* gcc.dg/store-motion-fgcse-sm.c (dg-final): Cleanup
[official-gcc.git] / gcc / tree-data-ref.c
blobcca569ac216ee06850e8504ccc4d56dece8f2b66
1 /* Data references and dependences detectors.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* This pass walks a given loop structure searching for array
22 references. The information about the array accesses is recorded
23 in DATA_REFERENCE structures.
25 The basic test for determining the dependences is:
26 given two access functions chrec1 and chrec2 to a same array, and
27 x and y two vectors from the iteration domain, the same element of
28 the array is accessed twice at iterations x and y if and only if:
29 | chrec1 (x) == chrec2 (y).
31 The goals of this analysis are:
33 - to determine the independence: the relation between two
34 independent accesses is qualified with the chrec_known (this
35 information allows a loop parallelization),
37 - when two data references access the same data, to qualify the
38 dependence relation with classic dependence representations:
40 - distance vectors
41 - direction vectors
42 - loop carried level dependence
43 - polyhedron dependence
44 or with the chains of recurrences based representation,
46 - to define a knowledge base for storing the data dependence
47 information,
49 - to define an interface to access this data.
52 Definitions:
54 - subscript: given two array accesses a subscript is the tuple
55 composed of the access functions for a given dimension. Example:
56 Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
57 (f1, g1), (f2, g2), (f3, g3).
59 - Diophantine equation: an equation whose coefficients and
60 solutions are integer constants, for example the equation
61 | 3*x + 2*y = 1
62 has an integer solution x = 1 and y = -1.
64 References:
66 - "Advanced Compilation for High Performance Computing" by Randy
67 Allen and Ken Kennedy.
68 http://citeseer.ist.psu.edu/goff91practical.html
70 - "Loop Transformations for Restructuring Compilers - The Foundations"
71 by Utpal Banerjee.
76 #include "config.h"
77 #include "system.h"
78 #include "coretypes.h"
79 #include "tree.h"
80 #include "expr.h"
81 #include "gimple-pretty-print.h"
82 #include "predict.h"
83 #include "vec.h"
84 #include "hashtab.h"
85 #include "hash-set.h"
86 #include "machmode.h"
87 #include "tm.h"
88 #include "hard-reg-set.h"
89 #include "input.h"
90 #include "function.h"
91 #include "dominance.h"
92 #include "cfg.h"
93 #include "basic-block.h"
94 #include "tree-ssa-alias.h"
95 #include "internal-fn.h"
96 #include "gimple-expr.h"
97 #include "is-a.h"
98 #include "gimple.h"
99 #include "gimple-iterator.h"
100 #include "tree-ssa-loop-niter.h"
101 #include "tree-ssa-loop.h"
102 #include "tree-ssa.h"
103 #include "cfgloop.h"
104 #include "tree-data-ref.h"
105 #include "tree-scalar-evolution.h"
106 #include "dumpfile.h"
107 #include "langhooks.h"
108 #include "tree-affine.h"
109 #include "params.h"
111 static struct datadep_stats
113 int num_dependence_tests;
114 int num_dependence_dependent;
115 int num_dependence_independent;
116 int num_dependence_undetermined;
118 int num_subscript_tests;
119 int num_subscript_undetermined;
120 int num_same_subscript_function;
122 int num_ziv;
123 int num_ziv_independent;
124 int num_ziv_dependent;
125 int num_ziv_unimplemented;
127 int num_siv;
128 int num_siv_independent;
129 int num_siv_dependent;
130 int num_siv_unimplemented;
132 int num_miv;
133 int num_miv_independent;
134 int num_miv_dependent;
135 int num_miv_unimplemented;
136 } dependence_stats;
138 static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
139 struct data_reference *,
140 struct data_reference *,
141 struct loop *);
142 /* Returns true iff A divides B. */
144 static inline bool
145 tree_fold_divides_p (const_tree a, const_tree b)
147 gcc_assert (TREE_CODE (a) == INTEGER_CST);
148 gcc_assert (TREE_CODE (b) == INTEGER_CST);
149 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
152 /* Returns true iff A divides B. */
154 static inline bool
155 int_divides_p (int a, int b)
157 return ((b % a) == 0);
162 /* Dump into FILE all the data references from DATAREFS. */
164 static void
165 dump_data_references (FILE *file, vec<data_reference_p> datarefs)
167 unsigned int i;
168 struct data_reference *dr;
170 FOR_EACH_VEC_ELT (datarefs, i, dr)
171 dump_data_reference (file, dr);
174 /* Unified dump into FILE all the data references from DATAREFS. */
176 DEBUG_FUNCTION void
177 debug (vec<data_reference_p> &ref)
179 dump_data_references (stderr, ref);
182 DEBUG_FUNCTION void
183 debug (vec<data_reference_p> *ptr)
185 if (ptr)
186 debug (*ptr);
187 else
188 fprintf (stderr, "<nil>\n");
192 /* Dump into STDERR all the data references from DATAREFS. */
194 DEBUG_FUNCTION void
195 debug_data_references (vec<data_reference_p> datarefs)
197 dump_data_references (stderr, datarefs);
200 /* Print to STDERR the data_reference DR. */
202 DEBUG_FUNCTION void
203 debug_data_reference (struct data_reference *dr)
205 dump_data_reference (stderr, dr);
208 /* Dump function for a DATA_REFERENCE structure. */
210 void
211 dump_data_reference (FILE *outf,
212 struct data_reference *dr)
214 unsigned int i;
216 fprintf (outf, "#(Data Ref: \n");
217 fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index);
218 fprintf (outf, "# stmt: ");
219 print_gimple_stmt (outf, DR_STMT (dr), 0, 0);
220 fprintf (outf, "# ref: ");
221 print_generic_stmt (outf, DR_REF (dr), 0);
222 fprintf (outf, "# base_object: ");
223 print_generic_stmt (outf, DR_BASE_OBJECT (dr), 0);
225 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
227 fprintf (outf, "# Access function %d: ", i);
228 print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
230 fprintf (outf, "#)\n");
233 /* Unified dump function for a DATA_REFERENCE structure. */
235 DEBUG_FUNCTION void
236 debug (data_reference &ref)
238 dump_data_reference (stderr, &ref);
241 DEBUG_FUNCTION void
242 debug (data_reference *ptr)
244 if (ptr)
245 debug (*ptr);
246 else
247 fprintf (stderr, "<nil>\n");
251 /* Dumps the affine function described by FN to the file OUTF. */
253 static void
254 dump_affine_function (FILE *outf, affine_fn fn)
256 unsigned i;
257 tree coef;
259 print_generic_expr (outf, fn[0], TDF_SLIM);
260 for (i = 1; fn.iterate (i, &coef); i++)
262 fprintf (outf, " + ");
263 print_generic_expr (outf, coef, TDF_SLIM);
264 fprintf (outf, " * x_%u", i);
268 /* Dumps the conflict function CF to the file OUTF. */
270 static void
271 dump_conflict_function (FILE *outf, conflict_function *cf)
273 unsigned i;
275 if (cf->n == NO_DEPENDENCE)
276 fprintf (outf, "no dependence");
277 else if (cf->n == NOT_KNOWN)
278 fprintf (outf, "not known");
279 else
281 for (i = 0; i < cf->n; i++)
283 if (i != 0)
284 fprintf (outf, " ");
285 fprintf (outf, "[");
286 dump_affine_function (outf, cf->fns[i]);
287 fprintf (outf, "]");
292 /* Dump function for a SUBSCRIPT structure. */
294 static void
295 dump_subscript (FILE *outf, struct subscript *subscript)
297 conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
299 fprintf (outf, "\n (subscript \n");
300 fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
301 dump_conflict_function (outf, cf);
302 if (CF_NONTRIVIAL_P (cf))
304 tree last_iteration = SUB_LAST_CONFLICT (subscript);
305 fprintf (outf, "\n last_conflict: ");
306 print_generic_expr (outf, last_iteration, 0);
309 cf = SUB_CONFLICTS_IN_B (subscript);
310 fprintf (outf, "\n iterations_that_access_an_element_twice_in_B: ");
311 dump_conflict_function (outf, cf);
312 if (CF_NONTRIVIAL_P (cf))
314 tree last_iteration = SUB_LAST_CONFLICT (subscript);
315 fprintf (outf, "\n last_conflict: ");
316 print_generic_expr (outf, last_iteration, 0);
319 fprintf (outf, "\n (Subscript distance: ");
320 print_generic_expr (outf, SUB_DISTANCE (subscript), 0);
321 fprintf (outf, " ))\n");
324 /* Print the classic direction vector DIRV to OUTF. */
326 static void
327 print_direction_vector (FILE *outf,
328 lambda_vector dirv,
329 int length)
331 int eq;
333 for (eq = 0; eq < length; eq++)
335 enum data_dependence_direction dir = ((enum data_dependence_direction)
336 dirv[eq]);
338 switch (dir)
340 case dir_positive:
341 fprintf (outf, " +");
342 break;
343 case dir_negative:
344 fprintf (outf, " -");
345 break;
346 case dir_equal:
347 fprintf (outf, " =");
348 break;
349 case dir_positive_or_equal:
350 fprintf (outf, " +=");
351 break;
352 case dir_positive_or_negative:
353 fprintf (outf, " +-");
354 break;
355 case dir_negative_or_equal:
356 fprintf (outf, " -=");
357 break;
358 case dir_star:
359 fprintf (outf, " *");
360 break;
361 default:
362 fprintf (outf, "indep");
363 break;
366 fprintf (outf, "\n");
369 /* Print a vector of direction vectors. */
371 static void
372 print_dir_vectors (FILE *outf, vec<lambda_vector> dir_vects,
373 int length)
375 unsigned j;
376 lambda_vector v;
378 FOR_EACH_VEC_ELT (dir_vects, j, v)
379 print_direction_vector (outf, v, length);
382 /* Print out a vector VEC of length N to OUTFILE. */
384 static inline void
385 print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
387 int i;
389 for (i = 0; i < n; i++)
390 fprintf (outfile, "%3d ", vector[i]);
391 fprintf (outfile, "\n");
394 /* Print a vector of distance vectors. */
396 static void
397 print_dist_vectors (FILE *outf, vec<lambda_vector> dist_vects,
398 int length)
400 unsigned j;
401 lambda_vector v;
403 FOR_EACH_VEC_ELT (dist_vects, j, v)
404 print_lambda_vector (outf, v, length);
407 /* Dump function for a DATA_DEPENDENCE_RELATION structure. */
409 static void
410 dump_data_dependence_relation (FILE *outf,
411 struct data_dependence_relation *ddr)
413 struct data_reference *dra, *drb;
415 fprintf (outf, "(Data Dep: \n");
417 if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
419 if (ddr)
421 dra = DDR_A (ddr);
422 drb = DDR_B (ddr);
423 if (dra)
424 dump_data_reference (outf, dra);
425 else
426 fprintf (outf, " (nil)\n");
427 if (drb)
428 dump_data_reference (outf, drb);
429 else
430 fprintf (outf, " (nil)\n");
432 fprintf (outf, " (don't know)\n)\n");
433 return;
436 dra = DDR_A (ddr);
437 drb = DDR_B (ddr);
438 dump_data_reference (outf, dra);
439 dump_data_reference (outf, drb);
441 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
442 fprintf (outf, " (no dependence)\n");
444 else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
446 unsigned int i;
447 struct loop *loopi;
449 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
451 fprintf (outf, " access_fn_A: ");
452 print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
453 fprintf (outf, " access_fn_B: ");
454 print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
455 dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
458 fprintf (outf, " inner loop index: %d\n", DDR_INNER_LOOP (ddr));
459 fprintf (outf, " loop nest: (");
460 FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr), i, loopi)
461 fprintf (outf, "%d ", loopi->num);
462 fprintf (outf, ")\n");
464 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
466 fprintf (outf, " distance_vector: ");
467 print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
468 DDR_NB_LOOPS (ddr));
471 for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
473 fprintf (outf, " direction_vector: ");
474 print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
475 DDR_NB_LOOPS (ddr));
479 fprintf (outf, ")\n");
482 /* Debug version. */
484 DEBUG_FUNCTION void
485 debug_data_dependence_relation (struct data_dependence_relation *ddr)
487 dump_data_dependence_relation (stderr, ddr);
490 /* Dump into FILE all the dependence relations from DDRS. */
492 void
493 dump_data_dependence_relations (FILE *file,
494 vec<ddr_p> ddrs)
496 unsigned int i;
497 struct data_dependence_relation *ddr;
499 FOR_EACH_VEC_ELT (ddrs, i, ddr)
500 dump_data_dependence_relation (file, ddr);
503 DEBUG_FUNCTION void
504 debug (vec<ddr_p> &ref)
506 dump_data_dependence_relations (stderr, ref);
509 DEBUG_FUNCTION void
510 debug (vec<ddr_p> *ptr)
512 if (ptr)
513 debug (*ptr);
514 else
515 fprintf (stderr, "<nil>\n");
519 /* Dump to STDERR all the dependence relations from DDRS. */
521 DEBUG_FUNCTION void
522 debug_data_dependence_relations (vec<ddr_p> ddrs)
524 dump_data_dependence_relations (stderr, ddrs);
527 /* Dumps the distance and direction vectors in FILE. DDRS contains
528 the dependence relations, and VECT_SIZE is the size of the
529 dependence vectors, or in other words the number of loops in the
530 considered nest. */
532 static void
533 dump_dist_dir_vectors (FILE *file, vec<ddr_p> ddrs)
535 unsigned int i, j;
536 struct data_dependence_relation *ddr;
537 lambda_vector v;
539 FOR_EACH_VEC_ELT (ddrs, i, ddr)
540 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
542 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), j, v)
544 fprintf (file, "DISTANCE_V (");
545 print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
546 fprintf (file, ")\n");
549 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), j, v)
551 fprintf (file, "DIRECTION_V (");
552 print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
553 fprintf (file, ")\n");
557 fprintf (file, "\n\n");
560 /* Dumps the data dependence relations DDRS in FILE. */
562 static void
563 dump_ddrs (FILE *file, vec<ddr_p> ddrs)
565 unsigned int i;
566 struct data_dependence_relation *ddr;
568 FOR_EACH_VEC_ELT (ddrs, i, ddr)
569 dump_data_dependence_relation (file, ddr);
571 fprintf (file, "\n\n");
574 DEBUG_FUNCTION void
575 debug_ddrs (vec<ddr_p> ddrs)
577 dump_ddrs (stderr, ddrs);
580 /* Helper function for split_constant_offset. Expresses OP0 CODE OP1
581 (the type of the result is TYPE) as VAR + OFF, where OFF is a nonzero
582 constant of type ssizetype, and returns true. If we cannot do this
583 with OFF nonzero, OFF and VAR are set to NULL_TREE instead and false
584 is returned. */
586 static bool
587 split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
588 tree *var, tree *off)
590 tree var0, var1;
591 tree off0, off1;
592 enum tree_code ocode = code;
594 *var = NULL_TREE;
595 *off = NULL_TREE;
597 switch (code)
599 case INTEGER_CST:
600 *var = build_int_cst (type, 0);
601 *off = fold_convert (ssizetype, op0);
602 return true;
604 case POINTER_PLUS_EXPR:
605 ocode = PLUS_EXPR;
606 /* FALLTHROUGH */
607 case PLUS_EXPR:
608 case MINUS_EXPR:
609 split_constant_offset (op0, &var0, &off0);
610 split_constant_offset (op1, &var1, &off1);
611 *var = fold_build2 (code, type, var0, var1);
612 *off = size_binop (ocode, off0, off1);
613 return true;
615 case MULT_EXPR:
616 if (TREE_CODE (op1) != INTEGER_CST)
617 return false;
619 split_constant_offset (op0, &var0, &off0);
620 *var = fold_build2 (MULT_EXPR, type, var0, op1);
621 *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
622 return true;
624 case ADDR_EXPR:
626 tree base, poffset;
627 HOST_WIDE_INT pbitsize, pbitpos;
628 machine_mode pmode;
629 int punsignedp, pvolatilep;
631 op0 = TREE_OPERAND (op0, 0);
632 base = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset,
633 &pmode, &punsignedp, &pvolatilep, false);
635 if (pbitpos % BITS_PER_UNIT != 0)
636 return false;
637 base = build_fold_addr_expr (base);
638 off0 = ssize_int (pbitpos / BITS_PER_UNIT);
640 if (poffset)
642 split_constant_offset (poffset, &poffset, &off1);
643 off0 = size_binop (PLUS_EXPR, off0, off1);
644 if (POINTER_TYPE_P (TREE_TYPE (base)))
645 base = fold_build_pointer_plus (base, poffset);
646 else
647 base = fold_build2 (PLUS_EXPR, TREE_TYPE (base), base,
648 fold_convert (TREE_TYPE (base), poffset));
651 var0 = fold_convert (type, base);
653 /* If variable length types are involved, punt, otherwise casts
654 might be converted into ARRAY_REFs in gimplify_conversion.
655 To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
656 possibly no longer appears in current GIMPLE, might resurface.
657 This perhaps could run
658 if (CONVERT_EXPR_P (var0))
660 gimplify_conversion (&var0);
661 // Attempt to fill in any within var0 found ARRAY_REF's
662 // element size from corresponding op embedded ARRAY_REF,
663 // if unsuccessful, just punt.
664 } */
665 while (POINTER_TYPE_P (type))
666 type = TREE_TYPE (type);
667 if (int_size_in_bytes (type) < 0)
668 return false;
670 *var = var0;
671 *off = off0;
672 return true;
675 case SSA_NAME:
677 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
678 enum tree_code subcode;
680 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
681 return false;
683 var0 = gimple_assign_rhs1 (def_stmt);
684 subcode = gimple_assign_rhs_code (def_stmt);
685 var1 = gimple_assign_rhs2 (def_stmt);
687 return split_constant_offset_1 (type, var0, subcode, var1, var, off);
689 CASE_CONVERT:
691 /* We must not introduce undefined overflow, and we must not change the value.
692 Hence we're okay if the inner type doesn't overflow to start with
693 (pointer or signed), the outer type also is an integer or pointer
694 and the outer precision is at least as large as the inner. */
695 tree itype = TREE_TYPE (op0);
696 if ((POINTER_TYPE_P (itype)
697 || (INTEGRAL_TYPE_P (itype) && TYPE_OVERFLOW_UNDEFINED (itype)))
698 && TYPE_PRECISION (type) >= TYPE_PRECISION (itype)
699 && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)))
701 split_constant_offset (op0, &var0, off);
702 *var = fold_convert (type, var0);
703 return true;
705 return false;
708 default:
709 return false;
713 /* Expresses EXP as VAR + OFF, where off is a constant. The type of OFF
714 will be ssizetype. */
716 void
717 split_constant_offset (tree exp, tree *var, tree *off)
719 tree type = TREE_TYPE (exp), otype, op0, op1, e, o;
720 enum tree_code code;
722 *var = exp;
723 *off = ssize_int (0);
724 STRIP_NOPS (exp);
726 if (tree_is_chrec (exp)
727 || get_gimple_rhs_class (TREE_CODE (exp)) == GIMPLE_TERNARY_RHS)
728 return;
730 otype = TREE_TYPE (exp);
731 code = TREE_CODE (exp);
732 extract_ops_from_tree (exp, &code, &op0, &op1);
733 if (split_constant_offset_1 (otype, op0, code, op1, &e, &o))
735 *var = fold_convert (type, e);
736 *off = o;
740 /* Returns the address ADDR of an object in a canonical shape (without nop
741 casts, and with type of pointer to the object). */
743 static tree
744 canonicalize_base_object_address (tree addr)
746 tree orig = addr;
748 STRIP_NOPS (addr);
750 /* The base address may be obtained by casting from integer, in that case
751 keep the cast. */
752 if (!POINTER_TYPE_P (TREE_TYPE (addr)))
753 return orig;
755 if (TREE_CODE (addr) != ADDR_EXPR)
756 return addr;
758 return build_fold_addr_expr (TREE_OPERAND (addr, 0));
761 /* Analyzes the behavior of the memory reference DR in the innermost loop or
762 basic block that contains it. Returns true if analysis succeed or false
763 otherwise. */
765 bool
766 dr_analyze_innermost (struct data_reference *dr, struct loop *nest)
768 gimple stmt = DR_STMT (dr);
769 struct loop *loop = loop_containing_stmt (stmt);
770 tree ref = DR_REF (dr);
771 HOST_WIDE_INT pbitsize, pbitpos;
772 tree base, poffset;
773 machine_mode pmode;
774 int punsignedp, pvolatilep;
775 affine_iv base_iv, offset_iv;
776 tree init, dinit, step;
777 bool in_loop = (loop && loop->num);
779 if (dump_file && (dump_flags & TDF_DETAILS))
780 fprintf (dump_file, "analyze_innermost: ");
782 base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset,
783 &pmode, &punsignedp, &pvolatilep, false);
784 gcc_assert (base != NULL_TREE);
786 if (pbitpos % BITS_PER_UNIT != 0)
788 if (dump_file && (dump_flags & TDF_DETAILS))
789 fprintf (dump_file, "failed: bit offset alignment.\n");
790 return false;
793 if (TREE_CODE (base) == MEM_REF)
795 if (!integer_zerop (TREE_OPERAND (base, 1)))
797 offset_int moff = mem_ref_offset (base);
798 tree mofft = wide_int_to_tree (sizetype, moff);
799 if (!poffset)
800 poffset = mofft;
801 else
802 poffset = size_binop (PLUS_EXPR, poffset, mofft);
804 base = TREE_OPERAND (base, 0);
806 else
807 base = build_fold_addr_expr (base);
809 if (in_loop)
811 if (!simple_iv (loop, loop_containing_stmt (stmt), base, &base_iv,
812 nest ? true : false))
814 if (nest)
816 if (dump_file && (dump_flags & TDF_DETAILS))
817 fprintf (dump_file, "failed: evolution of base is not"
818 " affine.\n");
819 return false;
821 else
823 base_iv.base = base;
824 base_iv.step = ssize_int (0);
825 base_iv.no_overflow = true;
829 else
831 base_iv.base = base;
832 base_iv.step = ssize_int (0);
833 base_iv.no_overflow = true;
836 if (!poffset)
838 offset_iv.base = ssize_int (0);
839 offset_iv.step = ssize_int (0);
841 else
843 if (!in_loop)
845 offset_iv.base = poffset;
846 offset_iv.step = ssize_int (0);
848 else if (!simple_iv (loop, loop_containing_stmt (stmt),
849 poffset, &offset_iv,
850 nest ? true : false))
852 if (nest)
854 if (dump_file && (dump_flags & TDF_DETAILS))
855 fprintf (dump_file, "failed: evolution of offset is not"
856 " affine.\n");
857 return false;
859 else
861 offset_iv.base = poffset;
862 offset_iv.step = ssize_int (0);
867 init = ssize_int (pbitpos / BITS_PER_UNIT);
868 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
869 init = size_binop (PLUS_EXPR, init, dinit);
870 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
871 init = size_binop (PLUS_EXPR, init, dinit);
873 step = size_binop (PLUS_EXPR,
874 fold_convert (ssizetype, base_iv.step),
875 fold_convert (ssizetype, offset_iv.step));
877 DR_BASE_ADDRESS (dr) = canonicalize_base_object_address (base_iv.base);
879 DR_OFFSET (dr) = fold_convert (ssizetype, offset_iv.base);
880 DR_INIT (dr) = init;
881 DR_STEP (dr) = step;
883 DR_ALIGNED_TO (dr) = size_int (highest_pow2_factor (offset_iv.base));
885 if (dump_file && (dump_flags & TDF_DETAILS))
886 fprintf (dump_file, "success.\n");
888 return true;
891 /* Determines the base object and the list of indices of memory reference
892 DR, analyzed in LOOP and instantiated in loop nest NEST. */
894 static void
895 dr_analyze_indices (struct data_reference *dr, loop_p nest, loop_p loop)
897 vec<tree> access_fns = vNULL;
898 tree ref, op;
899 tree base, off, access_fn;
900 basic_block before_loop;
902 /* If analyzing a basic-block there are no indices to analyze
903 and thus no access functions. */
904 if (!nest)
906 DR_BASE_OBJECT (dr) = DR_REF (dr);
907 DR_ACCESS_FNS (dr).create (0);
908 return;
911 ref = DR_REF (dr);
912 before_loop = block_before_loop (nest);
914 /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
915 into a two element array with a constant index. The base is
916 then just the immediate underlying object. */
917 if (TREE_CODE (ref) == REALPART_EXPR)
919 ref = TREE_OPERAND (ref, 0);
920 access_fns.safe_push (integer_zero_node);
922 else if (TREE_CODE (ref) == IMAGPART_EXPR)
924 ref = TREE_OPERAND (ref, 0);
925 access_fns.safe_push (integer_one_node);
928 /* Analyze access functions of dimensions we know to be independent. */
929 while (handled_component_p (ref))
931 if (TREE_CODE (ref) == ARRAY_REF)
933 op = TREE_OPERAND (ref, 1);
934 access_fn = analyze_scalar_evolution (loop, op);
935 access_fn = instantiate_scev (before_loop, loop, access_fn);
936 access_fns.safe_push (access_fn);
938 else if (TREE_CODE (ref) == COMPONENT_REF
939 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
941 /* For COMPONENT_REFs of records (but not unions!) use the
942 FIELD_DECL offset as constant access function so we can
943 disambiguate a[i].f1 and a[i].f2. */
944 tree off = component_ref_field_offset (ref);
945 off = size_binop (PLUS_EXPR,
946 size_binop (MULT_EXPR,
947 fold_convert (bitsizetype, off),
948 bitsize_int (BITS_PER_UNIT)),
949 DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)));
950 access_fns.safe_push (off);
952 else
953 /* If we have an unhandled component we could not translate
954 to an access function stop analyzing. We have determined
955 our base object in this case. */
956 break;
958 ref = TREE_OPERAND (ref, 0);
961 /* If the address operand of a MEM_REF base has an evolution in the
962 analyzed nest, add it as an additional independent access-function. */
963 if (TREE_CODE (ref) == MEM_REF)
965 op = TREE_OPERAND (ref, 0);
966 access_fn = analyze_scalar_evolution (loop, op);
967 access_fn = instantiate_scev (before_loop, loop, access_fn);
968 if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
970 tree orig_type;
971 tree memoff = TREE_OPERAND (ref, 1);
972 base = initial_condition (access_fn);
973 orig_type = TREE_TYPE (base);
974 STRIP_USELESS_TYPE_CONVERSION (base);
975 split_constant_offset (base, &base, &off);
976 STRIP_USELESS_TYPE_CONVERSION (base);
977 /* Fold the MEM_REF offset into the evolutions initial
978 value to make more bases comparable. */
979 if (!integer_zerop (memoff))
981 off = size_binop (PLUS_EXPR, off,
982 fold_convert (ssizetype, memoff));
983 memoff = build_int_cst (TREE_TYPE (memoff), 0);
985 access_fn = chrec_replace_initial_condition
986 (access_fn, fold_convert (orig_type, off));
987 /* ??? This is still not a suitable base object for
988 dr_may_alias_p - the base object needs to be an
989 access that covers the object as whole. With
990 an evolution in the pointer this cannot be
991 guaranteed.
992 As a band-aid, mark the access so we can special-case
993 it in dr_may_alias_p. */
994 ref = fold_build2_loc (EXPR_LOCATION (ref),
995 MEM_REF, TREE_TYPE (ref),
996 base, memoff);
997 access_fns.safe_push (access_fn);
1000 else if (DECL_P (ref))
1002 /* Canonicalize DR_BASE_OBJECT to MEM_REF form. */
1003 ref = build2 (MEM_REF, TREE_TYPE (ref),
1004 build_fold_addr_expr (ref),
1005 build_int_cst (reference_alias_ptr_type (ref), 0));
1008 DR_BASE_OBJECT (dr) = ref;
1009 DR_ACCESS_FNS (dr) = access_fns;
1012 /* Extracts the alias analysis information from the memory reference DR. */
1014 static void
1015 dr_analyze_alias (struct data_reference *dr)
1017 tree ref = DR_REF (dr);
1018 tree base = get_base_address (ref), addr;
1020 if (INDIRECT_REF_P (base)
1021 || TREE_CODE (base) == MEM_REF)
1023 addr = TREE_OPERAND (base, 0);
1024 if (TREE_CODE (addr) == SSA_NAME)
1025 DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
1029 /* Frees data reference DR. */
1031 void
1032 free_data_ref (data_reference_p dr)
1034 DR_ACCESS_FNS (dr).release ();
1035 free (dr);
1038 /* Analyzes memory reference MEMREF accessed in STMT. The reference
1039 is read if IS_READ is true, write otherwise. Returns the
1040 data_reference description of MEMREF. NEST is the outermost loop
1041 in which the reference should be instantiated, LOOP is the loop in
1042 which the data reference should be analyzed. */
1044 struct data_reference *
1045 create_data_ref (loop_p nest, loop_p loop, tree memref, gimple stmt,
1046 bool is_read)
1048 struct data_reference *dr;
1050 if (dump_file && (dump_flags & TDF_DETAILS))
1052 fprintf (dump_file, "Creating dr for ");
1053 print_generic_expr (dump_file, memref, TDF_SLIM);
1054 fprintf (dump_file, "\n");
1057 dr = XCNEW (struct data_reference);
1058 DR_STMT (dr) = stmt;
1059 DR_REF (dr) = memref;
1060 DR_IS_READ (dr) = is_read;
1062 dr_analyze_innermost (dr, nest);
1063 dr_analyze_indices (dr, nest, loop);
1064 dr_analyze_alias (dr);
1066 if (dump_file && (dump_flags & TDF_DETAILS))
1068 unsigned i;
1069 fprintf (dump_file, "\tbase_address: ");
1070 print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
1071 fprintf (dump_file, "\n\toffset from base address: ");
1072 print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
1073 fprintf (dump_file, "\n\tconstant offset from base address: ");
1074 print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
1075 fprintf (dump_file, "\n\tstep: ");
1076 print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
1077 fprintf (dump_file, "\n\taligned to: ");
1078 print_generic_expr (dump_file, DR_ALIGNED_TO (dr), TDF_SLIM);
1079 fprintf (dump_file, "\n\tbase_object: ");
1080 print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
1081 fprintf (dump_file, "\n");
1082 for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
1084 fprintf (dump_file, "\tAccess function %d: ", i);
1085 print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM);
1089 return dr;
1092 /* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
1093 expressions. */
1094 static bool
1095 dr_equal_offsets_p1 (tree offset1, tree offset2)
1097 bool res;
1099 STRIP_NOPS (offset1);
1100 STRIP_NOPS (offset2);
1102 if (offset1 == offset2)
1103 return true;
1105 if (TREE_CODE (offset1) != TREE_CODE (offset2)
1106 || (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
1107 return false;
1109 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
1110 TREE_OPERAND (offset2, 0));
1112 if (!res || !BINARY_CLASS_P (offset1))
1113 return res;
1115 res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
1116 TREE_OPERAND (offset2, 1));
1118 return res;
1121 /* Check if DRA and DRB have equal offsets. */
1122 bool
1123 dr_equal_offsets_p (struct data_reference *dra,
1124 struct data_reference *drb)
1126 tree offset1, offset2;
1128 offset1 = DR_OFFSET (dra);
1129 offset2 = DR_OFFSET (drb);
1131 return dr_equal_offsets_p1 (offset1, offset2);
1134 /* Returns true if FNA == FNB. */
1136 static bool
1137 affine_function_equal_p (affine_fn fna, affine_fn fnb)
1139 unsigned i, n = fna.length ();
1141 if (n != fnb.length ())
1142 return false;
1144 for (i = 0; i < n; i++)
1145 if (!operand_equal_p (fna[i], fnb[i], 0))
1146 return false;
1148 return true;
1151 /* If all the functions in CF are the same, returns one of them,
1152 otherwise returns NULL. */
1154 static affine_fn
1155 common_affine_function (conflict_function *cf)
1157 unsigned i;
1158 affine_fn comm;
1160 if (!CF_NONTRIVIAL_P (cf))
1161 return affine_fn ();
1163 comm = cf->fns[0];
1165 for (i = 1; i < cf->n; i++)
1166 if (!affine_function_equal_p (comm, cf->fns[i]))
1167 return affine_fn ();
1169 return comm;
1172 /* Returns the base of the affine function FN. */
1174 static tree
1175 affine_function_base (affine_fn fn)
1177 return fn[0];
1180 /* Returns true if FN is a constant. */
1182 static bool
1183 affine_function_constant_p (affine_fn fn)
1185 unsigned i;
1186 tree coef;
1188 for (i = 1; fn.iterate (i, &coef); i++)
1189 if (!integer_zerop (coef))
1190 return false;
1192 return true;
1195 /* Returns true if FN is the zero constant function. */
1197 static bool
1198 affine_function_zero_p (affine_fn fn)
1200 return (integer_zerop (affine_function_base (fn))
1201 && affine_function_constant_p (fn));
1204 /* Returns a signed integer type with the largest precision from TA
1205 and TB. */
1207 static tree
1208 signed_type_for_types (tree ta, tree tb)
1210 if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
1211 return signed_type_for (ta);
1212 else
1213 return signed_type_for (tb);
1216 /* Applies operation OP on affine functions FNA and FNB, and returns the
1217 result. */
1219 static affine_fn
1220 affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
1222 unsigned i, n, m;
1223 affine_fn ret;
1224 tree coef;
1226 if (fnb.length () > fna.length ())
1228 n = fna.length ();
1229 m = fnb.length ();
1231 else
1233 n = fnb.length ();
1234 m = fna.length ();
1237 ret.create (m);
1238 for (i = 0; i < n; i++)
1240 tree type = signed_type_for_types (TREE_TYPE (fna[i]),
1241 TREE_TYPE (fnb[i]));
1242 ret.quick_push (fold_build2 (op, type, fna[i], fnb[i]));
1245 for (; fna.iterate (i, &coef); i++)
1246 ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
1247 coef, integer_zero_node));
1248 for (; fnb.iterate (i, &coef); i++)
1249 ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
1250 integer_zero_node, coef));
1252 return ret;
1255 /* Returns the sum of affine functions FNA and FNB. */
1257 static affine_fn
1258 affine_fn_plus (affine_fn fna, affine_fn fnb)
1260 return affine_fn_op (PLUS_EXPR, fna, fnb);
1263 /* Returns the difference of affine functions FNA and FNB. */
1265 static affine_fn
1266 affine_fn_minus (affine_fn fna, affine_fn fnb)
1268 return affine_fn_op (MINUS_EXPR, fna, fnb);
1271 /* Frees affine function FN. */
1273 static void
1274 affine_fn_free (affine_fn fn)
1276 fn.release ();
1279 /* Determine for each subscript in the data dependence relation DDR
1280 the distance. */
1282 static void
1283 compute_subscript_distance (struct data_dependence_relation *ddr)
1285 conflict_function *cf_a, *cf_b;
1286 affine_fn fn_a, fn_b, diff;
1288 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
1290 unsigned int i;
1292 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
1294 struct subscript *subscript;
1296 subscript = DDR_SUBSCRIPT (ddr, i);
1297 cf_a = SUB_CONFLICTS_IN_A (subscript);
1298 cf_b = SUB_CONFLICTS_IN_B (subscript);
1300 fn_a = common_affine_function (cf_a);
1301 fn_b = common_affine_function (cf_b);
1302 if (!fn_a.exists () || !fn_b.exists ())
1304 SUB_DISTANCE (subscript) = chrec_dont_know;
1305 return;
1307 diff = affine_fn_minus (fn_a, fn_b);
1309 if (affine_function_constant_p (diff))
1310 SUB_DISTANCE (subscript) = affine_function_base (diff);
1311 else
1312 SUB_DISTANCE (subscript) = chrec_dont_know;
1314 affine_fn_free (diff);
1319 /* Returns the conflict function for "unknown". */
1321 static conflict_function *
1322 conflict_fn_not_known (void)
1324 conflict_function *fn = XCNEW (conflict_function);
1325 fn->n = NOT_KNOWN;
1327 return fn;
1330 /* Returns the conflict function for "independent". */
1332 static conflict_function *
1333 conflict_fn_no_dependence (void)
1335 conflict_function *fn = XCNEW (conflict_function);
1336 fn->n = NO_DEPENDENCE;
1338 return fn;
1341 /* Returns true if the address of OBJ is invariant in LOOP. */
1343 static bool
1344 object_address_invariant_in_loop_p (const struct loop *loop, const_tree obj)
1346 while (handled_component_p (obj))
1348 if (TREE_CODE (obj) == ARRAY_REF)
1350 /* Index of the ARRAY_REF was zeroed in analyze_indices, thus we only
1351 need to check the stride and the lower bound of the reference. */
1352 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1353 loop->num)
1354 || chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 3),
1355 loop->num))
1356 return false;
1358 else if (TREE_CODE (obj) == COMPONENT_REF)
1360 if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
1361 loop->num))
1362 return false;
1364 obj = TREE_OPERAND (obj, 0);
1367 if (!INDIRECT_REF_P (obj)
1368 && TREE_CODE (obj) != MEM_REF)
1369 return true;
1371 return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
1372 loop->num);
1375 /* Returns false if we can prove that data references A and B do not alias,
1376 true otherwise. If LOOP_NEST is false no cross-iteration aliases are
1377 considered. */
1379 bool
1380 dr_may_alias_p (const struct data_reference *a, const struct data_reference *b,
1381 bool loop_nest)
1383 tree addr_a = DR_BASE_OBJECT (a);
1384 tree addr_b = DR_BASE_OBJECT (b);
1386 /* If we are not processing a loop nest but scalar code we
1387 do not need to care about possible cross-iteration dependences
1388 and thus can process the full original reference. Do so,
1389 similar to how loop invariant motion applies extra offset-based
1390 disambiguation. */
1391 if (!loop_nest)
1393 aff_tree off1, off2;
1394 widest_int size1, size2;
1395 get_inner_reference_aff (DR_REF (a), &off1, &size1);
1396 get_inner_reference_aff (DR_REF (b), &off2, &size2);
1397 aff_combination_scale (&off1, -1);
1398 aff_combination_add (&off2, &off1);
1399 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1400 return false;
1403 /* If we had an evolution in a pointer-based MEM_REF BASE_OBJECT we
1404 do not know the size of the base-object. So we cannot do any
1405 offset/overlap based analysis but have to rely on points-to
1406 information only. */
1407 if (TREE_CODE (addr_a) == MEM_REF
1408 && TREE_CODE (TREE_OPERAND (addr_a, 0)) == SSA_NAME)
1410 /* For true dependences we can apply TBAA. */
1411 if (flag_strict_aliasing
1412 && DR_IS_WRITE (a) && DR_IS_READ (b)
1413 && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
1414 get_alias_set (DR_REF (b))))
1415 return false;
1416 if (TREE_CODE (addr_b) == MEM_REF)
1417 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1418 TREE_OPERAND (addr_b, 0));
1419 else
1420 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1421 build_fold_addr_expr (addr_b));
1423 else if (TREE_CODE (addr_b) == MEM_REF
1424 && TREE_CODE (TREE_OPERAND (addr_b, 0)) == SSA_NAME)
1426 /* For true dependences we can apply TBAA. */
1427 if (flag_strict_aliasing
1428 && DR_IS_WRITE (a) && DR_IS_READ (b)
1429 && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
1430 get_alias_set (DR_REF (b))))
1431 return false;
1432 if (TREE_CODE (addr_a) == MEM_REF)
1433 return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
1434 TREE_OPERAND (addr_b, 0));
1435 else
1436 return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a),
1437 TREE_OPERAND (addr_b, 0));
1440 /* Otherwise DR_BASE_OBJECT is an access that covers the whole object
1441 that is being subsetted in the loop nest. */
1442 if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
1443 return refs_output_dependent_p (addr_a, addr_b);
1444 else if (DR_IS_READ (a) && DR_IS_WRITE (b))
1445 return refs_anti_dependent_p (addr_a, addr_b);
1446 return refs_may_alias_p (addr_a, addr_b);
1449 /* Initialize a data dependence relation between data accesses A and
1450 B. NB_LOOPS is the number of loops surrounding the references: the
1451 size of the classic distance/direction vectors. */
1453 struct data_dependence_relation *
1454 initialize_data_dependence_relation (struct data_reference *a,
1455 struct data_reference *b,
1456 vec<loop_p> loop_nest)
1458 struct data_dependence_relation *res;
1459 unsigned int i;
1461 res = XNEW (struct data_dependence_relation);
1462 DDR_A (res) = a;
1463 DDR_B (res) = b;
1464 DDR_LOOP_NEST (res).create (0);
1465 DDR_REVERSED_P (res) = false;
1466 DDR_SUBSCRIPTS (res).create (0);
1467 DDR_DIR_VECTS (res).create (0);
1468 DDR_DIST_VECTS (res).create (0);
1470 if (a == NULL || b == NULL)
1472 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1473 return res;
1476 /* If the data references do not alias, then they are independent. */
1477 if (!dr_may_alias_p (a, b, loop_nest.exists ()))
1479 DDR_ARE_DEPENDENT (res) = chrec_known;
1480 return res;
1483 /* The case where the references are exactly the same. */
1484 if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
1486 if (loop_nest.exists ()
1487 && !object_address_invariant_in_loop_p (loop_nest[0],
1488 DR_BASE_OBJECT (a)))
1490 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1491 return res;
1493 DDR_AFFINE_P (res) = true;
1494 DDR_ARE_DEPENDENT (res) = NULL_TREE;
1495 DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
1496 DDR_LOOP_NEST (res) = loop_nest;
1497 DDR_INNER_LOOP (res) = 0;
1498 DDR_SELF_REFERENCE (res) = true;
1499 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1501 struct subscript *subscript;
1503 subscript = XNEW (struct subscript);
1504 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1505 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
1506 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1507 SUB_DISTANCE (subscript) = chrec_dont_know;
1508 DDR_SUBSCRIPTS (res).safe_push (subscript);
1510 return res;
1513 /* If the references do not access the same object, we do not know
1514 whether they alias or not. */
1515 if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0))
1517 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1518 return res;
1521 /* If the base of the object is not invariant in the loop nest, we cannot
1522 analyze it. TODO -- in fact, it would suffice to record that there may
1523 be arbitrary dependences in the loops where the base object varies. */
1524 if (loop_nest.exists ()
1525 && !object_address_invariant_in_loop_p (loop_nest[0],
1526 DR_BASE_OBJECT (a)))
1528 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1529 return res;
1532 /* If the number of dimensions of the access to not agree we can have
1533 a pointer access to a component of the array element type and an
1534 array access while the base-objects are still the same. Punt. */
1535 if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
1537 DDR_ARE_DEPENDENT (res) = chrec_dont_know;
1538 return res;
1541 DDR_AFFINE_P (res) = true;
1542 DDR_ARE_DEPENDENT (res) = NULL_TREE;
1543 DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
1544 DDR_LOOP_NEST (res) = loop_nest;
1545 DDR_INNER_LOOP (res) = 0;
1546 DDR_SELF_REFERENCE (res) = false;
1548 for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
1550 struct subscript *subscript;
1552 subscript = XNEW (struct subscript);
1553 SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
1554 SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
1555 SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
1556 SUB_DISTANCE (subscript) = chrec_dont_know;
1557 DDR_SUBSCRIPTS (res).safe_push (subscript);
1560 return res;
1563 /* Frees memory used by the conflict function F. */
1565 static void
1566 free_conflict_function (conflict_function *f)
1568 unsigned i;
1570 if (CF_NONTRIVIAL_P (f))
1572 for (i = 0; i < f->n; i++)
1573 affine_fn_free (f->fns[i]);
1575 free (f);
1578 /* Frees memory used by SUBSCRIPTS. */
1580 static void
1581 free_subscripts (vec<subscript_p> subscripts)
1583 unsigned i;
1584 subscript_p s;
1586 FOR_EACH_VEC_ELT (subscripts, i, s)
1588 free_conflict_function (s->conflicting_iterations_in_a);
1589 free_conflict_function (s->conflicting_iterations_in_b);
1590 free (s);
1592 subscripts.release ();
1595 /* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
1596 description. */
1598 static inline void
1599 finalize_ddr_dependent (struct data_dependence_relation *ddr,
1600 tree chrec)
1602 DDR_ARE_DEPENDENT (ddr) = chrec;
1603 free_subscripts (DDR_SUBSCRIPTS (ddr));
1604 DDR_SUBSCRIPTS (ddr).create (0);
1607 /* The dependence relation DDR cannot be represented by a distance
1608 vector. */
1610 static inline void
1611 non_affine_dependence_relation (struct data_dependence_relation *ddr)
1613 if (dump_file && (dump_flags & TDF_DETAILS))
1614 fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
1616 DDR_AFFINE_P (ddr) = false;
1621 /* This section contains the classic Banerjee tests. */
1623 /* Returns true iff CHREC_A and CHREC_B are not dependent on any index
1624 variables, i.e., if the ZIV (Zero Index Variable) test is true. */
1626 static inline bool
1627 ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
1629 return (evolution_function_is_constant_p (chrec_a)
1630 && evolution_function_is_constant_p (chrec_b));
1633 /* Returns true iff CHREC_A and CHREC_B are dependent on an index
1634 variable, i.e., if the SIV (Single Index Variable) test is true. */
1636 static bool
1637 siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
1639 if ((evolution_function_is_constant_p (chrec_a)
1640 && evolution_function_is_univariate_p (chrec_b))
1641 || (evolution_function_is_constant_p (chrec_b)
1642 && evolution_function_is_univariate_p (chrec_a)))
1643 return true;
1645 if (evolution_function_is_univariate_p (chrec_a)
1646 && evolution_function_is_univariate_p (chrec_b))
1648 switch (TREE_CODE (chrec_a))
1650 case POLYNOMIAL_CHREC:
1651 switch (TREE_CODE (chrec_b))
1653 case POLYNOMIAL_CHREC:
1654 if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
1655 return false;
1657 default:
1658 return true;
1661 default:
1662 return true;
1666 return false;
1669 /* Creates a conflict function with N dimensions. The affine functions
1670 in each dimension follow. */
1672 static conflict_function *
1673 conflict_fn (unsigned n, ...)
1675 unsigned i;
1676 conflict_function *ret = XCNEW (conflict_function);
1677 va_list ap;
1679 gcc_assert (0 < n && n <= MAX_DIM);
1680 va_start (ap, n);
1682 ret->n = n;
1683 for (i = 0; i < n; i++)
1684 ret->fns[i] = va_arg (ap, affine_fn);
1685 va_end (ap);
1687 return ret;
1690 /* Returns constant affine function with value CST. */
1692 static affine_fn
1693 affine_fn_cst (tree cst)
1695 affine_fn fn;
1696 fn.create (1);
1697 fn.quick_push (cst);
1698 return fn;
1701 /* Returns affine function with single variable, CST + COEF * x_DIM. */
1703 static affine_fn
1704 affine_fn_univar (tree cst, unsigned dim, tree coef)
1706 affine_fn fn;
1707 fn.create (dim + 1);
1708 unsigned i;
1710 gcc_assert (dim > 0);
1711 fn.quick_push (cst);
1712 for (i = 1; i < dim; i++)
1713 fn.quick_push (integer_zero_node);
1714 fn.quick_push (coef);
1715 return fn;
1718 /* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
1719 *OVERLAPS_B are initialized to the functions that describe the
1720 relation between the elements accessed twice by CHREC_A and
1721 CHREC_B. For k >= 0, the following property is verified:
1723 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1725 static void
1726 analyze_ziv_subscript (tree chrec_a,
1727 tree chrec_b,
1728 conflict_function **overlaps_a,
1729 conflict_function **overlaps_b,
1730 tree *last_conflicts)
1732 tree type, difference;
1733 dependence_stats.num_ziv++;
1735 if (dump_file && (dump_flags & TDF_DETAILS))
1736 fprintf (dump_file, "(analyze_ziv_subscript \n");
1738 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
1739 chrec_a = chrec_convert (type, chrec_a, NULL);
1740 chrec_b = chrec_convert (type, chrec_b, NULL);
1741 difference = chrec_fold_minus (type, chrec_a, chrec_b);
1743 switch (TREE_CODE (difference))
1745 case INTEGER_CST:
1746 if (integer_zerop (difference))
1748 /* The difference is equal to zero: the accessed index
1749 overlaps for each iteration in the loop. */
1750 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1751 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
1752 *last_conflicts = chrec_dont_know;
1753 dependence_stats.num_ziv_dependent++;
1755 else
1757 /* The accesses do not overlap. */
1758 *overlaps_a = conflict_fn_no_dependence ();
1759 *overlaps_b = conflict_fn_no_dependence ();
1760 *last_conflicts = integer_zero_node;
1761 dependence_stats.num_ziv_independent++;
1763 break;
1765 default:
1766 /* We're not sure whether the indexes overlap. For the moment,
1767 conservatively answer "don't know". */
1768 if (dump_file && (dump_flags & TDF_DETAILS))
1769 fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
1771 *overlaps_a = conflict_fn_not_known ();
1772 *overlaps_b = conflict_fn_not_known ();
1773 *last_conflicts = chrec_dont_know;
1774 dependence_stats.num_ziv_unimplemented++;
1775 break;
1778 if (dump_file && (dump_flags & TDF_DETAILS))
1779 fprintf (dump_file, ")\n");
1782 /* Similar to max_stmt_executions_int, but returns the bound as a tree,
1783 and only if it fits to the int type. If this is not the case, or the
1784 bound on the number of iterations of LOOP could not be derived, returns
1785 chrec_dont_know. */
1787 static tree
1788 max_stmt_executions_tree (struct loop *loop)
1790 widest_int nit;
1792 if (!max_stmt_executions (loop, &nit))
1793 return chrec_dont_know;
1795 if (!wi::fits_to_tree_p (nit, unsigned_type_node))
1796 return chrec_dont_know;
1798 return wide_int_to_tree (unsigned_type_node, nit);
1801 /* Determine whether the CHREC is always positive/negative. If the expression
1802 cannot be statically analyzed, return false, otherwise set the answer into
1803 VALUE. */
1805 static bool
1806 chrec_is_positive (tree chrec, bool *value)
1808 bool value0, value1, value2;
1809 tree end_value, nb_iter;
1811 switch (TREE_CODE (chrec))
1813 case POLYNOMIAL_CHREC:
1814 if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
1815 || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
1816 return false;
1818 /* FIXME -- overflows. */
1819 if (value0 == value1)
1821 *value = value0;
1822 return true;
1825 /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
1826 and the proof consists in showing that the sign never
1827 changes during the execution of the loop, from 0 to
1828 loop->nb_iterations. */
1829 if (!evolution_function_is_affine_p (chrec))
1830 return false;
1832 nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
1833 if (chrec_contains_undetermined (nb_iter))
1834 return false;
1836 #if 0
1837 /* TODO -- If the test is after the exit, we may decrease the number of
1838 iterations by one. */
1839 if (after_exit)
1840 nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
1841 #endif
1843 end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
1845 if (!chrec_is_positive (end_value, &value2))
1846 return false;
1848 *value = value0;
1849 return value0 == value1;
1851 case INTEGER_CST:
1852 switch (tree_int_cst_sgn (chrec))
1854 case -1:
1855 *value = false;
1856 break;
1857 case 1:
1858 *value = true;
1859 break;
1860 default:
1861 return false;
1863 return true;
1865 default:
1866 return false;
1871 /* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
1872 constant, and CHREC_B is an affine function. *OVERLAPS_A and
1873 *OVERLAPS_B are initialized to the functions that describe the
1874 relation between the elements accessed twice by CHREC_A and
1875 CHREC_B. For k >= 0, the following property is verified:
1877 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
1879 static void
1880 analyze_siv_subscript_cst_affine (tree chrec_a,
1881 tree chrec_b,
1882 conflict_function **overlaps_a,
1883 conflict_function **overlaps_b,
1884 tree *last_conflicts)
1886 bool value0, value1, value2;
1887 tree type, difference, tmp;
1889 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
1890 chrec_a = chrec_convert (type, chrec_a, NULL);
1891 chrec_b = chrec_convert (type, chrec_b, NULL);
1892 difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
1894 /* Special case overlap in the first iteration. */
1895 if (integer_zerop (difference))
1897 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1898 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
1899 *last_conflicts = integer_one_node;
1900 return;
1903 if (!chrec_is_positive (initial_condition (difference), &value0))
1905 if (dump_file && (dump_flags & TDF_DETAILS))
1906 fprintf (dump_file, "siv test failed: chrec is not positive.\n");
1908 dependence_stats.num_siv_unimplemented++;
1909 *overlaps_a = conflict_fn_not_known ();
1910 *overlaps_b = conflict_fn_not_known ();
1911 *last_conflicts = chrec_dont_know;
1912 return;
1914 else
1916 if (value0 == false)
1918 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
1920 if (dump_file && (dump_flags & TDF_DETAILS))
1921 fprintf (dump_file, "siv test failed: chrec not positive.\n");
1923 *overlaps_a = conflict_fn_not_known ();
1924 *overlaps_b = conflict_fn_not_known ();
1925 *last_conflicts = chrec_dont_know;
1926 dependence_stats.num_siv_unimplemented++;
1927 return;
1929 else
1931 if (value1 == true)
1933 /* Example:
1934 chrec_a = 12
1935 chrec_b = {10, +, 1}
1938 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
1940 HOST_WIDE_INT numiter;
1941 struct loop *loop = get_chrec_loop (chrec_b);
1943 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
1944 tmp = fold_build2 (EXACT_DIV_EXPR, type,
1945 fold_build1 (ABS_EXPR, type, difference),
1946 CHREC_RIGHT (chrec_b));
1947 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
1948 *last_conflicts = integer_one_node;
1951 /* Perform weak-zero siv test to see if overlap is
1952 outside the loop bounds. */
1953 numiter = max_stmt_executions_int (loop);
1955 if (numiter >= 0
1956 && compare_tree_int (tmp, numiter) > 0)
1958 free_conflict_function (*overlaps_a);
1959 free_conflict_function (*overlaps_b);
1960 *overlaps_a = conflict_fn_no_dependence ();
1961 *overlaps_b = conflict_fn_no_dependence ();
1962 *last_conflicts = integer_zero_node;
1963 dependence_stats.num_siv_independent++;
1964 return;
1966 dependence_stats.num_siv_dependent++;
1967 return;
1970 /* When the step does not divide the difference, there are
1971 no overlaps. */
1972 else
1974 *overlaps_a = conflict_fn_no_dependence ();
1975 *overlaps_b = conflict_fn_no_dependence ();
1976 *last_conflicts = integer_zero_node;
1977 dependence_stats.num_siv_independent++;
1978 return;
1982 else
1984 /* Example:
1985 chrec_a = 12
1986 chrec_b = {10, +, -1}
1988 In this case, chrec_a will not overlap with chrec_b. */
1989 *overlaps_a = conflict_fn_no_dependence ();
1990 *overlaps_b = conflict_fn_no_dependence ();
1991 *last_conflicts = integer_zero_node;
1992 dependence_stats.num_siv_independent++;
1993 return;
1997 else
1999 if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
2001 if (dump_file && (dump_flags & TDF_DETAILS))
2002 fprintf (dump_file, "siv test failed: chrec not positive.\n");
2004 *overlaps_a = conflict_fn_not_known ();
2005 *overlaps_b = conflict_fn_not_known ();
2006 *last_conflicts = chrec_dont_know;
2007 dependence_stats.num_siv_unimplemented++;
2008 return;
2010 else
2012 if (value2 == false)
2014 /* Example:
2015 chrec_a = 3
2016 chrec_b = {10, +, -1}
2018 if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
2020 HOST_WIDE_INT numiter;
2021 struct loop *loop = get_chrec_loop (chrec_b);
2023 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2024 tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
2025 CHREC_RIGHT (chrec_b));
2026 *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
2027 *last_conflicts = integer_one_node;
2029 /* Perform weak-zero siv test to see if overlap is
2030 outside the loop bounds. */
2031 numiter = max_stmt_executions_int (loop);
2033 if (numiter >= 0
2034 && compare_tree_int (tmp, numiter) > 0)
2036 free_conflict_function (*overlaps_a);
2037 free_conflict_function (*overlaps_b);
2038 *overlaps_a = conflict_fn_no_dependence ();
2039 *overlaps_b = conflict_fn_no_dependence ();
2040 *last_conflicts = integer_zero_node;
2041 dependence_stats.num_siv_independent++;
2042 return;
2044 dependence_stats.num_siv_dependent++;
2045 return;
2048 /* When the step does not divide the difference, there
2049 are no overlaps. */
2050 else
2052 *overlaps_a = conflict_fn_no_dependence ();
2053 *overlaps_b = conflict_fn_no_dependence ();
2054 *last_conflicts = integer_zero_node;
2055 dependence_stats.num_siv_independent++;
2056 return;
2059 else
2061 /* Example:
2062 chrec_a = 3
2063 chrec_b = {4, +, 1}
2065 In this case, chrec_a will not overlap with chrec_b. */
2066 *overlaps_a = conflict_fn_no_dependence ();
2067 *overlaps_b = conflict_fn_no_dependence ();
2068 *last_conflicts = integer_zero_node;
2069 dependence_stats.num_siv_independent++;
2070 return;
2077 /* Helper recursive function for initializing the matrix A. Returns
2078 the initial value of CHREC. */
2080 static tree
2081 initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
2083 gcc_assert (chrec);
2085 switch (TREE_CODE (chrec))
2087 case POLYNOMIAL_CHREC:
2088 gcc_assert (TREE_CODE (CHREC_RIGHT (chrec)) == INTEGER_CST);
2090 A[index][0] = mult * int_cst_value (CHREC_RIGHT (chrec));
2091 return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
2093 case PLUS_EXPR:
2094 case MULT_EXPR:
2095 case MINUS_EXPR:
2097 tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2098 tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
2100 return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
2103 CASE_CONVERT:
2105 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2106 return chrec_convert (chrec_type (chrec), op, NULL);
2109 case BIT_NOT_EXPR:
2111 /* Handle ~X as -1 - X. */
2112 tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
2113 return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
2114 build_int_cst (TREE_TYPE (chrec), -1), op);
2117 case INTEGER_CST:
2118 return chrec;
2120 default:
2121 gcc_unreachable ();
2122 return NULL_TREE;
2126 #define FLOOR_DIV(x,y) ((x) / (y))
2128 /* Solves the special case of the Diophantine equation:
2129 | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
2131 Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
2132 number of iterations that loops X and Y run. The overlaps will be
2133 constructed as evolutions in dimension DIM. */
2135 static void
2136 compute_overlap_steps_for_affine_univar (int niter, int step_a, int step_b,
2137 affine_fn *overlaps_a,
2138 affine_fn *overlaps_b,
2139 tree *last_conflicts, int dim)
2141 if (((step_a > 0 && step_b > 0)
2142 || (step_a < 0 && step_b < 0)))
2144 int step_overlaps_a, step_overlaps_b;
2145 int gcd_steps_a_b, last_conflict, tau2;
2147 gcd_steps_a_b = gcd (step_a, step_b);
2148 step_overlaps_a = step_b / gcd_steps_a_b;
2149 step_overlaps_b = step_a / gcd_steps_a_b;
2151 if (niter > 0)
2153 tau2 = FLOOR_DIV (niter, step_overlaps_a);
2154 tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
2155 last_conflict = tau2;
2156 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
2158 else
2159 *last_conflicts = chrec_dont_know;
2161 *overlaps_a = affine_fn_univar (integer_zero_node, dim,
2162 build_int_cst (NULL_TREE,
2163 step_overlaps_a));
2164 *overlaps_b = affine_fn_univar (integer_zero_node, dim,
2165 build_int_cst (NULL_TREE,
2166 step_overlaps_b));
2169 else
2171 *overlaps_a = affine_fn_cst (integer_zero_node);
2172 *overlaps_b = affine_fn_cst (integer_zero_node);
2173 *last_conflicts = integer_zero_node;
2177 /* Solves the special case of a Diophantine equation where CHREC_A is
2178 an affine bivariate function, and CHREC_B is an affine univariate
2179 function. For example,
2181 | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
2183 has the following overlapping functions:
2185 | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
2186 | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
2187 | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
2189 FORNOW: This is a specialized implementation for a case occurring in
2190 a common benchmark. Implement the general algorithm. */
2192 static void
2193 compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
2194 conflict_function **overlaps_a,
2195 conflict_function **overlaps_b,
2196 tree *last_conflicts)
2198 bool xz_p, yz_p, xyz_p;
2199 int step_x, step_y, step_z;
2200 HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
2201 affine_fn overlaps_a_xz, overlaps_b_xz;
2202 affine_fn overlaps_a_yz, overlaps_b_yz;
2203 affine_fn overlaps_a_xyz, overlaps_b_xyz;
2204 affine_fn ova1, ova2, ovb;
2205 tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
2207 step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
2208 step_y = int_cst_value (CHREC_RIGHT (chrec_a));
2209 step_z = int_cst_value (CHREC_RIGHT (chrec_b));
2211 niter_x = max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)));
2212 niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a));
2213 niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b));
2215 if (niter_x < 0 || niter_y < 0 || niter_z < 0)
2217 if (dump_file && (dump_flags & TDF_DETAILS))
2218 fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
2220 *overlaps_a = conflict_fn_not_known ();
2221 *overlaps_b = conflict_fn_not_known ();
2222 *last_conflicts = chrec_dont_know;
2223 return;
2226 niter = MIN (niter_x, niter_z);
2227 compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
2228 &overlaps_a_xz,
2229 &overlaps_b_xz,
2230 &last_conflicts_xz, 1);
2231 niter = MIN (niter_y, niter_z);
2232 compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
2233 &overlaps_a_yz,
2234 &overlaps_b_yz,
2235 &last_conflicts_yz, 2);
2236 niter = MIN (niter_x, niter_z);
2237 niter = MIN (niter_y, niter);
2238 compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
2239 &overlaps_a_xyz,
2240 &overlaps_b_xyz,
2241 &last_conflicts_xyz, 3);
2243 xz_p = !integer_zerop (last_conflicts_xz);
2244 yz_p = !integer_zerop (last_conflicts_yz);
2245 xyz_p = !integer_zerop (last_conflicts_xyz);
2247 if (xz_p || yz_p || xyz_p)
2249 ova1 = affine_fn_cst (integer_zero_node);
2250 ova2 = affine_fn_cst (integer_zero_node);
2251 ovb = affine_fn_cst (integer_zero_node);
2252 if (xz_p)
2254 affine_fn t0 = ova1;
2255 affine_fn t2 = ovb;
2257 ova1 = affine_fn_plus (ova1, overlaps_a_xz);
2258 ovb = affine_fn_plus (ovb, overlaps_b_xz);
2259 affine_fn_free (t0);
2260 affine_fn_free (t2);
2261 *last_conflicts = last_conflicts_xz;
2263 if (yz_p)
2265 affine_fn t0 = ova2;
2266 affine_fn t2 = ovb;
2268 ova2 = affine_fn_plus (ova2, overlaps_a_yz);
2269 ovb = affine_fn_plus (ovb, overlaps_b_yz);
2270 affine_fn_free (t0);
2271 affine_fn_free (t2);
2272 *last_conflicts = last_conflicts_yz;
2274 if (xyz_p)
2276 affine_fn t0 = ova1;
2277 affine_fn t2 = ova2;
2278 affine_fn t4 = ovb;
2280 ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
2281 ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
2282 ovb = affine_fn_plus (ovb, overlaps_b_xyz);
2283 affine_fn_free (t0);
2284 affine_fn_free (t2);
2285 affine_fn_free (t4);
2286 *last_conflicts = last_conflicts_xyz;
2288 *overlaps_a = conflict_fn (2, ova1, ova2);
2289 *overlaps_b = conflict_fn (1, ovb);
2291 else
2293 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2294 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2295 *last_conflicts = integer_zero_node;
2298 affine_fn_free (overlaps_a_xz);
2299 affine_fn_free (overlaps_b_xz);
2300 affine_fn_free (overlaps_a_yz);
2301 affine_fn_free (overlaps_b_yz);
2302 affine_fn_free (overlaps_a_xyz);
2303 affine_fn_free (overlaps_b_xyz);
2306 /* Copy the elements of vector VEC1 with length SIZE to VEC2. */
2308 static void
2309 lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
2310 int size)
2312 memcpy (vec2, vec1, size * sizeof (*vec1));
2315 /* Copy the elements of M x N matrix MAT1 to MAT2. */
2317 static void
2318 lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
2319 int m, int n)
2321 int i;
2323 for (i = 0; i < m; i++)
2324 lambda_vector_copy (mat1[i], mat2[i], n);
2327 /* Store the N x N identity matrix in MAT. */
2329 static void
2330 lambda_matrix_id (lambda_matrix mat, int size)
2332 int i, j;
2334 for (i = 0; i < size; i++)
2335 for (j = 0; j < size; j++)
2336 mat[i][j] = (i == j) ? 1 : 0;
2339 /* Return the first nonzero element of vector VEC1 between START and N.
2340 We must have START <= N. Returns N if VEC1 is the zero vector. */
2342 static int
2343 lambda_vector_first_nz (lambda_vector vec1, int n, int start)
2345 int j = start;
2346 while (j < n && vec1[j] == 0)
2347 j++;
2348 return j;
2351 /* Add a multiple of row R1 of matrix MAT with N columns to row R2:
2352 R2 = R2 + CONST1 * R1. */
2354 static void
2355 lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
2357 int i;
2359 if (const1 == 0)
2360 return;
2362 for (i = 0; i < n; i++)
2363 mat[r2][i] += const1 * mat[r1][i];
2366 /* Swap rows R1 and R2 in matrix MAT. */
2368 static void
2369 lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2)
2371 lambda_vector row;
2373 row = mat[r1];
2374 mat[r1] = mat[r2];
2375 mat[r2] = row;
2378 /* Multiply vector VEC1 of length SIZE by a constant CONST1,
2379 and store the result in VEC2. */
2381 static void
2382 lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
2383 int size, int const1)
2385 int i;
2387 if (const1 == 0)
2388 lambda_vector_clear (vec2, size);
2389 else
2390 for (i = 0; i < size; i++)
2391 vec2[i] = const1 * vec1[i];
2394 /* Negate vector VEC1 with length SIZE and store it in VEC2. */
2396 static void
2397 lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
2398 int size)
2400 lambda_vector_mult_const (vec1, vec2, size, -1);
2403 /* Negate row R1 of matrix MAT which has N columns. */
2405 static void
2406 lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
2408 lambda_vector_negate (mat[r1], mat[r1], n);
2411 /* Return true if two vectors are equal. */
2413 static bool
2414 lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
2416 int i;
2417 for (i = 0; i < size; i++)
2418 if (vec1[i] != vec2[i])
2419 return false;
2420 return true;
2423 /* Given an M x N integer matrix A, this function determines an M x
2424 M unimodular matrix U, and an M x N echelon matrix S such that
2425 "U.A = S". This decomposition is also known as "right Hermite".
2427 Ref: Algorithm 2.1 page 33 in "Loop Transformations for
2428 Restructuring Compilers" Utpal Banerjee. */
2430 static void
2431 lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
2432 lambda_matrix S, lambda_matrix U)
2434 int i, j, i0 = 0;
2436 lambda_matrix_copy (A, S, m, n);
2437 lambda_matrix_id (U, m);
2439 for (j = 0; j < n; j++)
2441 if (lambda_vector_first_nz (S[j], m, i0) < m)
2443 ++i0;
2444 for (i = m - 1; i >= i0; i--)
2446 while (S[i][j] != 0)
2448 int sigma, factor, a, b;
2450 a = S[i-1][j];
2451 b = S[i][j];
2452 sigma = (a * b < 0) ? -1: 1;
2453 a = abs (a);
2454 b = abs (b);
2455 factor = sigma * (a / b);
2457 lambda_matrix_row_add (S, n, i, i-1, -factor);
2458 lambda_matrix_row_exchange (S, i, i-1);
2460 lambda_matrix_row_add (U, m, i, i-1, -factor);
2461 lambda_matrix_row_exchange (U, i, i-1);
2468 /* Determines the overlapping elements due to accesses CHREC_A and
2469 CHREC_B, that are affine functions. This function cannot handle
2470 symbolic evolution functions, ie. when initial conditions are
2471 parameters, because it uses lambda matrices of integers. */
2473 static void
2474 analyze_subscript_affine_affine (tree chrec_a,
2475 tree chrec_b,
2476 conflict_function **overlaps_a,
2477 conflict_function **overlaps_b,
2478 tree *last_conflicts)
2480 unsigned nb_vars_a, nb_vars_b, dim;
2481 HOST_WIDE_INT init_a, init_b, gamma, gcd_alpha_beta;
2482 lambda_matrix A, U, S;
2483 struct obstack scratch_obstack;
2485 if (eq_evolutions_p (chrec_a, chrec_b))
2487 /* The accessed index overlaps for each iteration in the
2488 loop. */
2489 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2490 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2491 *last_conflicts = chrec_dont_know;
2492 return;
2494 if (dump_file && (dump_flags & TDF_DETAILS))
2495 fprintf (dump_file, "(analyze_subscript_affine_affine \n");
2497 /* For determining the initial intersection, we have to solve a
2498 Diophantine equation. This is the most time consuming part.
2500 For answering to the question: "Is there a dependence?" we have
2501 to prove that there exists a solution to the Diophantine
2502 equation, and that the solution is in the iteration domain,
2503 i.e. the solution is positive or zero, and that the solution
2504 happens before the upper bound loop.nb_iterations. Otherwise
2505 there is no dependence. This function outputs a description of
2506 the iterations that hold the intersections. */
2508 nb_vars_a = nb_vars_in_chrec (chrec_a);
2509 nb_vars_b = nb_vars_in_chrec (chrec_b);
2511 gcc_obstack_init (&scratch_obstack);
2513 dim = nb_vars_a + nb_vars_b;
2514 U = lambda_matrix_new (dim, dim, &scratch_obstack);
2515 A = lambda_matrix_new (dim, 1, &scratch_obstack);
2516 S = lambda_matrix_new (dim, 1, &scratch_obstack);
2518 init_a = int_cst_value (initialize_matrix_A (A, chrec_a, 0, 1));
2519 init_b = int_cst_value (initialize_matrix_A (A, chrec_b, nb_vars_a, -1));
2520 gamma = init_b - init_a;
2522 /* Don't do all the hard work of solving the Diophantine equation
2523 when we already know the solution: for example,
2524 | {3, +, 1}_1
2525 | {3, +, 4}_2
2526 | gamma = 3 - 3 = 0.
2527 Then the first overlap occurs during the first iterations:
2528 | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
2530 if (gamma == 0)
2532 if (nb_vars_a == 1 && nb_vars_b == 1)
2534 HOST_WIDE_INT step_a, step_b;
2535 HOST_WIDE_INT niter, niter_a, niter_b;
2536 affine_fn ova, ovb;
2538 niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a));
2539 niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b));
2540 niter = MIN (niter_a, niter_b);
2541 step_a = int_cst_value (CHREC_RIGHT (chrec_a));
2542 step_b = int_cst_value (CHREC_RIGHT (chrec_b));
2544 compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
2545 &ova, &ovb,
2546 last_conflicts, 1);
2547 *overlaps_a = conflict_fn (1, ova);
2548 *overlaps_b = conflict_fn (1, ovb);
2551 else if (nb_vars_a == 2 && nb_vars_b == 1)
2552 compute_overlap_steps_for_affine_1_2
2553 (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
2555 else if (nb_vars_a == 1 && nb_vars_b == 2)
2556 compute_overlap_steps_for_affine_1_2
2557 (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
2559 else
2561 if (dump_file && (dump_flags & TDF_DETAILS))
2562 fprintf (dump_file, "affine-affine test failed: too many variables.\n");
2563 *overlaps_a = conflict_fn_not_known ();
2564 *overlaps_b = conflict_fn_not_known ();
2565 *last_conflicts = chrec_dont_know;
2567 goto end_analyze_subs_aa;
2570 /* U.A = S */
2571 lambda_matrix_right_hermite (A, dim, 1, S, U);
2573 if (S[0][0] < 0)
2575 S[0][0] *= -1;
2576 lambda_matrix_row_negate (U, dim, 0);
2578 gcd_alpha_beta = S[0][0];
2580 /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
2581 but that is a quite strange case. Instead of ICEing, answer
2582 don't know. */
2583 if (gcd_alpha_beta == 0)
2585 *overlaps_a = conflict_fn_not_known ();
2586 *overlaps_b = conflict_fn_not_known ();
2587 *last_conflicts = chrec_dont_know;
2588 goto end_analyze_subs_aa;
2591 /* The classic "gcd-test". */
2592 if (!int_divides_p (gcd_alpha_beta, gamma))
2594 /* The "gcd-test" has determined that there is no integer
2595 solution, i.e. there is no dependence. */
2596 *overlaps_a = conflict_fn_no_dependence ();
2597 *overlaps_b = conflict_fn_no_dependence ();
2598 *last_conflicts = integer_zero_node;
2601 /* Both access functions are univariate. This includes SIV and MIV cases. */
2602 else if (nb_vars_a == 1 && nb_vars_b == 1)
2604 /* Both functions should have the same evolution sign. */
2605 if (((A[0][0] > 0 && -A[1][0] > 0)
2606 || (A[0][0] < 0 && -A[1][0] < 0)))
2608 /* The solutions are given by:
2610 | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
2611 | [u21 u22] [y0]
2613 For a given integer t. Using the following variables,
2615 | i0 = u11 * gamma / gcd_alpha_beta
2616 | j0 = u12 * gamma / gcd_alpha_beta
2617 | i1 = u21
2618 | j1 = u22
2620 the solutions are:
2622 | x0 = i0 + i1 * t,
2623 | y0 = j0 + j1 * t. */
2624 HOST_WIDE_INT i0, j0, i1, j1;
2626 i0 = U[0][0] * gamma / gcd_alpha_beta;
2627 j0 = U[0][1] * gamma / gcd_alpha_beta;
2628 i1 = U[1][0];
2629 j1 = U[1][1];
2631 if ((i1 == 0 && i0 < 0)
2632 || (j1 == 0 && j0 < 0))
2634 /* There is no solution.
2635 FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
2636 falls in here, but for the moment we don't look at the
2637 upper bound of the iteration domain. */
2638 *overlaps_a = conflict_fn_no_dependence ();
2639 *overlaps_b = conflict_fn_no_dependence ();
2640 *last_conflicts = integer_zero_node;
2641 goto end_analyze_subs_aa;
2644 if (i1 > 0 && j1 > 0)
2646 HOST_WIDE_INT niter_a
2647 = max_stmt_executions_int (get_chrec_loop (chrec_a));
2648 HOST_WIDE_INT niter_b
2649 = max_stmt_executions_int (get_chrec_loop (chrec_b));
2650 HOST_WIDE_INT niter = MIN (niter_a, niter_b);
2652 /* (X0, Y0) is a solution of the Diophantine equation:
2653 "chrec_a (X0) = chrec_b (Y0)". */
2654 HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
2655 CEIL (-j0, j1));
2656 HOST_WIDE_INT x0 = i1 * tau1 + i0;
2657 HOST_WIDE_INT y0 = j1 * tau1 + j0;
2659 /* (X1, Y1) is the smallest positive solution of the eq
2660 "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
2661 first conflict occurs. */
2662 HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
2663 HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
2664 HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
2666 if (niter > 0)
2668 HOST_WIDE_INT tau2 = MIN (FLOOR_DIV (niter - i0, i1),
2669 FLOOR_DIV (niter - j0, j1));
2670 HOST_WIDE_INT last_conflict = tau2 - (x1 - i0)/i1;
2672 /* If the overlap occurs outside of the bounds of the
2673 loop, there is no dependence. */
2674 if (x1 >= niter || y1 >= niter)
2676 *overlaps_a = conflict_fn_no_dependence ();
2677 *overlaps_b = conflict_fn_no_dependence ();
2678 *last_conflicts = integer_zero_node;
2679 goto end_analyze_subs_aa;
2681 else
2682 *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
2684 else
2685 *last_conflicts = chrec_dont_know;
2687 *overlaps_a
2688 = conflict_fn (1,
2689 affine_fn_univar (build_int_cst (NULL_TREE, x1),
2691 build_int_cst (NULL_TREE, i1)));
2692 *overlaps_b
2693 = conflict_fn (1,
2694 affine_fn_univar (build_int_cst (NULL_TREE, y1),
2696 build_int_cst (NULL_TREE, j1)));
2698 else
2700 /* FIXME: For the moment, the upper bound of the
2701 iteration domain for i and j is not checked. */
2702 if (dump_file && (dump_flags & TDF_DETAILS))
2703 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2704 *overlaps_a = conflict_fn_not_known ();
2705 *overlaps_b = conflict_fn_not_known ();
2706 *last_conflicts = chrec_dont_know;
2709 else
2711 if (dump_file && (dump_flags & TDF_DETAILS))
2712 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2713 *overlaps_a = conflict_fn_not_known ();
2714 *overlaps_b = conflict_fn_not_known ();
2715 *last_conflicts = chrec_dont_know;
2718 else
2720 if (dump_file && (dump_flags & TDF_DETAILS))
2721 fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
2722 *overlaps_a = conflict_fn_not_known ();
2723 *overlaps_b = conflict_fn_not_known ();
2724 *last_conflicts = chrec_dont_know;
2727 end_analyze_subs_aa:
2728 obstack_free (&scratch_obstack, NULL);
2729 if (dump_file && (dump_flags & TDF_DETAILS))
2731 fprintf (dump_file, " (overlaps_a = ");
2732 dump_conflict_function (dump_file, *overlaps_a);
2733 fprintf (dump_file, ")\n (overlaps_b = ");
2734 dump_conflict_function (dump_file, *overlaps_b);
2735 fprintf (dump_file, "))\n");
2739 /* Returns true when analyze_subscript_affine_affine can be used for
2740 determining the dependence relation between chrec_a and chrec_b,
2741 that contain symbols. This function modifies chrec_a and chrec_b
2742 such that the analysis result is the same, and such that they don't
2743 contain symbols, and then can safely be passed to the analyzer.
2745 Example: The analysis of the following tuples of evolutions produce
2746 the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
2747 vs. {0, +, 1}_1
2749 {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
2750 {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
2753 static bool
2754 can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
2756 tree diff, type, left_a, left_b, right_b;
2758 if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
2759 || chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
2760 /* FIXME: For the moment not handled. Might be refined later. */
2761 return false;
2763 type = chrec_type (*chrec_a);
2764 left_a = CHREC_LEFT (*chrec_a);
2765 left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
2766 diff = chrec_fold_minus (type, left_a, left_b);
2768 if (!evolution_function_is_constant_p (diff))
2769 return false;
2771 if (dump_file && (dump_flags & TDF_DETAILS))
2772 fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
2774 *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
2775 diff, CHREC_RIGHT (*chrec_a));
2776 right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
2777 *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
2778 build_int_cst (type, 0),
2779 right_b);
2780 return true;
2783 /* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
2784 *OVERLAPS_B are initialized to the functions that describe the
2785 relation between the elements accessed twice by CHREC_A and
2786 CHREC_B. For k >= 0, the following property is verified:
2788 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2790 static void
2791 analyze_siv_subscript (tree chrec_a,
2792 tree chrec_b,
2793 conflict_function **overlaps_a,
2794 conflict_function **overlaps_b,
2795 tree *last_conflicts,
2796 int loop_nest_num)
2798 dependence_stats.num_siv++;
2800 if (dump_file && (dump_flags & TDF_DETAILS))
2801 fprintf (dump_file, "(analyze_siv_subscript \n");
2803 if (evolution_function_is_constant_p (chrec_a)
2804 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
2805 analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
2806 overlaps_a, overlaps_b, last_conflicts);
2808 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2809 && evolution_function_is_constant_p (chrec_b))
2810 analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
2811 overlaps_b, overlaps_a, last_conflicts);
2813 else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
2814 && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
2816 if (!chrec_contains_symbols (chrec_a)
2817 && !chrec_contains_symbols (chrec_b))
2819 analyze_subscript_affine_affine (chrec_a, chrec_b,
2820 overlaps_a, overlaps_b,
2821 last_conflicts);
2823 if (CF_NOT_KNOWN_P (*overlaps_a)
2824 || CF_NOT_KNOWN_P (*overlaps_b))
2825 dependence_stats.num_siv_unimplemented++;
2826 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2827 || CF_NO_DEPENDENCE_P (*overlaps_b))
2828 dependence_stats.num_siv_independent++;
2829 else
2830 dependence_stats.num_siv_dependent++;
2832 else if (can_use_analyze_subscript_affine_affine (&chrec_a,
2833 &chrec_b))
2835 analyze_subscript_affine_affine (chrec_a, chrec_b,
2836 overlaps_a, overlaps_b,
2837 last_conflicts);
2839 if (CF_NOT_KNOWN_P (*overlaps_a)
2840 || CF_NOT_KNOWN_P (*overlaps_b))
2841 dependence_stats.num_siv_unimplemented++;
2842 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2843 || CF_NO_DEPENDENCE_P (*overlaps_b))
2844 dependence_stats.num_siv_independent++;
2845 else
2846 dependence_stats.num_siv_dependent++;
2848 else
2849 goto siv_subscript_dontknow;
2852 else
2854 siv_subscript_dontknow:;
2855 if (dump_file && (dump_flags & TDF_DETAILS))
2856 fprintf (dump_file, " siv test failed: unimplemented");
2857 *overlaps_a = conflict_fn_not_known ();
2858 *overlaps_b = conflict_fn_not_known ();
2859 *last_conflicts = chrec_dont_know;
2860 dependence_stats.num_siv_unimplemented++;
2863 if (dump_file && (dump_flags & TDF_DETAILS))
2864 fprintf (dump_file, ")\n");
2867 /* Returns false if we can prove that the greatest common divisor of the steps
2868 of CHREC does not divide CST, false otherwise. */
2870 static bool
2871 gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
2873 HOST_WIDE_INT cd = 0, val;
2874 tree step;
2876 if (!tree_fits_shwi_p (cst))
2877 return true;
2878 val = tree_to_shwi (cst);
2880 while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
2882 step = CHREC_RIGHT (chrec);
2883 if (!tree_fits_shwi_p (step))
2884 return true;
2885 cd = gcd (cd, tree_to_shwi (step));
2886 chrec = CHREC_LEFT (chrec);
2889 return val % cd == 0;
2892 /* Analyze a MIV (Multiple Index Variable) subscript with respect to
2893 LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
2894 functions that describe the relation between the elements accessed
2895 twice by CHREC_A and CHREC_B. For k >= 0, the following property
2896 is verified:
2898 CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
2900 static void
2901 analyze_miv_subscript (tree chrec_a,
2902 tree chrec_b,
2903 conflict_function **overlaps_a,
2904 conflict_function **overlaps_b,
2905 tree *last_conflicts,
2906 struct loop *loop_nest)
2908 tree type, difference;
2910 dependence_stats.num_miv++;
2911 if (dump_file && (dump_flags & TDF_DETAILS))
2912 fprintf (dump_file, "(analyze_miv_subscript \n");
2914 type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
2915 chrec_a = chrec_convert (type, chrec_a, NULL);
2916 chrec_b = chrec_convert (type, chrec_b, NULL);
2917 difference = chrec_fold_minus (type, chrec_a, chrec_b);
2919 if (eq_evolutions_p (chrec_a, chrec_b))
2921 /* Access functions are the same: all the elements are accessed
2922 in the same order. */
2923 *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
2924 *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
2925 *last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a));
2926 dependence_stats.num_miv_dependent++;
2929 else if (evolution_function_is_constant_p (difference)
2930 /* For the moment, the following is verified:
2931 evolution_function_is_affine_multivariate_p (chrec_a,
2932 loop_nest->num) */
2933 && !gcd_of_steps_may_divide_p (chrec_a, difference))
2935 /* testsuite/.../ssa-chrec-33.c
2936 {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
2938 The difference is 1, and all the evolution steps are multiples
2939 of 2, consequently there are no overlapping elements. */
2940 *overlaps_a = conflict_fn_no_dependence ();
2941 *overlaps_b = conflict_fn_no_dependence ();
2942 *last_conflicts = integer_zero_node;
2943 dependence_stats.num_miv_independent++;
2946 else if (evolution_function_is_affine_multivariate_p (chrec_a, loop_nest->num)
2947 && !chrec_contains_symbols (chrec_a)
2948 && evolution_function_is_affine_multivariate_p (chrec_b, loop_nest->num)
2949 && !chrec_contains_symbols (chrec_b))
2951 /* testsuite/.../ssa-chrec-35.c
2952 {0, +, 1}_2 vs. {0, +, 1}_3
2953 the overlapping elements are respectively located at iterations:
2954 {0, +, 1}_x and {0, +, 1}_x,
2955 in other words, we have the equality:
2956 {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
2958 Other examples:
2959 {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
2960 {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
2962 {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
2963 {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
2965 analyze_subscript_affine_affine (chrec_a, chrec_b,
2966 overlaps_a, overlaps_b, last_conflicts);
2968 if (CF_NOT_KNOWN_P (*overlaps_a)
2969 || CF_NOT_KNOWN_P (*overlaps_b))
2970 dependence_stats.num_miv_unimplemented++;
2971 else if (CF_NO_DEPENDENCE_P (*overlaps_a)
2972 || CF_NO_DEPENDENCE_P (*overlaps_b))
2973 dependence_stats.num_miv_independent++;
2974 else
2975 dependence_stats.num_miv_dependent++;
2978 else
2980 /* When the analysis is too difficult, answer "don't know". */
2981 if (dump_file && (dump_flags & TDF_DETAILS))
2982 fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
2984 *overlaps_a = conflict_fn_not_known ();
2985 *overlaps_b = conflict_fn_not_known ();
2986 *last_conflicts = chrec_dont_know;
2987 dependence_stats.num_miv_unimplemented++;
2990 if (dump_file && (dump_flags & TDF_DETAILS))
2991 fprintf (dump_file, ")\n");
2994 /* Determines the iterations for which CHREC_A is equal to CHREC_B in
2995 with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
2996 OVERLAP_ITERATIONS_B are initialized with two functions that
2997 describe the iterations that contain conflicting elements.
2999 Remark: For an integer k >= 0, the following equality is true:
3001 CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
3004 static void
3005 analyze_overlapping_iterations (tree chrec_a,
3006 tree chrec_b,
3007 conflict_function **overlap_iterations_a,
3008 conflict_function **overlap_iterations_b,
3009 tree *last_conflicts, struct loop *loop_nest)
3011 unsigned int lnn = loop_nest->num;
3013 dependence_stats.num_subscript_tests++;
3015 if (dump_file && (dump_flags & TDF_DETAILS))
3017 fprintf (dump_file, "(analyze_overlapping_iterations \n");
3018 fprintf (dump_file, " (chrec_a = ");
3019 print_generic_expr (dump_file, chrec_a, 0);
3020 fprintf (dump_file, ")\n (chrec_b = ");
3021 print_generic_expr (dump_file, chrec_b, 0);
3022 fprintf (dump_file, ")\n");
3025 if (chrec_a == NULL_TREE
3026 || chrec_b == NULL_TREE
3027 || chrec_contains_undetermined (chrec_a)
3028 || chrec_contains_undetermined (chrec_b))
3030 dependence_stats.num_subscript_undetermined++;
3032 *overlap_iterations_a = conflict_fn_not_known ();
3033 *overlap_iterations_b = conflict_fn_not_known ();
3036 /* If they are the same chrec, and are affine, they overlap
3037 on every iteration. */
3038 else if (eq_evolutions_p (chrec_a, chrec_b)
3039 && (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
3040 || operand_equal_p (chrec_a, chrec_b, 0)))
3042 dependence_stats.num_same_subscript_function++;
3043 *overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
3044 *overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
3045 *last_conflicts = chrec_dont_know;
3048 /* If they aren't the same, and aren't affine, we can't do anything
3049 yet. */
3050 else if ((chrec_contains_symbols (chrec_a)
3051 || chrec_contains_symbols (chrec_b))
3052 && (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
3053 || !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
3055 dependence_stats.num_subscript_undetermined++;
3056 *overlap_iterations_a = conflict_fn_not_known ();
3057 *overlap_iterations_b = conflict_fn_not_known ();
3060 else if (ziv_subscript_p (chrec_a, chrec_b))
3061 analyze_ziv_subscript (chrec_a, chrec_b,
3062 overlap_iterations_a, overlap_iterations_b,
3063 last_conflicts);
3065 else if (siv_subscript_p (chrec_a, chrec_b))
3066 analyze_siv_subscript (chrec_a, chrec_b,
3067 overlap_iterations_a, overlap_iterations_b,
3068 last_conflicts, lnn);
3070 else
3071 analyze_miv_subscript (chrec_a, chrec_b,
3072 overlap_iterations_a, overlap_iterations_b,
3073 last_conflicts, loop_nest);
3075 if (dump_file && (dump_flags & TDF_DETAILS))
3077 fprintf (dump_file, " (overlap_iterations_a = ");
3078 dump_conflict_function (dump_file, *overlap_iterations_a);
3079 fprintf (dump_file, ")\n (overlap_iterations_b = ");
3080 dump_conflict_function (dump_file, *overlap_iterations_b);
3081 fprintf (dump_file, "))\n");
3085 /* Helper function for uniquely inserting distance vectors. */
3087 static void
3088 save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
3090 unsigned i;
3091 lambda_vector v;
3093 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, v)
3094 if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
3095 return;
3097 DDR_DIST_VECTS (ddr).safe_push (dist_v);
3100 /* Helper function for uniquely inserting direction vectors. */
3102 static void
3103 save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
3105 unsigned i;
3106 lambda_vector v;
3108 FOR_EACH_VEC_ELT (DDR_DIR_VECTS (ddr), i, v)
3109 if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
3110 return;
3112 DDR_DIR_VECTS (ddr).safe_push (dir_v);
3115 /* Add a distance of 1 on all the loops outer than INDEX. If we
3116 haven't yet determined a distance for this outer loop, push a new
3117 distance vector composed of the previous distance, and a distance
3118 of 1 for this outer loop. Example:
3120 | loop_1
3121 | loop_2
3122 | A[10]
3123 | endloop_2
3124 | endloop_1
3126 Saved vectors are of the form (dist_in_1, dist_in_2). First, we
3127 save (0, 1), then we have to save (1, 0). */
3129 static void
3130 add_outer_distances (struct data_dependence_relation *ddr,
3131 lambda_vector dist_v, int index)
3133 /* For each outer loop where init_v is not set, the accesses are
3134 in dependence of distance 1 in the loop. */
3135 while (--index >= 0)
3137 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3138 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
3139 save_v[index] = 1;
3140 save_dist_v (ddr, save_v);
3144 /* Return false when fail to represent the data dependence as a
3145 distance vector. INIT_B is set to true when a component has been
3146 added to the distance vector DIST_V. INDEX_CARRY is then set to
3147 the index in DIST_V that carries the dependence. */
3149 static bool
3150 build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
3151 struct data_reference *ddr_a,
3152 struct data_reference *ddr_b,
3153 lambda_vector dist_v, bool *init_b,
3154 int *index_carry)
3156 unsigned i;
3157 lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3159 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3161 tree access_fn_a, access_fn_b;
3162 struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
3164 if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
3166 non_affine_dependence_relation (ddr);
3167 return false;
3170 access_fn_a = DR_ACCESS_FN (ddr_a, i);
3171 access_fn_b = DR_ACCESS_FN (ddr_b, i);
3173 if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
3174 && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
3176 int dist, index;
3177 int var_a = CHREC_VARIABLE (access_fn_a);
3178 int var_b = CHREC_VARIABLE (access_fn_b);
3180 if (var_a != var_b
3181 || chrec_contains_undetermined (SUB_DISTANCE (subscript)))
3183 non_affine_dependence_relation (ddr);
3184 return false;
3187 dist = int_cst_value (SUB_DISTANCE (subscript));
3188 index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
3189 *index_carry = MIN (index, *index_carry);
3191 /* This is the subscript coupling test. If we have already
3192 recorded a distance for this loop (a distance coming from
3193 another subscript), it should be the same. For example,
3194 in the following code, there is no dependence:
3196 | loop i = 0, N, 1
3197 | T[i+1][i] = ...
3198 | ... = T[i][i]
3199 | endloop
3201 if (init_v[index] != 0 && dist_v[index] != dist)
3203 finalize_ddr_dependent (ddr, chrec_known);
3204 return false;
3207 dist_v[index] = dist;
3208 init_v[index] = 1;
3209 *init_b = true;
3211 else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
3213 /* This can be for example an affine vs. constant dependence
3214 (T[i] vs. T[3]) that is not an affine dependence and is
3215 not representable as a distance vector. */
3216 non_affine_dependence_relation (ddr);
3217 return false;
3221 return true;
3224 /* Return true when the DDR contains only constant access functions. */
3226 static bool
3227 constant_access_functions (const struct data_dependence_relation *ddr)
3229 unsigned i;
3231 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3232 if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
3233 || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
3234 return false;
3236 return true;
3239 /* Helper function for the case where DDR_A and DDR_B are the same
3240 multivariate access function with a constant step. For an example
3241 see pr34635-1.c. */
3243 static void
3244 add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
3246 int x_1, x_2;
3247 tree c_1 = CHREC_LEFT (c_2);
3248 tree c_0 = CHREC_LEFT (c_1);
3249 lambda_vector dist_v;
3250 int v1, v2, cd;
3252 /* Polynomials with more than 2 variables are not handled yet. When
3253 the evolution steps are parameters, it is not possible to
3254 represent the dependence using classical distance vectors. */
3255 if (TREE_CODE (c_0) != INTEGER_CST
3256 || TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
3257 || TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
3259 DDR_AFFINE_P (ddr) = false;
3260 return;
3263 x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
3264 x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
3266 /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
3267 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3268 v1 = int_cst_value (CHREC_RIGHT (c_1));
3269 v2 = int_cst_value (CHREC_RIGHT (c_2));
3270 cd = gcd (v1, v2);
3271 v1 /= cd;
3272 v2 /= cd;
3274 if (v2 < 0)
3276 v2 = -v2;
3277 v1 = -v1;
3280 dist_v[x_1] = v2;
3281 dist_v[x_2] = -v1;
3282 save_dist_v (ddr, dist_v);
3284 add_outer_distances (ddr, dist_v, x_1);
3287 /* Helper function for the case where DDR_A and DDR_B are the same
3288 access functions. */
3290 static void
3291 add_other_self_distances (struct data_dependence_relation *ddr)
3293 lambda_vector dist_v;
3294 unsigned i;
3295 int index_carry = DDR_NB_LOOPS (ddr);
3297 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3299 tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
3301 if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
3303 if (!evolution_function_is_univariate_p (access_fun))
3305 if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
3307 DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
3308 return;
3311 access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
3313 if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
3314 add_multivariate_self_dist (ddr, access_fun);
3315 else
3316 /* The evolution step is not constant: it varies in
3317 the outer loop, so this cannot be represented by a
3318 distance vector. For example in pr34635.c the
3319 evolution is {0, +, {0, +, 4}_1}_2. */
3320 DDR_AFFINE_P (ddr) = false;
3322 return;
3325 index_carry = MIN (index_carry,
3326 index_in_loop_nest (CHREC_VARIABLE (access_fun),
3327 DDR_LOOP_NEST (ddr)));
3331 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3332 add_outer_distances (ddr, dist_v, index_carry);
3335 static void
3336 insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
3338 lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3340 dist_v[DDR_INNER_LOOP (ddr)] = 1;
3341 save_dist_v (ddr, dist_v);
3344 /* Adds a unit distance vector to DDR when there is a 0 overlap. This
3345 is the case for example when access functions are the same and
3346 equal to a constant, as in:
3348 | loop_1
3349 | A[3] = ...
3350 | ... = A[3]
3351 | endloop_1
3353 in which case the distance vectors are (0) and (1). */
3355 static void
3356 add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
3358 unsigned i, j;
3360 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3362 subscript_p sub = DDR_SUBSCRIPT (ddr, i);
3363 conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
3364 conflict_function *cb = SUB_CONFLICTS_IN_B (sub);
3366 for (j = 0; j < ca->n; j++)
3367 if (affine_function_zero_p (ca->fns[j]))
3369 insert_innermost_unit_dist_vector (ddr);
3370 return;
3373 for (j = 0; j < cb->n; j++)
3374 if (affine_function_zero_p (cb->fns[j]))
3376 insert_innermost_unit_dist_vector (ddr);
3377 return;
3382 /* Compute the classic per loop distance vector. DDR is the data
3383 dependence relation to build a vector from. Return false when fail
3384 to represent the data dependence as a distance vector. */
3386 static bool
3387 build_classic_dist_vector (struct data_dependence_relation *ddr,
3388 struct loop *loop_nest)
3390 bool init_b = false;
3391 int index_carry = DDR_NB_LOOPS (ddr);
3392 lambda_vector dist_v;
3394 if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
3395 return false;
3397 if (same_access_functions (ddr))
3399 /* Save the 0 vector. */
3400 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3401 save_dist_v (ddr, dist_v);
3403 if (constant_access_functions (ddr))
3404 add_distance_for_zero_overlaps (ddr);
3406 if (DDR_NB_LOOPS (ddr) > 1)
3407 add_other_self_distances (ddr);
3409 return true;
3412 dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3413 if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
3414 dist_v, &init_b, &index_carry))
3415 return false;
3417 /* Save the distance vector if we initialized one. */
3418 if (init_b)
3420 /* Verify a basic constraint: classic distance vectors should
3421 always be lexicographically positive.
3423 Data references are collected in the order of execution of
3424 the program, thus for the following loop
3426 | for (i = 1; i < 100; i++)
3427 | for (j = 1; j < 100; j++)
3429 | t = T[j+1][i-1]; // A
3430 | T[j][i] = t + 2; // B
3433 references are collected following the direction of the wind:
3434 A then B. The data dependence tests are performed also
3435 following this order, such that we're looking at the distance
3436 separating the elements accessed by A from the elements later
3437 accessed by B. But in this example, the distance returned by
3438 test_dep (A, B) is lexicographically negative (-1, 1), that
3439 means that the access A occurs later than B with respect to
3440 the outer loop, ie. we're actually looking upwind. In this
3441 case we solve test_dep (B, A) looking downwind to the
3442 lexicographically positive solution, that returns the
3443 distance vector (1, -1). */
3444 if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
3446 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3447 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3448 loop_nest))
3449 return false;
3450 compute_subscript_distance (ddr);
3451 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3452 save_v, &init_b, &index_carry))
3453 return false;
3454 save_dist_v (ddr, save_v);
3455 DDR_REVERSED_P (ddr) = true;
3457 /* In this case there is a dependence forward for all the
3458 outer loops:
3460 | for (k = 1; k < 100; k++)
3461 | for (i = 1; i < 100; i++)
3462 | for (j = 1; j < 100; j++)
3464 | t = T[j+1][i-1]; // A
3465 | T[j][i] = t + 2; // B
3468 the vectors are:
3469 (0, 1, -1)
3470 (1, 1, -1)
3471 (1, -1, 1)
3473 if (DDR_NB_LOOPS (ddr) > 1)
3475 add_outer_distances (ddr, save_v, index_carry);
3476 add_outer_distances (ddr, dist_v, index_carry);
3479 else
3481 lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3482 lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
3484 if (DDR_NB_LOOPS (ddr) > 1)
3486 lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3488 if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
3489 DDR_A (ddr), loop_nest))
3490 return false;
3491 compute_subscript_distance (ddr);
3492 if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
3493 opposite_v, &init_b,
3494 &index_carry))
3495 return false;
3497 save_dist_v (ddr, save_v);
3498 add_outer_distances (ddr, dist_v, index_carry);
3499 add_outer_distances (ddr, opposite_v, index_carry);
3501 else
3502 save_dist_v (ddr, save_v);
3505 else
3507 /* There is a distance of 1 on all the outer loops: Example:
3508 there is a dependence of distance 1 on loop_1 for the array A.
3510 | loop_1
3511 | A[5] = ...
3512 | endloop
3514 add_outer_distances (ddr, dist_v,
3515 lambda_vector_first_nz (dist_v,
3516 DDR_NB_LOOPS (ddr), 0));
3519 if (dump_file && (dump_flags & TDF_DETAILS))
3521 unsigned i;
3523 fprintf (dump_file, "(build_classic_dist_vector\n");
3524 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
3526 fprintf (dump_file, " dist_vector = (");
3527 print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
3528 DDR_NB_LOOPS (ddr));
3529 fprintf (dump_file, " )\n");
3531 fprintf (dump_file, ")\n");
3534 return true;
3537 /* Return the direction for a given distance.
3538 FIXME: Computing dir this way is suboptimal, since dir can catch
3539 cases that dist is unable to represent. */
3541 static inline enum data_dependence_direction
3542 dir_from_dist (int dist)
3544 if (dist > 0)
3545 return dir_positive;
3546 else if (dist < 0)
3547 return dir_negative;
3548 else
3549 return dir_equal;
3552 /* Compute the classic per loop direction vector. DDR is the data
3553 dependence relation to build a vector from. */
3555 static void
3556 build_classic_dir_vector (struct data_dependence_relation *ddr)
3558 unsigned i, j;
3559 lambda_vector dist_v;
3561 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
3563 lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3565 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
3566 dir_v[j] = dir_from_dist (dist_v[j]);
3568 save_dir_v (ddr, dir_v);
3572 /* Helper function. Returns true when there is a dependence between
3573 data references DRA and DRB. */
3575 static bool
3576 subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
3577 struct data_reference *dra,
3578 struct data_reference *drb,
3579 struct loop *loop_nest)
3581 unsigned int i;
3582 tree last_conflicts;
3583 struct subscript *subscript;
3584 tree res = NULL_TREE;
3586 for (i = 0; DDR_SUBSCRIPTS (ddr).iterate (i, &subscript); i++)
3588 conflict_function *overlaps_a, *overlaps_b;
3590 analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
3591 DR_ACCESS_FN (drb, i),
3592 &overlaps_a, &overlaps_b,
3593 &last_conflicts, loop_nest);
3595 if (SUB_CONFLICTS_IN_A (subscript))
3596 free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
3597 if (SUB_CONFLICTS_IN_B (subscript))
3598 free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
3600 SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
3601 SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
3602 SUB_LAST_CONFLICT (subscript) = last_conflicts;
3604 /* If there is any undetermined conflict function we have to
3605 give a conservative answer in case we cannot prove that
3606 no dependence exists when analyzing another subscript. */
3607 if (CF_NOT_KNOWN_P (overlaps_a)
3608 || CF_NOT_KNOWN_P (overlaps_b))
3610 res = chrec_dont_know;
3611 continue;
3614 /* When there is a subscript with no dependence we can stop. */
3615 else if (CF_NO_DEPENDENCE_P (overlaps_a)
3616 || CF_NO_DEPENDENCE_P (overlaps_b))
3618 res = chrec_known;
3619 break;
3623 if (res == NULL_TREE)
3624 return true;
3626 if (res == chrec_known)
3627 dependence_stats.num_dependence_independent++;
3628 else
3629 dependence_stats.num_dependence_undetermined++;
3630 finalize_ddr_dependent (ddr, res);
3631 return false;
3634 /* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
3636 static void
3637 subscript_dependence_tester (struct data_dependence_relation *ddr,
3638 struct loop *loop_nest)
3640 if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), loop_nest))
3641 dependence_stats.num_dependence_dependent++;
3643 compute_subscript_distance (ddr);
3644 if (build_classic_dist_vector (ddr, loop_nest))
3645 build_classic_dir_vector (ddr);
3648 /* Returns true when all the access functions of A are affine or
3649 constant with respect to LOOP_NEST. */
3651 static bool
3652 access_functions_are_affine_or_constant_p (const struct data_reference *a,
3653 const struct loop *loop_nest)
3655 unsigned int i;
3656 vec<tree> fns = DR_ACCESS_FNS (a);
3657 tree t;
3659 FOR_EACH_VEC_ELT (fns, i, t)
3660 if (!evolution_function_is_invariant_p (t, loop_nest->num)
3661 && !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
3662 return false;
3664 return true;
3667 /* Initializes an equation for an OMEGA problem using the information
3668 contained in the ACCESS_FUN. Returns true when the operation
3669 succeeded.
3671 PB is the omega constraint system.
3672 EQ is the number of the equation to be initialized.
3673 OFFSET is used for shifting the variables names in the constraints:
3674 a constrain is composed of 2 * the number of variables surrounding
3675 dependence accesses. OFFSET is set either to 0 for the first n variables,
3676 then it is set to n.
3677 ACCESS_FUN is expected to be an affine chrec. */
3679 static bool
3680 init_omega_eq_with_af (omega_pb pb, unsigned eq,
3681 unsigned int offset, tree access_fun,
3682 struct data_dependence_relation *ddr)
3684 switch (TREE_CODE (access_fun))
3686 case POLYNOMIAL_CHREC:
3688 tree left = CHREC_LEFT (access_fun);
3689 tree right = CHREC_RIGHT (access_fun);
3690 int var = CHREC_VARIABLE (access_fun);
3691 unsigned var_idx;
3693 if (TREE_CODE (right) != INTEGER_CST)
3694 return false;
3696 var_idx = index_in_loop_nest (var, DDR_LOOP_NEST (ddr));
3697 pb->eqs[eq].coef[offset + var_idx + 1] = int_cst_value (right);
3699 /* Compute the innermost loop index. */
3700 DDR_INNER_LOOP (ddr) = MAX (DDR_INNER_LOOP (ddr), var_idx);
3702 if (offset == 0)
3703 pb->eqs[eq].coef[var_idx + DDR_NB_LOOPS (ddr) + 1]
3704 += int_cst_value (right);
3706 switch (TREE_CODE (left))
3708 case POLYNOMIAL_CHREC:
3709 return init_omega_eq_with_af (pb, eq, offset, left, ddr);
3711 case INTEGER_CST:
3712 pb->eqs[eq].coef[0] += int_cst_value (left);
3713 return true;
3715 default:
3716 return false;
3720 case INTEGER_CST:
3721 pb->eqs[eq].coef[0] += int_cst_value (access_fun);
3722 return true;
3724 default:
3725 return false;
3729 /* As explained in the comments preceding init_omega_for_ddr, we have
3730 to set up a system for each loop level, setting outer loops
3731 variation to zero, and current loop variation to positive or zero.
3732 Save each lexico positive distance vector. */
3734 static void
3735 omega_extract_distance_vectors (omega_pb pb,
3736 struct data_dependence_relation *ddr)
3738 int eq, geq;
3739 unsigned i, j;
3740 struct loop *loopi, *loopj;
3741 enum omega_result res;
3743 /* Set a new problem for each loop in the nest. The basis is the
3744 problem that we have initialized until now. On top of this we
3745 add new constraints. */
3746 for (i = 0; i <= DDR_INNER_LOOP (ddr)
3747 && DDR_LOOP_NEST (ddr).iterate (i, &loopi); i++)
3749 int dist = 0;
3750 omega_pb copy = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr),
3751 DDR_NB_LOOPS (ddr));
3753 omega_copy_problem (copy, pb);
3755 /* For all the outer loops "loop_j", add "dj = 0". */
3756 for (j = 0; j < i && DDR_LOOP_NEST (ddr).iterate (j, &loopj); j++)
3758 eq = omega_add_zero_eq (copy, omega_black);
3759 copy->eqs[eq].coef[j + 1] = 1;
3762 /* For "loop_i", add "0 <= di". */
3763 geq = omega_add_zero_geq (copy, omega_black);
3764 copy->geqs[geq].coef[i + 1] = 1;
3766 /* Reduce the constraint system, and test that the current
3767 problem is feasible. */
3768 res = omega_simplify_problem (copy);
3769 if (res == omega_false
3770 || res == omega_unknown
3771 || copy->num_geqs > (int) DDR_NB_LOOPS (ddr))
3772 goto next_problem;
3774 for (eq = 0; eq < copy->num_subs; eq++)
3775 if (copy->subs[eq].key == (int) i + 1)
3777 dist = copy->subs[eq].coef[0];
3778 goto found_dist;
3781 if (dist == 0)
3783 /* Reinitialize problem... */
3784 omega_copy_problem (copy, pb);
3785 for (j = 0; j < i && DDR_LOOP_NEST (ddr).iterate (j, &loopj); j++)
3787 eq = omega_add_zero_eq (copy, omega_black);
3788 copy->eqs[eq].coef[j + 1] = 1;
3791 /* ..., but this time "di = 1". */
3792 eq = omega_add_zero_eq (copy, omega_black);
3793 copy->eqs[eq].coef[i + 1] = 1;
3794 copy->eqs[eq].coef[0] = -1;
3796 res = omega_simplify_problem (copy);
3797 if (res == omega_false
3798 || res == omega_unknown
3799 || copy->num_geqs > (int) DDR_NB_LOOPS (ddr))
3800 goto next_problem;
3802 for (eq = 0; eq < copy->num_subs; eq++)
3803 if (copy->subs[eq].key == (int) i + 1)
3805 dist = copy->subs[eq].coef[0];
3806 goto found_dist;
3810 found_dist:;
3811 /* Save the lexicographically positive distance vector. */
3812 if (dist >= 0)
3814 lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3815 lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
3817 dist_v[i] = dist;
3819 for (eq = 0; eq < copy->num_subs; eq++)
3820 if (copy->subs[eq].key > 0)
3822 dist = copy->subs[eq].coef[0];
3823 dist_v[copy->subs[eq].key - 1] = dist;
3826 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
3827 dir_v[j] = dir_from_dist (dist_v[j]);
3829 save_dist_v (ddr, dist_v);
3830 save_dir_v (ddr, dir_v);
3833 next_problem:;
3834 omega_free_problem (copy);
3838 /* This is called for each subscript of a tuple of data references:
3839 insert an equality for representing the conflicts. */
3841 static bool
3842 omega_setup_subscript (tree access_fun_a, tree access_fun_b,
3843 struct data_dependence_relation *ddr,
3844 omega_pb pb, bool *maybe_dependent)
3846 int eq;
3847 tree type = signed_type_for_types (TREE_TYPE (access_fun_a),
3848 TREE_TYPE (access_fun_b));
3849 tree fun_a = chrec_convert (type, access_fun_a, NULL);
3850 tree fun_b = chrec_convert (type, access_fun_b, NULL);
3851 tree difference = chrec_fold_minus (type, fun_a, fun_b);
3852 tree minus_one;
3854 /* When the fun_a - fun_b is not constant, the dependence is not
3855 captured by the classic distance vector representation. */
3856 if (TREE_CODE (difference) != INTEGER_CST)
3857 return false;
3859 /* ZIV test. */
3860 if (ziv_subscript_p (fun_a, fun_b) && !integer_zerop (difference))
3862 /* There is no dependence. */
3863 *maybe_dependent = false;
3864 return true;
3867 minus_one = build_int_cst (type, -1);
3868 fun_b = chrec_fold_multiply (type, fun_b, minus_one);
3870 eq = omega_add_zero_eq (pb, omega_black);
3871 if (!init_omega_eq_with_af (pb, eq, DDR_NB_LOOPS (ddr), fun_a, ddr)
3872 || !init_omega_eq_with_af (pb, eq, 0, fun_b, ddr))
3873 /* There is probably a dependence, but the system of
3874 constraints cannot be built: answer "don't know". */
3875 return false;
3877 /* GCD test. */
3878 if (DDR_NB_LOOPS (ddr) != 0 && pb->eqs[eq].coef[0]
3879 && !int_divides_p (lambda_vector_gcd
3880 ((lambda_vector) &(pb->eqs[eq].coef[1]),
3881 2 * DDR_NB_LOOPS (ddr)),
3882 pb->eqs[eq].coef[0]))
3884 /* There is no dependence. */
3885 *maybe_dependent = false;
3886 return true;
3889 return true;
3892 /* Helper function, same as init_omega_for_ddr but specialized for
3893 data references A and B. */
3895 static bool
3896 init_omega_for_ddr_1 (struct data_reference *dra, struct data_reference *drb,
3897 struct data_dependence_relation *ddr,
3898 omega_pb pb, bool *maybe_dependent)
3900 unsigned i;
3901 int ineq;
3902 struct loop *loopi;
3903 unsigned nb_loops = DDR_NB_LOOPS (ddr);
3905 /* Insert an equality per subscript. */
3906 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
3908 if (!omega_setup_subscript (DR_ACCESS_FN (dra, i), DR_ACCESS_FN (drb, i),
3909 ddr, pb, maybe_dependent))
3910 return false;
3911 else if (*maybe_dependent == false)
3913 /* There is no dependence. */
3914 DDR_ARE_DEPENDENT (ddr) = chrec_known;
3915 return true;
3919 /* Insert inequalities: constraints corresponding to the iteration
3920 domain, i.e. the loops surrounding the references "loop_x" and
3921 the distance variables "dx". The layout of the OMEGA
3922 representation is as follows:
3923 - coef[0] is the constant
3924 - coef[1..nb_loops] are the protected variables that will not be
3925 removed by the solver: the "dx"
3926 - coef[nb_loops + 1, 2*nb_loops] are the loop variables: "loop_x".
3928 for (i = 0; i <= DDR_INNER_LOOP (ddr)
3929 && DDR_LOOP_NEST (ddr).iterate (i, &loopi); i++)
3931 HOST_WIDE_INT nbi = max_stmt_executions_int (loopi);
3933 /* 0 <= loop_x */
3934 ineq = omega_add_zero_geq (pb, omega_black);
3935 pb->geqs[ineq].coef[i + nb_loops + 1] = 1;
3937 /* 0 <= loop_x + dx */
3938 ineq = omega_add_zero_geq (pb, omega_black);
3939 pb->geqs[ineq].coef[i + nb_loops + 1] = 1;
3940 pb->geqs[ineq].coef[i + 1] = 1;
3942 if (nbi != -1)
3944 /* loop_x <= nb_iters */
3945 ineq = omega_add_zero_geq (pb, omega_black);
3946 pb->geqs[ineq].coef[i + nb_loops + 1] = -1;
3947 pb->geqs[ineq].coef[0] = nbi;
3949 /* loop_x + dx <= nb_iters */
3950 ineq = omega_add_zero_geq (pb, omega_black);
3951 pb->geqs[ineq].coef[i + nb_loops + 1] = -1;
3952 pb->geqs[ineq].coef[i + 1] = -1;
3953 pb->geqs[ineq].coef[0] = nbi;
3955 /* A step "dx" bigger than nb_iters is not feasible, so
3956 add "0 <= nb_iters + dx", */
3957 ineq = omega_add_zero_geq (pb, omega_black);
3958 pb->geqs[ineq].coef[i + 1] = 1;
3959 pb->geqs[ineq].coef[0] = nbi;
3960 /* and "dx <= nb_iters". */
3961 ineq = omega_add_zero_geq (pb, omega_black);
3962 pb->geqs[ineq].coef[i + 1] = -1;
3963 pb->geqs[ineq].coef[0] = nbi;
3967 omega_extract_distance_vectors (pb, ddr);
3969 return true;
3972 /* Sets up the Omega dependence problem for the data dependence
3973 relation DDR. Returns false when the constraint system cannot be
3974 built, ie. when the test answers "don't know". Returns true
3975 otherwise, and when independence has been proved (using one of the
3976 trivial dependence test), set MAYBE_DEPENDENT to false, otherwise
3977 set MAYBE_DEPENDENT to true.
3979 Example: for setting up the dependence system corresponding to the
3980 conflicting accesses
3982 | loop_i
3983 | loop_j
3984 | A[i, i+1] = ...
3985 | ... A[2*j, 2*(i + j)]
3986 | endloop_j
3987 | endloop_i
3989 the following constraints come from the iteration domain:
3991 0 <= i <= Ni
3992 0 <= i + di <= Ni
3993 0 <= j <= Nj
3994 0 <= j + dj <= Nj
3996 where di, dj are the distance variables. The constraints
3997 representing the conflicting elements are:
3999 i = 2 * (j + dj)
4000 i + 1 = 2 * (i + di + j + dj)
4002 For asking that the resulting distance vector (di, dj) be
4003 lexicographically positive, we insert the constraint "di >= 0". If
4004 "di = 0" in the solution, we fix that component to zero, and we
4005 look at the inner loops: we set a new problem where all the outer
4006 loop distances are zero, and fix this inner component to be
4007 positive. When one of the components is positive, we save that
4008 distance, and set a new problem where the distance on this loop is
4009 zero, searching for other distances in the inner loops. Here is
4010 the classic example that illustrates that we have to set for each
4011 inner loop a new problem:
4013 | loop_1
4014 | loop_2
4015 | A[10]
4016 | endloop_2
4017 | endloop_1
4019 we have to save two distances (1, 0) and (0, 1).
4021 Given two array references, refA and refB, we have to set the
4022 dependence problem twice, refA vs. refB and refB vs. refA, and we
4023 cannot do a single test, as refB might occur before refA in the
4024 inner loops, and the contrary when considering outer loops: ex.
4026 | loop_0
4027 | loop_1
4028 | loop_2
4029 | T[{1,+,1}_2][{1,+,1}_1] // refA
4030 | T[{2,+,1}_2][{0,+,1}_1] // refB
4031 | endloop_2
4032 | endloop_1
4033 | endloop_0
4035 refB touches the elements in T before refA, and thus for the same
4036 loop_0 refB precedes refA: ie. the distance vector (0, 1, -1)
4037 but for successive loop_0 iterations, we have (1, -1, 1)
4039 The Omega solver expects the distance variables ("di" in the
4040 previous example) to come first in the constraint system (as
4041 variables to be protected, or "safe" variables), the constraint
4042 system is built using the following layout:
4044 "cst | distance vars | index vars".
4047 static bool
4048 init_omega_for_ddr (struct data_dependence_relation *ddr,
4049 bool *maybe_dependent)
4051 omega_pb pb;
4052 bool res = false;
4054 *maybe_dependent = true;
4056 if (same_access_functions (ddr))
4058 unsigned j;
4059 lambda_vector dir_v;
4061 /* Save the 0 vector. */
4062 save_dist_v (ddr, lambda_vector_new (DDR_NB_LOOPS (ddr)));
4063 dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
4064 for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
4065 dir_v[j] = dir_equal;
4066 save_dir_v (ddr, dir_v);
4068 /* Save the dependences carried by outer loops. */
4069 pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
4070 res = init_omega_for_ddr_1 (DDR_A (ddr), DDR_B (ddr), ddr, pb,
4071 maybe_dependent);
4072 omega_free_problem (pb);
4073 return res;
4076 /* Omega expects the protected variables (those that have to be kept
4077 after elimination) to appear first in the constraint system.
4078 These variables are the distance variables. In the following
4079 initialization we declare NB_LOOPS safe variables, and the total
4080 number of variables for the constraint system is 2*NB_LOOPS. */
4081 pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
4082 res = init_omega_for_ddr_1 (DDR_A (ddr), DDR_B (ddr), ddr, pb,
4083 maybe_dependent);
4084 omega_free_problem (pb);
4086 /* Stop computation if not decidable, or no dependence. */
4087 if (res == false || *maybe_dependent == false)
4088 return res;
4090 pb = omega_alloc_problem (2 * DDR_NB_LOOPS (ddr), DDR_NB_LOOPS (ddr));
4091 res = init_omega_for_ddr_1 (DDR_B (ddr), DDR_A (ddr), ddr, pb,
4092 maybe_dependent);
4093 omega_free_problem (pb);
4095 return res;
4098 /* Return true when DDR contains the same information as that stored
4099 in DIR_VECTS and in DIST_VECTS, return false otherwise. */
4101 static bool
4102 ddr_consistent_p (FILE *file,
4103 struct data_dependence_relation *ddr,
4104 vec<lambda_vector> dist_vects,
4105 vec<lambda_vector> dir_vects)
4107 unsigned int i, j;
4109 /* If dump_file is set, output there. */
4110 if (dump_file && (dump_flags & TDF_DETAILS))
4111 file = dump_file;
4113 if (dist_vects.length () != DDR_NUM_DIST_VECTS (ddr))
4115 lambda_vector b_dist_v;
4116 fprintf (file, "\n(Number of distance vectors differ: Banerjee has %d, Omega has %d.\n",
4117 dist_vects.length (),
4118 DDR_NUM_DIST_VECTS (ddr));
4120 fprintf (file, "Banerjee dist vectors:\n");
4121 FOR_EACH_VEC_ELT (dist_vects, i, b_dist_v)
4122 print_lambda_vector (file, b_dist_v, DDR_NB_LOOPS (ddr));
4124 fprintf (file, "Omega dist vectors:\n");
4125 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
4126 print_lambda_vector (file, DDR_DIST_VECT (ddr, i), DDR_NB_LOOPS (ddr));
4128 fprintf (file, "data dependence relation:\n");
4129 dump_data_dependence_relation (file, ddr);
4131 fprintf (file, ")\n");
4132 return false;
4135 if (dir_vects.length () != DDR_NUM_DIR_VECTS (ddr))
4137 fprintf (file, "\n(Number of direction vectors differ: Banerjee has %d, Omega has %d.)\n",
4138 dir_vects.length (),
4139 DDR_NUM_DIR_VECTS (ddr));
4140 return false;
4143 for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
4145 lambda_vector a_dist_v;
4146 lambda_vector b_dist_v = DDR_DIST_VECT (ddr, i);
4148 /* Distance vectors are not ordered in the same way in the DDR
4149 and in the DIST_VECTS: search for a matching vector. */
4150 FOR_EACH_VEC_ELT (dist_vects, j, a_dist_v)
4151 if (lambda_vector_equal (a_dist_v, b_dist_v, DDR_NB_LOOPS (ddr)))
4152 break;
4154 if (j == dist_vects.length ())
4156 fprintf (file, "\n(Dist vectors from the first dependence analyzer:\n");
4157 print_dist_vectors (file, dist_vects, DDR_NB_LOOPS (ddr));
4158 fprintf (file, "not found in Omega dist vectors:\n");
4159 print_dist_vectors (file, DDR_DIST_VECTS (ddr), DDR_NB_LOOPS (ddr));
4160 fprintf (file, "data dependence relation:\n");
4161 dump_data_dependence_relation (file, ddr);
4162 fprintf (file, ")\n");
4166 for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
4168 lambda_vector a_dir_v;
4169 lambda_vector b_dir_v = DDR_DIR_VECT (ddr, i);
4171 /* Direction vectors are not ordered in the same way in the DDR
4172 and in the DIR_VECTS: search for a matching vector. */
4173 FOR_EACH_VEC_ELT (dir_vects, j, a_dir_v)
4174 if (lambda_vector_equal (a_dir_v, b_dir_v, DDR_NB_LOOPS (ddr)))
4175 break;
4177 if (j == dist_vects.length ())
4179 fprintf (file, "\n(Dir vectors from the first dependence analyzer:\n");
4180 print_dir_vectors (file, dir_vects, DDR_NB_LOOPS (ddr));
4181 fprintf (file, "not found in Omega dir vectors:\n");
4182 print_dir_vectors (file, DDR_DIR_VECTS (ddr), DDR_NB_LOOPS (ddr));
4183 fprintf (file, "data dependence relation:\n");
4184 dump_data_dependence_relation (file, ddr);
4185 fprintf (file, ")\n");
4189 return true;
4192 /* This computes the affine dependence relation between A and B with
4193 respect to LOOP_NEST. CHREC_KNOWN is used for representing the
4194 independence between two accesses, while CHREC_DONT_KNOW is used
4195 for representing the unknown relation.
4197 Note that it is possible to stop the computation of the dependence
4198 relation the first time we detect a CHREC_KNOWN element for a given
4199 subscript. */
4201 void
4202 compute_affine_dependence (struct data_dependence_relation *ddr,
4203 struct loop *loop_nest)
4205 struct data_reference *dra = DDR_A (ddr);
4206 struct data_reference *drb = DDR_B (ddr);
4208 if (dump_file && (dump_flags & TDF_DETAILS))
4210 fprintf (dump_file, "(compute_affine_dependence\n");
4211 fprintf (dump_file, " stmt_a: ");
4212 print_gimple_stmt (dump_file, DR_STMT (dra), 0, TDF_SLIM);
4213 fprintf (dump_file, " stmt_b: ");
4214 print_gimple_stmt (dump_file, DR_STMT (drb), 0, TDF_SLIM);
4217 /* Analyze only when the dependence relation is not yet known. */
4218 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
4220 dependence_stats.num_dependence_tests++;
4222 if (access_functions_are_affine_or_constant_p (dra, loop_nest)
4223 && access_functions_are_affine_or_constant_p (drb, loop_nest))
4225 subscript_dependence_tester (ddr, loop_nest);
4227 if (flag_check_data_deps)
4229 /* Dump the dependences from the first algorithm. */
4230 if (dump_file && (dump_flags & TDF_DETAILS))
4232 fprintf (dump_file, "\n\nBanerjee Analyzer\n");
4233 dump_data_dependence_relation (dump_file, ddr);
4236 if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
4238 bool maybe_dependent;
4239 vec<lambda_vector> dir_vects, dist_vects;
4241 /* Save the result of the first DD analyzer. */
4242 dist_vects = DDR_DIST_VECTS (ddr);
4243 dir_vects = DDR_DIR_VECTS (ddr);
4245 /* Reset the information. */
4246 DDR_DIST_VECTS (ddr).create (0);
4247 DDR_DIR_VECTS (ddr).create (0);
4249 /* Compute the same information using Omega. */
4250 if (!init_omega_for_ddr (ddr, &maybe_dependent))
4251 goto csys_dont_know;
4253 if (dump_file && (dump_flags & TDF_DETAILS))
4255 fprintf (dump_file, "Omega Analyzer\n");
4256 dump_data_dependence_relation (dump_file, ddr);
4259 /* Check that we get the same information. */
4260 if (maybe_dependent)
4261 gcc_assert (ddr_consistent_p (stderr, ddr, dist_vects,
4262 dir_vects));
4267 /* As a last case, if the dependence cannot be determined, or if
4268 the dependence is considered too difficult to determine, answer
4269 "don't know". */
4270 else
4272 csys_dont_know:;
4273 dependence_stats.num_dependence_undetermined++;
4275 if (dump_file && (dump_flags & TDF_DETAILS))
4277 fprintf (dump_file, "Data ref a:\n");
4278 dump_data_reference (dump_file, dra);
4279 fprintf (dump_file, "Data ref b:\n");
4280 dump_data_reference (dump_file, drb);
4281 fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
4283 finalize_ddr_dependent (ddr, chrec_dont_know);
4287 if (dump_file && (dump_flags & TDF_DETAILS))
4289 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
4290 fprintf (dump_file, ") -> no dependence\n");
4291 else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
4292 fprintf (dump_file, ") -> dependence analysis failed\n");
4293 else
4294 fprintf (dump_file, ")\n");
4298 /* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
4299 the data references in DATAREFS, in the LOOP_NEST. When
4300 COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
4301 relations. Return true when successful, i.e. data references number
4302 is small enough to be handled. */
4304 bool
4305 compute_all_dependences (vec<data_reference_p> datarefs,
4306 vec<ddr_p> *dependence_relations,
4307 vec<loop_p> loop_nest,
4308 bool compute_self_and_rr)
4310 struct data_dependence_relation *ddr;
4311 struct data_reference *a, *b;
4312 unsigned int i, j;
4314 if ((int) datarefs.length ()
4315 > PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
4317 struct data_dependence_relation *ddr;
4319 /* Insert a single relation into dependence_relations:
4320 chrec_dont_know. */
4321 ddr = initialize_data_dependence_relation (NULL, NULL, loop_nest);
4322 dependence_relations->safe_push (ddr);
4323 return false;
4326 FOR_EACH_VEC_ELT (datarefs, i, a)
4327 for (j = i + 1; datarefs.iterate (j, &b); j++)
4328 if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
4330 ddr = initialize_data_dependence_relation (a, b, loop_nest);
4331 dependence_relations->safe_push (ddr);
4332 if (loop_nest.exists ())
4333 compute_affine_dependence (ddr, loop_nest[0]);
4336 if (compute_self_and_rr)
4337 FOR_EACH_VEC_ELT (datarefs, i, a)
4339 ddr = initialize_data_dependence_relation (a, a, loop_nest);
4340 dependence_relations->safe_push (ddr);
4341 if (loop_nest.exists ())
4342 compute_affine_dependence (ddr, loop_nest[0]);
4345 return true;
4348 /* Describes a location of a memory reference. */
4350 typedef struct data_ref_loc_d
4352 /* The memory reference. */
4353 tree ref;
4355 /* True if the memory reference is read. */
4356 bool is_read;
4357 } data_ref_loc;
4360 /* Stores the locations of memory references in STMT to REFERENCES. Returns
4361 true if STMT clobbers memory, false otherwise. */
4363 static bool
4364 get_references_in_stmt (gimple stmt, vec<data_ref_loc, va_heap> *references)
4366 bool clobbers_memory = false;
4367 data_ref_loc ref;
4368 tree op0, op1;
4369 enum gimple_code stmt_code = gimple_code (stmt);
4371 /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
4372 As we cannot model data-references to not spelled out
4373 accesses give up if they may occur. */
4374 if (stmt_code == GIMPLE_CALL
4375 && !(gimple_call_flags (stmt) & ECF_CONST))
4377 /* Allow IFN_GOMP_SIMD_LANE in their own loops. */
4378 if (gimple_call_internal_p (stmt))
4379 switch (gimple_call_internal_fn (stmt))
4381 case IFN_GOMP_SIMD_LANE:
4383 struct loop *loop = gimple_bb (stmt)->loop_father;
4384 tree uid = gimple_call_arg (stmt, 0);
4385 gcc_assert (TREE_CODE (uid) == SSA_NAME);
4386 if (loop == NULL
4387 || loop->simduid != SSA_NAME_VAR (uid))
4388 clobbers_memory = true;
4389 break;
4391 case IFN_MASK_LOAD:
4392 case IFN_MASK_STORE:
4393 break;
4394 default:
4395 clobbers_memory = true;
4396 break;
4398 else
4399 clobbers_memory = true;
4401 else if (stmt_code == GIMPLE_ASM
4402 && (gimple_asm_volatile_p (as_a <gasm *> (stmt))
4403 || gimple_vuse (stmt)))
4404 clobbers_memory = true;
4406 if (!gimple_vuse (stmt))
4407 return clobbers_memory;
4409 if (stmt_code == GIMPLE_ASSIGN)
4411 tree base;
4412 op0 = gimple_assign_lhs (stmt);
4413 op1 = gimple_assign_rhs1 (stmt);
4415 if (DECL_P (op1)
4416 || (REFERENCE_CLASS_P (op1)
4417 && (base = get_base_address (op1))
4418 && TREE_CODE (base) != SSA_NAME))
4420 ref.ref = op1;
4421 ref.is_read = true;
4422 references->safe_push (ref);
4425 else if (stmt_code == GIMPLE_CALL)
4427 unsigned i, n;
4429 ref.is_read = false;
4430 if (gimple_call_internal_p (stmt))
4431 switch (gimple_call_internal_fn (stmt))
4433 case IFN_MASK_LOAD:
4434 if (gimple_call_lhs (stmt) == NULL_TREE)
4435 break;
4436 ref.is_read = true;
4437 case IFN_MASK_STORE:
4438 ref.ref = fold_build2 (MEM_REF,
4439 ref.is_read
4440 ? TREE_TYPE (gimple_call_lhs (stmt))
4441 : TREE_TYPE (gimple_call_arg (stmt, 3)),
4442 gimple_call_arg (stmt, 0),
4443 gimple_call_arg (stmt, 1));
4444 references->safe_push (ref);
4445 return false;
4446 default:
4447 break;
4450 op0 = gimple_call_lhs (stmt);
4451 n = gimple_call_num_args (stmt);
4452 for (i = 0; i < n; i++)
4454 op1 = gimple_call_arg (stmt, i);
4456 if (DECL_P (op1)
4457 || (REFERENCE_CLASS_P (op1) && get_base_address (op1)))
4459 ref.ref = op1;
4460 ref.is_read = true;
4461 references->safe_push (ref);
4465 else
4466 return clobbers_memory;
4468 if (op0
4469 && (DECL_P (op0)
4470 || (REFERENCE_CLASS_P (op0) && get_base_address (op0))))
4472 ref.ref = op0;
4473 ref.is_read = false;
4474 references->safe_push (ref);
4476 return clobbers_memory;
4479 /* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
4480 reference, returns false, otherwise returns true. NEST is the outermost
4481 loop of the loop nest in which the references should be analyzed. */
4483 bool
4484 find_data_references_in_stmt (struct loop *nest, gimple stmt,
4485 vec<data_reference_p> *datarefs)
4487 unsigned i;
4488 auto_vec<data_ref_loc, 2> references;
4489 data_ref_loc *ref;
4490 bool ret = true;
4491 data_reference_p dr;
4493 if (get_references_in_stmt (stmt, &references))
4494 return false;
4496 FOR_EACH_VEC_ELT (references, i, ref)
4498 dr = create_data_ref (nest, loop_containing_stmt (stmt),
4499 ref->ref, stmt, ref->is_read);
4500 gcc_assert (dr != NULL);
4501 datarefs->safe_push (dr);
4503 references.release ();
4504 return ret;
4507 /* Stores the data references in STMT to DATAREFS. If there is an
4508 unanalyzable reference, returns false, otherwise returns true.
4509 NEST is the outermost loop of the loop nest in which the references
4510 should be instantiated, LOOP is the loop in which the references
4511 should be analyzed. */
4513 bool
4514 graphite_find_data_references_in_stmt (loop_p nest, loop_p loop, gimple stmt,
4515 vec<data_reference_p> *datarefs)
4517 unsigned i;
4518 auto_vec<data_ref_loc, 2> references;
4519 data_ref_loc *ref;
4520 bool ret = true;
4521 data_reference_p dr;
4523 if (get_references_in_stmt (stmt, &references))
4524 return false;
4526 FOR_EACH_VEC_ELT (references, i, ref)
4528 dr = create_data_ref (nest, loop, ref->ref, stmt, ref->is_read);
4529 gcc_assert (dr != NULL);
4530 datarefs->safe_push (dr);
4533 references.release ();
4534 return ret;
4537 /* Search the data references in LOOP, and record the information into
4538 DATAREFS. Returns chrec_dont_know when failing to analyze a
4539 difficult case, returns NULL_TREE otherwise. */
4541 tree
4542 find_data_references_in_bb (struct loop *loop, basic_block bb,
4543 vec<data_reference_p> *datarefs)
4545 gimple_stmt_iterator bsi;
4547 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
4549 gimple stmt = gsi_stmt (bsi);
4551 if (!find_data_references_in_stmt (loop, stmt, datarefs))
4553 struct data_reference *res;
4554 res = XCNEW (struct data_reference);
4555 datarefs->safe_push (res);
4557 return chrec_dont_know;
4561 return NULL_TREE;
4564 /* Search the data references in LOOP, and record the information into
4565 DATAREFS. Returns chrec_dont_know when failing to analyze a
4566 difficult case, returns NULL_TREE otherwise.
4568 TODO: This function should be made smarter so that it can handle address
4569 arithmetic as if they were array accesses, etc. */
4571 tree
4572 find_data_references_in_loop (struct loop *loop,
4573 vec<data_reference_p> *datarefs)
4575 basic_block bb, *bbs;
4576 unsigned int i;
4578 bbs = get_loop_body_in_dom_order (loop);
4580 for (i = 0; i < loop->num_nodes; i++)
4582 bb = bbs[i];
4584 if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
4586 free (bbs);
4587 return chrec_dont_know;
4590 free (bbs);
4592 return NULL_TREE;
4595 /* Recursive helper function. */
4597 static bool
4598 find_loop_nest_1 (struct loop *loop, vec<loop_p> *loop_nest)
4600 /* Inner loops of the nest should not contain siblings. Example:
4601 when there are two consecutive loops,
4603 | loop_0
4604 | loop_1
4605 | A[{0, +, 1}_1]
4606 | endloop_1
4607 | loop_2
4608 | A[{0, +, 1}_2]
4609 | endloop_2
4610 | endloop_0
4612 the dependence relation cannot be captured by the distance
4613 abstraction. */
4614 if (loop->next)
4615 return false;
4617 loop_nest->safe_push (loop);
4618 if (loop->inner)
4619 return find_loop_nest_1 (loop->inner, loop_nest);
4620 return true;
4623 /* Return false when the LOOP is not well nested. Otherwise return
4624 true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
4625 contain the loops from the outermost to the innermost, as they will
4626 appear in the classic distance vector. */
4628 bool
4629 find_loop_nest (struct loop *loop, vec<loop_p> *loop_nest)
4631 loop_nest->safe_push (loop);
4632 if (loop->inner)
4633 return find_loop_nest_1 (loop->inner, loop_nest);
4634 return true;
4637 /* Returns true when the data dependences have been computed, false otherwise.
4638 Given a loop nest LOOP, the following vectors are returned:
4639 DATAREFS is initialized to all the array elements contained in this loop,
4640 DEPENDENCE_RELATIONS contains the relations between the data references.
4641 Compute read-read and self relations if
4642 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
4644 bool
4645 compute_data_dependences_for_loop (struct loop *loop,
4646 bool compute_self_and_read_read_dependences,
4647 vec<loop_p> *loop_nest,
4648 vec<data_reference_p> *datarefs,
4649 vec<ddr_p> *dependence_relations)
4651 bool res = true;
4653 memset (&dependence_stats, 0, sizeof (dependence_stats));
4655 /* If the loop nest is not well formed, or one of the data references
4656 is not computable, give up without spending time to compute other
4657 dependences. */
4658 if (!loop
4659 || !find_loop_nest (loop, loop_nest)
4660 || find_data_references_in_loop (loop, datarefs) == chrec_dont_know
4661 || !compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
4662 compute_self_and_read_read_dependences))
4663 res = false;
4665 if (dump_file && (dump_flags & TDF_STATS))
4667 fprintf (dump_file, "Dependence tester statistics:\n");
4669 fprintf (dump_file, "Number of dependence tests: %d\n",
4670 dependence_stats.num_dependence_tests);
4671 fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
4672 dependence_stats.num_dependence_dependent);
4673 fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
4674 dependence_stats.num_dependence_independent);
4675 fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
4676 dependence_stats.num_dependence_undetermined);
4678 fprintf (dump_file, "Number of subscript tests: %d\n",
4679 dependence_stats.num_subscript_tests);
4680 fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
4681 dependence_stats.num_subscript_undetermined);
4682 fprintf (dump_file, "Number of same subscript function: %d\n",
4683 dependence_stats.num_same_subscript_function);
4685 fprintf (dump_file, "Number of ziv tests: %d\n",
4686 dependence_stats.num_ziv);
4687 fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
4688 dependence_stats.num_ziv_dependent);
4689 fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
4690 dependence_stats.num_ziv_independent);
4691 fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
4692 dependence_stats.num_ziv_unimplemented);
4694 fprintf (dump_file, "Number of siv tests: %d\n",
4695 dependence_stats.num_siv);
4696 fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
4697 dependence_stats.num_siv_dependent);
4698 fprintf (dump_file, "Number of siv tests returning independent: %d\n",
4699 dependence_stats.num_siv_independent);
4700 fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
4701 dependence_stats.num_siv_unimplemented);
4703 fprintf (dump_file, "Number of miv tests: %d\n",
4704 dependence_stats.num_miv);
4705 fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
4706 dependence_stats.num_miv_dependent);
4707 fprintf (dump_file, "Number of miv tests returning independent: %d\n",
4708 dependence_stats.num_miv_independent);
4709 fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
4710 dependence_stats.num_miv_unimplemented);
4713 return res;
4716 /* Returns true when the data dependences for the basic block BB have been
4717 computed, false otherwise.
4718 DATAREFS is initialized to all the array elements contained in this basic
4719 block, DEPENDENCE_RELATIONS contains the relations between the data
4720 references. Compute read-read and self relations if
4721 COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
4722 bool
4723 compute_data_dependences_for_bb (basic_block bb,
4724 bool compute_self_and_read_read_dependences,
4725 vec<data_reference_p> *datarefs,
4726 vec<ddr_p> *dependence_relations)
4728 if (find_data_references_in_bb (NULL, bb, datarefs) == chrec_dont_know)
4729 return false;
4731 return compute_all_dependences (*datarefs, dependence_relations, vNULL,
4732 compute_self_and_read_read_dependences);
4735 /* Entry point (for testing only). Analyze all the data references
4736 and the dependence relations in LOOP.
4738 The data references are computed first.
4740 A relation on these nodes is represented by a complete graph. Some
4741 of the relations could be of no interest, thus the relations can be
4742 computed on demand.
4744 In the following function we compute all the relations. This is
4745 just a first implementation that is here for:
4746 - for showing how to ask for the dependence relations,
4747 - for the debugging the whole dependence graph,
4748 - for the dejagnu testcases and maintenance.
4750 It is possible to ask only for a part of the graph, avoiding to
4751 compute the whole dependence graph. The computed dependences are
4752 stored in a knowledge base (KB) such that later queries don't
4753 recompute the same information. The implementation of this KB is
4754 transparent to the optimizer, and thus the KB can be changed with a
4755 more efficient implementation, or the KB could be disabled. */
4756 static void
4757 analyze_all_data_dependences (struct loop *loop)
4759 unsigned int i;
4760 int nb_data_refs = 10;
4761 vec<data_reference_p> datarefs;
4762 datarefs.create (nb_data_refs);
4763 vec<ddr_p> dependence_relations;
4764 dependence_relations.create (nb_data_refs * nb_data_refs);
4765 vec<loop_p> loop_nest;
4766 loop_nest.create (3);
4768 /* Compute DDs on the whole function. */
4769 compute_data_dependences_for_loop (loop, false, &loop_nest, &datarefs,
4770 &dependence_relations);
4772 if (dump_file)
4774 dump_data_dependence_relations (dump_file, dependence_relations);
4775 fprintf (dump_file, "\n\n");
4777 if (dump_flags & TDF_DETAILS)
4778 dump_dist_dir_vectors (dump_file, dependence_relations);
4780 if (dump_flags & TDF_STATS)
4782 unsigned nb_top_relations = 0;
4783 unsigned nb_bot_relations = 0;
4784 unsigned nb_chrec_relations = 0;
4785 struct data_dependence_relation *ddr;
4787 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
4789 if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
4790 nb_top_relations++;
4792 else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
4793 nb_bot_relations++;
4795 else
4796 nb_chrec_relations++;
4799 gather_stats_on_scev_database ();
4803 loop_nest.release ();
4804 free_dependence_relations (dependence_relations);
4805 free_data_refs (datarefs);
4808 /* Computes all the data dependences and check that the results of
4809 several analyzers are the same. */
4811 void
4812 tree_check_data_deps (void)
4814 struct loop *loop_nest;
4816 FOR_EACH_LOOP (loop_nest, 0)
4817 analyze_all_data_dependences (loop_nest);
4820 /* Free the memory used by a data dependence relation DDR. */
4822 void
4823 free_dependence_relation (struct data_dependence_relation *ddr)
4825 if (ddr == NULL)
4826 return;
4828 if (DDR_SUBSCRIPTS (ddr).exists ())
4829 free_subscripts (DDR_SUBSCRIPTS (ddr));
4830 DDR_DIST_VECTS (ddr).release ();
4831 DDR_DIR_VECTS (ddr).release ();
4833 free (ddr);
4836 /* Free the memory used by the data dependence relations from
4837 DEPENDENCE_RELATIONS. */
4839 void
4840 free_dependence_relations (vec<ddr_p> dependence_relations)
4842 unsigned int i;
4843 struct data_dependence_relation *ddr;
4845 FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
4846 if (ddr)
4847 free_dependence_relation (ddr);
4849 dependence_relations.release ();
4852 /* Free the memory used by the data references from DATAREFS. */
4854 void
4855 free_data_refs (vec<data_reference_p> datarefs)
4857 unsigned int i;
4858 struct data_reference *dr;
4860 FOR_EACH_VEC_ELT (datarefs, i, dr)
4861 free_data_ref (dr);
4862 datarefs.release ();