* gcc.dg/store-motion-fgcse-sm.c (dg-final): Cleanup
[official-gcc.git] / gcc / tree-sra.c
blob8e4b94c1e9562fd1525eac8f8634b794ad10d397
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2008-2014 Free Software Foundation, Inc.
5 Contributed by Martin Jambor <mjambor@suse.cz>
7 This file is part of GCC.
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
23 /* This file implements Scalar Reduction of Aggregates (SRA). SRA is run
24 twice, once in the early stages of compilation (early SRA) and once in the
25 late stages (late SRA). The aim of both is to turn references to scalar
26 parts of aggregates into uses of independent scalar variables.
28 The two passes are nearly identical, the only difference is that early SRA
29 does not scalarize unions which are used as the result in a GIMPLE_RETURN
30 statement because together with inlining this can lead to weird type
31 conversions.
33 Both passes operate in four stages:
35 1. The declarations that have properties which make them candidates for
36 scalarization are identified in function find_var_candidates(). The
37 candidates are stored in candidate_bitmap.
39 2. The function body is scanned. In the process, declarations which are
40 used in a manner that prevent their scalarization are removed from the
41 candidate bitmap. More importantly, for every access into an aggregate,
42 an access structure (struct access) is created by create_access() and
43 stored in a vector associated with the aggregate. Among other
44 information, the aggregate declaration, the offset and size of the access
45 and its type are stored in the structure.
47 On a related note, assign_link structures are created for every assign
48 statement between candidate aggregates and attached to the related
49 accesses.
51 3. The vectors of accesses are analyzed. They are first sorted according to
52 their offset and size and then scanned for partially overlapping accesses
53 (i.e. those which overlap but one is not entirely within another). Such
54 an access disqualifies the whole aggregate from being scalarized.
56 If there is no such inhibiting overlap, a representative access structure
57 is chosen for every unique combination of offset and size. Afterwards,
58 the pass builds a set of trees from these structures, in which children
59 of an access are within their parent (in terms of offset and size).
61 Then accesses are propagated whenever possible (i.e. in cases when it
62 does not create a partially overlapping access) across assign_links from
63 the right hand side to the left hand side.
65 Then the set of trees for each declaration is traversed again and those
66 accesses which should be replaced by a scalar are identified.
68 4. The function is traversed again, and for every reference into an
69 aggregate that has some component which is about to be scalarized,
70 statements are amended and new statements are created as necessary.
71 Finally, if a parameter got scalarized, the scalar replacements are
72 initialized with values from respective parameter aggregates. */
74 #include "config.h"
75 #include "system.h"
76 #include "coretypes.h"
77 #include "hash-map.h"
78 #include "hash-table.h"
79 #include "alloc-pool.h"
80 #include "tm.h"
81 #include "tree.h"
82 #include "predict.h"
83 #include "vec.h"
84 #include "hashtab.h"
85 #include "hash-set.h"
86 #include "machmode.h"
87 #include "hard-reg-set.h"
88 #include "input.h"
89 #include "function.h"
90 #include "dominance.h"
91 #include "cfg.h"
92 #include "basic-block.h"
93 #include "tree-ssa-alias.h"
94 #include "internal-fn.h"
95 #include "tree-eh.h"
96 #include "gimple-expr.h"
97 #include "is-a.h"
98 #include "gimple.h"
99 #include "stor-layout.h"
100 #include "gimplify.h"
101 #include "gimple-iterator.h"
102 #include "gimplify-me.h"
103 #include "gimple-walk.h"
104 #include "bitmap.h"
105 #include "gimple-ssa.h"
106 #include "tree-cfg.h"
107 #include "tree-phinodes.h"
108 #include "ssa-iterators.h"
109 #include "stringpool.h"
110 #include "tree-ssanames.h"
111 #include "expr.h"
112 #include "tree-dfa.h"
113 #include "tree-ssa.h"
114 #include "tree-pass.h"
115 #include "plugin-api.h"
116 #include "ipa-ref.h"
117 #include "cgraph.h"
118 #include "ipa-prop.h"
119 #include "statistics.h"
120 #include "params.h"
121 #include "target.h"
122 #include "flags.h"
123 #include "dbgcnt.h"
124 #include "tree-inline.h"
125 #include "gimple-pretty-print.h"
126 #include "ipa-inline.h"
127 #include "ipa-utils.h"
128 #include "builtins.h"
130 /* Enumeration of all aggregate reductions we can do. */
131 enum sra_mode { SRA_MODE_EARLY_IPA, /* early call regularization */
132 SRA_MODE_EARLY_INTRA, /* early intraprocedural SRA */
133 SRA_MODE_INTRA }; /* late intraprocedural SRA */
135 /* Global variable describing which aggregate reduction we are performing at
136 the moment. */
137 static enum sra_mode sra_mode;
139 struct assign_link;
141 /* ACCESS represents each access to an aggregate variable (as a whole or a
142 part). It can also represent a group of accesses that refer to exactly the
143 same fragment of an aggregate (i.e. those that have exactly the same offset
144 and size). Such representatives for a single aggregate, once determined,
145 are linked in a linked list and have the group fields set.
147 Moreover, when doing intraprocedural SRA, a tree is built from those
148 representatives (by the means of first_child and next_sibling pointers), in
149 which all items in a subtree are "within" the root, i.e. their offset is
150 greater or equal to offset of the root and offset+size is smaller or equal
151 to offset+size of the root. Children of an access are sorted by offset.
153 Note that accesses to parts of vector and complex number types always
154 represented by an access to the whole complex number or a vector. It is a
155 duty of the modifying functions to replace them appropriately. */
157 struct access
159 /* Values returned by `get_ref_base_and_extent' for each component reference
160 If EXPR isn't a component reference just set `BASE = EXPR', `OFFSET = 0',
161 `SIZE = TREE_SIZE (TREE_TYPE (expr))'. */
162 HOST_WIDE_INT offset;
163 HOST_WIDE_INT size;
164 tree base;
166 /* Expression. It is context dependent so do not use it to create new
167 expressions to access the original aggregate. See PR 42154 for a
168 testcase. */
169 tree expr;
170 /* Type. */
171 tree type;
173 /* The statement this access belongs to. */
174 gimple stmt;
176 /* Next group representative for this aggregate. */
177 struct access *next_grp;
179 /* Pointer to the group representative. Pointer to itself if the struct is
180 the representative. */
181 struct access *group_representative;
183 /* If this access has any children (in terms of the definition above), this
184 points to the first one. */
185 struct access *first_child;
187 /* In intraprocedural SRA, pointer to the next sibling in the access tree as
188 described above. In IPA-SRA this is a pointer to the next access
189 belonging to the same group (having the same representative). */
190 struct access *next_sibling;
192 /* Pointers to the first and last element in the linked list of assign
193 links. */
194 struct assign_link *first_link, *last_link;
196 /* Pointer to the next access in the work queue. */
197 struct access *next_queued;
199 /* Replacement variable for this access "region." Never to be accessed
200 directly, always only by the means of get_access_replacement() and only
201 when grp_to_be_replaced flag is set. */
202 tree replacement_decl;
204 /* Is this particular access write access? */
205 unsigned write : 1;
207 /* Is this access an access to a non-addressable field? */
208 unsigned non_addressable : 1;
210 /* Is this access currently in the work queue? */
211 unsigned grp_queued : 1;
213 /* Does this group contain a write access? This flag is propagated down the
214 access tree. */
215 unsigned grp_write : 1;
217 /* Does this group contain a read access? This flag is propagated down the
218 access tree. */
219 unsigned grp_read : 1;
221 /* Does this group contain a read access that comes from an assignment
222 statement? This flag is propagated down the access tree. */
223 unsigned grp_assignment_read : 1;
225 /* Does this group contain a write access that comes from an assignment
226 statement? This flag is propagated down the access tree. */
227 unsigned grp_assignment_write : 1;
229 /* Does this group contain a read access through a scalar type? This flag is
230 not propagated in the access tree in any direction. */
231 unsigned grp_scalar_read : 1;
233 /* Does this group contain a write access through a scalar type? This flag
234 is not propagated in the access tree in any direction. */
235 unsigned grp_scalar_write : 1;
237 /* Is this access an artificial one created to scalarize some record
238 entirely? */
239 unsigned grp_total_scalarization : 1;
241 /* Other passes of the analysis use this bit to make function
242 analyze_access_subtree create scalar replacements for this group if
243 possible. */
244 unsigned grp_hint : 1;
246 /* Is the subtree rooted in this access fully covered by scalar
247 replacements? */
248 unsigned grp_covered : 1;
250 /* If set to true, this access and all below it in an access tree must not be
251 scalarized. */
252 unsigned grp_unscalarizable_region : 1;
254 /* Whether data have been written to parts of the aggregate covered by this
255 access which is not to be scalarized. This flag is propagated up in the
256 access tree. */
257 unsigned grp_unscalarized_data : 1;
259 /* Does this access and/or group contain a write access through a
260 BIT_FIELD_REF? */
261 unsigned grp_partial_lhs : 1;
263 /* Set when a scalar replacement should be created for this variable. */
264 unsigned grp_to_be_replaced : 1;
266 /* Set when we want a replacement for the sole purpose of having it in
267 generated debug statements. */
268 unsigned grp_to_be_debug_replaced : 1;
270 /* Should TREE_NO_WARNING of a replacement be set? */
271 unsigned grp_no_warning : 1;
273 /* Is it possible that the group refers to data which might be (directly or
274 otherwise) modified? */
275 unsigned grp_maybe_modified : 1;
277 /* Set when this is a representative of a pointer to scalar (i.e. by
278 reference) parameter which we consider for turning into a plain scalar
279 (i.e. a by value parameter). */
280 unsigned grp_scalar_ptr : 1;
282 /* Set when we discover that this pointer is not safe to dereference in the
283 caller. */
284 unsigned grp_not_necessarilly_dereferenced : 1;
287 typedef struct access *access_p;
290 /* Alloc pool for allocating access structures. */
291 static alloc_pool access_pool;
293 /* A structure linking lhs and rhs accesses from an aggregate assignment. They
294 are used to propagate subaccesses from rhs to lhs as long as they don't
295 conflict with what is already there. */
296 struct assign_link
298 struct access *lacc, *racc;
299 struct assign_link *next;
302 /* Alloc pool for allocating assign link structures. */
303 static alloc_pool link_pool;
305 /* Base (tree) -> Vector (vec<access_p> *) map. */
306 static hash_map<tree, auto_vec<access_p> > *base_access_vec;
308 /* Candidate hash table helpers. */
310 struct uid_decl_hasher : typed_noop_remove <tree_node>
312 typedef tree_node value_type;
313 typedef tree_node compare_type;
314 static inline hashval_t hash (const value_type *);
315 static inline bool equal (const value_type *, const compare_type *);
318 /* Hash a tree in a uid_decl_map. */
320 inline hashval_t
321 uid_decl_hasher::hash (const value_type *item)
323 return item->decl_minimal.uid;
326 /* Return true if the DECL_UID in both trees are equal. */
328 inline bool
329 uid_decl_hasher::equal (const value_type *a, const compare_type *b)
331 return (a->decl_minimal.uid == b->decl_minimal.uid);
334 /* Set of candidates. */
335 static bitmap candidate_bitmap;
336 static hash_table<uid_decl_hasher> *candidates;
338 /* For a candidate UID return the candidates decl. */
340 static inline tree
341 candidate (unsigned uid)
343 tree_node t;
344 t.decl_minimal.uid = uid;
345 return candidates->find_with_hash (&t, static_cast <hashval_t> (uid));
348 /* Bitmap of candidates which we should try to entirely scalarize away and
349 those which cannot be (because they are and need be used as a whole). */
350 static bitmap should_scalarize_away_bitmap, cannot_scalarize_away_bitmap;
352 /* Obstack for creation of fancy names. */
353 static struct obstack name_obstack;
355 /* Head of a linked list of accesses that need to have its subaccesses
356 propagated to their assignment counterparts. */
357 static struct access *work_queue_head;
359 /* Number of parameters of the analyzed function when doing early ipa SRA. */
360 static int func_param_count;
362 /* scan_function sets the following to true if it encounters a call to
363 __builtin_apply_args. */
364 static bool encountered_apply_args;
366 /* Set by scan_function when it finds a recursive call. */
367 static bool encountered_recursive_call;
369 /* Set by scan_function when it finds a recursive call with less actual
370 arguments than formal parameters.. */
371 static bool encountered_unchangable_recursive_call;
373 /* This is a table in which for each basic block and parameter there is a
374 distance (offset + size) in that parameter which is dereferenced and
375 accessed in that BB. */
376 static HOST_WIDE_INT *bb_dereferences;
377 /* Bitmap of BBs that can cause the function to "stop" progressing by
378 returning, throwing externally, looping infinitely or calling a function
379 which might abort etc.. */
380 static bitmap final_bbs;
382 /* Representative of no accesses at all. */
383 static struct access no_accesses_representant;
385 /* Predicate to test the special value. */
387 static inline bool
388 no_accesses_p (struct access *access)
390 return access == &no_accesses_representant;
393 /* Dump contents of ACCESS to file F in a human friendly way. If GRP is true,
394 representative fields are dumped, otherwise those which only describe the
395 individual access are. */
397 static struct
399 /* Number of processed aggregates is readily available in
400 analyze_all_variable_accesses and so is not stored here. */
402 /* Number of created scalar replacements. */
403 int replacements;
405 /* Number of times sra_modify_expr or sra_modify_assign themselves changed an
406 expression. */
407 int exprs;
409 /* Number of statements created by generate_subtree_copies. */
410 int subtree_copies;
412 /* Number of statements created by load_assign_lhs_subreplacements. */
413 int subreplacements;
415 /* Number of times sra_modify_assign has deleted a statement. */
416 int deleted;
418 /* Number of times sra_modify_assign has to deal with subaccesses of LHS and
419 RHS reparately due to type conversions or nonexistent matching
420 references. */
421 int separate_lhs_rhs_handling;
423 /* Number of parameters that were removed because they were unused. */
424 int deleted_unused_parameters;
426 /* Number of scalars passed as parameters by reference that have been
427 converted to be passed by value. */
428 int scalar_by_ref_to_by_val;
430 /* Number of aggregate parameters that were replaced by one or more of their
431 components. */
432 int aggregate_params_reduced;
434 /* Numbber of components created when splitting aggregate parameters. */
435 int param_reductions_created;
436 } sra_stats;
438 static void
439 dump_access (FILE *f, struct access *access, bool grp)
441 fprintf (f, "access { ");
442 fprintf (f, "base = (%d)'", DECL_UID (access->base));
443 print_generic_expr (f, access->base, 0);
444 fprintf (f, "', offset = " HOST_WIDE_INT_PRINT_DEC, access->offset);
445 fprintf (f, ", size = " HOST_WIDE_INT_PRINT_DEC, access->size);
446 fprintf (f, ", expr = ");
447 print_generic_expr (f, access->expr, 0);
448 fprintf (f, ", type = ");
449 print_generic_expr (f, access->type, 0);
450 if (grp)
451 fprintf (f, ", grp_read = %d, grp_write = %d, grp_assignment_read = %d, "
452 "grp_assignment_write = %d, grp_scalar_read = %d, "
453 "grp_scalar_write = %d, grp_total_scalarization = %d, "
454 "grp_hint = %d, grp_covered = %d, "
455 "grp_unscalarizable_region = %d, grp_unscalarized_data = %d, "
456 "grp_partial_lhs = %d, grp_to_be_replaced = %d, "
457 "grp_to_be_debug_replaced = %d, grp_maybe_modified = %d, "
458 "grp_not_necessarilly_dereferenced = %d\n",
459 access->grp_read, access->grp_write, access->grp_assignment_read,
460 access->grp_assignment_write, access->grp_scalar_read,
461 access->grp_scalar_write, access->grp_total_scalarization,
462 access->grp_hint, access->grp_covered,
463 access->grp_unscalarizable_region, access->grp_unscalarized_data,
464 access->grp_partial_lhs, access->grp_to_be_replaced,
465 access->grp_to_be_debug_replaced, access->grp_maybe_modified,
466 access->grp_not_necessarilly_dereferenced);
467 else
468 fprintf (f, ", write = %d, grp_total_scalarization = %d, "
469 "grp_partial_lhs = %d\n",
470 access->write, access->grp_total_scalarization,
471 access->grp_partial_lhs);
474 /* Dump a subtree rooted in ACCESS to file F, indent by LEVEL. */
476 static void
477 dump_access_tree_1 (FILE *f, struct access *access, int level)
481 int i;
483 for (i = 0; i < level; i++)
484 fputs ("* ", dump_file);
486 dump_access (f, access, true);
488 if (access->first_child)
489 dump_access_tree_1 (f, access->first_child, level + 1);
491 access = access->next_sibling;
493 while (access);
496 /* Dump all access trees for a variable, given the pointer to the first root in
497 ACCESS. */
499 static void
500 dump_access_tree (FILE *f, struct access *access)
502 for (; access; access = access->next_grp)
503 dump_access_tree_1 (f, access, 0);
506 /* Return true iff ACC is non-NULL and has subaccesses. */
508 static inline bool
509 access_has_children_p (struct access *acc)
511 return acc && acc->first_child;
514 /* Return true iff ACC is (partly) covered by at least one replacement. */
516 static bool
517 access_has_replacements_p (struct access *acc)
519 struct access *child;
520 if (acc->grp_to_be_replaced)
521 return true;
522 for (child = acc->first_child; child; child = child->next_sibling)
523 if (access_has_replacements_p (child))
524 return true;
525 return false;
528 /* Return a vector of pointers to accesses for the variable given in BASE or
529 NULL if there is none. */
531 static vec<access_p> *
532 get_base_access_vector (tree base)
534 return base_access_vec->get (base);
537 /* Find an access with required OFFSET and SIZE in a subtree of accesses rooted
538 in ACCESS. Return NULL if it cannot be found. */
540 static struct access *
541 find_access_in_subtree (struct access *access, HOST_WIDE_INT offset,
542 HOST_WIDE_INT size)
544 while (access && (access->offset != offset || access->size != size))
546 struct access *child = access->first_child;
548 while (child && (child->offset + child->size <= offset))
549 child = child->next_sibling;
550 access = child;
553 return access;
556 /* Return the first group representative for DECL or NULL if none exists. */
558 static struct access *
559 get_first_repr_for_decl (tree base)
561 vec<access_p> *access_vec;
563 access_vec = get_base_access_vector (base);
564 if (!access_vec)
565 return NULL;
567 return (*access_vec)[0];
570 /* Find an access representative for the variable BASE and given OFFSET and
571 SIZE. Requires that access trees have already been built. Return NULL if
572 it cannot be found. */
574 static struct access *
575 get_var_base_offset_size_access (tree base, HOST_WIDE_INT offset,
576 HOST_WIDE_INT size)
578 struct access *access;
580 access = get_first_repr_for_decl (base);
581 while (access && (access->offset + access->size <= offset))
582 access = access->next_grp;
583 if (!access)
584 return NULL;
586 return find_access_in_subtree (access, offset, size);
589 /* Add LINK to the linked list of assign links of RACC. */
590 static void
591 add_link_to_rhs (struct access *racc, struct assign_link *link)
593 gcc_assert (link->racc == racc);
595 if (!racc->first_link)
597 gcc_assert (!racc->last_link);
598 racc->first_link = link;
600 else
601 racc->last_link->next = link;
603 racc->last_link = link;
604 link->next = NULL;
607 /* Move all link structures in their linked list in OLD_RACC to the linked list
608 in NEW_RACC. */
609 static void
610 relink_to_new_repr (struct access *new_racc, struct access *old_racc)
612 if (!old_racc->first_link)
614 gcc_assert (!old_racc->last_link);
615 return;
618 if (new_racc->first_link)
620 gcc_assert (!new_racc->last_link->next);
621 gcc_assert (!old_racc->last_link || !old_racc->last_link->next);
623 new_racc->last_link->next = old_racc->first_link;
624 new_racc->last_link = old_racc->last_link;
626 else
628 gcc_assert (!new_racc->last_link);
630 new_racc->first_link = old_racc->first_link;
631 new_racc->last_link = old_racc->last_link;
633 old_racc->first_link = old_racc->last_link = NULL;
636 /* Add ACCESS to the work queue (which is actually a stack). */
638 static void
639 add_access_to_work_queue (struct access *access)
641 if (!access->grp_queued)
643 gcc_assert (!access->next_queued);
644 access->next_queued = work_queue_head;
645 access->grp_queued = 1;
646 work_queue_head = access;
650 /* Pop an access from the work queue, and return it, assuming there is one. */
652 static struct access *
653 pop_access_from_work_queue (void)
655 struct access *access = work_queue_head;
657 work_queue_head = access->next_queued;
658 access->next_queued = NULL;
659 access->grp_queued = 0;
660 return access;
664 /* Allocate necessary structures. */
666 static void
667 sra_initialize (void)
669 candidate_bitmap = BITMAP_ALLOC (NULL);
670 candidates = new hash_table<uid_decl_hasher>
671 (vec_safe_length (cfun->local_decls) / 2);
672 should_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
673 cannot_scalarize_away_bitmap = BITMAP_ALLOC (NULL);
674 gcc_obstack_init (&name_obstack);
675 access_pool = create_alloc_pool ("SRA accesses", sizeof (struct access), 16);
676 link_pool = create_alloc_pool ("SRA links", sizeof (struct assign_link), 16);
677 base_access_vec = new hash_map<tree, auto_vec<access_p> >;
678 memset (&sra_stats, 0, sizeof (sra_stats));
679 encountered_apply_args = false;
680 encountered_recursive_call = false;
681 encountered_unchangable_recursive_call = false;
684 /* Deallocate all general structures. */
686 static void
687 sra_deinitialize (void)
689 BITMAP_FREE (candidate_bitmap);
690 delete candidates;
691 candidates = NULL;
692 BITMAP_FREE (should_scalarize_away_bitmap);
693 BITMAP_FREE (cannot_scalarize_away_bitmap);
694 free_alloc_pool (access_pool);
695 free_alloc_pool (link_pool);
696 obstack_free (&name_obstack, NULL);
698 delete base_access_vec;
701 /* Remove DECL from candidates for SRA and write REASON to the dump file if
702 there is one. */
703 static void
704 disqualify_candidate (tree decl, const char *reason)
706 if (bitmap_clear_bit (candidate_bitmap, DECL_UID (decl)))
707 candidates->remove_elt_with_hash (decl, DECL_UID (decl));
709 if (dump_file && (dump_flags & TDF_DETAILS))
711 fprintf (dump_file, "! Disqualifying ");
712 print_generic_expr (dump_file, decl, 0);
713 fprintf (dump_file, " - %s\n", reason);
717 /* Return true iff the type contains a field or an element which does not allow
718 scalarization. */
720 static bool
721 type_internals_preclude_sra_p (tree type, const char **msg)
723 tree fld;
724 tree et;
726 switch (TREE_CODE (type))
728 case RECORD_TYPE:
729 case UNION_TYPE:
730 case QUAL_UNION_TYPE:
731 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
732 if (TREE_CODE (fld) == FIELD_DECL)
734 tree ft = TREE_TYPE (fld);
736 if (TREE_THIS_VOLATILE (fld))
738 *msg = "volatile structure field";
739 return true;
741 if (!DECL_FIELD_OFFSET (fld))
743 *msg = "no structure field offset";
744 return true;
746 if (!DECL_SIZE (fld))
748 *msg = "zero structure field size";
749 return true;
751 if (!tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
753 *msg = "structure field offset not fixed";
754 return true;
756 if (!tree_fits_uhwi_p (DECL_SIZE (fld)))
758 *msg = "structure field size not fixed";
759 return true;
761 if (!tree_fits_shwi_p (bit_position (fld)))
763 *msg = "structure field size too big";
764 return true;
766 if (AGGREGATE_TYPE_P (ft)
767 && int_bit_position (fld) % BITS_PER_UNIT != 0)
769 *msg = "structure field is bit field";
770 return true;
773 if (AGGREGATE_TYPE_P (ft) && type_internals_preclude_sra_p (ft, msg))
774 return true;
777 return false;
779 case ARRAY_TYPE:
780 et = TREE_TYPE (type);
782 if (TYPE_VOLATILE (et))
784 *msg = "element type is volatile";
785 return true;
788 if (AGGREGATE_TYPE_P (et) && type_internals_preclude_sra_p (et, msg))
789 return true;
791 return false;
793 default:
794 return false;
798 /* If T is an SSA_NAME, return NULL if it is not a default def or return its
799 base variable if it is. Return T if it is not an SSA_NAME. */
801 static tree
802 get_ssa_base_param (tree t)
804 if (TREE_CODE (t) == SSA_NAME)
806 if (SSA_NAME_IS_DEFAULT_DEF (t))
807 return SSA_NAME_VAR (t);
808 else
809 return NULL_TREE;
811 return t;
814 /* Mark a dereference of BASE of distance DIST in a basic block tht STMT
815 belongs to, unless the BB has already been marked as a potentially
816 final. */
818 static void
819 mark_parm_dereference (tree base, HOST_WIDE_INT dist, gimple stmt)
821 basic_block bb = gimple_bb (stmt);
822 int idx, parm_index = 0;
823 tree parm;
825 if (bitmap_bit_p (final_bbs, bb->index))
826 return;
828 for (parm = DECL_ARGUMENTS (current_function_decl);
829 parm && parm != base;
830 parm = DECL_CHAIN (parm))
831 parm_index++;
833 gcc_assert (parm_index < func_param_count);
835 idx = bb->index * func_param_count + parm_index;
836 if (bb_dereferences[idx] < dist)
837 bb_dereferences[idx] = dist;
840 /* Allocate an access structure for BASE, OFFSET and SIZE, clear it, fill in
841 the three fields. Also add it to the vector of accesses corresponding to
842 the base. Finally, return the new access. */
844 static struct access *
845 create_access_1 (tree base, HOST_WIDE_INT offset, HOST_WIDE_INT size)
847 struct access *access;
849 access = (struct access *) pool_alloc (access_pool);
850 memset (access, 0, sizeof (struct access));
851 access->base = base;
852 access->offset = offset;
853 access->size = size;
855 base_access_vec->get_or_insert (base).safe_push (access);
857 return access;
860 /* Create and insert access for EXPR. Return created access, or NULL if it is
861 not possible. */
863 static struct access *
864 create_access (tree expr, gimple stmt, bool write)
866 struct access *access;
867 HOST_WIDE_INT offset, size, max_size;
868 tree base = expr;
869 bool ptr, unscalarizable_region = false;
871 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
873 if (sra_mode == SRA_MODE_EARLY_IPA
874 && TREE_CODE (base) == MEM_REF)
876 base = get_ssa_base_param (TREE_OPERAND (base, 0));
877 if (!base)
878 return NULL;
879 ptr = true;
881 else
882 ptr = false;
884 if (!DECL_P (base) || !bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
885 return NULL;
887 if (sra_mode == SRA_MODE_EARLY_IPA)
889 if (size < 0 || size != max_size)
891 disqualify_candidate (base, "Encountered a variable sized access.");
892 return NULL;
894 if (TREE_CODE (expr) == COMPONENT_REF
895 && DECL_BIT_FIELD (TREE_OPERAND (expr, 1)))
897 disqualify_candidate (base, "Encountered a bit-field access.");
898 return NULL;
900 gcc_checking_assert ((offset % BITS_PER_UNIT) == 0);
902 if (ptr)
903 mark_parm_dereference (base, offset + size, stmt);
905 else
907 if (size != max_size)
909 size = max_size;
910 unscalarizable_region = true;
912 if (size < 0)
914 disqualify_candidate (base, "Encountered an unconstrained access.");
915 return NULL;
919 access = create_access_1 (base, offset, size);
920 access->expr = expr;
921 access->type = TREE_TYPE (expr);
922 access->write = write;
923 access->grp_unscalarizable_region = unscalarizable_region;
924 access->stmt = stmt;
926 if (TREE_CODE (expr) == COMPONENT_REF
927 && DECL_NONADDRESSABLE_P (TREE_OPERAND (expr, 1)))
928 access->non_addressable = 1;
930 return access;
934 /* Return true iff TYPE is a RECORD_TYPE with fields that are either of gimple
935 register types or (recursively) records with only these two kinds of fields.
936 It also returns false if any of these records contains a bit-field. */
938 static bool
939 type_consists_of_records_p (tree type)
941 tree fld;
943 if (TREE_CODE (type) != RECORD_TYPE)
944 return false;
946 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
947 if (TREE_CODE (fld) == FIELD_DECL)
949 tree ft = TREE_TYPE (fld);
951 if (DECL_BIT_FIELD (fld))
952 return false;
954 if (!is_gimple_reg_type (ft)
955 && !type_consists_of_records_p (ft))
956 return false;
959 return true;
962 /* Create total_scalarization accesses for all scalar type fields in DECL that
963 must be of a RECORD_TYPE conforming to type_consists_of_records_p. BASE
964 must be the top-most VAR_DECL representing the variable, OFFSET must be the
965 offset of DECL within BASE. REF must be the memory reference expression for
966 the given decl. */
968 static void
969 completely_scalarize_record (tree base, tree decl, HOST_WIDE_INT offset,
970 tree ref)
972 tree fld, decl_type = TREE_TYPE (decl);
974 for (fld = TYPE_FIELDS (decl_type); fld; fld = DECL_CHAIN (fld))
975 if (TREE_CODE (fld) == FIELD_DECL)
977 HOST_WIDE_INT pos = offset + int_bit_position (fld);
978 tree ft = TREE_TYPE (fld);
979 tree nref = build3 (COMPONENT_REF, TREE_TYPE (fld), ref, fld,
980 NULL_TREE);
982 if (is_gimple_reg_type (ft))
984 struct access *access;
985 HOST_WIDE_INT size;
987 size = tree_to_uhwi (DECL_SIZE (fld));
988 access = create_access_1 (base, pos, size);
989 access->expr = nref;
990 access->type = ft;
991 access->grp_total_scalarization = 1;
992 /* Accesses for intraprocedural SRA can have their stmt NULL. */
994 else
995 completely_scalarize_record (base, fld, pos, nref);
999 /* Create total_scalarization accesses for all scalar type fields in VAR and
1000 for VAR a a whole. VAR must be of a RECORD_TYPE conforming to
1001 type_consists_of_records_p. */
1003 static void
1004 completely_scalarize_var (tree var)
1006 HOST_WIDE_INT size = tree_to_uhwi (DECL_SIZE (var));
1007 struct access *access;
1009 access = create_access_1 (var, 0, size);
1010 access->expr = var;
1011 access->type = TREE_TYPE (var);
1012 access->grp_total_scalarization = 1;
1014 completely_scalarize_record (var, var, 0, var);
1017 /* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */
1019 static inline bool
1020 contains_view_convert_expr_p (const_tree ref)
1022 while (handled_component_p (ref))
1024 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
1025 return true;
1026 ref = TREE_OPERAND (ref, 0);
1029 return false;
1032 /* Search the given tree for a declaration by skipping handled components and
1033 exclude it from the candidates. */
1035 static void
1036 disqualify_base_of_expr (tree t, const char *reason)
1038 t = get_base_address (t);
1039 if (sra_mode == SRA_MODE_EARLY_IPA
1040 && TREE_CODE (t) == MEM_REF)
1041 t = get_ssa_base_param (TREE_OPERAND (t, 0));
1043 if (t && DECL_P (t))
1044 disqualify_candidate (t, reason);
1047 /* Scan expression EXPR and create access structures for all accesses to
1048 candidates for scalarization. Return the created access or NULL if none is
1049 created. */
1051 static struct access *
1052 build_access_from_expr_1 (tree expr, gimple stmt, bool write)
1054 struct access *ret = NULL;
1055 bool partial_ref;
1057 if (TREE_CODE (expr) == BIT_FIELD_REF
1058 || TREE_CODE (expr) == IMAGPART_EXPR
1059 || TREE_CODE (expr) == REALPART_EXPR)
1061 expr = TREE_OPERAND (expr, 0);
1062 partial_ref = true;
1064 else
1065 partial_ref = false;
1067 /* We need to dive through V_C_Es in order to get the size of its parameter
1068 and not the result type. Ada produces such statements. We are also
1069 capable of handling the topmost V_C_E but not any of those buried in other
1070 handled components. */
1071 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
1072 expr = TREE_OPERAND (expr, 0);
1074 if (contains_view_convert_expr_p (expr))
1076 disqualify_base_of_expr (expr, "V_C_E under a different handled "
1077 "component.");
1078 return NULL;
1080 if (TREE_THIS_VOLATILE (expr))
1082 disqualify_base_of_expr (expr, "part of a volatile reference.");
1083 return NULL;
1086 switch (TREE_CODE (expr))
1088 case MEM_REF:
1089 if (TREE_CODE (TREE_OPERAND (expr, 0)) != ADDR_EXPR
1090 && sra_mode != SRA_MODE_EARLY_IPA)
1091 return NULL;
1092 /* fall through */
1093 case VAR_DECL:
1094 case PARM_DECL:
1095 case RESULT_DECL:
1096 case COMPONENT_REF:
1097 case ARRAY_REF:
1098 case ARRAY_RANGE_REF:
1099 ret = create_access (expr, stmt, write);
1100 break;
1102 default:
1103 break;
1106 if (write && partial_ref && ret)
1107 ret->grp_partial_lhs = 1;
1109 return ret;
1112 /* Scan expression EXPR and create access structures for all accesses to
1113 candidates for scalarization. Return true if any access has been inserted.
1114 STMT must be the statement from which the expression is taken, WRITE must be
1115 true if the expression is a store and false otherwise. */
1117 static bool
1118 build_access_from_expr (tree expr, gimple stmt, bool write)
1120 struct access *access;
1122 access = build_access_from_expr_1 (expr, stmt, write);
1123 if (access)
1125 /* This means the aggregate is accesses as a whole in a way other than an
1126 assign statement and thus cannot be removed even if we had a scalar
1127 replacement for everything. */
1128 if (cannot_scalarize_away_bitmap)
1129 bitmap_set_bit (cannot_scalarize_away_bitmap, DECL_UID (access->base));
1130 return true;
1132 return false;
1135 /* Return the single non-EH successor edge of BB or NULL if there is none or
1136 more than one. */
1138 static edge
1139 single_non_eh_succ (basic_block bb)
1141 edge e, res = NULL;
1142 edge_iterator ei;
1144 FOR_EACH_EDGE (e, ei, bb->succs)
1145 if (!(e->flags & EDGE_EH))
1147 if (res)
1148 return NULL;
1149 res = e;
1152 return res;
1155 /* Disqualify LHS and RHS for scalarization if STMT has to terminate its BB and
1156 there is no alternative spot where to put statements SRA might need to
1157 generate after it. The spot we are looking for is an edge leading to a
1158 single non-EH successor, if it exists and is indeed single. RHS may be
1159 NULL, in that case ignore it. */
1161 static bool
1162 disqualify_if_bad_bb_terminating_stmt (gimple stmt, tree lhs, tree rhs)
1164 if ((sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1165 && stmt_ends_bb_p (stmt))
1167 if (single_non_eh_succ (gimple_bb (stmt)))
1168 return false;
1170 disqualify_base_of_expr (lhs, "LHS of a throwing stmt.");
1171 if (rhs)
1172 disqualify_base_of_expr (rhs, "RHS of a throwing stmt.");
1173 return true;
1175 return false;
1178 /* Scan expressions occurring in STMT, create access structures for all accesses
1179 to candidates for scalarization and remove those candidates which occur in
1180 statements or expressions that prevent them from being split apart. Return
1181 true if any access has been inserted. */
1183 static bool
1184 build_accesses_from_assign (gimple stmt)
1186 tree lhs, rhs;
1187 struct access *lacc, *racc;
1189 if (!gimple_assign_single_p (stmt)
1190 /* Scope clobbers don't influence scalarization. */
1191 || gimple_clobber_p (stmt))
1192 return false;
1194 lhs = gimple_assign_lhs (stmt);
1195 rhs = gimple_assign_rhs1 (stmt);
1197 if (disqualify_if_bad_bb_terminating_stmt (stmt, lhs, rhs))
1198 return false;
1200 racc = build_access_from_expr_1 (rhs, stmt, false);
1201 lacc = build_access_from_expr_1 (lhs, stmt, true);
1203 if (lacc)
1204 lacc->grp_assignment_write = 1;
1206 if (racc)
1208 racc->grp_assignment_read = 1;
1209 if (should_scalarize_away_bitmap && !gimple_has_volatile_ops (stmt)
1210 && !is_gimple_reg_type (racc->type))
1211 bitmap_set_bit (should_scalarize_away_bitmap, DECL_UID (racc->base));
1214 if (lacc && racc
1215 && (sra_mode == SRA_MODE_EARLY_INTRA || sra_mode == SRA_MODE_INTRA)
1216 && !lacc->grp_unscalarizable_region
1217 && !racc->grp_unscalarizable_region
1218 && AGGREGATE_TYPE_P (TREE_TYPE (lhs))
1219 && lacc->size == racc->size
1220 && useless_type_conversion_p (lacc->type, racc->type))
1222 struct assign_link *link;
1224 link = (struct assign_link *) pool_alloc (link_pool);
1225 memset (link, 0, sizeof (struct assign_link));
1227 link->lacc = lacc;
1228 link->racc = racc;
1230 add_link_to_rhs (racc, link);
1233 return lacc || racc;
1236 /* Callback of walk_stmt_load_store_addr_ops visit_addr used to determine
1237 GIMPLE_ASM operands with memory constrains which cannot be scalarized. */
1239 static bool
1240 asm_visit_addr (gimple, tree op, tree, void *)
1242 op = get_base_address (op);
1243 if (op
1244 && DECL_P (op))
1245 disqualify_candidate (op, "Non-scalarizable GIMPLE_ASM operand.");
1247 return false;
1250 /* Return true iff callsite CALL has at least as many actual arguments as there
1251 are formal parameters of the function currently processed by IPA-SRA and
1252 that their types match. */
1254 static inline bool
1255 callsite_arguments_match_p (gimple call)
1257 if (gimple_call_num_args (call) < (unsigned) func_param_count)
1258 return false;
1260 tree parm;
1261 int i;
1262 for (parm = DECL_ARGUMENTS (current_function_decl), i = 0;
1263 parm;
1264 parm = DECL_CHAIN (parm), i++)
1266 tree arg = gimple_call_arg (call, i);
1267 if (!useless_type_conversion_p (TREE_TYPE (parm), TREE_TYPE (arg)))
1268 return false;
1270 return true;
1273 /* Scan function and look for interesting expressions and create access
1274 structures for them. Return true iff any access is created. */
1276 static bool
1277 scan_function (void)
1279 basic_block bb;
1280 bool ret = false;
1282 FOR_EACH_BB_FN (bb, cfun)
1284 gimple_stmt_iterator gsi;
1285 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1287 gimple stmt = gsi_stmt (gsi);
1288 tree t;
1289 unsigned i;
1291 if (final_bbs && stmt_can_throw_external (stmt))
1292 bitmap_set_bit (final_bbs, bb->index);
1293 switch (gimple_code (stmt))
1295 case GIMPLE_RETURN:
1296 t = gimple_return_retval (as_a <greturn *> (stmt));
1297 if (t != NULL_TREE)
1298 ret |= build_access_from_expr (t, stmt, false);
1299 if (final_bbs)
1300 bitmap_set_bit (final_bbs, bb->index);
1301 break;
1303 case GIMPLE_ASSIGN:
1304 ret |= build_accesses_from_assign (stmt);
1305 break;
1307 case GIMPLE_CALL:
1308 for (i = 0; i < gimple_call_num_args (stmt); i++)
1309 ret |= build_access_from_expr (gimple_call_arg (stmt, i),
1310 stmt, false);
1312 if (sra_mode == SRA_MODE_EARLY_IPA)
1314 tree dest = gimple_call_fndecl (stmt);
1315 int flags = gimple_call_flags (stmt);
1317 if (dest)
1319 if (DECL_BUILT_IN_CLASS (dest) == BUILT_IN_NORMAL
1320 && DECL_FUNCTION_CODE (dest) == BUILT_IN_APPLY_ARGS)
1321 encountered_apply_args = true;
1322 if (recursive_call_p (current_function_decl, dest))
1324 encountered_recursive_call = true;
1325 if (!callsite_arguments_match_p (stmt))
1326 encountered_unchangable_recursive_call = true;
1330 if (final_bbs
1331 && (flags & (ECF_CONST | ECF_PURE)) == 0)
1332 bitmap_set_bit (final_bbs, bb->index);
1335 t = gimple_call_lhs (stmt);
1336 if (t && !disqualify_if_bad_bb_terminating_stmt (stmt, t, NULL))
1337 ret |= build_access_from_expr (t, stmt, true);
1338 break;
1340 case GIMPLE_ASM:
1342 gasm *asm_stmt = as_a <gasm *> (stmt);
1343 walk_stmt_load_store_addr_ops (asm_stmt, NULL, NULL, NULL,
1344 asm_visit_addr);
1345 if (final_bbs)
1346 bitmap_set_bit (final_bbs, bb->index);
1348 for (i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
1350 t = TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
1351 ret |= build_access_from_expr (t, asm_stmt, false);
1353 for (i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
1355 t = TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
1356 ret |= build_access_from_expr (t, asm_stmt, true);
1359 break;
1361 default:
1362 break;
1367 return ret;
1370 /* Helper of QSORT function. There are pointers to accesses in the array. An
1371 access is considered smaller than another if it has smaller offset or if the
1372 offsets are the same but is size is bigger. */
1374 static int
1375 compare_access_positions (const void *a, const void *b)
1377 const access_p *fp1 = (const access_p *) a;
1378 const access_p *fp2 = (const access_p *) b;
1379 const access_p f1 = *fp1;
1380 const access_p f2 = *fp2;
1382 if (f1->offset != f2->offset)
1383 return f1->offset < f2->offset ? -1 : 1;
1385 if (f1->size == f2->size)
1387 if (f1->type == f2->type)
1388 return 0;
1389 /* Put any non-aggregate type before any aggregate type. */
1390 else if (!is_gimple_reg_type (f1->type)
1391 && is_gimple_reg_type (f2->type))
1392 return 1;
1393 else if (is_gimple_reg_type (f1->type)
1394 && !is_gimple_reg_type (f2->type))
1395 return -1;
1396 /* Put any complex or vector type before any other scalar type. */
1397 else if (TREE_CODE (f1->type) != COMPLEX_TYPE
1398 && TREE_CODE (f1->type) != VECTOR_TYPE
1399 && (TREE_CODE (f2->type) == COMPLEX_TYPE
1400 || TREE_CODE (f2->type) == VECTOR_TYPE))
1401 return 1;
1402 else if ((TREE_CODE (f1->type) == COMPLEX_TYPE
1403 || TREE_CODE (f1->type) == VECTOR_TYPE)
1404 && TREE_CODE (f2->type) != COMPLEX_TYPE
1405 && TREE_CODE (f2->type) != VECTOR_TYPE)
1406 return -1;
1407 /* Put the integral type with the bigger precision first. */
1408 else if (INTEGRAL_TYPE_P (f1->type)
1409 && INTEGRAL_TYPE_P (f2->type))
1410 return TYPE_PRECISION (f2->type) - TYPE_PRECISION (f1->type);
1411 /* Put any integral type with non-full precision last. */
1412 else if (INTEGRAL_TYPE_P (f1->type)
1413 && (TREE_INT_CST_LOW (TYPE_SIZE (f1->type))
1414 != TYPE_PRECISION (f1->type)))
1415 return 1;
1416 else if (INTEGRAL_TYPE_P (f2->type)
1417 && (TREE_INT_CST_LOW (TYPE_SIZE (f2->type))
1418 != TYPE_PRECISION (f2->type)))
1419 return -1;
1420 /* Stabilize the sort. */
1421 return TYPE_UID (f1->type) - TYPE_UID (f2->type);
1424 /* We want the bigger accesses first, thus the opposite operator in the next
1425 line: */
1426 return f1->size > f2->size ? -1 : 1;
1430 /* Append a name of the declaration to the name obstack. A helper function for
1431 make_fancy_name. */
1433 static void
1434 make_fancy_decl_name (tree decl)
1436 char buffer[32];
1438 tree name = DECL_NAME (decl);
1439 if (name)
1440 obstack_grow (&name_obstack, IDENTIFIER_POINTER (name),
1441 IDENTIFIER_LENGTH (name));
1442 else
1444 sprintf (buffer, "D%u", DECL_UID (decl));
1445 obstack_grow (&name_obstack, buffer, strlen (buffer));
1449 /* Helper for make_fancy_name. */
1451 static void
1452 make_fancy_name_1 (tree expr)
1454 char buffer[32];
1455 tree index;
1457 if (DECL_P (expr))
1459 make_fancy_decl_name (expr);
1460 return;
1463 switch (TREE_CODE (expr))
1465 case COMPONENT_REF:
1466 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1467 obstack_1grow (&name_obstack, '$');
1468 make_fancy_decl_name (TREE_OPERAND (expr, 1));
1469 break;
1471 case ARRAY_REF:
1472 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1473 obstack_1grow (&name_obstack, '$');
1474 /* Arrays with only one element may not have a constant as their
1475 index. */
1476 index = TREE_OPERAND (expr, 1);
1477 if (TREE_CODE (index) != INTEGER_CST)
1478 break;
1479 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (index));
1480 obstack_grow (&name_obstack, buffer, strlen (buffer));
1481 break;
1483 case ADDR_EXPR:
1484 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1485 break;
1487 case MEM_REF:
1488 make_fancy_name_1 (TREE_OPERAND (expr, 0));
1489 if (!integer_zerop (TREE_OPERAND (expr, 1)))
1491 obstack_1grow (&name_obstack, '$');
1492 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC,
1493 TREE_INT_CST_LOW (TREE_OPERAND (expr, 1)));
1494 obstack_grow (&name_obstack, buffer, strlen (buffer));
1496 break;
1498 case BIT_FIELD_REF:
1499 case REALPART_EXPR:
1500 case IMAGPART_EXPR:
1501 gcc_unreachable (); /* we treat these as scalars. */
1502 break;
1503 default:
1504 break;
1508 /* Create a human readable name for replacement variable of ACCESS. */
1510 static char *
1511 make_fancy_name (tree expr)
1513 make_fancy_name_1 (expr);
1514 obstack_1grow (&name_obstack, '\0');
1515 return XOBFINISH (&name_obstack, char *);
1518 /* Construct a MEM_REF that would reference a part of aggregate BASE of type
1519 EXP_TYPE at the given OFFSET. If BASE is something for which
1520 get_addr_base_and_unit_offset returns NULL, gsi must be non-NULL and is used
1521 to insert new statements either before or below the current one as specified
1522 by INSERT_AFTER. This function is not capable of handling bitfields.
1524 BASE must be either a declaration or a memory reference that has correct
1525 alignment ifformation embeded in it (e.g. a pre-existing one in SRA). */
1527 tree
1528 build_ref_for_offset (location_t loc, tree base, HOST_WIDE_INT offset,
1529 tree exp_type, gimple_stmt_iterator *gsi,
1530 bool insert_after)
1532 tree prev_base = base;
1533 tree off;
1534 tree mem_ref;
1535 HOST_WIDE_INT base_offset;
1536 unsigned HOST_WIDE_INT misalign;
1537 unsigned int align;
1539 gcc_checking_assert (offset % BITS_PER_UNIT == 0);
1540 get_object_alignment_1 (base, &align, &misalign);
1541 base = get_addr_base_and_unit_offset (base, &base_offset);
1543 /* get_addr_base_and_unit_offset returns NULL for references with a variable
1544 offset such as array[var_index]. */
1545 if (!base)
1547 gassign *stmt;
1548 tree tmp, addr;
1550 gcc_checking_assert (gsi);
1551 tmp = make_ssa_name (build_pointer_type (TREE_TYPE (prev_base)), NULL);
1552 addr = build_fold_addr_expr (unshare_expr (prev_base));
1553 STRIP_USELESS_TYPE_CONVERSION (addr);
1554 stmt = gimple_build_assign (tmp, addr);
1555 gimple_set_location (stmt, loc);
1556 if (insert_after)
1557 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
1558 else
1559 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1561 off = build_int_cst (reference_alias_ptr_type (prev_base),
1562 offset / BITS_PER_UNIT);
1563 base = tmp;
1565 else if (TREE_CODE (base) == MEM_REF)
1567 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1568 base_offset + offset / BITS_PER_UNIT);
1569 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1570 base = unshare_expr (TREE_OPERAND (base, 0));
1572 else
1574 off = build_int_cst (reference_alias_ptr_type (base),
1575 base_offset + offset / BITS_PER_UNIT);
1576 base = build_fold_addr_expr (unshare_expr (base));
1579 misalign = (misalign + offset) & (align - 1);
1580 if (misalign != 0)
1581 align = (misalign & -misalign);
1582 if (align < TYPE_ALIGN (exp_type))
1583 exp_type = build_aligned_type (exp_type, align);
1585 mem_ref = fold_build2_loc (loc, MEM_REF, exp_type, base, off);
1586 if (TREE_THIS_VOLATILE (prev_base))
1587 TREE_THIS_VOLATILE (mem_ref) = 1;
1588 if (TREE_SIDE_EFFECTS (prev_base))
1589 TREE_SIDE_EFFECTS (mem_ref) = 1;
1590 return mem_ref;
1593 /* Construct a memory reference to a part of an aggregate BASE at the given
1594 OFFSET and of the same type as MODEL. In case this is a reference to a
1595 bit-field, the function will replicate the last component_ref of model's
1596 expr to access it. GSI and INSERT_AFTER have the same meaning as in
1597 build_ref_for_offset. */
1599 static tree
1600 build_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1601 struct access *model, gimple_stmt_iterator *gsi,
1602 bool insert_after)
1604 if (TREE_CODE (model->expr) == COMPONENT_REF
1605 && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
1607 /* This access represents a bit-field. */
1608 tree t, exp_type, fld = TREE_OPERAND (model->expr, 1);
1610 offset -= int_bit_position (fld);
1611 exp_type = TREE_TYPE (TREE_OPERAND (model->expr, 0));
1612 t = build_ref_for_offset (loc, base, offset, exp_type, gsi, insert_after);
1613 return fold_build3_loc (loc, COMPONENT_REF, TREE_TYPE (fld), t, fld,
1614 NULL_TREE);
1616 else
1617 return build_ref_for_offset (loc, base, offset, model->type,
1618 gsi, insert_after);
1621 /* Attempt to build a memory reference that we could but into a gimple
1622 debug_bind statement. Similar to build_ref_for_model but punts if it has to
1623 create statements and return s NULL instead. This function also ignores
1624 alignment issues and so its results should never end up in non-debug
1625 statements. */
1627 static tree
1628 build_debug_ref_for_model (location_t loc, tree base, HOST_WIDE_INT offset,
1629 struct access *model)
1631 HOST_WIDE_INT base_offset;
1632 tree off;
1634 if (TREE_CODE (model->expr) == COMPONENT_REF
1635 && DECL_BIT_FIELD (TREE_OPERAND (model->expr, 1)))
1636 return NULL_TREE;
1638 base = get_addr_base_and_unit_offset (base, &base_offset);
1639 if (!base)
1640 return NULL_TREE;
1641 if (TREE_CODE (base) == MEM_REF)
1643 off = build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)),
1644 base_offset + offset / BITS_PER_UNIT);
1645 off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1), off);
1646 base = unshare_expr (TREE_OPERAND (base, 0));
1648 else
1650 off = build_int_cst (reference_alias_ptr_type (base),
1651 base_offset + offset / BITS_PER_UNIT);
1652 base = build_fold_addr_expr (unshare_expr (base));
1655 return fold_build2_loc (loc, MEM_REF, model->type, base, off);
1658 /* Construct a memory reference consisting of component_refs and array_refs to
1659 a part of an aggregate *RES (which is of type TYPE). The requested part
1660 should have type EXP_TYPE at be the given OFFSET. This function might not
1661 succeed, it returns true when it does and only then *RES points to something
1662 meaningful. This function should be used only to build expressions that we
1663 might need to present to user (e.g. in warnings). In all other situations,
1664 build_ref_for_model or build_ref_for_offset should be used instead. */
1666 static bool
1667 build_user_friendly_ref_for_offset (tree *res, tree type, HOST_WIDE_INT offset,
1668 tree exp_type)
1670 while (1)
1672 tree fld;
1673 tree tr_size, index, minidx;
1674 HOST_WIDE_INT el_size;
1676 if (offset == 0 && exp_type
1677 && types_compatible_p (exp_type, type))
1678 return true;
1680 switch (TREE_CODE (type))
1682 case UNION_TYPE:
1683 case QUAL_UNION_TYPE:
1684 case RECORD_TYPE:
1685 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
1687 HOST_WIDE_INT pos, size;
1688 tree tr_pos, expr, *expr_ptr;
1690 if (TREE_CODE (fld) != FIELD_DECL)
1691 continue;
1693 tr_pos = bit_position (fld);
1694 if (!tr_pos || !tree_fits_uhwi_p (tr_pos))
1695 continue;
1696 pos = tree_to_uhwi (tr_pos);
1697 gcc_assert (TREE_CODE (type) == RECORD_TYPE || pos == 0);
1698 tr_size = DECL_SIZE (fld);
1699 if (!tr_size || !tree_fits_uhwi_p (tr_size))
1700 continue;
1701 size = tree_to_uhwi (tr_size);
1702 if (size == 0)
1704 if (pos != offset)
1705 continue;
1707 else if (pos > offset || (pos + size) <= offset)
1708 continue;
1710 expr = build3 (COMPONENT_REF, TREE_TYPE (fld), *res, fld,
1711 NULL_TREE);
1712 expr_ptr = &expr;
1713 if (build_user_friendly_ref_for_offset (expr_ptr, TREE_TYPE (fld),
1714 offset - pos, exp_type))
1716 *res = expr;
1717 return true;
1720 return false;
1722 case ARRAY_TYPE:
1723 tr_size = TYPE_SIZE (TREE_TYPE (type));
1724 if (!tr_size || !tree_fits_uhwi_p (tr_size))
1725 return false;
1726 el_size = tree_to_uhwi (tr_size);
1728 minidx = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1729 if (TREE_CODE (minidx) != INTEGER_CST || el_size == 0)
1730 return false;
1731 index = build_int_cst (TYPE_DOMAIN (type), offset / el_size);
1732 if (!integer_zerop (minidx))
1733 index = int_const_binop (PLUS_EXPR, index, minidx);
1734 *res = build4 (ARRAY_REF, TREE_TYPE (type), *res, index,
1735 NULL_TREE, NULL_TREE);
1736 offset = offset % el_size;
1737 type = TREE_TYPE (type);
1738 break;
1740 default:
1741 if (offset != 0)
1742 return false;
1744 if (exp_type)
1745 return false;
1746 else
1747 return true;
1752 /* Return true iff TYPE is stdarg va_list type. */
1754 static inline bool
1755 is_va_list_type (tree type)
1757 return TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (va_list_type_node);
1760 /* Print message to dump file why a variable was rejected. */
1762 static void
1763 reject (tree var, const char *msg)
1765 if (dump_file && (dump_flags & TDF_DETAILS))
1767 fprintf (dump_file, "Rejected (%d): %s: ", DECL_UID (var), msg);
1768 print_generic_expr (dump_file, var, 0);
1769 fprintf (dump_file, "\n");
1773 /* Return true if VAR is a candidate for SRA. */
1775 static bool
1776 maybe_add_sra_candidate (tree var)
1778 tree type = TREE_TYPE (var);
1779 const char *msg;
1780 tree_node **slot;
1782 if (!AGGREGATE_TYPE_P (type))
1784 reject (var, "not aggregate");
1785 return false;
1787 if (needs_to_live_in_memory (var))
1789 reject (var, "needs to live in memory");
1790 return false;
1792 if (TREE_THIS_VOLATILE (var))
1794 reject (var, "is volatile");
1795 return false;
1797 if (!COMPLETE_TYPE_P (type))
1799 reject (var, "has incomplete type");
1800 return false;
1802 if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
1804 reject (var, "type size not fixed");
1805 return false;
1807 if (tree_to_uhwi (TYPE_SIZE (type)) == 0)
1809 reject (var, "type size is zero");
1810 return false;
1812 if (type_internals_preclude_sra_p (type, &msg))
1814 reject (var, msg);
1815 return false;
1817 if (/* Fix for PR 41089. tree-stdarg.c needs to have va_lists intact but
1818 we also want to schedule it rather late. Thus we ignore it in
1819 the early pass. */
1820 (sra_mode == SRA_MODE_EARLY_INTRA
1821 && is_va_list_type (type)))
1823 reject (var, "is va_list");
1824 return false;
1827 bitmap_set_bit (candidate_bitmap, DECL_UID (var));
1828 slot = candidates->find_slot_with_hash (var, DECL_UID (var), INSERT);
1829 *slot = var;
1831 if (dump_file && (dump_flags & TDF_DETAILS))
1833 fprintf (dump_file, "Candidate (%d): ", DECL_UID (var));
1834 print_generic_expr (dump_file, var, 0);
1835 fprintf (dump_file, "\n");
1838 return true;
1841 /* The very first phase of intraprocedural SRA. It marks in candidate_bitmap
1842 those with type which is suitable for scalarization. */
1844 static bool
1845 find_var_candidates (void)
1847 tree var, parm;
1848 unsigned int i;
1849 bool ret = false;
1851 for (parm = DECL_ARGUMENTS (current_function_decl);
1852 parm;
1853 parm = DECL_CHAIN (parm))
1854 ret |= maybe_add_sra_candidate (parm);
1856 FOR_EACH_LOCAL_DECL (cfun, i, var)
1858 if (TREE_CODE (var) != VAR_DECL)
1859 continue;
1861 ret |= maybe_add_sra_candidate (var);
1864 return ret;
1867 /* Sort all accesses for the given variable, check for partial overlaps and
1868 return NULL if there are any. If there are none, pick a representative for
1869 each combination of offset and size and create a linked list out of them.
1870 Return the pointer to the first representative and make sure it is the first
1871 one in the vector of accesses. */
1873 static struct access *
1874 sort_and_splice_var_accesses (tree var)
1876 int i, j, access_count;
1877 struct access *res, **prev_acc_ptr = &res;
1878 vec<access_p> *access_vec;
1879 bool first = true;
1880 HOST_WIDE_INT low = -1, high = 0;
1882 access_vec = get_base_access_vector (var);
1883 if (!access_vec)
1884 return NULL;
1885 access_count = access_vec->length ();
1887 /* Sort by <OFFSET, SIZE>. */
1888 access_vec->qsort (compare_access_positions);
1890 i = 0;
1891 while (i < access_count)
1893 struct access *access = (*access_vec)[i];
1894 bool grp_write = access->write;
1895 bool grp_read = !access->write;
1896 bool grp_scalar_write = access->write
1897 && is_gimple_reg_type (access->type);
1898 bool grp_scalar_read = !access->write
1899 && is_gimple_reg_type (access->type);
1900 bool grp_assignment_read = access->grp_assignment_read;
1901 bool grp_assignment_write = access->grp_assignment_write;
1902 bool multiple_scalar_reads = false;
1903 bool total_scalarization = access->grp_total_scalarization;
1904 bool grp_partial_lhs = access->grp_partial_lhs;
1905 bool first_scalar = is_gimple_reg_type (access->type);
1906 bool unscalarizable_region = access->grp_unscalarizable_region;
1908 if (first || access->offset >= high)
1910 first = false;
1911 low = access->offset;
1912 high = access->offset + access->size;
1914 else if (access->offset > low && access->offset + access->size > high)
1915 return NULL;
1916 else
1917 gcc_assert (access->offset >= low
1918 && access->offset + access->size <= high);
1920 j = i + 1;
1921 while (j < access_count)
1923 struct access *ac2 = (*access_vec)[j];
1924 if (ac2->offset != access->offset || ac2->size != access->size)
1925 break;
1926 if (ac2->write)
1928 grp_write = true;
1929 grp_scalar_write = (grp_scalar_write
1930 || is_gimple_reg_type (ac2->type));
1932 else
1934 grp_read = true;
1935 if (is_gimple_reg_type (ac2->type))
1937 if (grp_scalar_read)
1938 multiple_scalar_reads = true;
1939 else
1940 grp_scalar_read = true;
1943 grp_assignment_read |= ac2->grp_assignment_read;
1944 grp_assignment_write |= ac2->grp_assignment_write;
1945 grp_partial_lhs |= ac2->grp_partial_lhs;
1946 unscalarizable_region |= ac2->grp_unscalarizable_region;
1947 total_scalarization |= ac2->grp_total_scalarization;
1948 relink_to_new_repr (access, ac2);
1950 /* If there are both aggregate-type and scalar-type accesses with
1951 this combination of size and offset, the comparison function
1952 should have put the scalars first. */
1953 gcc_assert (first_scalar || !is_gimple_reg_type (ac2->type));
1954 ac2->group_representative = access;
1955 j++;
1958 i = j;
1960 access->group_representative = access;
1961 access->grp_write = grp_write;
1962 access->grp_read = grp_read;
1963 access->grp_scalar_read = grp_scalar_read;
1964 access->grp_scalar_write = grp_scalar_write;
1965 access->grp_assignment_read = grp_assignment_read;
1966 access->grp_assignment_write = grp_assignment_write;
1967 access->grp_hint = multiple_scalar_reads || total_scalarization;
1968 access->grp_total_scalarization = total_scalarization;
1969 access->grp_partial_lhs = grp_partial_lhs;
1970 access->grp_unscalarizable_region = unscalarizable_region;
1971 if (access->first_link)
1972 add_access_to_work_queue (access);
1974 *prev_acc_ptr = access;
1975 prev_acc_ptr = &access->next_grp;
1978 gcc_assert (res == (*access_vec)[0]);
1979 return res;
1982 /* Create a variable for the given ACCESS which determines the type, name and a
1983 few other properties. Return the variable declaration and store it also to
1984 ACCESS->replacement. */
1986 static tree
1987 create_access_replacement (struct access *access)
1989 tree repl;
1991 if (access->grp_to_be_debug_replaced)
1993 repl = create_tmp_var_raw (access->type, NULL);
1994 DECL_CONTEXT (repl) = current_function_decl;
1996 else
1997 repl = create_tmp_var (access->type, "SR");
1998 if (TREE_CODE (access->type) == COMPLEX_TYPE
1999 || TREE_CODE (access->type) == VECTOR_TYPE)
2001 if (!access->grp_partial_lhs)
2002 DECL_GIMPLE_REG_P (repl) = 1;
2004 else if (access->grp_partial_lhs
2005 && is_gimple_reg_type (access->type))
2006 TREE_ADDRESSABLE (repl) = 1;
2008 DECL_SOURCE_LOCATION (repl) = DECL_SOURCE_LOCATION (access->base);
2009 DECL_ARTIFICIAL (repl) = 1;
2010 DECL_IGNORED_P (repl) = DECL_IGNORED_P (access->base);
2012 if (DECL_NAME (access->base)
2013 && !DECL_IGNORED_P (access->base)
2014 && !DECL_ARTIFICIAL (access->base))
2016 char *pretty_name = make_fancy_name (access->expr);
2017 tree debug_expr = unshare_expr_without_location (access->expr), d;
2018 bool fail = false;
2020 DECL_NAME (repl) = get_identifier (pretty_name);
2021 obstack_free (&name_obstack, pretty_name);
2023 /* Get rid of any SSA_NAMEs embedded in debug_expr,
2024 as DECL_DEBUG_EXPR isn't considered when looking for still
2025 used SSA_NAMEs and thus they could be freed. All debug info
2026 generation cares is whether something is constant or variable
2027 and that get_ref_base_and_extent works properly on the
2028 expression. It cannot handle accesses at a non-constant offset
2029 though, so just give up in those cases. */
2030 for (d = debug_expr;
2031 !fail && (handled_component_p (d) || TREE_CODE (d) == MEM_REF);
2032 d = TREE_OPERAND (d, 0))
2033 switch (TREE_CODE (d))
2035 case ARRAY_REF:
2036 case ARRAY_RANGE_REF:
2037 if (TREE_OPERAND (d, 1)
2038 && TREE_CODE (TREE_OPERAND (d, 1)) != INTEGER_CST)
2039 fail = true;
2040 if (TREE_OPERAND (d, 3)
2041 && TREE_CODE (TREE_OPERAND (d, 3)) != INTEGER_CST)
2042 fail = true;
2043 /* FALLTHRU */
2044 case COMPONENT_REF:
2045 if (TREE_OPERAND (d, 2)
2046 && TREE_CODE (TREE_OPERAND (d, 2)) != INTEGER_CST)
2047 fail = true;
2048 break;
2049 case MEM_REF:
2050 if (TREE_CODE (TREE_OPERAND (d, 0)) != ADDR_EXPR)
2051 fail = true;
2052 else
2053 d = TREE_OPERAND (d, 0);
2054 break;
2055 default:
2056 break;
2058 if (!fail)
2060 SET_DECL_DEBUG_EXPR (repl, debug_expr);
2061 DECL_HAS_DEBUG_EXPR_P (repl) = 1;
2063 if (access->grp_no_warning)
2064 TREE_NO_WARNING (repl) = 1;
2065 else
2066 TREE_NO_WARNING (repl) = TREE_NO_WARNING (access->base);
2068 else
2069 TREE_NO_WARNING (repl) = 1;
2071 if (dump_file)
2073 if (access->grp_to_be_debug_replaced)
2075 fprintf (dump_file, "Created a debug-only replacement for ");
2076 print_generic_expr (dump_file, access->base, 0);
2077 fprintf (dump_file, " offset: %u, size: %u\n",
2078 (unsigned) access->offset, (unsigned) access->size);
2080 else
2082 fprintf (dump_file, "Created a replacement for ");
2083 print_generic_expr (dump_file, access->base, 0);
2084 fprintf (dump_file, " offset: %u, size: %u: ",
2085 (unsigned) access->offset, (unsigned) access->size);
2086 print_generic_expr (dump_file, repl, 0);
2087 fprintf (dump_file, "\n");
2090 sra_stats.replacements++;
2092 return repl;
2095 /* Return ACCESS scalar replacement, create it if it does not exist yet. */
2097 static inline tree
2098 get_access_replacement (struct access *access)
2100 gcc_checking_assert (access->replacement_decl);
2101 return access->replacement_decl;
2105 /* Build a subtree of accesses rooted in *ACCESS, and move the pointer in the
2106 linked list along the way. Stop when *ACCESS is NULL or the access pointed
2107 to it is not "within" the root. Return false iff some accesses partially
2108 overlap. */
2110 static bool
2111 build_access_subtree (struct access **access)
2113 struct access *root = *access, *last_child = NULL;
2114 HOST_WIDE_INT limit = root->offset + root->size;
2116 *access = (*access)->next_grp;
2117 while (*access && (*access)->offset + (*access)->size <= limit)
2119 if (!last_child)
2120 root->first_child = *access;
2121 else
2122 last_child->next_sibling = *access;
2123 last_child = *access;
2125 if (!build_access_subtree (access))
2126 return false;
2129 if (*access && (*access)->offset < limit)
2130 return false;
2132 return true;
2135 /* Build a tree of access representatives, ACCESS is the pointer to the first
2136 one, others are linked in a list by the next_grp field. Return false iff
2137 some accesses partially overlap. */
2139 static bool
2140 build_access_trees (struct access *access)
2142 while (access)
2144 struct access *root = access;
2146 if (!build_access_subtree (&access))
2147 return false;
2148 root->next_grp = access;
2150 return true;
2153 /* Return true if expr contains some ARRAY_REFs into a variable bounded
2154 array. */
2156 static bool
2157 expr_with_var_bounded_array_refs_p (tree expr)
2159 while (handled_component_p (expr))
2161 if (TREE_CODE (expr) == ARRAY_REF
2162 && !tree_fits_shwi_p (array_ref_low_bound (expr)))
2163 return true;
2164 expr = TREE_OPERAND (expr, 0);
2166 return false;
2169 /* Analyze the subtree of accesses rooted in ROOT, scheduling replacements when
2170 both seeming beneficial and when ALLOW_REPLACEMENTS allows it. Also set all
2171 sorts of access flags appropriately along the way, notably always set
2172 grp_read and grp_assign_read according to MARK_READ and grp_write when
2173 MARK_WRITE is true.
2175 Creating a replacement for a scalar access is considered beneficial if its
2176 grp_hint is set (this means we are either attempting total scalarization or
2177 there is more than one direct read access) or according to the following
2178 table:
2180 Access written to through a scalar type (once or more times)
2182 | Written to in an assignment statement
2184 | | Access read as scalar _once_
2185 | | |
2186 | | | Read in an assignment statement
2187 | | | |
2188 | | | | Scalarize Comment
2189 -----------------------------------------------------------------------------
2190 0 0 0 0 No access for the scalar
2191 0 0 0 1 No access for the scalar
2192 0 0 1 0 No Single read - won't help
2193 0 0 1 1 No The same case
2194 0 1 0 0 No access for the scalar
2195 0 1 0 1 No access for the scalar
2196 0 1 1 0 Yes s = *g; return s.i;
2197 0 1 1 1 Yes The same case as above
2198 1 0 0 0 No Won't help
2199 1 0 0 1 Yes s.i = 1; *g = s;
2200 1 0 1 0 Yes s.i = 5; g = s.i;
2201 1 0 1 1 Yes The same case as above
2202 1 1 0 0 No Won't help.
2203 1 1 0 1 Yes s.i = 1; *g = s;
2204 1 1 1 0 Yes s = *g; return s.i;
2205 1 1 1 1 Yes Any of the above yeses */
2207 static bool
2208 analyze_access_subtree (struct access *root, struct access *parent,
2209 bool allow_replacements)
2211 struct access *child;
2212 HOST_WIDE_INT limit = root->offset + root->size;
2213 HOST_WIDE_INT covered_to = root->offset;
2214 bool scalar = is_gimple_reg_type (root->type);
2215 bool hole = false, sth_created = false;
2217 if (parent)
2219 if (parent->grp_read)
2220 root->grp_read = 1;
2221 if (parent->grp_assignment_read)
2222 root->grp_assignment_read = 1;
2223 if (parent->grp_write)
2224 root->grp_write = 1;
2225 if (parent->grp_assignment_write)
2226 root->grp_assignment_write = 1;
2227 if (parent->grp_total_scalarization)
2228 root->grp_total_scalarization = 1;
2231 if (root->grp_unscalarizable_region)
2232 allow_replacements = false;
2234 if (allow_replacements && expr_with_var_bounded_array_refs_p (root->expr))
2235 allow_replacements = false;
2237 for (child = root->first_child; child; child = child->next_sibling)
2239 hole |= covered_to < child->offset;
2240 sth_created |= analyze_access_subtree (child, root,
2241 allow_replacements && !scalar);
2243 root->grp_unscalarized_data |= child->grp_unscalarized_data;
2244 root->grp_total_scalarization &= child->grp_total_scalarization;
2245 if (child->grp_covered)
2246 covered_to += child->size;
2247 else
2248 hole = true;
2251 if (allow_replacements && scalar && !root->first_child
2252 && (root->grp_hint
2253 || ((root->grp_scalar_read || root->grp_assignment_read)
2254 && (root->grp_scalar_write || root->grp_assignment_write))))
2256 /* Always create access replacements that cover the whole access.
2257 For integral types this means the precision has to match.
2258 Avoid assumptions based on the integral type kind, too. */
2259 if (INTEGRAL_TYPE_P (root->type)
2260 && (TREE_CODE (root->type) != INTEGER_TYPE
2261 || TYPE_PRECISION (root->type) != root->size)
2262 /* But leave bitfield accesses alone. */
2263 && (TREE_CODE (root->expr) != COMPONENT_REF
2264 || !DECL_BIT_FIELD (TREE_OPERAND (root->expr, 1))))
2266 tree rt = root->type;
2267 gcc_assert ((root->offset % BITS_PER_UNIT) == 0
2268 && (root->size % BITS_PER_UNIT) == 0);
2269 root->type = build_nonstandard_integer_type (root->size,
2270 TYPE_UNSIGNED (rt));
2271 root->expr = build_ref_for_offset (UNKNOWN_LOCATION,
2272 root->base, root->offset,
2273 root->type, NULL, false);
2275 if (dump_file && (dump_flags & TDF_DETAILS))
2277 fprintf (dump_file, "Changing the type of a replacement for ");
2278 print_generic_expr (dump_file, root->base, 0);
2279 fprintf (dump_file, " offset: %u, size: %u ",
2280 (unsigned) root->offset, (unsigned) root->size);
2281 fprintf (dump_file, " to an integer.\n");
2285 root->grp_to_be_replaced = 1;
2286 root->replacement_decl = create_access_replacement (root);
2287 sth_created = true;
2288 hole = false;
2290 else
2292 if (allow_replacements
2293 && scalar && !root->first_child
2294 && (root->grp_scalar_write || root->grp_assignment_write)
2295 && !bitmap_bit_p (cannot_scalarize_away_bitmap,
2296 DECL_UID (root->base)))
2298 gcc_checking_assert (!root->grp_scalar_read
2299 && !root->grp_assignment_read);
2300 sth_created = true;
2301 if (MAY_HAVE_DEBUG_STMTS)
2303 root->grp_to_be_debug_replaced = 1;
2304 root->replacement_decl = create_access_replacement (root);
2308 if (covered_to < limit)
2309 hole = true;
2310 if (scalar)
2311 root->grp_total_scalarization = 0;
2314 if (!hole || root->grp_total_scalarization)
2315 root->grp_covered = 1;
2316 else if (root->grp_write || TREE_CODE (root->base) == PARM_DECL)
2317 root->grp_unscalarized_data = 1; /* not covered and written to */
2318 return sth_created;
2321 /* Analyze all access trees linked by next_grp by the means of
2322 analyze_access_subtree. */
2323 static bool
2324 analyze_access_trees (struct access *access)
2326 bool ret = false;
2328 while (access)
2330 if (analyze_access_subtree (access, NULL, true))
2331 ret = true;
2332 access = access->next_grp;
2335 return ret;
2338 /* Return true iff a potential new child of LACC at offset OFFSET and with size
2339 SIZE would conflict with an already existing one. If exactly such a child
2340 already exists in LACC, store a pointer to it in EXACT_MATCH. */
2342 static bool
2343 child_would_conflict_in_lacc (struct access *lacc, HOST_WIDE_INT norm_offset,
2344 HOST_WIDE_INT size, struct access **exact_match)
2346 struct access *child;
2348 for (child = lacc->first_child; child; child = child->next_sibling)
2350 if (child->offset == norm_offset && child->size == size)
2352 *exact_match = child;
2353 return true;
2356 if (child->offset < norm_offset + size
2357 && child->offset + child->size > norm_offset)
2358 return true;
2361 return false;
2364 /* Create a new child access of PARENT, with all properties just like MODEL
2365 except for its offset and with its grp_write false and grp_read true.
2366 Return the new access or NULL if it cannot be created. Note that this access
2367 is created long after all splicing and sorting, it's not located in any
2368 access vector and is automatically a representative of its group. */
2370 static struct access *
2371 create_artificial_child_access (struct access *parent, struct access *model,
2372 HOST_WIDE_INT new_offset)
2374 struct access *access;
2375 struct access **child;
2376 tree expr = parent->base;
2378 gcc_assert (!model->grp_unscalarizable_region);
2380 access = (struct access *) pool_alloc (access_pool);
2381 memset (access, 0, sizeof (struct access));
2382 if (!build_user_friendly_ref_for_offset (&expr, TREE_TYPE (expr), new_offset,
2383 model->type))
2385 access->grp_no_warning = true;
2386 expr = build_ref_for_model (EXPR_LOCATION (parent->base), parent->base,
2387 new_offset, model, NULL, false);
2390 access->base = parent->base;
2391 access->expr = expr;
2392 access->offset = new_offset;
2393 access->size = model->size;
2394 access->type = model->type;
2395 access->grp_write = true;
2396 access->grp_read = false;
2398 child = &parent->first_child;
2399 while (*child && (*child)->offset < new_offset)
2400 child = &(*child)->next_sibling;
2402 access->next_sibling = *child;
2403 *child = access;
2405 return access;
2409 /* Propagate all subaccesses of RACC across an assignment link to LACC. Return
2410 true if any new subaccess was created. Additionally, if RACC is a scalar
2411 access but LACC is not, change the type of the latter, if possible. */
2413 static bool
2414 propagate_subaccesses_across_link (struct access *lacc, struct access *racc)
2416 struct access *rchild;
2417 HOST_WIDE_INT norm_delta = lacc->offset - racc->offset;
2418 bool ret = false;
2420 if (is_gimple_reg_type (lacc->type)
2421 || lacc->grp_unscalarizable_region
2422 || racc->grp_unscalarizable_region)
2423 return false;
2425 if (is_gimple_reg_type (racc->type))
2427 if (!lacc->first_child && !racc->first_child)
2429 tree t = lacc->base;
2431 lacc->type = racc->type;
2432 if (build_user_friendly_ref_for_offset (&t, TREE_TYPE (t),
2433 lacc->offset, racc->type))
2434 lacc->expr = t;
2435 else
2437 lacc->expr = build_ref_for_model (EXPR_LOCATION (lacc->base),
2438 lacc->base, lacc->offset,
2439 racc, NULL, false);
2440 lacc->grp_no_warning = true;
2443 return false;
2446 for (rchild = racc->first_child; rchild; rchild = rchild->next_sibling)
2448 struct access *new_acc = NULL;
2449 HOST_WIDE_INT norm_offset = rchild->offset + norm_delta;
2451 if (rchild->grp_unscalarizable_region)
2452 continue;
2454 if (child_would_conflict_in_lacc (lacc, norm_offset, rchild->size,
2455 &new_acc))
2457 if (new_acc)
2459 rchild->grp_hint = 1;
2460 new_acc->grp_hint |= new_acc->grp_read;
2461 if (rchild->first_child)
2462 ret |= propagate_subaccesses_across_link (new_acc, rchild);
2464 continue;
2467 rchild->grp_hint = 1;
2468 new_acc = create_artificial_child_access (lacc, rchild, norm_offset);
2469 if (new_acc)
2471 ret = true;
2472 if (racc->first_child)
2473 propagate_subaccesses_across_link (new_acc, rchild);
2477 return ret;
2480 /* Propagate all subaccesses across assignment links. */
2482 static void
2483 propagate_all_subaccesses (void)
2485 while (work_queue_head)
2487 struct access *racc = pop_access_from_work_queue ();
2488 struct assign_link *link;
2490 gcc_assert (racc->first_link);
2492 for (link = racc->first_link; link; link = link->next)
2494 struct access *lacc = link->lacc;
2496 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (lacc->base)))
2497 continue;
2498 lacc = lacc->group_representative;
2499 if (propagate_subaccesses_across_link (lacc, racc)
2500 && lacc->first_link)
2501 add_access_to_work_queue (lacc);
2506 /* Go through all accesses collected throughout the (intraprocedural) analysis
2507 stage, exclude overlapping ones, identify representatives and build trees
2508 out of them, making decisions about scalarization on the way. Return true
2509 iff there are any to-be-scalarized variables after this stage. */
2511 static bool
2512 analyze_all_variable_accesses (void)
2514 int res = 0;
2515 bitmap tmp = BITMAP_ALLOC (NULL);
2516 bitmap_iterator bi;
2517 unsigned i;
2518 unsigned max_scalarization_size
2519 = (optimize_function_for_size_p (cfun)
2520 ? PARAM_VALUE (PARAM_SRA_MAX_SCALARIZATION_SIZE_SIZE)
2521 : PARAM_VALUE (PARAM_SRA_MAX_SCALARIZATION_SIZE_SPEED))
2522 * BITS_PER_UNIT;
2524 EXECUTE_IF_SET_IN_BITMAP (candidate_bitmap, 0, i, bi)
2525 if (bitmap_bit_p (should_scalarize_away_bitmap, i)
2526 && !bitmap_bit_p (cannot_scalarize_away_bitmap, i))
2528 tree var = candidate (i);
2530 if (TREE_CODE (var) == VAR_DECL
2531 && type_consists_of_records_p (TREE_TYPE (var)))
2533 if (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (var)))
2534 <= max_scalarization_size)
2536 completely_scalarize_var (var);
2537 if (dump_file && (dump_flags & TDF_DETAILS))
2539 fprintf (dump_file, "Will attempt to totally scalarize ");
2540 print_generic_expr (dump_file, var, 0);
2541 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2544 else if (dump_file && (dump_flags & TDF_DETAILS))
2546 fprintf (dump_file, "Too big to totally scalarize: ");
2547 print_generic_expr (dump_file, var, 0);
2548 fprintf (dump_file, " (UID: %u)\n", DECL_UID (var));
2553 bitmap_copy (tmp, candidate_bitmap);
2554 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2556 tree var = candidate (i);
2557 struct access *access;
2559 access = sort_and_splice_var_accesses (var);
2560 if (!access || !build_access_trees (access))
2561 disqualify_candidate (var,
2562 "No or inhibitingly overlapping accesses.");
2565 propagate_all_subaccesses ();
2567 bitmap_copy (tmp, candidate_bitmap);
2568 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, bi)
2570 tree var = candidate (i);
2571 struct access *access = get_first_repr_for_decl (var);
2573 if (analyze_access_trees (access))
2575 res++;
2576 if (dump_file && (dump_flags & TDF_DETAILS))
2578 fprintf (dump_file, "\nAccess trees for ");
2579 print_generic_expr (dump_file, var, 0);
2580 fprintf (dump_file, " (UID: %u): \n", DECL_UID (var));
2581 dump_access_tree (dump_file, access);
2582 fprintf (dump_file, "\n");
2585 else
2586 disqualify_candidate (var, "No scalar replacements to be created.");
2589 BITMAP_FREE (tmp);
2591 if (res)
2593 statistics_counter_event (cfun, "Scalarized aggregates", res);
2594 return true;
2596 else
2597 return false;
2600 /* Generate statements copying scalar replacements of accesses within a subtree
2601 into or out of AGG. ACCESS, all its children, siblings and their children
2602 are to be processed. AGG is an aggregate type expression (can be a
2603 declaration but does not have to be, it can for example also be a mem_ref or
2604 a series of handled components). TOP_OFFSET is the offset of the processed
2605 subtree which has to be subtracted from offsets of individual accesses to
2606 get corresponding offsets for AGG. If CHUNK_SIZE is non-null, copy only
2607 replacements in the interval <start_offset, start_offset + chunk_size>,
2608 otherwise copy all. GSI is a statement iterator used to place the new
2609 statements. WRITE should be true when the statements should write from AGG
2610 to the replacement and false if vice versa. if INSERT_AFTER is true, new
2611 statements will be added after the current statement in GSI, they will be
2612 added before the statement otherwise. */
2614 static void
2615 generate_subtree_copies (struct access *access, tree agg,
2616 HOST_WIDE_INT top_offset,
2617 HOST_WIDE_INT start_offset, HOST_WIDE_INT chunk_size,
2618 gimple_stmt_iterator *gsi, bool write,
2619 bool insert_after, location_t loc)
2623 if (chunk_size && access->offset >= start_offset + chunk_size)
2624 return;
2626 if (access->grp_to_be_replaced
2627 && (chunk_size == 0
2628 || access->offset + access->size > start_offset))
2630 tree expr, repl = get_access_replacement (access);
2631 gassign *stmt;
2633 expr = build_ref_for_model (loc, agg, access->offset - top_offset,
2634 access, gsi, insert_after);
2636 if (write)
2638 if (access->grp_partial_lhs)
2639 expr = force_gimple_operand_gsi (gsi, expr, true, NULL_TREE,
2640 !insert_after,
2641 insert_after ? GSI_NEW_STMT
2642 : GSI_SAME_STMT);
2643 stmt = gimple_build_assign (repl, expr);
2645 else
2647 TREE_NO_WARNING (repl) = 1;
2648 if (access->grp_partial_lhs)
2649 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2650 !insert_after,
2651 insert_after ? GSI_NEW_STMT
2652 : GSI_SAME_STMT);
2653 stmt = gimple_build_assign (expr, repl);
2655 gimple_set_location (stmt, loc);
2657 if (insert_after)
2658 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2659 else
2660 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2661 update_stmt (stmt);
2662 sra_stats.subtree_copies++;
2664 else if (write
2665 && access->grp_to_be_debug_replaced
2666 && (chunk_size == 0
2667 || access->offset + access->size > start_offset))
2669 gdebug *ds;
2670 tree drhs = build_debug_ref_for_model (loc, agg,
2671 access->offset - top_offset,
2672 access);
2673 ds = gimple_build_debug_bind (get_access_replacement (access),
2674 drhs, gsi_stmt (*gsi));
2675 if (insert_after)
2676 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
2677 else
2678 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
2681 if (access->first_child)
2682 generate_subtree_copies (access->first_child, agg, top_offset,
2683 start_offset, chunk_size, gsi,
2684 write, insert_after, loc);
2686 access = access->next_sibling;
2688 while (access);
2691 /* Assign zero to all scalar replacements in an access subtree. ACCESS is the
2692 the root of the subtree to be processed. GSI is the statement iterator used
2693 for inserting statements which are added after the current statement if
2694 INSERT_AFTER is true or before it otherwise. */
2696 static void
2697 init_subtree_with_zero (struct access *access, gimple_stmt_iterator *gsi,
2698 bool insert_after, location_t loc)
2701 struct access *child;
2703 if (access->grp_to_be_replaced)
2705 gassign *stmt;
2707 stmt = gimple_build_assign (get_access_replacement (access),
2708 build_zero_cst (access->type));
2709 if (insert_after)
2710 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2711 else
2712 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2713 update_stmt (stmt);
2714 gimple_set_location (stmt, loc);
2716 else if (access->grp_to_be_debug_replaced)
2718 gdebug *ds
2719 = gimple_build_debug_bind (get_access_replacement (access),
2720 build_zero_cst (access->type),
2721 gsi_stmt (*gsi));
2722 if (insert_after)
2723 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
2724 else
2725 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
2728 for (child = access->first_child; child; child = child->next_sibling)
2729 init_subtree_with_zero (child, gsi, insert_after, loc);
2732 /* Search for an access representative for the given expression EXPR and
2733 return it or NULL if it cannot be found. */
2735 static struct access *
2736 get_access_for_expr (tree expr)
2738 HOST_WIDE_INT offset, size, max_size;
2739 tree base;
2741 /* FIXME: This should not be necessary but Ada produces V_C_Es with a type of
2742 a different size than the size of its argument and we need the latter
2743 one. */
2744 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
2745 expr = TREE_OPERAND (expr, 0);
2747 base = get_ref_base_and_extent (expr, &offset, &size, &max_size);
2748 if (max_size == -1 || !DECL_P (base))
2749 return NULL;
2751 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (base)))
2752 return NULL;
2754 return get_var_base_offset_size_access (base, offset, max_size);
2757 /* Replace the expression EXPR with a scalar replacement if there is one and
2758 generate other statements to do type conversion or subtree copying if
2759 necessary. GSI is used to place newly created statements, WRITE is true if
2760 the expression is being written to (it is on a LHS of a statement or output
2761 in an assembly statement). */
2763 static bool
2764 sra_modify_expr (tree *expr, gimple_stmt_iterator *gsi, bool write)
2766 location_t loc;
2767 struct access *access;
2768 tree type, bfr, orig_expr;
2770 if (TREE_CODE (*expr) == BIT_FIELD_REF)
2772 bfr = *expr;
2773 expr = &TREE_OPERAND (*expr, 0);
2775 else
2776 bfr = NULL_TREE;
2778 if (TREE_CODE (*expr) == REALPART_EXPR || TREE_CODE (*expr) == IMAGPART_EXPR)
2779 expr = &TREE_OPERAND (*expr, 0);
2780 access = get_access_for_expr (*expr);
2781 if (!access)
2782 return false;
2783 type = TREE_TYPE (*expr);
2784 orig_expr = *expr;
2786 loc = gimple_location (gsi_stmt (*gsi));
2787 gimple_stmt_iterator alt_gsi = gsi_none ();
2788 if (write && stmt_ends_bb_p (gsi_stmt (*gsi)))
2790 alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*gsi)));
2791 gsi = &alt_gsi;
2794 if (access->grp_to_be_replaced)
2796 tree repl = get_access_replacement (access);
2797 /* If we replace a non-register typed access simply use the original
2798 access expression to extract the scalar component afterwards.
2799 This happens if scalarizing a function return value or parameter
2800 like in gcc.c-torture/execute/20041124-1.c, 20050316-1.c and
2801 gcc.c-torture/compile/20011217-1.c.
2803 We also want to use this when accessing a complex or vector which can
2804 be accessed as a different type too, potentially creating a need for
2805 type conversion (see PR42196) and when scalarized unions are involved
2806 in assembler statements (see PR42398). */
2807 if (!useless_type_conversion_p (type, access->type))
2809 tree ref;
2811 ref = build_ref_for_model (loc, orig_expr, 0, access, gsi, false);
2813 if (write)
2815 gassign *stmt;
2817 if (access->grp_partial_lhs)
2818 ref = force_gimple_operand_gsi (gsi, ref, true, NULL_TREE,
2819 false, GSI_NEW_STMT);
2820 stmt = gimple_build_assign (repl, ref);
2821 gimple_set_location (stmt, loc);
2822 gsi_insert_after (gsi, stmt, GSI_NEW_STMT);
2824 else
2826 gassign *stmt;
2828 if (access->grp_partial_lhs)
2829 repl = force_gimple_operand_gsi (gsi, repl, true, NULL_TREE,
2830 true, GSI_SAME_STMT);
2831 stmt = gimple_build_assign (ref, repl);
2832 gimple_set_location (stmt, loc);
2833 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
2836 else
2837 *expr = repl;
2838 sra_stats.exprs++;
2840 else if (write && access->grp_to_be_debug_replaced)
2842 gdebug *ds = gimple_build_debug_bind (get_access_replacement (access),
2843 NULL_TREE,
2844 gsi_stmt (*gsi));
2845 gsi_insert_after (gsi, ds, GSI_NEW_STMT);
2848 if (access->first_child)
2850 HOST_WIDE_INT start_offset, chunk_size;
2851 if (bfr
2852 && tree_fits_uhwi_p (TREE_OPERAND (bfr, 1))
2853 && tree_fits_uhwi_p (TREE_OPERAND (bfr, 2)))
2855 chunk_size = tree_to_uhwi (TREE_OPERAND (bfr, 1));
2856 start_offset = access->offset
2857 + tree_to_uhwi (TREE_OPERAND (bfr, 2));
2859 else
2860 start_offset = chunk_size = 0;
2862 generate_subtree_copies (access->first_child, orig_expr, access->offset,
2863 start_offset, chunk_size, gsi, write, write,
2864 loc);
2866 return true;
2869 /* Where scalar replacements of the RHS have been written to when a replacement
2870 of a LHS of an assigments cannot be direclty loaded from a replacement of
2871 the RHS. */
2872 enum unscalarized_data_handling { SRA_UDH_NONE, /* Nothing done so far. */
2873 SRA_UDH_RIGHT, /* Data flushed to the RHS. */
2874 SRA_UDH_LEFT }; /* Data flushed to the LHS. */
2876 struct subreplacement_assignment_data
2878 /* Offset of the access representing the lhs of the assignment. */
2879 HOST_WIDE_INT left_offset;
2881 /* LHS and RHS of the original assignment. */
2882 tree assignment_lhs, assignment_rhs;
2884 /* Access representing the rhs of the whole assignment. */
2885 struct access *top_racc;
2887 /* Stmt iterator used for statement insertions after the original assignment.
2888 It points to the main GSI used to traverse a BB during function body
2889 modification. */
2890 gimple_stmt_iterator *new_gsi;
2892 /* Stmt iterator used for statement insertions before the original
2893 assignment. Keeps on pointing to the original statement. */
2894 gimple_stmt_iterator old_gsi;
2896 /* Location of the assignment. */
2897 location_t loc;
2899 /* Keeps the information whether we have needed to refresh replacements of
2900 the LHS and from which side of the assignments this takes place. */
2901 enum unscalarized_data_handling refreshed;
2904 /* Store all replacements in the access tree rooted in TOP_RACC either to their
2905 base aggregate if there are unscalarized data or directly to LHS of the
2906 statement that is pointed to by GSI otherwise. */
2908 static void
2909 handle_unscalarized_data_in_subtree (struct subreplacement_assignment_data *sad)
2911 tree src;
2912 if (sad->top_racc->grp_unscalarized_data)
2914 src = sad->assignment_rhs;
2915 sad->refreshed = SRA_UDH_RIGHT;
2917 else
2919 src = sad->assignment_lhs;
2920 sad->refreshed = SRA_UDH_LEFT;
2922 generate_subtree_copies (sad->top_racc->first_child, src,
2923 sad->top_racc->offset, 0, 0,
2924 &sad->old_gsi, false, false, sad->loc);
2927 /* Try to generate statements to load all sub-replacements in an access subtree
2928 formed by children of LACC from scalar replacements in the SAD->top_racc
2929 subtree. If that is not possible, refresh the SAD->top_racc base aggregate
2930 and load the accesses from it. */
2932 static void
2933 load_assign_lhs_subreplacements (struct access *lacc,
2934 struct subreplacement_assignment_data *sad)
2936 for (lacc = lacc->first_child; lacc; lacc = lacc->next_sibling)
2938 HOST_WIDE_INT offset;
2939 offset = lacc->offset - sad->left_offset + sad->top_racc->offset;
2941 if (lacc->grp_to_be_replaced)
2943 struct access *racc;
2944 gassign *stmt;
2945 tree rhs;
2947 racc = find_access_in_subtree (sad->top_racc, offset, lacc->size);
2948 if (racc && racc->grp_to_be_replaced)
2950 rhs = get_access_replacement (racc);
2951 if (!useless_type_conversion_p (lacc->type, racc->type))
2952 rhs = fold_build1_loc (sad->loc, VIEW_CONVERT_EXPR,
2953 lacc->type, rhs);
2955 if (racc->grp_partial_lhs && lacc->grp_partial_lhs)
2956 rhs = force_gimple_operand_gsi (&sad->old_gsi, rhs, true,
2957 NULL_TREE, true, GSI_SAME_STMT);
2959 else
2961 /* No suitable access on the right hand side, need to load from
2962 the aggregate. See if we have to update it first... */
2963 if (sad->refreshed == SRA_UDH_NONE)
2964 handle_unscalarized_data_in_subtree (sad);
2966 if (sad->refreshed == SRA_UDH_LEFT)
2967 rhs = build_ref_for_model (sad->loc, sad->assignment_lhs,
2968 lacc->offset - sad->left_offset,
2969 lacc, sad->new_gsi, true);
2970 else
2971 rhs = build_ref_for_model (sad->loc, sad->assignment_rhs,
2972 lacc->offset - sad->left_offset,
2973 lacc, sad->new_gsi, true);
2974 if (lacc->grp_partial_lhs)
2975 rhs = force_gimple_operand_gsi (sad->new_gsi,
2976 rhs, true, NULL_TREE,
2977 false, GSI_NEW_STMT);
2980 stmt = gimple_build_assign (get_access_replacement (lacc), rhs);
2981 gsi_insert_after (sad->new_gsi, stmt, GSI_NEW_STMT);
2982 gimple_set_location (stmt, sad->loc);
2983 update_stmt (stmt);
2984 sra_stats.subreplacements++;
2986 else
2988 if (sad->refreshed == SRA_UDH_NONE
2989 && lacc->grp_read && !lacc->grp_covered)
2990 handle_unscalarized_data_in_subtree (sad);
2992 if (lacc && lacc->grp_to_be_debug_replaced)
2994 gdebug *ds;
2995 tree drhs;
2996 struct access *racc = find_access_in_subtree (sad->top_racc,
2997 offset,
2998 lacc->size);
3000 if (racc && racc->grp_to_be_replaced)
3002 if (racc->grp_write)
3003 drhs = get_access_replacement (racc);
3004 else
3005 drhs = NULL;
3007 else if (sad->refreshed == SRA_UDH_LEFT)
3008 drhs = build_debug_ref_for_model (sad->loc, lacc->base,
3009 lacc->offset, lacc);
3010 else if (sad->refreshed == SRA_UDH_RIGHT)
3011 drhs = build_debug_ref_for_model (sad->loc, sad->top_racc->base,
3012 offset, lacc);
3013 else
3014 drhs = NULL_TREE;
3015 if (drhs
3016 && !useless_type_conversion_p (lacc->type, TREE_TYPE (drhs)))
3017 drhs = fold_build1_loc (sad->loc, VIEW_CONVERT_EXPR,
3018 lacc->type, drhs);
3019 ds = gimple_build_debug_bind (get_access_replacement (lacc),
3020 drhs, gsi_stmt (sad->old_gsi));
3021 gsi_insert_after (sad->new_gsi, ds, GSI_NEW_STMT);
3025 if (lacc->first_child)
3026 load_assign_lhs_subreplacements (lacc, sad);
3030 /* Result code for SRA assignment modification. */
3031 enum assignment_mod_result { SRA_AM_NONE, /* nothing done for the stmt */
3032 SRA_AM_MODIFIED, /* stmt changed but not
3033 removed */
3034 SRA_AM_REMOVED }; /* stmt eliminated */
3036 /* Modify assignments with a CONSTRUCTOR on their RHS. STMT contains a pointer
3037 to the assignment and GSI is the statement iterator pointing at it. Returns
3038 the same values as sra_modify_assign. */
3040 static enum assignment_mod_result
3041 sra_modify_constructor_assign (gimple stmt, gimple_stmt_iterator *gsi)
3043 tree lhs = gimple_assign_lhs (stmt);
3044 struct access *acc;
3045 location_t loc;
3047 acc = get_access_for_expr (lhs);
3048 if (!acc)
3049 return SRA_AM_NONE;
3051 if (gimple_clobber_p (stmt))
3053 /* Remove clobbers of fully scalarized variables, otherwise
3054 do nothing. */
3055 if (acc->grp_covered)
3057 unlink_stmt_vdef (stmt);
3058 gsi_remove (gsi, true);
3059 release_defs (stmt);
3060 return SRA_AM_REMOVED;
3062 else
3063 return SRA_AM_NONE;
3066 loc = gimple_location (stmt);
3067 if (vec_safe_length (CONSTRUCTOR_ELTS (gimple_assign_rhs1 (stmt))) > 0)
3069 /* I have never seen this code path trigger but if it can happen the
3070 following should handle it gracefully. */
3071 if (access_has_children_p (acc))
3072 generate_subtree_copies (acc->first_child, lhs, acc->offset, 0, 0, gsi,
3073 true, true, loc);
3074 return SRA_AM_MODIFIED;
3077 if (acc->grp_covered)
3079 init_subtree_with_zero (acc, gsi, false, loc);
3080 unlink_stmt_vdef (stmt);
3081 gsi_remove (gsi, true);
3082 release_defs (stmt);
3083 return SRA_AM_REMOVED;
3085 else
3087 init_subtree_with_zero (acc, gsi, true, loc);
3088 return SRA_AM_MODIFIED;
3092 /* Create and return a new suitable default definition SSA_NAME for RACC which
3093 is an access describing an uninitialized part of an aggregate that is being
3094 loaded. */
3096 static tree
3097 get_repl_default_def_ssa_name (struct access *racc)
3099 gcc_checking_assert (!racc->grp_to_be_replaced
3100 && !racc->grp_to_be_debug_replaced);
3101 if (!racc->replacement_decl)
3102 racc->replacement_decl = create_access_replacement (racc);
3103 return get_or_create_ssa_default_def (cfun, racc->replacement_decl);
3106 /* Return true if REF has an VIEW_CONVERT_EXPR or a COMPONENT_REF with a
3107 bit-field field declaration somewhere in it. */
3109 static inline bool
3110 contains_vce_or_bfcref_p (const_tree ref)
3112 while (handled_component_p (ref))
3114 if (TREE_CODE (ref) == VIEW_CONVERT_EXPR
3115 || (TREE_CODE (ref) == COMPONENT_REF
3116 && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))))
3117 return true;
3118 ref = TREE_OPERAND (ref, 0);
3121 return false;
3124 /* Examine both sides of the assignment statement pointed to by STMT, replace
3125 them with a scalare replacement if there is one and generate copying of
3126 replacements if scalarized aggregates have been used in the assignment. GSI
3127 is used to hold generated statements for type conversions and subtree
3128 copying. */
3130 static enum assignment_mod_result
3131 sra_modify_assign (gimple stmt, gimple_stmt_iterator *gsi)
3133 struct access *lacc, *racc;
3134 tree lhs, rhs;
3135 bool modify_this_stmt = false;
3136 bool force_gimple_rhs = false;
3137 location_t loc;
3138 gimple_stmt_iterator orig_gsi = *gsi;
3140 if (!gimple_assign_single_p (stmt))
3141 return SRA_AM_NONE;
3142 lhs = gimple_assign_lhs (stmt);
3143 rhs = gimple_assign_rhs1 (stmt);
3145 if (TREE_CODE (rhs) == CONSTRUCTOR)
3146 return sra_modify_constructor_assign (stmt, gsi);
3148 if (TREE_CODE (rhs) == REALPART_EXPR || TREE_CODE (lhs) == REALPART_EXPR
3149 || TREE_CODE (rhs) == IMAGPART_EXPR || TREE_CODE (lhs) == IMAGPART_EXPR
3150 || TREE_CODE (rhs) == BIT_FIELD_REF || TREE_CODE (lhs) == BIT_FIELD_REF)
3152 modify_this_stmt = sra_modify_expr (gimple_assign_rhs1_ptr (stmt),
3153 gsi, false);
3154 modify_this_stmt |= sra_modify_expr (gimple_assign_lhs_ptr (stmt),
3155 gsi, true);
3156 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3159 lacc = get_access_for_expr (lhs);
3160 racc = get_access_for_expr (rhs);
3161 if (!lacc && !racc)
3162 return SRA_AM_NONE;
3164 loc = gimple_location (stmt);
3165 if (lacc && lacc->grp_to_be_replaced)
3167 lhs = get_access_replacement (lacc);
3168 gimple_assign_set_lhs (stmt, lhs);
3169 modify_this_stmt = true;
3170 if (lacc->grp_partial_lhs)
3171 force_gimple_rhs = true;
3172 sra_stats.exprs++;
3175 if (racc && racc->grp_to_be_replaced)
3177 rhs = get_access_replacement (racc);
3178 modify_this_stmt = true;
3179 if (racc->grp_partial_lhs)
3180 force_gimple_rhs = true;
3181 sra_stats.exprs++;
3183 else if (racc
3184 && !racc->grp_unscalarized_data
3185 && TREE_CODE (lhs) == SSA_NAME
3186 && !access_has_replacements_p (racc))
3188 rhs = get_repl_default_def_ssa_name (racc);
3189 modify_this_stmt = true;
3190 sra_stats.exprs++;
3193 if (modify_this_stmt)
3195 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3197 /* If we can avoid creating a VIEW_CONVERT_EXPR do so.
3198 ??? This should move to fold_stmt which we simply should
3199 call after building a VIEW_CONVERT_EXPR here. */
3200 if (AGGREGATE_TYPE_P (TREE_TYPE (lhs))
3201 && !contains_bitfld_component_ref_p (lhs))
3203 lhs = build_ref_for_model (loc, lhs, 0, racc, gsi, false);
3204 gimple_assign_set_lhs (stmt, lhs);
3206 else if (AGGREGATE_TYPE_P (TREE_TYPE (rhs))
3207 && !contains_vce_or_bfcref_p (rhs))
3208 rhs = build_ref_for_model (loc, rhs, 0, lacc, gsi, false);
3210 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
3212 rhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR, TREE_TYPE (lhs),
3213 rhs);
3214 if (is_gimple_reg_type (TREE_TYPE (lhs))
3215 && TREE_CODE (lhs) != SSA_NAME)
3216 force_gimple_rhs = true;
3221 if (lacc && lacc->grp_to_be_debug_replaced)
3223 tree dlhs = get_access_replacement (lacc);
3224 tree drhs = unshare_expr (rhs);
3225 if (!useless_type_conversion_p (TREE_TYPE (dlhs), TREE_TYPE (drhs)))
3227 if (AGGREGATE_TYPE_P (TREE_TYPE (drhs))
3228 && !contains_vce_or_bfcref_p (drhs))
3229 drhs = build_debug_ref_for_model (loc, drhs, 0, lacc);
3230 if (drhs
3231 && !useless_type_conversion_p (TREE_TYPE (dlhs),
3232 TREE_TYPE (drhs)))
3233 drhs = fold_build1_loc (loc, VIEW_CONVERT_EXPR,
3234 TREE_TYPE (dlhs), drhs);
3236 gdebug *ds = gimple_build_debug_bind (dlhs, drhs, stmt);
3237 gsi_insert_before (gsi, ds, GSI_SAME_STMT);
3240 /* From this point on, the function deals with assignments in between
3241 aggregates when at least one has scalar reductions of some of its
3242 components. There are three possible scenarios: Both the LHS and RHS have
3243 to-be-scalarized components, 2) only the RHS has or 3) only the LHS has.
3245 In the first case, we would like to load the LHS components from RHS
3246 components whenever possible. If that is not possible, we would like to
3247 read it directly from the RHS (after updating it by storing in it its own
3248 components). If there are some necessary unscalarized data in the LHS,
3249 those will be loaded by the original assignment too. If neither of these
3250 cases happen, the original statement can be removed. Most of this is done
3251 by load_assign_lhs_subreplacements.
3253 In the second case, we would like to store all RHS scalarized components
3254 directly into LHS and if they cover the aggregate completely, remove the
3255 statement too. In the third case, we want the LHS components to be loaded
3256 directly from the RHS (DSE will remove the original statement if it
3257 becomes redundant).
3259 This is a bit complex but manageable when types match and when unions do
3260 not cause confusion in a way that we cannot really load a component of LHS
3261 from the RHS or vice versa (the access representing this level can have
3262 subaccesses that are accessible only through a different union field at a
3263 higher level - different from the one used in the examined expression).
3264 Unions are fun.
3266 Therefore, I specially handle a fourth case, happening when there is a
3267 specific type cast or it is impossible to locate a scalarized subaccess on
3268 the other side of the expression. If that happens, I simply "refresh" the
3269 RHS by storing in it is scalarized components leave the original statement
3270 there to do the copying and then load the scalar replacements of the LHS.
3271 This is what the first branch does. */
3273 if (modify_this_stmt
3274 || gimple_has_volatile_ops (stmt)
3275 || contains_vce_or_bfcref_p (rhs)
3276 || contains_vce_or_bfcref_p (lhs)
3277 || stmt_ends_bb_p (stmt))
3279 if (access_has_children_p (racc))
3280 generate_subtree_copies (racc->first_child, rhs, racc->offset, 0, 0,
3281 gsi, false, false, loc);
3282 if (access_has_children_p (lacc))
3284 gimple_stmt_iterator alt_gsi = gsi_none ();
3285 if (stmt_ends_bb_p (stmt))
3287 alt_gsi = gsi_start_edge (single_non_eh_succ (gsi_bb (*gsi)));
3288 gsi = &alt_gsi;
3290 generate_subtree_copies (lacc->first_child, lhs, lacc->offset, 0, 0,
3291 gsi, true, true, loc);
3293 sra_stats.separate_lhs_rhs_handling++;
3295 /* This gimplification must be done after generate_subtree_copies,
3296 lest we insert the subtree copies in the middle of the gimplified
3297 sequence. */
3298 if (force_gimple_rhs)
3299 rhs = force_gimple_operand_gsi (&orig_gsi, rhs, true, NULL_TREE,
3300 true, GSI_SAME_STMT);
3301 if (gimple_assign_rhs1 (stmt) != rhs)
3303 modify_this_stmt = true;
3304 gimple_assign_set_rhs_from_tree (&orig_gsi, rhs);
3305 gcc_assert (stmt == gsi_stmt (orig_gsi));
3308 return modify_this_stmt ? SRA_AM_MODIFIED : SRA_AM_NONE;
3310 else
3312 if (access_has_children_p (lacc)
3313 && access_has_children_p (racc)
3314 /* When an access represents an unscalarizable region, it usually
3315 represents accesses with variable offset and thus must not be used
3316 to generate new memory accesses. */
3317 && !lacc->grp_unscalarizable_region
3318 && !racc->grp_unscalarizable_region)
3320 struct subreplacement_assignment_data sad;
3322 sad.left_offset = lacc->offset;
3323 sad.assignment_lhs = lhs;
3324 sad.assignment_rhs = rhs;
3325 sad.top_racc = racc;
3326 sad.old_gsi = *gsi;
3327 sad.new_gsi = gsi;
3328 sad.loc = gimple_location (stmt);
3329 sad.refreshed = SRA_UDH_NONE;
3331 if (lacc->grp_read && !lacc->grp_covered)
3332 handle_unscalarized_data_in_subtree (&sad);
3334 load_assign_lhs_subreplacements (lacc, &sad);
3335 if (sad.refreshed != SRA_UDH_RIGHT)
3337 gsi_next (gsi);
3338 unlink_stmt_vdef (stmt);
3339 gsi_remove (&sad.old_gsi, true);
3340 release_defs (stmt);
3341 sra_stats.deleted++;
3342 return SRA_AM_REMOVED;
3345 else
3347 if (access_has_children_p (racc)
3348 && !racc->grp_unscalarized_data)
3350 if (dump_file)
3352 fprintf (dump_file, "Removing load: ");
3353 print_gimple_stmt (dump_file, stmt, 0, 0);
3355 generate_subtree_copies (racc->first_child, lhs,
3356 racc->offset, 0, 0, gsi,
3357 false, false, loc);
3358 gcc_assert (stmt == gsi_stmt (*gsi));
3359 unlink_stmt_vdef (stmt);
3360 gsi_remove (gsi, true);
3361 release_defs (stmt);
3362 sra_stats.deleted++;
3363 return SRA_AM_REMOVED;
3365 /* Restore the aggregate RHS from its components so the
3366 prevailing aggregate copy does the right thing. */
3367 if (access_has_children_p (racc))
3368 generate_subtree_copies (racc->first_child, rhs, racc->offset, 0, 0,
3369 gsi, false, false, loc);
3370 /* Re-load the components of the aggregate copy destination.
3371 But use the RHS aggregate to load from to expose more
3372 optimization opportunities. */
3373 if (access_has_children_p (lacc))
3374 generate_subtree_copies (lacc->first_child, rhs, lacc->offset,
3375 0, 0, gsi, true, true, loc);
3378 return SRA_AM_NONE;
3382 /* Traverse the function body and all modifications as decided in
3383 analyze_all_variable_accesses. Return true iff the CFG has been
3384 changed. */
3386 static bool
3387 sra_modify_function_body (void)
3389 bool cfg_changed = false;
3390 basic_block bb;
3392 FOR_EACH_BB_FN (bb, cfun)
3394 gimple_stmt_iterator gsi = gsi_start_bb (bb);
3395 while (!gsi_end_p (gsi))
3397 gimple stmt = gsi_stmt (gsi);
3398 enum assignment_mod_result assign_result;
3399 bool modified = false, deleted = false;
3400 tree *t;
3401 unsigned i;
3403 switch (gimple_code (stmt))
3405 case GIMPLE_RETURN:
3406 t = gimple_return_retval_ptr (as_a <greturn *> (stmt));
3407 if (*t != NULL_TREE)
3408 modified |= sra_modify_expr (t, &gsi, false);
3409 break;
3411 case GIMPLE_ASSIGN:
3412 assign_result = sra_modify_assign (stmt, &gsi);
3413 modified |= assign_result == SRA_AM_MODIFIED;
3414 deleted = assign_result == SRA_AM_REMOVED;
3415 break;
3417 case GIMPLE_CALL:
3418 /* Operands must be processed before the lhs. */
3419 for (i = 0; i < gimple_call_num_args (stmt); i++)
3421 t = gimple_call_arg_ptr (stmt, i);
3422 modified |= sra_modify_expr (t, &gsi, false);
3425 if (gimple_call_lhs (stmt))
3427 t = gimple_call_lhs_ptr (stmt);
3428 modified |= sra_modify_expr (t, &gsi, true);
3430 break;
3432 case GIMPLE_ASM:
3434 gasm *asm_stmt = as_a <gasm *> (stmt);
3435 for (i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
3437 t = &TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
3438 modified |= sra_modify_expr (t, &gsi, false);
3440 for (i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
3442 t = &TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
3443 modified |= sra_modify_expr (t, &gsi, true);
3446 break;
3448 default:
3449 break;
3452 if (modified)
3454 update_stmt (stmt);
3455 if (maybe_clean_eh_stmt (stmt)
3456 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
3457 cfg_changed = true;
3459 if (!deleted)
3460 gsi_next (&gsi);
3464 gsi_commit_edge_inserts ();
3465 return cfg_changed;
3468 /* Generate statements initializing scalar replacements of parts of function
3469 parameters. */
3471 static void
3472 initialize_parameter_reductions (void)
3474 gimple_stmt_iterator gsi;
3475 gimple_seq seq = NULL;
3476 tree parm;
3478 gsi = gsi_start (seq);
3479 for (parm = DECL_ARGUMENTS (current_function_decl);
3480 parm;
3481 parm = DECL_CHAIN (parm))
3483 vec<access_p> *access_vec;
3484 struct access *access;
3486 if (!bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
3487 continue;
3488 access_vec = get_base_access_vector (parm);
3489 if (!access_vec)
3490 continue;
3492 for (access = (*access_vec)[0];
3493 access;
3494 access = access->next_grp)
3495 generate_subtree_copies (access, parm, 0, 0, 0, &gsi, true, true,
3496 EXPR_LOCATION (parm));
3499 seq = gsi_seq (gsi);
3500 if (seq)
3501 gsi_insert_seq_on_edge_immediate (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)), seq);
3504 /* The "main" function of intraprocedural SRA passes. Runs the analysis and if
3505 it reveals there are components of some aggregates to be scalarized, it runs
3506 the required transformations. */
3507 static unsigned int
3508 perform_intra_sra (void)
3510 int ret = 0;
3511 sra_initialize ();
3513 if (!find_var_candidates ())
3514 goto out;
3516 if (!scan_function ())
3517 goto out;
3519 if (!analyze_all_variable_accesses ())
3520 goto out;
3522 if (sra_modify_function_body ())
3523 ret = TODO_update_ssa | TODO_cleanup_cfg;
3524 else
3525 ret = TODO_update_ssa;
3526 initialize_parameter_reductions ();
3528 statistics_counter_event (cfun, "Scalar replacements created",
3529 sra_stats.replacements);
3530 statistics_counter_event (cfun, "Modified expressions", sra_stats.exprs);
3531 statistics_counter_event (cfun, "Subtree copy stmts",
3532 sra_stats.subtree_copies);
3533 statistics_counter_event (cfun, "Subreplacement stmts",
3534 sra_stats.subreplacements);
3535 statistics_counter_event (cfun, "Deleted stmts", sra_stats.deleted);
3536 statistics_counter_event (cfun, "Separate LHS and RHS handling",
3537 sra_stats.separate_lhs_rhs_handling);
3539 out:
3540 sra_deinitialize ();
3541 return ret;
3544 /* Perform early intraprocedural SRA. */
3545 static unsigned int
3546 early_intra_sra (void)
3548 sra_mode = SRA_MODE_EARLY_INTRA;
3549 return perform_intra_sra ();
3552 /* Perform "late" intraprocedural SRA. */
3553 static unsigned int
3554 late_intra_sra (void)
3556 sra_mode = SRA_MODE_INTRA;
3557 return perform_intra_sra ();
3561 static bool
3562 gate_intra_sra (void)
3564 return flag_tree_sra != 0 && dbg_cnt (tree_sra);
3568 namespace {
3570 const pass_data pass_data_sra_early =
3572 GIMPLE_PASS, /* type */
3573 "esra", /* name */
3574 OPTGROUP_NONE, /* optinfo_flags */
3575 TV_TREE_SRA, /* tv_id */
3576 ( PROP_cfg | PROP_ssa ), /* properties_required */
3577 0, /* properties_provided */
3578 0, /* properties_destroyed */
3579 0, /* todo_flags_start */
3580 TODO_update_ssa, /* todo_flags_finish */
3583 class pass_sra_early : public gimple_opt_pass
3585 public:
3586 pass_sra_early (gcc::context *ctxt)
3587 : gimple_opt_pass (pass_data_sra_early, ctxt)
3590 /* opt_pass methods: */
3591 virtual bool gate (function *) { return gate_intra_sra (); }
3592 virtual unsigned int execute (function *) { return early_intra_sra (); }
3594 }; // class pass_sra_early
3596 } // anon namespace
3598 gimple_opt_pass *
3599 make_pass_sra_early (gcc::context *ctxt)
3601 return new pass_sra_early (ctxt);
3604 namespace {
3606 const pass_data pass_data_sra =
3608 GIMPLE_PASS, /* type */
3609 "sra", /* name */
3610 OPTGROUP_NONE, /* optinfo_flags */
3611 TV_TREE_SRA, /* tv_id */
3612 ( PROP_cfg | PROP_ssa ), /* properties_required */
3613 0, /* properties_provided */
3614 0, /* properties_destroyed */
3615 TODO_update_address_taken, /* todo_flags_start */
3616 TODO_update_ssa, /* todo_flags_finish */
3619 class pass_sra : public gimple_opt_pass
3621 public:
3622 pass_sra (gcc::context *ctxt)
3623 : gimple_opt_pass (pass_data_sra, ctxt)
3626 /* opt_pass methods: */
3627 virtual bool gate (function *) { return gate_intra_sra (); }
3628 virtual unsigned int execute (function *) { return late_intra_sra (); }
3630 }; // class pass_sra
3632 } // anon namespace
3634 gimple_opt_pass *
3635 make_pass_sra (gcc::context *ctxt)
3637 return new pass_sra (ctxt);
3641 /* Return true iff PARM (which must be a parm_decl) is an unused scalar
3642 parameter. */
3644 static bool
3645 is_unused_scalar_param (tree parm)
3647 tree name;
3648 return (is_gimple_reg (parm)
3649 && (!(name = ssa_default_def (cfun, parm))
3650 || has_zero_uses (name)));
3653 /* Scan immediate uses of a default definition SSA name of a parameter PARM and
3654 examine whether there are any direct or otherwise infeasible ones. If so,
3655 return true, otherwise return false. PARM must be a gimple register with a
3656 non-NULL default definition. */
3658 static bool
3659 ptr_parm_has_direct_uses (tree parm)
3661 imm_use_iterator ui;
3662 gimple stmt;
3663 tree name = ssa_default_def (cfun, parm);
3664 bool ret = false;
3666 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
3668 int uses_ok = 0;
3669 use_operand_p use_p;
3671 if (is_gimple_debug (stmt))
3672 continue;
3674 /* Valid uses include dereferences on the lhs and the rhs. */
3675 if (gimple_has_lhs (stmt))
3677 tree lhs = gimple_get_lhs (stmt);
3678 while (handled_component_p (lhs))
3679 lhs = TREE_OPERAND (lhs, 0);
3680 if (TREE_CODE (lhs) == MEM_REF
3681 && TREE_OPERAND (lhs, 0) == name
3682 && integer_zerop (TREE_OPERAND (lhs, 1))
3683 && types_compatible_p (TREE_TYPE (lhs),
3684 TREE_TYPE (TREE_TYPE (name)))
3685 && !TREE_THIS_VOLATILE (lhs))
3686 uses_ok++;
3688 if (gimple_assign_single_p (stmt))
3690 tree rhs = gimple_assign_rhs1 (stmt);
3691 while (handled_component_p (rhs))
3692 rhs = TREE_OPERAND (rhs, 0);
3693 if (TREE_CODE (rhs) == MEM_REF
3694 && TREE_OPERAND (rhs, 0) == name
3695 && integer_zerop (TREE_OPERAND (rhs, 1))
3696 && types_compatible_p (TREE_TYPE (rhs),
3697 TREE_TYPE (TREE_TYPE (name)))
3698 && !TREE_THIS_VOLATILE (rhs))
3699 uses_ok++;
3701 else if (is_gimple_call (stmt))
3703 unsigned i;
3704 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3706 tree arg = gimple_call_arg (stmt, i);
3707 while (handled_component_p (arg))
3708 arg = TREE_OPERAND (arg, 0);
3709 if (TREE_CODE (arg) == MEM_REF
3710 && TREE_OPERAND (arg, 0) == name
3711 && integer_zerop (TREE_OPERAND (arg, 1))
3712 && types_compatible_p (TREE_TYPE (arg),
3713 TREE_TYPE (TREE_TYPE (name)))
3714 && !TREE_THIS_VOLATILE (arg))
3715 uses_ok++;
3719 /* If the number of valid uses does not match the number of
3720 uses in this stmt there is an unhandled use. */
3721 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
3722 --uses_ok;
3724 if (uses_ok != 0)
3725 ret = true;
3727 if (ret)
3728 BREAK_FROM_IMM_USE_STMT (ui);
3731 return ret;
3734 /* Identify candidates for reduction for IPA-SRA based on their type and mark
3735 them in candidate_bitmap. Note that these do not necessarily include
3736 parameter which are unused and thus can be removed. Return true iff any
3737 such candidate has been found. */
3739 static bool
3740 find_param_candidates (void)
3742 tree parm;
3743 int count = 0;
3744 bool ret = false;
3745 const char *msg;
3747 for (parm = DECL_ARGUMENTS (current_function_decl);
3748 parm;
3749 parm = DECL_CHAIN (parm))
3751 tree type = TREE_TYPE (parm);
3752 tree_node **slot;
3754 count++;
3756 if (TREE_THIS_VOLATILE (parm)
3757 || TREE_ADDRESSABLE (parm)
3758 || (!is_gimple_reg_type (type) && is_va_list_type (type)))
3759 continue;
3761 if (is_unused_scalar_param (parm))
3763 ret = true;
3764 continue;
3767 if (POINTER_TYPE_P (type))
3769 type = TREE_TYPE (type);
3771 if (TREE_CODE (type) == FUNCTION_TYPE
3772 || TYPE_VOLATILE (type)
3773 || (TREE_CODE (type) == ARRAY_TYPE
3774 && TYPE_NONALIASED_COMPONENT (type))
3775 || !is_gimple_reg (parm)
3776 || is_va_list_type (type)
3777 || ptr_parm_has_direct_uses (parm))
3778 continue;
3780 else if (!AGGREGATE_TYPE_P (type))
3781 continue;
3783 if (!COMPLETE_TYPE_P (type)
3784 || !tree_fits_uhwi_p (TYPE_SIZE (type))
3785 || tree_to_uhwi (TYPE_SIZE (type)) == 0
3786 || (AGGREGATE_TYPE_P (type)
3787 && type_internals_preclude_sra_p (type, &msg)))
3788 continue;
3790 bitmap_set_bit (candidate_bitmap, DECL_UID (parm));
3791 slot = candidates->find_slot_with_hash (parm, DECL_UID (parm), INSERT);
3792 *slot = parm;
3794 ret = true;
3795 if (dump_file && (dump_flags & TDF_DETAILS))
3797 fprintf (dump_file, "Candidate (%d): ", DECL_UID (parm));
3798 print_generic_expr (dump_file, parm, 0);
3799 fprintf (dump_file, "\n");
3803 func_param_count = count;
3804 return ret;
3807 /* Callback of walk_aliased_vdefs, marks the access passed as DATA as
3808 maybe_modified. */
3810 static bool
3811 mark_maybe_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
3812 void *data)
3814 struct access *repr = (struct access *) data;
3816 repr->grp_maybe_modified = 1;
3817 return true;
3820 /* Analyze what representatives (in linked lists accessible from
3821 REPRESENTATIVES) can be modified by side effects of statements in the
3822 current function. */
3824 static void
3825 analyze_modified_params (vec<access_p> representatives)
3827 int i;
3829 for (i = 0; i < func_param_count; i++)
3831 struct access *repr;
3833 for (repr = representatives[i];
3834 repr;
3835 repr = repr->next_grp)
3837 struct access *access;
3838 bitmap visited;
3839 ao_ref ar;
3841 if (no_accesses_p (repr))
3842 continue;
3843 if (!POINTER_TYPE_P (TREE_TYPE (repr->base))
3844 || repr->grp_maybe_modified)
3845 continue;
3847 ao_ref_init (&ar, repr->expr);
3848 visited = BITMAP_ALLOC (NULL);
3849 for (access = repr; access; access = access->next_sibling)
3851 /* All accesses are read ones, otherwise grp_maybe_modified would
3852 be trivially set. */
3853 walk_aliased_vdefs (&ar, gimple_vuse (access->stmt),
3854 mark_maybe_modified, repr, &visited);
3855 if (repr->grp_maybe_modified)
3856 break;
3858 BITMAP_FREE (visited);
3863 /* Propagate distances in bb_dereferences in the opposite direction than the
3864 control flow edges, in each step storing the maximum of the current value
3865 and the minimum of all successors. These steps are repeated until the table
3866 stabilizes. Note that BBs which might terminate the functions (according to
3867 final_bbs bitmap) never updated in this way. */
3869 static void
3870 propagate_dereference_distances (void)
3872 basic_block bb;
3874 auto_vec<basic_block> queue (last_basic_block_for_fn (cfun));
3875 queue.quick_push (ENTRY_BLOCK_PTR_FOR_FN (cfun));
3876 FOR_EACH_BB_FN (bb, cfun)
3878 queue.quick_push (bb);
3879 bb->aux = bb;
3882 while (!queue.is_empty ())
3884 edge_iterator ei;
3885 edge e;
3886 bool change = false;
3887 int i;
3889 bb = queue.pop ();
3890 bb->aux = NULL;
3892 if (bitmap_bit_p (final_bbs, bb->index))
3893 continue;
3895 for (i = 0; i < func_param_count; i++)
3897 int idx = bb->index * func_param_count + i;
3898 bool first = true;
3899 HOST_WIDE_INT inh = 0;
3901 FOR_EACH_EDGE (e, ei, bb->succs)
3903 int succ_idx = e->dest->index * func_param_count + i;
3905 if (e->src == EXIT_BLOCK_PTR_FOR_FN (cfun))
3906 continue;
3908 if (first)
3910 first = false;
3911 inh = bb_dereferences [succ_idx];
3913 else if (bb_dereferences [succ_idx] < inh)
3914 inh = bb_dereferences [succ_idx];
3917 if (!first && bb_dereferences[idx] < inh)
3919 bb_dereferences[idx] = inh;
3920 change = true;
3924 if (change && !bitmap_bit_p (final_bbs, bb->index))
3925 FOR_EACH_EDGE (e, ei, bb->preds)
3927 if (e->src->aux)
3928 continue;
3930 e->src->aux = e->src;
3931 queue.quick_push (e->src);
3936 /* Dump a dereferences TABLE with heading STR to file F. */
3938 static void
3939 dump_dereferences_table (FILE *f, const char *str, HOST_WIDE_INT *table)
3941 basic_block bb;
3943 fprintf (dump_file, str);
3944 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun),
3945 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
3947 fprintf (f, "%4i %i ", bb->index, bitmap_bit_p (final_bbs, bb->index));
3948 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
3950 int i;
3951 for (i = 0; i < func_param_count; i++)
3953 int idx = bb->index * func_param_count + i;
3954 fprintf (f, " %4" HOST_WIDE_INT_PRINT "d", table[idx]);
3957 fprintf (f, "\n");
3959 fprintf (dump_file, "\n");
3962 /* Determine what (parts of) parameters passed by reference that are not
3963 assigned to are not certainly dereferenced in this function and thus the
3964 dereferencing cannot be safely moved to the caller without potentially
3965 introducing a segfault. Mark such REPRESENTATIVES as
3966 grp_not_necessarilly_dereferenced.
3968 The dereferenced maximum "distance," i.e. the offset + size of the accessed
3969 part is calculated rather than simple booleans are calculated for each
3970 pointer parameter to handle cases when only a fraction of the whole
3971 aggregate is allocated (see testsuite/gcc.c-torture/execute/ipa-sra-2.c for
3972 an example).
3974 The maximum dereference distances for each pointer parameter and BB are
3975 already stored in bb_dereference. This routine simply propagates these
3976 values upwards by propagate_dereference_distances and then compares the
3977 distances of individual parameters in the ENTRY BB to the equivalent
3978 distances of each representative of a (fraction of a) parameter. */
3980 static void
3981 analyze_caller_dereference_legality (vec<access_p> representatives)
3983 int i;
3985 if (dump_file && (dump_flags & TDF_DETAILS))
3986 dump_dereferences_table (dump_file,
3987 "Dereference table before propagation:\n",
3988 bb_dereferences);
3990 propagate_dereference_distances ();
3992 if (dump_file && (dump_flags & TDF_DETAILS))
3993 dump_dereferences_table (dump_file,
3994 "Dereference table after propagation:\n",
3995 bb_dereferences);
3997 for (i = 0; i < func_param_count; i++)
3999 struct access *repr = representatives[i];
4000 int idx = ENTRY_BLOCK_PTR_FOR_FN (cfun)->index * func_param_count + i;
4002 if (!repr || no_accesses_p (repr))
4003 continue;
4007 if ((repr->offset + repr->size) > bb_dereferences[idx])
4008 repr->grp_not_necessarilly_dereferenced = 1;
4009 repr = repr->next_grp;
4011 while (repr);
4015 /* Return the representative access for the parameter declaration PARM if it is
4016 a scalar passed by reference which is not written to and the pointer value
4017 is not used directly. Thus, if it is legal to dereference it in the caller
4018 and we can rule out modifications through aliases, such parameter should be
4019 turned into one passed by value. Return NULL otherwise. */
4021 static struct access *
4022 unmodified_by_ref_scalar_representative (tree parm)
4024 int i, access_count;
4025 struct access *repr;
4026 vec<access_p> *access_vec;
4028 access_vec = get_base_access_vector (parm);
4029 gcc_assert (access_vec);
4030 repr = (*access_vec)[0];
4031 if (repr->write)
4032 return NULL;
4033 repr->group_representative = repr;
4035 access_count = access_vec->length ();
4036 for (i = 1; i < access_count; i++)
4038 struct access *access = (*access_vec)[i];
4039 if (access->write)
4040 return NULL;
4041 access->group_representative = repr;
4042 access->next_sibling = repr->next_sibling;
4043 repr->next_sibling = access;
4046 repr->grp_read = 1;
4047 repr->grp_scalar_ptr = 1;
4048 return repr;
4051 /* Return true iff this ACCESS precludes IPA-SRA of the parameter it is
4052 associated with. REQ_ALIGN is the minimum required alignment. */
4054 static bool
4055 access_precludes_ipa_sra_p (struct access *access, unsigned int req_align)
4057 unsigned int exp_align;
4058 /* Avoid issues such as the second simple testcase in PR 42025. The problem
4059 is incompatible assign in a call statement (and possibly even in asm
4060 statements). This can be relaxed by using a new temporary but only for
4061 non-TREE_ADDRESSABLE types and is probably not worth the complexity. (In
4062 intraprocedural SRA we deal with this by keeping the old aggregate around,
4063 something we cannot do in IPA-SRA.) */
4064 if (access->write
4065 && (is_gimple_call (access->stmt)
4066 || gimple_code (access->stmt) == GIMPLE_ASM))
4067 return true;
4069 exp_align = get_object_alignment (access->expr);
4070 if (exp_align < req_align)
4071 return true;
4073 return false;
4077 /* Sort collected accesses for parameter PARM, identify representatives for
4078 each accessed region and link them together. Return NULL if there are
4079 different but overlapping accesses, return the special ptr value meaning
4080 there are no accesses for this parameter if that is the case and return the
4081 first representative otherwise. Set *RO_GRP if there is a group of accesses
4082 with only read (i.e. no write) accesses. */
4084 static struct access *
4085 splice_param_accesses (tree parm, bool *ro_grp)
4087 int i, j, access_count, group_count;
4088 int agg_size, total_size = 0;
4089 struct access *access, *res, **prev_acc_ptr = &res;
4090 vec<access_p> *access_vec;
4092 access_vec = get_base_access_vector (parm);
4093 if (!access_vec)
4094 return &no_accesses_representant;
4095 access_count = access_vec->length ();
4097 access_vec->qsort (compare_access_positions);
4099 i = 0;
4100 total_size = 0;
4101 group_count = 0;
4102 while (i < access_count)
4104 bool modification;
4105 tree a1_alias_type;
4106 access = (*access_vec)[i];
4107 modification = access->write;
4108 if (access_precludes_ipa_sra_p (access, TYPE_ALIGN (access->type)))
4109 return NULL;
4110 a1_alias_type = reference_alias_ptr_type (access->expr);
4112 /* Access is about to become group representative unless we find some
4113 nasty overlap which would preclude us from breaking this parameter
4114 apart. */
4116 j = i + 1;
4117 while (j < access_count)
4119 struct access *ac2 = (*access_vec)[j];
4120 if (ac2->offset != access->offset)
4122 /* All or nothing law for parameters. */
4123 if (access->offset + access->size > ac2->offset)
4124 return NULL;
4125 else
4126 break;
4128 else if (ac2->size != access->size)
4129 return NULL;
4131 if (access_precludes_ipa_sra_p (ac2, TYPE_ALIGN (access->type))
4132 || (ac2->type != access->type
4133 && (TREE_ADDRESSABLE (ac2->type)
4134 || TREE_ADDRESSABLE (access->type)))
4135 || (reference_alias_ptr_type (ac2->expr) != a1_alias_type))
4136 return NULL;
4138 modification |= ac2->write;
4139 ac2->group_representative = access;
4140 ac2->next_sibling = access->next_sibling;
4141 access->next_sibling = ac2;
4142 j++;
4145 group_count++;
4146 access->grp_maybe_modified = modification;
4147 if (!modification)
4148 *ro_grp = true;
4149 *prev_acc_ptr = access;
4150 prev_acc_ptr = &access->next_grp;
4151 total_size += access->size;
4152 i = j;
4155 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4156 agg_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))));
4157 else
4158 agg_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (parm)));
4159 if (total_size >= agg_size)
4160 return NULL;
4162 gcc_assert (group_count > 0);
4163 return res;
4166 /* Decide whether parameters with representative accesses given by REPR should
4167 be reduced into components. */
4169 static int
4170 decide_one_param_reduction (struct access *repr)
4172 int total_size, cur_parm_size, agg_size, new_param_count, parm_size_limit;
4173 bool by_ref;
4174 tree parm;
4176 parm = repr->base;
4177 cur_parm_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (parm)));
4178 gcc_assert (cur_parm_size > 0);
4180 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4182 by_ref = true;
4183 agg_size = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (TREE_TYPE (parm))));
4185 else
4187 by_ref = false;
4188 agg_size = cur_parm_size;
4191 if (dump_file)
4193 struct access *acc;
4194 fprintf (dump_file, "Evaluating PARAM group sizes for ");
4195 print_generic_expr (dump_file, parm, 0);
4196 fprintf (dump_file, " (UID: %u): \n", DECL_UID (parm));
4197 for (acc = repr; acc; acc = acc->next_grp)
4198 dump_access (dump_file, acc, true);
4201 total_size = 0;
4202 new_param_count = 0;
4204 for (; repr; repr = repr->next_grp)
4206 gcc_assert (parm == repr->base);
4208 /* Taking the address of a non-addressable field is verboten. */
4209 if (by_ref && repr->non_addressable)
4210 return 0;
4212 /* Do not decompose a non-BLKmode param in a way that would
4213 create BLKmode params. Especially for by-reference passing
4214 (thus, pointer-type param) this is hardly worthwhile. */
4215 if (DECL_MODE (parm) != BLKmode
4216 && TYPE_MODE (repr->type) == BLKmode)
4217 return 0;
4219 if (!by_ref || (!repr->grp_maybe_modified
4220 && !repr->grp_not_necessarilly_dereferenced))
4221 total_size += repr->size;
4222 else
4223 total_size += cur_parm_size;
4225 new_param_count++;
4228 gcc_assert (new_param_count > 0);
4230 if (optimize_function_for_size_p (cfun))
4231 parm_size_limit = cur_parm_size;
4232 else
4233 parm_size_limit = (PARAM_VALUE (PARAM_IPA_SRA_PTR_GROWTH_FACTOR)
4234 * cur_parm_size);
4236 if (total_size < agg_size
4237 && total_size <= parm_size_limit)
4239 if (dump_file)
4240 fprintf (dump_file, " ....will be split into %i components\n",
4241 new_param_count);
4242 return new_param_count;
4244 else
4245 return 0;
4248 /* The order of the following enums is important, we need to do extra work for
4249 UNUSED_PARAMS, BY_VAL_ACCESSES and UNMODIF_BY_REF_ACCESSES. */
4250 enum ipa_splicing_result { NO_GOOD_ACCESS, UNUSED_PARAMS, BY_VAL_ACCESSES,
4251 MODIF_BY_REF_ACCESSES, UNMODIF_BY_REF_ACCESSES };
4253 /* Identify representatives of all accesses to all candidate parameters for
4254 IPA-SRA. Return result based on what representatives have been found. */
4256 static enum ipa_splicing_result
4257 splice_all_param_accesses (vec<access_p> &representatives)
4259 enum ipa_splicing_result result = NO_GOOD_ACCESS;
4260 tree parm;
4261 struct access *repr;
4263 representatives.create (func_param_count);
4265 for (parm = DECL_ARGUMENTS (current_function_decl);
4266 parm;
4267 parm = DECL_CHAIN (parm))
4269 if (is_unused_scalar_param (parm))
4271 representatives.quick_push (&no_accesses_representant);
4272 if (result == NO_GOOD_ACCESS)
4273 result = UNUSED_PARAMS;
4275 else if (POINTER_TYPE_P (TREE_TYPE (parm))
4276 && is_gimple_reg_type (TREE_TYPE (TREE_TYPE (parm)))
4277 && bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
4279 repr = unmodified_by_ref_scalar_representative (parm);
4280 representatives.quick_push (repr);
4281 if (repr)
4282 result = UNMODIF_BY_REF_ACCESSES;
4284 else if (bitmap_bit_p (candidate_bitmap, DECL_UID (parm)))
4286 bool ro_grp = false;
4287 repr = splice_param_accesses (parm, &ro_grp);
4288 representatives.quick_push (repr);
4290 if (repr && !no_accesses_p (repr))
4292 if (POINTER_TYPE_P (TREE_TYPE (parm)))
4294 if (ro_grp)
4295 result = UNMODIF_BY_REF_ACCESSES;
4296 else if (result < MODIF_BY_REF_ACCESSES)
4297 result = MODIF_BY_REF_ACCESSES;
4299 else if (result < BY_VAL_ACCESSES)
4300 result = BY_VAL_ACCESSES;
4302 else if (no_accesses_p (repr) && (result == NO_GOOD_ACCESS))
4303 result = UNUSED_PARAMS;
4305 else
4306 representatives.quick_push (NULL);
4309 if (result == NO_GOOD_ACCESS)
4311 representatives.release ();
4312 return NO_GOOD_ACCESS;
4315 return result;
4318 /* Return the index of BASE in PARMS. Abort if it is not found. */
4320 static inline int
4321 get_param_index (tree base, vec<tree> parms)
4323 int i, len;
4325 len = parms.length ();
4326 for (i = 0; i < len; i++)
4327 if (parms[i] == base)
4328 return i;
4329 gcc_unreachable ();
4332 /* Convert the decisions made at the representative level into compact
4333 parameter adjustments. REPRESENTATIVES are pointers to first
4334 representatives of each param accesses, ADJUSTMENTS_COUNT is the expected
4335 final number of adjustments. */
4337 static ipa_parm_adjustment_vec
4338 turn_representatives_into_adjustments (vec<access_p> representatives,
4339 int adjustments_count)
4341 vec<tree> parms;
4342 ipa_parm_adjustment_vec adjustments;
4343 tree parm;
4344 int i;
4346 gcc_assert (adjustments_count > 0);
4347 parms = ipa_get_vector_of_formal_parms (current_function_decl);
4348 adjustments.create (adjustments_count);
4349 parm = DECL_ARGUMENTS (current_function_decl);
4350 for (i = 0; i < func_param_count; i++, parm = DECL_CHAIN (parm))
4352 struct access *repr = representatives[i];
4354 if (!repr || no_accesses_p (repr))
4356 struct ipa_parm_adjustment adj;
4358 memset (&adj, 0, sizeof (adj));
4359 adj.base_index = get_param_index (parm, parms);
4360 adj.base = parm;
4361 if (!repr)
4362 adj.op = IPA_PARM_OP_COPY;
4363 else
4364 adj.op = IPA_PARM_OP_REMOVE;
4365 adj.arg_prefix = "ISRA";
4366 adjustments.quick_push (adj);
4368 else
4370 struct ipa_parm_adjustment adj;
4371 int index = get_param_index (parm, parms);
4373 for (; repr; repr = repr->next_grp)
4375 memset (&adj, 0, sizeof (adj));
4376 gcc_assert (repr->base == parm);
4377 adj.base_index = index;
4378 adj.base = repr->base;
4379 adj.type = repr->type;
4380 adj.alias_ptr_type = reference_alias_ptr_type (repr->expr);
4381 adj.offset = repr->offset;
4382 adj.by_ref = (POINTER_TYPE_P (TREE_TYPE (repr->base))
4383 && (repr->grp_maybe_modified
4384 || repr->grp_not_necessarilly_dereferenced));
4385 adj.arg_prefix = "ISRA";
4386 adjustments.quick_push (adj);
4390 parms.release ();
4391 return adjustments;
4394 /* Analyze the collected accesses and produce a plan what to do with the
4395 parameters in the form of adjustments, NULL meaning nothing. */
4397 static ipa_parm_adjustment_vec
4398 analyze_all_param_acesses (void)
4400 enum ipa_splicing_result repr_state;
4401 bool proceed = false;
4402 int i, adjustments_count = 0;
4403 vec<access_p> representatives;
4404 ipa_parm_adjustment_vec adjustments;
4406 repr_state = splice_all_param_accesses (representatives);
4407 if (repr_state == NO_GOOD_ACCESS)
4408 return ipa_parm_adjustment_vec ();
4410 /* If there are any parameters passed by reference which are not modified
4411 directly, we need to check whether they can be modified indirectly. */
4412 if (repr_state == UNMODIF_BY_REF_ACCESSES)
4414 analyze_caller_dereference_legality (representatives);
4415 analyze_modified_params (representatives);
4418 for (i = 0; i < func_param_count; i++)
4420 struct access *repr = representatives[i];
4422 if (repr && !no_accesses_p (repr))
4424 if (repr->grp_scalar_ptr)
4426 adjustments_count++;
4427 if (repr->grp_not_necessarilly_dereferenced
4428 || repr->grp_maybe_modified)
4429 representatives[i] = NULL;
4430 else
4432 proceed = true;
4433 sra_stats.scalar_by_ref_to_by_val++;
4436 else
4438 int new_components = decide_one_param_reduction (repr);
4440 if (new_components == 0)
4442 representatives[i] = NULL;
4443 adjustments_count++;
4445 else
4447 adjustments_count += new_components;
4448 sra_stats.aggregate_params_reduced++;
4449 sra_stats.param_reductions_created += new_components;
4450 proceed = true;
4454 else
4456 if (no_accesses_p (repr))
4458 proceed = true;
4459 sra_stats.deleted_unused_parameters++;
4461 adjustments_count++;
4465 if (!proceed && dump_file)
4466 fprintf (dump_file, "NOT proceeding to change params.\n");
4468 if (proceed)
4469 adjustments = turn_representatives_into_adjustments (representatives,
4470 adjustments_count);
4471 else
4472 adjustments = ipa_parm_adjustment_vec ();
4474 representatives.release ();
4475 return adjustments;
4478 /* If a parameter replacement identified by ADJ does not yet exist in the form
4479 of declaration, create it and record it, otherwise return the previously
4480 created one. */
4482 static tree
4483 get_replaced_param_substitute (struct ipa_parm_adjustment *adj)
4485 tree repl;
4486 if (!adj->new_ssa_base)
4488 char *pretty_name = make_fancy_name (adj->base);
4490 repl = create_tmp_reg (TREE_TYPE (adj->base), "ISR");
4491 DECL_NAME (repl) = get_identifier (pretty_name);
4492 obstack_free (&name_obstack, pretty_name);
4494 adj->new_ssa_base = repl;
4496 else
4497 repl = adj->new_ssa_base;
4498 return repl;
4501 /* Find the first adjustment for a particular parameter BASE in a vector of
4502 ADJUSTMENTS which is not a copy_param. Return NULL if there is no such
4503 adjustment. */
4505 static struct ipa_parm_adjustment *
4506 get_adjustment_for_base (ipa_parm_adjustment_vec adjustments, tree base)
4508 int i, len;
4510 len = adjustments.length ();
4511 for (i = 0; i < len; i++)
4513 struct ipa_parm_adjustment *adj;
4515 adj = &adjustments[i];
4516 if (adj->op != IPA_PARM_OP_COPY && adj->base == base)
4517 return adj;
4520 return NULL;
4523 /* If the statement STMT defines an SSA_NAME of a parameter which is to be
4524 removed because its value is not used, replace the SSA_NAME with a one
4525 relating to a created VAR_DECL together all of its uses and return true.
4526 ADJUSTMENTS is a pointer to an adjustments vector. */
4528 static bool
4529 replace_removed_params_ssa_names (gimple stmt,
4530 ipa_parm_adjustment_vec adjustments)
4532 struct ipa_parm_adjustment *adj;
4533 tree lhs, decl, repl, name;
4535 if (gimple_code (stmt) == GIMPLE_PHI)
4536 lhs = gimple_phi_result (stmt);
4537 else if (is_gimple_assign (stmt))
4538 lhs = gimple_assign_lhs (stmt);
4539 else if (is_gimple_call (stmt))
4540 lhs = gimple_call_lhs (stmt);
4541 else
4542 gcc_unreachable ();
4544 if (TREE_CODE (lhs) != SSA_NAME)
4545 return false;
4547 decl = SSA_NAME_VAR (lhs);
4548 if (decl == NULL_TREE
4549 || TREE_CODE (decl) != PARM_DECL)
4550 return false;
4552 adj = get_adjustment_for_base (adjustments, decl);
4553 if (!adj)
4554 return false;
4556 repl = get_replaced_param_substitute (adj);
4557 name = make_ssa_name (repl, stmt);
4559 if (dump_file)
4561 fprintf (dump_file, "replacing an SSA name of a removed param ");
4562 print_generic_expr (dump_file, lhs, 0);
4563 fprintf (dump_file, " with ");
4564 print_generic_expr (dump_file, name, 0);
4565 fprintf (dump_file, "\n");
4568 if (is_gimple_assign (stmt))
4569 gimple_assign_set_lhs (stmt, name);
4570 else if (is_gimple_call (stmt))
4571 gimple_call_set_lhs (stmt, name);
4572 else
4573 gimple_phi_set_result (as_a <gphi *> (stmt), name);
4575 replace_uses_by (lhs, name);
4576 release_ssa_name (lhs);
4577 return true;
4580 /* If the statement STMT contains any expressions that need to replaced with a
4581 different one as noted by ADJUSTMENTS, do so. Handle any potential type
4582 incompatibilities (GSI is used to accommodate conversion statements and must
4583 point to the statement). Return true iff the statement was modified. */
4585 static bool
4586 sra_ipa_modify_assign (gimple stmt, gimple_stmt_iterator *gsi,
4587 ipa_parm_adjustment_vec adjustments)
4589 tree *lhs_p, *rhs_p;
4590 bool any;
4592 if (!gimple_assign_single_p (stmt))
4593 return false;
4595 rhs_p = gimple_assign_rhs1_ptr (stmt);
4596 lhs_p = gimple_assign_lhs_ptr (stmt);
4598 any = ipa_modify_expr (rhs_p, false, adjustments);
4599 any |= ipa_modify_expr (lhs_p, false, adjustments);
4600 if (any)
4602 tree new_rhs = NULL_TREE;
4604 if (!useless_type_conversion_p (TREE_TYPE (*lhs_p), TREE_TYPE (*rhs_p)))
4606 if (TREE_CODE (*rhs_p) == CONSTRUCTOR)
4608 /* V_C_Es of constructors can cause trouble (PR 42714). */
4609 if (is_gimple_reg_type (TREE_TYPE (*lhs_p)))
4610 *rhs_p = build_zero_cst (TREE_TYPE (*lhs_p));
4611 else
4612 *rhs_p = build_constructor (TREE_TYPE (*lhs_p),
4613 NULL);
4615 else
4616 new_rhs = fold_build1_loc (gimple_location (stmt),
4617 VIEW_CONVERT_EXPR, TREE_TYPE (*lhs_p),
4618 *rhs_p);
4620 else if (REFERENCE_CLASS_P (*rhs_p)
4621 && is_gimple_reg_type (TREE_TYPE (*lhs_p))
4622 && !is_gimple_reg (*lhs_p))
4623 /* This can happen when an assignment in between two single field
4624 structures is turned into an assignment in between two pointers to
4625 scalars (PR 42237). */
4626 new_rhs = *rhs_p;
4628 if (new_rhs)
4630 tree tmp = force_gimple_operand_gsi (gsi, new_rhs, true, NULL_TREE,
4631 true, GSI_SAME_STMT);
4633 gimple_assign_set_rhs_from_tree (gsi, tmp);
4636 return true;
4639 return false;
4642 /* Traverse the function body and all modifications as described in
4643 ADJUSTMENTS. Return true iff the CFG has been changed. */
4645 bool
4646 ipa_sra_modify_function_body (ipa_parm_adjustment_vec adjustments)
4648 bool cfg_changed = false;
4649 basic_block bb;
4651 FOR_EACH_BB_FN (bb, cfun)
4653 gimple_stmt_iterator gsi;
4655 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4656 replace_removed_params_ssa_names (gsi_stmt (gsi), adjustments);
4658 gsi = gsi_start_bb (bb);
4659 while (!gsi_end_p (gsi))
4661 gimple stmt = gsi_stmt (gsi);
4662 bool modified = false;
4663 tree *t;
4664 unsigned i;
4666 switch (gimple_code (stmt))
4668 case GIMPLE_RETURN:
4669 t = gimple_return_retval_ptr (as_a <greturn *> (stmt));
4670 if (*t != NULL_TREE)
4671 modified |= ipa_modify_expr (t, true, adjustments);
4672 break;
4674 case GIMPLE_ASSIGN:
4675 modified |= sra_ipa_modify_assign (stmt, &gsi, adjustments);
4676 modified |= replace_removed_params_ssa_names (stmt, adjustments);
4677 break;
4679 case GIMPLE_CALL:
4680 /* Operands must be processed before the lhs. */
4681 for (i = 0; i < gimple_call_num_args (stmt); i++)
4683 t = gimple_call_arg_ptr (stmt, i);
4684 modified |= ipa_modify_expr (t, true, adjustments);
4687 if (gimple_call_lhs (stmt))
4689 t = gimple_call_lhs_ptr (stmt);
4690 modified |= ipa_modify_expr (t, false, adjustments);
4691 modified |= replace_removed_params_ssa_names (stmt,
4692 adjustments);
4694 break;
4696 case GIMPLE_ASM:
4698 gasm *asm_stmt = as_a <gasm *> (stmt);
4699 for (i = 0; i < gimple_asm_ninputs (asm_stmt); i++)
4701 t = &TREE_VALUE (gimple_asm_input_op (asm_stmt, i));
4702 modified |= ipa_modify_expr (t, true, adjustments);
4704 for (i = 0; i < gimple_asm_noutputs (asm_stmt); i++)
4706 t = &TREE_VALUE (gimple_asm_output_op (asm_stmt, i));
4707 modified |= ipa_modify_expr (t, false, adjustments);
4710 break;
4712 default:
4713 break;
4716 if (modified)
4718 update_stmt (stmt);
4719 if (maybe_clean_eh_stmt (stmt)
4720 && gimple_purge_dead_eh_edges (gimple_bb (stmt)))
4721 cfg_changed = true;
4723 gsi_next (&gsi);
4727 return cfg_changed;
4730 /* Call gimple_debug_bind_reset_value on all debug statements describing
4731 gimple register parameters that are being removed or replaced. */
4733 static void
4734 sra_ipa_reset_debug_stmts (ipa_parm_adjustment_vec adjustments)
4736 int i, len;
4737 gimple_stmt_iterator *gsip = NULL, gsi;
4739 if (MAY_HAVE_DEBUG_STMTS && single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)))
4741 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4742 gsip = &gsi;
4744 len = adjustments.length ();
4745 for (i = 0; i < len; i++)
4747 struct ipa_parm_adjustment *adj;
4748 imm_use_iterator ui;
4749 gimple stmt;
4750 gdebug *def_temp;
4751 tree name, vexpr, copy = NULL_TREE;
4752 use_operand_p use_p;
4754 adj = &adjustments[i];
4755 if (adj->op == IPA_PARM_OP_COPY || !is_gimple_reg (adj->base))
4756 continue;
4757 name = ssa_default_def (cfun, adj->base);
4758 vexpr = NULL;
4759 if (name)
4760 FOR_EACH_IMM_USE_STMT (stmt, ui, name)
4762 if (gimple_clobber_p (stmt))
4764 gimple_stmt_iterator cgsi = gsi_for_stmt (stmt);
4765 unlink_stmt_vdef (stmt);
4766 gsi_remove (&cgsi, true);
4767 release_defs (stmt);
4768 continue;
4770 /* All other users must have been removed by
4771 ipa_sra_modify_function_body. */
4772 gcc_assert (is_gimple_debug (stmt));
4773 if (vexpr == NULL && gsip != NULL)
4775 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4776 vexpr = make_node (DEBUG_EXPR_DECL);
4777 def_temp = gimple_build_debug_source_bind (vexpr, adj->base,
4778 NULL);
4779 DECL_ARTIFICIAL (vexpr) = 1;
4780 TREE_TYPE (vexpr) = TREE_TYPE (name);
4781 DECL_MODE (vexpr) = DECL_MODE (adj->base);
4782 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4784 if (vexpr)
4786 FOR_EACH_IMM_USE_ON_STMT (use_p, ui)
4787 SET_USE (use_p, vexpr);
4789 else
4790 gimple_debug_bind_reset_value (stmt);
4791 update_stmt (stmt);
4793 /* Create a VAR_DECL for debug info purposes. */
4794 if (!DECL_IGNORED_P (adj->base))
4796 copy = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
4797 VAR_DECL, DECL_NAME (adj->base),
4798 TREE_TYPE (adj->base));
4799 if (DECL_PT_UID_SET_P (adj->base))
4800 SET_DECL_PT_UID (copy, DECL_PT_UID (adj->base));
4801 TREE_ADDRESSABLE (copy) = TREE_ADDRESSABLE (adj->base);
4802 TREE_READONLY (copy) = TREE_READONLY (adj->base);
4803 TREE_THIS_VOLATILE (copy) = TREE_THIS_VOLATILE (adj->base);
4804 DECL_GIMPLE_REG_P (copy) = DECL_GIMPLE_REG_P (adj->base);
4805 DECL_ARTIFICIAL (copy) = DECL_ARTIFICIAL (adj->base);
4806 DECL_IGNORED_P (copy) = DECL_IGNORED_P (adj->base);
4807 DECL_ABSTRACT_ORIGIN (copy) = DECL_ORIGIN (adj->base);
4808 DECL_SEEN_IN_BIND_EXPR_P (copy) = 1;
4809 SET_DECL_RTL (copy, 0);
4810 TREE_USED (copy) = 1;
4811 DECL_CONTEXT (copy) = current_function_decl;
4812 add_local_decl (cfun, copy);
4813 DECL_CHAIN (copy) =
4814 BLOCK_VARS (DECL_INITIAL (current_function_decl));
4815 BLOCK_VARS (DECL_INITIAL (current_function_decl)) = copy;
4817 if (gsip != NULL && copy && target_for_debug_bind (adj->base))
4819 gcc_assert (TREE_CODE (adj->base) == PARM_DECL);
4820 if (vexpr)
4821 def_temp = gimple_build_debug_bind (copy, vexpr, NULL);
4822 else
4823 def_temp = gimple_build_debug_source_bind (copy, adj->base,
4824 NULL);
4825 gsi_insert_before (gsip, def_temp, GSI_SAME_STMT);
4830 /* Return false if all callers have at least as many actual arguments as there
4831 are formal parameters in the current function and that their types
4832 match. */
4834 static bool
4835 some_callers_have_mismatched_arguments_p (struct cgraph_node *node,
4836 void *data ATTRIBUTE_UNUSED)
4838 struct cgraph_edge *cs;
4839 for (cs = node->callers; cs; cs = cs->next_caller)
4840 if (!callsite_arguments_match_p (cs->call_stmt))
4841 return true;
4843 return false;
4846 /* Convert all callers of NODE. */
4848 static bool
4849 convert_callers_for_node (struct cgraph_node *node,
4850 void *data)
4852 ipa_parm_adjustment_vec *adjustments = (ipa_parm_adjustment_vec *) data;
4853 bitmap recomputed_callers = BITMAP_ALLOC (NULL);
4854 struct cgraph_edge *cs;
4856 for (cs = node->callers; cs; cs = cs->next_caller)
4858 push_cfun (DECL_STRUCT_FUNCTION (cs->caller->decl));
4860 if (dump_file)
4861 fprintf (dump_file, "Adjusting call %s/%i -> %s/%i\n",
4862 xstrdup (cs->caller->name ()),
4863 cs->caller->order,
4864 xstrdup (cs->callee->name ()),
4865 cs->callee->order);
4867 ipa_modify_call_arguments (cs, cs->call_stmt, *adjustments);
4869 pop_cfun ();
4872 for (cs = node->callers; cs; cs = cs->next_caller)
4873 if (bitmap_set_bit (recomputed_callers, cs->caller->uid)
4874 && gimple_in_ssa_p (DECL_STRUCT_FUNCTION (cs->caller->decl)))
4875 compute_inline_parameters (cs->caller, true);
4876 BITMAP_FREE (recomputed_callers);
4878 return true;
4881 /* Convert all callers of NODE to pass parameters as given in ADJUSTMENTS. */
4883 static void
4884 convert_callers (struct cgraph_node *node, tree old_decl,
4885 ipa_parm_adjustment_vec adjustments)
4887 basic_block this_block;
4889 node->call_for_symbol_thunks_and_aliases (convert_callers_for_node,
4890 &adjustments, false);
4892 if (!encountered_recursive_call)
4893 return;
4895 FOR_EACH_BB_FN (this_block, cfun)
4897 gimple_stmt_iterator gsi;
4899 for (gsi = gsi_start_bb (this_block); !gsi_end_p (gsi); gsi_next (&gsi))
4901 gcall *stmt;
4902 tree call_fndecl;
4903 stmt = dyn_cast <gcall *> (gsi_stmt (gsi));
4904 if (!stmt)
4905 continue;
4906 call_fndecl = gimple_call_fndecl (stmt);
4907 if (call_fndecl == old_decl)
4909 if (dump_file)
4910 fprintf (dump_file, "Adjusting recursive call");
4911 gimple_call_set_fndecl (stmt, node->decl);
4912 ipa_modify_call_arguments (NULL, stmt, adjustments);
4917 return;
4920 /* Perform all the modification required in IPA-SRA for NODE to have parameters
4921 as given in ADJUSTMENTS. Return true iff the CFG has been changed. */
4923 static bool
4924 modify_function (struct cgraph_node *node, ipa_parm_adjustment_vec adjustments)
4926 struct cgraph_node *new_node;
4927 bool cfg_changed;
4929 cgraph_edge::rebuild_edges ();
4930 free_dominance_info (CDI_DOMINATORS);
4931 pop_cfun ();
4933 /* This must be done after rebuilding cgraph edges for node above.
4934 Otherwise any recursive calls to node that are recorded in
4935 redirect_callers will be corrupted. */
4936 vec<cgraph_edge *> redirect_callers = node->collect_callers ();
4937 new_node = node->create_version_clone_with_body (redirect_callers, NULL,
4938 NULL, false, NULL, NULL,
4939 "isra");
4940 redirect_callers.release ();
4942 push_cfun (DECL_STRUCT_FUNCTION (new_node->decl));
4943 ipa_modify_formal_parameters (current_function_decl, adjustments);
4944 cfg_changed = ipa_sra_modify_function_body (adjustments);
4945 sra_ipa_reset_debug_stmts (adjustments);
4946 convert_callers (new_node, node->decl, adjustments);
4947 new_node->make_local ();
4948 return cfg_changed;
4951 /* If NODE has a caller, return true. */
4953 static bool
4954 has_caller_p (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
4956 if (node->callers)
4957 return true;
4958 return false;
4961 /* Return false the function is apparently unsuitable for IPA-SRA based on it's
4962 attributes, return true otherwise. NODE is the cgraph node of the current
4963 function. */
4965 static bool
4966 ipa_sra_preliminary_function_checks (struct cgraph_node *node)
4968 if (!node->can_be_local_p ())
4970 if (dump_file)
4971 fprintf (dump_file, "Function not local to this compilation unit.\n");
4972 return false;
4975 if (!node->local.can_change_signature)
4977 if (dump_file)
4978 fprintf (dump_file, "Function can not change signature.\n");
4979 return false;
4982 if (!tree_versionable_function_p (node->decl))
4984 if (dump_file)
4985 fprintf (dump_file, "Function is not versionable.\n");
4986 return false;
4989 if (!opt_for_fn (node->decl, optimize)
4990 || !opt_for_fn (node->decl, flag_ipa_sra))
4992 if (dump_file)
4993 fprintf (dump_file, "Function not optimized.\n");
4994 return false;
4997 if (DECL_VIRTUAL_P (current_function_decl))
4999 if (dump_file)
5000 fprintf (dump_file, "Function is a virtual method.\n");
5001 return false;
5004 if ((DECL_COMDAT (node->decl) || DECL_EXTERNAL (node->decl))
5005 && inline_summary (node)->size >= MAX_INLINE_INSNS_AUTO)
5007 if (dump_file)
5008 fprintf (dump_file, "Function too big to be made truly local.\n");
5009 return false;
5012 if (!node->call_for_symbol_thunks_and_aliases (has_caller_p, NULL, true))
5014 if (dump_file)
5015 fprintf (dump_file,
5016 "Function has no callers in this compilation unit.\n");
5017 return false;
5020 if (cfun->stdarg)
5022 if (dump_file)
5023 fprintf (dump_file, "Function uses stdarg. \n");
5024 return false;
5027 if (TYPE_ATTRIBUTES (TREE_TYPE (node->decl)))
5028 return false;
5030 if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
5032 if (dump_file)
5033 fprintf (dump_file, "Always inline function will be inlined "
5034 "anyway. \n");
5035 return false;
5038 return true;
5041 /* Perform early interprocedural SRA. */
5043 static unsigned int
5044 ipa_early_sra (void)
5046 struct cgraph_node *node = cgraph_node::get (current_function_decl);
5047 ipa_parm_adjustment_vec adjustments;
5048 int ret = 0;
5050 if (!ipa_sra_preliminary_function_checks (node))
5051 return 0;
5053 sra_initialize ();
5054 sra_mode = SRA_MODE_EARLY_IPA;
5056 if (!find_param_candidates ())
5058 if (dump_file)
5059 fprintf (dump_file, "Function has no IPA-SRA candidates.\n");
5060 goto simple_out;
5063 if (node->call_for_symbol_thunks_and_aliases
5064 (some_callers_have_mismatched_arguments_p, NULL, true))
5066 if (dump_file)
5067 fprintf (dump_file, "There are callers with insufficient number of "
5068 "arguments or arguments with type mismatches.\n");
5069 goto simple_out;
5072 bb_dereferences = XCNEWVEC (HOST_WIDE_INT,
5073 func_param_count
5074 * last_basic_block_for_fn (cfun));
5075 final_bbs = BITMAP_ALLOC (NULL);
5077 scan_function ();
5078 if (encountered_apply_args)
5080 if (dump_file)
5081 fprintf (dump_file, "Function calls __builtin_apply_args().\n");
5082 goto out;
5085 if (encountered_unchangable_recursive_call)
5087 if (dump_file)
5088 fprintf (dump_file, "Function calls itself with insufficient "
5089 "number of arguments.\n");
5090 goto out;
5093 adjustments = analyze_all_param_acesses ();
5094 if (!adjustments.exists ())
5095 goto out;
5096 if (dump_file)
5097 ipa_dump_param_adjustments (dump_file, adjustments, current_function_decl);
5099 if (modify_function (node, adjustments))
5100 ret = TODO_update_ssa | TODO_cleanup_cfg;
5101 else
5102 ret = TODO_update_ssa;
5103 adjustments.release ();
5105 statistics_counter_event (cfun, "Unused parameters deleted",
5106 sra_stats.deleted_unused_parameters);
5107 statistics_counter_event (cfun, "Scalar parameters converted to by-value",
5108 sra_stats.scalar_by_ref_to_by_val);
5109 statistics_counter_event (cfun, "Aggregate parameters broken up",
5110 sra_stats.aggregate_params_reduced);
5111 statistics_counter_event (cfun, "Aggregate parameter components created",
5112 sra_stats.param_reductions_created);
5114 out:
5115 BITMAP_FREE (final_bbs);
5116 free (bb_dereferences);
5117 simple_out:
5118 sra_deinitialize ();
5119 return ret;
5122 namespace {
5124 const pass_data pass_data_early_ipa_sra =
5126 GIMPLE_PASS, /* type */
5127 "eipa_sra", /* name */
5128 OPTGROUP_NONE, /* optinfo_flags */
5129 TV_IPA_SRA, /* tv_id */
5130 0, /* properties_required */
5131 0, /* properties_provided */
5132 0, /* properties_destroyed */
5133 0, /* todo_flags_start */
5134 TODO_dump_symtab, /* todo_flags_finish */
5137 class pass_early_ipa_sra : public gimple_opt_pass
5139 public:
5140 pass_early_ipa_sra (gcc::context *ctxt)
5141 : gimple_opt_pass (pass_data_early_ipa_sra, ctxt)
5144 /* opt_pass methods: */
5145 virtual bool gate (function *) { return flag_ipa_sra && dbg_cnt (eipa_sra); }
5146 virtual unsigned int execute (function *) { return ipa_early_sra (); }
5148 }; // class pass_early_ipa_sra
5150 } // anon namespace
5152 gimple_opt_pass *
5153 make_pass_early_ipa_sra (gcc::context *ctxt)
5155 return new pass_early_ipa_sra (ctxt);