1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2014 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
43 CONSTANT -> V_i has been found to hold a constant
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
80 a_11 = PHI (a_9, a_10)
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
123 #include "coretypes.h"
126 #include "stor-layout.h"
132 #include "hash-set.h"
133 #include "machmode.h"
134 #include "hard-reg-set.h"
136 #include "function.h"
137 #include "dominance.h"
139 #include "basic-block.h"
140 #include "gimple-pretty-print.h"
141 #include "hash-table.h"
142 #include "tree-ssa-alias.h"
143 #include "internal-fn.h"
144 #include "gimple-fold.h"
146 #include "gimple-expr.h"
149 #include "gimplify.h"
150 #include "gimple-iterator.h"
151 #include "gimple-ssa.h"
152 #include "tree-cfg.h"
153 #include "tree-phinodes.h"
154 #include "ssa-iterators.h"
155 #include "stringpool.h"
156 #include "tree-ssanames.h"
157 #include "tree-pass.h"
158 #include "tree-ssa-propagate.h"
159 #include "value-prof.h"
160 #include "langhooks.h"
162 #include "diagnostic-core.h"
165 #include "wide-int-print.h"
166 #include "builtins.h"
167 #include "tree-chkp.h"
170 /* Possible lattice values. */
179 struct ccp_prop_value_t
{
181 ccp_lattice_t lattice_val
;
183 /* Propagated value. */
186 /* Mask that applies to the propagated value during CCP. For X
187 with a CONSTANT lattice value X & ~mask == value & ~mask. The
188 zero bits in the mask cover constant values. The ones mean no
193 /* Array of propagated constant values. After propagation,
194 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
195 the constant is held in an SSA name representing a memory store
196 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
197 memory reference used to store (i.e., the LHS of the assignment
199 static ccp_prop_value_t
*const_val
;
200 static unsigned n_const_val
;
202 static void canonicalize_value (ccp_prop_value_t
*);
203 static bool ccp_fold_stmt (gimple_stmt_iterator
*);
205 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
208 dump_lattice_value (FILE *outf
, const char *prefix
, ccp_prop_value_t val
)
210 switch (val
.lattice_val
)
213 fprintf (outf
, "%sUNINITIALIZED", prefix
);
216 fprintf (outf
, "%sUNDEFINED", prefix
);
219 fprintf (outf
, "%sVARYING", prefix
);
222 if (TREE_CODE (val
.value
) != INTEGER_CST
225 fprintf (outf
, "%sCONSTANT ", prefix
);
226 print_generic_expr (outf
, val
.value
, dump_flags
);
230 widest_int cval
= wi::bit_and_not (wi::to_widest (val
.value
),
232 fprintf (outf
, "%sCONSTANT ", prefix
);
233 print_hex (cval
, outf
);
234 fprintf (outf
, " (");
235 print_hex (val
.mask
, outf
);
245 /* Print lattice value VAL to stderr. */
247 void debug_lattice_value (ccp_prop_value_t val
);
250 debug_lattice_value (ccp_prop_value_t val
)
252 dump_lattice_value (stderr
, "", val
);
253 fprintf (stderr
, "\n");
256 /* Extend NONZERO_BITS to a full mask, with the upper bits being set. */
259 extend_mask (const wide_int
&nonzero_bits
)
261 return (wi::mask
<widest_int
> (wi::get_precision (nonzero_bits
), true)
262 | widest_int::from (nonzero_bits
, UNSIGNED
));
265 /* Compute a default value for variable VAR and store it in the
266 CONST_VAL array. The following rules are used to get default
269 1- Global and static variables that are declared constant are
272 2- Any other value is considered UNDEFINED. This is useful when
273 considering PHI nodes. PHI arguments that are undefined do not
274 change the constant value of the PHI node, which allows for more
275 constants to be propagated.
277 3- Variables defined by statements other than assignments and PHI
278 nodes are considered VARYING.
280 4- Initial values of variables that are not GIMPLE registers are
281 considered VARYING. */
283 static ccp_prop_value_t
284 get_default_value (tree var
)
286 ccp_prop_value_t val
= { UNINITIALIZED
, NULL_TREE
, 0 };
289 stmt
= SSA_NAME_DEF_STMT (var
);
291 if (gimple_nop_p (stmt
))
293 /* Variables defined by an empty statement are those used
294 before being initialized. If VAR is a local variable, we
295 can assume initially that it is UNDEFINED, otherwise we must
296 consider it VARYING. */
297 if (!virtual_operand_p (var
)
298 && TREE_CODE (SSA_NAME_VAR (var
)) == VAR_DECL
)
299 val
.lattice_val
= UNDEFINED
;
302 val
.lattice_val
= VARYING
;
304 if (flag_tree_bit_ccp
)
306 wide_int nonzero_bits
= get_nonzero_bits (var
);
307 if (nonzero_bits
!= -1)
309 val
.lattice_val
= CONSTANT
;
310 val
.value
= build_zero_cst (TREE_TYPE (var
));
311 val
.mask
= extend_mask (nonzero_bits
);
316 else if (is_gimple_assign (stmt
))
319 if (gimple_assign_single_p (stmt
)
320 && DECL_P (gimple_assign_rhs1 (stmt
))
321 && (cst
= get_symbol_constant_value (gimple_assign_rhs1 (stmt
))))
323 val
.lattice_val
= CONSTANT
;
328 /* Any other variable defined by an assignment is considered
330 val
.lattice_val
= UNDEFINED
;
333 else if ((is_gimple_call (stmt
)
334 && gimple_call_lhs (stmt
) != NULL_TREE
)
335 || gimple_code (stmt
) == GIMPLE_PHI
)
337 /* A variable defined by a call or a PHI node is considered
339 val
.lattice_val
= UNDEFINED
;
343 /* Otherwise, VAR will never take on a constant value. */
344 val
.lattice_val
= VARYING
;
352 /* Get the constant value associated with variable VAR. */
354 static inline ccp_prop_value_t
*
357 ccp_prop_value_t
*val
;
359 if (const_val
== NULL
360 || SSA_NAME_VERSION (var
) >= n_const_val
)
363 val
= &const_val
[SSA_NAME_VERSION (var
)];
364 if (val
->lattice_val
== UNINITIALIZED
)
365 *val
= get_default_value (var
);
367 canonicalize_value (val
);
372 /* Return the constant tree value associated with VAR. */
375 get_constant_value (tree var
)
377 ccp_prop_value_t
*val
;
378 if (TREE_CODE (var
) != SSA_NAME
)
380 if (is_gimple_min_invariant (var
))
384 val
= get_value (var
);
386 && val
->lattice_val
== CONSTANT
387 && (TREE_CODE (val
->value
) != INTEGER_CST
393 /* Sets the value associated with VAR to VARYING. */
396 set_value_varying (tree var
)
398 ccp_prop_value_t
*val
= &const_val
[SSA_NAME_VERSION (var
)];
400 val
->lattice_val
= VARYING
;
401 val
->value
= NULL_TREE
;
405 /* For integer constants, make sure to drop TREE_OVERFLOW. */
408 canonicalize_value (ccp_prop_value_t
*val
)
410 if (val
->lattice_val
!= CONSTANT
)
413 if (TREE_OVERFLOW_P (val
->value
))
414 val
->value
= drop_tree_overflow (val
->value
);
417 /* Return whether the lattice transition is valid. */
420 valid_lattice_transition (ccp_prop_value_t old_val
, ccp_prop_value_t new_val
)
422 /* Lattice transitions must always be monotonically increasing in
424 if (old_val
.lattice_val
< new_val
.lattice_val
)
427 if (old_val
.lattice_val
!= new_val
.lattice_val
)
430 if (!old_val
.value
&& !new_val
.value
)
433 /* Now both lattice values are CONSTANT. */
435 /* Allow transitioning from PHI <&x, not executable> == &x
436 to PHI <&x, &y> == common alignment. */
437 if (TREE_CODE (old_val
.value
) != INTEGER_CST
438 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
441 /* Bit-lattices have to agree in the still valid bits. */
442 if (TREE_CODE (old_val
.value
) == INTEGER_CST
443 && TREE_CODE (new_val
.value
) == INTEGER_CST
)
444 return (wi::bit_and_not (wi::to_widest (old_val
.value
), new_val
.mask
)
445 == wi::bit_and_not (wi::to_widest (new_val
.value
), new_val
.mask
));
447 /* Otherwise constant values have to agree. */
448 if (operand_equal_p (old_val
.value
, new_val
.value
, 0))
451 /* At least the kinds and types should agree now. */
452 if (TREE_CODE (old_val
.value
) != TREE_CODE (new_val
.value
)
453 || !types_compatible_p (TREE_TYPE (old_val
.value
),
454 TREE_TYPE (new_val
.value
)))
457 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
459 tree type
= TREE_TYPE (new_val
.value
);
460 if (SCALAR_FLOAT_TYPE_P (type
)
461 && !HONOR_NANS (TYPE_MODE (type
)))
463 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val
.value
)))
466 else if (VECTOR_FLOAT_TYPE_P (type
)
467 && !HONOR_NANS (TYPE_MODE (TREE_TYPE (type
))))
469 for (unsigned i
= 0; i
< VECTOR_CST_NELTS (old_val
.value
); ++i
)
470 if (!REAL_VALUE_ISNAN
471 (TREE_REAL_CST (VECTOR_CST_ELT (old_val
.value
, i
)))
472 && !operand_equal_p (VECTOR_CST_ELT (old_val
.value
, i
),
473 VECTOR_CST_ELT (new_val
.value
, i
), 0))
477 else if (COMPLEX_FLOAT_TYPE_P (type
)
478 && !HONOR_NANS (TYPE_MODE (TREE_TYPE (type
))))
480 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val
.value
)))
481 && !operand_equal_p (TREE_REALPART (old_val
.value
),
482 TREE_REALPART (new_val
.value
), 0))
484 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val
.value
)))
485 && !operand_equal_p (TREE_IMAGPART (old_val
.value
),
486 TREE_IMAGPART (new_val
.value
), 0))
493 /* Set the value for variable VAR to NEW_VAL. Return true if the new
494 value is different from VAR's previous value. */
497 set_lattice_value (tree var
, ccp_prop_value_t new_val
)
499 /* We can deal with old UNINITIALIZED values just fine here. */
500 ccp_prop_value_t
*old_val
= &const_val
[SSA_NAME_VERSION (var
)];
502 canonicalize_value (&new_val
);
504 /* We have to be careful to not go up the bitwise lattice
505 represented by the mask.
506 ??? This doesn't seem to be the best place to enforce this. */
507 if (new_val
.lattice_val
== CONSTANT
508 && old_val
->lattice_val
== CONSTANT
509 && TREE_CODE (new_val
.value
) == INTEGER_CST
510 && TREE_CODE (old_val
->value
) == INTEGER_CST
)
512 widest_int diff
= (wi::to_widest (new_val
.value
)
513 ^ wi::to_widest (old_val
->value
));
514 new_val
.mask
= new_val
.mask
| old_val
->mask
| diff
;
517 gcc_checking_assert (valid_lattice_transition (*old_val
, new_val
));
519 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
520 caller that this was a non-transition. */
521 if (old_val
->lattice_val
!= new_val
.lattice_val
522 || (new_val
.lattice_val
== CONSTANT
523 && TREE_CODE (new_val
.value
) == INTEGER_CST
524 && (TREE_CODE (old_val
->value
) != INTEGER_CST
525 || new_val
.mask
!= old_val
->mask
)))
527 /* ??? We would like to delay creation of INTEGER_CSTs from
528 partially constants here. */
530 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
532 dump_lattice_value (dump_file
, "Lattice value changed to ", new_val
);
533 fprintf (dump_file
, ". Adding SSA edges to worklist.\n");
538 gcc_assert (new_val
.lattice_val
!= UNINITIALIZED
);
545 static ccp_prop_value_t
get_value_for_expr (tree
, bool);
546 static ccp_prop_value_t
bit_value_binop (enum tree_code
, tree
, tree
, tree
);
547 static void bit_value_binop_1 (enum tree_code
, tree
, widest_int
*, widest_int
*,
548 tree
, const widest_int
&, const widest_int
&,
549 tree
, const widest_int
&, const widest_int
&);
551 /* Return a widest_int that can be used for bitwise simplifications
555 value_to_wide_int (ccp_prop_value_t val
)
558 && TREE_CODE (val
.value
) == INTEGER_CST
)
559 return wi::to_widest (val
.value
);
564 /* Return the value for the address expression EXPR based on alignment
567 static ccp_prop_value_t
568 get_value_from_alignment (tree expr
)
570 tree type
= TREE_TYPE (expr
);
571 ccp_prop_value_t val
;
572 unsigned HOST_WIDE_INT bitpos
;
575 gcc_assert (TREE_CODE (expr
) == ADDR_EXPR
);
577 get_pointer_alignment_1 (expr
, &align
, &bitpos
);
578 val
.mask
= (POINTER_TYPE_P (type
) || TYPE_UNSIGNED (type
)
579 ? wi::mask
<widest_int
> (TYPE_PRECISION (type
), false)
580 : -1).and_not (align
/ BITS_PER_UNIT
- 1);
581 val
.lattice_val
= val
.mask
== -1 ? VARYING
: CONSTANT
;
582 if (val
.lattice_val
== CONSTANT
)
583 val
.value
= build_int_cstu (type
, bitpos
/ BITS_PER_UNIT
);
585 val
.value
= NULL_TREE
;
590 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
591 return constant bits extracted from alignment information for
592 invariant addresses. */
594 static ccp_prop_value_t
595 get_value_for_expr (tree expr
, bool for_bits_p
)
597 ccp_prop_value_t val
;
599 if (TREE_CODE (expr
) == SSA_NAME
)
601 val
= *get_value (expr
);
603 && val
.lattice_val
== CONSTANT
604 && TREE_CODE (val
.value
) == ADDR_EXPR
)
605 val
= get_value_from_alignment (val
.value
);
607 else if (is_gimple_min_invariant (expr
)
608 && (!for_bits_p
|| TREE_CODE (expr
) != ADDR_EXPR
))
610 val
.lattice_val
= CONSTANT
;
613 canonicalize_value (&val
);
615 else if (TREE_CODE (expr
) == ADDR_EXPR
)
616 val
= get_value_from_alignment (expr
);
619 val
.lattice_val
= VARYING
;
621 val
.value
= NULL_TREE
;
626 /* Return the likely CCP lattice value for STMT.
628 If STMT has no operands, then return CONSTANT.
630 Else if undefinedness of operands of STMT cause its value to be
631 undefined, then return UNDEFINED.
633 Else if any operands of STMT are constants, then return CONSTANT.
635 Else return VARYING. */
638 likely_value (gimple stmt
)
640 bool has_constant_operand
, has_undefined_operand
, all_undefined_operands
;
645 enum gimple_code code
= gimple_code (stmt
);
647 /* This function appears to be called only for assignments, calls,
648 conditionals, and switches, due to the logic in visit_stmt. */
649 gcc_assert (code
== GIMPLE_ASSIGN
650 || code
== GIMPLE_CALL
651 || code
== GIMPLE_COND
652 || code
== GIMPLE_SWITCH
);
654 /* If the statement has volatile operands, it won't fold to a
656 if (gimple_has_volatile_ops (stmt
))
659 /* Arrive here for more complex cases. */
660 has_constant_operand
= false;
661 has_undefined_operand
= false;
662 all_undefined_operands
= true;
663 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
665 ccp_prop_value_t
*val
= get_value (use
);
667 if (val
->lattice_val
== UNDEFINED
)
668 has_undefined_operand
= true;
670 all_undefined_operands
= false;
672 if (val
->lattice_val
== CONSTANT
)
673 has_constant_operand
= true;
676 /* There may be constants in regular rhs operands. For calls we
677 have to ignore lhs, fndecl and static chain, otherwise only
679 for (i
= (is_gimple_call (stmt
) ? 2 : 0) + gimple_has_lhs (stmt
);
680 i
< gimple_num_ops (stmt
); ++i
)
682 tree op
= gimple_op (stmt
, i
);
683 if (!op
|| TREE_CODE (op
) == SSA_NAME
)
685 if (is_gimple_min_invariant (op
))
686 has_constant_operand
= true;
689 if (has_constant_operand
)
690 all_undefined_operands
= false;
692 if (has_undefined_operand
693 && code
== GIMPLE_CALL
694 && gimple_call_internal_p (stmt
))
695 switch (gimple_call_internal_fn (stmt
))
697 /* These 3 builtins use the first argument just as a magic
698 way how to find out a decl uid. */
699 case IFN_GOMP_SIMD_LANE
:
700 case IFN_GOMP_SIMD_VF
:
701 case IFN_GOMP_SIMD_LAST_LANE
:
702 has_undefined_operand
= false;
708 /* If the operation combines operands like COMPLEX_EXPR make sure to
709 not mark the result UNDEFINED if only one part of the result is
711 if (has_undefined_operand
&& all_undefined_operands
)
713 else if (code
== GIMPLE_ASSIGN
&& has_undefined_operand
)
715 switch (gimple_assign_rhs_code (stmt
))
717 /* Unary operators are handled with all_undefined_operands. */
720 case POINTER_PLUS_EXPR
:
721 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
722 Not bitwise operators, one VARYING operand may specify the
723 result completely. Not logical operators for the same reason.
724 Not COMPLEX_EXPR as one VARYING operand makes the result partly
725 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
726 the undefined operand may be promoted. */
730 /* If any part of an address is UNDEFINED, like the index
731 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
738 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
739 fall back to CONSTANT. During iteration UNDEFINED may still drop
741 if (has_undefined_operand
)
744 /* We do not consider virtual operands here -- load from read-only
745 memory may have only VARYING virtual operands, but still be
747 if (has_constant_operand
748 || gimple_references_memory_p (stmt
))
754 /* Returns true if STMT cannot be constant. */
757 surely_varying_stmt_p (gimple stmt
)
759 /* If the statement has operands that we cannot handle, it cannot be
761 if (gimple_has_volatile_ops (stmt
))
764 /* If it is a call and does not return a value or is not a
765 builtin and not an indirect call or a call to function with
766 assume_aligned/alloc_align attribute, it is varying. */
767 if (is_gimple_call (stmt
))
769 tree fndecl
, fntype
= gimple_call_fntype (stmt
);
770 if (!gimple_call_lhs (stmt
)
771 || ((fndecl
= gimple_call_fndecl (stmt
)) != NULL_TREE
772 && !DECL_BUILT_IN (fndecl
)
773 && !lookup_attribute ("assume_aligned",
774 TYPE_ATTRIBUTES (fntype
))
775 && !lookup_attribute ("alloc_align",
776 TYPE_ATTRIBUTES (fntype
))))
780 /* Any other store operation is not interesting. */
781 else if (gimple_vdef (stmt
))
784 /* Anything other than assignments and conditional jumps are not
785 interesting for CCP. */
786 if (gimple_code (stmt
) != GIMPLE_ASSIGN
787 && gimple_code (stmt
) != GIMPLE_COND
788 && gimple_code (stmt
) != GIMPLE_SWITCH
789 && gimple_code (stmt
) != GIMPLE_CALL
)
795 /* Initialize local data structures for CCP. */
798 ccp_initialize (void)
802 n_const_val
= num_ssa_names
;
803 const_val
= XCNEWVEC (ccp_prop_value_t
, n_const_val
);
805 /* Initialize simulation flags for PHI nodes and statements. */
806 FOR_EACH_BB_FN (bb
, cfun
)
808 gimple_stmt_iterator i
;
810 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); gsi_next (&i
))
812 gimple stmt
= gsi_stmt (i
);
815 /* If the statement is a control insn, then we do not
816 want to avoid simulating the statement once. Failure
817 to do so means that those edges will never get added. */
818 if (stmt_ends_bb_p (stmt
))
821 is_varying
= surely_varying_stmt_p (stmt
);
828 /* If the statement will not produce a constant, mark
829 all its outputs VARYING. */
830 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
831 set_value_varying (def
);
833 prop_set_simulate_again (stmt
, !is_varying
);
837 /* Now process PHI nodes. We never clear the simulate_again flag on
838 phi nodes, since we do not know which edges are executable yet,
839 except for phi nodes for virtual operands when we do not do store ccp. */
840 FOR_EACH_BB_FN (bb
, cfun
)
844 for (i
= gsi_start_phis (bb
); !gsi_end_p (i
); gsi_next (&i
))
846 gphi
*phi
= i
.phi ();
848 if (virtual_operand_p (gimple_phi_result (phi
)))
849 prop_set_simulate_again (phi
, false);
851 prop_set_simulate_again (phi
, true);
856 /* Debug count support. Reset the values of ssa names
857 VARYING when the total number ssa names analyzed is
858 beyond the debug count specified. */
864 for (i
= 0; i
< num_ssa_names
; i
++)
868 const_val
[i
].lattice_val
= VARYING
;
869 const_val
[i
].mask
= -1;
870 const_val
[i
].value
= NULL_TREE
;
876 /* Do final substitution of propagated values, cleanup the flowgraph and
877 free allocated storage.
879 Return TRUE when something was optimized. */
884 bool something_changed
;
889 /* Derive alignment and misalignment information from partially
890 constant pointers in the lattice or nonzero bits from partially
891 constant integers. */
892 for (i
= 1; i
< num_ssa_names
; ++i
)
894 tree name
= ssa_name (i
);
895 ccp_prop_value_t
*val
;
896 unsigned int tem
, align
;
899 || (!POINTER_TYPE_P (TREE_TYPE (name
))
900 && (!INTEGRAL_TYPE_P (TREE_TYPE (name
))
901 /* Don't record nonzero bits before IPA to avoid
902 using too much memory. */
903 || first_pass_instance
)))
906 val
= get_value (name
);
907 if (val
->lattice_val
!= CONSTANT
908 || TREE_CODE (val
->value
) != INTEGER_CST
)
911 if (POINTER_TYPE_P (TREE_TYPE (name
)))
913 /* Trailing mask bits specify the alignment, trailing value
914 bits the misalignment. */
915 tem
= val
->mask
.to_uhwi ();
916 align
= (tem
& -tem
);
918 set_ptr_info_alignment (get_ptr_info (name
), align
,
919 (TREE_INT_CST_LOW (val
->value
)
924 unsigned int precision
= TYPE_PRECISION (TREE_TYPE (val
->value
));
925 wide_int nonzero_bits
= wide_int::from (val
->mask
, precision
,
926 UNSIGNED
) | val
->value
;
927 nonzero_bits
&= get_nonzero_bits (name
);
928 set_nonzero_bits (name
, nonzero_bits
);
932 /* Perform substitutions based on the known constant values. */
933 something_changed
= substitute_and_fold (get_constant_value
,
934 ccp_fold_stmt
, true);
938 return something_changed
;;
942 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
945 any M UNDEFINED = any
946 any M VARYING = VARYING
947 Ci M Cj = Ci if (i == j)
948 Ci M Cj = VARYING if (i != j)
952 ccp_lattice_meet (ccp_prop_value_t
*val1
, ccp_prop_value_t
*val2
)
954 if (val1
->lattice_val
== UNDEFINED
)
956 /* UNDEFINED M any = any */
959 else if (val2
->lattice_val
== UNDEFINED
)
961 /* any M UNDEFINED = any
962 Nothing to do. VAL1 already contains the value we want. */
965 else if (val1
->lattice_val
== VARYING
966 || val2
->lattice_val
== VARYING
)
968 /* any M VARYING = VARYING. */
969 val1
->lattice_val
= VARYING
;
971 val1
->value
= NULL_TREE
;
973 else if (val1
->lattice_val
== CONSTANT
974 && val2
->lattice_val
== CONSTANT
975 && TREE_CODE (val1
->value
) == INTEGER_CST
976 && TREE_CODE (val2
->value
) == INTEGER_CST
)
978 /* Ci M Cj = Ci if (i == j)
979 Ci M Cj = VARYING if (i != j)
981 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
983 val1
->mask
= (val1
->mask
| val2
->mask
984 | (wi::to_widest (val1
->value
)
985 ^ wi::to_widest (val2
->value
)));
986 if (val1
->mask
== -1)
988 val1
->lattice_val
= VARYING
;
989 val1
->value
= NULL_TREE
;
992 else if (val1
->lattice_val
== CONSTANT
993 && val2
->lattice_val
== CONSTANT
994 && simple_cst_equal (val1
->value
, val2
->value
) == 1)
996 /* Ci M Cj = Ci if (i == j)
997 Ci M Cj = VARYING if (i != j)
999 VAL1 already contains the value we want for equivalent values. */
1001 else if (val1
->lattice_val
== CONSTANT
1002 && val2
->lattice_val
== CONSTANT
1003 && (TREE_CODE (val1
->value
) == ADDR_EXPR
1004 || TREE_CODE (val2
->value
) == ADDR_EXPR
))
1006 /* When not equal addresses are involved try meeting for
1008 ccp_prop_value_t tem
= *val2
;
1009 if (TREE_CODE (val1
->value
) == ADDR_EXPR
)
1010 *val1
= get_value_for_expr (val1
->value
, true);
1011 if (TREE_CODE (val2
->value
) == ADDR_EXPR
)
1012 tem
= get_value_for_expr (val2
->value
, true);
1013 ccp_lattice_meet (val1
, &tem
);
1017 /* Any other combination is VARYING. */
1018 val1
->lattice_val
= VARYING
;
1020 val1
->value
= NULL_TREE
;
1025 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1026 lattice values to determine PHI_NODE's lattice value. The value of a
1027 PHI node is determined calling ccp_lattice_meet with all the arguments
1028 of the PHI node that are incoming via executable edges. */
1030 static enum ssa_prop_result
1031 ccp_visit_phi_node (gphi
*phi
)
1034 ccp_prop_value_t
*old_val
, new_val
;
1036 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1038 fprintf (dump_file
, "\nVisiting PHI node: ");
1039 print_gimple_stmt (dump_file
, phi
, 0, dump_flags
);
1042 old_val
= get_value (gimple_phi_result (phi
));
1043 switch (old_val
->lattice_val
)
1046 return SSA_PROP_VARYING
;
1053 new_val
.lattice_val
= UNDEFINED
;
1054 new_val
.value
= NULL_TREE
;
1061 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
1063 /* Compute the meet operator over all the PHI arguments flowing
1064 through executable edges. */
1065 edge e
= gimple_phi_arg_edge (phi
, i
);
1067 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1070 "\n Argument #%d (%d -> %d %sexecutable)\n",
1071 i
, e
->src
->index
, e
->dest
->index
,
1072 (e
->flags
& EDGE_EXECUTABLE
) ? "" : "not ");
1075 /* If the incoming edge is executable, Compute the meet operator for
1076 the existing value of the PHI node and the current PHI argument. */
1077 if (e
->flags
& EDGE_EXECUTABLE
)
1079 tree arg
= gimple_phi_arg (phi
, i
)->def
;
1080 ccp_prop_value_t arg_val
= get_value_for_expr (arg
, false);
1082 ccp_lattice_meet (&new_val
, &arg_val
);
1084 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1086 fprintf (dump_file
, "\t");
1087 print_generic_expr (dump_file
, arg
, dump_flags
);
1088 dump_lattice_value (dump_file
, "\tValue: ", arg_val
);
1089 fprintf (dump_file
, "\n");
1092 if (new_val
.lattice_val
== VARYING
)
1097 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1099 dump_lattice_value (dump_file
, "\n PHI node value: ", new_val
);
1100 fprintf (dump_file
, "\n\n");
1103 /* Make the transition to the new value. */
1104 if (set_lattice_value (gimple_phi_result (phi
), new_val
))
1106 if (new_val
.lattice_val
== VARYING
)
1107 return SSA_PROP_VARYING
;
1109 return SSA_PROP_INTERESTING
;
1112 return SSA_PROP_NOT_INTERESTING
;
1115 /* Return the constant value for OP or OP otherwise. */
1118 valueize_op (tree op
)
1120 if (TREE_CODE (op
) == SSA_NAME
)
1122 tree tem
= get_constant_value (op
);
1129 /* Return the constant value for OP, but signal to not follow SSA
1130 edges if the definition may be simulated again. */
1133 valueize_op_1 (tree op
)
1135 if (TREE_CODE (op
) == SSA_NAME
)
1137 tree tem
= get_constant_value (op
);
1140 /* If the definition may be simulated again we cannot follow
1141 this SSA edge as the SSA propagator does not necessarily
1142 re-visit the use. */
1143 gimple def_stmt
= SSA_NAME_DEF_STMT (op
);
1144 if (prop_simulate_again_p (def_stmt
))
1150 /* CCP specific front-end to the non-destructive constant folding
1153 Attempt to simplify the RHS of STMT knowing that one or more
1154 operands are constants.
1156 If simplification is possible, return the simplified RHS,
1157 otherwise return the original RHS or NULL_TREE. */
1160 ccp_fold (gimple stmt
)
1162 location_t loc
= gimple_location (stmt
);
1163 switch (gimple_code (stmt
))
1167 /* Handle comparison operators that can appear in GIMPLE form. */
1168 tree op0
= valueize_op (gimple_cond_lhs (stmt
));
1169 tree op1
= valueize_op (gimple_cond_rhs (stmt
));
1170 enum tree_code code
= gimple_cond_code (stmt
);
1171 return fold_binary_loc (loc
, code
, boolean_type_node
, op0
, op1
);
1176 /* Return the constant switch index. */
1177 return valueize_op (gimple_switch_index (as_a
<gswitch
*> (stmt
)));
1182 return gimple_fold_stmt_to_constant_1 (stmt
,
1183 valueize_op
, valueize_op_1
);
1190 /* Apply the operation CODE in type TYPE to the value, mask pair
1191 RVAL and RMASK representing a value of type RTYPE and set
1192 the value, mask pair *VAL and *MASK to the result. */
1195 bit_value_unop_1 (enum tree_code code
, tree type
,
1196 widest_int
*val
, widest_int
*mask
,
1197 tree rtype
, const widest_int
&rval
, const widest_int
&rmask
)
1208 widest_int temv
, temm
;
1209 /* Return ~rval + 1. */
1210 bit_value_unop_1 (BIT_NOT_EXPR
, type
, &temv
, &temm
, type
, rval
, rmask
);
1211 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1212 type
, temv
, temm
, type
, 1, 0);
1220 /* First extend mask and value according to the original type. */
1221 sgn
= TYPE_SIGN (rtype
);
1222 *mask
= wi::ext (rmask
, TYPE_PRECISION (rtype
), sgn
);
1223 *val
= wi::ext (rval
, TYPE_PRECISION (rtype
), sgn
);
1225 /* Then extend mask and value according to the target type. */
1226 sgn
= TYPE_SIGN (type
);
1227 *mask
= wi::ext (*mask
, TYPE_PRECISION (type
), sgn
);
1228 *val
= wi::ext (*val
, TYPE_PRECISION (type
), sgn
);
1238 /* Apply the operation CODE in type TYPE to the value, mask pairs
1239 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1240 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1243 bit_value_binop_1 (enum tree_code code
, tree type
,
1244 widest_int
*val
, widest_int
*mask
,
1245 tree r1type
, const widest_int
&r1val
,
1246 const widest_int
&r1mask
, tree r2type
,
1247 const widest_int
&r2val
, const widest_int
&r2mask
)
1249 signop sgn
= TYPE_SIGN (type
);
1250 int width
= TYPE_PRECISION (type
);
1251 bool swap_p
= false;
1253 /* Assume we'll get a constant result. Use an initial non varying
1254 value, we fall back to varying in the end if necessary. */
1260 /* The mask is constant where there is a known not
1261 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1262 *mask
= (r1mask
| r2mask
) & (r1val
| r1mask
) & (r2val
| r2mask
);
1263 *val
= r1val
& r2val
;
1267 /* The mask is constant where there is a known
1268 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1269 *mask
= (r1mask
| r2mask
)
1270 .and_not (r1val
.and_not (r1mask
) | r2val
.and_not (r2mask
));
1271 *val
= r1val
| r2val
;
1276 *mask
= r1mask
| r2mask
;
1277 *val
= r1val
^ r2val
;
1284 widest_int shift
= r2val
;
1292 if (wi::neg_p (shift
))
1295 if (code
== RROTATE_EXPR
)
1296 code
= LROTATE_EXPR
;
1298 code
= RROTATE_EXPR
;
1300 if (code
== RROTATE_EXPR
)
1302 *mask
= wi::rrotate (r1mask
, shift
, width
);
1303 *val
= wi::rrotate (r1val
, shift
, width
);
1307 *mask
= wi::lrotate (r1mask
, shift
, width
);
1308 *val
= wi::lrotate (r1val
, shift
, width
);
1316 /* ??? We can handle partially known shift counts if we know
1317 its sign. That way we can tell that (x << (y | 8)) & 255
1321 widest_int shift
= r2val
;
1329 if (wi::neg_p (shift
))
1332 if (code
== RSHIFT_EXPR
)
1337 if (code
== RSHIFT_EXPR
)
1339 *mask
= wi::rshift (wi::ext (r1mask
, width
, sgn
), shift
, sgn
);
1340 *val
= wi::rshift (wi::ext (r1val
, width
, sgn
), shift
, sgn
);
1344 *mask
= wi::ext (wi::lshift (r1mask
, shift
), width
, sgn
);
1345 *val
= wi::ext (wi::lshift (r1val
, shift
), width
, sgn
);
1352 case POINTER_PLUS_EXPR
:
1354 /* Do the addition with unknown bits set to zero, to give carry-ins of
1355 zero wherever possible. */
1356 widest_int lo
= r1val
.and_not (r1mask
) + r2val
.and_not (r2mask
);
1357 lo
= wi::ext (lo
, width
, sgn
);
1358 /* Do the addition with unknown bits set to one, to give carry-ins of
1359 one wherever possible. */
1360 widest_int hi
= (r1val
| r1mask
) + (r2val
| r2mask
);
1361 hi
= wi::ext (hi
, width
, sgn
);
1362 /* Each bit in the result is known if (a) the corresponding bits in
1363 both inputs are known, and (b) the carry-in to that bit position
1364 is known. We can check condition (b) by seeing if we got the same
1365 result with minimised carries as with maximised carries. */
1366 *mask
= r1mask
| r2mask
| (lo
^ hi
);
1367 *mask
= wi::ext (*mask
, width
, sgn
);
1368 /* It shouldn't matter whether we choose lo or hi here. */
1375 widest_int temv
, temm
;
1376 bit_value_unop_1 (NEGATE_EXPR
, r2type
, &temv
, &temm
,
1377 r2type
, r2val
, r2mask
);
1378 bit_value_binop_1 (PLUS_EXPR
, type
, val
, mask
,
1379 r1type
, r1val
, r1mask
,
1380 r2type
, temv
, temm
);
1386 /* Just track trailing zeros in both operands and transfer
1387 them to the other. */
1388 int r1tz
= wi::ctz (r1val
| r1mask
);
1389 int r2tz
= wi::ctz (r2val
| r2mask
);
1390 if (r1tz
+ r2tz
>= width
)
1395 else if (r1tz
+ r2tz
> 0)
1397 *mask
= wi::ext (wi::mask
<widest_int
> (r1tz
+ r2tz
, true),
1407 widest_int m
= r1mask
| r2mask
;
1408 if (r1val
.and_not (m
) != r2val
.and_not (m
))
1411 *val
= ((code
== EQ_EXPR
) ? 0 : 1);
1415 /* We know the result of a comparison is always one or zero. */
1425 code
= swap_tree_comparison (code
);
1432 const widest_int
&o1val
= swap_p
? r2val
: r1val
;
1433 const widest_int
&o1mask
= swap_p
? r2mask
: r1mask
;
1434 const widest_int
&o2val
= swap_p
? r1val
: r2val
;
1435 const widest_int
&o2mask
= swap_p
? r1mask
: r2mask
;
1437 /* If the most significant bits are not known we know nothing. */
1438 if (wi::neg_p (o1mask
) || wi::neg_p (o2mask
))
1441 /* For comparisons the signedness is in the comparison operands. */
1442 sgn
= TYPE_SIGN (r1type
);
1444 /* If we know the most significant bits we know the values
1445 value ranges by means of treating varying bits as zero
1446 or one. Do a cross comparison of the max/min pairs. */
1447 maxmin
= wi::cmp (o1val
| o1mask
, o2val
.and_not (o2mask
), sgn
);
1448 minmax
= wi::cmp (o1val
.and_not (o1mask
), o2val
| o2mask
, sgn
);
1449 if (maxmin
< 0) /* o1 is less than o2. */
1454 else if (minmax
> 0) /* o1 is not less or equal to o2. */
1459 else if (maxmin
== minmax
) /* o1 and o2 are equal. */
1461 /* This probably should never happen as we'd have
1462 folded the thing during fully constant value folding. */
1464 *val
= (code
== LE_EXPR
? 1 : 0);
1468 /* We know the result of a comparison is always one or zero. */
1479 /* Return the propagation value when applying the operation CODE to
1480 the value RHS yielding type TYPE. */
1482 static ccp_prop_value_t
1483 bit_value_unop (enum tree_code code
, tree type
, tree rhs
)
1485 ccp_prop_value_t rval
= get_value_for_expr (rhs
, true);
1486 widest_int value
, mask
;
1487 ccp_prop_value_t val
;
1489 if (rval
.lattice_val
== UNDEFINED
)
1492 gcc_assert ((rval
.lattice_val
== CONSTANT
1493 && TREE_CODE (rval
.value
) == INTEGER_CST
)
1494 || rval
.mask
== -1);
1495 bit_value_unop_1 (code
, type
, &value
, &mask
,
1496 TREE_TYPE (rhs
), value_to_wide_int (rval
), rval
.mask
);
1499 val
.lattice_val
= CONSTANT
;
1501 /* ??? Delay building trees here. */
1502 val
.value
= wide_int_to_tree (type
, value
);
1506 val
.lattice_val
= VARYING
;
1507 val
.value
= NULL_TREE
;
1513 /* Return the propagation value when applying the operation CODE to
1514 the values RHS1 and RHS2 yielding type TYPE. */
1516 static ccp_prop_value_t
1517 bit_value_binop (enum tree_code code
, tree type
, tree rhs1
, tree rhs2
)
1519 ccp_prop_value_t r1val
= get_value_for_expr (rhs1
, true);
1520 ccp_prop_value_t r2val
= get_value_for_expr (rhs2
, true);
1521 widest_int value
, mask
;
1522 ccp_prop_value_t val
;
1524 if (r1val
.lattice_val
== UNDEFINED
1525 || r2val
.lattice_val
== UNDEFINED
)
1527 val
.lattice_val
= VARYING
;
1528 val
.value
= NULL_TREE
;
1533 gcc_assert ((r1val
.lattice_val
== CONSTANT
1534 && TREE_CODE (r1val
.value
) == INTEGER_CST
)
1535 || r1val
.mask
== -1);
1536 gcc_assert ((r2val
.lattice_val
== CONSTANT
1537 && TREE_CODE (r2val
.value
) == INTEGER_CST
)
1538 || r2val
.mask
== -1);
1539 bit_value_binop_1 (code
, type
, &value
, &mask
,
1540 TREE_TYPE (rhs1
), value_to_wide_int (r1val
), r1val
.mask
,
1541 TREE_TYPE (rhs2
), value_to_wide_int (r2val
), r2val
.mask
);
1544 val
.lattice_val
= CONSTANT
;
1546 /* ??? Delay building trees here. */
1547 val
.value
= wide_int_to_tree (type
, value
);
1551 val
.lattice_val
= VARYING
;
1552 val
.value
= NULL_TREE
;
1558 /* Return the propagation value for __builtin_assume_aligned
1559 and functions with assume_aligned or alloc_aligned attribute.
1560 For __builtin_assume_aligned, ATTR is NULL_TREE,
1561 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1562 is false, for alloc_aligned attribute ATTR is non-NULL and
1563 ALLOC_ALIGNED is true. */
1565 static ccp_prop_value_t
1566 bit_value_assume_aligned (gimple stmt
, tree attr
, ccp_prop_value_t ptrval
,
1569 tree align
, misalign
= NULL_TREE
, type
;
1570 unsigned HOST_WIDE_INT aligni
, misaligni
= 0;
1571 ccp_prop_value_t alignval
;
1572 widest_int value
, mask
;
1573 ccp_prop_value_t val
;
1575 if (attr
== NULL_TREE
)
1577 tree ptr
= gimple_call_arg (stmt
, 0);
1578 type
= TREE_TYPE (ptr
);
1579 ptrval
= get_value_for_expr (ptr
, true);
1583 tree lhs
= gimple_call_lhs (stmt
);
1584 type
= TREE_TYPE (lhs
);
1587 if (ptrval
.lattice_val
== UNDEFINED
)
1589 gcc_assert ((ptrval
.lattice_val
== CONSTANT
1590 && TREE_CODE (ptrval
.value
) == INTEGER_CST
)
1591 || ptrval
.mask
== -1);
1592 if (attr
== NULL_TREE
)
1594 /* Get aligni and misaligni from __builtin_assume_aligned. */
1595 align
= gimple_call_arg (stmt
, 1);
1596 if (!tree_fits_uhwi_p (align
))
1598 aligni
= tree_to_uhwi (align
);
1599 if (gimple_call_num_args (stmt
) > 2)
1601 misalign
= gimple_call_arg (stmt
, 2);
1602 if (!tree_fits_uhwi_p (misalign
))
1604 misaligni
= tree_to_uhwi (misalign
);
1609 /* Get aligni and misaligni from assume_aligned or
1610 alloc_align attributes. */
1611 if (TREE_VALUE (attr
) == NULL_TREE
)
1613 attr
= TREE_VALUE (attr
);
1614 align
= TREE_VALUE (attr
);
1615 if (!tree_fits_uhwi_p (align
))
1617 aligni
= tree_to_uhwi (align
);
1620 if (aligni
== 0 || aligni
> gimple_call_num_args (stmt
))
1622 align
= gimple_call_arg (stmt
, aligni
- 1);
1623 if (!tree_fits_uhwi_p (align
))
1625 aligni
= tree_to_uhwi (align
);
1627 else if (TREE_CHAIN (attr
) && TREE_VALUE (TREE_CHAIN (attr
)))
1629 misalign
= TREE_VALUE (TREE_CHAIN (attr
));
1630 if (!tree_fits_uhwi_p (misalign
))
1632 misaligni
= tree_to_uhwi (misalign
);
1635 if (aligni
<= 1 || (aligni
& (aligni
- 1)) != 0 || misaligni
>= aligni
)
1638 align
= build_int_cst_type (type
, -aligni
);
1639 alignval
= get_value_for_expr (align
, true);
1640 bit_value_binop_1 (BIT_AND_EXPR
, type
, &value
, &mask
,
1641 type
, value_to_wide_int (ptrval
), ptrval
.mask
,
1642 type
, value_to_wide_int (alignval
), alignval
.mask
);
1645 val
.lattice_val
= CONSTANT
;
1647 gcc_assert ((mask
.to_uhwi () & (aligni
- 1)) == 0);
1648 gcc_assert ((value
.to_uhwi () & (aligni
- 1)) == 0);
1650 /* ??? Delay building trees here. */
1651 val
.value
= wide_int_to_tree (type
, value
);
1655 val
.lattice_val
= VARYING
;
1656 val
.value
= NULL_TREE
;
1662 /* Evaluate statement STMT.
1663 Valid only for assignments, calls, conditionals, and switches. */
1665 static ccp_prop_value_t
1666 evaluate_stmt (gimple stmt
)
1668 ccp_prop_value_t val
;
1669 tree simplified
= NULL_TREE
;
1670 ccp_lattice_t likelyvalue
= likely_value (stmt
);
1671 bool is_constant
= false;
1674 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
1676 fprintf (dump_file
, "which is likely ");
1677 switch (likelyvalue
)
1680 fprintf (dump_file
, "CONSTANT");
1683 fprintf (dump_file
, "UNDEFINED");
1686 fprintf (dump_file
, "VARYING");
1690 fprintf (dump_file
, "\n");
1693 /* If the statement is likely to have a CONSTANT result, then try
1694 to fold the statement to determine the constant value. */
1695 /* FIXME. This is the only place that we call ccp_fold.
1696 Since likely_value never returns CONSTANT for calls, we will
1697 not attempt to fold them, including builtins that may profit. */
1698 if (likelyvalue
== CONSTANT
)
1700 fold_defer_overflow_warnings ();
1701 simplified
= ccp_fold (stmt
);
1702 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1703 fold_undefer_overflow_warnings (is_constant
, stmt
, 0);
1706 /* The statement produced a constant value. */
1707 val
.lattice_val
= CONSTANT
;
1708 val
.value
= simplified
;
1712 /* If the statement is likely to have a VARYING result, then do not
1713 bother folding the statement. */
1714 else if (likelyvalue
== VARYING
)
1716 enum gimple_code code
= gimple_code (stmt
);
1717 if (code
== GIMPLE_ASSIGN
)
1719 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1721 /* Other cases cannot satisfy is_gimple_min_invariant
1723 if (get_gimple_rhs_class (subcode
) == GIMPLE_SINGLE_RHS
)
1724 simplified
= gimple_assign_rhs1 (stmt
);
1726 else if (code
== GIMPLE_SWITCH
)
1727 simplified
= gimple_switch_index (as_a
<gswitch
*> (stmt
));
1729 /* These cannot satisfy is_gimple_min_invariant without folding. */
1730 gcc_assert (code
== GIMPLE_CALL
|| code
== GIMPLE_COND
);
1731 is_constant
= simplified
&& is_gimple_min_invariant (simplified
);
1734 /* The statement produced a constant value. */
1735 val
.lattice_val
= CONSTANT
;
1736 val
.value
= simplified
;
1741 /* Resort to simplification for bitwise tracking. */
1742 if (flag_tree_bit_ccp
1743 && (likelyvalue
== CONSTANT
|| is_gimple_call (stmt
))
1746 enum gimple_code code
= gimple_code (stmt
);
1747 val
.lattice_val
= VARYING
;
1748 val
.value
= NULL_TREE
;
1750 if (code
== GIMPLE_ASSIGN
)
1752 enum tree_code subcode
= gimple_assign_rhs_code (stmt
);
1753 tree rhs1
= gimple_assign_rhs1 (stmt
);
1754 switch (get_gimple_rhs_class (subcode
))
1756 case GIMPLE_SINGLE_RHS
:
1757 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1758 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1759 val
= get_value_for_expr (rhs1
, true);
1762 case GIMPLE_UNARY_RHS
:
1763 if ((INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1764 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1765 && (INTEGRAL_TYPE_P (gimple_expr_type (stmt
))
1766 || POINTER_TYPE_P (gimple_expr_type (stmt
))))
1767 val
= bit_value_unop (subcode
, gimple_expr_type (stmt
), rhs1
);
1770 case GIMPLE_BINARY_RHS
:
1771 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1772 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1774 tree lhs
= gimple_assign_lhs (stmt
);
1775 tree rhs2
= gimple_assign_rhs2 (stmt
);
1776 val
= bit_value_binop (subcode
,
1777 TREE_TYPE (lhs
), rhs1
, rhs2
);
1784 else if (code
== GIMPLE_COND
)
1786 enum tree_code code
= gimple_cond_code (stmt
);
1787 tree rhs1
= gimple_cond_lhs (stmt
);
1788 tree rhs2
= gimple_cond_rhs (stmt
);
1789 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1
))
1790 || POINTER_TYPE_P (TREE_TYPE (rhs1
)))
1791 val
= bit_value_binop (code
, TREE_TYPE (rhs1
), rhs1
, rhs2
);
1793 else if (gimple_call_builtin_p (stmt
, BUILT_IN_NORMAL
))
1795 tree fndecl
= gimple_call_fndecl (stmt
);
1796 switch (DECL_FUNCTION_CODE (fndecl
))
1798 case BUILT_IN_MALLOC
:
1799 case BUILT_IN_REALLOC
:
1800 case BUILT_IN_CALLOC
:
1801 case BUILT_IN_STRDUP
:
1802 case BUILT_IN_STRNDUP
:
1803 val
.lattice_val
= CONSTANT
;
1804 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1805 val
.mask
= ~((HOST_WIDE_INT
) MALLOC_ABI_ALIGNMENT
1806 / BITS_PER_UNIT
- 1);
1809 case BUILT_IN_ALLOCA
:
1810 case BUILT_IN_ALLOCA_WITH_ALIGN
:
1811 align
= (DECL_FUNCTION_CODE (fndecl
) == BUILT_IN_ALLOCA_WITH_ALIGN
1812 ? TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1))
1813 : BIGGEST_ALIGNMENT
);
1814 val
.lattice_val
= CONSTANT
;
1815 val
.value
= build_int_cst (TREE_TYPE (gimple_get_lhs (stmt
)), 0);
1816 val
.mask
= ~((HOST_WIDE_INT
) align
/ BITS_PER_UNIT
- 1);
1819 /* These builtins return their first argument, unmodified. */
1820 case BUILT_IN_MEMCPY
:
1821 case BUILT_IN_MEMMOVE
:
1822 case BUILT_IN_MEMSET
:
1823 case BUILT_IN_STRCPY
:
1824 case BUILT_IN_STRNCPY
:
1825 case BUILT_IN_MEMCPY_CHK
:
1826 case BUILT_IN_MEMMOVE_CHK
:
1827 case BUILT_IN_MEMSET_CHK
:
1828 case BUILT_IN_STRCPY_CHK
:
1829 case BUILT_IN_STRNCPY_CHK
:
1830 val
= get_value_for_expr (gimple_call_arg (stmt
, 0), true);
1833 case BUILT_IN_ASSUME_ALIGNED
:
1834 val
= bit_value_assume_aligned (stmt
, NULL_TREE
, val
, false);
1837 case BUILT_IN_ALIGNED_ALLOC
:
1839 tree align
= get_constant_value (gimple_call_arg (stmt
, 0));
1841 && tree_fits_uhwi_p (align
))
1843 unsigned HOST_WIDE_INT aligni
= tree_to_uhwi (align
);
1845 /* align must be power-of-two */
1846 && (aligni
& (aligni
- 1)) == 0)
1848 val
.lattice_val
= CONSTANT
;
1849 val
.value
= build_int_cst (ptr_type_node
, 0);
1859 if (is_gimple_call (stmt
) && gimple_call_lhs (stmt
))
1861 tree fntype
= gimple_call_fntype (stmt
);
1864 tree attrs
= lookup_attribute ("assume_aligned",
1865 TYPE_ATTRIBUTES (fntype
));
1867 val
= bit_value_assume_aligned (stmt
, attrs
, val
, false);
1868 attrs
= lookup_attribute ("alloc_align",
1869 TYPE_ATTRIBUTES (fntype
));
1871 val
= bit_value_assume_aligned (stmt
, attrs
, val
, true);
1874 is_constant
= (val
.lattice_val
== CONSTANT
);
1877 if (flag_tree_bit_ccp
1878 && ((is_constant
&& TREE_CODE (val
.value
) == INTEGER_CST
)
1879 || (!is_constant
&& likelyvalue
!= UNDEFINED
))
1880 && gimple_get_lhs (stmt
)
1881 && TREE_CODE (gimple_get_lhs (stmt
)) == SSA_NAME
)
1883 tree lhs
= gimple_get_lhs (stmt
);
1884 wide_int nonzero_bits
= get_nonzero_bits (lhs
);
1885 if (nonzero_bits
!= -1)
1889 val
.lattice_val
= CONSTANT
;
1890 val
.value
= build_zero_cst (TREE_TYPE (lhs
));
1891 val
.mask
= extend_mask (nonzero_bits
);
1896 if (wi::bit_and_not (val
.value
, nonzero_bits
) != 0)
1897 val
.value
= wide_int_to_tree (TREE_TYPE (lhs
),
1898 nonzero_bits
& val
.value
);
1899 if (nonzero_bits
== 0)
1902 val
.mask
= val
.mask
& extend_mask (nonzero_bits
);
1909 /* The statement produced a nonconstant value. If the statement
1910 had UNDEFINED operands, then the result of the statement
1911 should be UNDEFINED. Otherwise, the statement is VARYING. */
1912 if (likelyvalue
== UNDEFINED
)
1914 val
.lattice_val
= likelyvalue
;
1919 val
.lattice_val
= VARYING
;
1923 val
.value
= NULL_TREE
;
1929 typedef hash_table
<pointer_hash
<gimple_statement_base
> > gimple_htab
;
1931 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1932 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1935 insert_clobber_before_stack_restore (tree saved_val
, tree var
,
1936 gimple_htab
**visited
)
1939 gassign
*clobber_stmt
;
1941 imm_use_iterator iter
;
1942 gimple_stmt_iterator i
;
1945 FOR_EACH_IMM_USE_STMT (stmt
, iter
, saved_val
)
1946 if (gimple_call_builtin_p (stmt
, BUILT_IN_STACK_RESTORE
))
1948 clobber
= build_constructor (TREE_TYPE (var
),
1950 TREE_THIS_VOLATILE (clobber
) = 1;
1951 clobber_stmt
= gimple_build_assign (var
, clobber
);
1953 i
= gsi_for_stmt (stmt
);
1954 gsi_insert_before (&i
, clobber_stmt
, GSI_SAME_STMT
);
1956 else if (gimple_code (stmt
) == GIMPLE_PHI
)
1959 *visited
= new gimple_htab (10);
1961 slot
= (*visited
)->find_slot (stmt
, INSERT
);
1966 insert_clobber_before_stack_restore (gimple_phi_result (stmt
), var
,
1969 else if (gimple_assign_ssa_name_copy_p (stmt
))
1970 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt
), var
,
1972 else if (chkp_gimple_call_builtin_p (stmt
, BUILT_IN_CHKP_BNDRET
))
1975 gcc_assert (is_gimple_debug (stmt
));
1978 /* Advance the iterator to the previous non-debug gimple statement in the same
1979 or dominating basic block. */
1982 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator
*i
)
1986 gsi_prev_nondebug (i
);
1987 while (gsi_end_p (*i
))
1989 dom
= get_immediate_dominator (CDI_DOMINATORS
, i
->bb
);
1990 if (dom
== NULL
|| dom
== ENTRY_BLOCK_PTR_FOR_FN (cfun
))
1993 *i
= gsi_last_bb (dom
);
1997 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
1998 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2000 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2001 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2002 that case the function gives up without inserting the clobbers. */
2005 insert_clobbers_for_var (gimple_stmt_iterator i
, tree var
)
2009 gimple_htab
*visited
= NULL
;
2011 for (; !gsi_end_p (i
); gsi_prev_dom_bb_nondebug (&i
))
2013 stmt
= gsi_stmt (i
);
2015 if (!gimple_call_builtin_p (stmt
, BUILT_IN_STACK_SAVE
))
2018 saved_val
= gimple_call_lhs (stmt
);
2019 if (saved_val
== NULL_TREE
)
2022 insert_clobber_before_stack_restore (saved_val
, var
, &visited
);
2029 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2030 fixed-size array and returns the address, if found, otherwise returns
2034 fold_builtin_alloca_with_align (gimple stmt
)
2036 unsigned HOST_WIDE_INT size
, threshold
, n_elem
;
2037 tree lhs
, arg
, block
, var
, elem_type
, array_type
;
2040 lhs
= gimple_call_lhs (stmt
);
2041 if (lhs
== NULL_TREE
)
2044 /* Detect constant argument. */
2045 arg
= get_constant_value (gimple_call_arg (stmt
, 0));
2046 if (arg
== NULL_TREE
2047 || TREE_CODE (arg
) != INTEGER_CST
2048 || !tree_fits_uhwi_p (arg
))
2051 size
= tree_to_uhwi (arg
);
2053 /* Heuristic: don't fold large allocas. */
2054 threshold
= (unsigned HOST_WIDE_INT
)PARAM_VALUE (PARAM_LARGE_STACK_FRAME
);
2055 /* In case the alloca is located at function entry, it has the same lifetime
2056 as a declared array, so we allow a larger size. */
2057 block
= gimple_block (stmt
);
2058 if (!(cfun
->after_inlining
2059 && TREE_CODE (BLOCK_SUPERCONTEXT (block
)) == FUNCTION_DECL
))
2061 if (size
> threshold
)
2064 /* Declare array. */
2065 elem_type
= build_nonstandard_integer_type (BITS_PER_UNIT
, 1);
2066 n_elem
= size
* 8 / BITS_PER_UNIT
;
2067 array_type
= build_array_type_nelts (elem_type
, n_elem
);
2068 var
= create_tmp_var (array_type
, NULL
);
2069 DECL_ALIGN (var
) = TREE_INT_CST_LOW (gimple_call_arg (stmt
, 1));
2071 struct ptr_info_def
*pi
= SSA_NAME_PTR_INFO (lhs
);
2072 if (pi
!= NULL
&& !pi
->pt
.anything
)
2076 singleton_p
= pt_solution_singleton_p (&pi
->pt
, &uid
);
2077 gcc_assert (singleton_p
);
2078 SET_DECL_PT_UID (var
, uid
);
2082 /* Fold alloca to the address of the array. */
2083 return fold_convert (TREE_TYPE (lhs
), build_fold_addr_expr (var
));
2086 /* Fold the stmt at *GSI with CCP specific information that propagating
2087 and regular folding does not catch. */
2090 ccp_fold_stmt (gimple_stmt_iterator
*gsi
)
2092 gimple stmt
= gsi_stmt (*gsi
);
2094 switch (gimple_code (stmt
))
2098 gcond
*cond_stmt
= as_a
<gcond
*> (stmt
);
2099 ccp_prop_value_t val
;
2100 /* Statement evaluation will handle type mismatches in constants
2101 more gracefully than the final propagation. This allows us to
2102 fold more conditionals here. */
2103 val
= evaluate_stmt (stmt
);
2104 if (val
.lattice_val
!= CONSTANT
2110 fprintf (dump_file
, "Folding predicate ");
2111 print_gimple_expr (dump_file
, stmt
, 0, 0);
2112 fprintf (dump_file
, " to ");
2113 print_generic_expr (dump_file
, val
.value
, 0);
2114 fprintf (dump_file
, "\n");
2117 if (integer_zerop (val
.value
))
2118 gimple_cond_make_false (cond_stmt
);
2120 gimple_cond_make_true (cond_stmt
);
2127 tree lhs
= gimple_call_lhs (stmt
);
2128 int flags
= gimple_call_flags (stmt
);
2131 bool changed
= false;
2134 /* If the call was folded into a constant make sure it goes
2135 away even if we cannot propagate into all uses because of
2138 && TREE_CODE (lhs
) == SSA_NAME
2139 && (val
= get_constant_value (lhs
))
2140 /* Don't optimize away calls that have side-effects. */
2141 && (flags
& (ECF_CONST
|ECF_PURE
)) != 0
2142 && (flags
& ECF_LOOPING_CONST_OR_PURE
) == 0)
2144 tree new_rhs
= unshare_expr (val
);
2146 if (!useless_type_conversion_p (TREE_TYPE (lhs
),
2147 TREE_TYPE (new_rhs
)))
2148 new_rhs
= fold_convert (TREE_TYPE (lhs
), new_rhs
);
2149 res
= update_call_from_tree (gsi
, new_rhs
);
2154 /* Internal calls provide no argument types, so the extra laxity
2155 for normal calls does not apply. */
2156 if (gimple_call_internal_p (stmt
))
2159 /* The heuristic of fold_builtin_alloca_with_align differs before and
2160 after inlining, so we don't require the arg to be changed into a
2161 constant for folding, but just to be constant. */
2162 if (gimple_call_builtin_p (stmt
, BUILT_IN_ALLOCA_WITH_ALIGN
))
2164 tree new_rhs
= fold_builtin_alloca_with_align (stmt
);
2167 bool res
= update_call_from_tree (gsi
, new_rhs
);
2168 tree var
= TREE_OPERAND (TREE_OPERAND (new_rhs
, 0),0);
2170 insert_clobbers_for_var (*gsi
, var
);
2175 /* Propagate into the call arguments. Compared to replace_uses_in
2176 this can use the argument slot types for type verification
2177 instead of the current argument type. We also can safely
2178 drop qualifiers here as we are dealing with constants anyway. */
2179 argt
= TYPE_ARG_TYPES (gimple_call_fntype (stmt
));
2180 for (i
= 0; i
< gimple_call_num_args (stmt
) && argt
;
2181 ++i
, argt
= TREE_CHAIN (argt
))
2183 tree arg
= gimple_call_arg (stmt
, i
);
2184 if (TREE_CODE (arg
) == SSA_NAME
2185 && (val
= get_constant_value (arg
))
2186 && useless_type_conversion_p
2187 (TYPE_MAIN_VARIANT (TREE_VALUE (argt
)),
2188 TYPE_MAIN_VARIANT (TREE_TYPE (val
))))
2190 gimple_call_set_arg (stmt
, i
, unshare_expr (val
));
2200 tree lhs
= gimple_assign_lhs (stmt
);
2203 /* If we have a load that turned out to be constant replace it
2204 as we cannot propagate into all uses in all cases. */
2205 if (gimple_assign_single_p (stmt
)
2206 && TREE_CODE (lhs
) == SSA_NAME
2207 && (val
= get_constant_value (lhs
)))
2209 tree rhs
= unshare_expr (val
);
2210 if (!useless_type_conversion_p (TREE_TYPE (lhs
), TREE_TYPE (rhs
)))
2211 rhs
= fold_build1 (VIEW_CONVERT_EXPR
, TREE_TYPE (lhs
), rhs
);
2212 gimple_assign_set_rhs_from_tree (gsi
, rhs
);
2224 /* Visit the assignment statement STMT. Set the value of its LHS to the
2225 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2226 creates virtual definitions, set the value of each new name to that
2227 of the RHS (if we can derive a constant out of the RHS).
2228 Value-returning call statements also perform an assignment, and
2229 are handled here. */
2231 static enum ssa_prop_result
2232 visit_assignment (gimple stmt
, tree
*output_p
)
2234 ccp_prop_value_t val
;
2235 enum ssa_prop_result retval
;
2237 tree lhs
= gimple_get_lhs (stmt
);
2239 gcc_assert (gimple_code (stmt
) != GIMPLE_CALL
2240 || gimple_call_lhs (stmt
) != NULL_TREE
);
2242 if (gimple_assign_single_p (stmt
)
2243 && gimple_assign_rhs_code (stmt
) == SSA_NAME
)
2244 /* For a simple copy operation, we copy the lattice values. */
2245 val
= *get_value (gimple_assign_rhs1 (stmt
));
2247 /* Evaluate the statement, which could be
2248 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2249 val
= evaluate_stmt (stmt
);
2251 retval
= SSA_PROP_NOT_INTERESTING
;
2253 /* Set the lattice value of the statement's output. */
2254 if (TREE_CODE (lhs
) == SSA_NAME
)
2256 /* If STMT is an assignment to an SSA_NAME, we only have one
2258 if (set_lattice_value (lhs
, val
))
2261 if (val
.lattice_val
== VARYING
)
2262 retval
= SSA_PROP_VARYING
;
2264 retval
= SSA_PROP_INTERESTING
;
2272 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2273 if it can determine which edge will be taken. Otherwise, return
2274 SSA_PROP_VARYING. */
2276 static enum ssa_prop_result
2277 visit_cond_stmt (gimple stmt
, edge
*taken_edge_p
)
2279 ccp_prop_value_t val
;
2282 block
= gimple_bb (stmt
);
2283 val
= evaluate_stmt (stmt
);
2284 if (val
.lattice_val
!= CONSTANT
2286 return SSA_PROP_VARYING
;
2288 /* Find which edge out of the conditional block will be taken and add it
2289 to the worklist. If no single edge can be determined statically,
2290 return SSA_PROP_VARYING to feed all the outgoing edges to the
2291 propagation engine. */
2292 *taken_edge_p
= find_taken_edge (block
, val
.value
);
2294 return SSA_PROP_INTERESTING
;
2296 return SSA_PROP_VARYING
;
2300 /* Evaluate statement STMT. If the statement produces an output value and
2301 its evaluation changes the lattice value of its output, return
2302 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2305 If STMT is a conditional branch and we can determine its truth
2306 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2307 value, return SSA_PROP_VARYING. */
2309 static enum ssa_prop_result
2310 ccp_visit_stmt (gimple stmt
, edge
*taken_edge_p
, tree
*output_p
)
2315 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2317 fprintf (dump_file
, "\nVisiting statement:\n");
2318 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2321 switch (gimple_code (stmt
))
2324 /* If the statement is an assignment that produces a single
2325 output value, evaluate its RHS to see if the lattice value of
2326 its output has changed. */
2327 return visit_assignment (stmt
, output_p
);
2330 /* A value-returning call also performs an assignment. */
2331 if (gimple_call_lhs (stmt
) != NULL_TREE
)
2332 return visit_assignment (stmt
, output_p
);
2337 /* If STMT is a conditional branch, see if we can determine
2338 which branch will be taken. */
2339 /* FIXME. It appears that we should be able to optimize
2340 computed GOTOs here as well. */
2341 return visit_cond_stmt (stmt
, taken_edge_p
);
2347 /* Any other kind of statement is not interesting for constant
2348 propagation and, therefore, not worth simulating. */
2349 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2350 fprintf (dump_file
, "No interesting values produced. Marked VARYING.\n");
2352 /* Definitions made by statements other than assignments to
2353 SSA_NAMEs represent unknown modifications to their outputs.
2354 Mark them VARYING. */
2355 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
2357 ccp_prop_value_t v
= { VARYING
, NULL_TREE
, -1 };
2358 set_lattice_value (def
, v
);
2361 return SSA_PROP_VARYING
;
2365 /* Main entry point for SSA Conditional Constant Propagation. */
2370 unsigned int todo
= 0;
2371 calculate_dominance_info (CDI_DOMINATORS
);
2373 ssa_propagate (ccp_visit_stmt
, ccp_visit_phi_node
);
2374 if (ccp_finalize ())
2375 todo
= (TODO_cleanup_cfg
| TODO_update_ssa
);
2376 free_dominance_info (CDI_DOMINATORS
);
2383 const pass_data pass_data_ccp
=
2385 GIMPLE_PASS
, /* type */
2387 OPTGROUP_NONE
, /* optinfo_flags */
2388 TV_TREE_CCP
, /* tv_id */
2389 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2390 0, /* properties_provided */
2391 0, /* properties_destroyed */
2392 0, /* todo_flags_start */
2393 TODO_update_address_taken
, /* todo_flags_finish */
2396 class pass_ccp
: public gimple_opt_pass
2399 pass_ccp (gcc::context
*ctxt
)
2400 : gimple_opt_pass (pass_data_ccp
, ctxt
)
2403 /* opt_pass methods: */
2404 opt_pass
* clone () { return new pass_ccp (m_ctxt
); }
2405 virtual bool gate (function
*) { return flag_tree_ccp
!= 0; }
2406 virtual unsigned int execute (function
*) { return do_ssa_ccp (); }
2408 }; // class pass_ccp
2413 make_pass_ccp (gcc::context
*ctxt
)
2415 return new pass_ccp (ctxt
);
2420 /* Try to optimize out __builtin_stack_restore. Optimize it out
2421 if there is another __builtin_stack_restore in the same basic
2422 block and no calls or ASM_EXPRs are in between, or if this block's
2423 only outgoing edge is to EXIT_BLOCK and there are no calls or
2424 ASM_EXPRs after this __builtin_stack_restore. */
2427 optimize_stack_restore (gimple_stmt_iterator i
)
2432 basic_block bb
= gsi_bb (i
);
2433 gimple call
= gsi_stmt (i
);
2435 if (gimple_code (call
) != GIMPLE_CALL
2436 || gimple_call_num_args (call
) != 1
2437 || TREE_CODE (gimple_call_arg (call
, 0)) != SSA_NAME
2438 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call
, 0))))
2441 for (gsi_next (&i
); !gsi_end_p (i
); gsi_next (&i
))
2443 stmt
= gsi_stmt (i
);
2444 if (gimple_code (stmt
) == GIMPLE_ASM
)
2446 if (gimple_code (stmt
) != GIMPLE_CALL
)
2449 callee
= gimple_call_fndecl (stmt
);
2451 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2452 /* All regular builtins are ok, just obviously not alloca. */
2453 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA
2454 || DECL_FUNCTION_CODE (callee
) == BUILT_IN_ALLOCA_WITH_ALIGN
)
2457 if (DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_RESTORE
)
2458 goto second_stack_restore
;
2464 /* Allow one successor of the exit block, or zero successors. */
2465 switch (EDGE_COUNT (bb
->succs
))
2470 if (single_succ_edge (bb
)->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
2476 second_stack_restore
:
2478 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2479 If there are multiple uses, then the last one should remove the call.
2480 In any case, whether the call to __builtin_stack_save can be removed
2481 or not is irrelevant to removing the call to __builtin_stack_restore. */
2482 if (has_single_use (gimple_call_arg (call
, 0)))
2484 gimple stack_save
= SSA_NAME_DEF_STMT (gimple_call_arg (call
, 0));
2485 if (is_gimple_call (stack_save
))
2487 callee
= gimple_call_fndecl (stack_save
);
2489 && DECL_BUILT_IN_CLASS (callee
) == BUILT_IN_NORMAL
2490 && DECL_FUNCTION_CODE (callee
) == BUILT_IN_STACK_SAVE
)
2492 gimple_stmt_iterator stack_save_gsi
;
2495 stack_save_gsi
= gsi_for_stmt (stack_save
);
2496 rhs
= build_int_cst (TREE_TYPE (gimple_call_arg (call
, 0)), 0);
2497 update_call_from_tree (&stack_save_gsi
, rhs
);
2502 /* No effect, so the statement will be deleted. */
2503 return integer_zero_node
;
2506 /* If va_list type is a simple pointer and nothing special is needed,
2507 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2508 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2509 pointer assignment. */
2512 optimize_stdarg_builtin (gimple call
)
2514 tree callee
, lhs
, rhs
, cfun_va_list
;
2515 bool va_list_simple_ptr
;
2516 location_t loc
= gimple_location (call
);
2518 if (gimple_code (call
) != GIMPLE_CALL
)
2521 callee
= gimple_call_fndecl (call
);
2523 cfun_va_list
= targetm
.fn_abi_va_list (callee
);
2524 va_list_simple_ptr
= POINTER_TYPE_P (cfun_va_list
)
2525 && (TREE_TYPE (cfun_va_list
) == void_type_node
2526 || TREE_TYPE (cfun_va_list
) == char_type_node
);
2528 switch (DECL_FUNCTION_CODE (callee
))
2530 case BUILT_IN_VA_START
:
2531 if (!va_list_simple_ptr
2532 || targetm
.expand_builtin_va_start
!= NULL
2533 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG
))
2536 if (gimple_call_num_args (call
) != 2)
2539 lhs
= gimple_call_arg (call
, 0);
2540 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2541 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2542 != TYPE_MAIN_VARIANT (cfun_va_list
))
2545 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2546 rhs
= build_call_expr_loc (loc
, builtin_decl_explicit (BUILT_IN_NEXT_ARG
),
2547 1, integer_zero_node
);
2548 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2549 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2551 case BUILT_IN_VA_COPY
:
2552 if (!va_list_simple_ptr
)
2555 if (gimple_call_num_args (call
) != 2)
2558 lhs
= gimple_call_arg (call
, 0);
2559 if (!POINTER_TYPE_P (TREE_TYPE (lhs
))
2560 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs
)))
2561 != TYPE_MAIN_VARIANT (cfun_va_list
))
2564 lhs
= build_fold_indirect_ref_loc (loc
, lhs
);
2565 rhs
= gimple_call_arg (call
, 1);
2566 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs
))
2567 != TYPE_MAIN_VARIANT (cfun_va_list
))
2570 rhs
= fold_convert_loc (loc
, TREE_TYPE (lhs
), rhs
);
2571 return build2 (MODIFY_EXPR
, TREE_TYPE (lhs
), lhs
, rhs
);
2573 case BUILT_IN_VA_END
:
2574 /* No effect, so the statement will be deleted. */
2575 return integer_zero_node
;
2582 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2583 the incoming jumps. Return true if at least one jump was changed. */
2586 optimize_unreachable (gimple_stmt_iterator i
)
2588 basic_block bb
= gsi_bb (i
);
2589 gimple_stmt_iterator gsi
;
2595 if (flag_sanitize
& SANITIZE_UNREACHABLE
)
2598 for (gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
); gsi_next (&gsi
))
2600 stmt
= gsi_stmt (gsi
);
2602 if (is_gimple_debug (stmt
))
2605 if (glabel
*label_stmt
= dyn_cast
<glabel
*> (stmt
))
2607 /* Verify we do not need to preserve the label. */
2608 if (FORCED_LABEL (gimple_label_label (label_stmt
)))
2614 /* Only handle the case that __builtin_unreachable is the first statement
2615 in the block. We rely on DCE to remove stmts without side-effects
2616 before __builtin_unreachable. */
2617 if (gsi_stmt (gsi
) != gsi_stmt (i
))
2622 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
2624 gsi
= gsi_last_bb (e
->src
);
2625 if (gsi_end_p (gsi
))
2628 stmt
= gsi_stmt (gsi
);
2629 if (gcond
*cond_stmt
= dyn_cast
<gcond
*> (stmt
))
2631 if (e
->flags
& EDGE_TRUE_VALUE
)
2632 gimple_cond_make_false (cond_stmt
);
2633 else if (e
->flags
& EDGE_FALSE_VALUE
)
2634 gimple_cond_make_true (cond_stmt
);
2637 update_stmt (cond_stmt
);
2641 /* Todo: handle other cases, f.i. switch statement. */
2651 /* A simple pass that attempts to fold all builtin functions. This pass
2652 is run after we've propagated as many constants as we can. */
2656 const pass_data pass_data_fold_builtins
=
2658 GIMPLE_PASS
, /* type */
2660 OPTGROUP_NONE
, /* optinfo_flags */
2661 TV_NONE
, /* tv_id */
2662 ( PROP_cfg
| PROP_ssa
), /* properties_required */
2663 0, /* properties_provided */
2664 0, /* properties_destroyed */
2665 0, /* todo_flags_start */
2666 TODO_update_ssa
, /* todo_flags_finish */
2669 class pass_fold_builtins
: public gimple_opt_pass
2672 pass_fold_builtins (gcc::context
*ctxt
)
2673 : gimple_opt_pass (pass_data_fold_builtins
, ctxt
)
2676 /* opt_pass methods: */
2677 opt_pass
* clone () { return new pass_fold_builtins (m_ctxt
); }
2678 virtual unsigned int execute (function
*);
2680 }; // class pass_fold_builtins
2683 pass_fold_builtins::execute (function
*fun
)
2685 bool cfg_changed
= false;
2687 unsigned int todoflags
= 0;
2689 FOR_EACH_BB_FN (bb
, fun
)
2691 gimple_stmt_iterator i
;
2692 for (i
= gsi_start_bb (bb
); !gsi_end_p (i
); )
2694 gimple stmt
, old_stmt
;
2696 enum built_in_function fcode
;
2698 stmt
= gsi_stmt (i
);
2700 if (gimple_code (stmt
) != GIMPLE_CALL
)
2702 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2703 after the last GIMPLE DSE they aren't needed and might
2704 unnecessarily keep the SSA_NAMEs live. */
2705 if (gimple_clobber_p (stmt
))
2707 tree lhs
= gimple_assign_lhs (stmt
);
2708 if (TREE_CODE (lhs
) == MEM_REF
2709 && TREE_CODE (TREE_OPERAND (lhs
, 0)) == SSA_NAME
)
2711 unlink_stmt_vdef (stmt
);
2712 gsi_remove (&i
, true);
2713 release_defs (stmt
);
2721 callee
= gimple_call_fndecl (stmt
);
2722 if (!callee
|| DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
)
2728 fcode
= DECL_FUNCTION_CODE (callee
);
2733 tree result
= NULL_TREE
;
2734 switch (DECL_FUNCTION_CODE (callee
))
2736 case BUILT_IN_CONSTANT_P
:
2737 /* Resolve __builtin_constant_p. If it hasn't been
2738 folded to integer_one_node by now, it's fairly
2739 certain that the value simply isn't constant. */
2740 result
= integer_zero_node
;
2743 case BUILT_IN_ASSUME_ALIGNED
:
2744 /* Remove __builtin_assume_aligned. */
2745 result
= gimple_call_arg (stmt
, 0);
2748 case BUILT_IN_STACK_RESTORE
:
2749 result
= optimize_stack_restore (i
);
2755 case BUILT_IN_UNREACHABLE
:
2756 if (optimize_unreachable (i
))
2760 case BUILT_IN_VA_START
:
2761 case BUILT_IN_VA_END
:
2762 case BUILT_IN_VA_COPY
:
2763 /* These shouldn't be folded before pass_stdarg. */
2764 result
= optimize_stdarg_builtin (stmt
);
2778 if (!update_call_from_tree (&i
, result
))
2779 gimplify_and_update_call_from_tree (&i
, result
);
2782 todoflags
|= TODO_update_address_taken
;
2784 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2786 fprintf (dump_file
, "Simplified\n ");
2787 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2791 stmt
= gsi_stmt (i
);
2794 if (maybe_clean_or_replace_eh_stmt (old_stmt
, stmt
)
2795 && gimple_purge_dead_eh_edges (bb
))
2798 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2800 fprintf (dump_file
, "to\n ");
2801 print_gimple_stmt (dump_file
, stmt
, 0, dump_flags
);
2802 fprintf (dump_file
, "\n");
2805 /* Retry the same statement if it changed into another
2806 builtin, there might be new opportunities now. */
2807 if (gimple_code (stmt
) != GIMPLE_CALL
)
2812 callee
= gimple_call_fndecl (stmt
);
2814 || DECL_BUILT_IN_CLASS (callee
) != BUILT_IN_NORMAL
2815 || DECL_FUNCTION_CODE (callee
) == fcode
)
2820 /* Delete unreachable blocks. */
2822 todoflags
|= TODO_cleanup_cfg
;
2830 make_pass_fold_builtins (gcc::context
*ctxt
)
2832 return new pass_fold_builtins (ctxt
);