* gcc.dg/store-motion-fgcse-sm.c (dg-final): Cleanup
[official-gcc.git] / gcc / var-tracking.c
blobe7d4ff19802778ca433bf05a469f42e94c428788
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
28 How does the variable tracking pass work?
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "varasm.h"
95 #include "stor-layout.h"
96 #include "hash-map.h"
97 #include "hash-table.h"
98 #include "predict.h"
99 #include "vec.h"
100 #include "hashtab.h"
101 #include "hash-set.h"
102 #include "machmode.h"
103 #include "hard-reg-set.h"
104 #include "input.h"
105 #include "function.h"
106 #include "dominance.h"
107 #include "cfg.h"
108 #include "cfgrtl.h"
109 #include "cfganal.h"
110 #include "basic-block.h"
111 #include "tm_p.h"
112 #include "flags.h"
113 #include "insn-config.h"
114 #include "reload.h"
115 #include "sbitmap.h"
116 #include "alloc-pool.h"
117 #include "regs.h"
118 #include "expr.h"
119 #include "tree-pass.h"
120 #include "bitmap.h"
121 #include "tree-dfa.h"
122 #include "tree-ssa.h"
123 #include "cselib.h"
124 #include "target.h"
125 #include "params.h"
126 #include "diagnostic.h"
127 #include "tree-pretty-print.h"
128 #include "recog.h"
129 #include "tm_p.h"
130 #include "alias.h"
131 #include "rtl-iter.h"
132 #include "fibonacci_heap.h"
134 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
135 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
137 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
138 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
139 Currently the value is the same as IDENTIFIER_NODE, which has such
140 a property. If this compile time assertion ever fails, make sure that
141 the new tree code that equals (int) VALUE has the same property. */
142 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
144 /* Type of micro operation. */
145 enum micro_operation_type
147 MO_USE, /* Use location (REG or MEM). */
148 MO_USE_NO_VAR,/* Use location which is not associated with a variable
149 or the variable is not trackable. */
150 MO_VAL_USE, /* Use location which is associated with a value. */
151 MO_VAL_LOC, /* Use location which appears in a debug insn. */
152 MO_VAL_SET, /* Set location associated with a value. */
153 MO_SET, /* Set location. */
154 MO_COPY, /* Copy the same portion of a variable from one
155 location to another. */
156 MO_CLOBBER, /* Clobber location. */
157 MO_CALL, /* Call insn. */
158 MO_ADJUST /* Adjust stack pointer. */
162 static const char * const ATTRIBUTE_UNUSED
163 micro_operation_type_name[] = {
164 "MO_USE",
165 "MO_USE_NO_VAR",
166 "MO_VAL_USE",
167 "MO_VAL_LOC",
168 "MO_VAL_SET",
169 "MO_SET",
170 "MO_COPY",
171 "MO_CLOBBER",
172 "MO_CALL",
173 "MO_ADJUST"
176 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
177 Notes emitted as AFTER_CALL are to take effect during the call,
178 rather than after the call. */
179 enum emit_note_where
181 EMIT_NOTE_BEFORE_INSN,
182 EMIT_NOTE_AFTER_INSN,
183 EMIT_NOTE_AFTER_CALL_INSN
186 /* Structure holding information about micro operation. */
187 typedef struct micro_operation_def
189 /* Type of micro operation. */
190 enum micro_operation_type type;
192 /* The instruction which the micro operation is in, for MO_USE,
193 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
194 instruction or note in the original flow (before any var-tracking
195 notes are inserted, to simplify emission of notes), for MO_SET
196 and MO_CLOBBER. */
197 rtx_insn *insn;
199 union {
200 /* Location. For MO_SET and MO_COPY, this is the SET that
201 performs the assignment, if known, otherwise it is the target
202 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
203 CONCAT of the VALUE and the LOC associated with it. For
204 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
205 associated with it. */
206 rtx loc;
208 /* Stack adjustment. */
209 HOST_WIDE_INT adjust;
210 } u;
211 } micro_operation;
214 /* A declaration of a variable, or an RTL value being handled like a
215 declaration. */
216 typedef void *decl_or_value;
218 /* Return true if a decl_or_value DV is a DECL or NULL. */
219 static inline bool
220 dv_is_decl_p (decl_or_value dv)
222 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
225 /* Return true if a decl_or_value is a VALUE rtl. */
226 static inline bool
227 dv_is_value_p (decl_or_value dv)
229 return dv && !dv_is_decl_p (dv);
232 /* Return the decl in the decl_or_value. */
233 static inline tree
234 dv_as_decl (decl_or_value dv)
236 gcc_checking_assert (dv_is_decl_p (dv));
237 return (tree) dv;
240 /* Return the value in the decl_or_value. */
241 static inline rtx
242 dv_as_value (decl_or_value dv)
244 gcc_checking_assert (dv_is_value_p (dv));
245 return (rtx)dv;
248 /* Return the opaque pointer in the decl_or_value. */
249 static inline void *
250 dv_as_opaque (decl_or_value dv)
252 return dv;
256 /* Description of location of a part of a variable. The content of a physical
257 register is described by a chain of these structures.
258 The chains are pretty short (usually 1 or 2 elements) and thus
259 chain is the best data structure. */
260 typedef struct attrs_def
262 /* Pointer to next member of the list. */
263 struct attrs_def *next;
265 /* The rtx of register. */
266 rtx loc;
268 /* The declaration corresponding to LOC. */
269 decl_or_value dv;
271 /* Offset from start of DECL. */
272 HOST_WIDE_INT offset;
273 } *attrs;
275 /* Structure for chaining the locations. */
276 typedef struct location_chain_def
278 /* Next element in the chain. */
279 struct location_chain_def *next;
281 /* The location (REG, MEM or VALUE). */
282 rtx loc;
284 /* The "value" stored in this location. */
285 rtx set_src;
287 /* Initialized? */
288 enum var_init_status init;
289 } *location_chain;
291 /* A vector of loc_exp_dep holds the active dependencies of a one-part
292 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
293 location of DV. Each entry is also part of VALUE' s linked-list of
294 backlinks back to DV. */
295 typedef struct loc_exp_dep_s
297 /* The dependent DV. */
298 decl_or_value dv;
299 /* The dependency VALUE or DECL_DEBUG. */
300 rtx value;
301 /* The next entry in VALUE's backlinks list. */
302 struct loc_exp_dep_s *next;
303 /* A pointer to the pointer to this entry (head or prev's next) in
304 the doubly-linked list. */
305 struct loc_exp_dep_s **pprev;
306 } loc_exp_dep;
309 /* This data structure holds information about the depth of a variable
310 expansion. */
311 typedef struct expand_depth_struct
313 /* This measures the complexity of the expanded expression. It
314 grows by one for each level of expansion that adds more than one
315 operand. */
316 int complexity;
317 /* This counts the number of ENTRY_VALUE expressions in an
318 expansion. We want to minimize their use. */
319 int entryvals;
320 } expand_depth;
322 /* This data structure is allocated for one-part variables at the time
323 of emitting notes. */
324 struct onepart_aux
326 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
327 computation used the expansion of this variable, and that ought
328 to be notified should this variable change. If the DV's cur_loc
329 expanded to NULL, all components of the loc list are regarded as
330 active, so that any changes in them give us a chance to get a
331 location. Otherwise, only components of the loc that expanded to
332 non-NULL are regarded as active dependencies. */
333 loc_exp_dep *backlinks;
334 /* This holds the LOC that was expanded into cur_loc. We need only
335 mark a one-part variable as changed if the FROM loc is removed,
336 or if it has no known location and a loc is added, or if it gets
337 a change notification from any of its active dependencies. */
338 rtx from;
339 /* The depth of the cur_loc expression. */
340 expand_depth depth;
341 /* Dependencies actively used when expand FROM into cur_loc. */
342 vec<loc_exp_dep, va_heap, vl_embed> deps;
345 /* Structure describing one part of variable. */
346 typedef struct variable_part_def
348 /* Chain of locations of the part. */
349 location_chain loc_chain;
351 /* Location which was last emitted to location list. */
352 rtx cur_loc;
354 union variable_aux
356 /* The offset in the variable, if !var->onepart. */
357 HOST_WIDE_INT offset;
359 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
360 struct onepart_aux *onepaux;
361 } aux;
362 } variable_part;
364 /* Maximum number of location parts. */
365 #define MAX_VAR_PARTS 16
367 /* Enumeration type used to discriminate various types of one-part
368 variables. */
369 typedef enum onepart_enum
371 /* Not a one-part variable. */
372 NOT_ONEPART = 0,
373 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
374 ONEPART_VDECL = 1,
375 /* A DEBUG_EXPR_DECL. */
376 ONEPART_DEXPR = 2,
377 /* A VALUE. */
378 ONEPART_VALUE = 3
379 } onepart_enum_t;
381 /* Structure describing where the variable is located. */
382 typedef struct variable_def
384 /* The declaration of the variable, or an RTL value being handled
385 like a declaration. */
386 decl_or_value dv;
388 /* Reference count. */
389 int refcount;
391 /* Number of variable parts. */
392 char n_var_parts;
394 /* What type of DV this is, according to enum onepart_enum. */
395 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
397 /* True if this variable_def struct is currently in the
398 changed_variables hash table. */
399 bool in_changed_variables;
401 /* The variable parts. */
402 variable_part var_part[1];
403 } *variable;
404 typedef const struct variable_def *const_variable;
406 /* Pointer to the BB's information specific to variable tracking pass. */
407 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
409 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
410 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
412 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
414 /* Access VAR's Ith part's offset, checking that it's not a one-part
415 variable. */
416 #define VAR_PART_OFFSET(var, i) __extension__ \
417 (*({ variable const __v = (var); \
418 gcc_checking_assert (!__v->onepart); \
419 &__v->var_part[(i)].aux.offset; }))
421 /* Access VAR's one-part auxiliary data, checking that it is a
422 one-part variable. */
423 #define VAR_LOC_1PAUX(var) __extension__ \
424 (*({ variable const __v = (var); \
425 gcc_checking_assert (__v->onepart); \
426 &__v->var_part[0].aux.onepaux; }))
428 #else
429 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
430 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
431 #endif
433 /* These are accessor macros for the one-part auxiliary data. When
434 convenient for users, they're guarded by tests that the data was
435 allocated. */
436 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
437 ? VAR_LOC_1PAUX (var)->backlinks \
438 : NULL)
439 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
440 ? &VAR_LOC_1PAUX (var)->backlinks \
441 : NULL)
442 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
443 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
444 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
445 ? &VAR_LOC_1PAUX (var)->deps \
446 : NULL)
450 typedef unsigned int dvuid;
452 /* Return the uid of DV. */
454 static inline dvuid
455 dv_uid (decl_or_value dv)
457 if (dv_is_value_p (dv))
458 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
459 else
460 return DECL_UID (dv_as_decl (dv));
463 /* Compute the hash from the uid. */
465 static inline hashval_t
466 dv_uid2hash (dvuid uid)
468 return uid;
471 /* The hash function for a mask table in a shared_htab chain. */
473 static inline hashval_t
474 dv_htab_hash (decl_or_value dv)
476 return dv_uid2hash (dv_uid (dv));
479 static void variable_htab_free (void *);
481 /* Variable hashtable helpers. */
483 struct variable_hasher
485 typedef variable_def value_type;
486 typedef void compare_type;
487 static inline hashval_t hash (const value_type *);
488 static inline bool equal (const value_type *, const compare_type *);
489 static inline void remove (value_type *);
492 /* The hash function for variable_htab, computes the hash value
493 from the declaration of variable X. */
495 inline hashval_t
496 variable_hasher::hash (const value_type *v)
498 return dv_htab_hash (v->dv);
501 /* Compare the declaration of variable X with declaration Y. */
503 inline bool
504 variable_hasher::equal (const value_type *v, const compare_type *y)
506 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
508 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
511 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
513 inline void
514 variable_hasher::remove (value_type *var)
516 variable_htab_free (var);
519 typedef hash_table<variable_hasher> variable_table_type;
520 typedef variable_table_type::iterator variable_iterator_type;
522 /* Structure for passing some other parameters to function
523 emit_note_insn_var_location. */
524 typedef struct emit_note_data_def
526 /* The instruction which the note will be emitted before/after. */
527 rtx_insn *insn;
529 /* Where the note will be emitted (before/after insn)? */
530 enum emit_note_where where;
532 /* The variables and values active at this point. */
533 variable_table_type *vars;
534 } emit_note_data;
536 /* Structure holding a refcounted hash table. If refcount > 1,
537 it must be first unshared before modified. */
538 typedef struct shared_hash_def
540 /* Reference count. */
541 int refcount;
543 /* Actual hash table. */
544 variable_table_type *htab;
545 } *shared_hash;
547 /* Structure holding the IN or OUT set for a basic block. */
548 typedef struct dataflow_set_def
550 /* Adjustment of stack offset. */
551 HOST_WIDE_INT stack_adjust;
553 /* Attributes for registers (lists of attrs). */
554 attrs regs[FIRST_PSEUDO_REGISTER];
556 /* Variable locations. */
557 shared_hash vars;
559 /* Vars that is being traversed. */
560 shared_hash traversed_vars;
561 } dataflow_set;
563 /* The structure (one for each basic block) containing the information
564 needed for variable tracking. */
565 typedef struct variable_tracking_info_def
567 /* The vector of micro operations. */
568 vec<micro_operation> mos;
570 /* The IN and OUT set for dataflow analysis. */
571 dataflow_set in;
572 dataflow_set out;
574 /* The permanent-in dataflow set for this block. This is used to
575 hold values for which we had to compute entry values. ??? This
576 should probably be dynamically allocated, to avoid using more
577 memory in non-debug builds. */
578 dataflow_set *permp;
580 /* Has the block been visited in DFS? */
581 bool visited;
583 /* Has the block been flooded in VTA? */
584 bool flooded;
586 } *variable_tracking_info;
588 /* Alloc pool for struct attrs_def. */
589 static alloc_pool attrs_pool;
591 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
592 static alloc_pool var_pool;
594 /* Alloc pool for struct variable_def with a single var_part entry. */
595 static alloc_pool valvar_pool;
597 /* Alloc pool for struct location_chain_def. */
598 static alloc_pool loc_chain_pool;
600 /* Alloc pool for struct shared_hash_def. */
601 static alloc_pool shared_hash_pool;
603 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
604 static alloc_pool loc_exp_dep_pool;
606 /* Changed variables, notes will be emitted for them. */
607 static variable_table_type *changed_variables;
609 /* Shall notes be emitted? */
610 static bool emit_notes;
612 /* Values whose dynamic location lists have gone empty, but whose
613 cselib location lists are still usable. Use this to hold the
614 current location, the backlinks, etc, during emit_notes. */
615 static variable_table_type *dropped_values;
617 /* Empty shared hashtable. */
618 static shared_hash empty_shared_hash;
620 /* Scratch register bitmap used by cselib_expand_value_rtx. */
621 static bitmap scratch_regs = NULL;
623 #ifdef HAVE_window_save
624 typedef struct GTY(()) parm_reg {
625 rtx outgoing;
626 rtx incoming;
627 } parm_reg_t;
630 /* Vector of windowed parameter registers, if any. */
631 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
632 #endif
634 /* Variable used to tell whether cselib_process_insn called our hook. */
635 static bool cselib_hook_called;
637 /* Local function prototypes. */
638 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
639 HOST_WIDE_INT *);
640 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
641 HOST_WIDE_INT *);
642 static bool vt_stack_adjustments (void);
644 static void init_attrs_list_set (attrs *);
645 static void attrs_list_clear (attrs *);
646 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
647 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
648 static void attrs_list_copy (attrs *, attrs);
649 static void attrs_list_union (attrs *, attrs);
651 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
652 variable var, enum var_init_status);
653 static void vars_copy (variable_table_type *, variable_table_type *);
654 static tree var_debug_decl (tree);
655 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
656 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
657 enum var_init_status, rtx);
658 static void var_reg_delete (dataflow_set *, rtx, bool);
659 static void var_regno_delete (dataflow_set *, int);
660 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
661 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
662 enum var_init_status, rtx);
663 static void var_mem_delete (dataflow_set *, rtx, bool);
665 static void dataflow_set_init (dataflow_set *);
666 static void dataflow_set_clear (dataflow_set *);
667 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
668 static int variable_union_info_cmp_pos (const void *, const void *);
669 static void dataflow_set_union (dataflow_set *, dataflow_set *);
670 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type *);
671 static bool canon_value_cmp (rtx, rtx);
672 static int loc_cmp (rtx, rtx);
673 static bool variable_part_different_p (variable_part *, variable_part *);
674 static bool onepart_variable_different_p (variable, variable);
675 static bool variable_different_p (variable, variable);
676 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
677 static void dataflow_set_destroy (dataflow_set *);
679 static bool contains_symbol_ref (rtx);
680 static bool track_expr_p (tree, bool);
681 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
682 static void add_uses_1 (rtx *, void *);
683 static void add_stores (rtx, const_rtx, void *);
684 static bool compute_bb_dataflow (basic_block);
685 static bool vt_find_locations (void);
687 static void dump_attrs_list (attrs);
688 static void dump_var (variable);
689 static void dump_vars (variable_table_type *);
690 static void dump_dataflow_set (dataflow_set *);
691 static void dump_dataflow_sets (void);
693 static void set_dv_changed (decl_or_value, bool);
694 static void variable_was_changed (variable, dataflow_set *);
695 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
696 decl_or_value, HOST_WIDE_INT,
697 enum var_init_status, rtx);
698 static void set_variable_part (dataflow_set *, rtx,
699 decl_or_value, HOST_WIDE_INT,
700 enum var_init_status, rtx, enum insert_option);
701 static variable_def **clobber_slot_part (dataflow_set *, rtx,
702 variable_def **, HOST_WIDE_INT, rtx);
703 static void clobber_variable_part (dataflow_set *, rtx,
704 decl_or_value, HOST_WIDE_INT, rtx);
705 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
706 HOST_WIDE_INT);
707 static void delete_variable_part (dataflow_set *, rtx,
708 decl_or_value, HOST_WIDE_INT);
709 static void emit_notes_in_bb (basic_block, dataflow_set *);
710 static void vt_emit_notes (void);
712 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
713 static void vt_add_function_parameters (void);
714 static bool vt_initialize (void);
715 static void vt_finalize (void);
717 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
719 static int
720 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
721 void *arg)
723 if (dest != stack_pointer_rtx)
724 return 0;
726 switch (GET_CODE (op))
728 case PRE_INC:
729 case PRE_DEC:
730 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
731 return 0;
732 case POST_INC:
733 case POST_DEC:
734 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
735 return 0;
736 case PRE_MODIFY:
737 case POST_MODIFY:
738 /* We handle only adjustments by constant amount. */
739 gcc_assert (GET_CODE (src) == PLUS
740 && CONST_INT_P (XEXP (src, 1))
741 && XEXP (src, 0) == stack_pointer_rtx);
742 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
743 -= INTVAL (XEXP (src, 1));
744 return 0;
745 default:
746 gcc_unreachable ();
750 /* Given a SET, calculate the amount of stack adjustment it contains
751 PRE- and POST-modifying stack pointer.
752 This function is similar to stack_adjust_offset. */
754 static void
755 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
756 HOST_WIDE_INT *post)
758 rtx src = SET_SRC (pattern);
759 rtx dest = SET_DEST (pattern);
760 enum rtx_code code;
762 if (dest == stack_pointer_rtx)
764 /* (set (reg sp) (plus (reg sp) (const_int))) */
765 code = GET_CODE (src);
766 if (! (code == PLUS || code == MINUS)
767 || XEXP (src, 0) != stack_pointer_rtx
768 || !CONST_INT_P (XEXP (src, 1)))
769 return;
771 if (code == MINUS)
772 *post += INTVAL (XEXP (src, 1));
773 else
774 *post -= INTVAL (XEXP (src, 1));
775 return;
777 HOST_WIDE_INT res[2] = { 0, 0 };
778 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
779 *pre += res[0];
780 *post += res[1];
783 /* Given an INSN, calculate the amount of stack adjustment it contains
784 PRE- and POST-modifying stack pointer. */
786 static void
787 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
788 HOST_WIDE_INT *post)
790 rtx pattern;
792 *pre = 0;
793 *post = 0;
795 pattern = PATTERN (insn);
796 if (RTX_FRAME_RELATED_P (insn))
798 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
799 if (expr)
800 pattern = XEXP (expr, 0);
803 if (GET_CODE (pattern) == SET)
804 stack_adjust_offset_pre_post (pattern, pre, post);
805 else if (GET_CODE (pattern) == PARALLEL
806 || GET_CODE (pattern) == SEQUENCE)
808 int i;
810 /* There may be stack adjustments inside compound insns. Search
811 for them. */
812 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
813 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
814 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
818 /* Compute stack adjustments for all blocks by traversing DFS tree.
819 Return true when the adjustments on all incoming edges are consistent.
820 Heavily borrowed from pre_and_rev_post_order_compute. */
822 static bool
823 vt_stack_adjustments (void)
825 edge_iterator *stack;
826 int sp;
828 /* Initialize entry block. */
829 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
830 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
831 = INCOMING_FRAME_SP_OFFSET;
832 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
833 = INCOMING_FRAME_SP_OFFSET;
835 /* Allocate stack for back-tracking up CFG. */
836 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
837 sp = 0;
839 /* Push the first edge on to the stack. */
840 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
842 while (sp)
844 edge_iterator ei;
845 basic_block src;
846 basic_block dest;
848 /* Look at the edge on the top of the stack. */
849 ei = stack[sp - 1];
850 src = ei_edge (ei)->src;
851 dest = ei_edge (ei)->dest;
853 /* Check if the edge destination has been visited yet. */
854 if (!VTI (dest)->visited)
856 rtx_insn *insn;
857 HOST_WIDE_INT pre, post, offset;
858 VTI (dest)->visited = true;
859 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
861 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
862 for (insn = BB_HEAD (dest);
863 insn != NEXT_INSN (BB_END (dest));
864 insn = NEXT_INSN (insn))
865 if (INSN_P (insn))
867 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
868 offset += pre + post;
871 VTI (dest)->out.stack_adjust = offset;
873 if (EDGE_COUNT (dest->succs) > 0)
874 /* Since the DEST node has been visited for the first
875 time, check its successors. */
876 stack[sp++] = ei_start (dest->succs);
878 else
880 /* We can end up with different stack adjustments for the exit block
881 of a shrink-wrapped function if stack_adjust_offset_pre_post
882 doesn't understand the rtx pattern used to restore the stack
883 pointer in the epilogue. For example, on s390(x), the stack
884 pointer is often restored via a load-multiple instruction
885 and so no stack_adjust offset is recorded for it. This means
886 that the stack offset at the end of the epilogue block is the
887 the same as the offset before the epilogue, whereas other paths
888 to the exit block will have the correct stack_adjust.
890 It is safe to ignore these differences because (a) we never
891 use the stack_adjust for the exit block in this pass and
892 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
893 function are correct.
895 We must check whether the adjustments on other edges are
896 the same though. */
897 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
898 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
900 free (stack);
901 return false;
904 if (! ei_one_before_end_p (ei))
905 /* Go to the next edge. */
906 ei_next (&stack[sp - 1]);
907 else
908 /* Return to previous level if there are no more edges. */
909 sp--;
913 free (stack);
914 return true;
917 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
918 hard_frame_pointer_rtx is being mapped to it and offset for it. */
919 static rtx cfa_base_rtx;
920 static HOST_WIDE_INT cfa_base_offset;
922 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
923 or hard_frame_pointer_rtx. */
925 static inline rtx
926 compute_cfa_pointer (HOST_WIDE_INT adjustment)
928 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
931 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
932 or -1 if the replacement shouldn't be done. */
933 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
935 /* Data for adjust_mems callback. */
937 struct adjust_mem_data
939 bool store;
940 machine_mode mem_mode;
941 HOST_WIDE_INT stack_adjust;
942 rtx_expr_list *side_effects;
945 /* Helper for adjust_mems. Return true if X is suitable for
946 transformation of wider mode arithmetics to narrower mode. */
948 static bool
949 use_narrower_mode_test (rtx x, const_rtx subreg)
951 subrtx_var_iterator::array_type array;
952 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
954 rtx x = *iter;
955 if (CONSTANT_P (x))
956 iter.skip_subrtxes ();
957 else
958 switch (GET_CODE (x))
960 case REG:
961 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
962 return false;
963 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
964 subreg_lowpart_offset (GET_MODE (subreg),
965 GET_MODE (x))))
966 return false;
967 break;
968 case PLUS:
969 case MINUS:
970 case MULT:
971 break;
972 case ASHIFT:
973 iter.substitute (XEXP (x, 0));
974 break;
975 default:
976 return false;
979 return true;
982 /* Transform X into narrower mode MODE from wider mode WMODE. */
984 static rtx
985 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
987 rtx op0, op1;
988 if (CONSTANT_P (x))
989 return lowpart_subreg (mode, x, wmode);
990 switch (GET_CODE (x))
992 case REG:
993 return lowpart_subreg (mode, x, wmode);
994 case PLUS:
995 case MINUS:
996 case MULT:
997 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
998 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
999 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1000 case ASHIFT:
1001 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1002 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
1003 default:
1004 gcc_unreachable ();
1008 /* Helper function for adjusting used MEMs. */
1010 static rtx
1011 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1013 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1014 rtx mem, addr = loc, tem;
1015 machine_mode mem_mode_save;
1016 bool store_save;
1017 switch (GET_CODE (loc))
1019 case REG:
1020 /* Don't do any sp or fp replacements outside of MEM addresses
1021 on the LHS. */
1022 if (amd->mem_mode == VOIDmode && amd->store)
1023 return loc;
1024 if (loc == stack_pointer_rtx
1025 && !frame_pointer_needed
1026 && cfa_base_rtx)
1027 return compute_cfa_pointer (amd->stack_adjust);
1028 else if (loc == hard_frame_pointer_rtx
1029 && frame_pointer_needed
1030 && hard_frame_pointer_adjustment != -1
1031 && cfa_base_rtx)
1032 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1033 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1034 return loc;
1035 case MEM:
1036 mem = loc;
1037 if (!amd->store)
1039 mem = targetm.delegitimize_address (mem);
1040 if (mem != loc && !MEM_P (mem))
1041 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1044 addr = XEXP (mem, 0);
1045 mem_mode_save = amd->mem_mode;
1046 amd->mem_mode = GET_MODE (mem);
1047 store_save = amd->store;
1048 amd->store = false;
1049 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1050 amd->store = store_save;
1051 amd->mem_mode = mem_mode_save;
1052 if (mem == loc)
1053 addr = targetm.delegitimize_address (addr);
1054 if (addr != XEXP (mem, 0))
1055 mem = replace_equiv_address_nv (mem, addr);
1056 if (!amd->store)
1057 mem = avoid_constant_pool_reference (mem);
1058 return mem;
1059 case PRE_INC:
1060 case PRE_DEC:
1061 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1062 gen_int_mode (GET_CODE (loc) == PRE_INC
1063 ? GET_MODE_SIZE (amd->mem_mode)
1064 : -GET_MODE_SIZE (amd->mem_mode),
1065 GET_MODE (loc)));
1066 case POST_INC:
1067 case POST_DEC:
1068 if (addr == loc)
1069 addr = XEXP (loc, 0);
1070 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1071 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1072 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1073 gen_int_mode ((GET_CODE (loc) == PRE_INC
1074 || GET_CODE (loc) == POST_INC)
1075 ? GET_MODE_SIZE (amd->mem_mode)
1076 : -GET_MODE_SIZE (amd->mem_mode),
1077 GET_MODE (loc)));
1078 store_save = amd->store;
1079 amd->store = false;
1080 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1081 amd->store = store_save;
1082 amd->side_effects = alloc_EXPR_LIST (0,
1083 gen_rtx_SET (VOIDmode,
1084 XEXP (loc, 0), tem),
1085 amd->side_effects);
1086 return addr;
1087 case PRE_MODIFY:
1088 addr = XEXP (loc, 1);
1089 case POST_MODIFY:
1090 if (addr == loc)
1091 addr = XEXP (loc, 0);
1092 gcc_assert (amd->mem_mode != VOIDmode);
1093 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1094 store_save = amd->store;
1095 amd->store = false;
1096 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1097 adjust_mems, data);
1098 amd->store = store_save;
1099 amd->side_effects = alloc_EXPR_LIST (0,
1100 gen_rtx_SET (VOIDmode,
1101 XEXP (loc, 0), tem),
1102 amd->side_effects);
1103 return addr;
1104 case SUBREG:
1105 /* First try without delegitimization of whole MEMs and
1106 avoid_constant_pool_reference, which is more likely to succeed. */
1107 store_save = amd->store;
1108 amd->store = true;
1109 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1110 data);
1111 amd->store = store_save;
1112 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1113 if (mem == SUBREG_REG (loc))
1115 tem = loc;
1116 goto finish_subreg;
1118 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1119 GET_MODE (SUBREG_REG (loc)),
1120 SUBREG_BYTE (loc));
1121 if (tem)
1122 goto finish_subreg;
1123 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1124 GET_MODE (SUBREG_REG (loc)),
1125 SUBREG_BYTE (loc));
1126 if (tem == NULL_RTX)
1127 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1128 finish_subreg:
1129 if (MAY_HAVE_DEBUG_INSNS
1130 && GET_CODE (tem) == SUBREG
1131 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1132 || GET_CODE (SUBREG_REG (tem)) == MINUS
1133 || GET_CODE (SUBREG_REG (tem)) == MULT
1134 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1135 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1136 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1137 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1138 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1139 && GET_MODE_PRECISION (GET_MODE (tem))
1140 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1141 && subreg_lowpart_p (tem)
1142 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1143 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1144 GET_MODE (SUBREG_REG (tem)));
1145 return tem;
1146 case ASM_OPERANDS:
1147 /* Don't do any replacements in second and following
1148 ASM_OPERANDS of inline-asm with multiple sets.
1149 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1150 and ASM_OPERANDS_LABEL_VEC need to be equal between
1151 all the ASM_OPERANDs in the insn and adjust_insn will
1152 fix this up. */
1153 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1154 return loc;
1155 break;
1156 default:
1157 break;
1159 return NULL_RTX;
1162 /* Helper function for replacement of uses. */
1164 static void
1165 adjust_mem_uses (rtx *x, void *data)
1167 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1168 if (new_x != *x)
1169 validate_change (NULL_RTX, x, new_x, true);
1172 /* Helper function for replacement of stores. */
1174 static void
1175 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1177 if (MEM_P (loc))
1179 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1180 adjust_mems, data);
1181 if (new_dest != SET_DEST (expr))
1183 rtx xexpr = CONST_CAST_RTX (expr);
1184 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1189 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1190 replace them with their value in the insn and add the side-effects
1191 as other sets to the insn. */
1193 static void
1194 adjust_insn (basic_block bb, rtx_insn *insn)
1196 struct adjust_mem_data amd;
1197 rtx set;
1199 #ifdef HAVE_window_save
1200 /* If the target machine has an explicit window save instruction, the
1201 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1202 if (RTX_FRAME_RELATED_P (insn)
1203 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1205 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1206 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1207 parm_reg_t *p;
1209 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1211 XVECEXP (rtl, 0, i * 2)
1212 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1213 /* Do not clobber the attached DECL, but only the REG. */
1214 XVECEXP (rtl, 0, i * 2 + 1)
1215 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1216 gen_raw_REG (GET_MODE (p->outgoing),
1217 REGNO (p->outgoing)));
1220 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1221 return;
1223 #endif
1225 amd.mem_mode = VOIDmode;
1226 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1227 amd.side_effects = NULL;
1229 amd.store = true;
1230 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1232 amd.store = false;
1233 if (GET_CODE (PATTERN (insn)) == PARALLEL
1234 && asm_noperands (PATTERN (insn)) > 0
1235 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1237 rtx body, set0;
1238 int i;
1240 /* inline-asm with multiple sets is tiny bit more complicated,
1241 because the 3 vectors in ASM_OPERANDS need to be shared between
1242 all ASM_OPERANDS in the instruction. adjust_mems will
1243 not touch ASM_OPERANDS other than the first one, asm_noperands
1244 test above needs to be called before that (otherwise it would fail)
1245 and afterwards this code fixes it up. */
1246 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1247 body = PATTERN (insn);
1248 set0 = XVECEXP (body, 0, 0);
1249 gcc_checking_assert (GET_CODE (set0) == SET
1250 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1251 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1252 for (i = 1; i < XVECLEN (body, 0); i++)
1253 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1254 break;
1255 else
1257 set = XVECEXP (body, 0, i);
1258 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1259 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1260 == i);
1261 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1262 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1263 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1264 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1265 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1266 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1268 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1269 ASM_OPERANDS_INPUT_VEC (newsrc)
1270 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1271 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1272 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1273 ASM_OPERANDS_LABEL_VEC (newsrc)
1274 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1275 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1279 else
1280 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1282 /* For read-only MEMs containing some constant, prefer those
1283 constants. */
1284 set = single_set (insn);
1285 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1287 rtx note = find_reg_equal_equiv_note (insn);
1289 if (note && CONSTANT_P (XEXP (note, 0)))
1290 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1293 if (amd.side_effects)
1295 rtx *pat, new_pat, s;
1296 int i, oldn, newn;
1298 pat = &PATTERN (insn);
1299 if (GET_CODE (*pat) == COND_EXEC)
1300 pat = &COND_EXEC_CODE (*pat);
1301 if (GET_CODE (*pat) == PARALLEL)
1302 oldn = XVECLEN (*pat, 0);
1303 else
1304 oldn = 1;
1305 for (s = amd.side_effects, newn = 0; s; newn++)
1306 s = XEXP (s, 1);
1307 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1308 if (GET_CODE (*pat) == PARALLEL)
1309 for (i = 0; i < oldn; i++)
1310 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1311 else
1312 XVECEXP (new_pat, 0, 0) = *pat;
1313 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1314 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1315 free_EXPR_LIST_list (&amd.side_effects);
1316 validate_change (NULL_RTX, pat, new_pat, true);
1320 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1321 static inline rtx
1322 dv_as_rtx (decl_or_value dv)
1324 tree decl;
1326 if (dv_is_value_p (dv))
1327 return dv_as_value (dv);
1329 decl = dv_as_decl (dv);
1331 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1332 return DECL_RTL_KNOWN_SET (decl);
1335 /* Return nonzero if a decl_or_value must not have more than one
1336 variable part. The returned value discriminates among various
1337 kinds of one-part DVs ccording to enum onepart_enum. */
1338 static inline onepart_enum_t
1339 dv_onepart_p (decl_or_value dv)
1341 tree decl;
1343 if (!MAY_HAVE_DEBUG_INSNS)
1344 return NOT_ONEPART;
1346 if (dv_is_value_p (dv))
1347 return ONEPART_VALUE;
1349 decl = dv_as_decl (dv);
1351 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1352 return ONEPART_DEXPR;
1354 if (target_for_debug_bind (decl) != NULL_TREE)
1355 return ONEPART_VDECL;
1357 return NOT_ONEPART;
1360 /* Return the variable pool to be used for a dv of type ONEPART. */
1361 static inline alloc_pool
1362 onepart_pool (onepart_enum_t onepart)
1364 return onepart ? valvar_pool : var_pool;
1367 /* Build a decl_or_value out of a decl. */
1368 static inline decl_or_value
1369 dv_from_decl (tree decl)
1371 decl_or_value dv;
1372 dv = decl;
1373 gcc_checking_assert (dv_is_decl_p (dv));
1374 return dv;
1377 /* Build a decl_or_value out of a value. */
1378 static inline decl_or_value
1379 dv_from_value (rtx value)
1381 decl_or_value dv;
1382 dv = value;
1383 gcc_checking_assert (dv_is_value_p (dv));
1384 return dv;
1387 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1388 static inline decl_or_value
1389 dv_from_rtx (rtx x)
1391 decl_or_value dv;
1393 switch (GET_CODE (x))
1395 case DEBUG_EXPR:
1396 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1397 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1398 break;
1400 case VALUE:
1401 dv = dv_from_value (x);
1402 break;
1404 default:
1405 gcc_unreachable ();
1408 return dv;
1411 extern void debug_dv (decl_or_value dv);
1413 DEBUG_FUNCTION void
1414 debug_dv (decl_or_value dv)
1416 if (dv_is_value_p (dv))
1417 debug_rtx (dv_as_value (dv));
1418 else
1419 debug_generic_stmt (dv_as_decl (dv));
1422 static void loc_exp_dep_clear (variable var);
1424 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1426 static void
1427 variable_htab_free (void *elem)
1429 int i;
1430 variable var = (variable) elem;
1431 location_chain node, next;
1433 gcc_checking_assert (var->refcount > 0);
1435 var->refcount--;
1436 if (var->refcount > 0)
1437 return;
1439 for (i = 0; i < var->n_var_parts; i++)
1441 for (node = var->var_part[i].loc_chain; node; node = next)
1443 next = node->next;
1444 pool_free (loc_chain_pool, node);
1446 var->var_part[i].loc_chain = NULL;
1448 if (var->onepart && VAR_LOC_1PAUX (var))
1450 loc_exp_dep_clear (var);
1451 if (VAR_LOC_DEP_LST (var))
1452 VAR_LOC_DEP_LST (var)->pprev = NULL;
1453 XDELETE (VAR_LOC_1PAUX (var));
1454 /* These may be reused across functions, so reset
1455 e.g. NO_LOC_P. */
1456 if (var->onepart == ONEPART_DEXPR)
1457 set_dv_changed (var->dv, true);
1459 pool_free (onepart_pool (var->onepart), var);
1462 /* Initialize the set (array) SET of attrs to empty lists. */
1464 static void
1465 init_attrs_list_set (attrs *set)
1467 int i;
1469 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1470 set[i] = NULL;
1473 /* Make the list *LISTP empty. */
1475 static void
1476 attrs_list_clear (attrs *listp)
1478 attrs list, next;
1480 for (list = *listp; list; list = next)
1482 next = list->next;
1483 pool_free (attrs_pool, list);
1485 *listp = NULL;
1488 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1490 static attrs
1491 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1493 for (; list; list = list->next)
1494 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1495 return list;
1496 return NULL;
1499 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1501 static void
1502 attrs_list_insert (attrs *listp, decl_or_value dv,
1503 HOST_WIDE_INT offset, rtx loc)
1505 attrs list;
1507 list = (attrs) pool_alloc (attrs_pool);
1508 list->loc = loc;
1509 list->dv = dv;
1510 list->offset = offset;
1511 list->next = *listp;
1512 *listp = list;
1515 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1517 static void
1518 attrs_list_copy (attrs *dstp, attrs src)
1520 attrs n;
1522 attrs_list_clear (dstp);
1523 for (; src; src = src->next)
1525 n = (attrs) pool_alloc (attrs_pool);
1526 n->loc = src->loc;
1527 n->dv = src->dv;
1528 n->offset = src->offset;
1529 n->next = *dstp;
1530 *dstp = n;
1534 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1536 static void
1537 attrs_list_union (attrs *dstp, attrs src)
1539 for (; src; src = src->next)
1541 if (!attrs_list_member (*dstp, src->dv, src->offset))
1542 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1546 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1547 *DSTP. */
1549 static void
1550 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1552 gcc_assert (!*dstp);
1553 for (; src; src = src->next)
1555 if (!dv_onepart_p (src->dv))
1556 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1558 for (src = src2; src; src = src->next)
1560 if (!dv_onepart_p (src->dv)
1561 && !attrs_list_member (*dstp, src->dv, src->offset))
1562 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1566 /* Shared hashtable support. */
1568 /* Return true if VARS is shared. */
1570 static inline bool
1571 shared_hash_shared (shared_hash vars)
1573 return vars->refcount > 1;
1576 /* Return the hash table for VARS. */
1578 static inline variable_table_type *
1579 shared_hash_htab (shared_hash vars)
1581 return vars->htab;
1584 /* Return true if VAR is shared, or maybe because VARS is shared. */
1586 static inline bool
1587 shared_var_p (variable var, shared_hash vars)
1589 /* Don't count an entry in the changed_variables table as a duplicate. */
1590 return ((var->refcount > 1 + (int) var->in_changed_variables)
1591 || shared_hash_shared (vars));
1594 /* Copy variables into a new hash table. */
1596 static shared_hash
1597 shared_hash_unshare (shared_hash vars)
1599 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1600 gcc_assert (vars->refcount > 1);
1601 new_vars->refcount = 1;
1602 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1603 vars_copy (new_vars->htab, vars->htab);
1604 vars->refcount--;
1605 return new_vars;
1608 /* Increment reference counter on VARS and return it. */
1610 static inline shared_hash
1611 shared_hash_copy (shared_hash vars)
1613 vars->refcount++;
1614 return vars;
1617 /* Decrement reference counter and destroy hash table if not shared
1618 anymore. */
1620 static void
1621 shared_hash_destroy (shared_hash vars)
1623 gcc_checking_assert (vars->refcount > 0);
1624 if (--vars->refcount == 0)
1626 delete vars->htab;
1627 pool_free (shared_hash_pool, vars);
1631 /* Unshare *PVARS if shared and return slot for DV. If INS is
1632 INSERT, insert it if not already present. */
1634 static inline variable_def **
1635 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1636 hashval_t dvhash, enum insert_option ins)
1638 if (shared_hash_shared (*pvars))
1639 *pvars = shared_hash_unshare (*pvars);
1640 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1643 static inline variable_def **
1644 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1645 enum insert_option ins)
1647 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1650 /* Return slot for DV, if it is already present in the hash table.
1651 If it is not present, insert it only VARS is not shared, otherwise
1652 return NULL. */
1654 static inline variable_def **
1655 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1657 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1658 shared_hash_shared (vars)
1659 ? NO_INSERT : INSERT);
1662 static inline variable_def **
1663 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1665 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1668 /* Return slot for DV only if it is already present in the hash table. */
1670 static inline variable_def **
1671 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1672 hashval_t dvhash)
1674 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1677 static inline variable_def **
1678 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1680 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1683 /* Return variable for DV or NULL if not already present in the hash
1684 table. */
1686 static inline variable
1687 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1689 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1692 static inline variable
1693 shared_hash_find (shared_hash vars, decl_or_value dv)
1695 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1698 /* Return true if TVAL is better than CVAL as a canonival value. We
1699 choose lowest-numbered VALUEs, using the RTX address as a
1700 tie-breaker. The idea is to arrange them into a star topology,
1701 such that all of them are at most one step away from the canonical
1702 value, and the canonical value has backlinks to all of them, in
1703 addition to all the actual locations. We don't enforce this
1704 topology throughout the entire dataflow analysis, though.
1707 static inline bool
1708 canon_value_cmp (rtx tval, rtx cval)
1710 return !cval
1711 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1714 static bool dst_can_be_shared;
1716 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1718 static variable_def **
1719 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1720 enum var_init_status initialized)
1722 variable new_var;
1723 int i;
1725 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1726 new_var->dv = var->dv;
1727 new_var->refcount = 1;
1728 var->refcount--;
1729 new_var->n_var_parts = var->n_var_parts;
1730 new_var->onepart = var->onepart;
1731 new_var->in_changed_variables = false;
1733 if (! flag_var_tracking_uninit)
1734 initialized = VAR_INIT_STATUS_INITIALIZED;
1736 for (i = 0; i < var->n_var_parts; i++)
1738 location_chain node;
1739 location_chain *nextp;
1741 if (i == 0 && var->onepart)
1743 /* One-part auxiliary data is only used while emitting
1744 notes, so propagate it to the new variable in the active
1745 dataflow set. If we're not emitting notes, this will be
1746 a no-op. */
1747 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1748 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1749 VAR_LOC_1PAUX (var) = NULL;
1751 else
1752 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1753 nextp = &new_var->var_part[i].loc_chain;
1754 for (node = var->var_part[i].loc_chain; node; node = node->next)
1756 location_chain new_lc;
1758 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1759 new_lc->next = NULL;
1760 if (node->init > initialized)
1761 new_lc->init = node->init;
1762 else
1763 new_lc->init = initialized;
1764 if (node->set_src && !(MEM_P (node->set_src)))
1765 new_lc->set_src = node->set_src;
1766 else
1767 new_lc->set_src = NULL;
1768 new_lc->loc = node->loc;
1770 *nextp = new_lc;
1771 nextp = &new_lc->next;
1774 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1777 dst_can_be_shared = false;
1778 if (shared_hash_shared (set->vars))
1779 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1780 else if (set->traversed_vars && set->vars != set->traversed_vars)
1781 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1782 *slot = new_var;
1783 if (var->in_changed_variables)
1785 variable_def **cslot
1786 = changed_variables->find_slot_with_hash (var->dv,
1787 dv_htab_hash (var->dv),
1788 NO_INSERT);
1789 gcc_assert (*cslot == (void *) var);
1790 var->in_changed_variables = false;
1791 variable_htab_free (var);
1792 *cslot = new_var;
1793 new_var->in_changed_variables = true;
1795 return slot;
1798 /* Copy all variables from hash table SRC to hash table DST. */
1800 static void
1801 vars_copy (variable_table_type *dst, variable_table_type *src)
1803 variable_iterator_type hi;
1804 variable var;
1806 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1808 variable_def **dstp;
1809 var->refcount++;
1810 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1811 INSERT);
1812 *dstp = var;
1816 /* Map a decl to its main debug decl. */
1818 static inline tree
1819 var_debug_decl (tree decl)
1821 if (decl && TREE_CODE (decl) == VAR_DECL
1822 && DECL_HAS_DEBUG_EXPR_P (decl))
1824 tree debugdecl = DECL_DEBUG_EXPR (decl);
1825 if (DECL_P (debugdecl))
1826 decl = debugdecl;
1829 return decl;
1832 /* Set the register LOC to contain DV, OFFSET. */
1834 static void
1835 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1836 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1837 enum insert_option iopt)
1839 attrs node;
1840 bool decl_p = dv_is_decl_p (dv);
1842 if (decl_p)
1843 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1845 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1846 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1847 && node->offset == offset)
1848 break;
1849 if (!node)
1850 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1851 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1854 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1856 static void
1857 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1858 rtx set_src)
1860 tree decl = REG_EXPR (loc);
1861 HOST_WIDE_INT offset = REG_OFFSET (loc);
1863 var_reg_decl_set (set, loc, initialized,
1864 dv_from_decl (decl), offset, set_src, INSERT);
1867 static enum var_init_status
1868 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1870 variable var;
1871 int i;
1872 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1874 if (! flag_var_tracking_uninit)
1875 return VAR_INIT_STATUS_INITIALIZED;
1877 var = shared_hash_find (set->vars, dv);
1878 if (var)
1880 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1882 location_chain nextp;
1883 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1884 if (rtx_equal_p (nextp->loc, loc))
1886 ret_val = nextp->init;
1887 break;
1892 return ret_val;
1895 /* Delete current content of register LOC in dataflow set SET and set
1896 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1897 MODIFY is true, any other live copies of the same variable part are
1898 also deleted from the dataflow set, otherwise the variable part is
1899 assumed to be copied from another location holding the same
1900 part. */
1902 static void
1903 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1904 enum var_init_status initialized, rtx set_src)
1906 tree decl = REG_EXPR (loc);
1907 HOST_WIDE_INT offset = REG_OFFSET (loc);
1908 attrs node, next;
1909 attrs *nextp;
1911 decl = var_debug_decl (decl);
1913 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1914 initialized = get_init_value (set, loc, dv_from_decl (decl));
1916 nextp = &set->regs[REGNO (loc)];
1917 for (node = *nextp; node; node = next)
1919 next = node->next;
1920 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1922 delete_variable_part (set, node->loc, node->dv, node->offset);
1923 pool_free (attrs_pool, node);
1924 *nextp = next;
1926 else
1928 node->loc = loc;
1929 nextp = &node->next;
1932 if (modify)
1933 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1934 var_reg_set (set, loc, initialized, set_src);
1937 /* Delete the association of register LOC in dataflow set SET with any
1938 variables that aren't onepart. If CLOBBER is true, also delete any
1939 other live copies of the same variable part, and delete the
1940 association with onepart dvs too. */
1942 static void
1943 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1945 attrs *nextp = &set->regs[REGNO (loc)];
1946 attrs node, next;
1948 if (clobber)
1950 tree decl = REG_EXPR (loc);
1951 HOST_WIDE_INT offset = REG_OFFSET (loc);
1953 decl = var_debug_decl (decl);
1955 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1958 for (node = *nextp; node; node = next)
1960 next = node->next;
1961 if (clobber || !dv_onepart_p (node->dv))
1963 delete_variable_part (set, node->loc, node->dv, node->offset);
1964 pool_free (attrs_pool, node);
1965 *nextp = next;
1967 else
1968 nextp = &node->next;
1972 /* Delete content of register with number REGNO in dataflow set SET. */
1974 static void
1975 var_regno_delete (dataflow_set *set, int regno)
1977 attrs *reg = &set->regs[regno];
1978 attrs node, next;
1980 for (node = *reg; node; node = next)
1982 next = node->next;
1983 delete_variable_part (set, node->loc, node->dv, node->offset);
1984 pool_free (attrs_pool, node);
1986 *reg = NULL;
1989 /* Return true if I is the negated value of a power of two. */
1990 static bool
1991 negative_power_of_two_p (HOST_WIDE_INT i)
1993 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1994 return x == (x & -x);
1997 /* Strip constant offsets and alignments off of LOC. Return the base
1998 expression. */
2000 static rtx
2001 vt_get_canonicalize_base (rtx loc)
2003 while ((GET_CODE (loc) == PLUS
2004 || GET_CODE (loc) == AND)
2005 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2006 && (GET_CODE (loc) != AND
2007 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2008 loc = XEXP (loc, 0);
2010 return loc;
2013 /* This caches canonicalized addresses for VALUEs, computed using
2014 information in the global cselib table. */
2015 static hash_map<rtx, rtx> *global_get_addr_cache;
2017 /* This caches canonicalized addresses for VALUEs, computed using
2018 information from the global cache and information pertaining to a
2019 basic block being analyzed. */
2020 static hash_map<rtx, rtx> *local_get_addr_cache;
2022 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2024 /* Return the canonical address for LOC, that must be a VALUE, using a
2025 cached global equivalence or computing it and storing it in the
2026 global cache. */
2028 static rtx
2029 get_addr_from_global_cache (rtx const loc)
2031 rtx x;
2033 gcc_checking_assert (GET_CODE (loc) == VALUE);
2035 bool existed;
2036 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2037 if (existed)
2038 return *slot;
2040 x = canon_rtx (get_addr (loc));
2042 /* Tentative, avoiding infinite recursion. */
2043 *slot = x;
2045 if (x != loc)
2047 rtx nx = vt_canonicalize_addr (NULL, x);
2048 if (nx != x)
2050 /* The table may have moved during recursion, recompute
2051 SLOT. */
2052 *global_get_addr_cache->get (loc) = x = nx;
2056 return x;
2059 /* Return the canonical address for LOC, that must be a VALUE, using a
2060 cached local equivalence or computing it and storing it in the
2061 local cache. */
2063 static rtx
2064 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2066 rtx x;
2067 decl_or_value dv;
2068 variable var;
2069 location_chain l;
2071 gcc_checking_assert (GET_CODE (loc) == VALUE);
2073 bool existed;
2074 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2075 if (existed)
2076 return *slot;
2078 x = get_addr_from_global_cache (loc);
2080 /* Tentative, avoiding infinite recursion. */
2081 *slot = x;
2083 /* Recurse to cache local expansion of X, or if we need to search
2084 for a VALUE in the expansion. */
2085 if (x != loc)
2087 rtx nx = vt_canonicalize_addr (set, x);
2088 if (nx != x)
2090 slot = local_get_addr_cache->get (loc);
2091 *slot = x = nx;
2093 return x;
2096 dv = dv_from_rtx (x);
2097 var = shared_hash_find (set->vars, dv);
2098 if (!var)
2099 return x;
2101 /* Look for an improved equivalent expression. */
2102 for (l = var->var_part[0].loc_chain; l; l = l->next)
2104 rtx base = vt_get_canonicalize_base (l->loc);
2105 if (GET_CODE (base) == VALUE
2106 && canon_value_cmp (base, loc))
2108 rtx nx = vt_canonicalize_addr (set, l->loc);
2109 if (x != nx)
2111 slot = local_get_addr_cache->get (loc);
2112 *slot = x = nx;
2114 break;
2118 return x;
2121 /* Canonicalize LOC using equivalences from SET in addition to those
2122 in the cselib static table. It expects a VALUE-based expression,
2123 and it will only substitute VALUEs with other VALUEs or
2124 function-global equivalences, so that, if two addresses have base
2125 VALUEs that are locally or globally related in ways that
2126 memrefs_conflict_p cares about, they will both canonicalize to
2127 expressions that have the same base VALUE.
2129 The use of VALUEs as canonical base addresses enables the canonical
2130 RTXs to remain unchanged globally, if they resolve to a constant,
2131 or throughout a basic block otherwise, so that they can be cached
2132 and the cache needs not be invalidated when REGs, MEMs or such
2133 change. */
2135 static rtx
2136 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2138 HOST_WIDE_INT ofst = 0;
2139 machine_mode mode = GET_MODE (oloc);
2140 rtx loc = oloc;
2141 rtx x;
2142 bool retry = true;
2144 while (retry)
2146 while (GET_CODE (loc) == PLUS
2147 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2149 ofst += INTVAL (XEXP (loc, 1));
2150 loc = XEXP (loc, 0);
2153 /* Alignment operations can't normally be combined, so just
2154 canonicalize the base and we're done. We'll normally have
2155 only one stack alignment anyway. */
2156 if (GET_CODE (loc) == AND
2157 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2158 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2160 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2161 if (x != XEXP (loc, 0))
2162 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2163 retry = false;
2166 if (GET_CODE (loc) == VALUE)
2168 if (set)
2169 loc = get_addr_from_local_cache (set, loc);
2170 else
2171 loc = get_addr_from_global_cache (loc);
2173 /* Consolidate plus_constants. */
2174 while (ofst && GET_CODE (loc) == PLUS
2175 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2177 ofst += INTVAL (XEXP (loc, 1));
2178 loc = XEXP (loc, 0);
2181 retry = false;
2183 else
2185 x = canon_rtx (loc);
2186 if (retry)
2187 retry = (x != loc);
2188 loc = x;
2192 /* Add OFST back in. */
2193 if (ofst)
2195 /* Don't build new RTL if we can help it. */
2196 if (GET_CODE (oloc) == PLUS
2197 && XEXP (oloc, 0) == loc
2198 && INTVAL (XEXP (oloc, 1)) == ofst)
2199 return oloc;
2201 loc = plus_constant (mode, loc, ofst);
2204 return loc;
2207 /* Return true iff there's a true dependence between MLOC and LOC.
2208 MADDR must be a canonicalized version of MLOC's address. */
2210 static inline bool
2211 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2213 if (GET_CODE (loc) != MEM)
2214 return false;
2216 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2217 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2218 return false;
2220 return true;
2223 /* Hold parameters for the hashtab traversal function
2224 drop_overlapping_mem_locs, see below. */
2226 struct overlapping_mems
2228 dataflow_set *set;
2229 rtx loc, addr;
2232 /* Remove all MEMs that overlap with COMS->LOC from the location list
2233 of a hash table entry for a value. COMS->ADDR must be a
2234 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2235 canonicalized itself. */
2238 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2240 dataflow_set *set = coms->set;
2241 rtx mloc = coms->loc, addr = coms->addr;
2242 variable var = *slot;
2244 if (var->onepart == ONEPART_VALUE)
2246 location_chain loc, *locp;
2247 bool changed = false;
2248 rtx cur_loc;
2250 gcc_assert (var->n_var_parts == 1);
2252 if (shared_var_p (var, set->vars))
2254 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2255 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2256 break;
2258 if (!loc)
2259 return 1;
2261 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2262 var = *slot;
2263 gcc_assert (var->n_var_parts == 1);
2266 if (VAR_LOC_1PAUX (var))
2267 cur_loc = VAR_LOC_FROM (var);
2268 else
2269 cur_loc = var->var_part[0].cur_loc;
2271 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2272 loc; loc = *locp)
2274 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2276 locp = &loc->next;
2277 continue;
2280 *locp = loc->next;
2281 /* If we have deleted the location which was last emitted
2282 we have to emit new location so add the variable to set
2283 of changed variables. */
2284 if (cur_loc == loc->loc)
2286 changed = true;
2287 var->var_part[0].cur_loc = NULL;
2288 if (VAR_LOC_1PAUX (var))
2289 VAR_LOC_FROM (var) = NULL;
2291 pool_free (loc_chain_pool, loc);
2294 if (!var->var_part[0].loc_chain)
2296 var->n_var_parts--;
2297 changed = true;
2299 if (changed)
2300 variable_was_changed (var, set);
2303 return 1;
2306 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2308 static void
2309 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2311 struct overlapping_mems coms;
2313 gcc_checking_assert (GET_CODE (loc) == MEM);
2315 coms.set = set;
2316 coms.loc = canon_rtx (loc);
2317 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2319 set->traversed_vars = set->vars;
2320 shared_hash_htab (set->vars)
2321 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2322 set->traversed_vars = NULL;
2325 /* Set the location of DV, OFFSET as the MEM LOC. */
2327 static void
2328 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2329 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2330 enum insert_option iopt)
2332 if (dv_is_decl_p (dv))
2333 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2335 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2338 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2339 SET to LOC.
2340 Adjust the address first if it is stack pointer based. */
2342 static void
2343 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2344 rtx set_src)
2346 tree decl = MEM_EXPR (loc);
2347 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2349 var_mem_decl_set (set, loc, initialized,
2350 dv_from_decl (decl), offset, set_src, INSERT);
2353 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2354 dataflow set SET to LOC. If MODIFY is true, any other live copies
2355 of the same variable part are also deleted from the dataflow set,
2356 otherwise the variable part is assumed to be copied from another
2357 location holding the same part.
2358 Adjust the address first if it is stack pointer based. */
2360 static void
2361 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2362 enum var_init_status initialized, rtx set_src)
2364 tree decl = MEM_EXPR (loc);
2365 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2367 clobber_overlapping_mems (set, loc);
2368 decl = var_debug_decl (decl);
2370 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2371 initialized = get_init_value (set, loc, dv_from_decl (decl));
2373 if (modify)
2374 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2375 var_mem_set (set, loc, initialized, set_src);
2378 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2379 true, also delete any other live copies of the same variable part.
2380 Adjust the address first if it is stack pointer based. */
2382 static void
2383 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2385 tree decl = MEM_EXPR (loc);
2386 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2388 clobber_overlapping_mems (set, loc);
2389 decl = var_debug_decl (decl);
2390 if (clobber)
2391 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2392 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2395 /* Return true if LOC should not be expanded for location expressions,
2396 or used in them. */
2398 static inline bool
2399 unsuitable_loc (rtx loc)
2401 switch (GET_CODE (loc))
2403 case PC:
2404 case SCRATCH:
2405 case CC0:
2406 case ASM_INPUT:
2407 case ASM_OPERANDS:
2408 return true;
2410 default:
2411 return false;
2415 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2416 bound to it. */
2418 static inline void
2419 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2421 if (REG_P (loc))
2423 if (modified)
2424 var_regno_delete (set, REGNO (loc));
2425 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2426 dv_from_value (val), 0, NULL_RTX, INSERT);
2428 else if (MEM_P (loc))
2430 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2432 if (modified)
2433 clobber_overlapping_mems (set, loc);
2435 if (l && GET_CODE (l->loc) == VALUE)
2436 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2438 /* If this MEM is a global constant, we don't need it in the
2439 dynamic tables. ??? We should test this before emitting the
2440 micro-op in the first place. */
2441 while (l)
2442 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2443 break;
2444 else
2445 l = l->next;
2447 if (!l)
2448 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2449 dv_from_value (val), 0, NULL_RTX, INSERT);
2451 else
2453 /* Other kinds of equivalences are necessarily static, at least
2454 so long as we do not perform substitutions while merging
2455 expressions. */
2456 gcc_unreachable ();
2457 set_variable_part (set, loc, dv_from_value (val), 0,
2458 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2462 /* Bind a value to a location it was just stored in. If MODIFIED
2463 holds, assume the location was modified, detaching it from any
2464 values bound to it. */
2466 static void
2467 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2468 bool modified)
2470 cselib_val *v = CSELIB_VAL_PTR (val);
2472 gcc_assert (cselib_preserved_value_p (v));
2474 if (dump_file)
2476 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2477 print_inline_rtx (dump_file, loc, 0);
2478 fprintf (dump_file, " evaluates to ");
2479 print_inline_rtx (dump_file, val, 0);
2480 if (v->locs)
2482 struct elt_loc_list *l;
2483 for (l = v->locs; l; l = l->next)
2485 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2486 print_inline_rtx (dump_file, l->loc, 0);
2489 fprintf (dump_file, "\n");
2492 gcc_checking_assert (!unsuitable_loc (loc));
2494 val_bind (set, val, loc, modified);
2497 /* Clear (canonical address) slots that reference X. */
2499 bool
2500 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2502 if (vt_get_canonicalize_base (*slot) == x)
2503 *slot = NULL;
2504 return true;
2507 /* Reset this node, detaching all its equivalences. Return the slot
2508 in the variable hash table that holds dv, if there is one. */
2510 static void
2511 val_reset (dataflow_set *set, decl_or_value dv)
2513 variable var = shared_hash_find (set->vars, dv) ;
2514 location_chain node;
2515 rtx cval;
2517 if (!var || !var->n_var_parts)
2518 return;
2520 gcc_assert (var->n_var_parts == 1);
2522 if (var->onepart == ONEPART_VALUE)
2524 rtx x = dv_as_value (dv);
2526 /* Relationships in the global cache don't change, so reset the
2527 local cache entry only. */
2528 rtx *slot = local_get_addr_cache->get (x);
2529 if (slot)
2531 /* If the value resolved back to itself, odds are that other
2532 values may have cached it too. These entries now refer
2533 to the old X, so detach them too. Entries that used the
2534 old X but resolved to something else remain ok as long as
2535 that something else isn't also reset. */
2536 if (*slot == x)
2537 local_get_addr_cache
2538 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2539 *slot = NULL;
2543 cval = NULL;
2544 for (node = var->var_part[0].loc_chain; node; node = node->next)
2545 if (GET_CODE (node->loc) == VALUE
2546 && canon_value_cmp (node->loc, cval))
2547 cval = node->loc;
2549 for (node = var->var_part[0].loc_chain; node; node = node->next)
2550 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2552 /* Redirect the equivalence link to the new canonical
2553 value, or simply remove it if it would point at
2554 itself. */
2555 if (cval)
2556 set_variable_part (set, cval, dv_from_value (node->loc),
2557 0, node->init, node->set_src, NO_INSERT);
2558 delete_variable_part (set, dv_as_value (dv),
2559 dv_from_value (node->loc), 0);
2562 if (cval)
2564 decl_or_value cdv = dv_from_value (cval);
2566 /* Keep the remaining values connected, accummulating links
2567 in the canonical value. */
2568 for (node = var->var_part[0].loc_chain; node; node = node->next)
2570 if (node->loc == cval)
2571 continue;
2572 else if (GET_CODE (node->loc) == REG)
2573 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2574 node->set_src, NO_INSERT);
2575 else if (GET_CODE (node->loc) == MEM)
2576 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2577 node->set_src, NO_INSERT);
2578 else
2579 set_variable_part (set, node->loc, cdv, 0,
2580 node->init, node->set_src, NO_INSERT);
2584 /* We remove this last, to make sure that the canonical value is not
2585 removed to the point of requiring reinsertion. */
2586 if (cval)
2587 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2589 clobber_variable_part (set, NULL, dv, 0, NULL);
2592 /* Find the values in a given location and map the val to another
2593 value, if it is unique, or add the location as one holding the
2594 value. */
2596 static void
2597 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2599 decl_or_value dv = dv_from_value (val);
2601 if (dump_file && (dump_flags & TDF_DETAILS))
2603 if (insn)
2604 fprintf (dump_file, "%i: ", INSN_UID (insn));
2605 else
2606 fprintf (dump_file, "head: ");
2607 print_inline_rtx (dump_file, val, 0);
2608 fputs (" is at ", dump_file);
2609 print_inline_rtx (dump_file, loc, 0);
2610 fputc ('\n', dump_file);
2613 val_reset (set, dv);
2615 gcc_checking_assert (!unsuitable_loc (loc));
2617 if (REG_P (loc))
2619 attrs node, found = NULL;
2621 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2622 if (dv_is_value_p (node->dv)
2623 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2625 found = node;
2627 /* Map incoming equivalences. ??? Wouldn't it be nice if
2628 we just started sharing the location lists? Maybe a
2629 circular list ending at the value itself or some
2630 such. */
2631 set_variable_part (set, dv_as_value (node->dv),
2632 dv_from_value (val), node->offset,
2633 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2634 set_variable_part (set, val, node->dv, node->offset,
2635 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2638 /* If we didn't find any equivalence, we need to remember that
2639 this value is held in the named register. */
2640 if (found)
2641 return;
2643 /* ??? Attempt to find and merge equivalent MEMs or other
2644 expressions too. */
2646 val_bind (set, val, loc, false);
2649 /* Initialize dataflow set SET to be empty.
2650 VARS_SIZE is the initial size of hash table VARS. */
2652 static void
2653 dataflow_set_init (dataflow_set *set)
2655 init_attrs_list_set (set->regs);
2656 set->vars = shared_hash_copy (empty_shared_hash);
2657 set->stack_adjust = 0;
2658 set->traversed_vars = NULL;
2661 /* Delete the contents of dataflow set SET. */
2663 static void
2664 dataflow_set_clear (dataflow_set *set)
2666 int i;
2668 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2669 attrs_list_clear (&set->regs[i]);
2671 shared_hash_destroy (set->vars);
2672 set->vars = shared_hash_copy (empty_shared_hash);
2675 /* Copy the contents of dataflow set SRC to DST. */
2677 static void
2678 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2680 int i;
2682 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2683 attrs_list_copy (&dst->regs[i], src->regs[i]);
2685 shared_hash_destroy (dst->vars);
2686 dst->vars = shared_hash_copy (src->vars);
2687 dst->stack_adjust = src->stack_adjust;
2690 /* Information for merging lists of locations for a given offset of variable.
2692 struct variable_union_info
2694 /* Node of the location chain. */
2695 location_chain lc;
2697 /* The sum of positions in the input chains. */
2698 int pos;
2700 /* The position in the chain of DST dataflow set. */
2701 int pos_dst;
2704 /* Buffer for location list sorting and its allocated size. */
2705 static struct variable_union_info *vui_vec;
2706 static int vui_allocated;
2708 /* Compare function for qsort, order the structures by POS element. */
2710 static int
2711 variable_union_info_cmp_pos (const void *n1, const void *n2)
2713 const struct variable_union_info *const i1 =
2714 (const struct variable_union_info *) n1;
2715 const struct variable_union_info *const i2 =
2716 ( const struct variable_union_info *) n2;
2718 if (i1->pos != i2->pos)
2719 return i1->pos - i2->pos;
2721 return (i1->pos_dst - i2->pos_dst);
2724 /* Compute union of location parts of variable *SLOT and the same variable
2725 from hash table DATA. Compute "sorted" union of the location chains
2726 for common offsets, i.e. the locations of a variable part are sorted by
2727 a priority where the priority is the sum of the positions in the 2 chains
2728 (if a location is only in one list the position in the second list is
2729 defined to be larger than the length of the chains).
2730 When we are updating the location parts the newest location is in the
2731 beginning of the chain, so when we do the described "sorted" union
2732 we keep the newest locations in the beginning. */
2734 static int
2735 variable_union (variable src, dataflow_set *set)
2737 variable dst;
2738 variable_def **dstp;
2739 int i, j, k;
2741 dstp = shared_hash_find_slot (set->vars, src->dv);
2742 if (!dstp || !*dstp)
2744 src->refcount++;
2746 dst_can_be_shared = false;
2747 if (!dstp)
2748 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2750 *dstp = src;
2752 /* Continue traversing the hash table. */
2753 return 1;
2755 else
2756 dst = *dstp;
2758 gcc_assert (src->n_var_parts);
2759 gcc_checking_assert (src->onepart == dst->onepart);
2761 /* We can combine one-part variables very efficiently, because their
2762 entries are in canonical order. */
2763 if (src->onepart)
2765 location_chain *nodep, dnode, snode;
2767 gcc_assert (src->n_var_parts == 1
2768 && dst->n_var_parts == 1);
2770 snode = src->var_part[0].loc_chain;
2771 gcc_assert (snode);
2773 restart_onepart_unshared:
2774 nodep = &dst->var_part[0].loc_chain;
2775 dnode = *nodep;
2776 gcc_assert (dnode);
2778 while (snode)
2780 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2782 if (r > 0)
2784 location_chain nnode;
2786 if (shared_var_p (dst, set->vars))
2788 dstp = unshare_variable (set, dstp, dst,
2789 VAR_INIT_STATUS_INITIALIZED);
2790 dst = *dstp;
2791 goto restart_onepart_unshared;
2794 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2795 nnode->loc = snode->loc;
2796 nnode->init = snode->init;
2797 if (!snode->set_src || MEM_P (snode->set_src))
2798 nnode->set_src = NULL;
2799 else
2800 nnode->set_src = snode->set_src;
2801 nnode->next = dnode;
2802 dnode = nnode;
2804 else if (r == 0)
2805 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2807 if (r >= 0)
2808 snode = snode->next;
2810 nodep = &dnode->next;
2811 dnode = *nodep;
2814 return 1;
2817 gcc_checking_assert (!src->onepart);
2819 /* Count the number of location parts, result is K. */
2820 for (i = 0, j = 0, k = 0;
2821 i < src->n_var_parts && j < dst->n_var_parts; k++)
2823 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2825 i++;
2826 j++;
2828 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2829 i++;
2830 else
2831 j++;
2833 k += src->n_var_parts - i;
2834 k += dst->n_var_parts - j;
2836 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2837 thus there are at most MAX_VAR_PARTS different offsets. */
2838 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2840 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2842 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2843 dst = *dstp;
2846 i = src->n_var_parts - 1;
2847 j = dst->n_var_parts - 1;
2848 dst->n_var_parts = k;
2850 for (k--; k >= 0; k--)
2852 location_chain node, node2;
2854 if (i >= 0 && j >= 0
2855 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2857 /* Compute the "sorted" union of the chains, i.e. the locations which
2858 are in both chains go first, they are sorted by the sum of
2859 positions in the chains. */
2860 int dst_l, src_l;
2861 int ii, jj, n;
2862 struct variable_union_info *vui;
2864 /* If DST is shared compare the location chains.
2865 If they are different we will modify the chain in DST with
2866 high probability so make a copy of DST. */
2867 if (shared_var_p (dst, set->vars))
2869 for (node = src->var_part[i].loc_chain,
2870 node2 = dst->var_part[j].loc_chain; node && node2;
2871 node = node->next, node2 = node2->next)
2873 if (!((REG_P (node2->loc)
2874 && REG_P (node->loc)
2875 && REGNO (node2->loc) == REGNO (node->loc))
2876 || rtx_equal_p (node2->loc, node->loc)))
2878 if (node2->init < node->init)
2879 node2->init = node->init;
2880 break;
2883 if (node || node2)
2885 dstp = unshare_variable (set, dstp, dst,
2886 VAR_INIT_STATUS_UNKNOWN);
2887 dst = (variable)*dstp;
2891 src_l = 0;
2892 for (node = src->var_part[i].loc_chain; node; node = node->next)
2893 src_l++;
2894 dst_l = 0;
2895 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2896 dst_l++;
2898 if (dst_l == 1)
2900 /* The most common case, much simpler, no qsort is needed. */
2901 location_chain dstnode = dst->var_part[j].loc_chain;
2902 dst->var_part[k].loc_chain = dstnode;
2903 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2904 node2 = dstnode;
2905 for (node = src->var_part[i].loc_chain; node; node = node->next)
2906 if (!((REG_P (dstnode->loc)
2907 && REG_P (node->loc)
2908 && REGNO (dstnode->loc) == REGNO (node->loc))
2909 || rtx_equal_p (dstnode->loc, node->loc)))
2911 location_chain new_node;
2913 /* Copy the location from SRC. */
2914 new_node = (location_chain) pool_alloc (loc_chain_pool);
2915 new_node->loc = node->loc;
2916 new_node->init = node->init;
2917 if (!node->set_src || MEM_P (node->set_src))
2918 new_node->set_src = NULL;
2919 else
2920 new_node->set_src = node->set_src;
2921 node2->next = new_node;
2922 node2 = new_node;
2924 node2->next = NULL;
2926 else
2928 if (src_l + dst_l > vui_allocated)
2930 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2931 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2932 vui_allocated);
2934 vui = vui_vec;
2936 /* Fill in the locations from DST. */
2937 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2938 node = node->next, jj++)
2940 vui[jj].lc = node;
2941 vui[jj].pos_dst = jj;
2943 /* Pos plus value larger than a sum of 2 valid positions. */
2944 vui[jj].pos = jj + src_l + dst_l;
2947 /* Fill in the locations from SRC. */
2948 n = dst_l;
2949 for (node = src->var_part[i].loc_chain, ii = 0; node;
2950 node = node->next, ii++)
2952 /* Find location from NODE. */
2953 for (jj = 0; jj < dst_l; jj++)
2955 if ((REG_P (vui[jj].lc->loc)
2956 && REG_P (node->loc)
2957 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2958 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2960 vui[jj].pos = jj + ii;
2961 break;
2964 if (jj >= dst_l) /* The location has not been found. */
2966 location_chain new_node;
2968 /* Copy the location from SRC. */
2969 new_node = (location_chain) pool_alloc (loc_chain_pool);
2970 new_node->loc = node->loc;
2971 new_node->init = node->init;
2972 if (!node->set_src || MEM_P (node->set_src))
2973 new_node->set_src = NULL;
2974 else
2975 new_node->set_src = node->set_src;
2976 vui[n].lc = new_node;
2977 vui[n].pos_dst = src_l + dst_l;
2978 vui[n].pos = ii + src_l + dst_l;
2979 n++;
2983 if (dst_l == 2)
2985 /* Special case still very common case. For dst_l == 2
2986 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2987 vui[i].pos == i + src_l + dst_l. */
2988 if (vui[0].pos > vui[1].pos)
2990 /* Order should be 1, 0, 2... */
2991 dst->var_part[k].loc_chain = vui[1].lc;
2992 vui[1].lc->next = vui[0].lc;
2993 if (n >= 3)
2995 vui[0].lc->next = vui[2].lc;
2996 vui[n - 1].lc->next = NULL;
2998 else
2999 vui[0].lc->next = NULL;
3000 ii = 3;
3002 else
3004 dst->var_part[k].loc_chain = vui[0].lc;
3005 if (n >= 3 && vui[2].pos < vui[1].pos)
3007 /* Order should be 0, 2, 1, 3... */
3008 vui[0].lc->next = vui[2].lc;
3009 vui[2].lc->next = vui[1].lc;
3010 if (n >= 4)
3012 vui[1].lc->next = vui[3].lc;
3013 vui[n - 1].lc->next = NULL;
3015 else
3016 vui[1].lc->next = NULL;
3017 ii = 4;
3019 else
3021 /* Order should be 0, 1, 2... */
3022 ii = 1;
3023 vui[n - 1].lc->next = NULL;
3026 for (; ii < n; ii++)
3027 vui[ii - 1].lc->next = vui[ii].lc;
3029 else
3031 qsort (vui, n, sizeof (struct variable_union_info),
3032 variable_union_info_cmp_pos);
3034 /* Reconnect the nodes in sorted order. */
3035 for (ii = 1; ii < n; ii++)
3036 vui[ii - 1].lc->next = vui[ii].lc;
3037 vui[n - 1].lc->next = NULL;
3038 dst->var_part[k].loc_chain = vui[0].lc;
3041 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3043 i--;
3044 j--;
3046 else if ((i >= 0 && j >= 0
3047 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3048 || i < 0)
3050 dst->var_part[k] = dst->var_part[j];
3051 j--;
3053 else if ((i >= 0 && j >= 0
3054 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3055 || j < 0)
3057 location_chain *nextp;
3059 /* Copy the chain from SRC. */
3060 nextp = &dst->var_part[k].loc_chain;
3061 for (node = src->var_part[i].loc_chain; node; node = node->next)
3063 location_chain new_lc;
3065 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3066 new_lc->next = NULL;
3067 new_lc->init = node->init;
3068 if (!node->set_src || MEM_P (node->set_src))
3069 new_lc->set_src = NULL;
3070 else
3071 new_lc->set_src = node->set_src;
3072 new_lc->loc = node->loc;
3074 *nextp = new_lc;
3075 nextp = &new_lc->next;
3078 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3079 i--;
3081 dst->var_part[k].cur_loc = NULL;
3084 if (flag_var_tracking_uninit)
3085 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3087 location_chain node, node2;
3088 for (node = src->var_part[i].loc_chain; node; node = node->next)
3089 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3090 if (rtx_equal_p (node->loc, node2->loc))
3092 if (node->init > node2->init)
3093 node2->init = node->init;
3097 /* Continue traversing the hash table. */
3098 return 1;
3101 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3103 static void
3104 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3106 int i;
3108 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3109 attrs_list_union (&dst->regs[i], src->regs[i]);
3111 if (dst->vars == empty_shared_hash)
3113 shared_hash_destroy (dst->vars);
3114 dst->vars = shared_hash_copy (src->vars);
3116 else
3118 variable_iterator_type hi;
3119 variable var;
3121 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3122 var, variable, hi)
3123 variable_union (var, dst);
3127 /* Whether the value is currently being expanded. */
3128 #define VALUE_RECURSED_INTO(x) \
3129 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3131 /* Whether no expansion was found, saving useless lookups.
3132 It must only be set when VALUE_CHANGED is clear. */
3133 #define NO_LOC_P(x) \
3134 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3136 /* Whether cur_loc in the value needs to be (re)computed. */
3137 #define VALUE_CHANGED(x) \
3138 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3139 /* Whether cur_loc in the decl needs to be (re)computed. */
3140 #define DECL_CHANGED(x) TREE_VISITED (x)
3142 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3143 user DECLs, this means they're in changed_variables. Values and
3144 debug exprs may be left with this flag set if no user variable
3145 requires them to be evaluated. */
3147 static inline void
3148 set_dv_changed (decl_or_value dv, bool newv)
3150 switch (dv_onepart_p (dv))
3152 case ONEPART_VALUE:
3153 if (newv)
3154 NO_LOC_P (dv_as_value (dv)) = false;
3155 VALUE_CHANGED (dv_as_value (dv)) = newv;
3156 break;
3158 case ONEPART_DEXPR:
3159 if (newv)
3160 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3161 /* Fall through... */
3163 default:
3164 DECL_CHANGED (dv_as_decl (dv)) = newv;
3165 break;
3169 /* Return true if DV needs to have its cur_loc recomputed. */
3171 static inline bool
3172 dv_changed_p (decl_or_value dv)
3174 return (dv_is_value_p (dv)
3175 ? VALUE_CHANGED (dv_as_value (dv))
3176 : DECL_CHANGED (dv_as_decl (dv)));
3179 /* Return a location list node whose loc is rtx_equal to LOC, in the
3180 location list of a one-part variable or value VAR, or in that of
3181 any values recursively mentioned in the location lists. VARS must
3182 be in star-canonical form. */
3184 static location_chain
3185 find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
3187 location_chain node;
3188 enum rtx_code loc_code;
3190 if (!var)
3191 return NULL;
3193 gcc_checking_assert (var->onepart);
3195 if (!var->n_var_parts)
3196 return NULL;
3198 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3200 loc_code = GET_CODE (loc);
3201 for (node = var->var_part[0].loc_chain; node; node = node->next)
3203 decl_or_value dv;
3204 variable rvar;
3206 if (GET_CODE (node->loc) != loc_code)
3208 if (GET_CODE (node->loc) != VALUE)
3209 continue;
3211 else if (loc == node->loc)
3212 return node;
3213 else if (loc_code != VALUE)
3215 if (rtx_equal_p (loc, node->loc))
3216 return node;
3217 continue;
3220 /* Since we're in star-canonical form, we don't need to visit
3221 non-canonical nodes: one-part variables and non-canonical
3222 values would only point back to the canonical node. */
3223 if (dv_is_value_p (var->dv)
3224 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3226 /* Skip all subsequent VALUEs. */
3227 while (node->next && GET_CODE (node->next->loc) == VALUE)
3229 node = node->next;
3230 gcc_checking_assert (!canon_value_cmp (node->loc,
3231 dv_as_value (var->dv)));
3232 if (loc == node->loc)
3233 return node;
3235 continue;
3238 gcc_checking_assert (node == var->var_part[0].loc_chain);
3239 gcc_checking_assert (!node->next);
3241 dv = dv_from_value (node->loc);
3242 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3243 return find_loc_in_1pdv (loc, rvar, vars);
3246 /* ??? Gotta look in cselib_val locations too. */
3248 return NULL;
3251 /* Hash table iteration argument passed to variable_merge. */
3252 struct dfset_merge
3254 /* The set in which the merge is to be inserted. */
3255 dataflow_set *dst;
3256 /* The set that we're iterating in. */
3257 dataflow_set *cur;
3258 /* The set that may contain the other dv we are to merge with. */
3259 dataflow_set *src;
3260 /* Number of onepart dvs in src. */
3261 int src_onepart_cnt;
3264 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3265 loc_cmp order, and it is maintained as such. */
3267 static void
3268 insert_into_intersection (location_chain *nodep, rtx loc,
3269 enum var_init_status status)
3271 location_chain node;
3272 int r;
3274 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3275 if ((r = loc_cmp (node->loc, loc)) == 0)
3277 node->init = MIN (node->init, status);
3278 return;
3280 else if (r > 0)
3281 break;
3283 node = (location_chain) pool_alloc (loc_chain_pool);
3285 node->loc = loc;
3286 node->set_src = NULL;
3287 node->init = status;
3288 node->next = *nodep;
3289 *nodep = node;
3292 /* Insert in DEST the intersection of the locations present in both
3293 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3294 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3295 DSM->dst. */
3297 static void
3298 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3299 location_chain s1node, variable s2var)
3301 dataflow_set *s1set = dsm->cur;
3302 dataflow_set *s2set = dsm->src;
3303 location_chain found;
3305 if (s2var)
3307 location_chain s2node;
3309 gcc_checking_assert (s2var->onepart);
3311 if (s2var->n_var_parts)
3313 s2node = s2var->var_part[0].loc_chain;
3315 for (; s1node && s2node;
3316 s1node = s1node->next, s2node = s2node->next)
3317 if (s1node->loc != s2node->loc)
3318 break;
3319 else if (s1node->loc == val)
3320 continue;
3321 else
3322 insert_into_intersection (dest, s1node->loc,
3323 MIN (s1node->init, s2node->init));
3327 for (; s1node; s1node = s1node->next)
3329 if (s1node->loc == val)
3330 continue;
3332 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3333 shared_hash_htab (s2set->vars))))
3335 insert_into_intersection (dest, s1node->loc,
3336 MIN (s1node->init, found->init));
3337 continue;
3340 if (GET_CODE (s1node->loc) == VALUE
3341 && !VALUE_RECURSED_INTO (s1node->loc))
3343 decl_or_value dv = dv_from_value (s1node->loc);
3344 variable svar = shared_hash_find (s1set->vars, dv);
3345 if (svar)
3347 if (svar->n_var_parts == 1)
3349 VALUE_RECURSED_INTO (s1node->loc) = true;
3350 intersect_loc_chains (val, dest, dsm,
3351 svar->var_part[0].loc_chain,
3352 s2var);
3353 VALUE_RECURSED_INTO (s1node->loc) = false;
3358 /* ??? gotta look in cselib_val locations too. */
3360 /* ??? if the location is equivalent to any location in src,
3361 searched recursively
3363 add to dst the values needed to represent the equivalence
3365 telling whether locations S is equivalent to another dv's
3366 location list:
3368 for each location D in the list
3370 if S and D satisfy rtx_equal_p, then it is present
3372 else if D is a value, recurse without cycles
3374 else if S and D have the same CODE and MODE
3376 for each operand oS and the corresponding oD
3378 if oS and oD are not equivalent, then S an D are not equivalent
3380 else if they are RTX vectors
3382 if any vector oS element is not equivalent to its respective oD,
3383 then S and D are not equivalent
3391 /* Return -1 if X should be before Y in a location list for a 1-part
3392 variable, 1 if Y should be before X, and 0 if they're equivalent
3393 and should not appear in the list. */
3395 static int
3396 loc_cmp (rtx x, rtx y)
3398 int i, j, r;
3399 RTX_CODE code = GET_CODE (x);
3400 const char *fmt;
3402 if (x == y)
3403 return 0;
3405 if (REG_P (x))
3407 if (!REG_P (y))
3408 return -1;
3409 gcc_assert (GET_MODE (x) == GET_MODE (y));
3410 if (REGNO (x) == REGNO (y))
3411 return 0;
3412 else if (REGNO (x) < REGNO (y))
3413 return -1;
3414 else
3415 return 1;
3418 if (REG_P (y))
3419 return 1;
3421 if (MEM_P (x))
3423 if (!MEM_P (y))
3424 return -1;
3425 gcc_assert (GET_MODE (x) == GET_MODE (y));
3426 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3429 if (MEM_P (y))
3430 return 1;
3432 if (GET_CODE (x) == VALUE)
3434 if (GET_CODE (y) != VALUE)
3435 return -1;
3436 /* Don't assert the modes are the same, that is true only
3437 when not recursing. (subreg:QI (value:SI 1:1) 0)
3438 and (subreg:QI (value:DI 2:2) 0) can be compared,
3439 even when the modes are different. */
3440 if (canon_value_cmp (x, y))
3441 return -1;
3442 else
3443 return 1;
3446 if (GET_CODE (y) == VALUE)
3447 return 1;
3449 /* Entry value is the least preferable kind of expression. */
3450 if (GET_CODE (x) == ENTRY_VALUE)
3452 if (GET_CODE (y) != ENTRY_VALUE)
3453 return 1;
3454 gcc_assert (GET_MODE (x) == GET_MODE (y));
3455 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3458 if (GET_CODE (y) == ENTRY_VALUE)
3459 return -1;
3461 if (GET_CODE (x) == GET_CODE (y))
3462 /* Compare operands below. */;
3463 else if (GET_CODE (x) < GET_CODE (y))
3464 return -1;
3465 else
3466 return 1;
3468 gcc_assert (GET_MODE (x) == GET_MODE (y));
3470 if (GET_CODE (x) == DEBUG_EXPR)
3472 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3473 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3474 return -1;
3475 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3476 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3477 return 1;
3480 fmt = GET_RTX_FORMAT (code);
3481 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3482 switch (fmt[i])
3484 case 'w':
3485 if (XWINT (x, i) == XWINT (y, i))
3486 break;
3487 else if (XWINT (x, i) < XWINT (y, i))
3488 return -1;
3489 else
3490 return 1;
3492 case 'n':
3493 case 'i':
3494 if (XINT (x, i) == XINT (y, i))
3495 break;
3496 else if (XINT (x, i) < XINT (y, i))
3497 return -1;
3498 else
3499 return 1;
3501 case 'V':
3502 case 'E':
3503 /* Compare the vector length first. */
3504 if (XVECLEN (x, i) == XVECLEN (y, i))
3505 /* Compare the vectors elements. */;
3506 else if (XVECLEN (x, i) < XVECLEN (y, i))
3507 return -1;
3508 else
3509 return 1;
3511 for (j = 0; j < XVECLEN (x, i); j++)
3512 if ((r = loc_cmp (XVECEXP (x, i, j),
3513 XVECEXP (y, i, j))))
3514 return r;
3515 break;
3517 case 'e':
3518 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3519 return r;
3520 break;
3522 case 'S':
3523 case 's':
3524 if (XSTR (x, i) == XSTR (y, i))
3525 break;
3526 if (!XSTR (x, i))
3527 return -1;
3528 if (!XSTR (y, i))
3529 return 1;
3530 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3531 break;
3532 else if (r < 0)
3533 return -1;
3534 else
3535 return 1;
3537 case 'u':
3538 /* These are just backpointers, so they don't matter. */
3539 break;
3541 case '0':
3542 case 't':
3543 break;
3545 /* It is believed that rtx's at this level will never
3546 contain anything but integers and other rtx's,
3547 except for within LABEL_REFs and SYMBOL_REFs. */
3548 default:
3549 gcc_unreachable ();
3551 if (CONST_WIDE_INT_P (x))
3553 /* Compare the vector length first. */
3554 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3555 return 1;
3556 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3557 return -1;
3559 /* Compare the vectors elements. */;
3560 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3562 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3563 return -1;
3564 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3565 return 1;
3569 return 0;
3572 #if ENABLE_CHECKING
3573 /* Check the order of entries in one-part variables. */
3576 canonicalize_loc_order_check (variable_def **slot,
3577 dataflow_set *data ATTRIBUTE_UNUSED)
3579 variable var = *slot;
3580 location_chain node, next;
3582 #ifdef ENABLE_RTL_CHECKING
3583 int i;
3584 for (i = 0; i < var->n_var_parts; i++)
3585 gcc_assert (var->var_part[0].cur_loc == NULL);
3586 gcc_assert (!var->in_changed_variables);
3587 #endif
3589 if (!var->onepart)
3590 return 1;
3592 gcc_assert (var->n_var_parts == 1);
3593 node = var->var_part[0].loc_chain;
3594 gcc_assert (node);
3596 while ((next = node->next))
3598 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3599 node = next;
3602 return 1;
3604 #endif
3606 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3607 more likely to be chosen as canonical for an equivalence set.
3608 Ensure less likely values can reach more likely neighbors, making
3609 the connections bidirectional. */
3612 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3614 variable var = *slot;
3615 decl_or_value dv = var->dv;
3616 rtx val;
3617 location_chain node;
3619 if (!dv_is_value_p (dv))
3620 return 1;
3622 gcc_checking_assert (var->n_var_parts == 1);
3624 val = dv_as_value (dv);
3626 for (node = var->var_part[0].loc_chain; node; node = node->next)
3627 if (GET_CODE (node->loc) == VALUE)
3629 if (canon_value_cmp (node->loc, val))
3630 VALUE_RECURSED_INTO (val) = true;
3631 else
3633 decl_or_value odv = dv_from_value (node->loc);
3634 variable_def **oslot;
3635 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3637 set_slot_part (set, val, oslot, odv, 0,
3638 node->init, NULL_RTX);
3640 VALUE_RECURSED_INTO (node->loc) = true;
3644 return 1;
3647 /* Remove redundant entries from equivalence lists in onepart
3648 variables, canonicalizing equivalence sets into star shapes. */
3651 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3653 variable var = *slot;
3654 decl_or_value dv = var->dv;
3655 location_chain node;
3656 decl_or_value cdv;
3657 rtx val, cval;
3658 variable_def **cslot;
3659 bool has_value;
3660 bool has_marks;
3662 if (!var->onepart)
3663 return 1;
3665 gcc_checking_assert (var->n_var_parts == 1);
3667 if (dv_is_value_p (dv))
3669 cval = dv_as_value (dv);
3670 if (!VALUE_RECURSED_INTO (cval))
3671 return 1;
3672 VALUE_RECURSED_INTO (cval) = false;
3674 else
3675 cval = NULL_RTX;
3677 restart:
3678 val = cval;
3679 has_value = false;
3680 has_marks = false;
3682 gcc_assert (var->n_var_parts == 1);
3684 for (node = var->var_part[0].loc_chain; node; node = node->next)
3685 if (GET_CODE (node->loc) == VALUE)
3687 has_value = true;
3688 if (VALUE_RECURSED_INTO (node->loc))
3689 has_marks = true;
3690 if (canon_value_cmp (node->loc, cval))
3691 cval = node->loc;
3694 if (!has_value)
3695 return 1;
3697 if (cval == val)
3699 if (!has_marks || dv_is_decl_p (dv))
3700 return 1;
3702 /* Keep it marked so that we revisit it, either after visiting a
3703 child node, or after visiting a new parent that might be
3704 found out. */
3705 VALUE_RECURSED_INTO (val) = true;
3707 for (node = var->var_part[0].loc_chain; node; node = node->next)
3708 if (GET_CODE (node->loc) == VALUE
3709 && VALUE_RECURSED_INTO (node->loc))
3711 cval = node->loc;
3712 restart_with_cval:
3713 VALUE_RECURSED_INTO (cval) = false;
3714 dv = dv_from_value (cval);
3715 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3716 if (!slot)
3718 gcc_assert (dv_is_decl_p (var->dv));
3719 /* The canonical value was reset and dropped.
3720 Remove it. */
3721 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3722 return 1;
3724 var = *slot;
3725 gcc_assert (dv_is_value_p (var->dv));
3726 if (var->n_var_parts == 0)
3727 return 1;
3728 gcc_assert (var->n_var_parts == 1);
3729 goto restart;
3732 VALUE_RECURSED_INTO (val) = false;
3734 return 1;
3737 /* Push values to the canonical one. */
3738 cdv = dv_from_value (cval);
3739 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3741 for (node = var->var_part[0].loc_chain; node; node = node->next)
3742 if (node->loc != cval)
3744 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3745 node->init, NULL_RTX);
3746 if (GET_CODE (node->loc) == VALUE)
3748 decl_or_value ndv = dv_from_value (node->loc);
3750 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3751 NO_INSERT);
3753 if (canon_value_cmp (node->loc, val))
3755 /* If it could have been a local minimum, it's not any more,
3756 since it's now neighbor to cval, so it may have to push
3757 to it. Conversely, if it wouldn't have prevailed over
3758 val, then whatever mark it has is fine: if it was to
3759 push, it will now push to a more canonical node, but if
3760 it wasn't, then it has already pushed any values it might
3761 have to. */
3762 VALUE_RECURSED_INTO (node->loc) = true;
3763 /* Make sure we visit node->loc by ensuring we cval is
3764 visited too. */
3765 VALUE_RECURSED_INTO (cval) = true;
3767 else if (!VALUE_RECURSED_INTO (node->loc))
3768 /* If we have no need to "recurse" into this node, it's
3769 already "canonicalized", so drop the link to the old
3770 parent. */
3771 clobber_variable_part (set, cval, ndv, 0, NULL);
3773 else if (GET_CODE (node->loc) == REG)
3775 attrs list = set->regs[REGNO (node->loc)], *listp;
3777 /* Change an existing attribute referring to dv so that it
3778 refers to cdv, removing any duplicate this might
3779 introduce, and checking that no previous duplicates
3780 existed, all in a single pass. */
3782 while (list)
3784 if (list->offset == 0
3785 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3786 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3787 break;
3789 list = list->next;
3792 gcc_assert (list);
3793 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3795 list->dv = cdv;
3796 for (listp = &list->next; (list = *listp); listp = &list->next)
3798 if (list->offset)
3799 continue;
3801 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3803 *listp = list->next;
3804 pool_free (attrs_pool, list);
3805 list = *listp;
3806 break;
3809 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3812 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3814 for (listp = &list->next; (list = *listp); listp = &list->next)
3816 if (list->offset)
3817 continue;
3819 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3821 *listp = list->next;
3822 pool_free (attrs_pool, list);
3823 list = *listp;
3824 break;
3827 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3830 else
3831 gcc_unreachable ();
3833 #if ENABLE_CHECKING
3834 while (list)
3836 if (list->offset == 0
3837 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3838 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3839 gcc_unreachable ();
3841 list = list->next;
3843 #endif
3847 if (val)
3848 set_slot_part (set, val, cslot, cdv, 0,
3849 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3851 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3853 /* Variable may have been unshared. */
3854 var = *slot;
3855 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3856 && var->var_part[0].loc_chain->next == NULL);
3858 if (VALUE_RECURSED_INTO (cval))
3859 goto restart_with_cval;
3861 return 1;
3864 /* Bind one-part variables to the canonical value in an equivalence
3865 set. Not doing this causes dataflow convergence failure in rare
3866 circumstances, see PR42873. Unfortunately we can't do this
3867 efficiently as part of canonicalize_values_star, since we may not
3868 have determined or even seen the canonical value of a set when we
3869 get to a variable that references another member of the set. */
3872 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3874 variable var = *slot;
3875 decl_or_value dv = var->dv;
3876 location_chain node;
3877 rtx cval;
3878 decl_or_value cdv;
3879 variable_def **cslot;
3880 variable cvar;
3881 location_chain cnode;
3883 if (!var->onepart || var->onepart == ONEPART_VALUE)
3884 return 1;
3886 gcc_assert (var->n_var_parts == 1);
3888 node = var->var_part[0].loc_chain;
3890 if (GET_CODE (node->loc) != VALUE)
3891 return 1;
3893 gcc_assert (!node->next);
3894 cval = node->loc;
3896 /* Push values to the canonical one. */
3897 cdv = dv_from_value (cval);
3898 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3899 if (!cslot)
3900 return 1;
3901 cvar = *cslot;
3902 gcc_assert (cvar->n_var_parts == 1);
3904 cnode = cvar->var_part[0].loc_chain;
3906 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3907 that are not “more canonical” than it. */
3908 if (GET_CODE (cnode->loc) != VALUE
3909 || !canon_value_cmp (cnode->loc, cval))
3910 return 1;
3912 /* CVAL was found to be non-canonical. Change the variable to point
3913 to the canonical VALUE. */
3914 gcc_assert (!cnode->next);
3915 cval = cnode->loc;
3917 slot = set_slot_part (set, cval, slot, dv, 0,
3918 node->init, node->set_src);
3919 clobber_slot_part (set, cval, slot, 0, node->set_src);
3921 return 1;
3924 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3925 corresponding entry in DSM->src. Multi-part variables are combined
3926 with variable_union, whereas onepart dvs are combined with
3927 intersection. */
3929 static int
3930 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3932 dataflow_set *dst = dsm->dst;
3933 variable_def **dstslot;
3934 variable s2var, dvar = NULL;
3935 decl_or_value dv = s1var->dv;
3936 onepart_enum_t onepart = s1var->onepart;
3937 rtx val;
3938 hashval_t dvhash;
3939 location_chain node, *nodep;
3941 /* If the incoming onepart variable has an empty location list, then
3942 the intersection will be just as empty. For other variables,
3943 it's always union. */
3944 gcc_checking_assert (s1var->n_var_parts
3945 && s1var->var_part[0].loc_chain);
3947 if (!onepart)
3948 return variable_union (s1var, dst);
3950 gcc_checking_assert (s1var->n_var_parts == 1);
3952 dvhash = dv_htab_hash (dv);
3953 if (dv_is_value_p (dv))
3954 val = dv_as_value (dv);
3955 else
3956 val = NULL;
3958 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3959 if (!s2var)
3961 dst_can_be_shared = false;
3962 return 1;
3965 dsm->src_onepart_cnt--;
3966 gcc_assert (s2var->var_part[0].loc_chain
3967 && s2var->onepart == onepart
3968 && s2var->n_var_parts == 1);
3970 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3971 if (dstslot)
3973 dvar = *dstslot;
3974 gcc_assert (dvar->refcount == 1
3975 && dvar->onepart == onepart
3976 && dvar->n_var_parts == 1);
3977 nodep = &dvar->var_part[0].loc_chain;
3979 else
3981 nodep = &node;
3982 node = NULL;
3985 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3987 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3988 dvhash, INSERT);
3989 *dstslot = dvar = s2var;
3990 dvar->refcount++;
3992 else
3994 dst_can_be_shared = false;
3996 intersect_loc_chains (val, nodep, dsm,
3997 s1var->var_part[0].loc_chain, s2var);
3999 if (!dstslot)
4001 if (node)
4003 dvar = (variable) pool_alloc (onepart_pool (onepart));
4004 dvar->dv = dv;
4005 dvar->refcount = 1;
4006 dvar->n_var_parts = 1;
4007 dvar->onepart = onepart;
4008 dvar->in_changed_variables = false;
4009 dvar->var_part[0].loc_chain = node;
4010 dvar->var_part[0].cur_loc = NULL;
4011 if (onepart)
4012 VAR_LOC_1PAUX (dvar) = NULL;
4013 else
4014 VAR_PART_OFFSET (dvar, 0) = 0;
4016 dstslot
4017 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4018 INSERT);
4019 gcc_assert (!*dstslot);
4020 *dstslot = dvar;
4022 else
4023 return 1;
4027 nodep = &dvar->var_part[0].loc_chain;
4028 while ((node = *nodep))
4030 location_chain *nextp = &node->next;
4032 if (GET_CODE (node->loc) == REG)
4034 attrs list;
4036 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4037 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4038 && dv_is_value_p (list->dv))
4039 break;
4041 if (!list)
4042 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4043 dv, 0, node->loc);
4044 /* If this value became canonical for another value that had
4045 this register, we want to leave it alone. */
4046 else if (dv_as_value (list->dv) != val)
4048 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4049 dstslot, dv, 0,
4050 node->init, NULL_RTX);
4051 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4053 /* Since nextp points into the removed node, we can't
4054 use it. The pointer to the next node moved to nodep.
4055 However, if the variable we're walking is unshared
4056 during our walk, we'll keep walking the location list
4057 of the previously-shared variable, in which case the
4058 node won't have been removed, and we'll want to skip
4059 it. That's why we test *nodep here. */
4060 if (*nodep != node)
4061 nextp = nodep;
4064 else
4065 /* Canonicalization puts registers first, so we don't have to
4066 walk it all. */
4067 break;
4068 nodep = nextp;
4071 if (dvar != *dstslot)
4072 dvar = *dstslot;
4073 nodep = &dvar->var_part[0].loc_chain;
4075 if (val)
4077 /* Mark all referenced nodes for canonicalization, and make sure
4078 we have mutual equivalence links. */
4079 VALUE_RECURSED_INTO (val) = true;
4080 for (node = *nodep; node; node = node->next)
4081 if (GET_CODE (node->loc) == VALUE)
4083 VALUE_RECURSED_INTO (node->loc) = true;
4084 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4085 node->init, NULL, INSERT);
4088 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4089 gcc_assert (*dstslot == dvar);
4090 canonicalize_values_star (dstslot, dst);
4091 gcc_checking_assert (dstslot
4092 == shared_hash_find_slot_noinsert_1 (dst->vars,
4093 dv, dvhash));
4094 dvar = *dstslot;
4096 else
4098 bool has_value = false, has_other = false;
4100 /* If we have one value and anything else, we're going to
4101 canonicalize this, so make sure all values have an entry in
4102 the table and are marked for canonicalization. */
4103 for (node = *nodep; node; node = node->next)
4105 if (GET_CODE (node->loc) == VALUE)
4107 /* If this was marked during register canonicalization,
4108 we know we have to canonicalize values. */
4109 if (has_value)
4110 has_other = true;
4111 has_value = true;
4112 if (has_other)
4113 break;
4115 else
4117 has_other = true;
4118 if (has_value)
4119 break;
4123 if (has_value && has_other)
4125 for (node = *nodep; node; node = node->next)
4127 if (GET_CODE (node->loc) == VALUE)
4129 decl_or_value dv = dv_from_value (node->loc);
4130 variable_def **slot = NULL;
4132 if (shared_hash_shared (dst->vars))
4133 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4134 if (!slot)
4135 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4136 INSERT);
4137 if (!*slot)
4139 variable var = (variable) pool_alloc (onepart_pool
4140 (ONEPART_VALUE));
4141 var->dv = dv;
4142 var->refcount = 1;
4143 var->n_var_parts = 1;
4144 var->onepart = ONEPART_VALUE;
4145 var->in_changed_variables = false;
4146 var->var_part[0].loc_chain = NULL;
4147 var->var_part[0].cur_loc = NULL;
4148 VAR_LOC_1PAUX (var) = NULL;
4149 *slot = var;
4152 VALUE_RECURSED_INTO (node->loc) = true;
4156 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4157 gcc_assert (*dstslot == dvar);
4158 canonicalize_values_star (dstslot, dst);
4159 gcc_checking_assert (dstslot
4160 == shared_hash_find_slot_noinsert_1 (dst->vars,
4161 dv, dvhash));
4162 dvar = *dstslot;
4166 if (!onepart_variable_different_p (dvar, s2var))
4168 variable_htab_free (dvar);
4169 *dstslot = dvar = s2var;
4170 dvar->refcount++;
4172 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4174 variable_htab_free (dvar);
4175 *dstslot = dvar = s1var;
4176 dvar->refcount++;
4177 dst_can_be_shared = false;
4179 else
4180 dst_can_be_shared = false;
4182 return 1;
4185 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4186 multi-part variable. Unions of multi-part variables and
4187 intersections of one-part ones will be handled in
4188 variable_merge_over_cur(). */
4190 static int
4191 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4193 dataflow_set *dst = dsm->dst;
4194 decl_or_value dv = s2var->dv;
4196 if (!s2var->onepart)
4198 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4199 *dstp = s2var;
4200 s2var->refcount++;
4201 return 1;
4204 dsm->src_onepart_cnt++;
4205 return 1;
4208 /* Combine dataflow set information from SRC2 into DST, using PDST
4209 to carry over information across passes. */
4211 static void
4212 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4214 dataflow_set cur = *dst;
4215 dataflow_set *src1 = &cur;
4216 struct dfset_merge dsm;
4217 int i;
4218 size_t src1_elems, src2_elems;
4219 variable_iterator_type hi;
4220 variable var;
4222 src1_elems = shared_hash_htab (src1->vars)->elements ();
4223 src2_elems = shared_hash_htab (src2->vars)->elements ();
4224 dataflow_set_init (dst);
4225 dst->stack_adjust = cur.stack_adjust;
4226 shared_hash_destroy (dst->vars);
4227 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4228 dst->vars->refcount = 1;
4229 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4231 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4232 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4234 dsm.dst = dst;
4235 dsm.src = src2;
4236 dsm.cur = src1;
4237 dsm.src_onepart_cnt = 0;
4239 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4240 var, variable, hi)
4241 variable_merge_over_src (var, &dsm);
4242 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4243 var, variable, hi)
4244 variable_merge_over_cur (var, &dsm);
4246 if (dsm.src_onepart_cnt)
4247 dst_can_be_shared = false;
4249 dataflow_set_destroy (src1);
4252 /* Mark register equivalences. */
4254 static void
4255 dataflow_set_equiv_regs (dataflow_set *set)
4257 int i;
4258 attrs list, *listp;
4260 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4262 rtx canon[NUM_MACHINE_MODES];
4264 /* If the list is empty or one entry, no need to canonicalize
4265 anything. */
4266 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4267 continue;
4269 memset (canon, 0, sizeof (canon));
4271 for (list = set->regs[i]; list; list = list->next)
4272 if (list->offset == 0 && dv_is_value_p (list->dv))
4274 rtx val = dv_as_value (list->dv);
4275 rtx *cvalp = &canon[(int)GET_MODE (val)];
4276 rtx cval = *cvalp;
4278 if (canon_value_cmp (val, cval))
4279 *cvalp = val;
4282 for (list = set->regs[i]; list; list = list->next)
4283 if (list->offset == 0 && dv_onepart_p (list->dv))
4285 rtx cval = canon[(int)GET_MODE (list->loc)];
4287 if (!cval)
4288 continue;
4290 if (dv_is_value_p (list->dv))
4292 rtx val = dv_as_value (list->dv);
4294 if (val == cval)
4295 continue;
4297 VALUE_RECURSED_INTO (val) = true;
4298 set_variable_part (set, val, dv_from_value (cval), 0,
4299 VAR_INIT_STATUS_INITIALIZED,
4300 NULL, NO_INSERT);
4303 VALUE_RECURSED_INTO (cval) = true;
4304 set_variable_part (set, cval, list->dv, 0,
4305 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4308 for (listp = &set->regs[i]; (list = *listp);
4309 listp = list ? &list->next : listp)
4310 if (list->offset == 0 && dv_onepart_p (list->dv))
4312 rtx cval = canon[(int)GET_MODE (list->loc)];
4313 variable_def **slot;
4315 if (!cval)
4316 continue;
4318 if (dv_is_value_p (list->dv))
4320 rtx val = dv_as_value (list->dv);
4321 if (!VALUE_RECURSED_INTO (val))
4322 continue;
4325 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4326 canonicalize_values_star (slot, set);
4327 if (*listp != list)
4328 list = NULL;
4333 /* Remove any redundant values in the location list of VAR, which must
4334 be unshared and 1-part. */
4336 static void
4337 remove_duplicate_values (variable var)
4339 location_chain node, *nodep;
4341 gcc_assert (var->onepart);
4342 gcc_assert (var->n_var_parts == 1);
4343 gcc_assert (var->refcount == 1);
4345 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4347 if (GET_CODE (node->loc) == VALUE)
4349 if (VALUE_RECURSED_INTO (node->loc))
4351 /* Remove duplicate value node. */
4352 *nodep = node->next;
4353 pool_free (loc_chain_pool, node);
4354 continue;
4356 else
4357 VALUE_RECURSED_INTO (node->loc) = true;
4359 nodep = &node->next;
4362 for (node = var->var_part[0].loc_chain; node; node = node->next)
4363 if (GET_CODE (node->loc) == VALUE)
4365 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4366 VALUE_RECURSED_INTO (node->loc) = false;
4371 /* Hash table iteration argument passed to variable_post_merge. */
4372 struct dfset_post_merge
4374 /* The new input set for the current block. */
4375 dataflow_set *set;
4376 /* Pointer to the permanent input set for the current block, or
4377 NULL. */
4378 dataflow_set **permp;
4381 /* Create values for incoming expressions associated with one-part
4382 variables that don't have value numbers for them. */
4385 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4387 dataflow_set *set = dfpm->set;
4388 variable var = *slot;
4389 location_chain node;
4391 if (!var->onepart || !var->n_var_parts)
4392 return 1;
4394 gcc_assert (var->n_var_parts == 1);
4396 if (dv_is_decl_p (var->dv))
4398 bool check_dupes = false;
4400 restart:
4401 for (node = var->var_part[0].loc_chain; node; node = node->next)
4403 if (GET_CODE (node->loc) == VALUE)
4404 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4405 else if (GET_CODE (node->loc) == REG)
4407 attrs att, *attp, *curp = NULL;
4409 if (var->refcount != 1)
4411 slot = unshare_variable (set, slot, var,
4412 VAR_INIT_STATUS_INITIALIZED);
4413 var = *slot;
4414 goto restart;
4417 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4418 attp = &att->next)
4419 if (att->offset == 0
4420 && GET_MODE (att->loc) == GET_MODE (node->loc))
4422 if (dv_is_value_p (att->dv))
4424 rtx cval = dv_as_value (att->dv);
4425 node->loc = cval;
4426 check_dupes = true;
4427 break;
4429 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4430 curp = attp;
4433 if (!curp)
4435 curp = attp;
4436 while (*curp)
4437 if ((*curp)->offset == 0
4438 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4439 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4440 break;
4441 else
4442 curp = &(*curp)->next;
4443 gcc_assert (*curp);
4446 if (!att)
4448 decl_or_value cdv;
4449 rtx cval;
4451 if (!*dfpm->permp)
4453 *dfpm->permp = XNEW (dataflow_set);
4454 dataflow_set_init (*dfpm->permp);
4457 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4458 att; att = att->next)
4459 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4461 gcc_assert (att->offset == 0
4462 && dv_is_value_p (att->dv));
4463 val_reset (set, att->dv);
4464 break;
4467 if (att)
4469 cdv = att->dv;
4470 cval = dv_as_value (cdv);
4472 else
4474 /* Create a unique value to hold this register,
4475 that ought to be found and reused in
4476 subsequent rounds. */
4477 cselib_val *v;
4478 gcc_assert (!cselib_lookup (node->loc,
4479 GET_MODE (node->loc), 0,
4480 VOIDmode));
4481 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4482 VOIDmode);
4483 cselib_preserve_value (v);
4484 cselib_invalidate_rtx (node->loc);
4485 cval = v->val_rtx;
4486 cdv = dv_from_value (cval);
4487 if (dump_file)
4488 fprintf (dump_file,
4489 "Created new value %u:%u for reg %i\n",
4490 v->uid, v->hash, REGNO (node->loc));
4493 var_reg_decl_set (*dfpm->permp, node->loc,
4494 VAR_INIT_STATUS_INITIALIZED,
4495 cdv, 0, NULL, INSERT);
4497 node->loc = cval;
4498 check_dupes = true;
4501 /* Remove attribute referring to the decl, which now
4502 uses the value for the register, already existing or
4503 to be added when we bring perm in. */
4504 att = *curp;
4505 *curp = att->next;
4506 pool_free (attrs_pool, att);
4510 if (check_dupes)
4511 remove_duplicate_values (var);
4514 return 1;
4517 /* Reset values in the permanent set that are not associated with the
4518 chosen expression. */
4521 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4523 dataflow_set *set = dfpm->set;
4524 variable pvar = *pslot, var;
4525 location_chain pnode;
4526 decl_or_value dv;
4527 attrs att;
4529 gcc_assert (dv_is_value_p (pvar->dv)
4530 && pvar->n_var_parts == 1);
4531 pnode = pvar->var_part[0].loc_chain;
4532 gcc_assert (pnode
4533 && !pnode->next
4534 && REG_P (pnode->loc));
4536 dv = pvar->dv;
4538 var = shared_hash_find (set->vars, dv);
4539 if (var)
4541 /* Although variable_post_merge_new_vals may have made decls
4542 non-star-canonical, values that pre-existed in canonical form
4543 remain canonical, and newly-created values reference a single
4544 REG, so they are canonical as well. Since VAR has the
4545 location list for a VALUE, using find_loc_in_1pdv for it is
4546 fine, since VALUEs don't map back to DECLs. */
4547 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4548 return 1;
4549 val_reset (set, dv);
4552 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4553 if (att->offset == 0
4554 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4555 && dv_is_value_p (att->dv))
4556 break;
4558 /* If there is a value associated with this register already, create
4559 an equivalence. */
4560 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4562 rtx cval = dv_as_value (att->dv);
4563 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4564 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4565 NULL, INSERT);
4567 else if (!att)
4569 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4570 dv, 0, pnode->loc);
4571 variable_union (pvar, set);
4574 return 1;
4577 /* Just checking stuff and registering register attributes for
4578 now. */
4580 static void
4581 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4583 struct dfset_post_merge dfpm;
4585 dfpm.set = set;
4586 dfpm.permp = permp;
4588 shared_hash_htab (set->vars)
4589 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4590 if (*permp)
4591 shared_hash_htab ((*permp)->vars)
4592 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4593 shared_hash_htab (set->vars)
4594 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4595 shared_hash_htab (set->vars)
4596 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4599 /* Return a node whose loc is a MEM that refers to EXPR in the
4600 location list of a one-part variable or value VAR, or in that of
4601 any values recursively mentioned in the location lists. */
4603 static location_chain
4604 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4606 location_chain node;
4607 decl_or_value dv;
4608 variable var;
4609 location_chain where = NULL;
4611 if (!val)
4612 return NULL;
4614 gcc_assert (GET_CODE (val) == VALUE
4615 && !VALUE_RECURSED_INTO (val));
4617 dv = dv_from_value (val);
4618 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4620 if (!var)
4621 return NULL;
4623 gcc_assert (var->onepart);
4625 if (!var->n_var_parts)
4626 return NULL;
4628 VALUE_RECURSED_INTO (val) = true;
4630 for (node = var->var_part[0].loc_chain; node; node = node->next)
4631 if (MEM_P (node->loc)
4632 && MEM_EXPR (node->loc) == expr
4633 && INT_MEM_OFFSET (node->loc) == 0)
4635 where = node;
4636 break;
4638 else if (GET_CODE (node->loc) == VALUE
4639 && !VALUE_RECURSED_INTO (node->loc)
4640 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4641 break;
4643 VALUE_RECURSED_INTO (val) = false;
4645 return where;
4648 /* Return TRUE if the value of MEM may vary across a call. */
4650 static bool
4651 mem_dies_at_call (rtx mem)
4653 tree expr = MEM_EXPR (mem);
4654 tree decl;
4656 if (!expr)
4657 return true;
4659 decl = get_base_address (expr);
4661 if (!decl)
4662 return true;
4664 if (!DECL_P (decl))
4665 return true;
4667 return (may_be_aliased (decl)
4668 || (!TREE_READONLY (decl) && is_global_var (decl)));
4671 /* Remove all MEMs from the location list of a hash table entry for a
4672 one-part variable, except those whose MEM attributes map back to
4673 the variable itself, directly or within a VALUE. */
4676 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4678 variable var = *slot;
4680 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4682 tree decl = dv_as_decl (var->dv);
4683 location_chain loc, *locp;
4684 bool changed = false;
4686 if (!var->n_var_parts)
4687 return 1;
4689 gcc_assert (var->n_var_parts == 1);
4691 if (shared_var_p (var, set->vars))
4693 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4695 /* We want to remove dying MEMs that doesn't refer to DECL. */
4696 if (GET_CODE (loc->loc) == MEM
4697 && (MEM_EXPR (loc->loc) != decl
4698 || INT_MEM_OFFSET (loc->loc) != 0)
4699 && !mem_dies_at_call (loc->loc))
4700 break;
4701 /* We want to move here MEMs that do refer to DECL. */
4702 else if (GET_CODE (loc->loc) == VALUE
4703 && find_mem_expr_in_1pdv (decl, loc->loc,
4704 shared_hash_htab (set->vars)))
4705 break;
4708 if (!loc)
4709 return 1;
4711 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4712 var = *slot;
4713 gcc_assert (var->n_var_parts == 1);
4716 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4717 loc; loc = *locp)
4719 rtx old_loc = loc->loc;
4720 if (GET_CODE (old_loc) == VALUE)
4722 location_chain mem_node
4723 = find_mem_expr_in_1pdv (decl, loc->loc,
4724 shared_hash_htab (set->vars));
4726 /* ??? This picks up only one out of multiple MEMs that
4727 refer to the same variable. Do we ever need to be
4728 concerned about dealing with more than one, or, given
4729 that they should all map to the same variable
4730 location, their addresses will have been merged and
4731 they will be regarded as equivalent? */
4732 if (mem_node)
4734 loc->loc = mem_node->loc;
4735 loc->set_src = mem_node->set_src;
4736 loc->init = MIN (loc->init, mem_node->init);
4740 if (GET_CODE (loc->loc) != MEM
4741 || (MEM_EXPR (loc->loc) == decl
4742 && INT_MEM_OFFSET (loc->loc) == 0)
4743 || !mem_dies_at_call (loc->loc))
4745 if (old_loc != loc->loc && emit_notes)
4747 if (old_loc == var->var_part[0].cur_loc)
4749 changed = true;
4750 var->var_part[0].cur_loc = NULL;
4753 locp = &loc->next;
4754 continue;
4757 if (emit_notes)
4759 if (old_loc == var->var_part[0].cur_loc)
4761 changed = true;
4762 var->var_part[0].cur_loc = NULL;
4765 *locp = loc->next;
4766 pool_free (loc_chain_pool, loc);
4769 if (!var->var_part[0].loc_chain)
4771 var->n_var_parts--;
4772 changed = true;
4774 if (changed)
4775 variable_was_changed (var, set);
4778 return 1;
4781 /* Remove all MEMs from the location list of a hash table entry for a
4782 value. */
4785 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4787 variable var = *slot;
4789 if (var->onepart == ONEPART_VALUE)
4791 location_chain loc, *locp;
4792 bool changed = false;
4793 rtx cur_loc;
4795 gcc_assert (var->n_var_parts == 1);
4797 if (shared_var_p (var, set->vars))
4799 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4800 if (GET_CODE (loc->loc) == MEM
4801 && mem_dies_at_call (loc->loc))
4802 break;
4804 if (!loc)
4805 return 1;
4807 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4808 var = *slot;
4809 gcc_assert (var->n_var_parts == 1);
4812 if (VAR_LOC_1PAUX (var))
4813 cur_loc = VAR_LOC_FROM (var);
4814 else
4815 cur_loc = var->var_part[0].cur_loc;
4817 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4818 loc; loc = *locp)
4820 if (GET_CODE (loc->loc) != MEM
4821 || !mem_dies_at_call (loc->loc))
4823 locp = &loc->next;
4824 continue;
4827 *locp = loc->next;
4828 /* If we have deleted the location which was last emitted
4829 we have to emit new location so add the variable to set
4830 of changed variables. */
4831 if (cur_loc == loc->loc)
4833 changed = true;
4834 var->var_part[0].cur_loc = NULL;
4835 if (VAR_LOC_1PAUX (var))
4836 VAR_LOC_FROM (var) = NULL;
4838 pool_free (loc_chain_pool, loc);
4841 if (!var->var_part[0].loc_chain)
4843 var->n_var_parts--;
4844 changed = true;
4846 if (changed)
4847 variable_was_changed (var, set);
4850 return 1;
4853 /* Remove all variable-location information about call-clobbered
4854 registers, as well as associations between MEMs and VALUEs. */
4856 static void
4857 dataflow_set_clear_at_call (dataflow_set *set)
4859 unsigned int r;
4860 hard_reg_set_iterator hrsi;
4862 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4863 var_regno_delete (set, r);
4865 if (MAY_HAVE_DEBUG_INSNS)
4867 set->traversed_vars = set->vars;
4868 shared_hash_htab (set->vars)
4869 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4870 set->traversed_vars = set->vars;
4871 shared_hash_htab (set->vars)
4872 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4873 set->traversed_vars = NULL;
4877 static bool
4878 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4880 location_chain lc1, lc2;
4882 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4884 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4886 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4888 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4889 break;
4891 if (rtx_equal_p (lc1->loc, lc2->loc))
4892 break;
4894 if (!lc2)
4895 return true;
4897 return false;
4900 /* Return true if one-part variables VAR1 and VAR2 are different.
4901 They must be in canonical order. */
4903 static bool
4904 onepart_variable_different_p (variable var1, variable var2)
4906 location_chain lc1, lc2;
4908 if (var1 == var2)
4909 return false;
4911 gcc_assert (var1->n_var_parts == 1
4912 && var2->n_var_parts == 1);
4914 lc1 = var1->var_part[0].loc_chain;
4915 lc2 = var2->var_part[0].loc_chain;
4917 gcc_assert (lc1 && lc2);
4919 while (lc1 && lc2)
4921 if (loc_cmp (lc1->loc, lc2->loc))
4922 return true;
4923 lc1 = lc1->next;
4924 lc2 = lc2->next;
4927 return lc1 != lc2;
4930 /* Return true if variables VAR1 and VAR2 are different. */
4932 static bool
4933 variable_different_p (variable var1, variable var2)
4935 int i;
4937 if (var1 == var2)
4938 return false;
4940 if (var1->onepart != var2->onepart)
4941 return true;
4943 if (var1->n_var_parts != var2->n_var_parts)
4944 return true;
4946 if (var1->onepart && var1->n_var_parts)
4948 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4949 && var1->n_var_parts == 1);
4950 /* One-part values have locations in a canonical order. */
4951 return onepart_variable_different_p (var1, var2);
4954 for (i = 0; i < var1->n_var_parts; i++)
4956 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4957 return true;
4958 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4959 return true;
4960 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4961 return true;
4963 return false;
4966 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4968 static bool
4969 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4971 variable_iterator_type hi;
4972 variable var1;
4974 if (old_set->vars == new_set->vars)
4975 return false;
4977 if (shared_hash_htab (old_set->vars)->elements ()
4978 != shared_hash_htab (new_set->vars)->elements ())
4979 return true;
4981 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
4982 var1, variable, hi)
4984 variable_table_type *htab = shared_hash_htab (new_set->vars);
4985 variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4986 if (!var2)
4988 if (dump_file && (dump_flags & TDF_DETAILS))
4990 fprintf (dump_file, "dataflow difference found: removal of:\n");
4991 dump_var (var1);
4993 return true;
4996 if (variable_different_p (var1, var2))
4998 if (dump_file && (dump_flags & TDF_DETAILS))
5000 fprintf (dump_file, "dataflow difference found: "
5001 "old and new follow:\n");
5002 dump_var (var1);
5003 dump_var (var2);
5005 return true;
5009 /* No need to traverse the second hashtab, if both have the same number
5010 of elements and the second one had all entries found in the first one,
5011 then it can't have any extra entries. */
5012 return false;
5015 /* Free the contents of dataflow set SET. */
5017 static void
5018 dataflow_set_destroy (dataflow_set *set)
5020 int i;
5022 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5023 attrs_list_clear (&set->regs[i]);
5025 shared_hash_destroy (set->vars);
5026 set->vars = NULL;
5029 /* Return true if RTL X contains a SYMBOL_REF. */
5031 static bool
5032 contains_symbol_ref (rtx x)
5034 const char *fmt;
5035 RTX_CODE code;
5036 int i;
5038 if (!x)
5039 return false;
5041 code = GET_CODE (x);
5042 if (code == SYMBOL_REF)
5043 return true;
5045 fmt = GET_RTX_FORMAT (code);
5046 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5048 if (fmt[i] == 'e')
5050 if (contains_symbol_ref (XEXP (x, i)))
5051 return true;
5053 else if (fmt[i] == 'E')
5055 int j;
5056 for (j = 0; j < XVECLEN (x, i); j++)
5057 if (contains_symbol_ref (XVECEXP (x, i, j)))
5058 return true;
5062 return false;
5065 /* Shall EXPR be tracked? */
5067 static bool
5068 track_expr_p (tree expr, bool need_rtl)
5070 rtx decl_rtl;
5071 tree realdecl;
5073 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5074 return DECL_RTL_SET_P (expr);
5076 /* If EXPR is not a parameter or a variable do not track it. */
5077 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5078 return 0;
5080 /* It also must have a name... */
5081 if (!DECL_NAME (expr) && need_rtl)
5082 return 0;
5084 /* ... and a RTL assigned to it. */
5085 decl_rtl = DECL_RTL_IF_SET (expr);
5086 if (!decl_rtl && need_rtl)
5087 return 0;
5089 /* If this expression is really a debug alias of some other declaration, we
5090 don't need to track this expression if the ultimate declaration is
5091 ignored. */
5092 realdecl = expr;
5093 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5095 realdecl = DECL_DEBUG_EXPR (realdecl);
5096 if (!DECL_P (realdecl))
5098 if (handled_component_p (realdecl)
5099 || (TREE_CODE (realdecl) == MEM_REF
5100 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5102 HOST_WIDE_INT bitsize, bitpos, maxsize;
5103 tree innerdecl
5104 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5105 &maxsize);
5106 if (!DECL_P (innerdecl)
5107 || DECL_IGNORED_P (innerdecl)
5108 /* Do not track declarations for parts of tracked parameters
5109 since we want to track them as a whole instead. */
5110 || (TREE_CODE (innerdecl) == PARM_DECL
5111 && DECL_MODE (innerdecl) != BLKmode
5112 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5113 || TREE_STATIC (innerdecl)
5114 || bitsize <= 0
5115 || bitpos + bitsize > 256
5116 || bitsize != maxsize)
5117 return 0;
5118 else
5119 realdecl = expr;
5121 else
5122 return 0;
5126 /* Do not track EXPR if REALDECL it should be ignored for debugging
5127 purposes. */
5128 if (DECL_IGNORED_P (realdecl))
5129 return 0;
5131 /* Do not track global variables until we are able to emit correct location
5132 list for them. */
5133 if (TREE_STATIC (realdecl))
5134 return 0;
5136 /* When the EXPR is a DECL for alias of some variable (see example)
5137 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5138 DECL_RTL contains SYMBOL_REF.
5140 Example:
5141 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5142 char **_dl_argv;
5144 if (decl_rtl && MEM_P (decl_rtl)
5145 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5146 return 0;
5148 /* If RTX is a memory it should not be very large (because it would be
5149 an array or struct). */
5150 if (decl_rtl && MEM_P (decl_rtl))
5152 /* Do not track structures and arrays. */
5153 if (GET_MODE (decl_rtl) == BLKmode
5154 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5155 return 0;
5156 if (MEM_SIZE_KNOWN_P (decl_rtl)
5157 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5158 return 0;
5161 DECL_CHANGED (expr) = 0;
5162 DECL_CHANGED (realdecl) = 0;
5163 return 1;
5166 /* Determine whether a given LOC refers to the same variable part as
5167 EXPR+OFFSET. */
5169 static bool
5170 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5172 tree expr2;
5173 HOST_WIDE_INT offset2;
5175 if (! DECL_P (expr))
5176 return false;
5178 if (REG_P (loc))
5180 expr2 = REG_EXPR (loc);
5181 offset2 = REG_OFFSET (loc);
5183 else if (MEM_P (loc))
5185 expr2 = MEM_EXPR (loc);
5186 offset2 = INT_MEM_OFFSET (loc);
5188 else
5189 return false;
5191 if (! expr2 || ! DECL_P (expr2))
5192 return false;
5194 expr = var_debug_decl (expr);
5195 expr2 = var_debug_decl (expr2);
5197 return (expr == expr2 && offset == offset2);
5200 /* LOC is a REG or MEM that we would like to track if possible.
5201 If EXPR is null, we don't know what expression LOC refers to,
5202 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5203 LOC is an lvalue register.
5205 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5206 is something we can track. When returning true, store the mode of
5207 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5208 from EXPR in *OFFSET_OUT (if nonnull). */
5210 static bool
5211 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5212 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5214 machine_mode mode;
5216 if (expr == NULL || !track_expr_p (expr, true))
5217 return false;
5219 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5220 whole subreg, but only the old inner part is really relevant. */
5221 mode = GET_MODE (loc);
5222 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5224 machine_mode pseudo_mode;
5226 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5227 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5229 offset += byte_lowpart_offset (pseudo_mode, mode);
5230 mode = pseudo_mode;
5234 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5235 Do the same if we are storing to a register and EXPR occupies
5236 the whole of register LOC; in that case, the whole of EXPR is
5237 being changed. We exclude complex modes from the second case
5238 because the real and imaginary parts are represented as separate
5239 pseudo registers, even if the whole complex value fits into one
5240 hard register. */
5241 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5242 || (store_reg_p
5243 && !COMPLEX_MODE_P (DECL_MODE (expr))
5244 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5245 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5247 mode = DECL_MODE (expr);
5248 offset = 0;
5251 if (offset < 0 || offset >= MAX_VAR_PARTS)
5252 return false;
5254 if (mode_out)
5255 *mode_out = mode;
5256 if (offset_out)
5257 *offset_out = offset;
5258 return true;
5261 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5262 want to track. When returning nonnull, make sure that the attributes
5263 on the returned value are updated. */
5265 static rtx
5266 var_lowpart (machine_mode mode, rtx loc)
5268 unsigned int offset, reg_offset, regno;
5270 if (GET_MODE (loc) == mode)
5271 return loc;
5273 if (!REG_P (loc) && !MEM_P (loc))
5274 return NULL;
5276 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5278 if (MEM_P (loc))
5279 return adjust_address_nv (loc, mode, offset);
5281 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5282 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5283 reg_offset, mode);
5284 return gen_rtx_REG_offset (loc, mode, regno, offset);
5287 /* Carry information about uses and stores while walking rtx. */
5289 struct count_use_info
5291 /* The insn where the RTX is. */
5292 rtx_insn *insn;
5294 /* The basic block where insn is. */
5295 basic_block bb;
5297 /* The array of n_sets sets in the insn, as determined by cselib. */
5298 struct cselib_set *sets;
5299 int n_sets;
5301 /* True if we're counting stores, false otherwise. */
5302 bool store_p;
5305 /* Find a VALUE corresponding to X. */
5307 static inline cselib_val *
5308 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5310 int i;
5312 if (cui->sets)
5314 /* This is called after uses are set up and before stores are
5315 processed by cselib, so it's safe to look up srcs, but not
5316 dsts. So we look up expressions that appear in srcs or in
5317 dest expressions, but we search the sets array for dests of
5318 stores. */
5319 if (cui->store_p)
5321 /* Some targets represent memset and memcpy patterns
5322 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5323 (set (mem:BLK ...) (const_int ...)) or
5324 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5325 in that case, otherwise we end up with mode mismatches. */
5326 if (mode == BLKmode && MEM_P (x))
5327 return NULL;
5328 for (i = 0; i < cui->n_sets; i++)
5329 if (cui->sets[i].dest == x)
5330 return cui->sets[i].src_elt;
5332 else
5333 return cselib_lookup (x, mode, 0, VOIDmode);
5336 return NULL;
5339 /* Replace all registers and addresses in an expression with VALUE
5340 expressions that map back to them, unless the expression is a
5341 register. If no mapping is or can be performed, returns NULL. */
5343 static rtx
5344 replace_expr_with_values (rtx loc)
5346 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5347 return NULL;
5348 else if (MEM_P (loc))
5350 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5351 get_address_mode (loc), 0,
5352 GET_MODE (loc));
5353 if (addr)
5354 return replace_equiv_address_nv (loc, addr->val_rtx);
5355 else
5356 return NULL;
5358 else
5359 return cselib_subst_to_values (loc, VOIDmode);
5362 /* Return true if X contains a DEBUG_EXPR. */
5364 static bool
5365 rtx_debug_expr_p (const_rtx x)
5367 subrtx_iterator::array_type array;
5368 FOR_EACH_SUBRTX (iter, array, x, ALL)
5369 if (GET_CODE (*iter) == DEBUG_EXPR)
5370 return true;
5371 return false;
5374 /* Determine what kind of micro operation to choose for a USE. Return
5375 MO_CLOBBER if no micro operation is to be generated. */
5377 static enum micro_operation_type
5378 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5380 tree expr;
5382 if (cui && cui->sets)
5384 if (GET_CODE (loc) == VAR_LOCATION)
5386 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5388 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5389 if (! VAR_LOC_UNKNOWN_P (ploc))
5391 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5392 VOIDmode);
5394 /* ??? flag_float_store and volatile mems are never
5395 given values, but we could in theory use them for
5396 locations. */
5397 gcc_assert (val || 1);
5399 return MO_VAL_LOC;
5401 else
5402 return MO_CLOBBER;
5405 if (REG_P (loc) || MEM_P (loc))
5407 if (modep)
5408 *modep = GET_MODE (loc);
5409 if (cui->store_p)
5411 if (REG_P (loc)
5412 || (find_use_val (loc, GET_MODE (loc), cui)
5413 && cselib_lookup (XEXP (loc, 0),
5414 get_address_mode (loc), 0,
5415 GET_MODE (loc))))
5416 return MO_VAL_SET;
5418 else
5420 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5422 if (val && !cselib_preserved_value_p (val))
5423 return MO_VAL_USE;
5428 if (REG_P (loc))
5430 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5432 if (loc == cfa_base_rtx)
5433 return MO_CLOBBER;
5434 expr = REG_EXPR (loc);
5436 if (!expr)
5437 return MO_USE_NO_VAR;
5438 else if (target_for_debug_bind (var_debug_decl (expr)))
5439 return MO_CLOBBER;
5440 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5441 false, modep, NULL))
5442 return MO_USE;
5443 else
5444 return MO_USE_NO_VAR;
5446 else if (MEM_P (loc))
5448 expr = MEM_EXPR (loc);
5450 if (!expr)
5451 return MO_CLOBBER;
5452 else if (target_for_debug_bind (var_debug_decl (expr)))
5453 return MO_CLOBBER;
5454 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5455 false, modep, NULL)
5456 /* Multi-part variables shouldn't refer to one-part
5457 variable names such as VALUEs (never happens) or
5458 DEBUG_EXPRs (only happens in the presence of debug
5459 insns). */
5460 && (!MAY_HAVE_DEBUG_INSNS
5461 || !rtx_debug_expr_p (XEXP (loc, 0))))
5462 return MO_USE;
5463 else
5464 return MO_CLOBBER;
5467 return MO_CLOBBER;
5470 /* Log to OUT information about micro-operation MOPT involving X in
5471 INSN of BB. */
5473 static inline void
5474 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5475 enum micro_operation_type mopt, FILE *out)
5477 fprintf (out, "bb %i op %i insn %i %s ",
5478 bb->index, VTI (bb)->mos.length (),
5479 INSN_UID (insn), micro_operation_type_name[mopt]);
5480 print_inline_rtx (out, x, 2);
5481 fputc ('\n', out);
5484 /* Tell whether the CONCAT used to holds a VALUE and its location
5485 needs value resolution, i.e., an attempt of mapping the location
5486 back to other incoming values. */
5487 #define VAL_NEEDS_RESOLUTION(x) \
5488 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5489 /* Whether the location in the CONCAT is a tracked expression, that
5490 should also be handled like a MO_USE. */
5491 #define VAL_HOLDS_TRACK_EXPR(x) \
5492 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5493 /* Whether the location in the CONCAT should be handled like a MO_COPY
5494 as well. */
5495 #define VAL_EXPR_IS_COPIED(x) \
5496 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5497 /* Whether the location in the CONCAT should be handled like a
5498 MO_CLOBBER as well. */
5499 #define VAL_EXPR_IS_CLOBBERED(x) \
5500 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5502 /* All preserved VALUEs. */
5503 static vec<rtx> preserved_values;
5505 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5507 static void
5508 preserve_value (cselib_val *val)
5510 cselib_preserve_value (val);
5511 preserved_values.safe_push (val->val_rtx);
5514 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5515 any rtxes not suitable for CONST use not replaced by VALUEs
5516 are discovered. */
5518 static bool
5519 non_suitable_const (const_rtx x)
5521 subrtx_iterator::array_type array;
5522 FOR_EACH_SUBRTX (iter, array, x, ALL)
5524 const_rtx x = *iter;
5525 switch (GET_CODE (x))
5527 case REG:
5528 case DEBUG_EXPR:
5529 case PC:
5530 case SCRATCH:
5531 case CC0:
5532 case ASM_INPUT:
5533 case ASM_OPERANDS:
5534 return true;
5535 case MEM:
5536 if (!MEM_READONLY_P (x))
5537 return true;
5538 break;
5539 default:
5540 break;
5543 return false;
5546 /* Add uses (register and memory references) LOC which will be tracked
5547 to VTI (bb)->mos. */
5549 static void
5550 add_uses (rtx loc, struct count_use_info *cui)
5552 machine_mode mode = VOIDmode;
5553 enum micro_operation_type type = use_type (loc, cui, &mode);
5555 if (type != MO_CLOBBER)
5557 basic_block bb = cui->bb;
5558 micro_operation mo;
5560 mo.type = type;
5561 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5562 mo.insn = cui->insn;
5564 if (type == MO_VAL_LOC)
5566 rtx oloc = loc;
5567 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5568 cselib_val *val;
5570 gcc_assert (cui->sets);
5572 if (MEM_P (vloc)
5573 && !REG_P (XEXP (vloc, 0))
5574 && !MEM_P (XEXP (vloc, 0)))
5576 rtx mloc = vloc;
5577 machine_mode address_mode = get_address_mode (mloc);
5578 cselib_val *val
5579 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5580 GET_MODE (mloc));
5582 if (val && !cselib_preserved_value_p (val))
5583 preserve_value (val);
5586 if (CONSTANT_P (vloc)
5587 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5588 /* For constants don't look up any value. */;
5589 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5590 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5592 machine_mode mode2;
5593 enum micro_operation_type type2;
5594 rtx nloc = NULL;
5595 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5597 if (resolvable)
5598 nloc = replace_expr_with_values (vloc);
5600 if (nloc)
5602 oloc = shallow_copy_rtx (oloc);
5603 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5606 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5608 type2 = use_type (vloc, 0, &mode2);
5610 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5611 || type2 == MO_CLOBBER);
5613 if (type2 == MO_CLOBBER
5614 && !cselib_preserved_value_p (val))
5616 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5617 preserve_value (val);
5620 else if (!VAR_LOC_UNKNOWN_P (vloc))
5622 oloc = shallow_copy_rtx (oloc);
5623 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5626 mo.u.loc = oloc;
5628 else if (type == MO_VAL_USE)
5630 machine_mode mode2 = VOIDmode;
5631 enum micro_operation_type type2;
5632 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5633 rtx vloc, oloc = loc, nloc;
5635 gcc_assert (cui->sets);
5637 if (MEM_P (oloc)
5638 && !REG_P (XEXP (oloc, 0))
5639 && !MEM_P (XEXP (oloc, 0)))
5641 rtx mloc = oloc;
5642 machine_mode address_mode = get_address_mode (mloc);
5643 cselib_val *val
5644 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5645 GET_MODE (mloc));
5647 if (val && !cselib_preserved_value_p (val))
5648 preserve_value (val);
5651 type2 = use_type (loc, 0, &mode2);
5653 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5654 || type2 == MO_CLOBBER);
5656 if (type2 == MO_USE)
5657 vloc = var_lowpart (mode2, loc);
5658 else
5659 vloc = oloc;
5661 /* The loc of a MO_VAL_USE may have two forms:
5663 (concat val src): val is at src, a value-based
5664 representation.
5666 (concat (concat val use) src): same as above, with use as
5667 the MO_USE tracked value, if it differs from src.
5671 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5672 nloc = replace_expr_with_values (loc);
5673 if (!nloc)
5674 nloc = oloc;
5676 if (vloc != nloc)
5677 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5678 else
5679 oloc = val->val_rtx;
5681 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5683 if (type2 == MO_USE)
5684 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5685 if (!cselib_preserved_value_p (val))
5687 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5688 preserve_value (val);
5691 else
5692 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5694 if (dump_file && (dump_flags & TDF_DETAILS))
5695 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5696 VTI (bb)->mos.safe_push (mo);
5700 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5702 static void
5703 add_uses_1 (rtx *x, void *cui)
5705 subrtx_var_iterator::array_type array;
5706 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5707 add_uses (*iter, (struct count_use_info *) cui);
5710 /* This is the value used during expansion of locations. We want it
5711 to be unbounded, so that variables expanded deep in a recursion
5712 nest are fully evaluated, so that their values are cached
5713 correctly. We avoid recursion cycles through other means, and we
5714 don't unshare RTL, so excess complexity is not a problem. */
5715 #define EXPR_DEPTH (INT_MAX)
5716 /* We use this to keep too-complex expressions from being emitted as
5717 location notes, and then to debug information. Users can trade
5718 compile time for ridiculously complex expressions, although they're
5719 seldom useful, and they may often have to be discarded as not
5720 representable anyway. */
5721 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5723 /* Attempt to reverse the EXPR operation in the debug info and record
5724 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5725 no longer live we can express its value as VAL - 6. */
5727 static void
5728 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5730 rtx src, arg, ret;
5731 cselib_val *v;
5732 struct elt_loc_list *l;
5733 enum rtx_code code;
5734 int count;
5736 if (GET_CODE (expr) != SET)
5737 return;
5739 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5740 return;
5742 src = SET_SRC (expr);
5743 switch (GET_CODE (src))
5745 case PLUS:
5746 case MINUS:
5747 case XOR:
5748 case NOT:
5749 case NEG:
5750 if (!REG_P (XEXP (src, 0)))
5751 return;
5752 break;
5753 case SIGN_EXTEND:
5754 case ZERO_EXTEND:
5755 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5756 return;
5757 break;
5758 default:
5759 return;
5762 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5763 return;
5765 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5766 if (!v || !cselib_preserved_value_p (v))
5767 return;
5769 /* Use canonical V to avoid creating multiple redundant expressions
5770 for different VALUES equivalent to V. */
5771 v = canonical_cselib_val (v);
5773 /* Adding a reverse op isn't useful if V already has an always valid
5774 location. Ignore ENTRY_VALUE, while it is always constant, we should
5775 prefer non-ENTRY_VALUE locations whenever possible. */
5776 for (l = v->locs, count = 0; l; l = l->next, count++)
5777 if (CONSTANT_P (l->loc)
5778 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5779 return;
5780 /* Avoid creating too large locs lists. */
5781 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5782 return;
5784 switch (GET_CODE (src))
5786 case NOT:
5787 case NEG:
5788 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5789 return;
5790 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5791 break;
5792 case SIGN_EXTEND:
5793 case ZERO_EXTEND:
5794 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5795 break;
5796 case XOR:
5797 code = XOR;
5798 goto binary;
5799 case PLUS:
5800 code = MINUS;
5801 goto binary;
5802 case MINUS:
5803 code = PLUS;
5804 goto binary;
5805 binary:
5806 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5807 return;
5808 arg = XEXP (src, 1);
5809 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5811 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5812 if (arg == NULL_RTX)
5813 return;
5814 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5815 return;
5817 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5818 if (ret == val)
5819 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5820 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5821 breaks a lot of routines during var-tracking. */
5822 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5823 break;
5824 default:
5825 gcc_unreachable ();
5828 cselib_add_permanent_equiv (v, ret, insn);
5831 /* Add stores (register and memory references) LOC which will be tracked
5832 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5833 CUIP->insn is instruction which the LOC is part of. */
5835 static void
5836 add_stores (rtx loc, const_rtx expr, void *cuip)
5838 machine_mode mode = VOIDmode, mode2;
5839 struct count_use_info *cui = (struct count_use_info *)cuip;
5840 basic_block bb = cui->bb;
5841 micro_operation mo;
5842 rtx oloc = loc, nloc, src = NULL;
5843 enum micro_operation_type type = use_type (loc, cui, &mode);
5844 bool track_p = false;
5845 cselib_val *v;
5846 bool resolve, preserve;
5848 if (type == MO_CLOBBER)
5849 return;
5851 mode2 = mode;
5853 if (REG_P (loc))
5855 gcc_assert (loc != cfa_base_rtx);
5856 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5857 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5858 || GET_CODE (expr) == CLOBBER)
5860 mo.type = MO_CLOBBER;
5861 mo.u.loc = loc;
5862 if (GET_CODE (expr) == SET
5863 && SET_DEST (expr) == loc
5864 && !unsuitable_loc (SET_SRC (expr))
5865 && find_use_val (loc, mode, cui))
5867 gcc_checking_assert (type == MO_VAL_SET);
5868 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5871 else
5873 if (GET_CODE (expr) == SET
5874 && SET_DEST (expr) == loc
5875 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5876 src = var_lowpart (mode2, SET_SRC (expr));
5877 loc = var_lowpart (mode2, loc);
5879 if (src == NULL)
5881 mo.type = MO_SET;
5882 mo.u.loc = loc;
5884 else
5886 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5887 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5889 /* If this is an instruction copying (part of) a parameter
5890 passed by invisible reference to its register location,
5891 pretend it's a SET so that the initial memory location
5892 is discarded, as the parameter register can be reused
5893 for other purposes and we do not track locations based
5894 on generic registers. */
5895 if (MEM_P (src)
5896 && REG_EXPR (loc)
5897 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5898 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5899 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5900 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5901 != arg_pointer_rtx)
5902 mo.type = MO_SET;
5903 else
5904 mo.type = MO_COPY;
5906 else
5907 mo.type = MO_SET;
5908 mo.u.loc = xexpr;
5911 mo.insn = cui->insn;
5913 else if (MEM_P (loc)
5914 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5915 || cui->sets))
5917 if (MEM_P (loc) && type == MO_VAL_SET
5918 && !REG_P (XEXP (loc, 0))
5919 && !MEM_P (XEXP (loc, 0)))
5921 rtx mloc = loc;
5922 machine_mode address_mode = get_address_mode (mloc);
5923 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5924 address_mode, 0,
5925 GET_MODE (mloc));
5927 if (val && !cselib_preserved_value_p (val))
5928 preserve_value (val);
5931 if (GET_CODE (expr) == CLOBBER || !track_p)
5933 mo.type = MO_CLOBBER;
5934 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5936 else
5938 if (GET_CODE (expr) == SET
5939 && SET_DEST (expr) == loc
5940 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5941 src = var_lowpart (mode2, SET_SRC (expr));
5942 loc = var_lowpart (mode2, loc);
5944 if (src == NULL)
5946 mo.type = MO_SET;
5947 mo.u.loc = loc;
5949 else
5951 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5952 if (same_variable_part_p (SET_SRC (xexpr),
5953 MEM_EXPR (loc),
5954 INT_MEM_OFFSET (loc)))
5955 mo.type = MO_COPY;
5956 else
5957 mo.type = MO_SET;
5958 mo.u.loc = xexpr;
5961 mo.insn = cui->insn;
5963 else
5964 return;
5966 if (type != MO_VAL_SET)
5967 goto log_and_return;
5969 v = find_use_val (oloc, mode, cui);
5971 if (!v)
5972 goto log_and_return;
5974 resolve = preserve = !cselib_preserved_value_p (v);
5976 /* We cannot track values for multiple-part variables, so we track only
5977 locations for tracked parameters passed either by invisible reference
5978 or directly in multiple locations. */
5979 if (track_p
5980 && REG_P (loc)
5981 && REG_EXPR (loc)
5982 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5983 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5984 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5985 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5986 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5987 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5988 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5990 /* Although we don't use the value here, it could be used later by the
5991 mere virtue of its existence as the operand of the reverse operation
5992 that gave rise to it (typically extension/truncation). Make sure it
5993 is preserved as required by vt_expand_var_loc_chain. */
5994 if (preserve)
5995 preserve_value (v);
5996 goto log_and_return;
5999 if (loc == stack_pointer_rtx
6000 && hard_frame_pointer_adjustment != -1
6001 && preserve)
6002 cselib_set_value_sp_based (v);
6004 nloc = replace_expr_with_values (oloc);
6005 if (nloc)
6006 oloc = nloc;
6008 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6010 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6012 if (oval == v)
6013 return;
6014 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6016 if (oval && !cselib_preserved_value_p (oval))
6018 micro_operation moa;
6020 preserve_value (oval);
6022 moa.type = MO_VAL_USE;
6023 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6024 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6025 moa.insn = cui->insn;
6027 if (dump_file && (dump_flags & TDF_DETAILS))
6028 log_op_type (moa.u.loc, cui->bb, cui->insn,
6029 moa.type, dump_file);
6030 VTI (bb)->mos.safe_push (moa);
6033 resolve = false;
6035 else if (resolve && GET_CODE (mo.u.loc) == SET)
6037 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6038 nloc = replace_expr_with_values (SET_SRC (expr));
6039 else
6040 nloc = NULL_RTX;
6042 /* Avoid the mode mismatch between oexpr and expr. */
6043 if (!nloc && mode != mode2)
6045 nloc = SET_SRC (expr);
6046 gcc_assert (oloc == SET_DEST (expr));
6049 if (nloc && nloc != SET_SRC (mo.u.loc))
6050 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6051 else
6053 if (oloc == SET_DEST (mo.u.loc))
6054 /* No point in duplicating. */
6055 oloc = mo.u.loc;
6056 if (!REG_P (SET_SRC (mo.u.loc)))
6057 resolve = false;
6060 else if (!resolve)
6062 if (GET_CODE (mo.u.loc) == SET
6063 && oloc == SET_DEST (mo.u.loc))
6064 /* No point in duplicating. */
6065 oloc = mo.u.loc;
6067 else
6068 resolve = false;
6070 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6072 if (mo.u.loc != oloc)
6073 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6075 /* The loc of a MO_VAL_SET may have various forms:
6077 (concat val dst): dst now holds val
6079 (concat val (set dst src)): dst now holds val, copied from src
6081 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6082 after replacing mems and non-top-level regs with values.
6084 (concat (concat val dstv) (set dst src)): dst now holds val,
6085 copied from src. dstv is a value-based representation of dst, if
6086 it differs from dst. If resolution is needed, src is a REG, and
6087 its mode is the same as that of val.
6089 (concat (concat val (set dstv srcv)) (set dst src)): src
6090 copied to dst, holding val. dstv and srcv are value-based
6091 representations of dst and src, respectively.
6095 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6096 reverse_op (v->val_rtx, expr, cui->insn);
6098 mo.u.loc = loc;
6100 if (track_p)
6101 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6102 if (preserve)
6104 VAL_NEEDS_RESOLUTION (loc) = resolve;
6105 preserve_value (v);
6107 if (mo.type == MO_CLOBBER)
6108 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6109 if (mo.type == MO_COPY)
6110 VAL_EXPR_IS_COPIED (loc) = 1;
6112 mo.type = MO_VAL_SET;
6114 log_and_return:
6115 if (dump_file && (dump_flags & TDF_DETAILS))
6116 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6117 VTI (bb)->mos.safe_push (mo);
6120 /* Arguments to the call. */
6121 static rtx call_arguments;
6123 /* Compute call_arguments. */
6125 static void
6126 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6128 rtx link, x, call;
6129 rtx prev, cur, next;
6130 rtx this_arg = NULL_RTX;
6131 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6132 tree obj_type_ref = NULL_TREE;
6133 CUMULATIVE_ARGS args_so_far_v;
6134 cumulative_args_t args_so_far;
6136 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6137 args_so_far = pack_cumulative_args (&args_so_far_v);
6138 call = get_call_rtx_from (insn);
6139 if (call)
6141 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6143 rtx symbol = XEXP (XEXP (call, 0), 0);
6144 if (SYMBOL_REF_DECL (symbol))
6145 fndecl = SYMBOL_REF_DECL (symbol);
6147 if (fndecl == NULL_TREE)
6148 fndecl = MEM_EXPR (XEXP (call, 0));
6149 if (fndecl
6150 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6151 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6152 fndecl = NULL_TREE;
6153 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6154 type = TREE_TYPE (fndecl);
6155 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6157 if (TREE_CODE (fndecl) == INDIRECT_REF
6158 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6159 obj_type_ref = TREE_OPERAND (fndecl, 0);
6160 fndecl = NULL_TREE;
6162 if (type)
6164 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6165 t = TREE_CHAIN (t))
6166 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6167 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6168 break;
6169 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6170 type = NULL;
6171 else
6173 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6174 link = CALL_INSN_FUNCTION_USAGE (insn);
6175 #ifndef PCC_STATIC_STRUCT_RETURN
6176 if (aggregate_value_p (TREE_TYPE (type), type)
6177 && targetm.calls.struct_value_rtx (type, 0) == 0)
6179 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6180 machine_mode mode = TYPE_MODE (struct_addr);
6181 rtx reg;
6182 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6183 nargs + 1);
6184 reg = targetm.calls.function_arg (args_so_far, mode,
6185 struct_addr, true);
6186 targetm.calls.function_arg_advance (args_so_far, mode,
6187 struct_addr, true);
6188 if (reg == NULL_RTX)
6190 for (; link; link = XEXP (link, 1))
6191 if (GET_CODE (XEXP (link, 0)) == USE
6192 && MEM_P (XEXP (XEXP (link, 0), 0)))
6194 link = XEXP (link, 1);
6195 break;
6199 else
6200 #endif
6201 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6202 nargs);
6203 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6205 machine_mode mode;
6206 t = TYPE_ARG_TYPES (type);
6207 mode = TYPE_MODE (TREE_VALUE (t));
6208 this_arg = targetm.calls.function_arg (args_so_far, mode,
6209 TREE_VALUE (t), true);
6210 if (this_arg && !REG_P (this_arg))
6211 this_arg = NULL_RTX;
6212 else if (this_arg == NULL_RTX)
6214 for (; link; link = XEXP (link, 1))
6215 if (GET_CODE (XEXP (link, 0)) == USE
6216 && MEM_P (XEXP (XEXP (link, 0), 0)))
6218 this_arg = XEXP (XEXP (link, 0), 0);
6219 break;
6226 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6228 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6229 if (GET_CODE (XEXP (link, 0)) == USE)
6231 rtx item = NULL_RTX;
6232 x = XEXP (XEXP (link, 0), 0);
6233 if (GET_MODE (link) == VOIDmode
6234 || GET_MODE (link) == BLKmode
6235 || (GET_MODE (link) != GET_MODE (x)
6236 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6237 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6238 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6239 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6240 /* Can't do anything for these, if the original type mode
6241 isn't known or can't be converted. */;
6242 else if (REG_P (x))
6244 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6245 if (val && cselib_preserved_value_p (val))
6246 item = val->val_rtx;
6247 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6248 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6250 machine_mode mode = GET_MODE (x);
6252 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6253 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6255 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6257 if (reg == NULL_RTX || !REG_P (reg))
6258 continue;
6259 val = cselib_lookup (reg, mode, 0, VOIDmode);
6260 if (val && cselib_preserved_value_p (val))
6262 item = val->val_rtx;
6263 break;
6268 else if (MEM_P (x))
6270 rtx mem = x;
6271 cselib_val *val;
6273 if (!frame_pointer_needed)
6275 struct adjust_mem_data amd;
6276 amd.mem_mode = VOIDmode;
6277 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6278 amd.side_effects = NULL;
6279 amd.store = true;
6280 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6281 &amd);
6282 gcc_assert (amd.side_effects == NULL_RTX);
6284 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6285 if (val && cselib_preserved_value_p (val))
6286 item = val->val_rtx;
6287 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6288 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6290 /* For non-integer stack argument see also if they weren't
6291 initialized by integers. */
6292 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6293 if (imode != GET_MODE (mem) && imode != BLKmode)
6295 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6296 imode, 0, VOIDmode);
6297 if (val && cselib_preserved_value_p (val))
6298 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6299 imode);
6303 if (item)
6305 rtx x2 = x;
6306 if (GET_MODE (item) != GET_MODE (link))
6307 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6308 if (GET_MODE (x2) != GET_MODE (link))
6309 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6310 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6311 call_arguments
6312 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6314 if (t && t != void_list_node)
6316 tree argtype = TREE_VALUE (t);
6317 machine_mode mode = TYPE_MODE (argtype);
6318 rtx reg;
6319 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6321 argtype = build_pointer_type (argtype);
6322 mode = TYPE_MODE (argtype);
6324 reg = targetm.calls.function_arg (args_so_far, mode,
6325 argtype, true);
6326 if (TREE_CODE (argtype) == REFERENCE_TYPE
6327 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6328 && reg
6329 && REG_P (reg)
6330 && GET_MODE (reg) == mode
6331 && (GET_MODE_CLASS (mode) == MODE_INT
6332 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6333 && REG_P (x)
6334 && REGNO (x) == REGNO (reg)
6335 && GET_MODE (x) == mode
6336 && item)
6338 machine_mode indmode
6339 = TYPE_MODE (TREE_TYPE (argtype));
6340 rtx mem = gen_rtx_MEM (indmode, x);
6341 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6342 if (val && cselib_preserved_value_p (val))
6344 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6345 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6346 call_arguments);
6348 else
6350 struct elt_loc_list *l;
6351 tree initial;
6353 /* Try harder, when passing address of a constant
6354 pool integer it can be easily read back. */
6355 item = XEXP (item, 1);
6356 if (GET_CODE (item) == SUBREG)
6357 item = SUBREG_REG (item);
6358 gcc_assert (GET_CODE (item) == VALUE);
6359 val = CSELIB_VAL_PTR (item);
6360 for (l = val->locs; l; l = l->next)
6361 if (GET_CODE (l->loc) == SYMBOL_REF
6362 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6363 && SYMBOL_REF_DECL (l->loc)
6364 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6366 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6367 if (tree_fits_shwi_p (initial))
6369 item = GEN_INT (tree_to_shwi (initial));
6370 item = gen_rtx_CONCAT (indmode, mem, item);
6371 call_arguments
6372 = gen_rtx_EXPR_LIST (VOIDmode, item,
6373 call_arguments);
6375 break;
6379 targetm.calls.function_arg_advance (args_so_far, mode,
6380 argtype, true);
6381 t = TREE_CHAIN (t);
6385 /* Add debug arguments. */
6386 if (fndecl
6387 && TREE_CODE (fndecl) == FUNCTION_DECL
6388 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6390 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6391 if (debug_args)
6393 unsigned int ix;
6394 tree param;
6395 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6397 rtx item;
6398 tree dtemp = (**debug_args)[ix + 1];
6399 machine_mode mode = DECL_MODE (dtemp);
6400 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6401 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6402 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6403 call_arguments);
6408 /* Reverse call_arguments chain. */
6409 prev = NULL_RTX;
6410 for (cur = call_arguments; cur; cur = next)
6412 next = XEXP (cur, 1);
6413 XEXP (cur, 1) = prev;
6414 prev = cur;
6416 call_arguments = prev;
6418 x = get_call_rtx_from (insn);
6419 if (x)
6421 x = XEXP (XEXP (x, 0), 0);
6422 if (GET_CODE (x) == SYMBOL_REF)
6423 /* Don't record anything. */;
6424 else if (CONSTANT_P (x))
6426 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6427 pc_rtx, x);
6428 call_arguments
6429 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6431 else
6433 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6434 if (val && cselib_preserved_value_p (val))
6436 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6437 call_arguments
6438 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6442 if (this_arg)
6444 machine_mode mode
6445 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6446 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6447 HOST_WIDE_INT token
6448 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6449 if (token)
6450 clobbered = plus_constant (mode, clobbered,
6451 token * GET_MODE_SIZE (mode));
6452 clobbered = gen_rtx_MEM (mode, clobbered);
6453 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6454 call_arguments
6455 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6459 /* Callback for cselib_record_sets_hook, that records as micro
6460 operations uses and stores in an insn after cselib_record_sets has
6461 analyzed the sets in an insn, but before it modifies the stored
6462 values in the internal tables, unless cselib_record_sets doesn't
6463 call it directly (perhaps because we're not doing cselib in the
6464 first place, in which case sets and n_sets will be 0). */
6466 static void
6467 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6469 basic_block bb = BLOCK_FOR_INSN (insn);
6470 int n1, n2;
6471 struct count_use_info cui;
6472 micro_operation *mos;
6474 cselib_hook_called = true;
6476 cui.insn = insn;
6477 cui.bb = bb;
6478 cui.sets = sets;
6479 cui.n_sets = n_sets;
6481 n1 = VTI (bb)->mos.length ();
6482 cui.store_p = false;
6483 note_uses (&PATTERN (insn), add_uses_1, &cui);
6484 n2 = VTI (bb)->mos.length () - 1;
6485 mos = VTI (bb)->mos.address ();
6487 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6488 MO_VAL_LOC last. */
6489 while (n1 < n2)
6491 while (n1 < n2 && mos[n1].type == MO_USE)
6492 n1++;
6493 while (n1 < n2 && mos[n2].type != MO_USE)
6494 n2--;
6495 if (n1 < n2)
6497 micro_operation sw;
6499 sw = mos[n1];
6500 mos[n1] = mos[n2];
6501 mos[n2] = sw;
6505 n2 = VTI (bb)->mos.length () - 1;
6506 while (n1 < n2)
6508 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6509 n1++;
6510 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6511 n2--;
6512 if (n1 < n2)
6514 micro_operation sw;
6516 sw = mos[n1];
6517 mos[n1] = mos[n2];
6518 mos[n2] = sw;
6522 if (CALL_P (insn))
6524 micro_operation mo;
6526 mo.type = MO_CALL;
6527 mo.insn = insn;
6528 mo.u.loc = call_arguments;
6529 call_arguments = NULL_RTX;
6531 if (dump_file && (dump_flags & TDF_DETAILS))
6532 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6533 VTI (bb)->mos.safe_push (mo);
6536 n1 = VTI (bb)->mos.length ();
6537 /* This will record NEXT_INSN (insn), such that we can
6538 insert notes before it without worrying about any
6539 notes that MO_USEs might emit after the insn. */
6540 cui.store_p = true;
6541 note_stores (PATTERN (insn), add_stores, &cui);
6542 n2 = VTI (bb)->mos.length () - 1;
6543 mos = VTI (bb)->mos.address ();
6545 /* Order the MO_VAL_USEs first (note_stores does nothing
6546 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6547 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6548 while (n1 < n2)
6550 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6551 n1++;
6552 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6553 n2--;
6554 if (n1 < n2)
6556 micro_operation sw;
6558 sw = mos[n1];
6559 mos[n1] = mos[n2];
6560 mos[n2] = sw;
6564 n2 = VTI (bb)->mos.length () - 1;
6565 while (n1 < n2)
6567 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6568 n1++;
6569 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6570 n2--;
6571 if (n1 < n2)
6573 micro_operation sw;
6575 sw = mos[n1];
6576 mos[n1] = mos[n2];
6577 mos[n2] = sw;
6582 static enum var_init_status
6583 find_src_status (dataflow_set *in, rtx src)
6585 tree decl = NULL_TREE;
6586 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6588 if (! flag_var_tracking_uninit)
6589 status = VAR_INIT_STATUS_INITIALIZED;
6591 if (src && REG_P (src))
6592 decl = var_debug_decl (REG_EXPR (src));
6593 else if (src && MEM_P (src))
6594 decl = var_debug_decl (MEM_EXPR (src));
6596 if (src && decl)
6597 status = get_init_value (in, src, dv_from_decl (decl));
6599 return status;
6602 /* SRC is the source of an assignment. Use SET to try to find what
6603 was ultimately assigned to SRC. Return that value if known,
6604 otherwise return SRC itself. */
6606 static rtx
6607 find_src_set_src (dataflow_set *set, rtx src)
6609 tree decl = NULL_TREE; /* The variable being copied around. */
6610 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6611 variable var;
6612 location_chain nextp;
6613 int i;
6614 bool found;
6616 if (src && REG_P (src))
6617 decl = var_debug_decl (REG_EXPR (src));
6618 else if (src && MEM_P (src))
6619 decl = var_debug_decl (MEM_EXPR (src));
6621 if (src && decl)
6623 decl_or_value dv = dv_from_decl (decl);
6625 var = shared_hash_find (set->vars, dv);
6626 if (var)
6628 found = false;
6629 for (i = 0; i < var->n_var_parts && !found; i++)
6630 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6631 nextp = nextp->next)
6632 if (rtx_equal_p (nextp->loc, src))
6634 set_src = nextp->set_src;
6635 found = true;
6641 return set_src;
6644 /* Compute the changes of variable locations in the basic block BB. */
6646 static bool
6647 compute_bb_dataflow (basic_block bb)
6649 unsigned int i;
6650 micro_operation *mo;
6651 bool changed;
6652 dataflow_set old_out;
6653 dataflow_set *in = &VTI (bb)->in;
6654 dataflow_set *out = &VTI (bb)->out;
6656 dataflow_set_init (&old_out);
6657 dataflow_set_copy (&old_out, out);
6658 dataflow_set_copy (out, in);
6660 if (MAY_HAVE_DEBUG_INSNS)
6661 local_get_addr_cache = new hash_map<rtx, rtx>;
6663 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6665 rtx_insn *insn = mo->insn;
6667 switch (mo->type)
6669 case MO_CALL:
6670 dataflow_set_clear_at_call (out);
6671 break;
6673 case MO_USE:
6675 rtx loc = mo->u.loc;
6677 if (REG_P (loc))
6678 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6679 else if (MEM_P (loc))
6680 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6682 break;
6684 case MO_VAL_LOC:
6686 rtx loc = mo->u.loc;
6687 rtx val, vloc;
6688 tree var;
6690 if (GET_CODE (loc) == CONCAT)
6692 val = XEXP (loc, 0);
6693 vloc = XEXP (loc, 1);
6695 else
6697 val = NULL_RTX;
6698 vloc = loc;
6701 var = PAT_VAR_LOCATION_DECL (vloc);
6703 clobber_variable_part (out, NULL_RTX,
6704 dv_from_decl (var), 0, NULL_RTX);
6705 if (val)
6707 if (VAL_NEEDS_RESOLUTION (loc))
6708 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6709 set_variable_part (out, val, dv_from_decl (var), 0,
6710 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6711 INSERT);
6713 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6714 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6715 dv_from_decl (var), 0,
6716 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6717 INSERT);
6719 break;
6721 case MO_VAL_USE:
6723 rtx loc = mo->u.loc;
6724 rtx val, vloc, uloc;
6726 vloc = uloc = XEXP (loc, 1);
6727 val = XEXP (loc, 0);
6729 if (GET_CODE (val) == CONCAT)
6731 uloc = XEXP (val, 1);
6732 val = XEXP (val, 0);
6735 if (VAL_NEEDS_RESOLUTION (loc))
6736 val_resolve (out, val, vloc, insn);
6737 else
6738 val_store (out, val, uloc, insn, false);
6740 if (VAL_HOLDS_TRACK_EXPR (loc))
6742 if (GET_CODE (uloc) == REG)
6743 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6744 NULL);
6745 else if (GET_CODE (uloc) == MEM)
6746 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6747 NULL);
6750 break;
6752 case MO_VAL_SET:
6754 rtx loc = mo->u.loc;
6755 rtx val, vloc, uloc;
6756 rtx dstv, srcv;
6758 vloc = loc;
6759 uloc = XEXP (vloc, 1);
6760 val = XEXP (vloc, 0);
6761 vloc = uloc;
6763 if (GET_CODE (uloc) == SET)
6765 dstv = SET_DEST (uloc);
6766 srcv = SET_SRC (uloc);
6768 else
6770 dstv = uloc;
6771 srcv = NULL;
6774 if (GET_CODE (val) == CONCAT)
6776 dstv = vloc = XEXP (val, 1);
6777 val = XEXP (val, 0);
6780 if (GET_CODE (vloc) == SET)
6782 srcv = SET_SRC (vloc);
6784 gcc_assert (val != srcv);
6785 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6787 dstv = vloc = SET_DEST (vloc);
6789 if (VAL_NEEDS_RESOLUTION (loc))
6790 val_resolve (out, val, srcv, insn);
6792 else if (VAL_NEEDS_RESOLUTION (loc))
6794 gcc_assert (GET_CODE (uloc) == SET
6795 && GET_CODE (SET_SRC (uloc)) == REG);
6796 val_resolve (out, val, SET_SRC (uloc), insn);
6799 if (VAL_HOLDS_TRACK_EXPR (loc))
6801 if (VAL_EXPR_IS_CLOBBERED (loc))
6803 if (REG_P (uloc))
6804 var_reg_delete (out, uloc, true);
6805 else if (MEM_P (uloc))
6807 gcc_assert (MEM_P (dstv));
6808 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6809 var_mem_delete (out, dstv, true);
6812 else
6814 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6815 rtx src = NULL, dst = uloc;
6816 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6818 if (GET_CODE (uloc) == SET)
6820 src = SET_SRC (uloc);
6821 dst = SET_DEST (uloc);
6824 if (copied_p)
6826 if (flag_var_tracking_uninit)
6828 status = find_src_status (in, src);
6830 if (status == VAR_INIT_STATUS_UNKNOWN)
6831 status = find_src_status (out, src);
6834 src = find_src_set_src (in, src);
6837 if (REG_P (dst))
6838 var_reg_delete_and_set (out, dst, !copied_p,
6839 status, srcv);
6840 else if (MEM_P (dst))
6842 gcc_assert (MEM_P (dstv));
6843 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6844 var_mem_delete_and_set (out, dstv, !copied_p,
6845 status, srcv);
6849 else if (REG_P (uloc))
6850 var_regno_delete (out, REGNO (uloc));
6851 else if (MEM_P (uloc))
6853 gcc_checking_assert (GET_CODE (vloc) == MEM);
6854 gcc_checking_assert (dstv == vloc);
6855 if (dstv != vloc)
6856 clobber_overlapping_mems (out, vloc);
6859 val_store (out, val, dstv, insn, true);
6861 break;
6863 case MO_SET:
6865 rtx loc = mo->u.loc;
6866 rtx set_src = NULL;
6868 if (GET_CODE (loc) == SET)
6870 set_src = SET_SRC (loc);
6871 loc = SET_DEST (loc);
6874 if (REG_P (loc))
6875 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6876 set_src);
6877 else if (MEM_P (loc))
6878 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6879 set_src);
6881 break;
6883 case MO_COPY:
6885 rtx loc = mo->u.loc;
6886 enum var_init_status src_status;
6887 rtx set_src = NULL;
6889 if (GET_CODE (loc) == SET)
6891 set_src = SET_SRC (loc);
6892 loc = SET_DEST (loc);
6895 if (! flag_var_tracking_uninit)
6896 src_status = VAR_INIT_STATUS_INITIALIZED;
6897 else
6899 src_status = find_src_status (in, set_src);
6901 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6902 src_status = find_src_status (out, set_src);
6905 set_src = find_src_set_src (in, set_src);
6907 if (REG_P (loc))
6908 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6909 else if (MEM_P (loc))
6910 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6912 break;
6914 case MO_USE_NO_VAR:
6916 rtx loc = mo->u.loc;
6918 if (REG_P (loc))
6919 var_reg_delete (out, loc, false);
6920 else if (MEM_P (loc))
6921 var_mem_delete (out, loc, false);
6923 break;
6925 case MO_CLOBBER:
6927 rtx loc = mo->u.loc;
6929 if (REG_P (loc))
6930 var_reg_delete (out, loc, true);
6931 else if (MEM_P (loc))
6932 var_mem_delete (out, loc, true);
6934 break;
6936 case MO_ADJUST:
6937 out->stack_adjust += mo->u.adjust;
6938 break;
6942 if (MAY_HAVE_DEBUG_INSNS)
6944 delete local_get_addr_cache;
6945 local_get_addr_cache = NULL;
6947 dataflow_set_equiv_regs (out);
6948 shared_hash_htab (out->vars)
6949 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6950 shared_hash_htab (out->vars)
6951 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6952 #if ENABLE_CHECKING
6953 shared_hash_htab (out->vars)
6954 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6955 #endif
6957 changed = dataflow_set_different (&old_out, out);
6958 dataflow_set_destroy (&old_out);
6959 return changed;
6962 /* Find the locations of variables in the whole function. */
6964 static bool
6965 vt_find_locations (void)
6967 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
6968 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
6969 bb_heap_t *fibheap_swap = NULL;
6970 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6971 basic_block bb;
6972 edge e;
6973 int *bb_order;
6974 int *rc_order;
6975 int i;
6976 int htabsz = 0;
6977 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6978 bool success = true;
6980 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6981 /* Compute reverse completion order of depth first search of the CFG
6982 so that the data-flow runs faster. */
6983 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6984 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6985 pre_and_rev_post_order_compute (NULL, rc_order, false);
6986 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6987 bb_order[rc_order[i]] = i;
6988 free (rc_order);
6990 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6991 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6992 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6993 bitmap_clear (in_worklist);
6995 FOR_EACH_BB_FN (bb, cfun)
6996 pending->insert (bb_order[bb->index], bb);
6997 bitmap_ones (in_pending);
6999 while (success && !pending->empty ())
7001 fibheap_swap = pending;
7002 pending = worklist;
7003 worklist = fibheap_swap;
7004 sbitmap_swap = in_pending;
7005 in_pending = in_worklist;
7006 in_worklist = sbitmap_swap;
7008 bitmap_clear (visited);
7010 while (!worklist->empty ())
7012 bb = worklist->extract_min ();
7013 bitmap_clear_bit (in_worklist, bb->index);
7014 gcc_assert (!bitmap_bit_p (visited, bb->index));
7015 if (!bitmap_bit_p (visited, bb->index))
7017 bool changed;
7018 edge_iterator ei;
7019 int oldinsz, oldoutsz;
7021 bitmap_set_bit (visited, bb->index);
7023 if (VTI (bb)->in.vars)
7025 htabsz
7026 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7027 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7028 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7029 oldoutsz
7030 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7032 else
7033 oldinsz = oldoutsz = 0;
7035 if (MAY_HAVE_DEBUG_INSNS)
7037 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7038 bool first = true, adjust = false;
7040 /* Calculate the IN set as the intersection of
7041 predecessor OUT sets. */
7043 dataflow_set_clear (in);
7044 dst_can_be_shared = true;
7046 FOR_EACH_EDGE (e, ei, bb->preds)
7047 if (!VTI (e->src)->flooded)
7048 gcc_assert (bb_order[bb->index]
7049 <= bb_order[e->src->index]);
7050 else if (first)
7052 dataflow_set_copy (in, &VTI (e->src)->out);
7053 first_out = &VTI (e->src)->out;
7054 first = false;
7056 else
7058 dataflow_set_merge (in, &VTI (e->src)->out);
7059 adjust = true;
7062 if (adjust)
7064 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7065 #if ENABLE_CHECKING
7066 /* Merge and merge_adjust should keep entries in
7067 canonical order. */
7068 shared_hash_htab (in->vars)
7069 ->traverse <dataflow_set *,
7070 canonicalize_loc_order_check> (in);
7071 #endif
7072 if (dst_can_be_shared)
7074 shared_hash_destroy (in->vars);
7075 in->vars = shared_hash_copy (first_out->vars);
7079 VTI (bb)->flooded = true;
7081 else
7083 /* Calculate the IN set as union of predecessor OUT sets. */
7084 dataflow_set_clear (&VTI (bb)->in);
7085 FOR_EACH_EDGE (e, ei, bb->preds)
7086 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7089 changed = compute_bb_dataflow (bb);
7090 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7091 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7093 if (htabmax && htabsz > htabmax)
7095 if (MAY_HAVE_DEBUG_INSNS)
7096 inform (DECL_SOURCE_LOCATION (cfun->decl),
7097 "variable tracking size limit exceeded with "
7098 "-fvar-tracking-assignments, retrying without");
7099 else
7100 inform (DECL_SOURCE_LOCATION (cfun->decl),
7101 "variable tracking size limit exceeded");
7102 success = false;
7103 break;
7106 if (changed)
7108 FOR_EACH_EDGE (e, ei, bb->succs)
7110 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7111 continue;
7113 if (bitmap_bit_p (visited, e->dest->index))
7115 if (!bitmap_bit_p (in_pending, e->dest->index))
7117 /* Send E->DEST to next round. */
7118 bitmap_set_bit (in_pending, e->dest->index);
7119 pending->insert (bb_order[e->dest->index],
7120 e->dest);
7123 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7125 /* Add E->DEST to current round. */
7126 bitmap_set_bit (in_worklist, e->dest->index);
7127 worklist->insert (bb_order[e->dest->index],
7128 e->dest);
7133 if (dump_file)
7134 fprintf (dump_file,
7135 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7136 bb->index,
7137 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7138 oldinsz,
7139 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7140 oldoutsz,
7141 (int)worklist->nodes (), (int)pending->nodes (),
7142 htabsz);
7144 if (dump_file && (dump_flags & TDF_DETAILS))
7146 fprintf (dump_file, "BB %i IN:\n", bb->index);
7147 dump_dataflow_set (&VTI (bb)->in);
7148 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7149 dump_dataflow_set (&VTI (bb)->out);
7155 if (success && MAY_HAVE_DEBUG_INSNS)
7156 FOR_EACH_BB_FN (bb, cfun)
7157 gcc_assert (VTI (bb)->flooded);
7159 free (bb_order);
7160 delete worklist;
7161 delete pending;
7162 sbitmap_free (visited);
7163 sbitmap_free (in_worklist);
7164 sbitmap_free (in_pending);
7166 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7167 return success;
7170 /* Print the content of the LIST to dump file. */
7172 static void
7173 dump_attrs_list (attrs list)
7175 for (; list; list = list->next)
7177 if (dv_is_decl_p (list->dv))
7178 print_mem_expr (dump_file, dv_as_decl (list->dv));
7179 else
7180 print_rtl_single (dump_file, dv_as_value (list->dv));
7181 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7183 fprintf (dump_file, "\n");
7186 /* Print the information about variable *SLOT to dump file. */
7189 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7191 variable var = *slot;
7193 dump_var (var);
7195 /* Continue traversing the hash table. */
7196 return 1;
7199 /* Print the information about variable VAR to dump file. */
7201 static void
7202 dump_var (variable var)
7204 int i;
7205 location_chain node;
7207 if (dv_is_decl_p (var->dv))
7209 const_tree decl = dv_as_decl (var->dv);
7211 if (DECL_NAME (decl))
7213 fprintf (dump_file, " name: %s",
7214 IDENTIFIER_POINTER (DECL_NAME (decl)));
7215 if (dump_flags & TDF_UID)
7216 fprintf (dump_file, "D.%u", DECL_UID (decl));
7218 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7219 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7220 else
7221 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7222 fprintf (dump_file, "\n");
7224 else
7226 fputc (' ', dump_file);
7227 print_rtl_single (dump_file, dv_as_value (var->dv));
7230 for (i = 0; i < var->n_var_parts; i++)
7232 fprintf (dump_file, " offset %ld\n",
7233 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7234 for (node = var->var_part[i].loc_chain; node; node = node->next)
7236 fprintf (dump_file, " ");
7237 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7238 fprintf (dump_file, "[uninit]");
7239 print_rtl_single (dump_file, node->loc);
7244 /* Print the information about variables from hash table VARS to dump file. */
7246 static void
7247 dump_vars (variable_table_type *vars)
7249 if (vars->elements () > 0)
7251 fprintf (dump_file, "Variables:\n");
7252 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7256 /* Print the dataflow set SET to dump file. */
7258 static void
7259 dump_dataflow_set (dataflow_set *set)
7261 int i;
7263 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7264 set->stack_adjust);
7265 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7267 if (set->regs[i])
7269 fprintf (dump_file, "Reg %d:", i);
7270 dump_attrs_list (set->regs[i]);
7273 dump_vars (shared_hash_htab (set->vars));
7274 fprintf (dump_file, "\n");
7277 /* Print the IN and OUT sets for each basic block to dump file. */
7279 static void
7280 dump_dataflow_sets (void)
7282 basic_block bb;
7284 FOR_EACH_BB_FN (bb, cfun)
7286 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7287 fprintf (dump_file, "IN:\n");
7288 dump_dataflow_set (&VTI (bb)->in);
7289 fprintf (dump_file, "OUT:\n");
7290 dump_dataflow_set (&VTI (bb)->out);
7294 /* Return the variable for DV in dropped_values, inserting one if
7295 requested with INSERT. */
7297 static inline variable
7298 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7300 variable_def **slot;
7301 variable empty_var;
7302 onepart_enum_t onepart;
7304 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7306 if (!slot)
7307 return NULL;
7309 if (*slot)
7310 return *slot;
7312 gcc_checking_assert (insert == INSERT);
7314 onepart = dv_onepart_p (dv);
7316 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7318 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7319 empty_var->dv = dv;
7320 empty_var->refcount = 1;
7321 empty_var->n_var_parts = 0;
7322 empty_var->onepart = onepart;
7323 empty_var->in_changed_variables = false;
7324 empty_var->var_part[0].loc_chain = NULL;
7325 empty_var->var_part[0].cur_loc = NULL;
7326 VAR_LOC_1PAUX (empty_var) = NULL;
7327 set_dv_changed (dv, true);
7329 *slot = empty_var;
7331 return empty_var;
7334 /* Recover the one-part aux from dropped_values. */
7336 static struct onepart_aux *
7337 recover_dropped_1paux (variable var)
7339 variable dvar;
7341 gcc_checking_assert (var->onepart);
7343 if (VAR_LOC_1PAUX (var))
7344 return VAR_LOC_1PAUX (var);
7346 if (var->onepart == ONEPART_VDECL)
7347 return NULL;
7349 dvar = variable_from_dropped (var->dv, NO_INSERT);
7351 if (!dvar)
7352 return NULL;
7354 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7355 VAR_LOC_1PAUX (dvar) = NULL;
7357 return VAR_LOC_1PAUX (var);
7360 /* Add variable VAR to the hash table of changed variables and
7361 if it has no locations delete it from SET's hash table. */
7363 static void
7364 variable_was_changed (variable var, dataflow_set *set)
7366 hashval_t hash = dv_htab_hash (var->dv);
7368 if (emit_notes)
7370 variable_def **slot;
7372 /* Remember this decl or VALUE has been added to changed_variables. */
7373 set_dv_changed (var->dv, true);
7375 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7377 if (*slot)
7379 variable old_var = *slot;
7380 gcc_assert (old_var->in_changed_variables);
7381 old_var->in_changed_variables = false;
7382 if (var != old_var && var->onepart)
7384 /* Restore the auxiliary info from an empty variable
7385 previously created for changed_variables, so it is
7386 not lost. */
7387 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7388 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7389 VAR_LOC_1PAUX (old_var) = NULL;
7391 variable_htab_free (*slot);
7394 if (set && var->n_var_parts == 0)
7396 onepart_enum_t onepart = var->onepart;
7397 variable empty_var = NULL;
7398 variable_def **dslot = NULL;
7400 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7402 dslot = dropped_values->find_slot_with_hash (var->dv,
7403 dv_htab_hash (var->dv),
7404 INSERT);
7405 empty_var = *dslot;
7407 if (empty_var)
7409 gcc_checking_assert (!empty_var->in_changed_variables);
7410 if (!VAR_LOC_1PAUX (var))
7412 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7413 VAR_LOC_1PAUX (empty_var) = NULL;
7415 else
7416 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7420 if (!empty_var)
7422 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7423 empty_var->dv = var->dv;
7424 empty_var->refcount = 1;
7425 empty_var->n_var_parts = 0;
7426 empty_var->onepart = onepart;
7427 if (dslot)
7429 empty_var->refcount++;
7430 *dslot = empty_var;
7433 else
7434 empty_var->refcount++;
7435 empty_var->in_changed_variables = true;
7436 *slot = empty_var;
7437 if (onepart)
7439 empty_var->var_part[0].loc_chain = NULL;
7440 empty_var->var_part[0].cur_loc = NULL;
7441 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7442 VAR_LOC_1PAUX (var) = NULL;
7444 goto drop_var;
7446 else
7448 if (var->onepart && !VAR_LOC_1PAUX (var))
7449 recover_dropped_1paux (var);
7450 var->refcount++;
7451 var->in_changed_variables = true;
7452 *slot = var;
7455 else
7457 gcc_assert (set);
7458 if (var->n_var_parts == 0)
7460 variable_def **slot;
7462 drop_var:
7463 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7464 if (slot)
7466 if (shared_hash_shared (set->vars))
7467 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7468 NO_INSERT);
7469 shared_hash_htab (set->vars)->clear_slot (slot);
7475 /* Look for the index in VAR->var_part corresponding to OFFSET.
7476 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7477 referenced int will be set to the index that the part has or should
7478 have, if it should be inserted. */
7480 static inline int
7481 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7482 int *insertion_point)
7484 int pos, low, high;
7486 if (var->onepart)
7488 if (offset != 0)
7489 return -1;
7491 if (insertion_point)
7492 *insertion_point = 0;
7494 return var->n_var_parts - 1;
7497 /* Find the location part. */
7498 low = 0;
7499 high = var->n_var_parts;
7500 while (low != high)
7502 pos = (low + high) / 2;
7503 if (VAR_PART_OFFSET (var, pos) < offset)
7504 low = pos + 1;
7505 else
7506 high = pos;
7508 pos = low;
7510 if (insertion_point)
7511 *insertion_point = pos;
7513 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7514 return pos;
7516 return -1;
7519 static variable_def **
7520 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7521 decl_or_value dv, HOST_WIDE_INT offset,
7522 enum var_init_status initialized, rtx set_src)
7524 int pos;
7525 location_chain node, next;
7526 location_chain *nextp;
7527 variable var;
7528 onepart_enum_t onepart;
7530 var = *slot;
7532 if (var)
7533 onepart = var->onepart;
7534 else
7535 onepart = dv_onepart_p (dv);
7537 gcc_checking_assert (offset == 0 || !onepart);
7538 gcc_checking_assert (loc != dv_as_opaque (dv));
7540 if (! flag_var_tracking_uninit)
7541 initialized = VAR_INIT_STATUS_INITIALIZED;
7543 if (!var)
7545 /* Create new variable information. */
7546 var = (variable) pool_alloc (onepart_pool (onepart));
7547 var->dv = dv;
7548 var->refcount = 1;
7549 var->n_var_parts = 1;
7550 var->onepart = onepart;
7551 var->in_changed_variables = false;
7552 if (var->onepart)
7553 VAR_LOC_1PAUX (var) = NULL;
7554 else
7555 VAR_PART_OFFSET (var, 0) = offset;
7556 var->var_part[0].loc_chain = NULL;
7557 var->var_part[0].cur_loc = NULL;
7558 *slot = var;
7559 pos = 0;
7560 nextp = &var->var_part[0].loc_chain;
7562 else if (onepart)
7564 int r = -1, c = 0;
7566 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7568 pos = 0;
7570 if (GET_CODE (loc) == VALUE)
7572 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7573 nextp = &node->next)
7574 if (GET_CODE (node->loc) == VALUE)
7576 if (node->loc == loc)
7578 r = 0;
7579 break;
7581 if (canon_value_cmp (node->loc, loc))
7582 c++;
7583 else
7585 r = 1;
7586 break;
7589 else if (REG_P (node->loc) || MEM_P (node->loc))
7590 c++;
7591 else
7593 r = 1;
7594 break;
7597 else if (REG_P (loc))
7599 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7600 nextp = &node->next)
7601 if (REG_P (node->loc))
7603 if (REGNO (node->loc) < REGNO (loc))
7604 c++;
7605 else
7607 if (REGNO (node->loc) == REGNO (loc))
7608 r = 0;
7609 else
7610 r = 1;
7611 break;
7614 else
7616 r = 1;
7617 break;
7620 else if (MEM_P (loc))
7622 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7623 nextp = &node->next)
7624 if (REG_P (node->loc))
7625 c++;
7626 else if (MEM_P (node->loc))
7628 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7629 break;
7630 else
7631 c++;
7633 else
7635 r = 1;
7636 break;
7639 else
7640 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7641 nextp = &node->next)
7642 if ((r = loc_cmp (node->loc, loc)) >= 0)
7643 break;
7644 else
7645 c++;
7647 if (r == 0)
7648 return slot;
7650 if (shared_var_p (var, set->vars))
7652 slot = unshare_variable (set, slot, var, initialized);
7653 var = *slot;
7654 for (nextp = &var->var_part[0].loc_chain; c;
7655 nextp = &(*nextp)->next)
7656 c--;
7657 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7660 else
7662 int inspos = 0;
7664 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7666 pos = find_variable_location_part (var, offset, &inspos);
7668 if (pos >= 0)
7670 node = var->var_part[pos].loc_chain;
7672 if (node
7673 && ((REG_P (node->loc) && REG_P (loc)
7674 && REGNO (node->loc) == REGNO (loc))
7675 || rtx_equal_p (node->loc, loc)))
7677 /* LOC is in the beginning of the chain so we have nothing
7678 to do. */
7679 if (node->init < initialized)
7680 node->init = initialized;
7681 if (set_src != NULL)
7682 node->set_src = set_src;
7684 return slot;
7686 else
7688 /* We have to make a copy of a shared variable. */
7689 if (shared_var_p (var, set->vars))
7691 slot = unshare_variable (set, slot, var, initialized);
7692 var = *slot;
7696 else
7698 /* We have not found the location part, new one will be created. */
7700 /* We have to make a copy of the shared variable. */
7701 if (shared_var_p (var, set->vars))
7703 slot = unshare_variable (set, slot, var, initialized);
7704 var = *slot;
7707 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7708 thus there are at most MAX_VAR_PARTS different offsets. */
7709 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7710 && (!var->n_var_parts || !onepart));
7712 /* We have to move the elements of array starting at index
7713 inspos to the next position. */
7714 for (pos = var->n_var_parts; pos > inspos; pos--)
7715 var->var_part[pos] = var->var_part[pos - 1];
7717 var->n_var_parts++;
7718 gcc_checking_assert (!onepart);
7719 VAR_PART_OFFSET (var, pos) = offset;
7720 var->var_part[pos].loc_chain = NULL;
7721 var->var_part[pos].cur_loc = NULL;
7724 /* Delete the location from the list. */
7725 nextp = &var->var_part[pos].loc_chain;
7726 for (node = var->var_part[pos].loc_chain; node; node = next)
7728 next = node->next;
7729 if ((REG_P (node->loc) && REG_P (loc)
7730 && REGNO (node->loc) == REGNO (loc))
7731 || rtx_equal_p (node->loc, loc))
7733 /* Save these values, to assign to the new node, before
7734 deleting this one. */
7735 if (node->init > initialized)
7736 initialized = node->init;
7737 if (node->set_src != NULL && set_src == NULL)
7738 set_src = node->set_src;
7739 if (var->var_part[pos].cur_loc == node->loc)
7740 var->var_part[pos].cur_loc = NULL;
7741 pool_free (loc_chain_pool, node);
7742 *nextp = next;
7743 break;
7745 else
7746 nextp = &node->next;
7749 nextp = &var->var_part[pos].loc_chain;
7752 /* Add the location to the beginning. */
7753 node = (location_chain) pool_alloc (loc_chain_pool);
7754 node->loc = loc;
7755 node->init = initialized;
7756 node->set_src = set_src;
7757 node->next = *nextp;
7758 *nextp = node;
7760 /* If no location was emitted do so. */
7761 if (var->var_part[pos].cur_loc == NULL)
7762 variable_was_changed (var, set);
7764 return slot;
7767 /* Set the part of variable's location in the dataflow set SET. The
7768 variable part is specified by variable's declaration in DV and
7769 offset OFFSET and the part's location by LOC. IOPT should be
7770 NO_INSERT if the variable is known to be in SET already and the
7771 variable hash table must not be resized, and INSERT otherwise. */
7773 static void
7774 set_variable_part (dataflow_set *set, rtx loc,
7775 decl_or_value dv, HOST_WIDE_INT offset,
7776 enum var_init_status initialized, rtx set_src,
7777 enum insert_option iopt)
7779 variable_def **slot;
7781 if (iopt == NO_INSERT)
7782 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7783 else
7785 slot = shared_hash_find_slot (set->vars, dv);
7786 if (!slot)
7787 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7789 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7792 /* Remove all recorded register locations for the given variable part
7793 from dataflow set SET, except for those that are identical to loc.
7794 The variable part is specified by variable's declaration or value
7795 DV and offset OFFSET. */
7797 static variable_def **
7798 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7799 HOST_WIDE_INT offset, rtx set_src)
7801 variable var = *slot;
7802 int pos = find_variable_location_part (var, offset, NULL);
7804 if (pos >= 0)
7806 location_chain node, next;
7808 /* Remove the register locations from the dataflow set. */
7809 next = var->var_part[pos].loc_chain;
7810 for (node = next; node; node = next)
7812 next = node->next;
7813 if (node->loc != loc
7814 && (!flag_var_tracking_uninit
7815 || !set_src
7816 || MEM_P (set_src)
7817 || !rtx_equal_p (set_src, node->set_src)))
7819 if (REG_P (node->loc))
7821 attrs anode, anext;
7822 attrs *anextp;
7824 /* Remove the variable part from the register's
7825 list, but preserve any other variable parts
7826 that might be regarded as live in that same
7827 register. */
7828 anextp = &set->regs[REGNO (node->loc)];
7829 for (anode = *anextp; anode; anode = anext)
7831 anext = anode->next;
7832 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7833 && anode->offset == offset)
7835 pool_free (attrs_pool, anode);
7836 *anextp = anext;
7838 else
7839 anextp = &anode->next;
7843 slot = delete_slot_part (set, node->loc, slot, offset);
7848 return slot;
7851 /* Remove all recorded register locations for the given variable part
7852 from dataflow set SET, except for those that are identical to loc.
7853 The variable part is specified by variable's declaration or value
7854 DV and offset OFFSET. */
7856 static void
7857 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7858 HOST_WIDE_INT offset, rtx set_src)
7860 variable_def **slot;
7862 if (!dv_as_opaque (dv)
7863 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7864 return;
7866 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7867 if (!slot)
7868 return;
7870 clobber_slot_part (set, loc, slot, offset, set_src);
7873 /* Delete the part of variable's location from dataflow set SET. The
7874 variable part is specified by its SET->vars slot SLOT and offset
7875 OFFSET and the part's location by LOC. */
7877 static variable_def **
7878 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7879 HOST_WIDE_INT offset)
7881 variable var = *slot;
7882 int pos = find_variable_location_part (var, offset, NULL);
7884 if (pos >= 0)
7886 location_chain node, next;
7887 location_chain *nextp;
7888 bool changed;
7889 rtx cur_loc;
7891 if (shared_var_p (var, set->vars))
7893 /* If the variable contains the location part we have to
7894 make a copy of the variable. */
7895 for (node = var->var_part[pos].loc_chain; node;
7896 node = node->next)
7898 if ((REG_P (node->loc) && REG_P (loc)
7899 && REGNO (node->loc) == REGNO (loc))
7900 || rtx_equal_p (node->loc, loc))
7902 slot = unshare_variable (set, slot, var,
7903 VAR_INIT_STATUS_UNKNOWN);
7904 var = *slot;
7905 break;
7910 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7911 cur_loc = VAR_LOC_FROM (var);
7912 else
7913 cur_loc = var->var_part[pos].cur_loc;
7915 /* Delete the location part. */
7916 changed = false;
7917 nextp = &var->var_part[pos].loc_chain;
7918 for (node = *nextp; node; node = next)
7920 next = node->next;
7921 if ((REG_P (node->loc) && REG_P (loc)
7922 && REGNO (node->loc) == REGNO (loc))
7923 || rtx_equal_p (node->loc, loc))
7925 /* If we have deleted the location which was last emitted
7926 we have to emit new location so add the variable to set
7927 of changed variables. */
7928 if (cur_loc == node->loc)
7930 changed = true;
7931 var->var_part[pos].cur_loc = NULL;
7932 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7933 VAR_LOC_FROM (var) = NULL;
7935 pool_free (loc_chain_pool, node);
7936 *nextp = next;
7937 break;
7939 else
7940 nextp = &node->next;
7943 if (var->var_part[pos].loc_chain == NULL)
7945 changed = true;
7946 var->n_var_parts--;
7947 while (pos < var->n_var_parts)
7949 var->var_part[pos] = var->var_part[pos + 1];
7950 pos++;
7953 if (changed)
7954 variable_was_changed (var, set);
7957 return slot;
7960 /* Delete the part of variable's location from dataflow set SET. The
7961 variable part is specified by variable's declaration or value DV
7962 and offset OFFSET and the part's location by LOC. */
7964 static void
7965 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7966 HOST_WIDE_INT offset)
7968 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7969 if (!slot)
7970 return;
7972 delete_slot_part (set, loc, slot, offset);
7976 /* Structure for passing some other parameters to function
7977 vt_expand_loc_callback. */
7978 struct expand_loc_callback_data
7980 /* The variables and values active at this point. */
7981 variable_table_type *vars;
7983 /* Stack of values and debug_exprs under expansion, and their
7984 children. */
7985 auto_vec<rtx, 4> expanding;
7987 /* Stack of values and debug_exprs whose expansion hit recursion
7988 cycles. They will have VALUE_RECURSED_INTO marked when added to
7989 this list. This flag will be cleared if any of its dependencies
7990 resolves to a valid location. So, if the flag remains set at the
7991 end of the search, we know no valid location for this one can
7992 possibly exist. */
7993 auto_vec<rtx, 4> pending;
7995 /* The maximum depth among the sub-expressions under expansion.
7996 Zero indicates no expansion so far. */
7997 expand_depth depth;
8000 /* Allocate the one-part auxiliary data structure for VAR, with enough
8001 room for COUNT dependencies. */
8003 static void
8004 loc_exp_dep_alloc (variable var, int count)
8006 size_t allocsize;
8008 gcc_checking_assert (var->onepart);
8010 /* We can be called with COUNT == 0 to allocate the data structure
8011 without any dependencies, e.g. for the backlinks only. However,
8012 if we are specifying a COUNT, then the dependency list must have
8013 been emptied before. It would be possible to adjust pointers or
8014 force it empty here, but this is better done at an earlier point
8015 in the algorithm, so we instead leave an assertion to catch
8016 errors. */
8017 gcc_checking_assert (!count
8018 || VAR_LOC_DEP_VEC (var) == NULL
8019 || VAR_LOC_DEP_VEC (var)->is_empty ());
8021 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8022 return;
8024 allocsize = offsetof (struct onepart_aux, deps)
8025 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8027 if (VAR_LOC_1PAUX (var))
8029 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8030 VAR_LOC_1PAUX (var), allocsize);
8031 /* If the reallocation moves the onepaux structure, the
8032 back-pointer to BACKLINKS in the first list member will still
8033 point to its old location. Adjust it. */
8034 if (VAR_LOC_DEP_LST (var))
8035 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8037 else
8039 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8040 *VAR_LOC_DEP_LSTP (var) = NULL;
8041 VAR_LOC_FROM (var) = NULL;
8042 VAR_LOC_DEPTH (var).complexity = 0;
8043 VAR_LOC_DEPTH (var).entryvals = 0;
8045 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8048 /* Remove all entries from the vector of active dependencies of VAR,
8049 removing them from the back-links lists too. */
8051 static void
8052 loc_exp_dep_clear (variable var)
8054 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8056 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8057 if (led->next)
8058 led->next->pprev = led->pprev;
8059 if (led->pprev)
8060 *led->pprev = led->next;
8061 VAR_LOC_DEP_VEC (var)->pop ();
8065 /* Insert an active dependency from VAR on X to the vector of
8066 dependencies, and add the corresponding back-link to X's list of
8067 back-links in VARS. */
8069 static void
8070 loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
8072 decl_or_value dv;
8073 variable xvar;
8074 loc_exp_dep *led;
8076 dv = dv_from_rtx (x);
8078 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8079 an additional look up? */
8080 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8082 if (!xvar)
8084 xvar = variable_from_dropped (dv, NO_INSERT);
8085 gcc_checking_assert (xvar);
8088 /* No point in adding the same backlink more than once. This may
8089 arise if say the same value appears in two complex expressions in
8090 the same loc_list, or even more than once in a single
8091 expression. */
8092 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8093 return;
8095 if (var->onepart == NOT_ONEPART)
8096 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8097 else
8099 loc_exp_dep empty;
8100 memset (&empty, 0, sizeof (empty));
8101 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8102 led = &VAR_LOC_DEP_VEC (var)->last ();
8104 led->dv = var->dv;
8105 led->value = x;
8107 loc_exp_dep_alloc (xvar, 0);
8108 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8109 led->next = *led->pprev;
8110 if (led->next)
8111 led->next->pprev = &led->next;
8112 *led->pprev = led;
8115 /* Create active dependencies of VAR on COUNT values starting at
8116 VALUE, and corresponding back-links to the entries in VARS. Return
8117 true if we found any pending-recursion results. */
8119 static bool
8120 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8121 variable_table_type *vars)
8123 bool pending_recursion = false;
8125 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8126 || VAR_LOC_DEP_VEC (var)->is_empty ());
8128 /* Set up all dependencies from last_child (as set up at the end of
8129 the loop above) to the end. */
8130 loc_exp_dep_alloc (var, count);
8132 while (count--)
8134 rtx x = *value++;
8136 if (!pending_recursion)
8137 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8139 loc_exp_insert_dep (var, x, vars);
8142 return pending_recursion;
8145 /* Notify the back-links of IVAR that are pending recursion that we
8146 have found a non-NIL value for it, so they are cleared for another
8147 attempt to compute a current location. */
8149 static void
8150 notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
8152 loc_exp_dep *led, *next;
8154 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8156 decl_or_value dv = led->dv;
8157 variable var;
8159 next = led->next;
8161 if (dv_is_value_p (dv))
8163 rtx value = dv_as_value (dv);
8165 /* If we have already resolved it, leave it alone. */
8166 if (!VALUE_RECURSED_INTO (value))
8167 continue;
8169 /* Check that VALUE_RECURSED_INTO, true from the test above,
8170 implies NO_LOC_P. */
8171 gcc_checking_assert (NO_LOC_P (value));
8173 /* We won't notify variables that are being expanded,
8174 because their dependency list is cleared before
8175 recursing. */
8176 NO_LOC_P (value) = false;
8177 VALUE_RECURSED_INTO (value) = false;
8179 gcc_checking_assert (dv_changed_p (dv));
8181 else
8183 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8184 if (!dv_changed_p (dv))
8185 continue;
8188 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8190 if (!var)
8191 var = variable_from_dropped (dv, NO_INSERT);
8193 if (var)
8194 notify_dependents_of_resolved_value (var, vars);
8196 if (next)
8197 next->pprev = led->pprev;
8198 if (led->pprev)
8199 *led->pprev = next;
8200 led->next = NULL;
8201 led->pprev = NULL;
8205 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8206 int max_depth, void *data);
8208 /* Return the combined depth, when one sub-expression evaluated to
8209 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8211 static inline expand_depth
8212 update_depth (expand_depth saved_depth, expand_depth best_depth)
8214 /* If we didn't find anything, stick with what we had. */
8215 if (!best_depth.complexity)
8216 return saved_depth;
8218 /* If we found hadn't found anything, use the depth of the current
8219 expression. Do NOT add one extra level, we want to compute the
8220 maximum depth among sub-expressions. We'll increment it later,
8221 if appropriate. */
8222 if (!saved_depth.complexity)
8223 return best_depth;
8225 /* Combine the entryval count so that regardless of which one we
8226 return, the entryval count is accurate. */
8227 best_depth.entryvals = saved_depth.entryvals
8228 = best_depth.entryvals + saved_depth.entryvals;
8230 if (saved_depth.complexity < best_depth.complexity)
8231 return best_depth;
8232 else
8233 return saved_depth;
8236 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8237 DATA for cselib expand callback. If PENDRECP is given, indicate in
8238 it whether any sub-expression couldn't be fully evaluated because
8239 it is pending recursion resolution. */
8241 static inline rtx
8242 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8244 struct expand_loc_callback_data *elcd
8245 = (struct expand_loc_callback_data *) data;
8246 location_chain loc, next;
8247 rtx result = NULL;
8248 int first_child, result_first_child, last_child;
8249 bool pending_recursion;
8250 rtx loc_from = NULL;
8251 struct elt_loc_list *cloc = NULL;
8252 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8253 int wanted_entryvals, found_entryvals = 0;
8255 /* Clear all backlinks pointing at this, so that we're not notified
8256 while we're active. */
8257 loc_exp_dep_clear (var);
8259 retry:
8260 if (var->onepart == ONEPART_VALUE)
8262 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8264 gcc_checking_assert (cselib_preserved_value_p (val));
8266 cloc = val->locs;
8269 first_child = result_first_child = last_child
8270 = elcd->expanding.length ();
8272 wanted_entryvals = found_entryvals;
8274 /* Attempt to expand each available location in turn. */
8275 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8276 loc || cloc; loc = next)
8278 result_first_child = last_child;
8280 if (!loc)
8282 loc_from = cloc->loc;
8283 next = loc;
8284 cloc = cloc->next;
8285 if (unsuitable_loc (loc_from))
8286 continue;
8288 else
8290 loc_from = loc->loc;
8291 next = loc->next;
8294 gcc_checking_assert (!unsuitable_loc (loc_from));
8296 elcd->depth.complexity = elcd->depth.entryvals = 0;
8297 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8298 vt_expand_loc_callback, data);
8299 last_child = elcd->expanding.length ();
8301 if (result)
8303 depth = elcd->depth;
8305 gcc_checking_assert (depth.complexity
8306 || result_first_child == last_child);
8308 if (last_child - result_first_child != 1)
8310 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8311 depth.entryvals++;
8312 depth.complexity++;
8315 if (depth.complexity <= EXPR_USE_DEPTH)
8317 if (depth.entryvals <= wanted_entryvals)
8318 break;
8319 else if (!found_entryvals || depth.entryvals < found_entryvals)
8320 found_entryvals = depth.entryvals;
8323 result = NULL;
8326 /* Set it up in case we leave the loop. */
8327 depth.complexity = depth.entryvals = 0;
8328 loc_from = NULL;
8329 result_first_child = first_child;
8332 if (!loc_from && wanted_entryvals < found_entryvals)
8334 /* We found entries with ENTRY_VALUEs and skipped them. Since
8335 we could not find any expansions without ENTRY_VALUEs, but we
8336 found at least one with them, go back and get an entry with
8337 the minimum number ENTRY_VALUE count that we found. We could
8338 avoid looping, but since each sub-loc is already resolved,
8339 the re-expansion should be trivial. ??? Should we record all
8340 attempted locs as dependencies, so that we retry the
8341 expansion should any of them change, in the hope it can give
8342 us a new entry without an ENTRY_VALUE? */
8343 elcd->expanding.truncate (first_child);
8344 goto retry;
8347 /* Register all encountered dependencies as active. */
8348 pending_recursion = loc_exp_dep_set
8349 (var, result, elcd->expanding.address () + result_first_child,
8350 last_child - result_first_child, elcd->vars);
8352 elcd->expanding.truncate (first_child);
8354 /* Record where the expansion came from. */
8355 gcc_checking_assert (!result || !pending_recursion);
8356 VAR_LOC_FROM (var) = loc_from;
8357 VAR_LOC_DEPTH (var) = depth;
8359 gcc_checking_assert (!depth.complexity == !result);
8361 elcd->depth = update_depth (saved_depth, depth);
8363 /* Indicate whether any of the dependencies are pending recursion
8364 resolution. */
8365 if (pendrecp)
8366 *pendrecp = pending_recursion;
8368 if (!pendrecp || !pending_recursion)
8369 var->var_part[0].cur_loc = result;
8371 return result;
8374 /* Callback for cselib_expand_value, that looks for expressions
8375 holding the value in the var-tracking hash tables. Return X for
8376 standard processing, anything else is to be used as-is. */
8378 static rtx
8379 vt_expand_loc_callback (rtx x, bitmap regs,
8380 int max_depth ATTRIBUTE_UNUSED,
8381 void *data)
8383 struct expand_loc_callback_data *elcd
8384 = (struct expand_loc_callback_data *) data;
8385 decl_or_value dv;
8386 variable var;
8387 rtx result, subreg;
8388 bool pending_recursion = false;
8389 bool from_empty = false;
8391 switch (GET_CODE (x))
8393 case SUBREG:
8394 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8395 EXPR_DEPTH,
8396 vt_expand_loc_callback, data);
8398 if (!subreg)
8399 return NULL;
8401 result = simplify_gen_subreg (GET_MODE (x), subreg,
8402 GET_MODE (SUBREG_REG (x)),
8403 SUBREG_BYTE (x));
8405 /* Invalid SUBREGs are ok in debug info. ??? We could try
8406 alternate expansions for the VALUE as well. */
8407 if (!result)
8408 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8410 return result;
8412 case DEBUG_EXPR:
8413 case VALUE:
8414 dv = dv_from_rtx (x);
8415 break;
8417 default:
8418 return x;
8421 elcd->expanding.safe_push (x);
8423 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8424 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8426 if (NO_LOC_P (x))
8428 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8429 return NULL;
8432 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8434 if (!var)
8436 from_empty = true;
8437 var = variable_from_dropped (dv, INSERT);
8440 gcc_checking_assert (var);
8442 if (!dv_changed_p (dv))
8444 gcc_checking_assert (!NO_LOC_P (x));
8445 gcc_checking_assert (var->var_part[0].cur_loc);
8446 gcc_checking_assert (VAR_LOC_1PAUX (var));
8447 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8449 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8451 return var->var_part[0].cur_loc;
8454 VALUE_RECURSED_INTO (x) = true;
8455 /* This is tentative, but it makes some tests simpler. */
8456 NO_LOC_P (x) = true;
8458 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8460 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8462 if (pending_recursion)
8464 gcc_checking_assert (!result);
8465 elcd->pending.safe_push (x);
8467 else
8469 NO_LOC_P (x) = !result;
8470 VALUE_RECURSED_INTO (x) = false;
8471 set_dv_changed (dv, false);
8473 if (result)
8474 notify_dependents_of_resolved_value (var, elcd->vars);
8477 return result;
8480 /* While expanding variables, we may encounter recursion cycles
8481 because of mutual (possibly indirect) dependencies between two
8482 particular variables (or values), say A and B. If we're trying to
8483 expand A when we get to B, which in turn attempts to expand A, if
8484 we can't find any other expansion for B, we'll add B to this
8485 pending-recursion stack, and tentatively return NULL for its
8486 location. This tentative value will be used for any other
8487 occurrences of B, unless A gets some other location, in which case
8488 it will notify B that it is worth another try at computing a
8489 location for it, and it will use the location computed for A then.
8490 At the end of the expansion, the tentative NULL locations become
8491 final for all members of PENDING that didn't get a notification.
8492 This function performs this finalization of NULL locations. */
8494 static void
8495 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8497 while (!pending->is_empty ())
8499 rtx x = pending->pop ();
8500 decl_or_value dv;
8502 if (!VALUE_RECURSED_INTO (x))
8503 continue;
8505 gcc_checking_assert (NO_LOC_P (x));
8506 VALUE_RECURSED_INTO (x) = false;
8507 dv = dv_from_rtx (x);
8508 gcc_checking_assert (dv_changed_p (dv));
8509 set_dv_changed (dv, false);
8513 /* Initialize expand_loc_callback_data D with variable hash table V.
8514 It must be a macro because of alloca (vec stack). */
8515 #define INIT_ELCD(d, v) \
8516 do \
8518 (d).vars = (v); \
8519 (d).depth.complexity = (d).depth.entryvals = 0; \
8521 while (0)
8522 /* Finalize expand_loc_callback_data D, resolved to location L. */
8523 #define FINI_ELCD(d, l) \
8524 do \
8526 resolve_expansions_pending_recursion (&(d).pending); \
8527 (d).pending.release (); \
8528 (d).expanding.release (); \
8530 if ((l) && MEM_P (l)) \
8531 (l) = targetm.delegitimize_address (l); \
8533 while (0)
8535 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8536 equivalences in VARS, updating their CUR_LOCs in the process. */
8538 static rtx
8539 vt_expand_loc (rtx loc, variable_table_type *vars)
8541 struct expand_loc_callback_data data;
8542 rtx result;
8544 if (!MAY_HAVE_DEBUG_INSNS)
8545 return loc;
8547 INIT_ELCD (data, vars);
8549 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8550 vt_expand_loc_callback, &data);
8552 FINI_ELCD (data, result);
8554 return result;
8557 /* Expand the one-part VARiable to a location, using the equivalences
8558 in VARS, updating their CUR_LOCs in the process. */
8560 static rtx
8561 vt_expand_1pvar (variable var, variable_table_type *vars)
8563 struct expand_loc_callback_data data;
8564 rtx loc;
8566 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8568 if (!dv_changed_p (var->dv))
8569 return var->var_part[0].cur_loc;
8571 INIT_ELCD (data, vars);
8573 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8575 gcc_checking_assert (data.expanding.is_empty ());
8577 FINI_ELCD (data, loc);
8579 return loc;
8582 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8583 additional parameters: WHERE specifies whether the note shall be emitted
8584 before or after instruction INSN. */
8587 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8589 variable var = *varp;
8590 rtx_insn *insn = data->insn;
8591 enum emit_note_where where = data->where;
8592 variable_table_type *vars = data->vars;
8593 rtx_note *note;
8594 rtx note_vl;
8595 int i, j, n_var_parts;
8596 bool complete;
8597 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8598 HOST_WIDE_INT last_limit;
8599 tree type_size_unit;
8600 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8601 rtx loc[MAX_VAR_PARTS];
8602 tree decl;
8603 location_chain lc;
8605 gcc_checking_assert (var->onepart == NOT_ONEPART
8606 || var->onepart == ONEPART_VDECL);
8608 decl = dv_as_decl (var->dv);
8610 complete = true;
8611 last_limit = 0;
8612 n_var_parts = 0;
8613 if (!var->onepart)
8614 for (i = 0; i < var->n_var_parts; i++)
8615 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8616 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8617 for (i = 0; i < var->n_var_parts; i++)
8619 machine_mode mode, wider_mode;
8620 rtx loc2;
8621 HOST_WIDE_INT offset;
8623 if (i == 0 && var->onepart)
8625 gcc_checking_assert (var->n_var_parts == 1);
8626 offset = 0;
8627 initialized = VAR_INIT_STATUS_INITIALIZED;
8628 loc2 = vt_expand_1pvar (var, vars);
8630 else
8632 if (last_limit < VAR_PART_OFFSET (var, i))
8634 complete = false;
8635 break;
8637 else if (last_limit > VAR_PART_OFFSET (var, i))
8638 continue;
8639 offset = VAR_PART_OFFSET (var, i);
8640 loc2 = var->var_part[i].cur_loc;
8641 if (loc2 && GET_CODE (loc2) == MEM
8642 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8644 rtx depval = XEXP (loc2, 0);
8646 loc2 = vt_expand_loc (loc2, vars);
8648 if (loc2)
8649 loc_exp_insert_dep (var, depval, vars);
8651 if (!loc2)
8653 complete = false;
8654 continue;
8656 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8657 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8658 if (var->var_part[i].cur_loc == lc->loc)
8660 initialized = lc->init;
8661 break;
8663 gcc_assert (lc);
8666 offsets[n_var_parts] = offset;
8667 if (!loc2)
8669 complete = false;
8670 continue;
8672 loc[n_var_parts] = loc2;
8673 mode = GET_MODE (var->var_part[i].cur_loc);
8674 if (mode == VOIDmode && var->onepart)
8675 mode = DECL_MODE (decl);
8676 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8678 /* Attempt to merge adjacent registers or memory. */
8679 wider_mode = GET_MODE_WIDER_MODE (mode);
8680 for (j = i + 1; j < var->n_var_parts; j++)
8681 if (last_limit <= VAR_PART_OFFSET (var, j))
8682 break;
8683 if (j < var->n_var_parts
8684 && wider_mode != VOIDmode
8685 && var->var_part[j].cur_loc
8686 && mode == GET_MODE (var->var_part[j].cur_loc)
8687 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8688 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8689 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8690 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8692 rtx new_loc = NULL;
8694 if (REG_P (loc[n_var_parts])
8695 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8696 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8697 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8698 == REGNO (loc2))
8700 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8701 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8702 mode, 0);
8703 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8704 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8705 if (new_loc)
8707 if (!REG_P (new_loc)
8708 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8709 new_loc = NULL;
8710 else
8711 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8714 else if (MEM_P (loc[n_var_parts])
8715 && GET_CODE (XEXP (loc2, 0)) == PLUS
8716 && REG_P (XEXP (XEXP (loc2, 0), 0))
8717 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8719 if ((REG_P (XEXP (loc[n_var_parts], 0))
8720 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8721 XEXP (XEXP (loc2, 0), 0))
8722 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8723 == GET_MODE_SIZE (mode))
8724 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8725 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8726 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8727 XEXP (XEXP (loc2, 0), 0))
8728 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8729 + GET_MODE_SIZE (mode)
8730 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8731 new_loc = adjust_address_nv (loc[n_var_parts],
8732 wider_mode, 0);
8735 if (new_loc)
8737 loc[n_var_parts] = new_loc;
8738 mode = wider_mode;
8739 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8740 i = j;
8743 ++n_var_parts;
8745 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8746 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8747 complete = false;
8749 if (! flag_var_tracking_uninit)
8750 initialized = VAR_INIT_STATUS_INITIALIZED;
8752 note_vl = NULL_RTX;
8753 if (!complete)
8754 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8755 else if (n_var_parts == 1)
8757 rtx expr_list;
8759 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8760 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8761 else
8762 expr_list = loc[0];
8764 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8766 else if (n_var_parts)
8768 rtx parallel;
8770 for (i = 0; i < n_var_parts; i++)
8771 loc[i]
8772 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8774 parallel = gen_rtx_PARALLEL (VOIDmode,
8775 gen_rtvec_v (n_var_parts, loc));
8776 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8777 parallel, initialized);
8780 if (where != EMIT_NOTE_BEFORE_INSN)
8782 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8783 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8784 NOTE_DURING_CALL_P (note) = true;
8786 else
8788 /* Make sure that the call related notes come first. */
8789 while (NEXT_INSN (insn)
8790 && NOTE_P (insn)
8791 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8792 && NOTE_DURING_CALL_P (insn))
8793 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8794 insn = NEXT_INSN (insn);
8795 if (NOTE_P (insn)
8796 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8797 && NOTE_DURING_CALL_P (insn))
8798 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8799 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8800 else
8801 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8803 NOTE_VAR_LOCATION (note) = note_vl;
8805 set_dv_changed (var->dv, false);
8806 gcc_assert (var->in_changed_variables);
8807 var->in_changed_variables = false;
8808 changed_variables->clear_slot (varp);
8810 /* Continue traversing the hash table. */
8811 return 1;
8814 /* While traversing changed_variables, push onto DATA (a stack of RTX
8815 values) entries that aren't user variables. */
8818 var_track_values_to_stack (variable_def **slot,
8819 vec<rtx, va_heap> *changed_values_stack)
8821 variable var = *slot;
8823 if (var->onepart == ONEPART_VALUE)
8824 changed_values_stack->safe_push (dv_as_value (var->dv));
8825 else if (var->onepart == ONEPART_DEXPR)
8826 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8828 return 1;
8831 /* Remove from changed_variables the entry whose DV corresponds to
8832 value or debug_expr VAL. */
8833 static void
8834 remove_value_from_changed_variables (rtx val)
8836 decl_or_value dv = dv_from_rtx (val);
8837 variable_def **slot;
8838 variable var;
8840 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8841 NO_INSERT);
8842 var = *slot;
8843 var->in_changed_variables = false;
8844 changed_variables->clear_slot (slot);
8847 /* If VAL (a value or debug_expr) has backlinks to variables actively
8848 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8849 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8850 have dependencies of their own to notify. */
8852 static void
8853 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8854 vec<rtx, va_heap> *changed_values_stack)
8856 variable_def **slot;
8857 variable var;
8858 loc_exp_dep *led;
8859 decl_or_value dv = dv_from_rtx (val);
8861 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8862 NO_INSERT);
8863 if (!slot)
8864 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8865 if (!slot)
8866 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8867 NO_INSERT);
8868 var = *slot;
8870 while ((led = VAR_LOC_DEP_LST (var)))
8872 decl_or_value ldv = led->dv;
8873 variable ivar;
8875 /* Deactivate and remove the backlink, as it was “used up”. It
8876 makes no sense to attempt to notify the same entity again:
8877 either it will be recomputed and re-register an active
8878 dependency, or it will still have the changed mark. */
8879 if (led->next)
8880 led->next->pprev = led->pprev;
8881 if (led->pprev)
8882 *led->pprev = led->next;
8883 led->next = NULL;
8884 led->pprev = NULL;
8886 if (dv_changed_p (ldv))
8887 continue;
8889 switch (dv_onepart_p (ldv))
8891 case ONEPART_VALUE:
8892 case ONEPART_DEXPR:
8893 set_dv_changed (ldv, true);
8894 changed_values_stack->safe_push (dv_as_rtx (ldv));
8895 break;
8897 case ONEPART_VDECL:
8898 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8899 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8900 variable_was_changed (ivar, NULL);
8901 break;
8903 case NOT_ONEPART:
8904 pool_free (loc_exp_dep_pool, led);
8905 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8906 if (ivar)
8908 int i = ivar->n_var_parts;
8909 while (i--)
8911 rtx loc = ivar->var_part[i].cur_loc;
8913 if (loc && GET_CODE (loc) == MEM
8914 && XEXP (loc, 0) == val)
8916 variable_was_changed (ivar, NULL);
8917 break;
8921 break;
8923 default:
8924 gcc_unreachable ();
8929 /* Take out of changed_variables any entries that don't refer to use
8930 variables. Back-propagate change notifications from values and
8931 debug_exprs to their active dependencies in HTAB or in
8932 CHANGED_VARIABLES. */
8934 static void
8935 process_changed_values (variable_table_type *htab)
8937 int i, n;
8938 rtx val;
8939 auto_vec<rtx, 20> changed_values_stack;
8941 /* Move values from changed_variables to changed_values_stack. */
8942 changed_variables
8943 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8944 (&changed_values_stack);
8946 /* Back-propagate change notifications in values while popping
8947 them from the stack. */
8948 for (n = i = changed_values_stack.length ();
8949 i > 0; i = changed_values_stack.length ())
8951 val = changed_values_stack.pop ();
8952 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8954 /* This condition will hold when visiting each of the entries
8955 originally in changed_variables. We can't remove them
8956 earlier because this could drop the backlinks before we got a
8957 chance to use them. */
8958 if (i == n)
8960 remove_value_from_changed_variables (val);
8961 n--;
8966 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8967 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8968 the notes shall be emitted before of after instruction INSN. */
8970 static void
8971 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
8972 shared_hash vars)
8974 emit_note_data data;
8975 variable_table_type *htab = shared_hash_htab (vars);
8977 if (!changed_variables->elements ())
8978 return;
8980 if (MAY_HAVE_DEBUG_INSNS)
8981 process_changed_values (htab);
8983 data.insn = insn;
8984 data.where = where;
8985 data.vars = htab;
8987 changed_variables
8988 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8991 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8992 same variable in hash table DATA or is not there at all. */
8995 emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
8997 variable old_var, new_var;
8999 old_var = *slot;
9000 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9002 if (!new_var)
9004 /* Variable has disappeared. */
9005 variable empty_var = NULL;
9007 if (old_var->onepart == ONEPART_VALUE
9008 || old_var->onepart == ONEPART_DEXPR)
9010 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9011 if (empty_var)
9013 gcc_checking_assert (!empty_var->in_changed_variables);
9014 if (!VAR_LOC_1PAUX (old_var))
9016 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9017 VAR_LOC_1PAUX (empty_var) = NULL;
9019 else
9020 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9024 if (!empty_var)
9026 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
9027 empty_var->dv = old_var->dv;
9028 empty_var->refcount = 0;
9029 empty_var->n_var_parts = 0;
9030 empty_var->onepart = old_var->onepart;
9031 empty_var->in_changed_variables = false;
9034 if (empty_var->onepart)
9036 /* Propagate the auxiliary data to (ultimately)
9037 changed_variables. */
9038 empty_var->var_part[0].loc_chain = NULL;
9039 empty_var->var_part[0].cur_loc = NULL;
9040 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9041 VAR_LOC_1PAUX (old_var) = NULL;
9043 variable_was_changed (empty_var, NULL);
9044 /* Continue traversing the hash table. */
9045 return 1;
9047 /* Update cur_loc and one-part auxiliary data, before new_var goes
9048 through variable_was_changed. */
9049 if (old_var != new_var && new_var->onepart)
9051 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9052 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9053 VAR_LOC_1PAUX (old_var) = NULL;
9054 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9056 if (variable_different_p (old_var, new_var))
9057 variable_was_changed (new_var, NULL);
9059 /* Continue traversing the hash table. */
9060 return 1;
9063 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9064 table DATA. */
9067 emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
9069 variable old_var, new_var;
9071 new_var = *slot;
9072 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9073 if (!old_var)
9075 int i;
9076 for (i = 0; i < new_var->n_var_parts; i++)
9077 new_var->var_part[i].cur_loc = NULL;
9078 variable_was_changed (new_var, NULL);
9081 /* Continue traversing the hash table. */
9082 return 1;
9085 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9086 NEW_SET. */
9088 static void
9089 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9090 dataflow_set *new_set)
9092 shared_hash_htab (old_set->vars)
9093 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9094 (shared_hash_htab (new_set->vars));
9095 shared_hash_htab (new_set->vars)
9096 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9097 (shared_hash_htab (old_set->vars));
9098 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9101 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9103 static rtx_insn *
9104 next_non_note_insn_var_location (rtx_insn *insn)
9106 while (insn)
9108 insn = NEXT_INSN (insn);
9109 if (insn == 0
9110 || !NOTE_P (insn)
9111 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9112 break;
9115 return insn;
9118 /* Emit the notes for changes of location parts in the basic block BB. */
9120 static void
9121 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9123 unsigned int i;
9124 micro_operation *mo;
9126 dataflow_set_clear (set);
9127 dataflow_set_copy (set, &VTI (bb)->in);
9129 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9131 rtx_insn *insn = mo->insn;
9132 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9134 switch (mo->type)
9136 case MO_CALL:
9137 dataflow_set_clear_at_call (set);
9138 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9140 rtx arguments = mo->u.loc, *p = &arguments;
9141 rtx_note *note;
9142 while (*p)
9144 XEXP (XEXP (*p, 0), 1)
9145 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9146 shared_hash_htab (set->vars));
9147 /* If expansion is successful, keep it in the list. */
9148 if (XEXP (XEXP (*p, 0), 1))
9149 p = &XEXP (*p, 1);
9150 /* Otherwise, if the following item is data_value for it,
9151 drop it too too. */
9152 else if (XEXP (*p, 1)
9153 && REG_P (XEXP (XEXP (*p, 0), 0))
9154 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9155 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9157 && REGNO (XEXP (XEXP (*p, 0), 0))
9158 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9159 0), 0)))
9160 *p = XEXP (XEXP (*p, 1), 1);
9161 /* Just drop this item. */
9162 else
9163 *p = XEXP (*p, 1);
9165 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9166 NOTE_VAR_LOCATION (note) = arguments;
9168 break;
9170 case MO_USE:
9172 rtx loc = mo->u.loc;
9174 if (REG_P (loc))
9175 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9176 else
9177 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9179 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9181 break;
9183 case MO_VAL_LOC:
9185 rtx loc = mo->u.loc;
9186 rtx val, vloc;
9187 tree var;
9189 if (GET_CODE (loc) == CONCAT)
9191 val = XEXP (loc, 0);
9192 vloc = XEXP (loc, 1);
9194 else
9196 val = NULL_RTX;
9197 vloc = loc;
9200 var = PAT_VAR_LOCATION_DECL (vloc);
9202 clobber_variable_part (set, NULL_RTX,
9203 dv_from_decl (var), 0, NULL_RTX);
9204 if (val)
9206 if (VAL_NEEDS_RESOLUTION (loc))
9207 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9208 set_variable_part (set, val, dv_from_decl (var), 0,
9209 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9210 INSERT);
9212 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9213 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9214 dv_from_decl (var), 0,
9215 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9216 INSERT);
9218 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9220 break;
9222 case MO_VAL_USE:
9224 rtx loc = mo->u.loc;
9225 rtx val, vloc, uloc;
9227 vloc = uloc = XEXP (loc, 1);
9228 val = XEXP (loc, 0);
9230 if (GET_CODE (val) == CONCAT)
9232 uloc = XEXP (val, 1);
9233 val = XEXP (val, 0);
9236 if (VAL_NEEDS_RESOLUTION (loc))
9237 val_resolve (set, val, vloc, insn);
9238 else
9239 val_store (set, val, uloc, insn, false);
9241 if (VAL_HOLDS_TRACK_EXPR (loc))
9243 if (GET_CODE (uloc) == REG)
9244 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9245 NULL);
9246 else if (GET_CODE (uloc) == MEM)
9247 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9248 NULL);
9251 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9253 break;
9255 case MO_VAL_SET:
9257 rtx loc = mo->u.loc;
9258 rtx val, vloc, uloc;
9259 rtx dstv, srcv;
9261 vloc = loc;
9262 uloc = XEXP (vloc, 1);
9263 val = XEXP (vloc, 0);
9264 vloc = uloc;
9266 if (GET_CODE (uloc) == SET)
9268 dstv = SET_DEST (uloc);
9269 srcv = SET_SRC (uloc);
9271 else
9273 dstv = uloc;
9274 srcv = NULL;
9277 if (GET_CODE (val) == CONCAT)
9279 dstv = vloc = XEXP (val, 1);
9280 val = XEXP (val, 0);
9283 if (GET_CODE (vloc) == SET)
9285 srcv = SET_SRC (vloc);
9287 gcc_assert (val != srcv);
9288 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9290 dstv = vloc = SET_DEST (vloc);
9292 if (VAL_NEEDS_RESOLUTION (loc))
9293 val_resolve (set, val, srcv, insn);
9295 else if (VAL_NEEDS_RESOLUTION (loc))
9297 gcc_assert (GET_CODE (uloc) == SET
9298 && GET_CODE (SET_SRC (uloc)) == REG);
9299 val_resolve (set, val, SET_SRC (uloc), insn);
9302 if (VAL_HOLDS_TRACK_EXPR (loc))
9304 if (VAL_EXPR_IS_CLOBBERED (loc))
9306 if (REG_P (uloc))
9307 var_reg_delete (set, uloc, true);
9308 else if (MEM_P (uloc))
9310 gcc_assert (MEM_P (dstv));
9311 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9312 var_mem_delete (set, dstv, true);
9315 else
9317 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9318 rtx src = NULL, dst = uloc;
9319 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9321 if (GET_CODE (uloc) == SET)
9323 src = SET_SRC (uloc);
9324 dst = SET_DEST (uloc);
9327 if (copied_p)
9329 status = find_src_status (set, src);
9331 src = find_src_set_src (set, src);
9334 if (REG_P (dst))
9335 var_reg_delete_and_set (set, dst, !copied_p,
9336 status, srcv);
9337 else if (MEM_P (dst))
9339 gcc_assert (MEM_P (dstv));
9340 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9341 var_mem_delete_and_set (set, dstv, !copied_p,
9342 status, srcv);
9346 else if (REG_P (uloc))
9347 var_regno_delete (set, REGNO (uloc));
9348 else if (MEM_P (uloc))
9350 gcc_checking_assert (GET_CODE (vloc) == MEM);
9351 gcc_checking_assert (vloc == dstv);
9352 if (vloc != dstv)
9353 clobber_overlapping_mems (set, vloc);
9356 val_store (set, val, dstv, insn, true);
9358 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9359 set->vars);
9361 break;
9363 case MO_SET:
9365 rtx loc = mo->u.loc;
9366 rtx set_src = NULL;
9368 if (GET_CODE (loc) == SET)
9370 set_src = SET_SRC (loc);
9371 loc = SET_DEST (loc);
9374 if (REG_P (loc))
9375 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9376 set_src);
9377 else
9378 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9379 set_src);
9381 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9382 set->vars);
9384 break;
9386 case MO_COPY:
9388 rtx loc = mo->u.loc;
9389 enum var_init_status src_status;
9390 rtx set_src = NULL;
9392 if (GET_CODE (loc) == SET)
9394 set_src = SET_SRC (loc);
9395 loc = SET_DEST (loc);
9398 src_status = find_src_status (set, set_src);
9399 set_src = find_src_set_src (set, set_src);
9401 if (REG_P (loc))
9402 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9403 else
9404 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9406 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9407 set->vars);
9409 break;
9411 case MO_USE_NO_VAR:
9413 rtx loc = mo->u.loc;
9415 if (REG_P (loc))
9416 var_reg_delete (set, loc, false);
9417 else
9418 var_mem_delete (set, loc, false);
9420 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9422 break;
9424 case MO_CLOBBER:
9426 rtx loc = mo->u.loc;
9428 if (REG_P (loc))
9429 var_reg_delete (set, loc, true);
9430 else
9431 var_mem_delete (set, loc, true);
9433 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9434 set->vars);
9436 break;
9438 case MO_ADJUST:
9439 set->stack_adjust += mo->u.adjust;
9440 break;
9445 /* Emit notes for the whole function. */
9447 static void
9448 vt_emit_notes (void)
9450 basic_block bb;
9451 dataflow_set cur;
9453 gcc_assert (!changed_variables->elements ());
9455 /* Free memory occupied by the out hash tables, as they aren't used
9456 anymore. */
9457 FOR_EACH_BB_FN (bb, cfun)
9458 dataflow_set_clear (&VTI (bb)->out);
9460 /* Enable emitting notes by functions (mainly by set_variable_part and
9461 delete_variable_part). */
9462 emit_notes = true;
9464 if (MAY_HAVE_DEBUG_INSNS)
9466 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9467 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9468 sizeof (loc_exp_dep), 64);
9471 dataflow_set_init (&cur);
9473 FOR_EACH_BB_FN (bb, cfun)
9475 /* Emit the notes for changes of variable locations between two
9476 subsequent basic blocks. */
9477 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9479 if (MAY_HAVE_DEBUG_INSNS)
9480 local_get_addr_cache = new hash_map<rtx, rtx>;
9482 /* Emit the notes for the changes in the basic block itself. */
9483 emit_notes_in_bb (bb, &cur);
9485 if (MAY_HAVE_DEBUG_INSNS)
9486 delete local_get_addr_cache;
9487 local_get_addr_cache = NULL;
9489 /* Free memory occupied by the in hash table, we won't need it
9490 again. */
9491 dataflow_set_clear (&VTI (bb)->in);
9493 #ifdef ENABLE_CHECKING
9494 shared_hash_htab (cur.vars)
9495 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9496 (shared_hash_htab (empty_shared_hash));
9497 #endif
9498 dataflow_set_destroy (&cur);
9500 if (MAY_HAVE_DEBUG_INSNS)
9501 delete dropped_values;
9502 dropped_values = NULL;
9504 emit_notes = false;
9507 /* If there is a declaration and offset associated with register/memory RTL
9508 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9510 static bool
9511 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9513 if (REG_P (rtl))
9515 if (REG_ATTRS (rtl))
9517 *declp = REG_EXPR (rtl);
9518 *offsetp = REG_OFFSET (rtl);
9519 return true;
9522 else if (GET_CODE (rtl) == PARALLEL)
9524 tree decl = NULL_TREE;
9525 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9526 int len = XVECLEN (rtl, 0), i;
9528 for (i = 0; i < len; i++)
9530 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9531 if (!REG_P (reg) || !REG_ATTRS (reg))
9532 break;
9533 if (!decl)
9534 decl = REG_EXPR (reg);
9535 if (REG_EXPR (reg) != decl)
9536 break;
9537 if (REG_OFFSET (reg) < offset)
9538 offset = REG_OFFSET (reg);
9541 if (i == len)
9543 *declp = decl;
9544 *offsetp = offset;
9545 return true;
9548 else if (MEM_P (rtl))
9550 if (MEM_ATTRS (rtl))
9552 *declp = MEM_EXPR (rtl);
9553 *offsetp = INT_MEM_OFFSET (rtl);
9554 return true;
9557 return false;
9560 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9561 of VAL. */
9563 static void
9564 record_entry_value (cselib_val *val, rtx rtl)
9566 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9568 ENTRY_VALUE_EXP (ev) = rtl;
9570 cselib_add_permanent_equiv (val, ev, get_insns ());
9573 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9575 static void
9576 vt_add_function_parameter (tree parm)
9578 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9579 rtx incoming = DECL_INCOMING_RTL (parm);
9580 tree decl;
9581 machine_mode mode;
9582 HOST_WIDE_INT offset;
9583 dataflow_set *out;
9584 decl_or_value dv;
9586 if (TREE_CODE (parm) != PARM_DECL)
9587 return;
9589 if (!decl_rtl || !incoming)
9590 return;
9592 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9593 return;
9595 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9596 rewrite the incoming location of parameters passed on the stack
9597 into MEMs based on the argument pointer, so that incoming doesn't
9598 depend on a pseudo. */
9599 if (MEM_P (incoming)
9600 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9601 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9602 && XEXP (XEXP (incoming, 0), 0)
9603 == crtl->args.internal_arg_pointer
9604 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9606 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9607 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9608 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9609 incoming
9610 = replace_equiv_address_nv (incoming,
9611 plus_constant (Pmode,
9612 arg_pointer_rtx, off));
9615 #ifdef HAVE_window_save
9616 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9617 If the target machine has an explicit window save instruction, the
9618 actual entry value is the corresponding OUTGOING_REGNO instead. */
9619 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9621 if (REG_P (incoming)
9622 && HARD_REGISTER_P (incoming)
9623 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9625 parm_reg_t p;
9626 p.incoming = incoming;
9627 incoming
9628 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9629 OUTGOING_REGNO (REGNO (incoming)), 0);
9630 p.outgoing = incoming;
9631 vec_safe_push (windowed_parm_regs, p);
9633 else if (GET_CODE (incoming) == PARALLEL)
9635 rtx outgoing
9636 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9637 int i;
9639 for (i = 0; i < XVECLEN (incoming, 0); i++)
9641 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9642 parm_reg_t p;
9643 p.incoming = reg;
9644 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9645 OUTGOING_REGNO (REGNO (reg)), 0);
9646 p.outgoing = reg;
9647 XVECEXP (outgoing, 0, i)
9648 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9649 XEXP (XVECEXP (incoming, 0, i), 1));
9650 vec_safe_push (windowed_parm_regs, p);
9653 incoming = outgoing;
9655 else if (MEM_P (incoming)
9656 && REG_P (XEXP (incoming, 0))
9657 && HARD_REGISTER_P (XEXP (incoming, 0)))
9659 rtx reg = XEXP (incoming, 0);
9660 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9662 parm_reg_t p;
9663 p.incoming = reg;
9664 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9665 p.outgoing = reg;
9666 vec_safe_push (windowed_parm_regs, p);
9667 incoming = replace_equiv_address_nv (incoming, reg);
9671 #endif
9673 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9675 if (MEM_P (incoming))
9677 /* This means argument is passed by invisible reference. */
9678 offset = 0;
9679 decl = parm;
9681 else
9683 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9684 return;
9685 offset += byte_lowpart_offset (GET_MODE (incoming),
9686 GET_MODE (decl_rtl));
9690 if (!decl)
9691 return;
9693 if (parm != decl)
9695 /* If that DECL_RTL wasn't a pseudo that got spilled to
9696 memory, bail out. Otherwise, the spill slot sharing code
9697 will force the memory to reference spill_slot_decl (%sfp),
9698 so we don't match above. That's ok, the pseudo must have
9699 referenced the entire parameter, so just reset OFFSET. */
9700 if (decl != get_spill_slot_decl (false))
9701 return;
9702 offset = 0;
9705 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9706 return;
9708 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9710 dv = dv_from_decl (parm);
9712 if (target_for_debug_bind (parm)
9713 /* We can't deal with these right now, because this kind of
9714 variable is single-part. ??? We could handle parallels
9715 that describe multiple locations for the same single
9716 value, but ATM we don't. */
9717 && GET_CODE (incoming) != PARALLEL)
9719 cselib_val *val;
9720 rtx lowpart;
9722 /* ??? We shouldn't ever hit this, but it may happen because
9723 arguments passed by invisible reference aren't dealt with
9724 above: incoming-rtl will have Pmode rather than the
9725 expected mode for the type. */
9726 if (offset)
9727 return;
9729 lowpart = var_lowpart (mode, incoming);
9730 if (!lowpart)
9731 return;
9733 val = cselib_lookup_from_insn (lowpart, mode, true,
9734 VOIDmode, get_insns ());
9736 /* ??? Float-typed values in memory are not handled by
9737 cselib. */
9738 if (val)
9740 preserve_value (val);
9741 set_variable_part (out, val->val_rtx, dv, offset,
9742 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9743 dv = dv_from_value (val->val_rtx);
9746 if (MEM_P (incoming))
9748 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9749 VOIDmode, get_insns ());
9750 if (val)
9752 preserve_value (val);
9753 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9758 if (REG_P (incoming))
9760 incoming = var_lowpart (mode, incoming);
9761 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9762 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9763 incoming);
9764 set_variable_part (out, incoming, dv, offset,
9765 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9766 if (dv_is_value_p (dv))
9768 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9769 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9770 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9772 machine_mode indmode
9773 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9774 rtx mem = gen_rtx_MEM (indmode, incoming);
9775 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9776 VOIDmode,
9777 get_insns ());
9778 if (val)
9780 preserve_value (val);
9781 record_entry_value (val, mem);
9782 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9783 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9788 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9790 int i;
9792 for (i = 0; i < XVECLEN (incoming, 0); i++)
9794 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9795 offset = REG_OFFSET (reg);
9796 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9797 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9798 set_variable_part (out, reg, dv, offset,
9799 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9802 else if (MEM_P (incoming))
9804 incoming = var_lowpart (mode, incoming);
9805 set_variable_part (out, incoming, dv, offset,
9806 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9810 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9812 static void
9813 vt_add_function_parameters (void)
9815 tree parm;
9817 for (parm = DECL_ARGUMENTS (current_function_decl);
9818 parm; parm = DECL_CHAIN (parm))
9819 if (!POINTER_BOUNDS_P (parm))
9820 vt_add_function_parameter (parm);
9822 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9824 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9826 if (TREE_CODE (vexpr) == INDIRECT_REF)
9827 vexpr = TREE_OPERAND (vexpr, 0);
9829 if (TREE_CODE (vexpr) == PARM_DECL
9830 && DECL_ARTIFICIAL (vexpr)
9831 && !DECL_IGNORED_P (vexpr)
9832 && DECL_NAMELESS (vexpr))
9833 vt_add_function_parameter (vexpr);
9837 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9838 ensure it isn't flushed during cselib_reset_table.
9839 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9840 has been eliminated. */
9842 static void
9843 vt_init_cfa_base (void)
9845 cselib_val *val;
9847 #ifdef FRAME_POINTER_CFA_OFFSET
9848 cfa_base_rtx = frame_pointer_rtx;
9849 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9850 #else
9851 cfa_base_rtx = arg_pointer_rtx;
9852 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9853 #endif
9854 if (cfa_base_rtx == hard_frame_pointer_rtx
9855 || !fixed_regs[REGNO (cfa_base_rtx)])
9857 cfa_base_rtx = NULL_RTX;
9858 return;
9860 if (!MAY_HAVE_DEBUG_INSNS)
9861 return;
9863 /* Tell alias analysis that cfa_base_rtx should share
9864 find_base_term value with stack pointer or hard frame pointer. */
9865 if (!frame_pointer_needed)
9866 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9867 else if (!crtl->stack_realign_tried)
9868 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9870 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9871 VOIDmode, get_insns ());
9872 preserve_value (val);
9873 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9876 /* Allocate and initialize the data structures for variable tracking
9877 and parse the RTL to get the micro operations. */
9879 static bool
9880 vt_initialize (void)
9882 basic_block bb;
9883 HOST_WIDE_INT fp_cfa_offset = -1;
9885 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9887 attrs_pool = create_alloc_pool ("attrs_def pool",
9888 sizeof (struct attrs_def), 1024);
9889 var_pool = create_alloc_pool ("variable_def pool",
9890 sizeof (struct variable_def)
9891 + (MAX_VAR_PARTS - 1)
9892 * sizeof (((variable)NULL)->var_part[0]), 64);
9893 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9894 sizeof (struct location_chain_def),
9895 1024);
9896 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9897 sizeof (struct shared_hash_def), 256);
9898 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9899 empty_shared_hash->refcount = 1;
9900 empty_shared_hash->htab = new variable_table_type (1);
9901 changed_variables = new variable_table_type (10);
9903 /* Init the IN and OUT sets. */
9904 FOR_ALL_BB_FN (bb, cfun)
9906 VTI (bb)->visited = false;
9907 VTI (bb)->flooded = false;
9908 dataflow_set_init (&VTI (bb)->in);
9909 dataflow_set_init (&VTI (bb)->out);
9910 VTI (bb)->permp = NULL;
9913 if (MAY_HAVE_DEBUG_INSNS)
9915 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9916 scratch_regs = BITMAP_ALLOC (NULL);
9917 valvar_pool = create_alloc_pool ("small variable_def pool",
9918 sizeof (struct variable_def), 256);
9919 preserved_values.create (256);
9920 global_get_addr_cache = new hash_map<rtx, rtx>;
9922 else
9924 scratch_regs = NULL;
9925 valvar_pool = NULL;
9926 global_get_addr_cache = NULL;
9929 if (MAY_HAVE_DEBUG_INSNS)
9931 rtx reg, expr;
9932 int ofst;
9933 cselib_val *val;
9935 #ifdef FRAME_POINTER_CFA_OFFSET
9936 reg = frame_pointer_rtx;
9937 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9938 #else
9939 reg = arg_pointer_rtx;
9940 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9941 #endif
9943 ofst -= INCOMING_FRAME_SP_OFFSET;
9945 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9946 VOIDmode, get_insns ());
9947 preserve_value (val);
9948 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9949 cselib_preserve_cfa_base_value (val, REGNO (reg));
9950 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9951 stack_pointer_rtx, -ofst);
9952 cselib_add_permanent_equiv (val, expr, get_insns ());
9954 if (ofst)
9956 val = cselib_lookup_from_insn (stack_pointer_rtx,
9957 GET_MODE (stack_pointer_rtx), 1,
9958 VOIDmode, get_insns ());
9959 preserve_value (val);
9960 expr = plus_constant (GET_MODE (reg), reg, ofst);
9961 cselib_add_permanent_equiv (val, expr, get_insns ());
9965 /* In order to factor out the adjustments made to the stack pointer or to
9966 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9967 instead of individual location lists, we're going to rewrite MEMs based
9968 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9969 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9970 resp. arg_pointer_rtx. We can do this either when there is no frame
9971 pointer in the function and stack adjustments are consistent for all
9972 basic blocks or when there is a frame pointer and no stack realignment.
9973 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9974 has been eliminated. */
9975 if (!frame_pointer_needed)
9977 rtx reg, elim;
9979 if (!vt_stack_adjustments ())
9980 return false;
9982 #ifdef FRAME_POINTER_CFA_OFFSET
9983 reg = frame_pointer_rtx;
9984 #else
9985 reg = arg_pointer_rtx;
9986 #endif
9987 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9988 if (elim != reg)
9990 if (GET_CODE (elim) == PLUS)
9991 elim = XEXP (elim, 0);
9992 if (elim == stack_pointer_rtx)
9993 vt_init_cfa_base ();
9996 else if (!crtl->stack_realign_tried)
9998 rtx reg, elim;
10000 #ifdef FRAME_POINTER_CFA_OFFSET
10001 reg = frame_pointer_rtx;
10002 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10003 #else
10004 reg = arg_pointer_rtx;
10005 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10006 #endif
10007 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10008 if (elim != reg)
10010 if (GET_CODE (elim) == PLUS)
10012 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10013 elim = XEXP (elim, 0);
10015 if (elim != hard_frame_pointer_rtx)
10016 fp_cfa_offset = -1;
10018 else
10019 fp_cfa_offset = -1;
10022 /* If the stack is realigned and a DRAP register is used, we're going to
10023 rewrite MEMs based on it representing incoming locations of parameters
10024 passed on the stack into MEMs based on the argument pointer. Although
10025 we aren't going to rewrite other MEMs, we still need to initialize the
10026 virtual CFA pointer in order to ensure that the argument pointer will
10027 be seen as a constant throughout the function.
10029 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10030 else if (stack_realign_drap)
10032 rtx reg, elim;
10034 #ifdef FRAME_POINTER_CFA_OFFSET
10035 reg = frame_pointer_rtx;
10036 #else
10037 reg = arg_pointer_rtx;
10038 #endif
10039 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10040 if (elim != reg)
10042 if (GET_CODE (elim) == PLUS)
10043 elim = XEXP (elim, 0);
10044 if (elim == hard_frame_pointer_rtx)
10045 vt_init_cfa_base ();
10049 hard_frame_pointer_adjustment = -1;
10051 vt_add_function_parameters ();
10053 FOR_EACH_BB_FN (bb, cfun)
10055 rtx_insn *insn;
10056 HOST_WIDE_INT pre, post = 0;
10057 basic_block first_bb, last_bb;
10059 if (MAY_HAVE_DEBUG_INSNS)
10061 cselib_record_sets_hook = add_with_sets;
10062 if (dump_file && (dump_flags & TDF_DETAILS))
10063 fprintf (dump_file, "first value: %i\n",
10064 cselib_get_next_uid ());
10067 first_bb = bb;
10068 for (;;)
10070 edge e;
10071 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10072 || ! single_pred_p (bb->next_bb))
10073 break;
10074 e = find_edge (bb, bb->next_bb);
10075 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10076 break;
10077 bb = bb->next_bb;
10079 last_bb = bb;
10081 /* Add the micro-operations to the vector. */
10082 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10084 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10085 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10086 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10087 insn = NEXT_INSN (insn))
10089 if (INSN_P (insn))
10091 if (!frame_pointer_needed)
10093 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10094 if (pre)
10096 micro_operation mo;
10097 mo.type = MO_ADJUST;
10098 mo.u.adjust = pre;
10099 mo.insn = insn;
10100 if (dump_file && (dump_flags & TDF_DETAILS))
10101 log_op_type (PATTERN (insn), bb, insn,
10102 MO_ADJUST, dump_file);
10103 VTI (bb)->mos.safe_push (mo);
10104 VTI (bb)->out.stack_adjust += pre;
10108 cselib_hook_called = false;
10109 adjust_insn (bb, insn);
10110 if (MAY_HAVE_DEBUG_INSNS)
10112 if (CALL_P (insn))
10113 prepare_call_arguments (bb, insn);
10114 cselib_process_insn (insn);
10115 if (dump_file && (dump_flags & TDF_DETAILS))
10117 print_rtl_single (dump_file, insn);
10118 dump_cselib_table (dump_file);
10121 if (!cselib_hook_called)
10122 add_with_sets (insn, 0, 0);
10123 cancel_changes (0);
10125 if (!frame_pointer_needed && post)
10127 micro_operation mo;
10128 mo.type = MO_ADJUST;
10129 mo.u.adjust = post;
10130 mo.insn = insn;
10131 if (dump_file && (dump_flags & TDF_DETAILS))
10132 log_op_type (PATTERN (insn), bb, insn,
10133 MO_ADJUST, dump_file);
10134 VTI (bb)->mos.safe_push (mo);
10135 VTI (bb)->out.stack_adjust += post;
10138 if (fp_cfa_offset != -1
10139 && hard_frame_pointer_adjustment == -1
10140 && fp_setter_insn (insn))
10142 vt_init_cfa_base ();
10143 hard_frame_pointer_adjustment = fp_cfa_offset;
10144 /* Disassociate sp from fp now. */
10145 if (MAY_HAVE_DEBUG_INSNS)
10147 cselib_val *v;
10148 cselib_invalidate_rtx (stack_pointer_rtx);
10149 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10150 VOIDmode);
10151 if (v && !cselib_preserved_value_p (v))
10153 cselib_set_value_sp_based (v);
10154 preserve_value (v);
10160 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10163 bb = last_bb;
10165 if (MAY_HAVE_DEBUG_INSNS)
10167 cselib_preserve_only_values ();
10168 cselib_reset_table (cselib_get_next_uid ());
10169 cselib_record_sets_hook = NULL;
10173 hard_frame_pointer_adjustment = -1;
10174 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10175 cfa_base_rtx = NULL_RTX;
10176 return true;
10179 /* This is *not* reset after each function. It gives each
10180 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10181 a unique label number. */
10183 static int debug_label_num = 1;
10185 /* Get rid of all debug insns from the insn stream. */
10187 static void
10188 delete_debug_insns (void)
10190 basic_block bb;
10191 rtx_insn *insn, *next;
10193 if (!MAY_HAVE_DEBUG_INSNS)
10194 return;
10196 FOR_EACH_BB_FN (bb, cfun)
10198 FOR_BB_INSNS_SAFE (bb, insn, next)
10199 if (DEBUG_INSN_P (insn))
10201 tree decl = INSN_VAR_LOCATION_DECL (insn);
10202 if (TREE_CODE (decl) == LABEL_DECL
10203 && DECL_NAME (decl)
10204 && !DECL_RTL_SET_P (decl))
10206 PUT_CODE (insn, NOTE);
10207 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10208 NOTE_DELETED_LABEL_NAME (insn)
10209 = IDENTIFIER_POINTER (DECL_NAME (decl));
10210 SET_DECL_RTL (decl, insn);
10211 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10213 else
10214 delete_insn (insn);
10219 /* Run a fast, BB-local only version of var tracking, to take care of
10220 information that we don't do global analysis on, such that not all
10221 information is lost. If SKIPPED holds, we're skipping the global
10222 pass entirely, so we should try to use information it would have
10223 handled as well.. */
10225 static void
10226 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10228 /* ??? Just skip it all for now. */
10229 delete_debug_insns ();
10232 /* Free the data structures needed for variable tracking. */
10234 static void
10235 vt_finalize (void)
10237 basic_block bb;
10239 FOR_EACH_BB_FN (bb, cfun)
10241 VTI (bb)->mos.release ();
10244 FOR_ALL_BB_FN (bb, cfun)
10246 dataflow_set_destroy (&VTI (bb)->in);
10247 dataflow_set_destroy (&VTI (bb)->out);
10248 if (VTI (bb)->permp)
10250 dataflow_set_destroy (VTI (bb)->permp);
10251 XDELETE (VTI (bb)->permp);
10254 free_aux_for_blocks ();
10255 delete empty_shared_hash->htab;
10256 empty_shared_hash->htab = NULL;
10257 delete changed_variables;
10258 changed_variables = NULL;
10259 free_alloc_pool (attrs_pool);
10260 free_alloc_pool (var_pool);
10261 free_alloc_pool (loc_chain_pool);
10262 free_alloc_pool (shared_hash_pool);
10264 if (MAY_HAVE_DEBUG_INSNS)
10266 if (global_get_addr_cache)
10267 delete global_get_addr_cache;
10268 global_get_addr_cache = NULL;
10269 if (loc_exp_dep_pool)
10270 free_alloc_pool (loc_exp_dep_pool);
10271 loc_exp_dep_pool = NULL;
10272 free_alloc_pool (valvar_pool);
10273 preserved_values.release ();
10274 cselib_finish ();
10275 BITMAP_FREE (scratch_regs);
10276 scratch_regs = NULL;
10279 #ifdef HAVE_window_save
10280 vec_free (windowed_parm_regs);
10281 #endif
10283 if (vui_vec)
10284 XDELETEVEC (vui_vec);
10285 vui_vec = NULL;
10286 vui_allocated = 0;
10289 /* The entry point to variable tracking pass. */
10291 static inline unsigned int
10292 variable_tracking_main_1 (void)
10294 bool success;
10296 if (flag_var_tracking_assignments < 0)
10298 delete_debug_insns ();
10299 return 0;
10302 if (n_basic_blocks_for_fn (cfun) > 500 &&
10303 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10305 vt_debug_insns_local (true);
10306 return 0;
10309 mark_dfs_back_edges ();
10310 if (!vt_initialize ())
10312 vt_finalize ();
10313 vt_debug_insns_local (true);
10314 return 0;
10317 success = vt_find_locations ();
10319 if (!success && flag_var_tracking_assignments > 0)
10321 vt_finalize ();
10323 delete_debug_insns ();
10325 /* This is later restored by our caller. */
10326 flag_var_tracking_assignments = 0;
10328 success = vt_initialize ();
10329 gcc_assert (success);
10331 success = vt_find_locations ();
10334 if (!success)
10336 vt_finalize ();
10337 vt_debug_insns_local (false);
10338 return 0;
10341 if (dump_file && (dump_flags & TDF_DETAILS))
10343 dump_dataflow_sets ();
10344 dump_reg_info (dump_file);
10345 dump_flow_info (dump_file, dump_flags);
10348 timevar_push (TV_VAR_TRACKING_EMIT);
10349 vt_emit_notes ();
10350 timevar_pop (TV_VAR_TRACKING_EMIT);
10352 vt_finalize ();
10353 vt_debug_insns_local (false);
10354 return 0;
10357 unsigned int
10358 variable_tracking_main (void)
10360 unsigned int ret;
10361 int save = flag_var_tracking_assignments;
10363 ret = variable_tracking_main_1 ();
10365 flag_var_tracking_assignments = save;
10367 return ret;
10370 namespace {
10372 const pass_data pass_data_variable_tracking =
10374 RTL_PASS, /* type */
10375 "vartrack", /* name */
10376 OPTGROUP_NONE, /* optinfo_flags */
10377 TV_VAR_TRACKING, /* tv_id */
10378 0, /* properties_required */
10379 0, /* properties_provided */
10380 0, /* properties_destroyed */
10381 0, /* todo_flags_start */
10382 0, /* todo_flags_finish */
10385 class pass_variable_tracking : public rtl_opt_pass
10387 public:
10388 pass_variable_tracking (gcc::context *ctxt)
10389 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10392 /* opt_pass methods: */
10393 virtual bool gate (function *)
10395 return (flag_var_tracking && !targetm.delay_vartrack);
10398 virtual unsigned int execute (function *)
10400 return variable_tracking_main ();
10403 }; // class pass_variable_tracking
10405 } // anon namespace
10407 rtl_opt_pass *
10408 make_pass_variable_tracking (gcc::context *ctxt)
10410 return new pass_variable_tracking (ctxt);