throw_); the result is of the
3174 type of the other and is an rvalue.
3176 --Both the second and the third operands have type void; the
3177 result is of type void and is an rvalue.
3179 We must avoid calling force_rvalue for expressions of type
3180 "void" because it will complain that their value is being
3182 if (TREE_CODE (arg2
) == THROW_EXPR
3183 && TREE_CODE (arg3
) != THROW_EXPR
)
3185 if (!VOID_TYPE_P (arg3_type
))
3186 arg3
= force_rvalue (arg3
);
3187 arg3_type
= TREE_TYPE (arg3
);
3188 result_type
= arg3_type
;
3190 else if (TREE_CODE (arg2
) != THROW_EXPR
3191 && TREE_CODE (arg3
) == THROW_EXPR
)
3193 if (!VOID_TYPE_P (arg2_type
))
3194 arg2
= force_rvalue (arg2
);
3195 arg2_type
= TREE_TYPE (arg2
);
3196 result_type
= arg2_type
;
3198 else if (VOID_TYPE_P (arg2_type
) && VOID_TYPE_P (arg3_type
))
3199 result_type
= void_type_node
;
3202 error ("%qE has type %<void%> and is not a throw-expression",
3203 VOID_TYPE_P (arg2_type
) ? arg2
: arg3
);
3204 return error_mark_node
;
3208 goto valid_operands
;
3212 Otherwise, if the second and third operand have different types,
3213 and either has (possibly cv-qualified) class type, an attempt is
3214 made to convert each of those operands to the type of the other. */
3215 else if (!same_type_p (arg2_type
, arg3_type
)
3216 && (CLASS_TYPE_P (arg2_type
) || CLASS_TYPE_P (arg3_type
)))
3221 /* Get the high-water mark for the CONVERSION_OBSTACK. */
3222 p
= conversion_obstack_alloc (0);
3224 conv2
= conditional_conversion (arg2
, arg3
);
3225 conv3
= conditional_conversion (arg3
, arg2
);
3229 If both can be converted, or one can be converted but the
3230 conversion is ambiguous, the program is ill-formed. If
3231 neither can be converted, the operands are left unchanged and
3232 further checking is performed as described below. If exactly
3233 one conversion is possible, that conversion is applied to the
3234 chosen operand and the converted operand is used in place of
3235 the original operand for the remainder of this section. */
3236 if ((conv2
&& !conv2
->bad_p
3237 && conv3
&& !conv3
->bad_p
)
3238 || (conv2
&& conv2
->kind
== ck_ambig
)
3239 || (conv3
&& conv3
->kind
== ck_ambig
))
3241 error ("operands to ?: have different types");
3242 result
= error_mark_node
;
3244 else if (conv2
&& !conv2
->bad_p
)
3246 arg2
= convert_like (conv2
, arg2
);
3247 arg2
= convert_from_reference (arg2
);
3248 arg2_type
= TREE_TYPE (arg2
);
3250 else if (conv3
&& !conv3
->bad_p
)
3252 arg3
= convert_like (conv3
, arg3
);
3253 arg3
= convert_from_reference (arg3
);
3254 arg3_type
= TREE_TYPE (arg3
);
3257 /* Free all the conversions we allocated. */
3258 obstack_free (&conversion_obstack
, p
);
3263 /* If, after the conversion, both operands have class type,
3264 treat the cv-qualification of both operands as if it were the
3265 union of the cv-qualification of the operands.
3267 The standard is not clear about what to do in this
3268 circumstance. For example, if the first operand has type
3269 "const X" and the second operand has a user-defined
3270 conversion to "volatile X", what is the type of the second
3271 operand after this step? Making it be "const X" (matching
3272 the first operand) seems wrong, as that discards the
3273 qualification without actually performing a copy. Leaving it
3274 as "volatile X" seems wrong as that will result in the
3275 conditional expression failing altogether, even though,
3276 according to this step, the one operand could be converted to
3277 the type of the other. */
3278 if ((conv2
|| conv3
)
3279 && CLASS_TYPE_P (arg2_type
)
3280 && TYPE_QUALS (arg2_type
) != TYPE_QUALS (arg3_type
))
3281 arg2_type
= arg3_type
=
3282 cp_build_qualified_type (arg2_type
,
3283 TYPE_QUALS (arg2_type
)
3284 | TYPE_QUALS (arg3_type
));
3289 If the second and third operands are lvalues and have the same
3290 type, the result is of that type and is an lvalue. */
3291 if (real_lvalue_p (arg2
)
3292 && real_lvalue_p (arg3
)
3293 && same_type_p (arg2_type
, arg3_type
))
3295 result_type
= arg2_type
;
3296 goto valid_operands
;
3301 Otherwise, the result is an rvalue. If the second and third
3302 operand do not have the same type, and either has (possibly
3303 cv-qualified) class type, overload resolution is used to
3304 determine the conversions (if any) to be applied to the operands
3305 (_over.match.oper_, _over.built_). */
3307 if (!same_type_p (arg2_type
, arg3_type
)
3308 && (CLASS_TYPE_P (arg2_type
) || CLASS_TYPE_P (arg3_type
)))
3314 /* Rearrange the arguments so that add_builtin_candidate only has
3315 to know about two args. In build_builtin_candidates, the
3316 arguments are unscrambled. */
3320 add_builtin_candidates (&candidates
,
3323 ansi_opname (COND_EXPR
),
3329 If the overload resolution fails, the program is
3331 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
3334 op_error (COND_EXPR
, NOP_EXPR
, arg1
, arg2
, arg3
, "no match");
3335 print_z_candidates (candidates
);
3336 return error_mark_node
;
3338 cand
= tourney (candidates
);
3341 op_error (COND_EXPR
, NOP_EXPR
, arg1
, arg2
, arg3
, "no match");
3342 print_z_candidates (candidates
);
3343 return error_mark_node
;
3348 Otherwise, the conversions thus determined are applied, and
3349 the converted operands are used in place of the original
3350 operands for the remainder of this section. */
3351 conv
= cand
->convs
[0];
3352 arg1
= convert_like (conv
, arg1
);
3353 conv
= cand
->convs
[1];
3354 arg2
= convert_like (conv
, arg2
);
3355 conv
= cand
->convs
[2];
3356 arg3
= convert_like (conv
, arg3
);
3361 Lvalue-to-rvalue (_conv.lval_), array-to-pointer (_conv.array_),
3362 and function-to-pointer (_conv.func_) standard conversions are
3363 performed on the second and third operands.
3365 We need to force the lvalue-to-rvalue conversion here for class types,
3366 so we get TARGET_EXPRs; trying to deal with a COND_EXPR of class rvalues
3367 that isn't wrapped with a TARGET_EXPR plays havoc with exception
3370 arg2
= force_rvalue (arg2
);
3371 if (!CLASS_TYPE_P (arg2_type
))
3372 arg2_type
= TREE_TYPE (arg2
);
3374 arg3
= force_rvalue (arg3
);
3375 if (!CLASS_TYPE_P (arg2_type
))
3376 arg3_type
= TREE_TYPE (arg3
);
3378 if (arg2
== error_mark_node
|| arg3
== error_mark_node
)
3379 return error_mark_node
;
3383 After those conversions, one of the following shall hold:
3385 --The second and third operands have the same type; the result is of
3387 if (same_type_p (arg2_type
, arg3_type
))
3388 result_type
= arg2_type
;
3391 --The second and third operands have arithmetic or enumeration
3392 type; the usual arithmetic conversions are performed to bring
3393 them to a common type, and the result is of that type. */
3394 else if ((ARITHMETIC_TYPE_P (arg2_type
)
3395 || TREE_CODE (arg2_type
) == ENUMERAL_TYPE
)
3396 && (ARITHMETIC_TYPE_P (arg3_type
)
3397 || TREE_CODE (arg3_type
) == ENUMERAL_TYPE
))
3399 /* In this case, there is always a common type. */
3400 result_type
= type_after_usual_arithmetic_conversions (arg2_type
,
3403 if (TREE_CODE (arg2_type
) == ENUMERAL_TYPE
3404 && TREE_CODE (arg3_type
) == ENUMERAL_TYPE
)
3405 warning ("enumeral mismatch in conditional expression: %qT vs %qT",
3406 arg2_type
, arg3_type
);
3407 else if (extra_warnings
3408 && ((TREE_CODE (arg2_type
) == ENUMERAL_TYPE
3409 && !same_type_p (arg3_type
, type_promotes_to (arg2_type
)))
3410 || (TREE_CODE (arg3_type
) == ENUMERAL_TYPE
3411 && !same_type_p (arg2_type
, type_promotes_to (arg3_type
)))))
3412 warning ("enumeral and non-enumeral type in conditional expression");
3414 arg2
= perform_implicit_conversion (result_type
, arg2
);
3415 arg3
= perform_implicit_conversion (result_type
, arg3
);
3419 --The second and third operands have pointer type, or one has
3420 pointer type and the other is a null pointer constant; pointer
3421 conversions (_conv.ptr_) and qualification conversions
3422 (_conv.qual_) are performed to bring them to their composite
3423 pointer type (_expr.rel_). The result is of the composite
3426 --The second and third operands have pointer to member type, or
3427 one has pointer to member type and the other is a null pointer
3428 constant; pointer to member conversions (_conv.mem_) and
3429 qualification conversions (_conv.qual_) are performed to bring
3430 them to a common type, whose cv-qualification shall match the
3431 cv-qualification of either the second or the third operand.
3432 The result is of the common type. */
3433 else if ((null_ptr_cst_p (arg2
)
3434 && (TYPE_PTR_P (arg3_type
) || TYPE_PTR_TO_MEMBER_P (arg3_type
)))
3435 || (null_ptr_cst_p (arg3
)
3436 && (TYPE_PTR_P (arg2_type
) || TYPE_PTR_TO_MEMBER_P (arg2_type
)))
3437 || (TYPE_PTR_P (arg2_type
) && TYPE_PTR_P (arg3_type
))
3438 || (TYPE_PTRMEM_P (arg2_type
) && TYPE_PTRMEM_P (arg3_type
))
3439 || (TYPE_PTRMEMFUNC_P (arg2_type
) && TYPE_PTRMEMFUNC_P (arg3_type
)))
3441 result_type
= composite_pointer_type (arg2_type
, arg3_type
, arg2
,
3442 arg3
, "conditional expression");
3443 if (result_type
== error_mark_node
)
3444 return error_mark_node
;
3445 arg2
= perform_implicit_conversion (result_type
, arg2
);
3446 arg3
= perform_implicit_conversion (result_type
, arg3
);
3451 error ("operands to ?: have different types");
3452 return error_mark_node
;
3456 result
= fold_if_not_in_template (build3 (COND_EXPR
, result_type
, arg1
,
3458 /* We can't use result_type below, as fold might have returned a
3461 /* Expand both sides into the same slot, hopefully the target of the
3462 ?: expression. We used to check for TARGET_EXPRs here, but now we
3463 sometimes wrap them in NOP_EXPRs so the test would fail. */
3464 if (!lvalue_p
&& CLASS_TYPE_P (TREE_TYPE (result
)))
3465 result
= get_target_expr (result
);
3467 /* If this expression is an rvalue, but might be mistaken for an
3468 lvalue, we must add a NON_LVALUE_EXPR. */
3469 if (!lvalue_p
&& real_lvalue_p (result
))
3470 result
= build1 (NON_LVALUE_EXPR
, TREE_TYPE (result
), result
);
3475 /* OPERAND is an operand to an expression. Perform necessary steps
3476 required before using it. If OPERAND is NULL_TREE, NULL_TREE is
3480 prep_operand (tree operand
)
3484 if (CLASS_TYPE_P (TREE_TYPE (operand
))
3485 && CLASSTYPE_TEMPLATE_INSTANTIATION (TREE_TYPE (operand
)))
3486 /* Make sure the template type is instantiated now. */
3487 instantiate_class_template (TYPE_MAIN_VARIANT (TREE_TYPE (operand
)));
3493 /* Add each of the viable functions in FNS (a FUNCTION_DECL or
3494 OVERLOAD) to the CANDIDATES, returning an updated list of
3495 CANDIDATES. The ARGS are the arguments provided to the call,
3496 without any implicit object parameter. The EXPLICIT_TARGS are
3497 explicit template arguments provided. TEMPLATE_ONLY is true if
3498 only template functions should be considered. CONVERSION_PATH,
3499 ACCESS_PATH, and FLAGS are as for add_function_candidate. */
3502 add_candidates (tree fns
, tree args
,
3503 tree explicit_targs
, bool template_only
,
3504 tree conversion_path
, tree access_path
,
3506 struct z_candidate
**candidates
)
3509 tree non_static_args
;
3511 ctype
= conversion_path
? BINFO_TYPE (conversion_path
) : NULL_TREE
;
3512 /* Delay creating the implicit this parameter until it is needed. */
3513 non_static_args
= NULL_TREE
;
3520 fn
= OVL_CURRENT (fns
);
3521 /* Figure out which set of arguments to use. */
3522 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (fn
))
3524 /* If this function is a non-static member, prepend the implicit
3525 object parameter. */
3526 if (!non_static_args
)
3527 non_static_args
= tree_cons (NULL_TREE
,
3528 build_this (TREE_VALUE (args
)),
3530 fn_args
= non_static_args
;
3533 /* Otherwise, just use the list of arguments provided. */
3536 if (TREE_CODE (fn
) == TEMPLATE_DECL
)
3537 add_template_candidate (candidates
,
3547 else if (!template_only
)
3548 add_function_candidate (candidates
,
3555 fns
= OVL_NEXT (fns
);
3560 build_new_op (enum tree_code code
, int flags
, tree arg1
, tree arg2
, tree arg3
,
3563 struct z_candidate
*candidates
= 0, *cand
;
3564 tree arglist
, fnname
;
3566 tree result
= NULL_TREE
;
3567 bool result_valid_p
= false;
3568 enum tree_code code2
= NOP_EXPR
;
3574 if (error_operand_p (arg1
)
3575 || error_operand_p (arg2
)
3576 || error_operand_p (arg3
))
3577 return error_mark_node
;
3579 if (code
== MODIFY_EXPR
)
3581 code2
= TREE_CODE (arg3
);
3583 fnname
= ansi_assopname (code2
);
3586 fnname
= ansi_opname (code
);
3588 arg1
= prep_operand (arg1
);
3594 case VEC_DELETE_EXPR
:
3596 /* Use build_op_new_call and build_op_delete_call instead. */
3600 return build_object_call (arg1
, arg2
);
3606 arg2
= prep_operand (arg2
);
3607 arg3
= prep_operand (arg3
);
3609 if (code
== COND_EXPR
)
3611 if (arg2
== NULL_TREE
3612 || TREE_CODE (TREE_TYPE (arg2
)) == VOID_TYPE
3613 || TREE_CODE (TREE_TYPE (arg3
)) == VOID_TYPE
3614 || (! IS_OVERLOAD_TYPE (TREE_TYPE (arg2
))
3615 && ! IS_OVERLOAD_TYPE (TREE_TYPE (arg3
))))
3618 else if (! IS_OVERLOAD_TYPE (TREE_TYPE (arg1
))
3619 && (! arg2
|| ! IS_OVERLOAD_TYPE (TREE_TYPE (arg2
))))
3622 if (code
== POSTINCREMENT_EXPR
|| code
== POSTDECREMENT_EXPR
)
3623 arg2
= integer_zero_node
;
3625 arglist
= NULL_TREE
;
3627 arglist
= tree_cons (NULL_TREE
, arg3
, arglist
);
3629 arglist
= tree_cons (NULL_TREE
, arg2
, arglist
);
3630 arglist
= tree_cons (NULL_TREE
, arg1
, arglist
);
3632 /* Get the high-water mark for the CONVERSION_OBSTACK. */
3633 p
= conversion_obstack_alloc (0);
3635 /* Add namespace-scope operators to the list of functions to
3637 add_candidates (lookup_function_nonclass (fnname
, arglist
, /*block_p=*/true),
3638 arglist
, NULL_TREE
, false, NULL_TREE
, NULL_TREE
,
3639 flags
, &candidates
);
3640 /* Add class-member operators to the candidate set. */
3641 if (CLASS_TYPE_P (TREE_TYPE (arg1
)))
3645 fns
= lookup_fnfields (TREE_TYPE (arg1
), fnname
, 1);
3646 if (fns
== error_mark_node
)
3648 result
= error_mark_node
;
3649 goto user_defined_result_ready
;
3652 add_candidates (BASELINK_FUNCTIONS (fns
), arglist
,
3654 BASELINK_BINFO (fns
),
3655 TYPE_BINFO (TREE_TYPE (arg1
)),
3656 flags
, &candidates
);
3659 /* Rearrange the arguments for ?: so that add_builtin_candidate only has
3660 to know about two args; a builtin candidate will always have a first
3661 parameter of type bool. We'll handle that in
3662 build_builtin_candidate. */
3663 if (code
== COND_EXPR
)
3673 args
[2] = NULL_TREE
;
3676 add_builtin_candidates (&candidates
, code
, code2
, fnname
, args
, flags
);
3682 /* For these, the built-in candidates set is empty
3683 [over.match.oper]/3. We don't want non-strict matches
3684 because exact matches are always possible with built-in
3685 operators. The built-in candidate set for COMPONENT_REF
3686 would be empty too, but since there are no such built-in
3687 operators, we accept non-strict matches for them. */
3692 strict_p
= pedantic
;
3696 candidates
= splice_viable (candidates
, strict_p
, &any_viable_p
);
3701 case POSTINCREMENT_EXPR
:
3702 case POSTDECREMENT_EXPR
:
3703 /* Look for an `operator++ (int)'. If they didn't have
3704 one, then we fall back to the old way of doing things. */
3705 if (flags
& LOOKUP_COMPLAIN
)
3706 pedwarn ("no %<%D(int)%> declared for postfix %qs, "
3707 "trying prefix operator instead",
3709 operator_name_info
[code
].name
);
3710 if (code
== POSTINCREMENT_EXPR
)
3711 code
= PREINCREMENT_EXPR
;
3713 code
= PREDECREMENT_EXPR
;
3714 result
= build_new_op (code
, flags
, arg1
, NULL_TREE
, NULL_TREE
,
3718 /* The caller will deal with these. */
3723 result_valid_p
= true;
3727 if (flags
& LOOKUP_COMPLAIN
)
3729 op_error (code
, code2
, arg1
, arg2
, arg3
, "no match");
3730 print_z_candidates (candidates
);
3732 result
= error_mark_node
;
3738 cand
= tourney (candidates
);
3741 if (flags
& LOOKUP_COMPLAIN
)
3743 op_error (code
, code2
, arg1
, arg2
, arg3
, "ambiguous overload");
3744 print_z_candidates (candidates
);
3746 result
= error_mark_node
;
3748 else if (TREE_CODE (cand
->fn
) == FUNCTION_DECL
)
3751 *overloaded_p
= true;
3753 result
= build_over_call (cand
, LOOKUP_NORMAL
);
3757 /* Give any warnings we noticed during overload resolution. */
3760 struct candidate_warning
*w
;
3761 for (w
= cand
->warnings
; w
; w
= w
->next
)
3762 joust (cand
, w
->loser
, 1);
3765 /* Check for comparison of different enum types. */
3774 if (TREE_CODE (TREE_TYPE (arg1
)) == ENUMERAL_TYPE
3775 && TREE_CODE (TREE_TYPE (arg2
)) == ENUMERAL_TYPE
3776 && (TYPE_MAIN_VARIANT (TREE_TYPE (arg1
))
3777 != TYPE_MAIN_VARIANT (TREE_TYPE (arg2
))))
3779 warning ("comparison between %q#T and %q#T",
3780 TREE_TYPE (arg1
), TREE_TYPE (arg2
));
3787 /* We need to strip any leading REF_BIND so that bitfields
3788 don't cause errors. This should not remove any important
3789 conversions, because builtins don't apply to class
3790 objects directly. */
3791 conv
= cand
->convs
[0];
3792 if (conv
->kind
== ck_ref_bind
)
3793 conv
= conv
->u
.next
;
3794 arg1
= convert_like (conv
, arg1
);
3797 conv
= cand
->convs
[1];
3798 if (conv
->kind
== ck_ref_bind
)
3799 conv
= conv
->u
.next
;
3800 arg2
= convert_like (conv
, arg2
);
3804 conv
= cand
->convs
[2];
3805 if (conv
->kind
== ck_ref_bind
)
3806 conv
= conv
->u
.next
;
3807 arg3
= convert_like (conv
, arg3
);
3812 user_defined_result_ready
:
3814 /* Free all the conversions we allocated. */
3815 obstack_free (&conversion_obstack
, p
);
3817 if (result
|| result_valid_p
)
3824 return build_modify_expr (arg1
, code2
, arg2
);
3827 return build_indirect_ref (arg1
, "unary *");
3832 case TRUNC_DIV_EXPR
:
3843 case TRUNC_MOD_EXPR
:
3847 case TRUTH_ANDIF_EXPR
:
3848 case TRUTH_ORIF_EXPR
:
3849 return cp_build_binary_op (code
, arg1
, arg2
);
3854 case TRUTH_NOT_EXPR
:
3855 case PREINCREMENT_EXPR
:
3856 case POSTINCREMENT_EXPR
:
3857 case PREDECREMENT_EXPR
:
3858 case POSTDECREMENT_EXPR
:
3861 return build_unary_op (code
, arg1
, candidates
!= 0);
3864 return build_array_ref (arg1
, arg2
);
3867 return build_conditional_expr (arg1
, arg2
, arg3
);
3870 return build_m_component_ref (build_indirect_ref (arg1
, NULL
), arg2
);
3872 /* The caller will deal with these. */
3884 /* Build a call to operator delete. This has to be handled very specially,
3885 because the restrictions on what signatures match are different from all
3886 other call instances. For a normal delete, only a delete taking (void *)
3887 or (void *, size_t) is accepted. For a placement delete, only an exact
3888 match with the placement new is accepted.
3890 CODE is either DELETE_EXPR or VEC_DELETE_EXPR.
3891 ADDR is the pointer to be deleted.
3892 SIZE is the size of the memory block to be deleted.
3893 GLOBAL_P is true if the delete-expression should not consider
3894 class-specific delete operators.
3895 PLACEMENT is the corresponding placement new call, or NULL_TREE. */
3898 build_op_delete_call (enum tree_code code
, tree addr
, tree size
,
3899 bool global_p
, tree placement
)
3901 tree fn
= NULL_TREE
;
3902 tree fns
, fnname
, argtypes
, args
, type
;
3905 if (addr
== error_mark_node
)
3906 return error_mark_node
;
3908 type
= strip_array_types (TREE_TYPE (TREE_TYPE (addr
)));
3910 fnname
= ansi_opname (code
);
3912 if (CLASS_TYPE_P (type
)
3913 && COMPLETE_TYPE_P (complete_type (type
))
3917 If the result of the lookup is ambiguous or inaccessible, or if
3918 the lookup selects a placement deallocation function, the
3919 program is ill-formed.
3921 Therefore, we ask lookup_fnfields to complain about ambiguity. */
3923 fns
= lookup_fnfields (TYPE_BINFO (type
), fnname
, 1);
3924 if (fns
== error_mark_node
)
3925 return error_mark_node
;
3930 if (fns
== NULL_TREE
)
3931 fns
= lookup_name_nonclass (fnname
);
3938 /* Find the allocation function that is being called. */
3939 call_expr
= placement
;
3940 /* Extract the function. */
3941 alloc_fn
= get_callee_fndecl (call_expr
);
3942 gcc_assert (alloc_fn
!= NULL_TREE
);
3943 /* Then the second parm type. */
3944 argtypes
= TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn
)));
3945 /* Also the second argument. */
3946 args
= TREE_CHAIN (TREE_OPERAND (call_expr
, 1));
3950 /* First try it without the size argument. */
3951 argtypes
= void_list_node
;
3955 /* Strip const and volatile from addr. */
3956 addr
= cp_convert (ptr_type_node
, addr
);
3958 /* We make two tries at finding a matching `operator delete'. On
3959 the first pass, we look for a one-operator (or placement)
3960 operator delete. If we're not doing placement delete, then on
3961 the second pass we look for a two-argument delete. */
3962 for (pass
= 0; pass
< (placement
? 1 : 2); ++pass
)
3964 /* Go through the `operator delete' functions looking for one
3965 with a matching type. */
3966 for (fn
= BASELINK_P (fns
) ? BASELINK_FUNCTIONS (fns
) : fns
;
3972 /* The first argument must be "void *". */
3973 t
= TYPE_ARG_TYPES (TREE_TYPE (OVL_CURRENT (fn
)));
3974 if (!same_type_p (TREE_VALUE (t
), ptr_type_node
))
3977 /* On the first pass, check the rest of the arguments. */
3983 if (!same_type_p (TREE_VALUE (a
), TREE_VALUE (t
)))
3991 /* On the second pass, the second argument must be
3994 && same_type_p (TREE_VALUE (t
), sizetype
)
3995 && TREE_CHAIN (t
) == void_list_node
)
3999 /* If we found a match, we're done. */
4004 /* If we have a matching function, call it. */
4007 /* Make sure we have the actual function, and not an
4009 fn
= OVL_CURRENT (fn
);
4011 /* If the FN is a member function, make sure that it is
4013 if (DECL_CLASS_SCOPE_P (fn
))
4014 perform_or_defer_access_check (TYPE_BINFO (type
), fn
);
4017 args
= tree_cons (NULL_TREE
, addr
, args
);
4019 args
= tree_cons (NULL_TREE
, addr
,
4020 build_tree_list (NULL_TREE
, size
));
4024 /* The placement args might not be suitable for overload
4025 resolution at this point, so build the call directly. */
4027 return build_cxx_call (fn
, args
);
4030 return build_function_call (fn
, args
);
4033 /* If we are doing placement delete we do nothing if we don't find a
4034 matching op delete. */
4038 error ("no suitable %<operator %s> for %qT",
4039 operator_name_info
[(int)code
].name
, type
);
4040 return error_mark_node
;
4043 /* If the current scope isn't allowed to access DECL along
4044 BASETYPE_PATH, give an error. The most derived class in
4045 BASETYPE_PATH is the one used to qualify DECL. */
4048 enforce_access (tree basetype_path
, tree decl
)
4050 gcc_assert (TREE_CODE (basetype_path
) == TREE_BINFO
);
4052 if (!accessible_p (basetype_path
, decl
, true))
4054 if (TREE_PRIVATE (decl
))
4055 cp_error_at ("%q+#D is private", decl
);
4056 else if (TREE_PROTECTED (decl
))
4057 cp_error_at ("%q+#D is protected", decl
);
4059 cp_error_at ("%q+#D is inaccessible", decl
);
4060 error ("within this context");
4067 /* Check that a callable constructor to initialize a temporary of
4068 TYPE from an EXPR exists. */
4071 check_constructor_callable (tree type
, tree expr
)
4073 build_special_member_call (NULL_TREE
,
4074 complete_ctor_identifier
,
4075 build_tree_list (NULL_TREE
, expr
),
4077 LOOKUP_NORMAL
| LOOKUP_ONLYCONVERTING
4078 | LOOKUP_NO_CONVERSION
4079 | LOOKUP_CONSTRUCTOR_CALLABLE
);
4082 /* Initialize a temporary of type TYPE with EXPR. The FLAGS are a
4083 bitwise or of LOOKUP_* values. If any errors are warnings are
4084 generated, set *DIAGNOSTIC_FN to "error" or "warning",
4085 respectively. If no diagnostics are generated, set *DIAGNOSTIC_FN
4089 build_temp (tree expr
, tree type
, int flags
,
4090 void (**diagnostic_fn
)(const char *, ...))
4094 savew
= warningcount
, savee
= errorcount
;
4095 expr
= build_special_member_call (NULL_TREE
,
4096 complete_ctor_identifier
,
4097 build_tree_list (NULL_TREE
, expr
),
4099 if (warningcount
> savew
)
4100 *diagnostic_fn
= warning
;
4101 else if (errorcount
> savee
)
4102 *diagnostic_fn
= error
;
4104 *diagnostic_fn
= NULL
;
4109 /* Perform the conversions in CONVS on the expression EXPR. FN and
4110 ARGNUM are used for diagnostics. ARGNUM is zero based, -1
4111 indicates the `this' argument of a method. INNER is nonzero when
4112 being called to continue a conversion chain. It is negative when a
4113 reference binding will be applied, positive otherwise. If
4114 ISSUE_CONVERSION_WARNINGS is true, warnings about suspicious
4115 conversions will be emitted if appropriate. If C_CAST_P is true,
4116 this conversion is coming from a C-style cast; in that case,
4117 conversions to inaccessible bases are permitted. */
4120 convert_like_real (conversion
*convs
, tree expr
, tree fn
, int argnum
,
4121 int inner
, bool issue_conversion_warnings
,
4124 tree totype
= convs
->type
;
4125 void (*diagnostic_fn
)(const char *, ...);
4128 && convs
->kind
!= ck_user
4129 && convs
->kind
!= ck_ambig
4130 && convs
->kind
!= ck_ref_bind
)
4132 conversion
*t
= convs
;
4133 for (; t
; t
= convs
->u
.next
)
4135 if (t
->kind
== ck_user
|| !t
->bad_p
)
4137 expr
= convert_like_real (t
, expr
, fn
, argnum
, 1,
4138 /*issue_conversion_warnings=*/false,
4139 /*c_cast_p=*/false);
4142 else if (t
->kind
== ck_ambig
)
4143 return convert_like_real (t
, expr
, fn
, argnum
, 1,
4144 /*issue_conversion_warnings=*/false,
4145 /*c_cast_p=*/false);
4146 else if (t
->kind
== ck_identity
)
4149 pedwarn ("invalid conversion from %qT to %qT", TREE_TYPE (expr
), totype
);
4151 pedwarn (" initializing argument %P of %qD", argnum
, fn
);
4152 return cp_convert (totype
, expr
);
4155 if (issue_conversion_warnings
)
4157 tree t
= non_reference (totype
);
4159 /* Issue warnings about peculiar, but valid, uses of NULL. */
4160 if (ARITHMETIC_TYPE_P (t
) && expr
== null_node
)
4163 warning ("passing NULL to non-pointer argument %P of %qD",
4166 warning ("converting to non-pointer type %qT from NULL", t
);
4169 /* Warn about assigning a floating-point type to an integer type. */
4170 if (TREE_CODE (TREE_TYPE (expr
)) == REAL_TYPE
4171 && TREE_CODE (t
) == INTEGER_TYPE
)
4174 warning ("passing %qT for argument %P to %qD",
4175 TREE_TYPE (expr
), argnum
, fn
);
4177 warning ("converting to %qT from %qT", t
, TREE_TYPE (expr
));
4179 /* And warn about assigning a negative value to an unsigned
4181 else if (TYPE_UNSIGNED (t
) && TREE_CODE (t
) != BOOLEAN_TYPE
)
4183 if (TREE_CODE (expr
) == INTEGER_CST
&& TREE_NEGATED_INT (expr
))
4186 warning ("passing negative value %qE for argument %P to %qD",
4189 warning ("converting negative value %qE to %qT", expr
, t
);
4192 overflow_warning (expr
);
4196 switch (convs
->kind
)
4200 struct z_candidate
*cand
= convs
->cand
;
4201 tree convfn
= cand
->fn
;
4204 if (DECL_CONSTRUCTOR_P (convfn
))
4206 tree t
= build_int_cst (build_pointer_type (DECL_CONTEXT (convfn
)),
4209 args
= build_tree_list (NULL_TREE
, expr
);
4210 /* We should never try to call the abstract or base constructor
4212 gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (convfn
)
4213 && !DECL_HAS_VTT_PARM_P (convfn
));
4214 args
= tree_cons (NULL_TREE
, t
, args
);
4217 args
= build_this (expr
);
4218 expr
= build_over_call (cand
, LOOKUP_NORMAL
);
4220 /* If this is a constructor or a function returning an aggr type,
4221 we need to build up a TARGET_EXPR. */
4222 if (DECL_CONSTRUCTOR_P (convfn
))
4223 expr
= build_cplus_new (totype
, expr
);
4225 /* The result of the call is then used to direct-initialize the object
4226 that is the destination of the copy-initialization. [dcl.init]
4228 Note that this step is not reflected in the conversion sequence;
4229 it affects the semantics when we actually perform the
4230 conversion, but is not considered during overload resolution.
4232 If the target is a class, that means call a ctor. */
4233 if (IS_AGGR_TYPE (totype
)
4234 && (inner
>= 0 || !lvalue_p (expr
)))
4238 /* Core issue 84, now a DR, says that we don't
4239 allow UDCs for these args (which deliberately
4240 breaks copy-init of an auto_ptr<Base> from an
4241 auto_ptr<Derived>). */
4242 LOOKUP_NORMAL
|LOOKUP_ONLYCONVERTING
|LOOKUP_NO_CONVERSION
,
4249 (" initializing argument %P of %qD from result of %qD",
4250 argnum
, fn
, convfn
);
4253 (" initializing temporary from result of %qD", convfn
);
4255 expr
= build_cplus_new (totype
, expr
);
4260 if (type_unknown_p (expr
))
4261 expr
= instantiate_type (totype
, expr
, tf_error
| tf_warning
);
4262 /* Convert a constant to its underlying value, unless we are
4263 about to bind it to a reference, in which case we need to
4264 leave it as an lvalue. */
4266 expr
= integral_constant_value (expr
);
4267 if (convs
->check_copy_constructor_p
)
4268 check_constructor_callable (totype
, expr
);
4271 /* Call build_user_type_conversion again for the error. */
4272 return build_user_type_conversion
4273 (totype
, convs
->u
.expr
, LOOKUP_NORMAL
);
4279 expr
= convert_like_real (convs
->u
.next
, expr
, fn
, argnum
,
4280 convs
->kind
== ck_ref_bind
? -1 : 1,
4281 /*issue_conversion_warnings=*/false,
4283 if (expr
== error_mark_node
)
4284 return error_mark_node
;
4286 switch (convs
->kind
)
4289 if (! IS_AGGR_TYPE (totype
))
4291 /* Else fall through. */
4293 if (convs
->kind
== ck_base
&& !convs
->need_temporary_p
)
4295 /* We are going to bind a reference directly to a base-class
4296 subobject of EXPR. */
4297 if (convs
->check_copy_constructor_p
)
4298 check_constructor_callable (TREE_TYPE (expr
), expr
);
4299 /* Build an expression for `*((base*) &expr)'. */
4300 expr
= build_unary_op (ADDR_EXPR
, expr
, 0);
4301 expr
= convert_to_base (expr
, build_pointer_type (totype
),
4302 !c_cast_p
, /*nonnull=*/true);
4303 expr
= build_indirect_ref (expr
, "implicit conversion");
4307 /* Copy-initialization where the cv-unqualified version of the source
4308 type is the same class as, or a derived class of, the class of the
4309 destination [is treated as direct-initialization]. [dcl.init] */
4310 expr
= build_temp (expr
, totype
, LOOKUP_NORMAL
|LOOKUP_ONLYCONVERTING
,
4312 if (diagnostic_fn
&& fn
)
4313 diagnostic_fn (" initializing argument %P of %qD", argnum
, fn
);
4314 return build_cplus_new (totype
, expr
);
4318 tree ref_type
= totype
;
4320 /* If necessary, create a temporary. */
4321 if (convs
->need_temporary_p
|| !lvalue_p (expr
))
4323 tree type
= convs
->u
.next
->type
;
4324 cp_lvalue_kind lvalue
= real_lvalue_p (expr
);
4326 if (!CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (ref_type
)))
4328 /* If the reference is volatile or non-const, we
4329 cannot create a temporary. */
4330 if (lvalue
& clk_bitfield
)
4331 error ("cannot bind bitfield %qE to %qT",
4333 else if (lvalue
& clk_packed
)
4334 error ("cannot bind packed field %qE to %qT",
4337 error ("cannot bind rvalue %qE to %qT", expr
, ref_type
);
4338 return error_mark_node
;
4340 /* If the source is a packed field, and we must use a copy
4341 constructor, then building the target expr will require
4342 binding the field to the reference parameter to the
4343 copy constructor, and we'll end up with an infinite
4344 loop. If we can use a bitwise copy, then we'll be
4346 if ((lvalue
& clk_packed
)
4347 && CLASS_TYPE_P (type
)
4348 && !TYPE_HAS_TRIVIAL_INIT_REF (type
))
4350 error ("cannot bind packed field %qE to %qT",
4352 return error_mark_node
;
4354 expr
= build_target_expr_with_type (expr
, type
);
4357 /* Take the address of the thing to which we will bind the
4359 expr
= build_unary_op (ADDR_EXPR
, expr
, 1);
4360 if (expr
== error_mark_node
)
4361 return error_mark_node
;
4363 /* Convert it to a pointer to the type referred to by the
4364 reference. This will adjust the pointer if a derived to
4365 base conversion is being performed. */
4366 expr
= cp_convert (build_pointer_type (TREE_TYPE (ref_type
)),
4368 /* Convert the pointer to the desired reference type. */
4369 return build_nop (ref_type
, expr
);
4373 return decay_conversion (expr
);
4376 /* Warn about deprecated conversion if appropriate. */
4377 string_conv_p (totype
, expr
, 1);
4382 expr
= convert_to_base (expr
, totype
, !c_cast_p
,
4384 return build_nop (totype
, expr
);
4387 return convert_ptrmem (totype
, expr
, /*allow_inverse_p=*/false,
4393 return ocp_convert (totype
, expr
, CONV_IMPLICIT
,
4394 LOOKUP_NORMAL
|LOOKUP_NO_CONVERSION
);
4397 /* Build a call to __builtin_trap. */
4400 call_builtin_trap (void)
4402 tree fn
= implicit_built_in_decls
[BUILT_IN_TRAP
];
4404 gcc_assert (fn
!= NULL
);
4405 fn
= build_call (fn
, NULL_TREE
);
4409 /* ARG is being passed to a varargs function. Perform any conversions
4410 required. Return the converted value. */
4413 convert_arg_to_ellipsis (tree arg
)
4417 The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
4418 standard conversions are performed. */
4419 arg
= decay_conversion (arg
);
4422 If the argument has integral or enumeration type that is subject
4423 to the integral promotions (_conv.prom_), or a floating point
4424 type that is subject to the floating point promotion
4425 (_conv.fpprom_), the value of the argument is converted to the
4426 promoted type before the call. */
4427 if (TREE_CODE (TREE_TYPE (arg
)) == REAL_TYPE
4428 && (TYPE_PRECISION (TREE_TYPE (arg
))
4429 < TYPE_PRECISION (double_type_node
)))
4430 arg
= convert_to_real (double_type_node
, arg
);
4431 else if (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (arg
)))
4432 arg
= perform_integral_promotions (arg
);
4434 arg
= require_complete_type (arg
);
4436 if (arg
!= error_mark_node
4437 && !pod_type_p (TREE_TYPE (arg
)))
4439 /* Undefined behavior [expr.call] 5.2.2/7. We used to just warn
4440 here and do a bitwise copy, but now cp_expr_size will abort if we
4442 If the call appears in the context of a sizeof expression,
4443 there is no need to emit a warning, since the expression won't be
4444 evaluated. We keep the builtin_trap just as a safety check. */
4445 if (!skip_evaluation
)
4446 warning ("cannot pass objects of non-POD type %q#T through %<...%>; "
4447 "call will abort at runtime", TREE_TYPE (arg
));
4448 arg
= call_builtin_trap ();
4449 arg
= build2 (COMPOUND_EXPR
, integer_type_node
, arg
,
4456 /* va_arg (EXPR, TYPE) is a builtin. Make sure it is not abused. */
4459 build_x_va_arg (tree expr
, tree type
)
4461 if (processing_template_decl
)
4462 return build_min (VA_ARG_EXPR
, type
, expr
);
4464 type
= complete_type_or_else (type
, NULL_TREE
);
4466 if (expr
== error_mark_node
|| !type
)
4467 return error_mark_node
;
4469 if (! pod_type_p (type
))
4471 /* Undefined behavior [expr.call] 5.2.2/7. */
4472 warning ("cannot receive objects of non-POD type %q#T through %<...%>; "
4473 "call will abort at runtime", type
);
4474 expr
= convert (build_pointer_type (type
), null_node
);
4475 expr
= build2 (COMPOUND_EXPR
, TREE_TYPE (expr
),
4476 call_builtin_trap (), expr
);
4477 expr
= build_indirect_ref (expr
, NULL
);
4481 return build_va_arg (expr
, type
);
4484 /* TYPE has been given to va_arg. Apply the default conversions which
4485 would have happened when passed via ellipsis. Return the promoted
4486 type, or the passed type if there is no change. */
4489 cxx_type_promotes_to (tree type
)
4493 /* Perform the array-to-pointer and function-to-pointer
4495 type
= type_decays_to (type
);
4497 promote
= type_promotes_to (type
);
4498 if (same_type_p (type
, promote
))
4504 /* ARG is a default argument expression being passed to a parameter of
4505 the indicated TYPE, which is a parameter to FN. Do any required
4506 conversions. Return the converted value. */
4509 convert_default_arg (tree type
, tree arg
, tree fn
, int parmnum
)
4511 /* If the ARG is an unparsed default argument expression, the
4512 conversion cannot be performed. */
4513 if (TREE_CODE (arg
) == DEFAULT_ARG
)
4515 error ("the default argument for parameter %d of %qD has "
4516 "not yet been parsed",
4518 return error_mark_node
;
4521 if (fn
&& DECL_TEMPLATE_INFO (fn
))
4522 arg
= tsubst_default_argument (fn
, type
, arg
);
4524 arg
= break_out_target_exprs (arg
);
4526 if (TREE_CODE (arg
) == CONSTRUCTOR
)
4528 arg
= digest_init (type
, arg
, 0);
4529 arg
= convert_for_initialization (0, type
, arg
, LOOKUP_NORMAL
,
4530 "default argument", fn
, parmnum
);
4534 /* This could get clobbered by the following call. */
4535 if (TREE_HAS_CONSTRUCTOR (arg
))
4536 arg
= copy_node (arg
);
4538 arg
= convert_for_initialization (0, type
, arg
, LOOKUP_NORMAL
,
4539 "default argument", fn
, parmnum
);
4540 arg
= convert_for_arg_passing (type
, arg
);
4546 /* Returns the type which will really be used for passing an argument of
4550 type_passed_as (tree type
)
4552 /* Pass classes with copy ctors by invisible reference. */
4553 if (TREE_ADDRESSABLE (type
))
4555 type
= build_reference_type (type
);
4556 /* There are no other pointers to this temporary. */
4557 type
= build_qualified_type (type
, TYPE_QUAL_RESTRICT
);
4559 else if (targetm
.calls
.promote_prototypes (type
)
4560 && INTEGRAL_TYPE_P (type
)
4561 && COMPLETE_TYPE_P (type
)
4562 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type
),
4563 TYPE_SIZE (integer_type_node
)))
4564 type
= integer_type_node
;
4569 /* Actually perform the appropriate conversion. */
4572 convert_for_arg_passing (tree type
, tree val
)
4574 if (val
== error_mark_node
)
4576 /* Pass classes with copy ctors by invisible reference. */
4577 else if (TREE_ADDRESSABLE (type
))
4578 val
= build1 (ADDR_EXPR
, build_reference_type (type
), val
);
4579 else if (targetm
.calls
.promote_prototypes (type
)
4580 && INTEGRAL_TYPE_P (type
)
4581 && COMPLETE_TYPE_P (type
)
4582 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type
),
4583 TYPE_SIZE (integer_type_node
)))
4584 val
= perform_integral_promotions (val
);
4588 /* Returns true iff FN is a function with magic varargs, i.e. ones for
4589 which no conversions at all should be done. This is true for some
4590 builtins which don't act like normal functions. */
4593 magic_varargs_p (tree fn
)
4595 if (DECL_BUILT_IN (fn
))
4596 switch (DECL_FUNCTION_CODE (fn
))
4598 case BUILT_IN_CLASSIFY_TYPE
:
4599 case BUILT_IN_CONSTANT_P
:
4600 case BUILT_IN_NEXT_ARG
:
4601 case BUILT_IN_STDARG_START
:
4602 case BUILT_IN_VA_START
:
4611 /* Subroutine of the various build_*_call functions. Overload resolution
4612 has chosen a winning candidate CAND; build up a CALL_EXPR accordingly.
4613 ARGS is a TREE_LIST of the unconverted arguments to the call. FLAGS is a
4614 bitmask of various LOOKUP_* flags which apply to the call itself. */
4617 build_over_call (struct z_candidate
*cand
, int flags
)
4620 tree args
= cand
->args
;
4621 conversion
**convs
= cand
->convs
;
4623 tree converted_args
= NULL_TREE
;
4624 tree parm
= TYPE_ARG_TYPES (TREE_TYPE (fn
));
4629 /* In a template, there is no need to perform all of the work that
4630 is normally done. We are only interested in the type of the call
4631 expression, i.e., the return type of the function. Any semantic
4632 errors will be deferred until the template is instantiated. */
4633 if (processing_template_decl
)
4637 return_type
= TREE_TYPE (TREE_TYPE (fn
));
4638 expr
= build3 (CALL_EXPR
, return_type
, fn
, args
, NULL_TREE
);
4639 if (TREE_THIS_VOLATILE (fn
) && cfun
)
4640 current_function_returns_abnormally
= 1;
4641 if (!VOID_TYPE_P (return_type
))
4642 require_complete_type (return_type
);
4643 return convert_from_reference (expr
);
4646 /* Give any warnings we noticed during overload resolution. */
4649 struct candidate_warning
*w
;
4650 for (w
= cand
->warnings
; w
; w
= w
->next
)
4651 joust (cand
, w
->loser
, 1);
4654 if (DECL_FUNCTION_MEMBER_P (fn
))
4656 /* If FN is a template function, two cases must be considered.
4661 template <class T> void f();
4663 template <class T> struct B {
4667 struct C : A, B<int> {
4669 using B<int>::g; // #2
4672 In case #1 where `A::f' is a member template, DECL_ACCESS is
4673 recorded in the primary template but not in its specialization.
4674 We check access of FN using its primary template.
4676 In case #2, where `B<int>::g' has a DECL_TEMPLATE_INFO simply
4677 because it is a member of class template B, DECL_ACCESS is
4678 recorded in the specialization `B<int>::g'. We cannot use its
4679 primary template because `B<T>::g' and `B<int>::g' may have
4680 different access. */
4681 if (DECL_TEMPLATE_INFO (fn
)
4682 && DECL_MEMBER_TEMPLATE_P (DECL_TI_TEMPLATE (fn
)))
4683 perform_or_defer_access_check (cand
->access_path
,
4684 DECL_TI_TEMPLATE (fn
));
4686 perform_or_defer_access_check (cand
->access_path
, fn
);
4689 if (args
&& TREE_CODE (args
) != TREE_LIST
)
4690 args
= build_tree_list (NULL_TREE
, args
);
4693 /* The implicit parameters to a constructor are not considered by overload
4694 resolution, and must be of the proper type. */
4695 if (DECL_CONSTRUCTOR_P (fn
))
4697 converted_args
= tree_cons (NULL_TREE
, TREE_VALUE (arg
), converted_args
);
4698 arg
= TREE_CHAIN (arg
);
4699 parm
= TREE_CHAIN (parm
);
4700 /* We should never try to call the abstract constructor. */
4701 gcc_assert (!DECL_HAS_IN_CHARGE_PARM_P (fn
));
4703 if (DECL_HAS_VTT_PARM_P (fn
))
4705 converted_args
= tree_cons
4706 (NULL_TREE
, TREE_VALUE (arg
), converted_args
);
4707 arg
= TREE_CHAIN (arg
);
4708 parm
= TREE_CHAIN (parm
);
4711 /* Bypass access control for 'this' parameter. */
4712 else if (TREE_CODE (TREE_TYPE (fn
)) == METHOD_TYPE
)
4714 tree parmtype
= TREE_VALUE (parm
);
4715 tree argtype
= TREE_TYPE (TREE_VALUE (arg
));
4719 if (convs
[i
]->bad_p
)
4720 pedwarn ("passing %qT as %<this%> argument of %q#D discards qualifiers",
4721 TREE_TYPE (argtype
), fn
);
4723 /* [class.mfct.nonstatic]: If a nonstatic member function of a class
4724 X is called for an object that is not of type X, or of a type
4725 derived from X, the behavior is undefined.
4727 So we can assume that anything passed as 'this' is non-null, and
4728 optimize accordingly. */
4729 gcc_assert (TREE_CODE (parmtype
) == POINTER_TYPE
);
4730 /* Convert to the base in which the function was declared. */
4731 gcc_assert (cand
->conversion_path
!= NULL_TREE
);
4732 converted_arg
= build_base_path (PLUS_EXPR
,
4734 cand
->conversion_path
,
4736 /* Check that the base class is accessible. */
4737 if (!accessible_base_p (TREE_TYPE (argtype
),
4738 BINFO_TYPE (cand
->conversion_path
), true))
4739 error ("%qT is not an accessible base of %qT",
4740 BINFO_TYPE (cand
->conversion_path
),
4741 TREE_TYPE (argtype
));
4742 /* If fn was found by a using declaration, the conversion path
4743 will be to the derived class, not the base declaring fn. We
4744 must convert from derived to base. */
4745 base_binfo
= lookup_base (TREE_TYPE (TREE_TYPE (converted_arg
)),
4746 TREE_TYPE (parmtype
), ba_unique
, NULL
);
4747 converted_arg
= build_base_path (PLUS_EXPR
, converted_arg
,
4750 converted_args
= tree_cons (NULL_TREE
, converted_arg
, converted_args
);
4751 parm
= TREE_CHAIN (parm
);
4752 arg
= TREE_CHAIN (arg
);
4758 parm
= TREE_CHAIN (parm
), arg
= TREE_CHAIN (arg
), ++i
)
4760 tree type
= TREE_VALUE (parm
);
4763 val
= convert_like_with_context
4764 (conv
, TREE_VALUE (arg
), fn
, i
- is_method
);
4766 val
= convert_for_arg_passing (type
, val
);
4767 converted_args
= tree_cons (NULL_TREE
, val
, converted_args
);
4770 /* Default arguments */
4771 for (; parm
&& parm
!= void_list_node
; parm
= TREE_CHAIN (parm
), i
++)
4773 = tree_cons (NULL_TREE
,
4774 convert_default_arg (TREE_VALUE (parm
),
4775 TREE_PURPOSE (parm
),
4780 for (; arg
; arg
= TREE_CHAIN (arg
))
4782 tree a
= TREE_VALUE (arg
);
4783 if (magic_varargs_p (fn
))
4784 /* Do no conversions for magic varargs. */;
4786 a
= convert_arg_to_ellipsis (a
);
4787 converted_args
= tree_cons (NULL_TREE
, a
, converted_args
);
4790 converted_args
= nreverse (converted_args
);
4792 check_function_arguments (TYPE_ATTRIBUTES (TREE_TYPE (fn
)),
4795 /* Avoid actually calling copy constructors and copy assignment operators,
4798 if (! flag_elide_constructors
)
4799 /* Do things the hard way. */;
4800 else if (cand
->num_convs
== 1 && DECL_COPY_CONSTRUCTOR_P (fn
))
4803 arg
= skip_artificial_parms_for (fn
, converted_args
);
4804 arg
= TREE_VALUE (arg
);
4806 /* Pull out the real argument, disregarding const-correctness. */
4808 while (TREE_CODE (targ
) == NOP_EXPR
4809 || TREE_CODE (targ
) == NON_LVALUE_EXPR
4810 || TREE_CODE (targ
) == CONVERT_EXPR
)
4811 targ
= TREE_OPERAND (targ
, 0);
4812 if (TREE_CODE (targ
) == ADDR_EXPR
)
4814 targ
= TREE_OPERAND (targ
, 0);
4815 if (!same_type_ignoring_top_level_qualifiers_p
4816 (TREE_TYPE (TREE_TYPE (arg
)), TREE_TYPE (targ
)))
4825 arg
= build_indirect_ref (arg
, 0);
4827 /* [class.copy]: the copy constructor is implicitly defined even if
4828 the implementation elided its use. */
4829 if (TYPE_HAS_COMPLEX_INIT_REF (DECL_CONTEXT (fn
)))
4832 /* If we're creating a temp and we already have one, don't create a
4833 new one. If we're not creating a temp but we get one, use
4834 INIT_EXPR to collapse the temp into our target. Otherwise, if the
4835 ctor is trivial, do a bitwise copy with a simple TARGET_EXPR for a
4836 temp or an INIT_EXPR otherwise. */
4837 if (integer_zerop (TREE_VALUE (args
)))
4839 if (TREE_CODE (arg
) == TARGET_EXPR
)
4841 else if (TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn
)))
4842 return build_target_expr_with_type (arg
, DECL_CONTEXT (fn
));
4844 else if (TREE_CODE (arg
) == TARGET_EXPR
4845 || TYPE_HAS_TRIVIAL_INIT_REF (DECL_CONTEXT (fn
)))
4847 tree to
= stabilize_reference
4848 (build_indirect_ref (TREE_VALUE (args
), 0));
4850 val
= build2 (INIT_EXPR
, DECL_CONTEXT (fn
), to
, arg
);
4854 else if (DECL_OVERLOADED_OPERATOR_P (fn
) == NOP_EXPR
4856 && TYPE_HAS_TRIVIAL_ASSIGN_REF (DECL_CONTEXT (fn
)))
4858 tree to
= stabilize_reference
4859 (build_indirect_ref (TREE_VALUE (converted_args
), 0));
4860 tree type
= TREE_TYPE (to
);
4861 tree as_base
= CLASSTYPE_AS_BASE (type
);
4863 arg
= TREE_VALUE (TREE_CHAIN (converted_args
));
4864 if (tree_int_cst_equal (TYPE_SIZE (type
), TYPE_SIZE (as_base
)))
4866 arg
= build_indirect_ref (arg
, 0);
4867 val
= build2 (MODIFY_EXPR
, TREE_TYPE (to
), to
, arg
);
4871 /* We must only copy the non-tail padding parts.
4872 Use __builtin_memcpy for the bitwise copy. */
4876 args
= tree_cons (NULL
, TYPE_SIZE_UNIT (as_base
), NULL
);
4877 args
= tree_cons (NULL
, arg
, args
);
4878 t
= build_unary_op (ADDR_EXPR
, to
, 0);
4879 args
= tree_cons (NULL
, t
, args
);
4880 t
= implicit_built_in_decls
[BUILT_IN_MEMCPY
];
4881 t
= build_call (t
, args
);
4883 t
= convert (TREE_TYPE (TREE_VALUE (args
)), t
);
4884 val
= build_indirect_ref (t
, 0);
4892 if (DECL_VINDEX (fn
) && (flags
& LOOKUP_NONVIRTUAL
) == 0)
4894 tree t
, *p
= &TREE_VALUE (converted_args
);
4895 tree binfo
= lookup_base (TREE_TYPE (TREE_TYPE (*p
)),
4898 gcc_assert (binfo
&& binfo
!= error_mark_node
);
4900 *p
= build_base_path (PLUS_EXPR
, *p
, binfo
, 1);
4901 if (TREE_SIDE_EFFECTS (*p
))
4902 *p
= save_expr (*p
);
4903 t
= build_pointer_type (TREE_TYPE (fn
));
4904 if (DECL_CONTEXT (fn
) && TYPE_JAVA_INTERFACE (DECL_CONTEXT (fn
)))
4905 fn
= build_java_interface_fn_ref (fn
, *p
);
4907 fn
= build_vfn_ref (*p
, DECL_VINDEX (fn
));
4910 else if (DECL_INLINE (fn
))
4911 fn
= inline_conversion (fn
);
4913 fn
= build_addr_func (fn
);
4915 return build_cxx_call (fn
, converted_args
);
4918 /* Build and return a call to FN, using ARGS. This function performs
4919 no overload resolution, conversion, or other high-level
4923 build_cxx_call (tree fn
, tree args
)
4927 fn
= build_call (fn
, args
);
4929 /* If this call might throw an exception, note that fact. */
4930 fndecl
= get_callee_fndecl (fn
);
4931 if ((!fndecl
|| !TREE_NOTHROW (fndecl
))
4932 && at_function_scope_p ()
4934 cp_function_chain
->can_throw
= 1;
4936 /* Some built-in function calls will be evaluated at compile-time in
4938 fn
= fold_if_not_in_template (fn
);
4940 if (VOID_TYPE_P (TREE_TYPE (fn
)))
4943 fn
= require_complete_type (fn
);
4944 if (fn
== error_mark_node
)
4945 return error_mark_node
;
4947 if (IS_AGGR_TYPE (TREE_TYPE (fn
)))
4948 fn
= build_cplus_new (TREE_TYPE (fn
), fn
);
4949 return convert_from_reference (fn
);
4952 static GTY(()) tree java_iface_lookup_fn
;
4954 /* Make an expression which yields the address of the Java interface
4955 method FN. This is achieved by generating a call to libjava's
4956 _Jv_LookupInterfaceMethodIdx(). */
4959 build_java_interface_fn_ref (tree fn
, tree instance
)
4961 tree lookup_args
, lookup_fn
, method
, idx
;
4962 tree klass_ref
, iface
, iface_ref
;
4965 if (!java_iface_lookup_fn
)
4967 tree endlink
= build_void_list_node ();
4968 tree t
= tree_cons (NULL_TREE
, ptr_type_node
,
4969 tree_cons (NULL_TREE
, ptr_type_node
,
4970 tree_cons (NULL_TREE
, java_int_type_node
,
4972 java_iface_lookup_fn
4973 = builtin_function ("_Jv_LookupInterfaceMethodIdx",
4974 build_function_type (ptr_type_node
, t
),
4975 0, NOT_BUILT_IN
, NULL
, NULL_TREE
);
4978 /* Look up the pointer to the runtime java.lang.Class object for `instance'.
4979 This is the first entry in the vtable. */
4980 klass_ref
= build_vtbl_ref (build_indirect_ref (instance
, 0),
4983 /* Get the java.lang.Class pointer for the interface being called. */
4984 iface
= DECL_CONTEXT (fn
);
4985 iface_ref
= lookup_field (iface
, get_identifier ("class$"), 0, false);
4986 if (!iface_ref
|| TREE_CODE (iface_ref
) != VAR_DECL
4987 || DECL_CONTEXT (iface_ref
) != iface
)
4989 error ("could not find class$ field in java interface type %qT",
4991 return error_mark_node
;
4993 iface_ref
= build_address (iface_ref
);
4994 iface_ref
= convert (build_pointer_type (iface
), iface_ref
);
4996 /* Determine the itable index of FN. */
4998 for (method
= TYPE_METHODS (iface
); method
; method
= TREE_CHAIN (method
))
5000 if (!DECL_VIRTUAL_P (method
))
5006 idx
= build_int_cst (NULL_TREE
, i
);
5008 lookup_args
= tree_cons (NULL_TREE
, klass_ref
,
5009 tree_cons (NULL_TREE
, iface_ref
,
5010 build_tree_list (NULL_TREE
, idx
)));
5011 lookup_fn
= build1 (ADDR_EXPR
,
5012 build_pointer_type (TREE_TYPE (java_iface_lookup_fn
)),
5013 java_iface_lookup_fn
);
5014 return build3 (CALL_EXPR
, ptr_type_node
, lookup_fn
, lookup_args
, NULL_TREE
);
5017 /* Returns the value to use for the in-charge parameter when making a
5018 call to a function with the indicated NAME.
5020 FIXME:Can't we find a neater way to do this mapping? */
5023 in_charge_arg_for_name (tree name
)
5025 if (name
== base_ctor_identifier
5026 || name
== base_dtor_identifier
)
5027 return integer_zero_node
;
5028 else if (name
== complete_ctor_identifier
)
5029 return integer_one_node
;
5030 else if (name
== complete_dtor_identifier
)
5031 return integer_two_node
;
5032 else if (name
== deleting_dtor_identifier
)
5033 return integer_three_node
;
5035 /* This function should only be called with one of the names listed
5041 /* Build a call to a constructor, destructor, or an assignment
5042 operator for INSTANCE, an expression with class type. NAME
5043 indicates the special member function to call; ARGS are the
5044 arguments. BINFO indicates the base of INSTANCE that is to be
5045 passed as the `this' parameter to the member function called.
5047 FLAGS are the LOOKUP_* flags to use when processing the call.
5049 If NAME indicates a complete object constructor, INSTANCE may be
5050 NULL_TREE. In this case, the caller will call build_cplus_new to
5051 store the newly constructed object into a VAR_DECL. */
5054 build_special_member_call (tree instance
, tree name
, tree args
,
5055 tree binfo
, int flags
)
5058 /* The type of the subobject to be constructed or destroyed. */
5061 gcc_assert (name
== complete_ctor_identifier
5062 || name
== base_ctor_identifier
5063 || name
== complete_dtor_identifier
5064 || name
== base_dtor_identifier
5065 || name
== deleting_dtor_identifier
5066 || name
== ansi_assopname (NOP_EXPR
));
5069 /* Resolve the name. */
5070 if (!complete_type_or_else (binfo
, NULL_TREE
))
5071 return error_mark_node
;
5073 binfo
= TYPE_BINFO (binfo
);
5076 gcc_assert (binfo
!= NULL_TREE
);
5078 class_type
= BINFO_TYPE (binfo
);
5080 /* Handle the special case where INSTANCE is NULL_TREE. */
5081 if (name
== complete_ctor_identifier
&& !instance
)
5083 instance
= build_int_cst (build_pointer_type (class_type
), 0);
5084 instance
= build1 (INDIRECT_REF
, class_type
, instance
);
5088 if (name
== complete_dtor_identifier
5089 || name
== base_dtor_identifier
5090 || name
== deleting_dtor_identifier
)
5091 gcc_assert (args
== NULL_TREE
);
5093 /* Convert to the base class, if necessary. */
5094 if (!same_type_ignoring_top_level_qualifiers_p
5095 (TREE_TYPE (instance
), BINFO_TYPE (binfo
)))
5097 if (name
!= ansi_assopname (NOP_EXPR
))
5098 /* For constructors and destructors, either the base is
5099 non-virtual, or it is virtual but we are doing the
5100 conversion from a constructor or destructor for the
5101 complete object. In either case, we can convert
5103 instance
= convert_to_base_statically (instance
, binfo
);
5105 /* However, for assignment operators, we must convert
5106 dynamically if the base is virtual. */
5107 instance
= build_base_path (PLUS_EXPR
, instance
,
5108 binfo
, /*nonnull=*/1);
5112 gcc_assert (instance
!= NULL_TREE
);
5114 fns
= lookup_fnfields (binfo
, name
, 1);
5116 /* When making a call to a constructor or destructor for a subobject
5117 that uses virtual base classes, pass down a pointer to a VTT for
5119 if ((name
== base_ctor_identifier
5120 || name
== base_dtor_identifier
)
5121 && CLASSTYPE_VBASECLASSES (class_type
))
5126 /* If the current function is a complete object constructor
5127 or destructor, then we fetch the VTT directly.
5128 Otherwise, we look it up using the VTT we were given. */
5129 vtt
= TREE_CHAIN (CLASSTYPE_VTABLES (current_class_type
));
5130 vtt
= decay_conversion (vtt
);
5131 vtt
= build3 (COND_EXPR
, TREE_TYPE (vtt
),
5132 build2 (EQ_EXPR
, boolean_type_node
,
5133 current_in_charge_parm
, integer_zero_node
),
5136 gcc_assert (BINFO_SUBVTT_INDEX (binfo
));
5137 sub_vtt
= build2 (PLUS_EXPR
, TREE_TYPE (vtt
), vtt
,
5138 BINFO_SUBVTT_INDEX (binfo
));
5140 args
= tree_cons (NULL_TREE
, sub_vtt
, args
);
5143 return build_new_method_call (instance
, fns
, args
,
5144 TYPE_BINFO (BINFO_TYPE (binfo
)),
5148 /* Return the NAME, as a C string. The NAME indicates a function that
5149 is a member of TYPE. *FREE_P is set to true if the caller must
5150 free the memory returned.
5152 Rather than go through all of this, we should simply set the names
5153 of constructors and destructors appropriately, and dispense with
5154 ctor_identifier, dtor_identifier, etc. */
5157 name_as_c_string (tree name
, tree type
, bool *free_p
)
5161 /* Assume that we will not allocate memory. */
5163 /* Constructors and destructors are special. */
5164 if (IDENTIFIER_CTOR_OR_DTOR_P (name
))
5167 = (char *) IDENTIFIER_POINTER (constructor_name (type
));
5168 /* For a destructor, add the '~'. */
5169 if (name
== complete_dtor_identifier
5170 || name
== base_dtor_identifier
5171 || name
== deleting_dtor_identifier
)
5173 pretty_name
= concat ("~", pretty_name
, NULL
);
5174 /* Remember that we need to free the memory allocated. */
5178 else if (IDENTIFIER_TYPENAME_P (name
))
5180 pretty_name
= concat ("operator ",
5181 type_as_string (TREE_TYPE (name
),
5182 TFF_PLAIN_IDENTIFIER
),
5184 /* Remember that we need to free the memory allocated. */
5188 pretty_name
= (char *) IDENTIFIER_POINTER (name
);
5193 /* Build a call to "INSTANCE.FN (ARGS)". */
5196 build_new_method_call (tree instance
, tree fns
, tree args
,
5197 tree conversion_path
, int flags
)
5199 struct z_candidate
*candidates
= 0, *cand
;
5200 tree explicit_targs
= NULL_TREE
;
5201 tree basetype
= NULL_TREE
;
5204 tree mem_args
= NULL_TREE
, instance_ptr
;
5210 int template_only
= 0;
5217 gcc_assert (instance
!= NULL_TREE
);
5219 if (error_operand_p (instance
)
5220 || error_operand_p (fns
)
5221 || args
== error_mark_node
)
5222 return error_mark_node
;
5224 orig_instance
= instance
;
5228 if (processing_template_decl
)
5230 instance
= build_non_dependent_expr (instance
);
5231 if (!BASELINK_P (fns
)
5232 && TREE_CODE (fns
) != PSEUDO_DTOR_EXPR
5233 && TREE_TYPE (fns
) != unknown_type_node
)
5234 fns
= build_non_dependent_expr (fns
);
5235 args
= build_non_dependent_args (orig_args
);
5238 /* Process the argument list. */
5240 args
= resolve_args (args
);
5241 if (args
== error_mark_node
)
5242 return error_mark_node
;
5244 basetype
= TYPE_MAIN_VARIANT (TREE_TYPE (instance
));
5245 instance_ptr
= build_this (instance
);
5247 if (!BASELINK_P (fns
))
5249 error ("call to non-function %qD", fns
);
5250 return error_mark_node
;
5253 if (!conversion_path
)
5254 conversion_path
= BASELINK_BINFO (fns
);
5255 access_binfo
= BASELINK_ACCESS_BINFO (fns
);
5256 optype
= BASELINK_OPTYPE (fns
);
5257 fns
= BASELINK_FUNCTIONS (fns
);
5259 if (TREE_CODE (fns
) == TEMPLATE_ID_EXPR
)
5261 explicit_targs
= TREE_OPERAND (fns
, 1);
5262 fns
= TREE_OPERAND (fns
, 0);
5266 gcc_assert (TREE_CODE (fns
) == FUNCTION_DECL
5267 || TREE_CODE (fns
) == TEMPLATE_DECL
5268 || TREE_CODE (fns
) == OVERLOAD
);
5270 /* XXX this should be handled before we get here. */
5271 if (! IS_AGGR_TYPE (basetype
))
5273 if ((flags
& LOOKUP_COMPLAIN
) && basetype
!= error_mark_node
)
5274 error ("request for member %qD in %qE, which is of non-aggregate "
5276 fns
, instance
, basetype
);
5278 return error_mark_node
;
5281 fn
= get_first_fn (fns
);
5282 name
= DECL_NAME (fn
);
5284 if (IDENTIFIER_CTOR_OR_DTOR_P (name
))
5286 /* Callers should explicitly indicate whether they want to construct
5287 the complete object or just the part without virtual bases. */
5288 gcc_assert (name
!= ctor_identifier
);
5289 /* Similarly for destructors. */
5290 gcc_assert (name
!= dtor_identifier
);
5293 /* It's OK to call destructors on cv-qualified objects. Therefore,
5294 convert the INSTANCE_PTR to the unqualified type, if necessary. */
5295 if (DECL_DESTRUCTOR_P (fn
))
5297 tree type
= build_pointer_type (basetype
);
5298 if (!same_type_p (type
, TREE_TYPE (instance_ptr
)))
5299 instance_ptr
= build_nop (type
, instance_ptr
);
5302 class_type
= (conversion_path
? BINFO_TYPE (conversion_path
) : NULL_TREE
);
5303 mem_args
= tree_cons (NULL_TREE
, instance_ptr
, args
);
5305 /* Get the high-water mark for the CONVERSION_OBSTACK. */
5306 p
= conversion_obstack_alloc (0);
5308 for (fn
= fns
; fn
; fn
= OVL_NEXT (fn
))
5310 tree t
= OVL_CURRENT (fn
);
5313 /* We can end up here for copy-init of same or base class. */
5314 if ((flags
& LOOKUP_ONLYCONVERTING
)
5315 && DECL_NONCONVERTING_P (t
))
5318 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (t
))
5319 this_arglist
= mem_args
;
5321 this_arglist
= args
;
5323 if (TREE_CODE (t
) == TEMPLATE_DECL
)
5324 /* A member template. */
5325 add_template_candidate (&candidates
, t
,
5328 this_arglist
, optype
,
5333 else if (! template_only
)
5334 add_function_candidate (&candidates
, t
,
5342 candidates
= splice_viable (candidates
, pedantic
, &any_viable_p
);
5345 if (!COMPLETE_TYPE_P (basetype
))
5346 cxx_incomplete_type_error (instance_ptr
, basetype
);
5352 pretty_name
= name_as_c_string (name
, basetype
, &free_p
);
5353 error ("no matching function for call to %<%T::%s(%A)%#V%>",
5354 basetype
, pretty_name
, user_args
,
5355 TREE_TYPE (TREE_TYPE (instance_ptr
)));
5359 print_z_candidates (candidates
);
5360 call
= error_mark_node
;
5364 cand
= tourney (candidates
);
5370 pretty_name
= name_as_c_string (name
, basetype
, &free_p
);
5371 error ("call of overloaded %<%s(%A)%> is ambiguous", pretty_name
,
5373 print_z_candidates (candidates
);
5376 call
= error_mark_node
;
5380 if (!(flags
& LOOKUP_NONVIRTUAL
)
5381 && DECL_PURE_VIRTUAL_P (cand
->fn
)
5382 && instance
== current_class_ref
5383 && (DECL_CONSTRUCTOR_P (current_function_decl
)
5384 || DECL_DESTRUCTOR_P (current_function_decl
)))
5385 /* This is not an error, it is runtime undefined
5387 warning ((DECL_CONSTRUCTOR_P (current_function_decl
) ?
5388 "abstract virtual %q#D called from constructor"
5389 : "abstract virtual %q#D called from destructor"),
5392 if (TREE_CODE (TREE_TYPE (cand
->fn
)) == METHOD_TYPE
5393 && is_dummy_object (instance_ptr
))
5395 error ("cannot call member function %qD without object",
5397 call
= error_mark_node
;
5401 if (DECL_VINDEX (cand
->fn
) && ! (flags
& LOOKUP_NONVIRTUAL
)
5402 && resolves_to_fixed_type_p (instance
, 0))
5403 flags
|= LOOKUP_NONVIRTUAL
;
5405 call
= build_over_call (cand
, flags
);
5407 /* In an expression of the form `a->f()' where `f' turns
5408 out to be a static member function, `a' is
5409 none-the-less evaluated. */
5410 if (TREE_CODE (TREE_TYPE (cand
->fn
)) != METHOD_TYPE
5411 && !is_dummy_object (instance_ptr
)
5412 && TREE_SIDE_EFFECTS (instance
))
5413 call
= build2 (COMPOUND_EXPR
, TREE_TYPE (call
),
5419 if (processing_template_decl
&& call
!= error_mark_node
)
5420 call
= (build_min_non_dep
5422 build_min_nt (COMPONENT_REF
, orig_instance
, orig_fns
, NULL_TREE
),
5423 orig_args
, NULL_TREE
));
5425 /* Free all the conversions we allocated. */
5426 obstack_free (&conversion_obstack
, p
);
5431 /* Returns true iff standard conversion sequence ICS1 is a proper
5432 subsequence of ICS2. */
5435 is_subseq (conversion
*ics1
, conversion
*ics2
)
5437 /* We can assume that a conversion of the same code
5438 between the same types indicates a subsequence since we only get
5439 here if the types we are converting from are the same. */
5441 while (ics1
->kind
== ck_rvalue
5442 || ics1
->kind
== ck_lvalue
)
5443 ics1
= ics1
->u
.next
;
5447 while (ics2
->kind
== ck_rvalue
5448 || ics2
->kind
== ck_lvalue
)
5449 ics2
= ics2
->u
.next
;
5451 if (ics2
->kind
== ck_user
5452 || ics2
->kind
== ck_ambig
5453 || ics2
->kind
== ck_identity
)
5454 /* At this point, ICS1 cannot be a proper subsequence of
5455 ICS2. We can get a USER_CONV when we are comparing the
5456 second standard conversion sequence of two user conversion
5460 ics2
= ics2
->u
.next
;
5462 if (ics2
->kind
== ics1
->kind
5463 && same_type_p (ics2
->type
, ics1
->type
)
5464 && same_type_p (ics2
->u
.next
->type
,
5465 ics1
->u
.next
->type
))
5470 /* Returns nonzero iff DERIVED is derived from BASE. The inputs may
5471 be any _TYPE nodes. */
5474 is_properly_derived_from (tree derived
, tree base
)
5476 if (!IS_AGGR_TYPE_CODE (TREE_CODE (derived
))
5477 || !IS_AGGR_TYPE_CODE (TREE_CODE (base
)))
5480 /* We only allow proper derivation here. The DERIVED_FROM_P macro
5481 considers every class derived from itself. */
5482 return (!same_type_ignoring_top_level_qualifiers_p (derived
, base
)
5483 && DERIVED_FROM_P (base
, derived
));
5486 /* We build the ICS for an implicit object parameter as a pointer
5487 conversion sequence. However, such a sequence should be compared
5488 as if it were a reference conversion sequence. If ICS is the
5489 implicit conversion sequence for an implicit object parameter,
5490 modify it accordingly. */
5493 maybe_handle_implicit_object (conversion
**ics
)
5497 /* [over.match.funcs]
5499 For non-static member functions, the type of the
5500 implicit object parameter is "reference to cv X"
5501 where X is the class of which the function is a
5502 member and cv is the cv-qualification on the member
5503 function declaration. */
5504 conversion
*t
= *ics
;
5505 tree reference_type
;
5507 /* The `this' parameter is a pointer to a class type. Make the
5508 implicit conversion talk about a reference to that same class
5510 reference_type
= TREE_TYPE (t
->type
);
5511 reference_type
= build_reference_type (reference_type
);
5513 if (t
->kind
== ck_qual
)
5515 if (t
->kind
== ck_ptr
)
5517 t
= build_identity_conv (TREE_TYPE (t
->type
), NULL_TREE
);
5518 t
= direct_reference_binding (reference_type
, t
);
5523 /* If *ICS is a REF_BIND set *ICS to the remainder of the conversion,
5524 and return the type to which the reference refers. Otherwise,
5525 leave *ICS unchanged and return NULL_TREE. */
5528 maybe_handle_ref_bind (conversion
**ics
)
5530 if ((*ics
)->kind
== ck_ref_bind
)
5532 conversion
*old_ics
= *ics
;
5533 tree type
= TREE_TYPE (old_ics
->type
);
5534 *ics
= old_ics
->u
.next
;
5535 (*ics
)->user_conv_p
= old_ics
->user_conv_p
;
5536 (*ics
)->bad_p
= old_ics
->bad_p
;
5543 /* Compare two implicit conversion sequences according to the rules set out in
5544 [over.ics.rank]. Return values:
5546 1: ics1 is better than ics2
5547 -1: ics2 is better than ics1
5548 0: ics1 and ics2 are indistinguishable */
5551 compare_ics (conversion
*ics1
, conversion
*ics2
)
5557 tree deref_from_type1
= NULL_TREE
;
5558 tree deref_from_type2
= NULL_TREE
;
5559 tree deref_to_type1
= NULL_TREE
;
5560 tree deref_to_type2
= NULL_TREE
;
5561 conversion_rank rank1
, rank2
;
5563 /* REF_BINDING is nonzero if the result of the conversion sequence
5564 is a reference type. In that case TARGET_TYPE is the
5565 type referred to by the reference. */
5569 /* Handle implicit object parameters. */
5570 maybe_handle_implicit_object (&ics1
);
5571 maybe_handle_implicit_object (&ics2
);
5573 /* Handle reference parameters. */
5574 target_type1
= maybe_handle_ref_bind (&ics1
);
5575 target_type2
= maybe_handle_ref_bind (&ics2
);
5579 When comparing the basic forms of implicit conversion sequences (as
5580 defined in _over.best.ics_)
5582 --a standard conversion sequence (_over.ics.scs_) is a better
5583 conversion sequence than a user-defined conversion sequence
5584 or an ellipsis conversion sequence, and
5586 --a user-defined conversion sequence (_over.ics.user_) is a
5587 better conversion sequence than an ellipsis conversion sequence
5588 (_over.ics.ellipsis_). */
5589 rank1
= CONVERSION_RANK (ics1
);
5590 rank2
= CONVERSION_RANK (ics2
);
5594 else if (rank1
< rank2
)
5597 if (rank1
== cr_bad
)
5599 /* XXX Isn't this an extension? */
5600 /* Both ICS are bad. We try to make a decision based on what
5601 would have happened if they'd been good. */
5602 if (ics1
->user_conv_p
> ics2
->user_conv_p
5603 || ics1
->rank
> ics2
->rank
)
5605 else if (ics1
->user_conv_p
< ics2
->user_conv_p
5606 || ics1
->rank
< ics2
->rank
)
5609 /* We couldn't make up our minds; try to figure it out below. */
5612 if (ics1
->ellipsis_p
)
5613 /* Both conversions are ellipsis conversions. */
5616 /* User-defined conversion sequence U1 is a better conversion sequence
5617 than another user-defined conversion sequence U2 if they contain the
5618 same user-defined conversion operator or constructor and if the sec-
5619 ond standard conversion sequence of U1 is better than the second
5620 standard conversion sequence of U2. */
5622 if (ics1
->user_conv_p
)
5627 for (t1
= ics1
; t1
->kind
!= ck_user
; t1
= t1
->u
.next
)
5628 if (t1
->kind
== ck_ambig
)
5630 for (t2
= ics2
; t2
->kind
!= ck_user
; t2
= t2
->u
.next
)
5631 if (t2
->kind
== ck_ambig
)
5634 if (t1
->cand
->fn
!= t2
->cand
->fn
)
5637 /* We can just fall through here, after setting up
5638 FROM_TYPE1 and FROM_TYPE2. */
5639 from_type1
= t1
->type
;
5640 from_type2
= t2
->type
;
5647 /* We're dealing with two standard conversion sequences.
5651 Standard conversion sequence S1 is a better conversion
5652 sequence than standard conversion sequence S2 if
5654 --S1 is a proper subsequence of S2 (comparing the conversion
5655 sequences in the canonical form defined by _over.ics.scs_,
5656 excluding any Lvalue Transformation; the identity
5657 conversion sequence is considered to be a subsequence of
5658 any non-identity conversion sequence */
5661 while (t1
->kind
!= ck_identity
)
5663 from_type1
= t1
->type
;
5666 while (t2
->kind
!= ck_identity
)
5668 from_type2
= t2
->type
;
5671 if (same_type_p (from_type1
, from_type2
))
5673 if (is_subseq (ics1
, ics2
))
5675 if (is_subseq (ics2
, ics1
))
5678 /* Otherwise, one sequence cannot be a subsequence of the other; they
5679 don't start with the same type. This can happen when comparing the
5680 second standard conversion sequence in two user-defined conversion
5687 --the rank of S1 is better than the rank of S2 (by the rules
5690 Standard conversion sequences are ordered by their ranks: an Exact
5691 Match is a better conversion than a Promotion, which is a better
5692 conversion than a Conversion.
5694 Two conversion sequences with the same rank are indistinguishable
5695 unless one of the following rules applies:
5697 --A conversion that is not a conversion of a pointer, or pointer
5698 to member, to bool is better than another conversion that is such
5701 The ICS_STD_RANK automatically handles the pointer-to-bool rule,
5702 so that we do not have to check it explicitly. */
5703 if (ics1
->rank
< ics2
->rank
)
5705 else if (ics2
->rank
< ics1
->rank
)
5708 to_type1
= ics1
->type
;
5709 to_type2
= ics2
->type
;
5711 if (TYPE_PTR_P (from_type1
)
5712 && TYPE_PTR_P (from_type2
)
5713 && TYPE_PTR_P (to_type1
)
5714 && TYPE_PTR_P (to_type2
))
5716 deref_from_type1
= TREE_TYPE (from_type1
);
5717 deref_from_type2
= TREE_TYPE (from_type2
);
5718 deref_to_type1
= TREE_TYPE (to_type1
);
5719 deref_to_type2
= TREE_TYPE (to_type2
);
5721 /* The rules for pointers to members A::* are just like the rules
5722 for pointers A*, except opposite: if B is derived from A then
5723 A::* converts to B::*, not vice versa. For that reason, we
5724 switch the from_ and to_ variables here. */
5725 else if ((TYPE_PTRMEM_P (from_type1
) && TYPE_PTRMEM_P (from_type2
)
5726 && TYPE_PTRMEM_P (to_type1
) && TYPE_PTRMEM_P (to_type2
))
5727 || (TYPE_PTRMEMFUNC_P (from_type1
)
5728 && TYPE_PTRMEMFUNC_P (from_type2
)
5729 && TYPE_PTRMEMFUNC_P (to_type1
)
5730 && TYPE_PTRMEMFUNC_P (to_type2
)))
5732 deref_to_type1
= TYPE_PTRMEM_CLASS_TYPE (from_type1
);
5733 deref_to_type2
= TYPE_PTRMEM_CLASS_TYPE (from_type2
);
5734 deref_from_type1
= TYPE_PTRMEM_CLASS_TYPE (to_type1
);
5735 deref_from_type2
= TYPE_PTRMEM_CLASS_TYPE (to_type2
);
5738 if (deref_from_type1
!= NULL_TREE
5739 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type1
))
5740 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_from_type2
)))
5742 /* This was one of the pointer or pointer-like conversions.
5746 --If class B is derived directly or indirectly from class A,
5747 conversion of B* to A* is better than conversion of B* to
5748 void*, and conversion of A* to void* is better than
5749 conversion of B* to void*. */
5750 if (TREE_CODE (deref_to_type1
) == VOID_TYPE
5751 && TREE_CODE (deref_to_type2
) == VOID_TYPE
)
5753 if (is_properly_derived_from (deref_from_type1
,
5756 else if (is_properly_derived_from (deref_from_type2
,
5760 else if (TREE_CODE (deref_to_type1
) == VOID_TYPE
5761 || TREE_CODE (deref_to_type2
) == VOID_TYPE
)
5763 if (same_type_p (deref_from_type1
, deref_from_type2
))
5765 if (TREE_CODE (deref_to_type2
) == VOID_TYPE
)
5767 if (is_properly_derived_from (deref_from_type1
,
5771 /* We know that DEREF_TO_TYPE1 is `void' here. */
5772 else if (is_properly_derived_from (deref_from_type1
,
5777 else if (IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type1
))
5778 && IS_AGGR_TYPE_CODE (TREE_CODE (deref_to_type2
)))
5782 --If class B is derived directly or indirectly from class A
5783 and class C is derived directly or indirectly from B,
5785 --conversion of C* to B* is better than conversion of C* to
5788 --conversion of B* to A* is better than conversion of C* to
5790 if (same_type_p (deref_from_type1
, deref_from_type2
))
5792 if (is_properly_derived_from (deref_to_type1
,
5795 else if (is_properly_derived_from (deref_to_type2
,
5799 else if (same_type_p (deref_to_type1
, deref_to_type2
))
5801 if (is_properly_derived_from (deref_from_type2
,
5804 else if (is_properly_derived_from (deref_from_type1
,
5810 else if (CLASS_TYPE_P (non_reference (from_type1
))
5811 && same_type_p (from_type1
, from_type2
))
5813 tree from
= non_reference (from_type1
);
5817 --binding of an expression of type C to a reference of type
5818 B& is better than binding an expression of type C to a
5819 reference of type A&
5821 --conversion of C to B is better than conversion of C to A, */
5822 if (is_properly_derived_from (from
, to_type1
)
5823 && is_properly_derived_from (from
, to_type2
))
5825 if (is_properly_derived_from (to_type1
, to_type2
))
5827 else if (is_properly_derived_from (to_type2
, to_type1
))
5831 else if (CLASS_TYPE_P (non_reference (to_type1
))
5832 && same_type_p (to_type1
, to_type2
))
5834 tree to
= non_reference (to_type1
);
5838 --binding of an expression of type B to a reference of type
5839 A& is better than binding an expression of type C to a
5840 reference of type A&,
5842 --conversion of B to A is better than conversion of C to A */
5843 if (is_properly_derived_from (from_type1
, to
)
5844 && is_properly_derived_from (from_type2
, to
))
5846 if (is_properly_derived_from (from_type2
, from_type1
))
5848 else if (is_properly_derived_from (from_type1
, from_type2
))
5855 --S1 and S2 differ only in their qualification conversion and yield
5856 similar types T1 and T2 (_conv.qual_), respectively, and the cv-
5857 qualification signature of type T1 is a proper subset of the cv-
5858 qualification signature of type T2 */
5859 if (ics1
->kind
== ck_qual
5860 && ics2
->kind
== ck_qual
5861 && same_type_p (from_type1
, from_type2
))
5862 return comp_cv_qual_signature (to_type1
, to_type2
);
5866 --S1 and S2 are reference bindings (_dcl.init.ref_), and the
5867 types to which the references refer are the same type except for
5868 top-level cv-qualifiers, and the type to which the reference
5869 initialized by S2 refers is more cv-qualified than the type to
5870 which the reference initialized by S1 refers */
5872 if (target_type1
&& target_type2
5873 && same_type_ignoring_top_level_qualifiers_p (to_type1
, to_type2
))
5874 return comp_cv_qualification (target_type2
, target_type1
);
5876 /* Neither conversion sequence is better than the other. */
5880 /* The source type for this standard conversion sequence. */
5883 source_type (conversion
*t
)
5885 for (;; t
= t
->u
.next
)
5887 if (t
->kind
== ck_user
5888 || t
->kind
== ck_ambig
5889 || t
->kind
== ck_identity
)
5895 /* Note a warning about preferring WINNER to LOSER. We do this by storing
5896 a pointer to LOSER and re-running joust to produce the warning if WINNER
5897 is actually used. */
5900 add_warning (struct z_candidate
*winner
, struct z_candidate
*loser
)
5902 candidate_warning
*cw
;
5904 cw
= conversion_obstack_alloc (sizeof (candidate_warning
));
5906 cw
->next
= winner
->warnings
;
5907 winner
->warnings
= cw
;
5910 /* Compare two candidates for overloading as described in
5911 [over.match.best]. Return values:
5913 1: cand1 is better than cand2
5914 -1: cand2 is better than cand1
5915 0: cand1 and cand2 are indistinguishable */
5918 joust (struct z_candidate
*cand1
, struct z_candidate
*cand2
, bool warn
)
5921 int off1
= 0, off2
= 0;
5925 /* Candidates that involve bad conversions are always worse than those
5927 if (cand1
->viable
> cand2
->viable
)
5929 if (cand1
->viable
< cand2
->viable
)
5932 /* If we have two pseudo-candidates for conversions to the same type,
5933 or two candidates for the same function, arbitrarily pick one. */
5934 if (cand1
->fn
== cand2
->fn
5935 && (IS_TYPE_OR_DECL_P (cand1
->fn
)))
5938 /* a viable function F1
5939 is defined to be a better function than another viable function F2 if
5940 for all arguments i, ICSi(F1) is not a worse conversion sequence than
5941 ICSi(F2), and then */
5943 /* for some argument j, ICSj(F1) is a better conversion sequence than
5946 /* For comparing static and non-static member functions, we ignore
5947 the implicit object parameter of the non-static function. The
5948 standard says to pretend that the static function has an object
5949 parm, but that won't work with operator overloading. */
5950 len
= cand1
->num_convs
;
5951 if (len
!= cand2
->num_convs
)
5953 int static_1
= DECL_STATIC_FUNCTION_P (cand1
->fn
);
5954 int static_2
= DECL_STATIC_FUNCTION_P (cand2
->fn
);
5956 gcc_assert (static_1
!= static_2
);
5967 for (i
= 0; i
< len
; ++i
)
5969 conversion
*t1
= cand1
->convs
[i
+ off1
];
5970 conversion
*t2
= cand2
->convs
[i
+ off2
];
5971 int comp
= compare_ics (t1
, t2
);
5976 && (CONVERSION_RANK (t1
) + CONVERSION_RANK (t2
)
5977 == cr_std
+ cr_promotion
)
5978 && t1
->kind
== ck_std
5979 && t2
->kind
== ck_std
5980 && TREE_CODE (t1
->type
) == INTEGER_TYPE
5981 && TREE_CODE (t2
->type
) == INTEGER_TYPE
5982 && (TYPE_PRECISION (t1
->type
)
5983 == TYPE_PRECISION (t2
->type
))
5984 && (TYPE_UNSIGNED (t1
->u
.next
->type
)
5985 || (TREE_CODE (t1
->u
.next
->type
)
5988 tree type
= t1
->u
.next
->type
;
5990 struct z_candidate
*w
, *l
;
5992 type1
= t1
->type
, type2
= t2
->type
,
5993 w
= cand1
, l
= cand2
;
5995 type1
= t2
->type
, type2
= t1
->type
,
5996 w
= cand2
, l
= cand1
;
6000 warning ("passing %qT chooses %qT over %qT",
6001 type
, type1
, type2
);
6002 warning (" in call to %qD", w
->fn
);
6008 if (winner
&& comp
!= winner
)
6017 /* warn about confusing overload resolution for user-defined conversions,
6018 either between a constructor and a conversion op, or between two
6020 if (winner
&& warn_conversion
&& cand1
->second_conv
6021 && (!DECL_CONSTRUCTOR_P (cand1
->fn
) || !DECL_CONSTRUCTOR_P (cand2
->fn
))
6022 && winner
!= compare_ics (cand1
->second_conv
, cand2
->second_conv
))
6024 struct z_candidate
*w
, *l
;
6025 bool give_warning
= false;
6028 w
= cand1
, l
= cand2
;
6030 w
= cand2
, l
= cand1
;
6032 /* We don't want to complain about `X::operator T1 ()'
6033 beating `X::operator T2 () const', when T2 is a no less
6034 cv-qualified version of T1. */
6035 if (DECL_CONTEXT (w
->fn
) == DECL_CONTEXT (l
->fn
)
6036 && !DECL_CONSTRUCTOR_P (w
->fn
) && !DECL_CONSTRUCTOR_P (l
->fn
))
6038 tree t
= TREE_TYPE (TREE_TYPE (l
->fn
));
6039 tree f
= TREE_TYPE (TREE_TYPE (w
->fn
));
6041 if (TREE_CODE (t
) == TREE_CODE (f
) && POINTER_TYPE_P (t
))
6046 if (!comp_ptr_ttypes (t
, f
))
6047 give_warning
= true;
6050 give_warning
= true;
6056 tree source
= source_type (w
->convs
[0]);
6057 if (! DECL_CONSTRUCTOR_P (w
->fn
))
6058 source
= TREE_TYPE (source
);
6059 warning ("choosing %qD over %qD", w
->fn
, l
->fn
);
6060 warning (" for conversion from %qT to %qT",
6061 source
, w
->second_conv
->type
);
6062 warning (" because conversion sequence for the argument is better");
6072 F1 is a non-template function and F2 is a template function
6075 if (!cand1
->template_decl
&& cand2
->template_decl
)
6077 else if (cand1
->template_decl
&& !cand2
->template_decl
)
6081 F1 and F2 are template functions and the function template for F1 is
6082 more specialized than the template for F2 according to the partial
6085 if (cand1
->template_decl
&& cand2
->template_decl
)
6087 winner
= more_specialized
6088 (TI_TEMPLATE (cand1
->template_decl
),
6089 TI_TEMPLATE (cand2
->template_decl
),
6091 /* Tell the deduction code how many real function arguments
6092 we saw, not counting the implicit 'this' argument. But,
6093 add_function_candidate() suppresses the "this" argument
6096 [temp.func.order]: The presence of unused ellipsis and default
6097 arguments has no effect on the partial ordering of function
6100 - (DECL_NONSTATIC_MEMBER_FUNCTION_P (cand1
->fn
)
6101 - DECL_CONSTRUCTOR_P (cand1
->fn
)));
6107 the context is an initialization by user-defined conversion (see
6108 _dcl.init_ and _over.match.user_) and the standard conversion
6109 sequence from the return type of F1 to the destination type (i.e.,
6110 the type of the entity being initialized) is a better conversion
6111 sequence than the standard conversion sequence from the return type
6112 of F2 to the destination type. */
6114 if (cand1
->second_conv
)
6116 winner
= compare_ics (cand1
->second_conv
, cand2
->second_conv
);
6121 /* Check whether we can discard a builtin candidate, either because we
6122 have two identical ones or matching builtin and non-builtin candidates.
6124 (Pedantically in the latter case the builtin which matched the user
6125 function should not be added to the overload set, but we spot it here.
6128 ... the builtin candidates include ...
6129 - do not have the same parameter type list as any non-template
6130 non-member candidate. */
6132 if (TREE_CODE (cand1
->fn
) == IDENTIFIER_NODE
6133 || TREE_CODE (cand2
->fn
) == IDENTIFIER_NODE
)
6135 for (i
= 0; i
< len
; ++i
)
6136 if (!same_type_p (cand1
->convs
[i
]->type
,
6137 cand2
->convs
[i
]->type
))
6139 if (i
== cand1
->num_convs
)
6141 if (cand1
->fn
== cand2
->fn
)
6142 /* Two built-in candidates; arbitrarily pick one. */
6144 else if (TREE_CODE (cand1
->fn
) == IDENTIFIER_NODE
)
6145 /* cand1 is built-in; prefer cand2. */
6148 /* cand2 is built-in; prefer cand1. */
6153 /* If the two functions are the same (this can happen with declarations
6154 in multiple scopes and arg-dependent lookup), arbitrarily choose one. */
6155 if (DECL_P (cand1
->fn
) && DECL_P (cand2
->fn
)
6156 && equal_functions (cand1
->fn
, cand2
->fn
))
6161 /* Extension: If the worst conversion for one candidate is worse than the
6162 worst conversion for the other, take the first. */
6165 conversion_rank rank1
= cr_identity
, rank2
= cr_identity
;
6166 struct z_candidate
*w
= 0, *l
= 0;
6168 for (i
= 0; i
< len
; ++i
)
6170 if (CONVERSION_RANK (cand1
->convs
[i
+off1
]) > rank1
)
6171 rank1
= CONVERSION_RANK (cand1
->convs
[i
+off1
]);
6172 if (CONVERSION_RANK (cand2
->convs
[i
+ off2
]) > rank2
)
6173 rank2
= CONVERSION_RANK (cand2
->convs
[i
+ off2
]);
6176 winner
= 1, w
= cand1
, l
= cand2
;
6178 winner
= -1, w
= cand2
, l
= cand1
;
6184 ISO C++ says that these are ambiguous, even \
6185 though the worst conversion for the first is better than \
6186 the worst conversion for the second:");
6187 print_z_candidate (_("candidate 1:"), w
);
6188 print_z_candidate (_("candidate 2:"), l
);
6196 gcc_assert (!winner
);
6200 /* Given a list of candidates for overloading, find the best one, if any.
6201 This algorithm has a worst case of O(2n) (winner is last), and a best
6202 case of O(n/2) (totally ambiguous); much better than a sorting
6205 static struct z_candidate
*
6206 tourney (struct z_candidate
*candidates
)
6208 struct z_candidate
*champ
= candidates
, *challenger
;
6210 int champ_compared_to_predecessor
= 0;
6212 /* Walk through the list once, comparing each current champ to the next
6213 candidate, knocking out a candidate or two with each comparison. */
6215 for (challenger
= champ
->next
; challenger
; )
6217 fate
= joust (champ
, challenger
, 0);
6219 challenger
= challenger
->next
;
6224 champ
= challenger
->next
;
6227 champ_compared_to_predecessor
= 0;
6232 champ_compared_to_predecessor
= 1;
6235 challenger
= champ
->next
;
6239 /* Make sure the champ is better than all the candidates it hasn't yet
6240 been compared to. */
6242 for (challenger
= candidates
;
6244 && !(champ_compared_to_predecessor
&& challenger
->next
== champ
);
6245 challenger
= challenger
->next
)
6247 fate
= joust (champ
, challenger
, 0);
6255 /* Returns nonzero if things of type FROM can be converted to TO. */
6258 can_convert (tree to
, tree from
)
6260 return can_convert_arg (to
, from
, NULL_TREE
);
6263 /* Returns nonzero if ARG (of type FROM) can be converted to TO. */
6266 can_convert_arg (tree to
, tree from
, tree arg
)
6272 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6273 p
= conversion_obstack_alloc (0);
6275 t
= implicit_conversion (to
, from
, arg
, LOOKUP_NORMAL
);
6276 ok_p
= (t
&& !t
->bad_p
);
6278 /* Free all the conversions we allocated. */
6279 obstack_free (&conversion_obstack
, p
);
6284 /* Like can_convert_arg, but allows dubious conversions as well. */
6287 can_convert_arg_bad (tree to
, tree from
, tree arg
)
6292 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6293 p
= conversion_obstack_alloc (0);
6294 /* Try to perform the conversion. */
6295 t
= implicit_conversion (to
, from
, arg
, LOOKUP_NORMAL
);
6296 /* Free all the conversions we allocated. */
6297 obstack_free (&conversion_obstack
, p
);
6302 /* Convert EXPR to TYPE. Return the converted expression.
6304 Note that we allow bad conversions here because by the time we get to
6305 this point we are committed to doing the conversion. If we end up
6306 doing a bad conversion, convert_like will complain. */
6309 perform_implicit_conversion (tree type
, tree expr
)
6314 if (error_operand_p (expr
))
6315 return error_mark_node
;
6317 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6318 p
= conversion_obstack_alloc (0);
6320 conv
= implicit_conversion (type
, TREE_TYPE (expr
), expr
,
6324 error ("could not convert %qE to %qT", expr
, type
);
6325 expr
= error_mark_node
;
6328 expr
= convert_like (conv
, expr
);
6330 /* Free all the conversions we allocated. */
6331 obstack_free (&conversion_obstack
, p
);
6336 /* Convert EXPR to TYPE (as a direct-initialization) if that is
6337 permitted. If the conversion is valid, the converted expression is
6338 returned. Otherwise, NULL_TREE is returned, except in the case
6339 that TYPE is a class type; in that case, an error is issued. If
6340 C_CAST_P is true, then this direction initialization is taking
6341 place as part of a static_cast being attempted as part of a C-style
6345 perform_direct_initialization_if_possible (tree type
,
6352 if (type
== error_mark_node
|| error_operand_p (expr
))
6353 return error_mark_node
;
6356 If the destination type is a (possibly cv-qualified) class type:
6358 -- If the initialization is direct-initialization ...,
6359 constructors are considered. ... If no constructor applies, or
6360 the overload resolution is ambiguous, the initialization is
6362 if (CLASS_TYPE_P (type
))
6364 expr
= build_special_member_call (NULL_TREE
, complete_ctor_identifier
,
6365 build_tree_list (NULL_TREE
, expr
),
6366 type
, LOOKUP_NORMAL
);
6367 return build_cplus_new (type
, expr
);
6370 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6371 p
= conversion_obstack_alloc (0);
6373 conv
= implicit_conversion (type
, TREE_TYPE (expr
), expr
,
6375 if (!conv
|| conv
->bad_p
)
6378 expr
= convert_like_real (conv
, expr
, NULL_TREE
, 0, 0,
6379 /*issue_conversion_warnings=*/false,
6382 /* Free all the conversions we allocated. */
6383 obstack_free (&conversion_obstack
, p
);
6388 /* DECL is a VAR_DECL whose type is a REFERENCE_TYPE. The reference
6389 is being bound to a temporary. Create and return a new VAR_DECL
6390 with the indicated TYPE; this variable will store the value to
6391 which the reference is bound. */
6394 make_temporary_var_for_ref_to_temp (tree decl
, tree type
)
6398 /* Create the variable. */
6399 var
= build_decl (VAR_DECL
, NULL_TREE
, type
);
6400 DECL_ARTIFICIAL (var
) = 1;
6401 DECL_IGNORED_P (var
) = 1;
6402 TREE_USED (var
) = 1;
6404 /* Register the variable. */
6405 if (TREE_STATIC (decl
))
6407 /* Namespace-scope or local static; give it a mangled name. */
6410 TREE_STATIC (var
) = 1;
6411 name
= mangle_ref_init_variable (decl
);
6412 DECL_NAME (var
) = name
;
6413 SET_DECL_ASSEMBLER_NAME (var
, name
);
6414 var
= pushdecl_top_level (var
);
6418 /* Create a new cleanup level if necessary. */
6419 maybe_push_cleanup_level (type
);
6420 /* Don't push unnamed temps. Do set DECL_CONTEXT, though. */
6421 DECL_CONTEXT (var
) = current_function_decl
;
6427 /* Convert EXPR to the indicated reference TYPE, in a way suitable for
6428 initializing a variable of that TYPE. If DECL is non-NULL, it is
6429 the VAR_DECL being initialized with the EXPR. (In that case, the
6430 type of DECL will be TYPE.) If DECL is non-NULL, then CLEANUP must
6431 also be non-NULL, and with *CLEANUP initialized to NULL. Upon
6432 return, if *CLEANUP is no longer NULL, it will be an expression
6433 that should be pushed as a cleanup after the returned expression
6434 is used to initialize DECL.
6436 Return the converted expression. */
6439 initialize_reference (tree type
, tree expr
, tree decl
, tree
*cleanup
)
6444 if (type
== error_mark_node
|| error_operand_p (expr
))
6445 return error_mark_node
;
6447 /* Get the high-water mark for the CONVERSION_OBSTACK. */
6448 p
= conversion_obstack_alloc (0);
6450 conv
= reference_binding (type
, TREE_TYPE (expr
), expr
, LOOKUP_NORMAL
);
6451 if (!conv
|| conv
->bad_p
)
6453 if (!(TYPE_QUALS (TREE_TYPE (type
)) & TYPE_QUAL_CONST
)
6454 && !real_lvalue_p (expr
))
6455 error ("invalid initialization of non-const reference of "
6456 "type %qT from a temporary of type %qT",
6457 type
, TREE_TYPE (expr
));
6459 error ("invalid initialization of reference of type "
6460 "%qT from expression of type %qT", type
,
6462 return error_mark_node
;
6465 /* If DECL is non-NULL, then this special rule applies:
6469 The temporary to which the reference is bound or the temporary
6470 that is the complete object to which the reference is bound
6471 persists for the lifetime of the reference.
6473 The temporaries created during the evaluation of the expression
6474 initializing the reference, except the temporary to which the
6475 reference is bound, are destroyed at the end of the
6476 full-expression in which they are created.
6478 In that case, we store the converted expression into a new
6479 VAR_DECL in a new scope.
6481 However, we want to be careful not to create temporaries when
6482 they are not required. For example, given:
6485 struct D : public B {};
6489 there is no need to copy the return value from "f"; we can just
6490 extend its lifetime. Similarly, given:
6493 struct T { operator S(); };
6497 we can extend the lifetime of the return value of the conversion
6499 gcc_assert (conv
->kind
== ck_ref_bind
);
6503 tree base_conv_type
;
6505 /* Skip over the REF_BIND. */
6506 conv
= conv
->u
.next
;
6507 /* If the next conversion is a BASE_CONV, skip that too -- but
6508 remember that the conversion was required. */
6509 if (conv
->kind
== ck_base
)
6511 if (conv
->check_copy_constructor_p
)
6512 check_constructor_callable (TREE_TYPE (expr
), expr
);
6513 base_conv_type
= conv
->type
;
6514 conv
= conv
->u
.next
;
6517 base_conv_type
= NULL_TREE
;
6518 /* Perform the remainder of the conversion. */
6519 expr
= convert_like_real (conv
, expr
,
6520 /*fn=*/NULL_TREE
, /*argnum=*/0,
6522 /*issue_conversion_warnings=*/true,
6523 /*c_cast_p=*/false);
6524 if (error_operand_p (expr
))
6525 expr
= error_mark_node
;
6528 if (!real_lvalue_p (expr
))
6533 /* Create the temporary variable. */
6534 type
= TREE_TYPE (expr
);
6535 var
= make_temporary_var_for_ref_to_temp (decl
, type
);
6536 layout_decl (var
, 0);
6537 /* If the rvalue is the result of a function call it will be
6538 a TARGET_EXPR. If it is some other construct (such as a
6539 member access expression where the underlying object is
6540 itself the result of a function call), turn it into a
6541 TARGET_EXPR here. It is important that EXPR be a
6542 TARGET_EXPR below since otherwise the INIT_EXPR will
6543 attempt to make a bitwise copy of EXPR to initialize
6545 if (TREE_CODE (expr
) != TARGET_EXPR
)
6546 expr
= get_target_expr (expr
);
6547 /* Create the INIT_EXPR that will initialize the temporary
6549 init
= build2 (INIT_EXPR
, type
, var
, expr
);
6550 if (at_function_scope_p ())
6552 add_decl_expr (var
);
6553 *cleanup
= cxx_maybe_build_cleanup (var
);
6555 /* We must be careful to destroy the temporary only
6556 after its initialization has taken place. If the
6557 initialization throws an exception, then the
6558 destructor should not be run. We cannot simply
6559 transform INIT into something like:
6561 (INIT, ({ CLEANUP_STMT; }))
6563 because emit_local_var always treats the
6564 initializer as a full-expression. Thus, the
6565 destructor would run too early; it would run at the
6566 end of initializing the reference variable, rather
6567 than at the end of the block enclosing the
6570 The solution is to pass back a cleanup expression
6571 which the caller is responsible for attaching to
6572 the statement tree. */
6576 rest_of_decl_compilation (var
, /*toplev=*/1, at_eof
);
6577 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type
))
6578 static_aggregates
= tree_cons (NULL_TREE
, var
,
6581 /* Use its address to initialize the reference variable. */
6582 expr
= build_address (var
);
6584 expr
= convert_to_base (expr
,
6585 build_pointer_type (base_conv_type
),
6586 /*check_access=*/true,
6588 expr
= build2 (COMPOUND_EXPR
, TREE_TYPE (expr
), init
, expr
);
6591 /* Take the address of EXPR. */
6592 expr
= build_unary_op (ADDR_EXPR
, expr
, 0);
6593 /* If a BASE_CONV was required, perform it now. */
6595 expr
= (perform_implicit_conversion
6596 (build_pointer_type (base_conv_type
), expr
));
6597 expr
= build_nop (type
, expr
);
6601 /* Perform the conversion. */
6602 expr
= convert_like (conv
, expr
);
6604 /* Free all the conversions we allocated. */
6605 obstack_free (&conversion_obstack
, p
);
6610 #include "gt-cp-call.h"