* gcc.dg/store-motion-fgcse-sm.c (dg-final): Cleanup
[official-gcc.git] / gcc / reload.c
blob9ef2c89887a2341ab53596f06165a7807aeeeb11
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file contains subroutines used only from the file reload1.c.
21 It knows how to scan one insn for operands and values
22 that need to be copied into registers to make valid code.
23 It also finds other operands and values which are valid
24 but for which equivalent values in registers exist and
25 ought to be used instead.
27 Before processing the first insn of the function, call `init_reload'.
28 init_reload actually has to be called earlier anyway.
30 To scan an insn, call `find_reloads'. This does two things:
31 1. sets up tables describing which values must be reloaded
32 for this insn, and what kind of hard regs they must be reloaded into;
33 2. optionally record the locations where those values appear in
34 the data, so they can be replaced properly later.
35 This is done only if the second arg to `find_reloads' is nonzero.
37 The third arg to `find_reloads' specifies the number of levels
38 of indirect addressing supported by the machine. If it is zero,
39 indirect addressing is not valid. If it is one, (MEM (REG n))
40 is valid even if (REG n) did not get a hard register; if it is two,
41 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
42 hard register, and similarly for higher values.
44 Then you must choose the hard regs to reload those pseudo regs into,
45 and generate appropriate load insns before this insn and perhaps
46 also store insns after this insn. Set up the array `reload_reg_rtx'
47 to contain the REG rtx's for the registers you used. In some
48 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
49 for certain reloads. Then that tells you which register to use,
50 so you do not need to allocate one. But you still do need to add extra
51 instructions to copy the value into and out of that register.
53 Finally you must call `subst_reloads' to substitute the reload reg rtx's
54 into the locations already recorded.
56 NOTE SIDE EFFECTS:
58 find_reloads can alter the operands of the instruction it is called on.
60 1. Two operands of any sort may be interchanged, if they are in a
61 commutative instruction.
62 This happens only if find_reloads thinks the instruction will compile
63 better that way.
65 2. Pseudo-registers that are equivalent to constants are replaced
66 with those constants if they are not in hard registers.
68 1 happens every time find_reloads is called.
69 2 happens only when REPLACE is 1, which is only when
70 actually doing the reloads, not when just counting them.
72 Using a reload register for several reloads in one insn:
74 When an insn has reloads, it is considered as having three parts:
75 the input reloads, the insn itself after reloading, and the output reloads.
76 Reloads of values used in memory addresses are often needed for only one part.
78 When this is so, reload_when_needed records which part needs the reload.
79 Two reloads for different parts of the insn can share the same reload
80 register.
82 When a reload is used for addresses in multiple parts, or when it is
83 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
84 a register with any other reload. */
86 #define REG_OK_STRICT
88 /* We do not enable this with ENABLE_CHECKING, since it is awfully slow. */
89 #undef DEBUG_RELOAD
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "tm.h"
95 #include "rtl-error.h"
96 #include "tm_p.h"
97 #include "insn-config.h"
98 #include "expr.h"
99 #include "insn-codes.h"
100 #include "optabs.h"
101 #include "recog.h"
102 #include "dominance.h"
103 #include "cfg.h"
104 #include "predict.h"
105 #include "basic-block.h"
106 #include "df.h"
107 #include "reload.h"
108 #include "regs.h"
109 #include "addresses.h"
110 #include "hard-reg-set.h"
111 #include "flags.h"
112 #include "hashtab.h"
113 #include "hash-set.h"
114 #include "vec.h"
115 #include "machmode.h"
116 #include "input.h"
117 #include "function.h"
118 #include "params.h"
119 #include "target.h"
120 #include "ira.h"
122 /* True if X is a constant that can be forced into the constant pool.
123 MODE is the mode of the operand, or VOIDmode if not known. */
124 #define CONST_POOL_OK_P(MODE, X) \
125 ((MODE) != VOIDmode \
126 && CONSTANT_P (X) \
127 && GET_CODE (X) != HIGH \
128 && !targetm.cannot_force_const_mem (MODE, X))
130 /* True if C is a non-empty register class that has too few registers
131 to be safely used as a reload target class. */
133 static inline bool
134 small_register_class_p (reg_class_t rclass)
136 return (reg_class_size [(int) rclass] == 1
137 || (reg_class_size [(int) rclass] >= 1
138 && targetm.class_likely_spilled_p (rclass)));
142 /* All reloads of the current insn are recorded here. See reload.h for
143 comments. */
144 int n_reloads;
145 struct reload rld[MAX_RELOADS];
147 /* All the "earlyclobber" operands of the current insn
148 are recorded here. */
149 int n_earlyclobbers;
150 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
152 int reload_n_operands;
154 /* Replacing reloads.
156 If `replace_reloads' is nonzero, then as each reload is recorded
157 an entry is made for it in the table `replacements'.
158 Then later `subst_reloads' can look through that table and
159 perform all the replacements needed. */
161 /* Nonzero means record the places to replace. */
162 static int replace_reloads;
164 /* Each replacement is recorded with a structure like this. */
165 struct replacement
167 rtx *where; /* Location to store in */
168 int what; /* which reload this is for */
169 machine_mode mode; /* mode it must have */
172 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
174 /* Number of replacements currently recorded. */
175 static int n_replacements;
177 /* Used to track what is modified by an operand. */
178 struct decomposition
180 int reg_flag; /* Nonzero if referencing a register. */
181 int safe; /* Nonzero if this can't conflict with anything. */
182 rtx base; /* Base address for MEM. */
183 HOST_WIDE_INT start; /* Starting offset or register number. */
184 HOST_WIDE_INT end; /* Ending offset or register number. */
187 #ifdef SECONDARY_MEMORY_NEEDED
189 /* Save MEMs needed to copy from one class of registers to another. One MEM
190 is used per mode, but normally only one or two modes are ever used.
192 We keep two versions, before and after register elimination. The one
193 after register elimination is record separately for each operand. This
194 is done in case the address is not valid to be sure that we separately
195 reload each. */
197 static rtx secondary_memlocs[NUM_MACHINE_MODES];
198 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
199 static int secondary_memlocs_elim_used = 0;
200 #endif
202 /* The instruction we are doing reloads for;
203 so we can test whether a register dies in it. */
204 static rtx_insn *this_insn;
206 /* Nonzero if this instruction is a user-specified asm with operands. */
207 static int this_insn_is_asm;
209 /* If hard_regs_live_known is nonzero,
210 we can tell which hard regs are currently live,
211 at least enough to succeed in choosing dummy reloads. */
212 static int hard_regs_live_known;
214 /* Indexed by hard reg number,
215 element is nonnegative if hard reg has been spilled.
216 This vector is passed to `find_reloads' as an argument
217 and is not changed here. */
218 static short *static_reload_reg_p;
220 /* Set to 1 in subst_reg_equivs if it changes anything. */
221 static int subst_reg_equivs_changed;
223 /* On return from push_reload, holds the reload-number for the OUT
224 operand, which can be different for that from the input operand. */
225 static int output_reloadnum;
227 /* Compare two RTX's. */
228 #define MATCHES(x, y) \
229 (x == y || (x != 0 && (REG_P (x) \
230 ? REG_P (y) && REGNO (x) == REGNO (y) \
231 : rtx_equal_p (x, y) && ! side_effects_p (x))))
233 /* Indicates if two reloads purposes are for similar enough things that we
234 can merge their reloads. */
235 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
236 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
237 || ((when1) == (when2) && (op1) == (op2)) \
238 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
239 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
240 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
241 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
242 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
244 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
245 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
246 ((when1) != (when2) \
247 || ! ((op1) == (op2) \
248 || (when1) == RELOAD_FOR_INPUT \
249 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
250 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
252 /* If we are going to reload an address, compute the reload type to
253 use. */
254 #define ADDR_TYPE(type) \
255 ((type) == RELOAD_FOR_INPUT_ADDRESS \
256 ? RELOAD_FOR_INPADDR_ADDRESS \
257 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
258 ? RELOAD_FOR_OUTADDR_ADDRESS \
259 : (type)))
261 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
262 machine_mode, enum reload_type,
263 enum insn_code *, secondary_reload_info *);
264 static enum reg_class find_valid_class (machine_mode, machine_mode,
265 int, unsigned int);
266 static void push_replacement (rtx *, int, machine_mode);
267 static void dup_replacements (rtx *, rtx *);
268 static void combine_reloads (void);
269 static int find_reusable_reload (rtx *, rtx, enum reg_class,
270 enum reload_type, int, int);
271 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, machine_mode,
272 machine_mode, reg_class_t, int, int);
273 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
274 static struct decomposition decompose (rtx);
275 static int immune_p (rtx, rtx, struct decomposition);
276 static bool alternative_allows_const_pool_ref (rtx, const char *, int);
277 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int,
278 rtx_insn *, int *);
279 static rtx make_memloc (rtx, int);
280 static int maybe_memory_address_addr_space_p (machine_mode, rtx,
281 addr_space_t, rtx *);
282 static int find_reloads_address (machine_mode, rtx *, rtx, rtx *,
283 int, enum reload_type, int, rtx_insn *);
284 static rtx subst_reg_equivs (rtx, rtx_insn *);
285 static rtx subst_indexed_address (rtx);
286 static void update_auto_inc_notes (rtx_insn *, int, int);
287 static int find_reloads_address_1 (machine_mode, addr_space_t, rtx, int,
288 enum rtx_code, enum rtx_code, rtx *,
289 int, enum reload_type,int, rtx_insn *);
290 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
291 machine_mode, int,
292 enum reload_type, int);
293 static rtx find_reloads_subreg_address (rtx, int, enum reload_type,
294 int, rtx_insn *, int *);
295 static void copy_replacements_1 (rtx *, rtx *, int);
296 static int find_inc_amount (rtx, rtx);
297 static int refers_to_mem_for_reload_p (rtx);
298 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
299 rtx, rtx *);
301 /* Add NEW to reg_equiv_alt_mem_list[REGNO] if it's not present in the
302 list yet. */
304 static void
305 push_reg_equiv_alt_mem (int regno, rtx mem)
307 rtx it;
309 for (it = reg_equiv_alt_mem_list (regno); it; it = XEXP (it, 1))
310 if (rtx_equal_p (XEXP (it, 0), mem))
311 return;
313 reg_equiv_alt_mem_list (regno)
314 = alloc_EXPR_LIST (REG_EQUIV, mem,
315 reg_equiv_alt_mem_list (regno));
318 /* Determine if any secondary reloads are needed for loading (if IN_P is
319 nonzero) or storing (if IN_P is zero) X to or from a reload register of
320 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
321 are needed, push them.
323 Return the reload number of the secondary reload we made, or -1 if
324 we didn't need one. *PICODE is set to the insn_code to use if we do
325 need a secondary reload. */
327 static int
328 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
329 enum reg_class reload_class,
330 machine_mode reload_mode, enum reload_type type,
331 enum insn_code *picode, secondary_reload_info *prev_sri)
333 enum reg_class rclass = NO_REGS;
334 enum reg_class scratch_class;
335 machine_mode mode = reload_mode;
336 enum insn_code icode = CODE_FOR_nothing;
337 enum insn_code t_icode = CODE_FOR_nothing;
338 enum reload_type secondary_type;
339 int s_reload, t_reload = -1;
340 const char *scratch_constraint;
341 secondary_reload_info sri;
343 if (type == RELOAD_FOR_INPUT_ADDRESS
344 || type == RELOAD_FOR_OUTPUT_ADDRESS
345 || type == RELOAD_FOR_INPADDR_ADDRESS
346 || type == RELOAD_FOR_OUTADDR_ADDRESS)
347 secondary_type = type;
348 else
349 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
351 *picode = CODE_FOR_nothing;
353 /* If X is a paradoxical SUBREG, use the inner value to determine both the
354 mode and object being reloaded. */
355 if (paradoxical_subreg_p (x))
357 x = SUBREG_REG (x);
358 reload_mode = GET_MODE (x);
361 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
362 is still a pseudo-register by now, it *must* have an equivalent MEM
363 but we don't want to assume that), use that equivalent when seeing if
364 a secondary reload is needed since whether or not a reload is needed
365 might be sensitive to the form of the MEM. */
367 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
368 && reg_equiv_mem (REGNO (x)))
369 x = reg_equiv_mem (REGNO (x));
371 sri.icode = CODE_FOR_nothing;
372 sri.prev_sri = prev_sri;
373 rclass = (enum reg_class) targetm.secondary_reload (in_p, x, reload_class,
374 reload_mode, &sri);
375 icode = (enum insn_code) sri.icode;
377 /* If we don't need any secondary registers, done. */
378 if (rclass == NO_REGS && icode == CODE_FOR_nothing)
379 return -1;
381 if (rclass != NO_REGS)
382 t_reload = push_secondary_reload (in_p, x, opnum, optional, rclass,
383 reload_mode, type, &t_icode, &sri);
385 /* If we will be using an insn, the secondary reload is for a
386 scratch register. */
388 if (icode != CODE_FOR_nothing)
390 /* If IN_P is nonzero, the reload register will be the output in
391 operand 0. If IN_P is zero, the reload register will be the input
392 in operand 1. Outputs should have an initial "=", which we must
393 skip. */
395 /* ??? It would be useful to be able to handle only two, or more than
396 three, operands, but for now we can only handle the case of having
397 exactly three: output, input and one temp/scratch. */
398 gcc_assert (insn_data[(int) icode].n_operands == 3);
400 /* ??? We currently have no way to represent a reload that needs
401 an icode to reload from an intermediate tertiary reload register.
402 We should probably have a new field in struct reload to tag a
403 chain of scratch operand reloads onto. */
404 gcc_assert (rclass == NO_REGS);
406 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
407 gcc_assert (*scratch_constraint == '=');
408 scratch_constraint++;
409 if (*scratch_constraint == '&')
410 scratch_constraint++;
411 scratch_class = (reg_class_for_constraint
412 (lookup_constraint (scratch_constraint)));
414 rclass = scratch_class;
415 mode = insn_data[(int) icode].operand[2].mode;
418 /* This case isn't valid, so fail. Reload is allowed to use the same
419 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
420 in the case of a secondary register, we actually need two different
421 registers for correct code. We fail here to prevent the possibility of
422 silently generating incorrect code later.
424 The convention is that secondary input reloads are valid only if the
425 secondary_class is different from class. If you have such a case, you
426 can not use secondary reloads, you must work around the problem some
427 other way.
429 Allow this when a reload_in/out pattern is being used. I.e. assume
430 that the generated code handles this case. */
432 gcc_assert (!in_p || rclass != reload_class || icode != CODE_FOR_nothing
433 || t_icode != CODE_FOR_nothing);
435 /* See if we can reuse an existing secondary reload. */
436 for (s_reload = 0; s_reload < n_reloads; s_reload++)
437 if (rld[s_reload].secondary_p
438 && (reg_class_subset_p (rclass, rld[s_reload].rclass)
439 || reg_class_subset_p (rld[s_reload].rclass, rclass))
440 && ((in_p && rld[s_reload].inmode == mode)
441 || (! in_p && rld[s_reload].outmode == mode))
442 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
443 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
444 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
445 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
446 && (small_register_class_p (rclass)
447 || targetm.small_register_classes_for_mode_p (VOIDmode))
448 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
449 opnum, rld[s_reload].opnum))
451 if (in_p)
452 rld[s_reload].inmode = mode;
453 if (! in_p)
454 rld[s_reload].outmode = mode;
456 if (reg_class_subset_p (rclass, rld[s_reload].rclass))
457 rld[s_reload].rclass = rclass;
459 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
460 rld[s_reload].optional &= optional;
461 rld[s_reload].secondary_p = 1;
462 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
463 opnum, rld[s_reload].opnum))
464 rld[s_reload].when_needed = RELOAD_OTHER;
466 break;
469 if (s_reload == n_reloads)
471 #ifdef SECONDARY_MEMORY_NEEDED
472 /* If we need a memory location to copy between the two reload regs,
473 set it up now. Note that we do the input case before making
474 the reload and the output case after. This is due to the
475 way reloads are output. */
477 if (in_p && icode == CODE_FOR_nothing
478 && SECONDARY_MEMORY_NEEDED (rclass, reload_class, mode))
480 get_secondary_mem (x, reload_mode, opnum, type);
482 /* We may have just added new reloads. Make sure we add
483 the new reload at the end. */
484 s_reload = n_reloads;
486 #endif
488 /* We need to make a new secondary reload for this register class. */
489 rld[s_reload].in = rld[s_reload].out = 0;
490 rld[s_reload].rclass = rclass;
492 rld[s_reload].inmode = in_p ? mode : VOIDmode;
493 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
494 rld[s_reload].reg_rtx = 0;
495 rld[s_reload].optional = optional;
496 rld[s_reload].inc = 0;
497 /* Maybe we could combine these, but it seems too tricky. */
498 rld[s_reload].nocombine = 1;
499 rld[s_reload].in_reg = 0;
500 rld[s_reload].out_reg = 0;
501 rld[s_reload].opnum = opnum;
502 rld[s_reload].when_needed = secondary_type;
503 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
504 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
505 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
506 rld[s_reload].secondary_out_icode
507 = ! in_p ? t_icode : CODE_FOR_nothing;
508 rld[s_reload].secondary_p = 1;
510 n_reloads++;
512 #ifdef SECONDARY_MEMORY_NEEDED
513 if (! in_p && icode == CODE_FOR_nothing
514 && SECONDARY_MEMORY_NEEDED (reload_class, rclass, mode))
515 get_secondary_mem (x, mode, opnum, type);
516 #endif
519 *picode = icode;
520 return s_reload;
523 /* If a secondary reload is needed, return its class. If both an intermediate
524 register and a scratch register is needed, we return the class of the
525 intermediate register. */
526 reg_class_t
527 secondary_reload_class (bool in_p, reg_class_t rclass, machine_mode mode,
528 rtx x)
530 enum insn_code icode;
531 secondary_reload_info sri;
533 sri.icode = CODE_FOR_nothing;
534 sri.prev_sri = NULL;
535 rclass
536 = (enum reg_class) targetm.secondary_reload (in_p, x, rclass, mode, &sri);
537 icode = (enum insn_code) sri.icode;
539 /* If there are no secondary reloads at all, we return NO_REGS.
540 If an intermediate register is needed, we return its class. */
541 if (icode == CODE_FOR_nothing || rclass != NO_REGS)
542 return rclass;
544 /* No intermediate register is needed, but we have a special reload
545 pattern, which we assume for now needs a scratch register. */
546 return scratch_reload_class (icode);
549 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
550 three operands, verify that operand 2 is an output operand, and return
551 its register class.
552 ??? We'd like to be able to handle any pattern with at least 2 operands,
553 for zero or more scratch registers, but that needs more infrastructure. */
554 enum reg_class
555 scratch_reload_class (enum insn_code icode)
557 const char *scratch_constraint;
558 enum reg_class rclass;
560 gcc_assert (insn_data[(int) icode].n_operands == 3);
561 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
562 gcc_assert (*scratch_constraint == '=');
563 scratch_constraint++;
564 if (*scratch_constraint == '&')
565 scratch_constraint++;
566 rclass = reg_class_for_constraint (lookup_constraint (scratch_constraint));
567 gcc_assert (rclass != NO_REGS);
568 return rclass;
571 #ifdef SECONDARY_MEMORY_NEEDED
573 /* Return a memory location that will be used to copy X in mode MODE.
574 If we haven't already made a location for this mode in this insn,
575 call find_reloads_address on the location being returned. */
578 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, machine_mode mode,
579 int opnum, enum reload_type type)
581 rtx loc;
582 int mem_valid;
584 /* By default, if MODE is narrower than a word, widen it to a word.
585 This is required because most machines that require these memory
586 locations do not support short load and stores from all registers
587 (e.g., FP registers). */
589 #ifdef SECONDARY_MEMORY_NEEDED_MODE
590 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
591 #else
592 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
593 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
594 #endif
596 /* If we already have made a MEM for this operand in MODE, return it. */
597 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
598 return secondary_memlocs_elim[(int) mode][opnum];
600 /* If this is the first time we've tried to get a MEM for this mode,
601 allocate a new one. `something_changed' in reload will get set
602 by noticing that the frame size has changed. */
604 if (secondary_memlocs[(int) mode] == 0)
606 #ifdef SECONDARY_MEMORY_NEEDED_RTX
607 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
608 #else
609 secondary_memlocs[(int) mode]
610 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
611 #endif
614 /* Get a version of the address doing any eliminations needed. If that
615 didn't give us a new MEM, make a new one if it isn't valid. */
617 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
618 mem_valid = strict_memory_address_addr_space_p (mode, XEXP (loc, 0),
619 MEM_ADDR_SPACE (loc));
621 if (! mem_valid && loc == secondary_memlocs[(int) mode])
622 loc = copy_rtx (loc);
624 /* The only time the call below will do anything is if the stack
625 offset is too large. In that case IND_LEVELS doesn't matter, so we
626 can just pass a zero. Adjust the type to be the address of the
627 corresponding object. If the address was valid, save the eliminated
628 address. If it wasn't valid, we need to make a reload each time, so
629 don't save it. */
631 if (! mem_valid)
633 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
634 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
635 : RELOAD_OTHER);
637 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
638 opnum, type, 0, 0);
641 secondary_memlocs_elim[(int) mode][opnum] = loc;
642 if (secondary_memlocs_elim_used <= (int)mode)
643 secondary_memlocs_elim_used = (int)mode + 1;
644 return loc;
647 /* Clear any secondary memory locations we've made. */
649 void
650 clear_secondary_mem (void)
652 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
654 #endif /* SECONDARY_MEMORY_NEEDED */
657 /* Find the largest class which has at least one register valid in
658 mode INNER, and which for every such register, that register number
659 plus N is also valid in OUTER (if in range) and is cheap to move
660 into REGNO. Such a class must exist. */
662 static enum reg_class
663 find_valid_class (machine_mode outer ATTRIBUTE_UNUSED,
664 machine_mode inner ATTRIBUTE_UNUSED, int n,
665 unsigned int dest_regno ATTRIBUTE_UNUSED)
667 int best_cost = -1;
668 int rclass;
669 int regno;
670 enum reg_class best_class = NO_REGS;
671 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
672 unsigned int best_size = 0;
673 int cost;
675 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
677 int bad = 0;
678 int good = 0;
679 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
680 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno))
682 if (HARD_REGNO_MODE_OK (regno, inner))
684 good = 1;
685 if (TEST_HARD_REG_BIT (reg_class_contents[rclass], regno + n)
686 && ! HARD_REGNO_MODE_OK (regno + n, outer))
687 bad = 1;
691 if (bad || !good)
692 continue;
693 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
695 if ((reg_class_size[rclass] > best_size
696 && (best_cost < 0 || best_cost >= cost))
697 || best_cost > cost)
699 best_class = (enum reg_class) rclass;
700 best_size = reg_class_size[rclass];
701 best_cost = register_move_cost (outer, (enum reg_class) rclass,
702 dest_class);
706 gcc_assert (best_size != 0);
708 return best_class;
711 /* We are trying to reload a subreg of something that is not a register.
712 Find the largest class which contains only registers valid in
713 mode MODE. OUTER is the mode of the subreg, DEST_CLASS the class in
714 which we would eventually like to obtain the object. */
716 static enum reg_class
717 find_valid_class_1 (machine_mode outer ATTRIBUTE_UNUSED,
718 machine_mode mode ATTRIBUTE_UNUSED,
719 enum reg_class dest_class ATTRIBUTE_UNUSED)
721 int best_cost = -1;
722 int rclass;
723 int regno;
724 enum reg_class best_class = NO_REGS;
725 unsigned int best_size = 0;
726 int cost;
728 for (rclass = 1; rclass < N_REG_CLASSES; rclass++)
730 int bad = 0;
731 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && !bad; regno++)
733 if (in_hard_reg_set_p (reg_class_contents[rclass], mode, regno)
734 && !HARD_REGNO_MODE_OK (regno, mode))
735 bad = 1;
738 if (bad)
739 continue;
741 cost = register_move_cost (outer, (enum reg_class) rclass, dest_class);
743 if ((reg_class_size[rclass] > best_size
744 && (best_cost < 0 || best_cost >= cost))
745 || best_cost > cost)
747 best_class = (enum reg_class) rclass;
748 best_size = reg_class_size[rclass];
749 best_cost = register_move_cost (outer, (enum reg_class) rclass,
750 dest_class);
754 gcc_assert (best_size != 0);
756 #ifdef LIMIT_RELOAD_CLASS
757 best_class = LIMIT_RELOAD_CLASS (mode, best_class);
758 #endif
759 return best_class;
762 /* Return the number of a previously made reload that can be combined with
763 a new one, or n_reloads if none of the existing reloads can be used.
764 OUT, RCLASS, TYPE and OPNUM are the same arguments as passed to
765 push_reload, they determine the kind of the new reload that we try to
766 combine. P_IN points to the corresponding value of IN, which can be
767 modified by this function.
768 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
770 static int
771 find_reusable_reload (rtx *p_in, rtx out, enum reg_class rclass,
772 enum reload_type type, int opnum, int dont_share)
774 rtx in = *p_in;
775 int i;
776 /* We can't merge two reloads if the output of either one is
777 earlyclobbered. */
779 if (earlyclobber_operand_p (out))
780 return n_reloads;
782 /* We can use an existing reload if the class is right
783 and at least one of IN and OUT is a match
784 and the other is at worst neutral.
785 (A zero compared against anything is neutral.)
787 For targets with small register classes, don't use existing reloads
788 unless they are for the same thing since that can cause us to need
789 more reload registers than we otherwise would. */
791 for (i = 0; i < n_reloads; i++)
792 if ((reg_class_subset_p (rclass, rld[i].rclass)
793 || reg_class_subset_p (rld[i].rclass, rclass))
794 /* If the existing reload has a register, it must fit our class. */
795 && (rld[i].reg_rtx == 0
796 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
797 true_regnum (rld[i].reg_rtx)))
798 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
799 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
800 || (out != 0 && MATCHES (rld[i].out, out)
801 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
802 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
803 && (small_register_class_p (rclass)
804 || targetm.small_register_classes_for_mode_p (VOIDmode))
805 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
806 return i;
808 /* Reloading a plain reg for input can match a reload to postincrement
809 that reg, since the postincrement's value is the right value.
810 Likewise, it can match a preincrement reload, since we regard
811 the preincrementation as happening before any ref in this insn
812 to that register. */
813 for (i = 0; i < n_reloads; i++)
814 if ((reg_class_subset_p (rclass, rld[i].rclass)
815 || reg_class_subset_p (rld[i].rclass, rclass))
816 /* If the existing reload has a register, it must fit our
817 class. */
818 && (rld[i].reg_rtx == 0
819 || TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
820 true_regnum (rld[i].reg_rtx)))
821 && out == 0 && rld[i].out == 0 && rld[i].in != 0
822 && ((REG_P (in)
823 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
824 && MATCHES (XEXP (rld[i].in, 0), in))
825 || (REG_P (rld[i].in)
826 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
827 && MATCHES (XEXP (in, 0), rld[i].in)))
828 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
829 && (small_register_class_p (rclass)
830 || targetm.small_register_classes_for_mode_p (VOIDmode))
831 && MERGABLE_RELOADS (type, rld[i].when_needed,
832 opnum, rld[i].opnum))
834 /* Make sure reload_in ultimately has the increment,
835 not the plain register. */
836 if (REG_P (in))
837 *p_in = rld[i].in;
838 return i;
840 return n_reloads;
843 /* Return true if X is a SUBREG that will need reloading of its SUBREG_REG
844 expression. MODE is the mode that X will be used in. OUTPUT is true if
845 the function is invoked for the output part of an enclosing reload. */
847 static bool
848 reload_inner_reg_of_subreg (rtx x, machine_mode mode, bool output)
850 rtx inner;
852 /* Only SUBREGs are problematical. */
853 if (GET_CODE (x) != SUBREG)
854 return false;
856 inner = SUBREG_REG (x);
858 /* If INNER is a constant or PLUS, then INNER will need reloading. */
859 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
860 return true;
862 /* If INNER is not a hard register, then INNER will not need reloading. */
863 if (!(REG_P (inner) && HARD_REGISTER_P (inner)))
864 return false;
866 /* If INNER is not ok for MODE, then INNER will need reloading. */
867 if (!HARD_REGNO_MODE_OK (subreg_regno (x), mode))
868 return true;
870 /* If this is for an output, and the outer part is a word or smaller,
871 INNER is larger than a word and the number of registers in INNER is
872 not the same as the number of words in INNER, then INNER will need
873 reloading (with an in-out reload). */
874 return (output
875 && GET_MODE_SIZE (mode) <= UNITS_PER_WORD
876 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
877 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
878 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
881 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
882 requiring an extra reload register. The caller has already found that
883 IN contains some reference to REGNO, so check that we can produce the
884 new value in a single step. E.g. if we have
885 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
886 instruction that adds one to a register, this should succeed.
887 However, if we have something like
888 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
889 needs to be loaded into a register first, we need a separate reload
890 register.
891 Such PLUS reloads are generated by find_reload_address_part.
892 The out-of-range PLUS expressions are usually introduced in the instruction
893 patterns by register elimination and substituting pseudos without a home
894 by their function-invariant equivalences. */
895 static int
896 can_reload_into (rtx in, int regno, machine_mode mode)
898 rtx dst;
899 rtx_insn *test_insn;
900 int r = 0;
901 struct recog_data_d save_recog_data;
903 /* For matching constraints, we often get notional input reloads where
904 we want to use the original register as the reload register. I.e.
905 technically this is a non-optional input-output reload, but IN is
906 already a valid register, and has been chosen as the reload register.
907 Speed this up, since it trivially works. */
908 if (REG_P (in))
909 return 1;
911 /* To test MEMs properly, we'd have to take into account all the reloads
912 that are already scheduled, which can become quite complicated.
913 And since we've already handled address reloads for this MEM, it
914 should always succeed anyway. */
915 if (MEM_P (in))
916 return 1;
918 /* If we can make a simple SET insn that does the job, everything should
919 be fine. */
920 dst = gen_rtx_REG (mode, regno);
921 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
922 save_recog_data = recog_data;
923 if (recog_memoized (test_insn) >= 0)
925 extract_insn (test_insn);
926 r = constrain_operands (1, get_enabled_alternatives (test_insn));
928 recog_data = save_recog_data;
929 return r;
932 /* Record one reload that needs to be performed.
933 IN is an rtx saying where the data are to be found before this instruction.
934 OUT says where they must be stored after the instruction.
935 (IN is zero for data not read, and OUT is zero for data not written.)
936 INLOC and OUTLOC point to the places in the instructions where
937 IN and OUT were found.
938 If IN and OUT are both nonzero, it means the same register must be used
939 to reload both IN and OUT.
941 RCLASS is a register class required for the reloaded data.
942 INMODE is the machine mode that the instruction requires
943 for the reg that replaces IN and OUTMODE is likewise for OUT.
945 If IN is zero, then OUT's location and mode should be passed as
946 INLOC and INMODE.
948 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
950 OPTIONAL nonzero means this reload does not need to be performed:
951 it can be discarded if that is more convenient.
953 OPNUM and TYPE say what the purpose of this reload is.
955 The return value is the reload-number for this reload.
957 If both IN and OUT are nonzero, in some rare cases we might
958 want to make two separate reloads. (Actually we never do this now.)
959 Therefore, the reload-number for OUT is stored in
960 output_reloadnum when we return; the return value applies to IN.
961 Usually (presently always), when IN and OUT are nonzero,
962 the two reload-numbers are equal, but the caller should be careful to
963 distinguish them. */
966 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
967 enum reg_class rclass, machine_mode inmode,
968 machine_mode outmode, int strict_low, int optional,
969 int opnum, enum reload_type type)
971 int i;
972 int dont_share = 0;
973 int dont_remove_subreg = 0;
974 #ifdef LIMIT_RELOAD_CLASS
975 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
976 #endif
977 int secondary_in_reload = -1, secondary_out_reload = -1;
978 enum insn_code secondary_in_icode = CODE_FOR_nothing;
979 enum insn_code secondary_out_icode = CODE_FOR_nothing;
980 enum reg_class subreg_in_class ATTRIBUTE_UNUSED;
981 subreg_in_class = NO_REGS;
983 /* INMODE and/or OUTMODE could be VOIDmode if no mode
984 has been specified for the operand. In that case,
985 use the operand's mode as the mode to reload. */
986 if (inmode == VOIDmode && in != 0)
987 inmode = GET_MODE (in);
988 if (outmode == VOIDmode && out != 0)
989 outmode = GET_MODE (out);
991 /* If find_reloads and friends until now missed to replace a pseudo
992 with a constant of reg_equiv_constant something went wrong
993 beforehand.
994 Note that it can't simply be done here if we missed it earlier
995 since the constant might need to be pushed into the literal pool
996 and the resulting memref would probably need further
997 reloading. */
998 if (in != 0 && REG_P (in))
1000 int regno = REGNO (in);
1002 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1003 || reg_renumber[regno] >= 0
1004 || reg_equiv_constant (regno) == NULL_RTX);
1007 /* reg_equiv_constant only contains constants which are obviously
1008 not appropriate as destination. So if we would need to replace
1009 the destination pseudo with a constant we are in real
1010 trouble. */
1011 if (out != 0 && REG_P (out))
1013 int regno = REGNO (out);
1015 gcc_assert (regno < FIRST_PSEUDO_REGISTER
1016 || reg_renumber[regno] >= 0
1017 || reg_equiv_constant (regno) == NULL_RTX);
1020 /* If we have a read-write operand with an address side-effect,
1021 change either IN or OUT so the side-effect happens only once. */
1022 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
1023 switch (GET_CODE (XEXP (in, 0)))
1025 case POST_INC: case POST_DEC: case POST_MODIFY:
1026 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
1027 break;
1029 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
1030 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
1031 break;
1033 default:
1034 break;
1037 /* If we are reloading a (SUBREG constant ...), really reload just the
1038 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
1039 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
1040 a pseudo and hence will become a MEM) with M1 wider than M2 and the
1041 register is a pseudo, also reload the inside expression.
1042 For machines that extend byte loads, do this for any SUBREG of a pseudo
1043 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
1044 M2 is an integral mode that gets extended when loaded.
1045 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1046 where either M1 is not valid for R or M2 is wider than a word but we
1047 only need one register to store an M2-sized quantity in R.
1048 (However, if OUT is nonzero, we need to reload the reg *and*
1049 the subreg, so do nothing here, and let following statement handle it.)
1051 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
1052 we can't handle it here because CONST_INT does not indicate a mode.
1054 Similarly, we must reload the inside expression if we have a
1055 STRICT_LOW_PART (presumably, in == out in this case).
1057 Also reload the inner expression if it does not require a secondary
1058 reload but the SUBREG does.
1060 Finally, reload the inner expression if it is a register that is in
1061 the class whose registers cannot be referenced in a different size
1062 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1063 cannot reload just the inside since we might end up with the wrong
1064 register class. But if it is inside a STRICT_LOW_PART, we have
1065 no choice, so we hope we do get the right register class there. */
1067 if (in != 0 && GET_CODE (in) == SUBREG
1068 && (subreg_lowpart_p (in) || strict_low)
1069 #ifdef CANNOT_CHANGE_MODE_CLASS
1070 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, rclass)
1071 #endif
1072 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (in))]
1073 && (CONSTANT_P (SUBREG_REG (in))
1074 || GET_CODE (SUBREG_REG (in)) == PLUS
1075 || strict_low
1076 || (((REG_P (SUBREG_REG (in))
1077 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1078 || MEM_P (SUBREG_REG (in)))
1079 && ((GET_MODE_PRECISION (inmode)
1080 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1081 #ifdef LOAD_EXTEND_OP
1082 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1083 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1084 <= UNITS_PER_WORD)
1085 && (GET_MODE_PRECISION (inmode)
1086 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1087 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1088 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
1089 #endif
1090 #ifdef WORD_REGISTER_OPERATIONS
1091 || ((GET_MODE_PRECISION (inmode)
1092 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (in))))
1093 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1094 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1095 / UNITS_PER_WORD)))
1096 #endif
1098 || (REG_P (SUBREG_REG (in))
1099 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1100 /* The case where out is nonzero
1101 is handled differently in the following statement. */
1102 && (out == 0 || subreg_lowpart_p (in))
1103 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1104 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1105 > UNITS_PER_WORD)
1106 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1107 / UNITS_PER_WORD)
1108 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1109 [GET_MODE (SUBREG_REG (in))]))
1110 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1111 || (secondary_reload_class (1, rclass, inmode, in) != NO_REGS
1112 && (secondary_reload_class (1, rclass, GET_MODE (SUBREG_REG (in)),
1113 SUBREG_REG (in))
1114 == NO_REGS))
1115 #ifdef CANNOT_CHANGE_MODE_CLASS
1116 || (REG_P (SUBREG_REG (in))
1117 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1118 && REG_CANNOT_CHANGE_MODE_P
1119 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1120 #endif
1123 #ifdef LIMIT_RELOAD_CLASS
1124 in_subreg_loc = inloc;
1125 #endif
1126 inloc = &SUBREG_REG (in);
1127 in = *inloc;
1128 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1129 if (MEM_P (in))
1130 /* This is supposed to happen only for paradoxical subregs made by
1131 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1132 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1133 #endif
1134 inmode = GET_MODE (in);
1137 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1138 where M1 is not valid for R if it was not handled by the code above.
1140 Similar issue for (SUBREG constant ...) if it was not handled by the
1141 code above. This can happen if SUBREG_BYTE != 0.
1143 However, we must reload the inner reg *as well as* the subreg in
1144 that case. */
1146 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, false))
1148 if (REG_P (SUBREG_REG (in)))
1149 subreg_in_class
1150 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1151 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1152 GET_MODE (SUBREG_REG (in)),
1153 SUBREG_BYTE (in),
1154 GET_MODE (in)),
1155 REGNO (SUBREG_REG (in)));
1156 else if (GET_CODE (SUBREG_REG (in)) == SYMBOL_REF)
1157 subreg_in_class = find_valid_class_1 (inmode,
1158 GET_MODE (SUBREG_REG (in)),
1159 rclass);
1161 /* This relies on the fact that emit_reload_insns outputs the
1162 instructions for input reloads of type RELOAD_OTHER in the same
1163 order as the reloads. Thus if the outer reload is also of type
1164 RELOAD_OTHER, we are guaranteed that this inner reload will be
1165 output before the outer reload. */
1166 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1167 subreg_in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1168 dont_remove_subreg = 1;
1171 /* Similarly for paradoxical and problematical SUBREGs on the output.
1172 Note that there is no reason we need worry about the previous value
1173 of SUBREG_REG (out); even if wider than out, storing in a subreg is
1174 entitled to clobber it all (except in the case of a word mode subreg
1175 or of a STRICT_LOW_PART, in that latter case the constraint should
1176 label it input-output.) */
1177 if (out != 0 && GET_CODE (out) == SUBREG
1178 && (subreg_lowpart_p (out) || strict_low)
1179 #ifdef CANNOT_CHANGE_MODE_CLASS
1180 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, rclass)
1181 #endif
1182 && contains_reg_of_mode[(int) rclass][(int) GET_MODE (SUBREG_REG (out))]
1183 && (CONSTANT_P (SUBREG_REG (out))
1184 || strict_low
1185 || (((REG_P (SUBREG_REG (out))
1186 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1187 || MEM_P (SUBREG_REG (out)))
1188 && ((GET_MODE_PRECISION (outmode)
1189 > GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1190 #ifdef WORD_REGISTER_OPERATIONS
1191 || ((GET_MODE_PRECISION (outmode)
1192 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (out))))
1193 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1194 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1195 / UNITS_PER_WORD)))
1196 #endif
1198 || (REG_P (SUBREG_REG (out))
1199 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1200 /* The case of a word mode subreg
1201 is handled differently in the following statement. */
1202 && ! (GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1203 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1204 > UNITS_PER_WORD))
1205 && ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode))
1206 || (secondary_reload_class (0, rclass, outmode, out) != NO_REGS
1207 && (secondary_reload_class (0, rclass, GET_MODE (SUBREG_REG (out)),
1208 SUBREG_REG (out))
1209 == NO_REGS))
1210 #ifdef CANNOT_CHANGE_MODE_CLASS
1211 || (REG_P (SUBREG_REG (out))
1212 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1213 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1214 GET_MODE (SUBREG_REG (out)),
1215 outmode))
1216 #endif
1219 #ifdef LIMIT_RELOAD_CLASS
1220 out_subreg_loc = outloc;
1221 #endif
1222 outloc = &SUBREG_REG (out);
1223 out = *outloc;
1224 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1225 gcc_assert (!MEM_P (out)
1226 || GET_MODE_SIZE (GET_MODE (out))
1227 <= GET_MODE_SIZE (outmode));
1228 #endif
1229 outmode = GET_MODE (out);
1232 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R
1233 where either M1 is not valid for R or M2 is wider than a word but we
1234 only need one register to store an M2-sized quantity in R.
1236 However, we must reload the inner reg *as well as* the subreg in
1237 that case and the inner reg is an in-out reload. */
1239 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, true))
1241 enum reg_class in_out_class
1242 = find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1243 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1244 GET_MODE (SUBREG_REG (out)),
1245 SUBREG_BYTE (out),
1246 GET_MODE (out)),
1247 REGNO (SUBREG_REG (out)));
1249 /* This relies on the fact that emit_reload_insns outputs the
1250 instructions for output reloads of type RELOAD_OTHER in reverse
1251 order of the reloads. Thus if the outer reload is also of type
1252 RELOAD_OTHER, we are guaranteed that this inner reload will be
1253 output after the outer reload. */
1254 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1255 &SUBREG_REG (out), in_out_class, VOIDmode, VOIDmode,
1256 0, 0, opnum, RELOAD_OTHER);
1257 dont_remove_subreg = 1;
1260 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1261 if (in != 0 && out != 0 && MEM_P (out)
1262 && (REG_P (in) || MEM_P (in) || GET_CODE (in) == PLUS)
1263 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1264 dont_share = 1;
1266 /* If IN is a SUBREG of a hard register, make a new REG. This
1267 simplifies some of the cases below. */
1269 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1270 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1271 && ! dont_remove_subreg)
1272 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1274 /* Similarly for OUT. */
1275 if (out != 0 && GET_CODE (out) == SUBREG
1276 && REG_P (SUBREG_REG (out))
1277 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1278 && ! dont_remove_subreg)
1279 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1281 /* Narrow down the class of register wanted if that is
1282 desirable on this machine for efficiency. */
1284 reg_class_t preferred_class = rclass;
1286 if (in != 0)
1287 preferred_class = targetm.preferred_reload_class (in, rclass);
1289 /* Output reloads may need analogous treatment, different in detail. */
1290 if (out != 0)
1291 preferred_class
1292 = targetm.preferred_output_reload_class (out, preferred_class);
1294 /* Discard what the target said if we cannot do it. */
1295 if (preferred_class != NO_REGS
1296 || (optional && type == RELOAD_FOR_OUTPUT))
1297 rclass = (enum reg_class) preferred_class;
1300 /* Make sure we use a class that can handle the actual pseudo
1301 inside any subreg. For example, on the 386, QImode regs
1302 can appear within SImode subregs. Although GENERAL_REGS
1303 can handle SImode, QImode needs a smaller class. */
1304 #ifdef LIMIT_RELOAD_CLASS
1305 if (in_subreg_loc)
1306 rclass = LIMIT_RELOAD_CLASS (inmode, rclass);
1307 else if (in != 0 && GET_CODE (in) == SUBREG)
1308 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), rclass);
1310 if (out_subreg_loc)
1311 rclass = LIMIT_RELOAD_CLASS (outmode, rclass);
1312 if (out != 0 && GET_CODE (out) == SUBREG)
1313 rclass = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), rclass);
1314 #endif
1316 /* Verify that this class is at least possible for the mode that
1317 is specified. */
1318 if (this_insn_is_asm)
1320 machine_mode mode;
1321 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1322 mode = inmode;
1323 else
1324 mode = outmode;
1325 if (mode == VOIDmode)
1327 error_for_asm (this_insn, "cannot reload integer constant "
1328 "operand in %<asm%>");
1329 mode = word_mode;
1330 if (in != 0)
1331 inmode = word_mode;
1332 if (out != 0)
1333 outmode = word_mode;
1335 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1336 if (HARD_REGNO_MODE_OK (i, mode)
1337 && in_hard_reg_set_p (reg_class_contents[(int) rclass], mode, i))
1338 break;
1339 if (i == FIRST_PSEUDO_REGISTER)
1341 error_for_asm (this_insn, "impossible register constraint "
1342 "in %<asm%>");
1343 /* Avoid further trouble with this insn. */
1344 PATTERN (this_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
1345 /* We used to continue here setting class to ALL_REGS, but it triggers
1346 sanity check on i386 for:
1347 void foo(long double d)
1349 asm("" :: "a" (d));
1351 Returning zero here ought to be safe as we take care in
1352 find_reloads to not process the reloads when instruction was
1353 replaced by USE. */
1355 return 0;
1359 /* Optional output reloads are always OK even if we have no register class,
1360 since the function of these reloads is only to have spill_reg_store etc.
1361 set, so that the storing insn can be deleted later. */
1362 gcc_assert (rclass != NO_REGS
1363 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1365 i = find_reusable_reload (&in, out, rclass, type, opnum, dont_share);
1367 if (i == n_reloads)
1369 /* See if we need a secondary reload register to move between CLASS
1370 and IN or CLASS and OUT. Get the icode and push any required reloads
1371 needed for each of them if so. */
1373 if (in != 0)
1374 secondary_in_reload
1375 = push_secondary_reload (1, in, opnum, optional, rclass, inmode, type,
1376 &secondary_in_icode, NULL);
1377 if (out != 0 && GET_CODE (out) != SCRATCH)
1378 secondary_out_reload
1379 = push_secondary_reload (0, out, opnum, optional, rclass, outmode,
1380 type, &secondary_out_icode, NULL);
1382 /* We found no existing reload suitable for re-use.
1383 So add an additional reload. */
1385 #ifdef SECONDARY_MEMORY_NEEDED
1386 if (subreg_in_class == NO_REGS
1387 && in != 0
1388 && (REG_P (in)
1389 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1390 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER)
1391 subreg_in_class = REGNO_REG_CLASS (reg_or_subregno (in));
1392 /* If a memory location is needed for the copy, make one. */
1393 if (subreg_in_class != NO_REGS
1394 && SECONDARY_MEMORY_NEEDED (subreg_in_class, rclass, inmode))
1395 get_secondary_mem (in, inmode, opnum, type);
1396 #endif
1398 i = n_reloads;
1399 rld[i].in = in;
1400 rld[i].out = out;
1401 rld[i].rclass = rclass;
1402 rld[i].inmode = inmode;
1403 rld[i].outmode = outmode;
1404 rld[i].reg_rtx = 0;
1405 rld[i].optional = optional;
1406 rld[i].inc = 0;
1407 rld[i].nocombine = 0;
1408 rld[i].in_reg = inloc ? *inloc : 0;
1409 rld[i].out_reg = outloc ? *outloc : 0;
1410 rld[i].opnum = opnum;
1411 rld[i].when_needed = type;
1412 rld[i].secondary_in_reload = secondary_in_reload;
1413 rld[i].secondary_out_reload = secondary_out_reload;
1414 rld[i].secondary_in_icode = secondary_in_icode;
1415 rld[i].secondary_out_icode = secondary_out_icode;
1416 rld[i].secondary_p = 0;
1418 n_reloads++;
1420 #ifdef SECONDARY_MEMORY_NEEDED
1421 if (out != 0
1422 && (REG_P (out)
1423 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1424 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1425 && SECONDARY_MEMORY_NEEDED (rclass,
1426 REGNO_REG_CLASS (reg_or_subregno (out)),
1427 outmode))
1428 get_secondary_mem (out, outmode, opnum, type);
1429 #endif
1431 else
1433 /* We are reusing an existing reload,
1434 but we may have additional information for it.
1435 For example, we may now have both IN and OUT
1436 while the old one may have just one of them. */
1438 /* The modes can be different. If they are, we want to reload in
1439 the larger mode, so that the value is valid for both modes. */
1440 if (inmode != VOIDmode
1441 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1442 rld[i].inmode = inmode;
1443 if (outmode != VOIDmode
1444 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1445 rld[i].outmode = outmode;
1446 if (in != 0)
1448 rtx in_reg = inloc ? *inloc : 0;
1449 /* If we merge reloads for two distinct rtl expressions that
1450 are identical in content, there might be duplicate address
1451 reloads. Remove the extra set now, so that if we later find
1452 that we can inherit this reload, we can get rid of the
1453 address reloads altogether.
1455 Do not do this if both reloads are optional since the result
1456 would be an optional reload which could potentially leave
1457 unresolved address replacements.
1459 It is not sufficient to call transfer_replacements since
1460 choose_reload_regs will remove the replacements for address
1461 reloads of inherited reloads which results in the same
1462 problem. */
1463 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1464 && ! (rld[i].optional && optional))
1466 /* We must keep the address reload with the lower operand
1467 number alive. */
1468 if (opnum > rld[i].opnum)
1470 remove_address_replacements (in);
1471 in = rld[i].in;
1472 in_reg = rld[i].in_reg;
1474 else
1475 remove_address_replacements (rld[i].in);
1477 /* When emitting reloads we don't necessarily look at the in-
1478 and outmode, but also directly at the operands (in and out).
1479 So we can't simply overwrite them with whatever we have found
1480 for this (to-be-merged) reload, we have to "merge" that too.
1481 Reusing another reload already verified that we deal with the
1482 same operands, just possibly in different modes. So we
1483 overwrite the operands only when the new mode is larger.
1484 See also PR33613. */
1485 if (!rld[i].in
1486 || GET_MODE_SIZE (GET_MODE (in))
1487 > GET_MODE_SIZE (GET_MODE (rld[i].in)))
1488 rld[i].in = in;
1489 if (!rld[i].in_reg
1490 || (in_reg
1491 && GET_MODE_SIZE (GET_MODE (in_reg))
1492 > GET_MODE_SIZE (GET_MODE (rld[i].in_reg))))
1493 rld[i].in_reg = in_reg;
1495 if (out != 0)
1497 if (!rld[i].out
1498 || (out
1499 && GET_MODE_SIZE (GET_MODE (out))
1500 > GET_MODE_SIZE (GET_MODE (rld[i].out))))
1501 rld[i].out = out;
1502 if (outloc
1503 && (!rld[i].out_reg
1504 || GET_MODE_SIZE (GET_MODE (*outloc))
1505 > GET_MODE_SIZE (GET_MODE (rld[i].out_reg))))
1506 rld[i].out_reg = *outloc;
1508 if (reg_class_subset_p (rclass, rld[i].rclass))
1509 rld[i].rclass = rclass;
1510 rld[i].optional &= optional;
1511 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1512 opnum, rld[i].opnum))
1513 rld[i].when_needed = RELOAD_OTHER;
1514 rld[i].opnum = MIN (rld[i].opnum, opnum);
1517 /* If the ostensible rtx being reloaded differs from the rtx found
1518 in the location to substitute, this reload is not safe to combine
1519 because we cannot reliably tell whether it appears in the insn. */
1521 if (in != 0 && in != *inloc)
1522 rld[i].nocombine = 1;
1524 #if 0
1525 /* This was replaced by changes in find_reloads_address_1 and the new
1526 function inc_for_reload, which go with a new meaning of reload_inc. */
1528 /* If this is an IN/OUT reload in an insn that sets the CC,
1529 it must be for an autoincrement. It doesn't work to store
1530 the incremented value after the insn because that would clobber the CC.
1531 So we must do the increment of the value reloaded from,
1532 increment it, store it back, then decrement again. */
1533 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1535 out = 0;
1536 rld[i].out = 0;
1537 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1538 /* If we did not find a nonzero amount-to-increment-by,
1539 that contradicts the belief that IN is being incremented
1540 in an address in this insn. */
1541 gcc_assert (rld[i].inc != 0);
1543 #endif
1545 /* If we will replace IN and OUT with the reload-reg,
1546 record where they are located so that substitution need
1547 not do a tree walk. */
1549 if (replace_reloads)
1551 if (inloc != 0)
1553 struct replacement *r = &replacements[n_replacements++];
1554 r->what = i;
1555 r->where = inloc;
1556 r->mode = inmode;
1558 if (outloc != 0 && outloc != inloc)
1560 struct replacement *r = &replacements[n_replacements++];
1561 r->what = i;
1562 r->where = outloc;
1563 r->mode = outmode;
1567 /* If this reload is just being introduced and it has both
1568 an incoming quantity and an outgoing quantity that are
1569 supposed to be made to match, see if either one of the two
1570 can serve as the place to reload into.
1572 If one of them is acceptable, set rld[i].reg_rtx
1573 to that one. */
1575 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1577 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1578 inmode, outmode,
1579 rld[i].rclass, i,
1580 earlyclobber_operand_p (out));
1582 /* If the outgoing register already contains the same value
1583 as the incoming one, we can dispense with loading it.
1584 The easiest way to tell the caller that is to give a phony
1585 value for the incoming operand (same as outgoing one). */
1586 if (rld[i].reg_rtx == out
1587 && (REG_P (in) || CONSTANT_P (in))
1588 && 0 != find_equiv_reg (in, this_insn, NO_REGS, REGNO (out),
1589 static_reload_reg_p, i, inmode))
1590 rld[i].in = out;
1593 /* If this is an input reload and the operand contains a register that
1594 dies in this insn and is used nowhere else, see if it is the right class
1595 to be used for this reload. Use it if so. (This occurs most commonly
1596 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1597 this if it is also an output reload that mentions the register unless
1598 the output is a SUBREG that clobbers an entire register.
1600 Note that the operand might be one of the spill regs, if it is a
1601 pseudo reg and we are in a block where spilling has not taken place.
1602 But if there is no spilling in this block, that is OK.
1603 An explicitly used hard reg cannot be a spill reg. */
1605 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1607 rtx note;
1608 int regno;
1609 machine_mode rel_mode = inmode;
1611 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1612 rel_mode = outmode;
1614 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1615 if (REG_NOTE_KIND (note) == REG_DEAD
1616 && REG_P (XEXP (note, 0))
1617 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1618 && reg_mentioned_p (XEXP (note, 0), in)
1619 /* Check that a former pseudo is valid; see find_dummy_reload. */
1620 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1621 || (! bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1622 ORIGINAL_REGNO (XEXP (note, 0)))
1623 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1))
1624 && ! refers_to_regno_for_reload_p (regno,
1625 end_hard_regno (rel_mode,
1626 regno),
1627 PATTERN (this_insn), inloc)
1628 /* If this is also an output reload, IN cannot be used as
1629 the reload register if it is set in this insn unless IN
1630 is also OUT. */
1631 && (out == 0 || in == out
1632 || ! hard_reg_set_here_p (regno,
1633 end_hard_regno (rel_mode, regno),
1634 PATTERN (this_insn)))
1635 /* ??? Why is this code so different from the previous?
1636 Is there any simple coherent way to describe the two together?
1637 What's going on here. */
1638 && (in != out
1639 || (GET_CODE (in) == SUBREG
1640 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1641 / UNITS_PER_WORD)
1642 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1643 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1644 /* Make sure the operand fits in the reg that dies. */
1645 && (GET_MODE_SIZE (rel_mode)
1646 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1647 && HARD_REGNO_MODE_OK (regno, inmode)
1648 && HARD_REGNO_MODE_OK (regno, outmode))
1650 unsigned int offs;
1651 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1652 hard_regno_nregs[regno][outmode]);
1654 for (offs = 0; offs < nregs; offs++)
1655 if (fixed_regs[regno + offs]
1656 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
1657 regno + offs))
1658 break;
1660 if (offs == nregs
1661 && (! (refers_to_regno_for_reload_p
1662 (regno, end_hard_regno (inmode, regno), in, (rtx *) 0))
1663 || can_reload_into (in, regno, inmode)))
1665 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1666 break;
1671 if (out)
1672 output_reloadnum = i;
1674 return i;
1677 /* Record an additional place we must replace a value
1678 for which we have already recorded a reload.
1679 RELOADNUM is the value returned by push_reload
1680 when the reload was recorded.
1681 This is used in insn patterns that use match_dup. */
1683 static void
1684 push_replacement (rtx *loc, int reloadnum, machine_mode mode)
1686 if (replace_reloads)
1688 struct replacement *r = &replacements[n_replacements++];
1689 r->what = reloadnum;
1690 r->where = loc;
1691 r->mode = mode;
1695 /* Duplicate any replacement we have recorded to apply at
1696 location ORIG_LOC to also be performed at DUP_LOC.
1697 This is used in insn patterns that use match_dup. */
1699 static void
1700 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1702 int i, n = n_replacements;
1704 for (i = 0; i < n; i++)
1706 struct replacement *r = &replacements[i];
1707 if (r->where == orig_loc)
1708 push_replacement (dup_loc, r->what, r->mode);
1712 /* Transfer all replacements that used to be in reload FROM to be in
1713 reload TO. */
1715 void
1716 transfer_replacements (int to, int from)
1718 int i;
1720 for (i = 0; i < n_replacements; i++)
1721 if (replacements[i].what == from)
1722 replacements[i].what = to;
1725 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1726 or a subpart of it. If we have any replacements registered for IN_RTX,
1727 cancel the reloads that were supposed to load them.
1728 Return nonzero if we canceled any reloads. */
1730 remove_address_replacements (rtx in_rtx)
1732 int i, j;
1733 char reload_flags[MAX_RELOADS];
1734 int something_changed = 0;
1736 memset (reload_flags, 0, sizeof reload_flags);
1737 for (i = 0, j = 0; i < n_replacements; i++)
1739 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1740 reload_flags[replacements[i].what] |= 1;
1741 else
1743 replacements[j++] = replacements[i];
1744 reload_flags[replacements[i].what] |= 2;
1747 /* Note that the following store must be done before the recursive calls. */
1748 n_replacements = j;
1750 for (i = n_reloads - 1; i >= 0; i--)
1752 if (reload_flags[i] == 1)
1754 deallocate_reload_reg (i);
1755 remove_address_replacements (rld[i].in);
1756 rld[i].in = 0;
1757 something_changed = 1;
1760 return something_changed;
1763 /* If there is only one output reload, and it is not for an earlyclobber
1764 operand, try to combine it with a (logically unrelated) input reload
1765 to reduce the number of reload registers needed.
1767 This is safe if the input reload does not appear in
1768 the value being output-reloaded, because this implies
1769 it is not needed any more once the original insn completes.
1771 If that doesn't work, see we can use any of the registers that
1772 die in this insn as a reload register. We can if it is of the right
1773 class and does not appear in the value being output-reloaded. */
1775 static void
1776 combine_reloads (void)
1778 int i, regno;
1779 int output_reload = -1;
1780 int secondary_out = -1;
1781 rtx note;
1783 /* Find the output reload; return unless there is exactly one
1784 and that one is mandatory. */
1786 for (i = 0; i < n_reloads; i++)
1787 if (rld[i].out != 0)
1789 if (output_reload >= 0)
1790 return;
1791 output_reload = i;
1794 if (output_reload < 0 || rld[output_reload].optional)
1795 return;
1797 /* An input-output reload isn't combinable. */
1799 if (rld[output_reload].in != 0)
1800 return;
1802 /* If this reload is for an earlyclobber operand, we can't do anything. */
1803 if (earlyclobber_operand_p (rld[output_reload].out))
1804 return;
1806 /* If there is a reload for part of the address of this operand, we would
1807 need to change it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1808 its life to the point where doing this combine would not lower the
1809 number of spill registers needed. */
1810 for (i = 0; i < n_reloads; i++)
1811 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1812 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1813 && rld[i].opnum == rld[output_reload].opnum)
1814 return;
1816 /* Check each input reload; can we combine it? */
1818 for (i = 0; i < n_reloads; i++)
1819 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1820 /* Life span of this reload must not extend past main insn. */
1821 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1822 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1823 && rld[i].when_needed != RELOAD_OTHER
1824 && (ira_reg_class_max_nregs [(int)rld[i].rclass][(int) rld[i].inmode]
1825 == ira_reg_class_max_nregs [(int) rld[output_reload].rclass]
1826 [(int) rld[output_reload].outmode])
1827 && rld[i].inc == 0
1828 && rld[i].reg_rtx == 0
1829 #ifdef SECONDARY_MEMORY_NEEDED
1830 /* Don't combine two reloads with different secondary
1831 memory locations. */
1832 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1833 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1834 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1835 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1836 #endif
1837 && (targetm.small_register_classes_for_mode_p (VOIDmode)
1838 ? (rld[i].rclass == rld[output_reload].rclass)
1839 : (reg_class_subset_p (rld[i].rclass,
1840 rld[output_reload].rclass)
1841 || reg_class_subset_p (rld[output_reload].rclass,
1842 rld[i].rclass)))
1843 && (MATCHES (rld[i].in, rld[output_reload].out)
1844 /* Args reversed because the first arg seems to be
1845 the one that we imagine being modified
1846 while the second is the one that might be affected. */
1847 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1848 rld[i].in)
1849 /* However, if the input is a register that appears inside
1850 the output, then we also can't share.
1851 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1852 If the same reload reg is used for both reg 69 and the
1853 result to be stored in memory, then that result
1854 will clobber the address of the memory ref. */
1855 && ! (REG_P (rld[i].in)
1856 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1857 rld[output_reload].out))))
1858 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1859 rld[i].when_needed != RELOAD_FOR_INPUT)
1860 && (reg_class_size[(int) rld[i].rclass]
1861 || targetm.small_register_classes_for_mode_p (VOIDmode))
1862 /* We will allow making things slightly worse by combining an
1863 input and an output, but no worse than that. */
1864 && (rld[i].when_needed == RELOAD_FOR_INPUT
1865 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1867 int j;
1869 /* We have found a reload to combine with! */
1870 rld[i].out = rld[output_reload].out;
1871 rld[i].out_reg = rld[output_reload].out_reg;
1872 rld[i].outmode = rld[output_reload].outmode;
1873 /* Mark the old output reload as inoperative. */
1874 rld[output_reload].out = 0;
1875 /* The combined reload is needed for the entire insn. */
1876 rld[i].when_needed = RELOAD_OTHER;
1877 /* If the output reload had a secondary reload, copy it. */
1878 if (rld[output_reload].secondary_out_reload != -1)
1880 rld[i].secondary_out_reload
1881 = rld[output_reload].secondary_out_reload;
1882 rld[i].secondary_out_icode
1883 = rld[output_reload].secondary_out_icode;
1886 #ifdef SECONDARY_MEMORY_NEEDED
1887 /* Copy any secondary MEM. */
1888 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1889 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1890 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1891 #endif
1892 /* If required, minimize the register class. */
1893 if (reg_class_subset_p (rld[output_reload].rclass,
1894 rld[i].rclass))
1895 rld[i].rclass = rld[output_reload].rclass;
1897 /* Transfer all replacements from the old reload to the combined. */
1898 for (j = 0; j < n_replacements; j++)
1899 if (replacements[j].what == output_reload)
1900 replacements[j].what = i;
1902 return;
1905 /* If this insn has only one operand that is modified or written (assumed
1906 to be the first), it must be the one corresponding to this reload. It
1907 is safe to use anything that dies in this insn for that output provided
1908 that it does not occur in the output (we already know it isn't an
1909 earlyclobber. If this is an asm insn, give up. */
1911 if (INSN_CODE (this_insn) == -1)
1912 return;
1914 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1915 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1916 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1917 return;
1919 /* See if some hard register that dies in this insn and is not used in
1920 the output is the right class. Only works if the register we pick
1921 up can fully hold our output reload. */
1922 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1923 if (REG_NOTE_KIND (note) == REG_DEAD
1924 && REG_P (XEXP (note, 0))
1925 && !reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1926 rld[output_reload].out)
1927 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1928 && HARD_REGNO_MODE_OK (regno, rld[output_reload].outmode)
1929 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].rclass],
1930 regno)
1931 && (hard_regno_nregs[regno][rld[output_reload].outmode]
1932 <= hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))])
1933 /* Ensure that a secondary or tertiary reload for this output
1934 won't want this register. */
1935 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1936 || (!(TEST_HARD_REG_BIT
1937 (reg_class_contents[(int) rld[secondary_out].rclass], regno))
1938 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1939 || !(TEST_HARD_REG_BIT
1940 (reg_class_contents[(int) rld[secondary_out].rclass],
1941 regno)))))
1942 && !fixed_regs[regno]
1943 /* Check that a former pseudo is valid; see find_dummy_reload. */
1944 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1945 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
1946 ORIGINAL_REGNO (XEXP (note, 0)))
1947 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] == 1)))
1949 rld[output_reload].reg_rtx
1950 = gen_rtx_REG (rld[output_reload].outmode, regno);
1951 return;
1955 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1956 See if one of IN and OUT is a register that may be used;
1957 this is desirable since a spill-register won't be needed.
1958 If so, return the register rtx that proves acceptable.
1960 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1961 RCLASS is the register class required for the reload.
1963 If FOR_REAL is >= 0, it is the number of the reload,
1964 and in some cases when it can be discovered that OUT doesn't need
1965 to be computed, clear out rld[FOR_REAL].out.
1967 If FOR_REAL is -1, this should not be done, because this call
1968 is just to see if a register can be found, not to find and install it.
1970 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1971 puts an additional constraint on being able to use IN for OUT since
1972 IN must not appear elsewhere in the insn (it is assumed that IN itself
1973 is safe from the earlyclobber). */
1975 static rtx
1976 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1977 machine_mode inmode, machine_mode outmode,
1978 reg_class_t rclass, int for_real, int earlyclobber)
1980 rtx in = real_in;
1981 rtx out = real_out;
1982 int in_offset = 0;
1983 int out_offset = 0;
1984 rtx value = 0;
1986 /* If operands exceed a word, we can't use either of them
1987 unless they have the same size. */
1988 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1989 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1990 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1991 return 0;
1993 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1994 respectively refers to a hard register. */
1996 /* Find the inside of any subregs. */
1997 while (GET_CODE (out) == SUBREG)
1999 if (REG_P (SUBREG_REG (out))
2000 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
2001 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
2002 GET_MODE (SUBREG_REG (out)),
2003 SUBREG_BYTE (out),
2004 GET_MODE (out));
2005 out = SUBREG_REG (out);
2007 while (GET_CODE (in) == SUBREG)
2009 if (REG_P (SUBREG_REG (in))
2010 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
2011 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
2012 GET_MODE (SUBREG_REG (in)),
2013 SUBREG_BYTE (in),
2014 GET_MODE (in));
2015 in = SUBREG_REG (in);
2018 /* Narrow down the reg class, the same way push_reload will;
2019 otherwise we might find a dummy now, but push_reload won't. */
2021 reg_class_t preferred_class = targetm.preferred_reload_class (in, rclass);
2022 if (preferred_class != NO_REGS)
2023 rclass = (enum reg_class) preferred_class;
2026 /* See if OUT will do. */
2027 if (REG_P (out)
2028 && REGNO (out) < FIRST_PSEUDO_REGISTER)
2030 unsigned int regno = REGNO (out) + out_offset;
2031 unsigned int nwords = hard_regno_nregs[regno][outmode];
2032 rtx saved_rtx;
2034 /* When we consider whether the insn uses OUT,
2035 ignore references within IN. They don't prevent us
2036 from copying IN into OUT, because those refs would
2037 move into the insn that reloads IN.
2039 However, we only ignore IN in its role as this reload.
2040 If the insn uses IN elsewhere and it contains OUT,
2041 that counts. We can't be sure it's the "same" operand
2042 so it might not go through this reload.
2044 We also need to avoid using OUT if it, or part of it, is a
2045 fixed register. Modifying such registers, even transiently,
2046 may have undefined effects on the machine, such as modifying
2047 the stack pointer. */
2048 saved_rtx = *inloc;
2049 *inloc = const0_rtx;
2051 if (regno < FIRST_PSEUDO_REGISTER
2052 && HARD_REGNO_MODE_OK (regno, outmode)
2053 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
2054 PATTERN (this_insn), outloc))
2056 unsigned int i;
2058 for (i = 0; i < nwords; i++)
2059 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2060 regno + i)
2061 || fixed_regs[regno + i])
2062 break;
2064 if (i == nwords)
2066 if (REG_P (real_out))
2067 value = real_out;
2068 else
2069 value = gen_rtx_REG (outmode, regno);
2073 *inloc = saved_rtx;
2076 /* Consider using IN if OUT was not acceptable
2077 or if OUT dies in this insn (like the quotient in a divmod insn).
2078 We can't use IN unless it is dies in this insn,
2079 which means we must know accurately which hard regs are live.
2080 Also, the result can't go in IN if IN is used within OUT,
2081 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
2082 if (hard_regs_live_known
2083 && REG_P (in)
2084 && REGNO (in) < FIRST_PSEUDO_REGISTER
2085 && (value == 0
2086 || find_reg_note (this_insn, REG_UNUSED, real_out))
2087 && find_reg_note (this_insn, REG_DEAD, real_in)
2088 && !fixed_regs[REGNO (in)]
2089 && HARD_REGNO_MODE_OK (REGNO (in),
2090 /* The only case where out and real_out might
2091 have different modes is where real_out
2092 is a subreg, and in that case, out
2093 has a real mode. */
2094 (GET_MODE (out) != VOIDmode
2095 ? GET_MODE (out) : outmode))
2096 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
2097 /* However only do this if we can be sure that this input
2098 operand doesn't correspond with an uninitialized pseudo.
2099 global can assign some hardreg to it that is the same as
2100 the one assigned to a different, also live pseudo (as it
2101 can ignore the conflict). We must never introduce writes
2102 to such hardregs, as they would clobber the other live
2103 pseudo. See PR 20973. */
2104 || (!bitmap_bit_p (DF_LR_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
2105 ORIGINAL_REGNO (in))
2106 /* Similarly, only do this if we can be sure that the death
2107 note is still valid. global can assign some hardreg to
2108 the pseudo referenced in the note and simultaneously a
2109 subword of this hardreg to a different, also live pseudo,
2110 because only another subword of the hardreg is actually
2111 used in the insn. This cannot happen if the pseudo has
2112 been assigned exactly one hardreg. See PR 33732. */
2113 && hard_regno_nregs[REGNO (in)][GET_MODE (in)] == 1)))
2115 unsigned int regno = REGNO (in) + in_offset;
2116 unsigned int nwords = hard_regno_nregs[regno][inmode];
2118 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
2119 && ! hard_reg_set_here_p (regno, regno + nwords,
2120 PATTERN (this_insn))
2121 && (! earlyclobber
2122 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2123 PATTERN (this_insn), inloc)))
2125 unsigned int i;
2127 for (i = 0; i < nwords; i++)
2128 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) rclass],
2129 regno + i))
2130 break;
2132 if (i == nwords)
2134 /* If we were going to use OUT as the reload reg
2135 and changed our mind, it means OUT is a dummy that
2136 dies here. So don't bother copying value to it. */
2137 if (for_real >= 0 && value == real_out)
2138 rld[for_real].out = 0;
2139 if (REG_P (real_in))
2140 value = real_in;
2141 else
2142 value = gen_rtx_REG (inmode, regno);
2147 return value;
2150 /* This page contains subroutines used mainly for determining
2151 whether the IN or an OUT of a reload can serve as the
2152 reload register. */
2154 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2157 earlyclobber_operand_p (rtx x)
2159 int i;
2161 for (i = 0; i < n_earlyclobbers; i++)
2162 if (reload_earlyclobbers[i] == x)
2163 return 1;
2165 return 0;
2168 /* Return 1 if expression X alters a hard reg in the range
2169 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2170 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2171 X should be the body of an instruction. */
2173 static int
2174 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2176 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2178 rtx op0 = SET_DEST (x);
2180 while (GET_CODE (op0) == SUBREG)
2181 op0 = SUBREG_REG (op0);
2182 if (REG_P (op0))
2184 unsigned int r = REGNO (op0);
2186 /* See if this reg overlaps range under consideration. */
2187 if (r < end_regno
2188 && end_hard_regno (GET_MODE (op0), r) > beg_regno)
2189 return 1;
2192 else if (GET_CODE (x) == PARALLEL)
2194 int i = XVECLEN (x, 0) - 1;
2196 for (; i >= 0; i--)
2197 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2198 return 1;
2201 return 0;
2204 /* Return 1 if ADDR is a valid memory address for mode MODE
2205 in address space AS, and check that each pseudo reg has the
2206 proper kind of hard reg. */
2209 strict_memory_address_addr_space_p (machine_mode mode ATTRIBUTE_UNUSED,
2210 rtx addr, addr_space_t as)
2212 #ifdef GO_IF_LEGITIMATE_ADDRESS
2213 gcc_assert (ADDR_SPACE_GENERIC_P (as));
2214 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2215 return 0;
2217 win:
2218 return 1;
2219 #else
2220 return targetm.addr_space.legitimate_address_p (mode, addr, 1, as);
2221 #endif
2224 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2225 if they are the same hard reg, and has special hacks for
2226 autoincrement and autodecrement.
2227 This is specifically intended for find_reloads to use
2228 in determining whether two operands match.
2229 X is the operand whose number is the lower of the two.
2231 The value is 2 if Y contains a pre-increment that matches
2232 a non-incrementing address in X. */
2234 /* ??? To be completely correct, we should arrange to pass
2235 for X the output operand and for Y the input operand.
2236 For now, we assume that the output operand has the lower number
2237 because that is natural in (SET output (... input ...)). */
2240 operands_match_p (rtx x, rtx y)
2242 int i;
2243 RTX_CODE code = GET_CODE (x);
2244 const char *fmt;
2245 int success_2;
2247 if (x == y)
2248 return 1;
2249 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2250 && (REG_P (y) || (GET_CODE (y) == SUBREG
2251 && REG_P (SUBREG_REG (y)))))
2253 int j;
2255 if (code == SUBREG)
2257 i = REGNO (SUBREG_REG (x));
2258 if (i >= FIRST_PSEUDO_REGISTER)
2259 goto slow;
2260 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2261 GET_MODE (SUBREG_REG (x)),
2262 SUBREG_BYTE (x),
2263 GET_MODE (x));
2265 else
2266 i = REGNO (x);
2268 if (GET_CODE (y) == SUBREG)
2270 j = REGNO (SUBREG_REG (y));
2271 if (j >= FIRST_PSEUDO_REGISTER)
2272 goto slow;
2273 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2274 GET_MODE (SUBREG_REG (y)),
2275 SUBREG_BYTE (y),
2276 GET_MODE (y));
2278 else
2279 j = REGNO (y);
2281 /* On a REG_WORDS_BIG_ENDIAN machine, point to the last register of a
2282 multiple hard register group of scalar integer registers, so that
2283 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2284 register. */
2285 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2286 && SCALAR_INT_MODE_P (GET_MODE (x))
2287 && i < FIRST_PSEUDO_REGISTER)
2288 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2289 if (REG_WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2290 && SCALAR_INT_MODE_P (GET_MODE (y))
2291 && j < FIRST_PSEUDO_REGISTER)
2292 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2294 return i == j;
2296 /* If two operands must match, because they are really a single
2297 operand of an assembler insn, then two postincrements are invalid
2298 because the assembler insn would increment only once.
2299 On the other hand, a postincrement matches ordinary indexing
2300 if the postincrement is the output operand. */
2301 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2302 return operands_match_p (XEXP (x, 0), y);
2303 /* Two preincrements are invalid
2304 because the assembler insn would increment only once.
2305 On the other hand, a preincrement matches ordinary indexing
2306 if the preincrement is the input operand.
2307 In this case, return 2, since some callers need to do special
2308 things when this happens. */
2309 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2310 || GET_CODE (y) == PRE_MODIFY)
2311 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2313 slow:
2315 /* Now we have disposed of all the cases in which different rtx codes
2316 can match. */
2317 if (code != GET_CODE (y))
2318 return 0;
2320 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2321 if (GET_MODE (x) != GET_MODE (y))
2322 return 0;
2324 /* MEMs referring to different address space are not equivalent. */
2325 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
2326 return 0;
2328 switch (code)
2330 CASE_CONST_UNIQUE:
2331 return 0;
2333 case LABEL_REF:
2334 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
2335 case SYMBOL_REF:
2336 return XSTR (x, 0) == XSTR (y, 0);
2338 default:
2339 break;
2342 /* Compare the elements. If any pair of corresponding elements
2343 fail to match, return 0 for the whole things. */
2345 success_2 = 0;
2346 fmt = GET_RTX_FORMAT (code);
2347 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2349 int val, j;
2350 switch (fmt[i])
2352 case 'w':
2353 if (XWINT (x, i) != XWINT (y, i))
2354 return 0;
2355 break;
2357 case 'i':
2358 if (XINT (x, i) != XINT (y, i))
2359 return 0;
2360 break;
2362 case 'e':
2363 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2364 if (val == 0)
2365 return 0;
2366 /* If any subexpression returns 2,
2367 we should return 2 if we are successful. */
2368 if (val == 2)
2369 success_2 = 1;
2370 break;
2372 case '0':
2373 break;
2375 case 'E':
2376 if (XVECLEN (x, i) != XVECLEN (y, i))
2377 return 0;
2378 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2380 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2381 if (val == 0)
2382 return 0;
2383 if (val == 2)
2384 success_2 = 1;
2386 break;
2388 /* It is believed that rtx's at this level will never
2389 contain anything but integers and other rtx's,
2390 except for within LABEL_REFs and SYMBOL_REFs. */
2391 default:
2392 gcc_unreachable ();
2395 return 1 + success_2;
2398 /* Describe the range of registers or memory referenced by X.
2399 If X is a register, set REG_FLAG and put the first register
2400 number into START and the last plus one into END.
2401 If X is a memory reference, put a base address into BASE
2402 and a range of integer offsets into START and END.
2403 If X is pushing on the stack, we can assume it causes no trouble,
2404 so we set the SAFE field. */
2406 static struct decomposition
2407 decompose (rtx x)
2409 struct decomposition val;
2410 int all_const = 0;
2412 memset (&val, 0, sizeof (val));
2414 switch (GET_CODE (x))
2416 case MEM:
2418 rtx base = NULL_RTX, offset = 0;
2419 rtx addr = XEXP (x, 0);
2421 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2422 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2424 val.base = XEXP (addr, 0);
2425 val.start = -GET_MODE_SIZE (GET_MODE (x));
2426 val.end = GET_MODE_SIZE (GET_MODE (x));
2427 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2428 return val;
2431 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2433 if (GET_CODE (XEXP (addr, 1)) == PLUS
2434 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2435 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2437 val.base = XEXP (addr, 0);
2438 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2439 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2440 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2441 return val;
2445 if (GET_CODE (addr) == CONST)
2447 addr = XEXP (addr, 0);
2448 all_const = 1;
2450 if (GET_CODE (addr) == PLUS)
2452 if (CONSTANT_P (XEXP (addr, 0)))
2454 base = XEXP (addr, 1);
2455 offset = XEXP (addr, 0);
2457 else if (CONSTANT_P (XEXP (addr, 1)))
2459 base = XEXP (addr, 0);
2460 offset = XEXP (addr, 1);
2464 if (offset == 0)
2466 base = addr;
2467 offset = const0_rtx;
2469 if (GET_CODE (offset) == CONST)
2470 offset = XEXP (offset, 0);
2471 if (GET_CODE (offset) == PLUS)
2473 if (CONST_INT_P (XEXP (offset, 0)))
2475 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2476 offset = XEXP (offset, 0);
2478 else if (CONST_INT_P (XEXP (offset, 1)))
2480 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2481 offset = XEXP (offset, 1);
2483 else
2485 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2486 offset = const0_rtx;
2489 else if (!CONST_INT_P (offset))
2491 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2492 offset = const0_rtx;
2495 if (all_const && GET_CODE (base) == PLUS)
2496 base = gen_rtx_CONST (GET_MODE (base), base);
2498 gcc_assert (CONST_INT_P (offset));
2500 val.start = INTVAL (offset);
2501 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2502 val.base = base;
2504 break;
2506 case REG:
2507 val.reg_flag = 1;
2508 val.start = true_regnum (x);
2509 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2511 /* A pseudo with no hard reg. */
2512 val.start = REGNO (x);
2513 val.end = val.start + 1;
2515 else
2516 /* A hard reg. */
2517 val.end = end_hard_regno (GET_MODE (x), val.start);
2518 break;
2520 case SUBREG:
2521 if (!REG_P (SUBREG_REG (x)))
2522 /* This could be more precise, but it's good enough. */
2523 return decompose (SUBREG_REG (x));
2524 val.reg_flag = 1;
2525 val.start = true_regnum (x);
2526 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2527 return decompose (SUBREG_REG (x));
2528 else
2529 /* A hard reg. */
2530 val.end = val.start + subreg_nregs (x);
2531 break;
2533 case SCRATCH:
2534 /* This hasn't been assigned yet, so it can't conflict yet. */
2535 val.safe = 1;
2536 break;
2538 default:
2539 gcc_assert (CONSTANT_P (x));
2540 val.safe = 1;
2541 break;
2543 return val;
2546 /* Return 1 if altering Y will not modify the value of X.
2547 Y is also described by YDATA, which should be decompose (Y). */
2549 static int
2550 immune_p (rtx x, rtx y, struct decomposition ydata)
2552 struct decomposition xdata;
2554 if (ydata.reg_flag)
2555 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2556 if (ydata.safe)
2557 return 1;
2559 gcc_assert (MEM_P (y));
2560 /* If Y is memory and X is not, Y can't affect X. */
2561 if (!MEM_P (x))
2562 return 1;
2564 xdata = decompose (x);
2566 if (! rtx_equal_p (xdata.base, ydata.base))
2568 /* If bases are distinct symbolic constants, there is no overlap. */
2569 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2570 return 1;
2571 /* Constants and stack slots never overlap. */
2572 if (CONSTANT_P (xdata.base)
2573 && (ydata.base == frame_pointer_rtx
2574 || ydata.base == hard_frame_pointer_rtx
2575 || ydata.base == stack_pointer_rtx))
2576 return 1;
2577 if (CONSTANT_P (ydata.base)
2578 && (xdata.base == frame_pointer_rtx
2579 || xdata.base == hard_frame_pointer_rtx
2580 || xdata.base == stack_pointer_rtx))
2581 return 1;
2582 /* If either base is variable, we don't know anything. */
2583 return 0;
2586 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2589 /* Similar, but calls decompose. */
2592 safe_from_earlyclobber (rtx op, rtx clobber)
2594 struct decomposition early_data;
2596 early_data = decompose (clobber);
2597 return immune_p (op, clobber, early_data);
2600 /* Main entry point of this file: search the body of INSN
2601 for values that need reloading and record them with push_reload.
2602 REPLACE nonzero means record also where the values occur
2603 so that subst_reloads can be used.
2605 IND_LEVELS says how many levels of indirection are supported by this
2606 machine; a value of zero means that a memory reference is not a valid
2607 memory address.
2609 LIVE_KNOWN says we have valid information about which hard
2610 regs are live at each point in the program; this is true when
2611 we are called from global_alloc but false when stupid register
2612 allocation has been done.
2614 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2615 which is nonnegative if the reg has been commandeered for reloading into.
2616 It is copied into STATIC_RELOAD_REG_P and referenced from there
2617 by various subroutines.
2619 Return TRUE if some operands need to be changed, because of swapping
2620 commutative operands, reg_equiv_address substitution, or whatever. */
2623 find_reloads (rtx_insn *insn, int replace, int ind_levels, int live_known,
2624 short *reload_reg_p)
2626 int insn_code_number;
2627 int i, j;
2628 int noperands;
2629 /* These start out as the constraints for the insn
2630 and they are chewed up as we consider alternatives. */
2631 const char *constraints[MAX_RECOG_OPERANDS];
2632 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2633 a register. */
2634 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2635 char pref_or_nothing[MAX_RECOG_OPERANDS];
2636 /* Nonzero for a MEM operand whose entire address needs a reload.
2637 May be -1 to indicate the entire address may or may not need a reload. */
2638 int address_reloaded[MAX_RECOG_OPERANDS];
2639 /* Nonzero for an address operand that needs to be completely reloaded.
2640 May be -1 to indicate the entire operand may or may not need a reload. */
2641 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2642 /* Value of enum reload_type to use for operand. */
2643 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2644 /* Value of enum reload_type to use within address of operand. */
2645 enum reload_type address_type[MAX_RECOG_OPERANDS];
2646 /* Save the usage of each operand. */
2647 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2648 int no_input_reloads = 0, no_output_reloads = 0;
2649 int n_alternatives;
2650 reg_class_t this_alternative[MAX_RECOG_OPERANDS];
2651 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2652 char this_alternative_win[MAX_RECOG_OPERANDS];
2653 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2654 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2655 int this_alternative_matches[MAX_RECOG_OPERANDS];
2656 reg_class_t goal_alternative[MAX_RECOG_OPERANDS];
2657 int this_alternative_number;
2658 int goal_alternative_number = 0;
2659 int operand_reloadnum[MAX_RECOG_OPERANDS];
2660 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2661 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2662 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2663 char goal_alternative_win[MAX_RECOG_OPERANDS];
2664 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2665 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2666 int goal_alternative_swapped;
2667 int best;
2668 int commutative;
2669 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2670 rtx substed_operand[MAX_RECOG_OPERANDS];
2671 rtx body = PATTERN (insn);
2672 rtx set = single_set (insn);
2673 int goal_earlyclobber = 0, this_earlyclobber;
2674 machine_mode operand_mode[MAX_RECOG_OPERANDS];
2675 int retval = 0;
2677 this_insn = insn;
2678 n_reloads = 0;
2679 n_replacements = 0;
2680 n_earlyclobbers = 0;
2681 replace_reloads = replace;
2682 hard_regs_live_known = live_known;
2683 static_reload_reg_p = reload_reg_p;
2685 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2686 neither are insns that SET cc0. Insns that use CC0 are not allowed
2687 to have any input reloads. */
2688 if (JUMP_P (insn) || CALL_P (insn))
2689 no_output_reloads = 1;
2691 #ifdef HAVE_cc0
2692 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2693 no_input_reloads = 1;
2694 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2695 no_output_reloads = 1;
2696 #endif
2698 #ifdef SECONDARY_MEMORY_NEEDED
2699 /* The eliminated forms of any secondary memory locations are per-insn, so
2700 clear them out here. */
2702 if (secondary_memlocs_elim_used)
2704 memset (secondary_memlocs_elim, 0,
2705 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2706 secondary_memlocs_elim_used = 0;
2708 #endif
2710 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2711 is cheap to move between them. If it is not, there may not be an insn
2712 to do the copy, so we may need a reload. */
2713 if (GET_CODE (body) == SET
2714 && REG_P (SET_DEST (body))
2715 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2716 && REG_P (SET_SRC (body))
2717 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2718 && register_move_cost (GET_MODE (SET_SRC (body)),
2719 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2720 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2721 return 0;
2723 extract_insn (insn);
2725 noperands = reload_n_operands = recog_data.n_operands;
2726 n_alternatives = recog_data.n_alternatives;
2728 /* Just return "no reloads" if insn has no operands with constraints. */
2729 if (noperands == 0 || n_alternatives == 0)
2730 return 0;
2732 insn_code_number = INSN_CODE (insn);
2733 this_insn_is_asm = insn_code_number < 0;
2735 memcpy (operand_mode, recog_data.operand_mode,
2736 noperands * sizeof (machine_mode));
2737 memcpy (constraints, recog_data.constraints,
2738 noperands * sizeof (const char *));
2740 commutative = -1;
2742 /* If we will need to know, later, whether some pair of operands
2743 are the same, we must compare them now and save the result.
2744 Reloading the base and index registers will clobber them
2745 and afterward they will fail to match. */
2747 for (i = 0; i < noperands; i++)
2749 const char *p;
2750 int c;
2751 char *end;
2753 substed_operand[i] = recog_data.operand[i];
2754 p = constraints[i];
2756 modified[i] = RELOAD_READ;
2758 /* Scan this operand's constraint to see if it is an output operand,
2759 an in-out operand, is commutative, or should match another. */
2761 while ((c = *p))
2763 p += CONSTRAINT_LEN (c, p);
2764 switch (c)
2766 case '=':
2767 modified[i] = RELOAD_WRITE;
2768 break;
2769 case '+':
2770 modified[i] = RELOAD_READ_WRITE;
2771 break;
2772 case '%':
2774 /* The last operand should not be marked commutative. */
2775 gcc_assert (i != noperands - 1);
2777 /* We currently only support one commutative pair of
2778 operands. Some existing asm code currently uses more
2779 than one pair. Previously, that would usually work,
2780 but sometimes it would crash the compiler. We
2781 continue supporting that case as well as we can by
2782 silently ignoring all but the first pair. In the
2783 future we may handle it correctly. */
2784 if (commutative < 0)
2785 commutative = i;
2786 else
2787 gcc_assert (this_insn_is_asm);
2789 break;
2790 /* Use of ISDIGIT is tempting here, but it may get expensive because
2791 of locale support we don't want. */
2792 case '0': case '1': case '2': case '3': case '4':
2793 case '5': case '6': case '7': case '8': case '9':
2795 c = strtoul (p - 1, &end, 10);
2796 p = end;
2798 operands_match[c][i]
2799 = operands_match_p (recog_data.operand[c],
2800 recog_data.operand[i]);
2802 /* An operand may not match itself. */
2803 gcc_assert (c != i);
2805 /* If C can be commuted with C+1, and C might need to match I,
2806 then C+1 might also need to match I. */
2807 if (commutative >= 0)
2809 if (c == commutative || c == commutative + 1)
2811 int other = c + (c == commutative ? 1 : -1);
2812 operands_match[other][i]
2813 = operands_match_p (recog_data.operand[other],
2814 recog_data.operand[i]);
2816 if (i == commutative || i == commutative + 1)
2818 int other = i + (i == commutative ? 1 : -1);
2819 operands_match[c][other]
2820 = operands_match_p (recog_data.operand[c],
2821 recog_data.operand[other]);
2823 /* Note that C is supposed to be less than I.
2824 No need to consider altering both C and I because in
2825 that case we would alter one into the other. */
2832 /* Examine each operand that is a memory reference or memory address
2833 and reload parts of the addresses into index registers.
2834 Also here any references to pseudo regs that didn't get hard regs
2835 but are equivalent to constants get replaced in the insn itself
2836 with those constants. Nobody will ever see them again.
2838 Finally, set up the preferred classes of each operand. */
2840 for (i = 0; i < noperands; i++)
2842 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2844 address_reloaded[i] = 0;
2845 address_operand_reloaded[i] = 0;
2846 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2847 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2848 : RELOAD_OTHER);
2849 address_type[i]
2850 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2851 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2852 : RELOAD_OTHER);
2854 if (*constraints[i] == 0)
2855 /* Ignore things like match_operator operands. */
2857 else if (insn_extra_address_constraint
2858 (lookup_constraint (constraints[i])))
2860 address_operand_reloaded[i]
2861 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2862 recog_data.operand[i],
2863 recog_data.operand_loc[i],
2864 i, operand_type[i], ind_levels, insn);
2866 /* If we now have a simple operand where we used to have a
2867 PLUS or MULT, re-recognize and try again. */
2868 if ((OBJECT_P (*recog_data.operand_loc[i])
2869 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2870 && (GET_CODE (recog_data.operand[i]) == MULT
2871 || GET_CODE (recog_data.operand[i]) == PLUS))
2873 INSN_CODE (insn) = -1;
2874 retval = find_reloads (insn, replace, ind_levels, live_known,
2875 reload_reg_p);
2876 return retval;
2879 recog_data.operand[i] = *recog_data.operand_loc[i];
2880 substed_operand[i] = recog_data.operand[i];
2882 /* Address operands are reloaded in their existing mode,
2883 no matter what is specified in the machine description. */
2884 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2886 /* If the address is a single CONST_INT pick address mode
2887 instead otherwise we will later not know in which mode
2888 the reload should be performed. */
2889 if (operand_mode[i] == VOIDmode)
2890 operand_mode[i] = Pmode;
2893 else if (code == MEM)
2895 address_reloaded[i]
2896 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2897 recog_data.operand_loc[i],
2898 XEXP (recog_data.operand[i], 0),
2899 &XEXP (recog_data.operand[i], 0),
2900 i, address_type[i], ind_levels, insn);
2901 recog_data.operand[i] = *recog_data.operand_loc[i];
2902 substed_operand[i] = recog_data.operand[i];
2904 else if (code == SUBREG)
2906 rtx reg = SUBREG_REG (recog_data.operand[i]);
2907 rtx op
2908 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2909 ind_levels,
2910 set != 0
2911 && &SET_DEST (set) == recog_data.operand_loc[i],
2912 insn,
2913 &address_reloaded[i]);
2915 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2916 that didn't get a hard register, emit a USE with a REG_EQUAL
2917 note in front so that we might inherit a previous, possibly
2918 wider reload. */
2920 if (replace
2921 && MEM_P (op)
2922 && REG_P (reg)
2923 && (GET_MODE_SIZE (GET_MODE (reg))
2924 >= GET_MODE_SIZE (GET_MODE (op)))
2925 && reg_equiv_constant (REGNO (reg)) == 0)
2926 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2927 insn),
2928 REG_EQUAL, reg_equiv_memory_loc (REGNO (reg)));
2930 substed_operand[i] = recog_data.operand[i] = op;
2932 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2933 /* We can get a PLUS as an "operand" as a result of register
2934 elimination. See eliminate_regs and gen_reload. We handle
2935 a unary operator by reloading the operand. */
2936 substed_operand[i] = recog_data.operand[i]
2937 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2938 ind_levels, 0, insn,
2939 &address_reloaded[i]);
2940 else if (code == REG)
2942 /* This is equivalent to calling find_reloads_toplev.
2943 The code is duplicated for speed.
2944 When we find a pseudo always equivalent to a constant,
2945 we replace it by the constant. We must be sure, however,
2946 that we don't try to replace it in the insn in which it
2947 is being set. */
2948 int regno = REGNO (recog_data.operand[i]);
2949 if (reg_equiv_constant (regno) != 0
2950 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2952 /* Record the existing mode so that the check if constants are
2953 allowed will work when operand_mode isn't specified. */
2955 if (operand_mode[i] == VOIDmode)
2956 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2958 substed_operand[i] = recog_data.operand[i]
2959 = reg_equiv_constant (regno);
2961 if (reg_equiv_memory_loc (regno) != 0
2962 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
2963 /* We need not give a valid is_set_dest argument since the case
2964 of a constant equivalence was checked above. */
2965 substed_operand[i] = recog_data.operand[i]
2966 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2967 ind_levels, 0, insn,
2968 &address_reloaded[i]);
2970 /* If the operand is still a register (we didn't replace it with an
2971 equivalent), get the preferred class to reload it into. */
2972 code = GET_CODE (recog_data.operand[i]);
2973 preferred_class[i]
2974 = ((code == REG && REGNO (recog_data.operand[i])
2975 >= FIRST_PSEUDO_REGISTER)
2976 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2977 : NO_REGS);
2978 pref_or_nothing[i]
2979 = (code == REG
2980 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2981 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2984 /* If this is simply a copy from operand 1 to operand 0, merge the
2985 preferred classes for the operands. */
2986 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2987 && recog_data.operand[1] == SET_SRC (set))
2989 preferred_class[0] = preferred_class[1]
2990 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2991 pref_or_nothing[0] |= pref_or_nothing[1];
2992 pref_or_nothing[1] |= pref_or_nothing[0];
2995 /* Now see what we need for pseudo-regs that didn't get hard regs
2996 or got the wrong kind of hard reg. For this, we must consider
2997 all the operands together against the register constraints. */
2999 best = MAX_RECOG_OPERANDS * 2 + 600;
3001 goal_alternative_swapped = 0;
3003 /* The constraints are made of several alternatives.
3004 Each operand's constraint looks like foo,bar,... with commas
3005 separating the alternatives. The first alternatives for all
3006 operands go together, the second alternatives go together, etc.
3008 First loop over alternatives. */
3010 alternative_mask enabled = get_enabled_alternatives (insn);
3011 for (this_alternative_number = 0;
3012 this_alternative_number < n_alternatives;
3013 this_alternative_number++)
3015 int swapped;
3017 if (!TEST_BIT (enabled, this_alternative_number))
3019 int i;
3021 for (i = 0; i < recog_data.n_operands; i++)
3022 constraints[i] = skip_alternative (constraints[i]);
3024 continue;
3027 /* If insn is commutative (it's safe to exchange a certain pair
3028 of operands) then we need to try each alternative twice, the
3029 second time matching those two operands as if we had
3030 exchanged them. To do this, really exchange them in
3031 operands. */
3032 for (swapped = 0; swapped < (commutative >= 0 ? 2 : 1); swapped++)
3034 /* Loop over operands for one constraint alternative. */
3035 /* LOSERS counts those that don't fit this alternative
3036 and would require loading. */
3037 int losers = 0;
3038 /* BAD is set to 1 if it some operand can't fit this alternative
3039 even after reloading. */
3040 int bad = 0;
3041 /* REJECT is a count of how undesirable this alternative says it is
3042 if any reloading is required. If the alternative matches exactly
3043 then REJECT is ignored, but otherwise it gets this much
3044 counted against it in addition to the reloading needed. Each
3045 ? counts three times here since we want the disparaging caused by
3046 a bad register class to only count 1/3 as much. */
3047 int reject = 0;
3049 if (swapped)
3051 enum reg_class tclass;
3052 int t;
3054 recog_data.operand[commutative] = substed_operand[commutative + 1];
3055 recog_data.operand[commutative + 1] = substed_operand[commutative];
3056 /* Swap the duplicates too. */
3057 for (i = 0; i < recog_data.n_dups; i++)
3058 if (recog_data.dup_num[i] == commutative
3059 || recog_data.dup_num[i] == commutative + 1)
3060 *recog_data.dup_loc[i]
3061 = recog_data.operand[(int) recog_data.dup_num[i]];
3063 tclass = preferred_class[commutative];
3064 preferred_class[commutative] = preferred_class[commutative + 1];
3065 preferred_class[commutative + 1] = tclass;
3067 t = pref_or_nothing[commutative];
3068 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3069 pref_or_nothing[commutative + 1] = t;
3071 t = address_reloaded[commutative];
3072 address_reloaded[commutative] = address_reloaded[commutative + 1];
3073 address_reloaded[commutative + 1] = t;
3076 this_earlyclobber = 0;
3078 for (i = 0; i < noperands; i++)
3080 const char *p = constraints[i];
3081 char *end;
3082 int len;
3083 int win = 0;
3084 int did_match = 0;
3085 /* 0 => this operand can be reloaded somehow for this alternative. */
3086 int badop = 1;
3087 /* 0 => this operand can be reloaded if the alternative allows regs. */
3088 int winreg = 0;
3089 int c;
3090 int m;
3091 rtx operand = recog_data.operand[i];
3092 int offset = 0;
3093 /* Nonzero means this is a MEM that must be reloaded into a reg
3094 regardless of what the constraint says. */
3095 int force_reload = 0;
3096 int offmemok = 0;
3097 /* Nonzero if a constant forced into memory would be OK for this
3098 operand. */
3099 int constmemok = 0;
3100 int earlyclobber = 0;
3101 enum constraint_num cn;
3102 enum reg_class cl;
3104 /* If the predicate accepts a unary operator, it means that
3105 we need to reload the operand, but do not do this for
3106 match_operator and friends. */
3107 if (UNARY_P (operand) && *p != 0)
3108 operand = XEXP (operand, 0);
3110 /* If the operand is a SUBREG, extract
3111 the REG or MEM (or maybe even a constant) within.
3112 (Constants can occur as a result of reg_equiv_constant.) */
3114 while (GET_CODE (operand) == SUBREG)
3116 /* Offset only matters when operand is a REG and
3117 it is a hard reg. This is because it is passed
3118 to reg_fits_class_p if it is a REG and all pseudos
3119 return 0 from that function. */
3120 if (REG_P (SUBREG_REG (operand))
3121 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
3123 if (simplify_subreg_regno (REGNO (SUBREG_REG (operand)),
3124 GET_MODE (SUBREG_REG (operand)),
3125 SUBREG_BYTE (operand),
3126 GET_MODE (operand)) < 0)
3127 force_reload = 1;
3128 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
3129 GET_MODE (SUBREG_REG (operand)),
3130 SUBREG_BYTE (operand),
3131 GET_MODE (operand));
3133 operand = SUBREG_REG (operand);
3134 /* Force reload if this is a constant or PLUS or if there may
3135 be a problem accessing OPERAND in the outer mode. */
3136 if (CONSTANT_P (operand)
3137 || GET_CODE (operand) == PLUS
3138 /* We must force a reload of paradoxical SUBREGs
3139 of a MEM because the alignment of the inner value
3140 may not be enough to do the outer reference. On
3141 big-endian machines, it may also reference outside
3142 the object.
3144 On machines that extend byte operations and we have a
3145 SUBREG where both the inner and outer modes are no wider
3146 than a word and the inner mode is narrower, is integral,
3147 and gets extended when loaded from memory, combine.c has
3148 made assumptions about the behavior of the machine in such
3149 register access. If the data is, in fact, in memory we
3150 must always load using the size assumed to be in the
3151 register and let the insn do the different-sized
3152 accesses.
3154 This is doubly true if WORD_REGISTER_OPERATIONS. In
3155 this case eliminate_regs has left non-paradoxical
3156 subregs for push_reload to see. Make sure it does
3157 by forcing the reload.
3159 ??? When is it right at this stage to have a subreg
3160 of a mem that is _not_ to be handled specially? IMO
3161 those should have been reduced to just a mem. */
3162 || ((MEM_P (operand)
3163 || (REG_P (operand)
3164 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3165 #ifndef WORD_REGISTER_OPERATIONS
3166 && (((GET_MODE_BITSIZE (GET_MODE (operand))
3167 < BIGGEST_ALIGNMENT)
3168 && (GET_MODE_SIZE (operand_mode[i])
3169 > GET_MODE_SIZE (GET_MODE (operand))))
3170 || BYTES_BIG_ENDIAN
3171 #ifdef LOAD_EXTEND_OP
3172 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3173 && (GET_MODE_SIZE (GET_MODE (operand))
3174 <= UNITS_PER_WORD)
3175 && (GET_MODE_SIZE (operand_mode[i])
3176 > GET_MODE_SIZE (GET_MODE (operand)))
3177 && INTEGRAL_MODE_P (GET_MODE (operand))
3178 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
3179 #endif
3181 #endif
3184 force_reload = 1;
3187 this_alternative[i] = NO_REGS;
3188 this_alternative_win[i] = 0;
3189 this_alternative_match_win[i] = 0;
3190 this_alternative_offmemok[i] = 0;
3191 this_alternative_earlyclobber[i] = 0;
3192 this_alternative_matches[i] = -1;
3194 /* An empty constraint or empty alternative
3195 allows anything which matched the pattern. */
3196 if (*p == 0 || *p == ',')
3197 win = 1, badop = 0;
3199 /* Scan this alternative's specs for this operand;
3200 set WIN if the operand fits any letter in this alternative.
3201 Otherwise, clear BADOP if this operand could
3202 fit some letter after reloads,
3203 or set WINREG if this operand could fit after reloads
3204 provided the constraint allows some registers. */
3207 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3209 case '\0':
3210 len = 0;
3211 break;
3212 case ',':
3213 c = '\0';
3214 break;
3216 case '?':
3217 reject += 6;
3218 break;
3220 case '!':
3221 reject = 600;
3222 break;
3224 case '#':
3225 /* Ignore rest of this alternative as far as
3226 reloading is concerned. */
3228 p++;
3229 while (*p && *p != ',');
3230 len = 0;
3231 break;
3233 case '0': case '1': case '2': case '3': case '4':
3234 case '5': case '6': case '7': case '8': case '9':
3235 m = strtoul (p, &end, 10);
3236 p = end;
3237 len = 0;
3239 this_alternative_matches[i] = m;
3240 /* We are supposed to match a previous operand.
3241 If we do, we win if that one did.
3242 If we do not, count both of the operands as losers.
3243 (This is too conservative, since most of the time
3244 only a single reload insn will be needed to make
3245 the two operands win. As a result, this alternative
3246 may be rejected when it is actually desirable.) */
3247 if ((swapped && (m != commutative || i != commutative + 1))
3248 /* If we are matching as if two operands were swapped,
3249 also pretend that operands_match had been computed
3250 with swapped.
3251 But if I is the second of those and C is the first,
3252 don't exchange them, because operands_match is valid
3253 only on one side of its diagonal. */
3254 ? (operands_match
3255 [(m == commutative || m == commutative + 1)
3256 ? 2 * commutative + 1 - m : m]
3257 [(i == commutative || i == commutative + 1)
3258 ? 2 * commutative + 1 - i : i])
3259 : operands_match[m][i])
3261 /* If we are matching a non-offsettable address where an
3262 offsettable address was expected, then we must reject
3263 this combination, because we can't reload it. */
3264 if (this_alternative_offmemok[m]
3265 && MEM_P (recog_data.operand[m])
3266 && this_alternative[m] == NO_REGS
3267 && ! this_alternative_win[m])
3268 bad = 1;
3270 did_match = this_alternative_win[m];
3272 else
3274 /* Operands don't match. */
3275 rtx value;
3276 int loc1, loc2;
3277 /* Retroactively mark the operand we had to match
3278 as a loser, if it wasn't already. */
3279 if (this_alternative_win[m])
3280 losers++;
3281 this_alternative_win[m] = 0;
3282 if (this_alternative[m] == NO_REGS)
3283 bad = 1;
3284 /* But count the pair only once in the total badness of
3285 this alternative, if the pair can be a dummy reload.
3286 The pointers in operand_loc are not swapped; swap
3287 them by hand if necessary. */
3288 if (swapped && i == commutative)
3289 loc1 = commutative + 1;
3290 else if (swapped && i == commutative + 1)
3291 loc1 = commutative;
3292 else
3293 loc1 = i;
3294 if (swapped && m == commutative)
3295 loc2 = commutative + 1;
3296 else if (swapped && m == commutative + 1)
3297 loc2 = commutative;
3298 else
3299 loc2 = m;
3300 value
3301 = find_dummy_reload (recog_data.operand[i],
3302 recog_data.operand[m],
3303 recog_data.operand_loc[loc1],
3304 recog_data.operand_loc[loc2],
3305 operand_mode[i], operand_mode[m],
3306 this_alternative[m], -1,
3307 this_alternative_earlyclobber[m]);
3309 if (value != 0)
3310 losers--;
3312 /* This can be fixed with reloads if the operand
3313 we are supposed to match can be fixed with reloads. */
3314 badop = 0;
3315 this_alternative[i] = this_alternative[m];
3317 /* If we have to reload this operand and some previous
3318 operand also had to match the same thing as this
3319 operand, we don't know how to do that. So reject this
3320 alternative. */
3321 if (! did_match || force_reload)
3322 for (j = 0; j < i; j++)
3323 if (this_alternative_matches[j]
3324 == this_alternative_matches[i])
3326 badop = 1;
3327 break;
3329 break;
3331 case 'p':
3332 /* All necessary reloads for an address_operand
3333 were handled in find_reloads_address. */
3334 this_alternative[i]
3335 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3336 ADDRESS, SCRATCH);
3337 win = 1;
3338 badop = 0;
3339 break;
3341 case TARGET_MEM_CONSTRAINT:
3342 if (force_reload)
3343 break;
3344 if (MEM_P (operand)
3345 || (REG_P (operand)
3346 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3347 && reg_renumber[REGNO (operand)] < 0))
3348 win = 1;
3349 if (CONST_POOL_OK_P (operand_mode[i], operand))
3350 badop = 0;
3351 constmemok = 1;
3352 break;
3354 case '<':
3355 if (MEM_P (operand)
3356 && ! address_reloaded[i]
3357 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3358 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3359 win = 1;
3360 break;
3362 case '>':
3363 if (MEM_P (operand)
3364 && ! address_reloaded[i]
3365 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3366 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3367 win = 1;
3368 break;
3370 /* Memory operand whose address is not offsettable. */
3371 case 'V':
3372 if (force_reload)
3373 break;
3374 if (MEM_P (operand)
3375 && ! (ind_levels ? offsettable_memref_p (operand)
3376 : offsettable_nonstrict_memref_p (operand))
3377 /* Certain mem addresses will become offsettable
3378 after they themselves are reloaded. This is important;
3379 we don't want our own handling of unoffsettables
3380 to override the handling of reg_equiv_address. */
3381 && !(REG_P (XEXP (operand, 0))
3382 && (ind_levels == 0
3383 || reg_equiv_address (REGNO (XEXP (operand, 0))) != 0)))
3384 win = 1;
3385 break;
3387 /* Memory operand whose address is offsettable. */
3388 case 'o':
3389 if (force_reload)
3390 break;
3391 if ((MEM_P (operand)
3392 /* If IND_LEVELS, find_reloads_address won't reload a
3393 pseudo that didn't get a hard reg, so we have to
3394 reject that case. */
3395 && ((ind_levels ? offsettable_memref_p (operand)
3396 : offsettable_nonstrict_memref_p (operand))
3397 /* A reloaded address is offsettable because it is now
3398 just a simple register indirect. */
3399 || address_reloaded[i] == 1))
3400 || (REG_P (operand)
3401 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3402 && reg_renumber[REGNO (operand)] < 0
3403 /* If reg_equiv_address is nonzero, we will be
3404 loading it into a register; hence it will be
3405 offsettable, but we cannot say that reg_equiv_mem
3406 is offsettable without checking. */
3407 && ((reg_equiv_mem (REGNO (operand)) != 0
3408 && offsettable_memref_p (reg_equiv_mem (REGNO (operand))))
3409 || (reg_equiv_address (REGNO (operand)) != 0))))
3410 win = 1;
3411 if (CONST_POOL_OK_P (operand_mode[i], operand)
3412 || MEM_P (operand))
3413 badop = 0;
3414 constmemok = 1;
3415 offmemok = 1;
3416 break;
3418 case '&':
3419 /* Output operand that is stored before the need for the
3420 input operands (and their index registers) is over. */
3421 earlyclobber = 1, this_earlyclobber = 1;
3422 break;
3424 case 'X':
3425 force_reload = 0;
3426 win = 1;
3427 break;
3429 case 'g':
3430 if (! force_reload
3431 /* A PLUS is never a valid operand, but reload can make
3432 it from a register when eliminating registers. */
3433 && GET_CODE (operand) != PLUS
3434 /* A SCRATCH is not a valid operand. */
3435 && GET_CODE (operand) != SCRATCH
3436 && (! CONSTANT_P (operand)
3437 || ! flag_pic
3438 || LEGITIMATE_PIC_OPERAND_P (operand))
3439 && (GENERAL_REGS == ALL_REGS
3440 || !REG_P (operand)
3441 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3442 && reg_renumber[REGNO (operand)] < 0)))
3443 win = 1;
3444 cl = GENERAL_REGS;
3445 goto reg;
3447 default:
3448 cn = lookup_constraint (p);
3449 switch (get_constraint_type (cn))
3451 case CT_REGISTER:
3452 cl = reg_class_for_constraint (cn);
3453 if (cl != NO_REGS)
3454 goto reg;
3455 break;
3457 case CT_CONST_INT:
3458 if (CONST_INT_P (operand)
3459 && (insn_const_int_ok_for_constraint
3460 (INTVAL (operand), cn)))
3461 win = true;
3462 break;
3464 case CT_MEMORY:
3465 if (force_reload)
3466 break;
3467 if (constraint_satisfied_p (operand, cn))
3468 win = 1;
3469 /* If the address was already reloaded,
3470 we win as well. */
3471 else if (MEM_P (operand) && address_reloaded[i] == 1)
3472 win = 1;
3473 /* Likewise if the address will be reloaded because
3474 reg_equiv_address is nonzero. For reg_equiv_mem
3475 we have to check. */
3476 else if (REG_P (operand)
3477 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3478 && reg_renumber[REGNO (operand)] < 0
3479 && ((reg_equiv_mem (REGNO (operand)) != 0
3480 && (constraint_satisfied_p
3481 (reg_equiv_mem (REGNO (operand)),
3482 cn)))
3483 || (reg_equiv_address (REGNO (operand))
3484 != 0)))
3485 win = 1;
3487 /* If we didn't already win, we can reload
3488 constants via force_const_mem, and other
3489 MEMs by reloading the address like for 'o'. */
3490 if (CONST_POOL_OK_P (operand_mode[i], operand)
3491 || MEM_P (operand))
3492 badop = 0;
3493 constmemok = 1;
3494 offmemok = 1;
3495 break;
3497 case CT_ADDRESS:
3498 if (constraint_satisfied_p (operand, cn))
3499 win = 1;
3501 /* If we didn't already win, we can reload
3502 the address into a base register. */
3503 this_alternative[i]
3504 = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
3505 ADDRESS, SCRATCH);
3506 badop = 0;
3507 break;
3509 case CT_FIXED_FORM:
3510 if (constraint_satisfied_p (operand, cn))
3511 win = 1;
3512 break;
3514 break;
3516 reg:
3517 this_alternative[i]
3518 = reg_class_subunion[this_alternative[i]][cl];
3519 if (GET_MODE (operand) == BLKmode)
3520 break;
3521 winreg = 1;
3522 if (REG_P (operand)
3523 && reg_fits_class_p (operand, this_alternative[i],
3524 offset, GET_MODE (recog_data.operand[i])))
3525 win = 1;
3526 break;
3528 while ((p += len), c);
3530 if (swapped == (commutative >= 0 ? 1 : 0))
3531 constraints[i] = p;
3533 /* If this operand could be handled with a reg,
3534 and some reg is allowed, then this operand can be handled. */
3535 if (winreg && this_alternative[i] != NO_REGS
3536 && (win || !class_only_fixed_regs[this_alternative[i]]))
3537 badop = 0;
3539 /* Record which operands fit this alternative. */
3540 this_alternative_earlyclobber[i] = earlyclobber;
3541 if (win && ! force_reload)
3542 this_alternative_win[i] = 1;
3543 else if (did_match && ! force_reload)
3544 this_alternative_match_win[i] = 1;
3545 else
3547 int const_to_mem = 0;
3549 this_alternative_offmemok[i] = offmemok;
3550 losers++;
3551 if (badop)
3552 bad = 1;
3553 /* Alternative loses if it has no regs for a reg operand. */
3554 if (REG_P (operand)
3555 && this_alternative[i] == NO_REGS
3556 && this_alternative_matches[i] < 0)
3557 bad = 1;
3559 /* If this is a constant that is reloaded into the desired
3560 class by copying it to memory first, count that as another
3561 reload. This is consistent with other code and is
3562 required to avoid choosing another alternative when
3563 the constant is moved into memory by this function on
3564 an early reload pass. Note that the test here is
3565 precisely the same as in the code below that calls
3566 force_const_mem. */
3567 if (CONST_POOL_OK_P (operand_mode[i], operand)
3568 && ((targetm.preferred_reload_class (operand,
3569 this_alternative[i])
3570 == NO_REGS)
3571 || no_input_reloads))
3573 const_to_mem = 1;
3574 if (this_alternative[i] != NO_REGS)
3575 losers++;
3578 /* Alternative loses if it requires a type of reload not
3579 permitted for this insn. We can always reload SCRATCH
3580 and objects with a REG_UNUSED note. */
3581 if (GET_CODE (operand) != SCRATCH
3582 && modified[i] != RELOAD_READ && no_output_reloads
3583 && ! find_reg_note (insn, REG_UNUSED, operand))
3584 bad = 1;
3585 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3586 && ! const_to_mem)
3587 bad = 1;
3589 /* If we can't reload this value at all, reject this
3590 alternative. Note that we could also lose due to
3591 LIMIT_RELOAD_CLASS, but we don't check that
3592 here. */
3594 if (! CONSTANT_P (operand) && this_alternative[i] != NO_REGS)
3596 if (targetm.preferred_reload_class (operand,
3597 this_alternative[i])
3598 == NO_REGS)
3599 reject = 600;
3601 if (operand_type[i] == RELOAD_FOR_OUTPUT
3602 && (targetm.preferred_output_reload_class (operand,
3603 this_alternative[i])
3604 == NO_REGS))
3605 reject = 600;
3608 /* We prefer to reload pseudos over reloading other things,
3609 since such reloads may be able to be eliminated later.
3610 If we are reloading a SCRATCH, we won't be generating any
3611 insns, just using a register, so it is also preferred.
3612 So bump REJECT in other cases. Don't do this in the
3613 case where we are forcing a constant into memory and
3614 it will then win since we don't want to have a different
3615 alternative match then. */
3616 if (! (REG_P (operand)
3617 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3618 && GET_CODE (operand) != SCRATCH
3619 && ! (const_to_mem && constmemok))
3620 reject += 2;
3622 /* Input reloads can be inherited more often than output
3623 reloads can be removed, so penalize output reloads. */
3624 if (operand_type[i] != RELOAD_FOR_INPUT
3625 && GET_CODE (operand) != SCRATCH)
3626 reject++;
3629 /* If this operand is a pseudo register that didn't get
3630 a hard reg and this alternative accepts some
3631 register, see if the class that we want is a subset
3632 of the preferred class for this register. If not,
3633 but it intersects that class, use the preferred class
3634 instead. If it does not intersect the preferred
3635 class, show that usage of this alternative should be
3636 discouraged; it will be discouraged more still if the
3637 register is `preferred or nothing'. We do this
3638 because it increases the chance of reusing our spill
3639 register in a later insn and avoiding a pair of
3640 memory stores and loads.
3642 Don't bother with this if this alternative will
3643 accept this operand.
3645 Don't do this for a multiword operand, since it is
3646 only a small win and has the risk of requiring more
3647 spill registers, which could cause a large loss.
3649 Don't do this if the preferred class has only one
3650 register because we might otherwise exhaust the
3651 class. */
3653 if (! win && ! did_match
3654 && this_alternative[i] != NO_REGS
3655 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3656 && reg_class_size [(int) preferred_class[i]] > 0
3657 && ! small_register_class_p (preferred_class[i]))
3659 if (! reg_class_subset_p (this_alternative[i],
3660 preferred_class[i]))
3662 /* Since we don't have a way of forming the intersection,
3663 we just do something special if the preferred class
3664 is a subset of the class we have; that's the most
3665 common case anyway. */
3666 if (reg_class_subset_p (preferred_class[i],
3667 this_alternative[i]))
3668 this_alternative[i] = preferred_class[i];
3669 else
3670 reject += (2 + 2 * pref_or_nothing[i]);
3675 /* Now see if any output operands that are marked "earlyclobber"
3676 in this alternative conflict with any input operands
3677 or any memory addresses. */
3679 for (i = 0; i < noperands; i++)
3680 if (this_alternative_earlyclobber[i]
3681 && (this_alternative_win[i] || this_alternative_match_win[i]))
3683 struct decomposition early_data;
3685 early_data = decompose (recog_data.operand[i]);
3687 gcc_assert (modified[i] != RELOAD_READ);
3689 if (this_alternative[i] == NO_REGS)
3691 this_alternative_earlyclobber[i] = 0;
3692 gcc_assert (this_insn_is_asm);
3693 error_for_asm (this_insn,
3694 "%<&%> constraint used with no register class");
3697 for (j = 0; j < noperands; j++)
3698 /* Is this an input operand or a memory ref? */
3699 if ((MEM_P (recog_data.operand[j])
3700 || modified[j] != RELOAD_WRITE)
3701 && j != i
3702 /* Ignore things like match_operator operands. */
3703 && !recog_data.is_operator[j]
3704 /* Don't count an input operand that is constrained to match
3705 the early clobber operand. */
3706 && ! (this_alternative_matches[j] == i
3707 && rtx_equal_p (recog_data.operand[i],
3708 recog_data.operand[j]))
3709 /* Is it altered by storing the earlyclobber operand? */
3710 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3711 early_data))
3713 /* If the output is in a non-empty few-regs class,
3714 it's costly to reload it, so reload the input instead. */
3715 if (small_register_class_p (this_alternative[i])
3716 && (REG_P (recog_data.operand[j])
3717 || GET_CODE (recog_data.operand[j]) == SUBREG))
3719 losers++;
3720 this_alternative_win[j] = 0;
3721 this_alternative_match_win[j] = 0;
3723 else
3724 break;
3726 /* If an earlyclobber operand conflicts with something,
3727 it must be reloaded, so request this and count the cost. */
3728 if (j != noperands)
3730 losers++;
3731 this_alternative_win[i] = 0;
3732 this_alternative_match_win[j] = 0;
3733 for (j = 0; j < noperands; j++)
3734 if (this_alternative_matches[j] == i
3735 && this_alternative_match_win[j])
3737 this_alternative_win[j] = 0;
3738 this_alternative_match_win[j] = 0;
3739 losers++;
3744 /* If one alternative accepts all the operands, no reload required,
3745 choose that alternative; don't consider the remaining ones. */
3746 if (losers == 0)
3748 /* Unswap these so that they are never swapped at `finish'. */
3749 if (swapped)
3751 recog_data.operand[commutative] = substed_operand[commutative];
3752 recog_data.operand[commutative + 1]
3753 = substed_operand[commutative + 1];
3755 for (i = 0; i < noperands; i++)
3757 goal_alternative_win[i] = this_alternative_win[i];
3758 goal_alternative_match_win[i] = this_alternative_match_win[i];
3759 goal_alternative[i] = this_alternative[i];
3760 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3761 goal_alternative_matches[i] = this_alternative_matches[i];
3762 goal_alternative_earlyclobber[i]
3763 = this_alternative_earlyclobber[i];
3765 goal_alternative_number = this_alternative_number;
3766 goal_alternative_swapped = swapped;
3767 goal_earlyclobber = this_earlyclobber;
3768 goto finish;
3771 /* REJECT, set by the ! and ? constraint characters and when a register
3772 would be reloaded into a non-preferred class, discourages the use of
3773 this alternative for a reload goal. REJECT is incremented by six
3774 for each ? and two for each non-preferred class. */
3775 losers = losers * 6 + reject;
3777 /* If this alternative can be made to work by reloading,
3778 and it needs less reloading than the others checked so far,
3779 record it as the chosen goal for reloading. */
3780 if (! bad)
3782 if (best > losers)
3784 for (i = 0; i < noperands; i++)
3786 goal_alternative[i] = this_alternative[i];
3787 goal_alternative_win[i] = this_alternative_win[i];
3788 goal_alternative_match_win[i]
3789 = this_alternative_match_win[i];
3790 goal_alternative_offmemok[i]
3791 = this_alternative_offmemok[i];
3792 goal_alternative_matches[i] = this_alternative_matches[i];
3793 goal_alternative_earlyclobber[i]
3794 = this_alternative_earlyclobber[i];
3796 goal_alternative_swapped = swapped;
3797 best = losers;
3798 goal_alternative_number = this_alternative_number;
3799 goal_earlyclobber = this_earlyclobber;
3803 if (swapped)
3805 enum reg_class tclass;
3806 int t;
3808 /* If the commutative operands have been swapped, swap
3809 them back in order to check the next alternative. */
3810 recog_data.operand[commutative] = substed_operand[commutative];
3811 recog_data.operand[commutative + 1] = substed_operand[commutative + 1];
3812 /* Unswap the duplicates too. */
3813 for (i = 0; i < recog_data.n_dups; i++)
3814 if (recog_data.dup_num[i] == commutative
3815 || recog_data.dup_num[i] == commutative + 1)
3816 *recog_data.dup_loc[i]
3817 = recog_data.operand[(int) recog_data.dup_num[i]];
3819 /* Unswap the operand related information as well. */
3820 tclass = preferred_class[commutative];
3821 preferred_class[commutative] = preferred_class[commutative + 1];
3822 preferred_class[commutative + 1] = tclass;
3824 t = pref_or_nothing[commutative];
3825 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3826 pref_or_nothing[commutative + 1] = t;
3828 t = address_reloaded[commutative];
3829 address_reloaded[commutative] = address_reloaded[commutative + 1];
3830 address_reloaded[commutative + 1] = t;
3835 /* The operands don't meet the constraints.
3836 goal_alternative describes the alternative
3837 that we could reach by reloading the fewest operands.
3838 Reload so as to fit it. */
3840 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3842 /* No alternative works with reloads?? */
3843 if (insn_code_number >= 0)
3844 fatal_insn ("unable to generate reloads for:", insn);
3845 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3846 /* Avoid further trouble with this insn. */
3847 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3848 n_reloads = 0;
3849 return 0;
3852 /* Jump to `finish' from above if all operands are valid already.
3853 In that case, goal_alternative_win is all 1. */
3854 finish:
3856 /* Right now, for any pair of operands I and J that are required to match,
3857 with I < J,
3858 goal_alternative_matches[J] is I.
3859 Set up goal_alternative_matched as the inverse function:
3860 goal_alternative_matched[I] = J. */
3862 for (i = 0; i < noperands; i++)
3863 goal_alternative_matched[i] = -1;
3865 for (i = 0; i < noperands; i++)
3866 if (! goal_alternative_win[i]
3867 && goal_alternative_matches[i] >= 0)
3868 goal_alternative_matched[goal_alternative_matches[i]] = i;
3870 for (i = 0; i < noperands; i++)
3871 goal_alternative_win[i] |= goal_alternative_match_win[i];
3873 /* If the best alternative is with operands 1 and 2 swapped,
3874 consider them swapped before reporting the reloads. Update the
3875 operand numbers of any reloads already pushed. */
3877 if (goal_alternative_swapped)
3879 rtx tem;
3881 tem = substed_operand[commutative];
3882 substed_operand[commutative] = substed_operand[commutative + 1];
3883 substed_operand[commutative + 1] = tem;
3884 tem = recog_data.operand[commutative];
3885 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3886 recog_data.operand[commutative + 1] = tem;
3887 tem = *recog_data.operand_loc[commutative];
3888 *recog_data.operand_loc[commutative]
3889 = *recog_data.operand_loc[commutative + 1];
3890 *recog_data.operand_loc[commutative + 1] = tem;
3892 for (i = 0; i < n_reloads; i++)
3894 if (rld[i].opnum == commutative)
3895 rld[i].opnum = commutative + 1;
3896 else if (rld[i].opnum == commutative + 1)
3897 rld[i].opnum = commutative;
3901 for (i = 0; i < noperands; i++)
3903 operand_reloadnum[i] = -1;
3905 /* If this is an earlyclobber operand, we need to widen the scope.
3906 The reload must remain valid from the start of the insn being
3907 reloaded until after the operand is stored into its destination.
3908 We approximate this with RELOAD_OTHER even though we know that we
3909 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3911 One special case that is worth checking is when we have an
3912 output that is earlyclobber but isn't used past the insn (typically
3913 a SCRATCH). In this case, we only need have the reload live
3914 through the insn itself, but not for any of our input or output
3915 reloads.
3916 But we must not accidentally narrow the scope of an existing
3917 RELOAD_OTHER reload - leave these alone.
3919 In any case, anything needed to address this operand can remain
3920 however they were previously categorized. */
3922 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3923 operand_type[i]
3924 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3925 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3928 /* Any constants that aren't allowed and can't be reloaded
3929 into registers are here changed into memory references. */
3930 for (i = 0; i < noperands; i++)
3931 if (! goal_alternative_win[i])
3933 rtx op = recog_data.operand[i];
3934 rtx subreg = NULL_RTX;
3935 rtx plus = NULL_RTX;
3936 machine_mode mode = operand_mode[i];
3938 /* Reloads of SUBREGs of CONSTANT RTXs are handled later in
3939 push_reload so we have to let them pass here. */
3940 if (GET_CODE (op) == SUBREG)
3942 subreg = op;
3943 op = SUBREG_REG (op);
3944 mode = GET_MODE (op);
3947 if (GET_CODE (op) == PLUS)
3949 plus = op;
3950 op = XEXP (op, 1);
3953 if (CONST_POOL_OK_P (mode, op)
3954 && ((targetm.preferred_reload_class (op, goal_alternative[i])
3955 == NO_REGS)
3956 || no_input_reloads))
3958 int this_address_reloaded;
3959 rtx tem = force_const_mem (mode, op);
3961 /* If we stripped a SUBREG or a PLUS above add it back. */
3962 if (plus != NULL_RTX)
3963 tem = gen_rtx_PLUS (mode, XEXP (plus, 0), tem);
3965 if (subreg != NULL_RTX)
3966 tem = gen_rtx_SUBREG (operand_mode[i], tem, SUBREG_BYTE (subreg));
3968 this_address_reloaded = 0;
3969 substed_operand[i] = recog_data.operand[i]
3970 = find_reloads_toplev (tem, i, address_type[i], ind_levels,
3971 0, insn, &this_address_reloaded);
3973 /* If the alternative accepts constant pool refs directly
3974 there will be no reload needed at all. */
3975 if (plus == NULL_RTX
3976 && subreg == NULL_RTX
3977 && alternative_allows_const_pool_ref (this_address_reloaded == 0
3978 ? substed_operand[i]
3979 : NULL,
3980 recog_data.constraints[i],
3981 goal_alternative_number))
3982 goal_alternative_win[i] = 1;
3986 /* Record the values of the earlyclobber operands for the caller. */
3987 if (goal_earlyclobber)
3988 for (i = 0; i < noperands; i++)
3989 if (goal_alternative_earlyclobber[i])
3990 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3992 /* Now record reloads for all the operands that need them. */
3993 for (i = 0; i < noperands; i++)
3994 if (! goal_alternative_win[i])
3996 /* Operands that match previous ones have already been handled. */
3997 if (goal_alternative_matches[i] >= 0)
3999 /* Handle an operand with a nonoffsettable address
4000 appearing where an offsettable address will do
4001 by reloading the address into a base register.
4003 ??? We can also do this when the operand is a register and
4004 reg_equiv_mem is not offsettable, but this is a bit tricky,
4005 so we don't bother with it. It may not be worth doing. */
4006 else if (goal_alternative_matched[i] == -1
4007 && goal_alternative_offmemok[i]
4008 && MEM_P (recog_data.operand[i]))
4010 /* If the address to be reloaded is a VOIDmode constant,
4011 use the default address mode as mode of the reload register,
4012 as would have been done by find_reloads_address. */
4013 addr_space_t as = MEM_ADDR_SPACE (recog_data.operand[i]);
4014 machine_mode address_mode;
4016 address_mode = get_address_mode (recog_data.operand[i]);
4017 operand_reloadnum[i]
4018 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
4019 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
4020 base_reg_class (VOIDmode, as, MEM, SCRATCH),
4021 address_mode,
4022 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
4023 rld[operand_reloadnum[i]].inc
4024 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
4026 /* If this operand is an output, we will have made any
4027 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
4028 now we are treating part of the operand as an input, so
4029 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
4031 if (modified[i] == RELOAD_WRITE)
4033 for (j = 0; j < n_reloads; j++)
4035 if (rld[j].opnum == i)
4037 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
4038 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
4039 else if (rld[j].when_needed
4040 == RELOAD_FOR_OUTADDR_ADDRESS)
4041 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
4046 else if (goal_alternative_matched[i] == -1)
4048 operand_reloadnum[i]
4049 = push_reload ((modified[i] != RELOAD_WRITE
4050 ? recog_data.operand[i] : 0),
4051 (modified[i] != RELOAD_READ
4052 ? recog_data.operand[i] : 0),
4053 (modified[i] != RELOAD_WRITE
4054 ? recog_data.operand_loc[i] : 0),
4055 (modified[i] != RELOAD_READ
4056 ? recog_data.operand_loc[i] : 0),
4057 (enum reg_class) goal_alternative[i],
4058 (modified[i] == RELOAD_WRITE
4059 ? VOIDmode : operand_mode[i]),
4060 (modified[i] == RELOAD_READ
4061 ? VOIDmode : operand_mode[i]),
4062 (insn_code_number < 0 ? 0
4063 : insn_data[insn_code_number].operand[i].strict_low),
4064 0, i, operand_type[i]);
4066 /* In a matching pair of operands, one must be input only
4067 and the other must be output only.
4068 Pass the input operand as IN and the other as OUT. */
4069 else if (modified[i] == RELOAD_READ
4070 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
4072 operand_reloadnum[i]
4073 = push_reload (recog_data.operand[i],
4074 recog_data.operand[goal_alternative_matched[i]],
4075 recog_data.operand_loc[i],
4076 recog_data.operand_loc[goal_alternative_matched[i]],
4077 (enum reg_class) goal_alternative[i],
4078 operand_mode[i],
4079 operand_mode[goal_alternative_matched[i]],
4080 0, 0, i, RELOAD_OTHER);
4081 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
4083 else if (modified[i] == RELOAD_WRITE
4084 && modified[goal_alternative_matched[i]] == RELOAD_READ)
4086 operand_reloadnum[goal_alternative_matched[i]]
4087 = push_reload (recog_data.operand[goal_alternative_matched[i]],
4088 recog_data.operand[i],
4089 recog_data.operand_loc[goal_alternative_matched[i]],
4090 recog_data.operand_loc[i],
4091 (enum reg_class) goal_alternative[i],
4092 operand_mode[goal_alternative_matched[i]],
4093 operand_mode[i],
4094 0, 0, i, RELOAD_OTHER);
4095 operand_reloadnum[i] = output_reloadnum;
4097 else
4099 gcc_assert (insn_code_number < 0);
4100 error_for_asm (insn, "inconsistent operand constraints "
4101 "in an %<asm%>");
4102 /* Avoid further trouble with this insn. */
4103 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
4104 n_reloads = 0;
4105 return 0;
4108 else if (goal_alternative_matched[i] < 0
4109 && goal_alternative_matches[i] < 0
4110 && address_operand_reloaded[i] != 1
4111 && optimize)
4113 /* For each non-matching operand that's a MEM or a pseudo-register
4114 that didn't get a hard register, make an optional reload.
4115 This may get done even if the insn needs no reloads otherwise. */
4117 rtx operand = recog_data.operand[i];
4119 while (GET_CODE (operand) == SUBREG)
4120 operand = SUBREG_REG (operand);
4121 if ((MEM_P (operand)
4122 || (REG_P (operand)
4123 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4124 /* If this is only for an output, the optional reload would not
4125 actually cause us to use a register now, just note that
4126 something is stored here. */
4127 && (goal_alternative[i] != NO_REGS
4128 || modified[i] == RELOAD_WRITE)
4129 && ! no_input_reloads
4130 /* An optional output reload might allow to delete INSN later.
4131 We mustn't make in-out reloads on insns that are not permitted
4132 output reloads.
4133 If this is an asm, we can't delete it; we must not even call
4134 push_reload for an optional output reload in this case,
4135 because we can't be sure that the constraint allows a register,
4136 and push_reload verifies the constraints for asms. */
4137 && (modified[i] == RELOAD_READ
4138 || (! no_output_reloads && ! this_insn_is_asm)))
4139 operand_reloadnum[i]
4140 = push_reload ((modified[i] != RELOAD_WRITE
4141 ? recog_data.operand[i] : 0),
4142 (modified[i] != RELOAD_READ
4143 ? recog_data.operand[i] : 0),
4144 (modified[i] != RELOAD_WRITE
4145 ? recog_data.operand_loc[i] : 0),
4146 (modified[i] != RELOAD_READ
4147 ? recog_data.operand_loc[i] : 0),
4148 (enum reg_class) goal_alternative[i],
4149 (modified[i] == RELOAD_WRITE
4150 ? VOIDmode : operand_mode[i]),
4151 (modified[i] == RELOAD_READ
4152 ? VOIDmode : operand_mode[i]),
4153 (insn_code_number < 0 ? 0
4154 : insn_data[insn_code_number].operand[i].strict_low),
4155 1, i, operand_type[i]);
4156 /* If a memory reference remains (either as a MEM or a pseudo that
4157 did not get a hard register), yet we can't make an optional
4158 reload, check if this is actually a pseudo register reference;
4159 we then need to emit a USE and/or a CLOBBER so that reload
4160 inheritance will do the right thing. */
4161 else if (replace
4162 && (MEM_P (operand)
4163 || (REG_P (operand)
4164 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4165 && reg_renumber [REGNO (operand)] < 0)))
4167 operand = *recog_data.operand_loc[i];
4169 while (GET_CODE (operand) == SUBREG)
4170 operand = SUBREG_REG (operand);
4171 if (REG_P (operand))
4173 if (modified[i] != RELOAD_WRITE)
4174 /* We mark the USE with QImode so that we recognize
4175 it as one that can be safely deleted at the end
4176 of reload. */
4177 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4178 insn), QImode);
4179 if (modified[i] != RELOAD_READ)
4180 emit_insn_after (gen_clobber (operand), insn);
4184 else if (goal_alternative_matches[i] >= 0
4185 && goal_alternative_win[goal_alternative_matches[i]]
4186 && modified[i] == RELOAD_READ
4187 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4188 && ! no_input_reloads && ! no_output_reloads
4189 && optimize)
4191 /* Similarly, make an optional reload for a pair of matching
4192 objects that are in MEM or a pseudo that didn't get a hard reg. */
4194 rtx operand = recog_data.operand[i];
4196 while (GET_CODE (operand) == SUBREG)
4197 operand = SUBREG_REG (operand);
4198 if ((MEM_P (operand)
4199 || (REG_P (operand)
4200 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4201 && (goal_alternative[goal_alternative_matches[i]] != NO_REGS))
4202 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4203 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4204 recog_data.operand[i],
4205 recog_data.operand_loc[goal_alternative_matches[i]],
4206 recog_data.operand_loc[i],
4207 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4208 operand_mode[goal_alternative_matches[i]],
4209 operand_mode[i],
4210 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4213 /* Perform whatever substitutions on the operands we are supposed
4214 to make due to commutativity or replacement of registers
4215 with equivalent constants or memory slots. */
4217 for (i = 0; i < noperands; i++)
4219 /* We only do this on the last pass through reload, because it is
4220 possible for some data (like reg_equiv_address) to be changed during
4221 later passes. Moreover, we lose the opportunity to get a useful
4222 reload_{in,out}_reg when we do these replacements. */
4224 if (replace)
4226 rtx substitution = substed_operand[i];
4228 *recog_data.operand_loc[i] = substitution;
4230 /* If we're replacing an operand with a LABEL_REF, we need to
4231 make sure that there's a REG_LABEL_OPERAND note attached to
4232 this instruction. */
4233 if (GET_CODE (substitution) == LABEL_REF
4234 && !find_reg_note (insn, REG_LABEL_OPERAND,
4235 LABEL_REF_LABEL (substitution))
4236 /* For a JUMP_P, if it was a branch target it must have
4237 already been recorded as such. */
4238 && (!JUMP_P (insn)
4239 || !label_is_jump_target_p (LABEL_REF_LABEL (substitution),
4240 insn)))
4242 add_reg_note (insn, REG_LABEL_OPERAND,
4243 LABEL_REF_LABEL (substitution));
4244 if (LABEL_P (LABEL_REF_LABEL (substitution)))
4245 ++LABEL_NUSES (LABEL_REF_LABEL (substitution));
4249 else
4250 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4253 /* If this insn pattern contains any MATCH_DUP's, make sure that
4254 they will be substituted if the operands they match are substituted.
4255 Also do now any substitutions we already did on the operands.
4257 Don't do this if we aren't making replacements because we might be
4258 propagating things allocated by frame pointer elimination into places
4259 it doesn't expect. */
4261 if (insn_code_number >= 0 && replace)
4262 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4264 int opno = recog_data.dup_num[i];
4265 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4266 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4269 #if 0
4270 /* This loses because reloading of prior insns can invalidate the equivalence
4271 (or at least find_equiv_reg isn't smart enough to find it any more),
4272 causing this insn to need more reload regs than it needed before.
4273 It may be too late to make the reload regs available.
4274 Now this optimization is done safely in choose_reload_regs. */
4276 /* For each reload of a reg into some other class of reg,
4277 search for an existing equivalent reg (same value now) in the right class.
4278 We can use it as long as we don't need to change its contents. */
4279 for (i = 0; i < n_reloads; i++)
4280 if (rld[i].reg_rtx == 0
4281 && rld[i].in != 0
4282 && REG_P (rld[i].in)
4283 && rld[i].out == 0)
4285 rld[i].reg_rtx
4286 = find_equiv_reg (rld[i].in, insn, rld[i].rclass, -1,
4287 static_reload_reg_p, 0, rld[i].inmode);
4288 /* Prevent generation of insn to load the value
4289 because the one we found already has the value. */
4290 if (rld[i].reg_rtx)
4291 rld[i].in = rld[i].reg_rtx;
4293 #endif
4295 /* If we detected error and replaced asm instruction by USE, forget about the
4296 reloads. */
4297 if (GET_CODE (PATTERN (insn)) == USE
4298 && CONST_INT_P (XEXP (PATTERN (insn), 0)))
4299 n_reloads = 0;
4301 /* Perhaps an output reload can be combined with another
4302 to reduce needs by one. */
4303 if (!goal_earlyclobber)
4304 combine_reloads ();
4306 /* If we have a pair of reloads for parts of an address, they are reloading
4307 the same object, the operands themselves were not reloaded, and they
4308 are for two operands that are supposed to match, merge the reloads and
4309 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4311 for (i = 0; i < n_reloads; i++)
4313 int k;
4315 for (j = i + 1; j < n_reloads; j++)
4316 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4317 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4318 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4319 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4320 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4321 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4322 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4323 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4324 && rtx_equal_p (rld[i].in, rld[j].in)
4325 && (operand_reloadnum[rld[i].opnum] < 0
4326 || rld[operand_reloadnum[rld[i].opnum]].optional)
4327 && (operand_reloadnum[rld[j].opnum] < 0
4328 || rld[operand_reloadnum[rld[j].opnum]].optional)
4329 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4330 || (goal_alternative_matches[rld[j].opnum]
4331 == rld[i].opnum)))
4333 for (k = 0; k < n_replacements; k++)
4334 if (replacements[k].what == j)
4335 replacements[k].what = i;
4337 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4338 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4339 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4340 else
4341 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4342 rld[j].in = 0;
4346 /* Scan all the reloads and update their type.
4347 If a reload is for the address of an operand and we didn't reload
4348 that operand, change the type. Similarly, change the operand number
4349 of a reload when two operands match. If a reload is optional, treat it
4350 as though the operand isn't reloaded.
4352 ??? This latter case is somewhat odd because if we do the optional
4353 reload, it means the object is hanging around. Thus we need only
4354 do the address reload if the optional reload was NOT done.
4356 Change secondary reloads to be the address type of their operand, not
4357 the normal type.
4359 If an operand's reload is now RELOAD_OTHER, change any
4360 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4361 RELOAD_FOR_OTHER_ADDRESS. */
4363 for (i = 0; i < n_reloads; i++)
4365 if (rld[i].secondary_p
4366 && rld[i].when_needed == operand_type[rld[i].opnum])
4367 rld[i].when_needed = address_type[rld[i].opnum];
4369 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4370 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4371 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4372 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4373 && (operand_reloadnum[rld[i].opnum] < 0
4374 || rld[operand_reloadnum[rld[i].opnum]].optional))
4376 /* If we have a secondary reload to go along with this reload,
4377 change its type to RELOAD_FOR_OPADDR_ADDR. */
4379 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4380 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4381 && rld[i].secondary_in_reload != -1)
4383 int secondary_in_reload = rld[i].secondary_in_reload;
4385 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4387 /* If there's a tertiary reload we have to change it also. */
4388 if (secondary_in_reload > 0
4389 && rld[secondary_in_reload].secondary_in_reload != -1)
4390 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4391 = RELOAD_FOR_OPADDR_ADDR;
4394 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4395 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4396 && rld[i].secondary_out_reload != -1)
4398 int secondary_out_reload = rld[i].secondary_out_reload;
4400 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4402 /* If there's a tertiary reload we have to change it also. */
4403 if (secondary_out_reload
4404 && rld[secondary_out_reload].secondary_out_reload != -1)
4405 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4406 = RELOAD_FOR_OPADDR_ADDR;
4409 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4410 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4411 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4412 else
4413 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4416 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4417 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4418 && operand_reloadnum[rld[i].opnum] >= 0
4419 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4420 == RELOAD_OTHER))
4421 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4423 if (goal_alternative_matches[rld[i].opnum] >= 0)
4424 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4427 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4428 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4429 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4431 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4432 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4433 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4434 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4435 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4436 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4437 This is complicated by the fact that a single operand can have more
4438 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4439 choose_reload_regs without affecting code quality, and cases that
4440 actually fail are extremely rare, so it turns out to be better to fix
4441 the problem here by not generating cases that choose_reload_regs will
4442 fail for. */
4443 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4444 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4445 a single operand.
4446 We can reduce the register pressure by exploiting that a
4447 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4448 does not conflict with any of them, if it is only used for the first of
4449 the RELOAD_FOR_X_ADDRESS reloads. */
4451 int first_op_addr_num = -2;
4452 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4453 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4454 int need_change = 0;
4455 /* We use last_op_addr_reload and the contents of the above arrays
4456 first as flags - -2 means no instance encountered, -1 means exactly
4457 one instance encountered.
4458 If more than one instance has been encountered, we store the reload
4459 number of the first reload of the kind in question; reload numbers
4460 are known to be non-negative. */
4461 for (i = 0; i < noperands; i++)
4462 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4463 for (i = n_reloads - 1; i >= 0; i--)
4465 switch (rld[i].when_needed)
4467 case RELOAD_FOR_OPERAND_ADDRESS:
4468 if (++first_op_addr_num >= 0)
4470 first_op_addr_num = i;
4471 need_change = 1;
4473 break;
4474 case RELOAD_FOR_INPUT_ADDRESS:
4475 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4477 first_inpaddr_num[rld[i].opnum] = i;
4478 need_change = 1;
4480 break;
4481 case RELOAD_FOR_OUTPUT_ADDRESS:
4482 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4484 first_outpaddr_num[rld[i].opnum] = i;
4485 need_change = 1;
4487 break;
4488 default:
4489 break;
4493 if (need_change)
4495 for (i = 0; i < n_reloads; i++)
4497 int first_num;
4498 enum reload_type type;
4500 switch (rld[i].when_needed)
4502 case RELOAD_FOR_OPADDR_ADDR:
4503 first_num = first_op_addr_num;
4504 type = RELOAD_FOR_OPERAND_ADDRESS;
4505 break;
4506 case RELOAD_FOR_INPADDR_ADDRESS:
4507 first_num = first_inpaddr_num[rld[i].opnum];
4508 type = RELOAD_FOR_INPUT_ADDRESS;
4509 break;
4510 case RELOAD_FOR_OUTADDR_ADDRESS:
4511 first_num = first_outpaddr_num[rld[i].opnum];
4512 type = RELOAD_FOR_OUTPUT_ADDRESS;
4513 break;
4514 default:
4515 continue;
4517 if (first_num < 0)
4518 continue;
4519 else if (i > first_num)
4520 rld[i].when_needed = type;
4521 else
4523 /* Check if the only TYPE reload that uses reload I is
4524 reload FIRST_NUM. */
4525 for (j = n_reloads - 1; j > first_num; j--)
4527 if (rld[j].when_needed == type
4528 && (rld[i].secondary_p
4529 ? rld[j].secondary_in_reload == i
4530 : reg_mentioned_p (rld[i].in, rld[j].in)))
4532 rld[i].when_needed = type;
4533 break;
4541 /* See if we have any reloads that are now allowed to be merged
4542 because we've changed when the reload is needed to
4543 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4544 check for the most common cases. */
4546 for (i = 0; i < n_reloads; i++)
4547 if (rld[i].in != 0 && rld[i].out == 0
4548 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4549 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4550 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4551 for (j = 0; j < n_reloads; j++)
4552 if (i != j && rld[j].in != 0 && rld[j].out == 0
4553 && rld[j].when_needed == rld[i].when_needed
4554 && MATCHES (rld[i].in, rld[j].in)
4555 && rld[i].rclass == rld[j].rclass
4556 && !rld[i].nocombine && !rld[j].nocombine
4557 && rld[i].reg_rtx == rld[j].reg_rtx)
4559 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4560 transfer_replacements (i, j);
4561 rld[j].in = 0;
4564 #ifdef HAVE_cc0
4565 /* If we made any reloads for addresses, see if they violate a
4566 "no input reloads" requirement for this insn. But loads that we
4567 do after the insn (such as for output addresses) are fine. */
4568 if (no_input_reloads)
4569 for (i = 0; i < n_reloads; i++)
4570 gcc_assert (rld[i].in == 0
4571 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4572 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4573 #endif
4575 /* Compute reload_mode and reload_nregs. */
4576 for (i = 0; i < n_reloads; i++)
4578 rld[i].mode
4579 = (rld[i].inmode == VOIDmode
4580 || (GET_MODE_SIZE (rld[i].outmode)
4581 > GET_MODE_SIZE (rld[i].inmode)))
4582 ? rld[i].outmode : rld[i].inmode;
4584 rld[i].nregs = ira_reg_class_max_nregs [rld[i].rclass][rld[i].mode];
4587 /* Special case a simple move with an input reload and a
4588 destination of a hard reg, if the hard reg is ok, use it. */
4589 for (i = 0; i < n_reloads; i++)
4590 if (rld[i].when_needed == RELOAD_FOR_INPUT
4591 && GET_CODE (PATTERN (insn)) == SET
4592 && REG_P (SET_DEST (PATTERN (insn)))
4593 && (SET_SRC (PATTERN (insn)) == rld[i].in
4594 || SET_SRC (PATTERN (insn)) == rld[i].in_reg)
4595 && !elimination_target_reg_p (SET_DEST (PATTERN (insn))))
4597 rtx dest = SET_DEST (PATTERN (insn));
4598 unsigned int regno = REGNO (dest);
4600 if (regno < FIRST_PSEUDO_REGISTER
4601 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno)
4602 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4604 int nr = hard_regno_nregs[regno][rld[i].mode];
4605 int ok = 1, nri;
4607 for (nri = 1; nri < nr; nri ++)
4608 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].rclass], regno + nri))
4610 ok = 0;
4611 break;
4614 if (ok)
4615 rld[i].reg_rtx = dest;
4619 return retval;
4622 /* Return true if alternative number ALTNUM in constraint-string
4623 CONSTRAINT is guaranteed to accept a reloaded constant-pool reference.
4624 MEM gives the reference if it didn't need any reloads, otherwise it
4625 is null. */
4627 static bool
4628 alternative_allows_const_pool_ref (rtx mem ATTRIBUTE_UNUSED,
4629 const char *constraint, int altnum)
4631 int c;
4633 /* Skip alternatives before the one requested. */
4634 while (altnum > 0)
4636 while (*constraint++ != ',')
4638 altnum--;
4640 /* Scan the requested alternative for TARGET_MEM_CONSTRAINT or 'o'.
4641 If one of them is present, this alternative accepts the result of
4642 passing a constant-pool reference through find_reloads_toplev.
4644 The same is true of extra memory constraints if the address
4645 was reloaded into a register. However, the target may elect
4646 to disallow the original constant address, forcing it to be
4647 reloaded into a register instead. */
4648 for (; (c = *constraint) && c != ',' && c != '#';
4649 constraint += CONSTRAINT_LEN (c, constraint))
4651 enum constraint_num cn = lookup_constraint (constraint);
4652 if (insn_extra_memory_constraint (cn)
4653 && (mem == NULL || constraint_satisfied_p (mem, cn)))
4654 return true;
4656 return false;
4659 /* Scan X for memory references and scan the addresses for reloading.
4660 Also checks for references to "constant" regs that we want to eliminate
4661 and replaces them with the values they stand for.
4662 We may alter X destructively if it contains a reference to such.
4663 If X is just a constant reg, we return the equivalent value
4664 instead of X.
4666 IND_LEVELS says how many levels of indirect addressing this machine
4667 supports.
4669 OPNUM and TYPE identify the purpose of the reload.
4671 IS_SET_DEST is true if X is the destination of a SET, which is not
4672 appropriate to be replaced by a constant.
4674 INSN, if nonzero, is the insn in which we do the reload. It is used
4675 to determine if we may generate output reloads, and where to put USEs
4676 for pseudos that we have to replace with stack slots.
4678 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4679 result of find_reloads_address. */
4681 static rtx
4682 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4683 int ind_levels, int is_set_dest, rtx_insn *insn,
4684 int *address_reloaded)
4686 RTX_CODE code = GET_CODE (x);
4688 const char *fmt = GET_RTX_FORMAT (code);
4689 int i;
4690 int copied;
4692 if (code == REG)
4694 /* This code is duplicated for speed in find_reloads. */
4695 int regno = REGNO (x);
4696 if (reg_equiv_constant (regno) != 0 && !is_set_dest)
4697 x = reg_equiv_constant (regno);
4698 #if 0
4699 /* This creates (subreg (mem...)) which would cause an unnecessary
4700 reload of the mem. */
4701 else if (reg_equiv_mem (regno) != 0)
4702 x = reg_equiv_mem (regno);
4703 #endif
4704 else if (reg_equiv_memory_loc (regno)
4705 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
4707 rtx mem = make_memloc (x, regno);
4708 if (reg_equiv_address (regno)
4709 || ! rtx_equal_p (mem, reg_equiv_mem (regno)))
4711 /* If this is not a toplevel operand, find_reloads doesn't see
4712 this substitution. We have to emit a USE of the pseudo so
4713 that delete_output_reload can see it. */
4714 if (replace_reloads && recog_data.operand[opnum] != x)
4715 /* We mark the USE with QImode so that we recognize it
4716 as one that can be safely deleted at the end of
4717 reload. */
4718 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4719 QImode);
4720 x = mem;
4721 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4722 opnum, type, ind_levels, insn);
4723 if (!rtx_equal_p (x, mem))
4724 push_reg_equiv_alt_mem (regno, x);
4725 if (address_reloaded)
4726 *address_reloaded = i;
4729 return x;
4731 if (code == MEM)
4733 rtx tem = x;
4735 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4736 opnum, type, ind_levels, insn);
4737 if (address_reloaded)
4738 *address_reloaded = i;
4740 return tem;
4743 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4745 /* Check for SUBREG containing a REG that's equivalent to a
4746 constant. If the constant has a known value, truncate it
4747 right now. Similarly if we are extracting a single-word of a
4748 multi-word constant. If the constant is symbolic, allow it
4749 to be substituted normally. push_reload will strip the
4750 subreg later. The constant must not be VOIDmode, because we
4751 will lose the mode of the register (this should never happen
4752 because one of the cases above should handle it). */
4754 int regno = REGNO (SUBREG_REG (x));
4755 rtx tem;
4757 if (regno >= FIRST_PSEUDO_REGISTER
4758 && reg_renumber[regno] < 0
4759 && reg_equiv_constant (regno) != 0)
4761 tem =
4762 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant (regno),
4763 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4764 gcc_assert (tem);
4765 if (CONSTANT_P (tem)
4766 && !targetm.legitimate_constant_p (GET_MODE (x), tem))
4768 tem = force_const_mem (GET_MODE (x), tem);
4769 i = find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4770 &XEXP (tem, 0), opnum, type,
4771 ind_levels, insn);
4772 if (address_reloaded)
4773 *address_reloaded = i;
4775 return tem;
4778 /* If the subreg contains a reg that will be converted to a mem,
4779 attempt to convert the whole subreg to a (narrower or wider)
4780 memory reference instead. If this succeeds, we're done --
4781 otherwise fall through to check whether the inner reg still
4782 needs address reloads anyway. */
4784 if (regno >= FIRST_PSEUDO_REGISTER
4785 && reg_equiv_memory_loc (regno) != 0)
4787 tem = find_reloads_subreg_address (x, opnum, type, ind_levels,
4788 insn, address_reloaded);
4789 if (tem)
4790 return tem;
4794 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4796 if (fmt[i] == 'e')
4798 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4799 ind_levels, is_set_dest, insn,
4800 address_reloaded);
4801 /* If we have replaced a reg with it's equivalent memory loc -
4802 that can still be handled here e.g. if it's in a paradoxical
4803 subreg - we must make the change in a copy, rather than using
4804 a destructive change. This way, find_reloads can still elect
4805 not to do the change. */
4806 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4808 x = shallow_copy_rtx (x);
4809 copied = 1;
4811 XEXP (x, i) = new_part;
4814 return x;
4817 /* Return a mem ref for the memory equivalent of reg REGNO.
4818 This mem ref is not shared with anything. */
4820 static rtx
4821 make_memloc (rtx ad, int regno)
4823 /* We must rerun eliminate_regs, in case the elimination
4824 offsets have changed. */
4825 rtx tem
4826 = XEXP (eliminate_regs (reg_equiv_memory_loc (regno), VOIDmode, NULL_RTX),
4829 /* If TEM might contain a pseudo, we must copy it to avoid
4830 modifying it when we do the substitution for the reload. */
4831 if (rtx_varies_p (tem, 0))
4832 tem = copy_rtx (tem);
4834 tem = replace_equiv_address_nv (reg_equiv_memory_loc (regno), tem);
4835 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4837 /* Copy the result if it's still the same as the equivalence, to avoid
4838 modifying it when we do the substitution for the reload. */
4839 if (tem == reg_equiv_memory_loc (regno))
4840 tem = copy_rtx (tem);
4841 return tem;
4844 /* Returns true if AD could be turned into a valid memory reference
4845 to mode MODE in address space AS by reloading the part pointed to
4846 by PART into a register. */
4848 static int
4849 maybe_memory_address_addr_space_p (machine_mode mode, rtx ad,
4850 addr_space_t as, rtx *part)
4852 int retv;
4853 rtx tem = *part;
4854 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4856 *part = reg;
4857 retv = memory_address_addr_space_p (mode, ad, as);
4858 *part = tem;
4860 return retv;
4863 /* Record all reloads needed for handling memory address AD
4864 which appears in *LOC in a memory reference to mode MODE
4865 which itself is found in location *MEMREFLOC.
4866 Note that we take shortcuts assuming that no multi-reg machine mode
4867 occurs as part of an address.
4869 OPNUM and TYPE specify the purpose of this reload.
4871 IND_LEVELS says how many levels of indirect addressing this machine
4872 supports.
4874 INSN, if nonzero, is the insn in which we do the reload. It is used
4875 to determine if we may generate output reloads, and where to put USEs
4876 for pseudos that we have to replace with stack slots.
4878 Value is one if this address is reloaded or replaced as a whole; it is
4879 zero if the top level of this address was not reloaded or replaced, and
4880 it is -1 if it may or may not have been reloaded or replaced.
4882 Note that there is no verification that the address will be valid after
4883 this routine does its work. Instead, we rely on the fact that the address
4884 was valid when reload started. So we need only undo things that reload
4885 could have broken. These are wrong register types, pseudos not allocated
4886 to a hard register, and frame pointer elimination. */
4888 static int
4889 find_reloads_address (machine_mode mode, rtx *memrefloc, rtx ad,
4890 rtx *loc, int opnum, enum reload_type type,
4891 int ind_levels, rtx_insn *insn)
4893 addr_space_t as = memrefloc? MEM_ADDR_SPACE (*memrefloc)
4894 : ADDR_SPACE_GENERIC;
4895 int regno;
4896 int removed_and = 0;
4897 int op_index;
4898 rtx tem;
4900 /* If the address is a register, see if it is a legitimate address and
4901 reload if not. We first handle the cases where we need not reload
4902 or where we must reload in a non-standard way. */
4904 if (REG_P (ad))
4906 regno = REGNO (ad);
4908 if (reg_equiv_constant (regno) != 0)
4910 find_reloads_address_part (reg_equiv_constant (regno), loc,
4911 base_reg_class (mode, as, MEM, SCRATCH),
4912 GET_MODE (ad), opnum, type, ind_levels);
4913 return 1;
4916 tem = reg_equiv_memory_loc (regno);
4917 if (tem != 0)
4919 if (reg_equiv_address (regno) != 0 || num_not_at_initial_offset)
4921 tem = make_memloc (ad, regno);
4922 if (! strict_memory_address_addr_space_p (GET_MODE (tem),
4923 XEXP (tem, 0),
4924 MEM_ADDR_SPACE (tem)))
4926 rtx orig = tem;
4928 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4929 &XEXP (tem, 0), opnum,
4930 ADDR_TYPE (type), ind_levels, insn);
4931 if (!rtx_equal_p (tem, orig))
4932 push_reg_equiv_alt_mem (regno, tem);
4934 /* We can avoid a reload if the register's equivalent memory
4935 expression is valid as an indirect memory address.
4936 But not all addresses are valid in a mem used as an indirect
4937 address: only reg or reg+constant. */
4939 if (ind_levels > 0
4940 && strict_memory_address_addr_space_p (mode, tem, as)
4941 && (REG_P (XEXP (tem, 0))
4942 || (GET_CODE (XEXP (tem, 0)) == PLUS
4943 && REG_P (XEXP (XEXP (tem, 0), 0))
4944 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4946 /* TEM is not the same as what we'll be replacing the
4947 pseudo with after reload, put a USE in front of INSN
4948 in the final reload pass. */
4949 if (replace_reloads
4950 && num_not_at_initial_offset
4951 && ! rtx_equal_p (tem, reg_equiv_mem (regno)))
4953 *loc = tem;
4954 /* We mark the USE with QImode so that we
4955 recognize it as one that can be safely
4956 deleted at the end of reload. */
4957 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4958 insn), QImode);
4960 /* This doesn't really count as replacing the address
4961 as a whole, since it is still a memory access. */
4963 return 0;
4965 ad = tem;
4969 /* The only remaining case where we can avoid a reload is if this is a
4970 hard register that is valid as a base register and which is not the
4971 subject of a CLOBBER in this insn. */
4973 else if (regno < FIRST_PSEUDO_REGISTER
4974 && regno_ok_for_base_p (regno, mode, as, MEM, SCRATCH)
4975 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4976 return 0;
4978 /* If we do not have one of the cases above, we must do the reload. */
4979 push_reload (ad, NULL_RTX, loc, (rtx*) 0,
4980 base_reg_class (mode, as, MEM, SCRATCH),
4981 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4982 return 1;
4985 if (strict_memory_address_addr_space_p (mode, ad, as))
4987 /* The address appears valid, so reloads are not needed.
4988 But the address may contain an eliminable register.
4989 This can happen because a machine with indirect addressing
4990 may consider a pseudo register by itself a valid address even when
4991 it has failed to get a hard reg.
4992 So do a tree-walk to find and eliminate all such regs. */
4994 /* But first quickly dispose of a common case. */
4995 if (GET_CODE (ad) == PLUS
4996 && CONST_INT_P (XEXP (ad, 1))
4997 && REG_P (XEXP (ad, 0))
4998 && reg_equiv_constant (REGNO (XEXP (ad, 0))) == 0)
4999 return 0;
5001 subst_reg_equivs_changed = 0;
5002 *loc = subst_reg_equivs (ad, insn);
5004 if (! subst_reg_equivs_changed)
5005 return 0;
5007 /* Check result for validity after substitution. */
5008 if (strict_memory_address_addr_space_p (mode, ad, as))
5009 return 0;
5012 #ifdef LEGITIMIZE_RELOAD_ADDRESS
5015 if (memrefloc && ADDR_SPACE_GENERIC_P (as))
5017 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
5018 ind_levels, win);
5020 break;
5021 win:
5022 *memrefloc = copy_rtx (*memrefloc);
5023 XEXP (*memrefloc, 0) = ad;
5024 move_replacements (&ad, &XEXP (*memrefloc, 0));
5025 return -1;
5027 while (0);
5028 #endif
5030 /* The address is not valid. We have to figure out why. First see if
5031 we have an outer AND and remove it if so. Then analyze what's inside. */
5033 if (GET_CODE (ad) == AND)
5035 removed_and = 1;
5036 loc = &XEXP (ad, 0);
5037 ad = *loc;
5040 /* One possibility for why the address is invalid is that it is itself
5041 a MEM. This can happen when the frame pointer is being eliminated, a
5042 pseudo is not allocated to a hard register, and the offset between the
5043 frame and stack pointers is not its initial value. In that case the
5044 pseudo will have been replaced by a MEM referring to the
5045 stack pointer. */
5046 if (MEM_P (ad))
5048 /* First ensure that the address in this MEM is valid. Then, unless
5049 indirect addresses are valid, reload the MEM into a register. */
5050 tem = ad;
5051 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
5052 opnum, ADDR_TYPE (type),
5053 ind_levels == 0 ? 0 : ind_levels - 1, insn);
5055 /* If tem was changed, then we must create a new memory reference to
5056 hold it and store it back into memrefloc. */
5057 if (tem != ad && memrefloc)
5059 *memrefloc = copy_rtx (*memrefloc);
5060 copy_replacements (tem, XEXP (*memrefloc, 0));
5061 loc = &XEXP (*memrefloc, 0);
5062 if (removed_and)
5063 loc = &XEXP (*loc, 0);
5066 /* Check similar cases as for indirect addresses as above except
5067 that we can allow pseudos and a MEM since they should have been
5068 taken care of above. */
5070 if (ind_levels == 0
5071 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
5072 || MEM_P (XEXP (tem, 0))
5073 || ! (REG_P (XEXP (tem, 0))
5074 || (GET_CODE (XEXP (tem, 0)) == PLUS
5075 && REG_P (XEXP (XEXP (tem, 0), 0))
5076 && CONST_INT_P (XEXP (XEXP (tem, 0), 1)))))
5078 /* Must use TEM here, not AD, since it is the one that will
5079 have any subexpressions reloaded, if needed. */
5080 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
5081 base_reg_class (mode, as, MEM, SCRATCH), GET_MODE (tem),
5082 VOIDmode, 0,
5083 0, opnum, type);
5084 return ! removed_and;
5086 else
5087 return 0;
5090 /* If we have address of a stack slot but it's not valid because the
5091 displacement is too large, compute the sum in a register.
5092 Handle all base registers here, not just fp/ap/sp, because on some
5093 targets (namely SH) we can also get too large displacements from
5094 big-endian corrections. */
5095 else if (GET_CODE (ad) == PLUS
5096 && REG_P (XEXP (ad, 0))
5097 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
5098 && CONST_INT_P (XEXP (ad, 1))
5099 && (regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as, PLUS,
5100 CONST_INT)
5101 /* Similarly, if we were to reload the base register and the
5102 mem+offset address is still invalid, then we want to reload
5103 the whole address, not just the base register. */
5104 || ! maybe_memory_address_addr_space_p
5105 (mode, ad, as, &(XEXP (ad, 0)))))
5108 /* Unshare the MEM rtx so we can safely alter it. */
5109 if (memrefloc)
5111 *memrefloc = copy_rtx (*memrefloc);
5112 loc = &XEXP (*memrefloc, 0);
5113 if (removed_and)
5114 loc = &XEXP (*loc, 0);
5117 if (double_reg_address_ok
5118 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, as,
5119 PLUS, CONST_INT))
5121 /* Unshare the sum as well. */
5122 *loc = ad = copy_rtx (ad);
5124 /* Reload the displacement into an index reg.
5125 We assume the frame pointer or arg pointer is a base reg. */
5126 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
5127 INDEX_REG_CLASS, GET_MODE (ad), opnum,
5128 type, ind_levels);
5129 return 0;
5131 else
5133 /* If the sum of two regs is not necessarily valid,
5134 reload the sum into a base reg.
5135 That will at least work. */
5136 find_reloads_address_part (ad, loc,
5137 base_reg_class (mode, as, MEM, SCRATCH),
5138 GET_MODE (ad), opnum, type, ind_levels);
5140 return ! removed_and;
5143 /* If we have an indexed stack slot, there are three possible reasons why
5144 it might be invalid: The index might need to be reloaded, the address
5145 might have been made by frame pointer elimination and hence have a
5146 constant out of range, or both reasons might apply.
5148 We can easily check for an index needing reload, but even if that is the
5149 case, we might also have an invalid constant. To avoid making the
5150 conservative assumption and requiring two reloads, we see if this address
5151 is valid when not interpreted strictly. If it is, the only problem is
5152 that the index needs a reload and find_reloads_address_1 will take care
5153 of it.
5155 Handle all base registers here, not just fp/ap/sp, because on some
5156 targets (namely SPARC) we can also get invalid addresses from preventive
5157 subreg big-endian corrections made by find_reloads_toplev. We
5158 can also get expressions involving LO_SUM (rather than PLUS) from
5159 find_reloads_subreg_address.
5161 If we decide to do something, it must be that `double_reg_address_ok'
5162 is true. We generate a reload of the base register + constant and
5163 rework the sum so that the reload register will be added to the index.
5164 This is safe because we know the address isn't shared.
5166 We check for the base register as both the first and second operand of
5167 the innermost PLUS and/or LO_SUM. */
5169 for (op_index = 0; op_index < 2; ++op_index)
5171 rtx operand, addend;
5172 enum rtx_code inner_code;
5174 if (GET_CODE (ad) != PLUS)
5175 continue;
5177 inner_code = GET_CODE (XEXP (ad, 0));
5178 if (!(GET_CODE (ad) == PLUS
5179 && CONST_INT_P (XEXP (ad, 1))
5180 && (inner_code == PLUS || inner_code == LO_SUM)))
5181 continue;
5183 operand = XEXP (XEXP (ad, 0), op_index);
5184 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
5185 continue;
5187 addend = XEXP (XEXP (ad, 0), 1 - op_index);
5189 if ((regno_ok_for_base_p (REGNO (operand), mode, as, inner_code,
5190 GET_CODE (addend))
5191 || operand == frame_pointer_rtx
5192 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
5193 || operand == hard_frame_pointer_rtx
5194 #endif
5195 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5196 || operand == arg_pointer_rtx
5197 #endif
5198 || operand == stack_pointer_rtx)
5199 && ! maybe_memory_address_addr_space_p
5200 (mode, ad, as, &XEXP (XEXP (ad, 0), 1 - op_index)))
5202 rtx offset_reg;
5203 enum reg_class cls;
5205 offset_reg = plus_constant (GET_MODE (ad), operand,
5206 INTVAL (XEXP (ad, 1)));
5208 /* Form the adjusted address. */
5209 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5210 ad = gen_rtx_PLUS (GET_MODE (ad),
5211 op_index == 0 ? offset_reg : addend,
5212 op_index == 0 ? addend : offset_reg);
5213 else
5214 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5215 op_index == 0 ? offset_reg : addend,
5216 op_index == 0 ? addend : offset_reg);
5217 *loc = ad;
5219 cls = base_reg_class (mode, as, MEM, GET_CODE (addend));
5220 find_reloads_address_part (XEXP (ad, op_index),
5221 &XEXP (ad, op_index), cls,
5222 GET_MODE (ad), opnum, type, ind_levels);
5223 find_reloads_address_1 (mode, as,
5224 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5225 GET_CODE (XEXP (ad, op_index)),
5226 &XEXP (ad, 1 - op_index), opnum,
5227 type, 0, insn);
5229 return 0;
5233 /* See if address becomes valid when an eliminable register
5234 in a sum is replaced. */
5236 tem = ad;
5237 if (GET_CODE (ad) == PLUS)
5238 tem = subst_indexed_address (ad);
5239 if (tem != ad && strict_memory_address_addr_space_p (mode, tem, as))
5241 /* Ok, we win that way. Replace any additional eliminable
5242 registers. */
5244 subst_reg_equivs_changed = 0;
5245 tem = subst_reg_equivs (tem, insn);
5247 /* Make sure that didn't make the address invalid again. */
5249 if (! subst_reg_equivs_changed
5250 || strict_memory_address_addr_space_p (mode, tem, as))
5252 *loc = tem;
5253 return 0;
5257 /* If constants aren't valid addresses, reload the constant address
5258 into a register. */
5259 if (CONSTANT_P (ad) && ! strict_memory_address_addr_space_p (mode, ad, as))
5261 machine_mode address_mode = GET_MODE (ad);
5262 if (address_mode == VOIDmode)
5263 address_mode = targetm.addr_space.address_mode (as);
5265 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5266 Unshare it so we can safely alter it. */
5267 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5268 && CONSTANT_POOL_ADDRESS_P (ad))
5270 *memrefloc = copy_rtx (*memrefloc);
5271 loc = &XEXP (*memrefloc, 0);
5272 if (removed_and)
5273 loc = &XEXP (*loc, 0);
5276 find_reloads_address_part (ad, loc,
5277 base_reg_class (mode, as, MEM, SCRATCH),
5278 address_mode, opnum, type, ind_levels);
5279 return ! removed_and;
5282 return find_reloads_address_1 (mode, as, ad, 0, MEM, SCRATCH, loc,
5283 opnum, type, ind_levels, insn);
5286 /* Find all pseudo regs appearing in AD
5287 that are eliminable in favor of equivalent values
5288 and do not have hard regs; replace them by their equivalents.
5289 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5290 front of it for pseudos that we have to replace with stack slots. */
5292 static rtx
5293 subst_reg_equivs (rtx ad, rtx_insn *insn)
5295 RTX_CODE code = GET_CODE (ad);
5296 int i;
5297 const char *fmt;
5299 switch (code)
5301 case HIGH:
5302 case CONST:
5303 CASE_CONST_ANY:
5304 case SYMBOL_REF:
5305 case LABEL_REF:
5306 case PC:
5307 case CC0:
5308 return ad;
5310 case REG:
5312 int regno = REGNO (ad);
5314 if (reg_equiv_constant (regno) != 0)
5316 subst_reg_equivs_changed = 1;
5317 return reg_equiv_constant (regno);
5319 if (reg_equiv_memory_loc (regno) && num_not_at_initial_offset)
5321 rtx mem = make_memloc (ad, regno);
5322 if (! rtx_equal_p (mem, reg_equiv_mem (regno)))
5324 subst_reg_equivs_changed = 1;
5325 /* We mark the USE with QImode so that we recognize it
5326 as one that can be safely deleted at the end of
5327 reload. */
5328 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5329 QImode);
5330 return mem;
5334 return ad;
5336 case PLUS:
5337 /* Quickly dispose of a common case. */
5338 if (XEXP (ad, 0) == frame_pointer_rtx
5339 && CONST_INT_P (XEXP (ad, 1)))
5340 return ad;
5341 break;
5343 default:
5344 break;
5347 fmt = GET_RTX_FORMAT (code);
5348 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5349 if (fmt[i] == 'e')
5350 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5351 return ad;
5354 /* Compute the sum of X and Y, making canonicalizations assumed in an
5355 address, namely: sum constant integers, surround the sum of two
5356 constants with a CONST, put the constant as the second operand, and
5357 group the constant on the outermost sum.
5359 This routine assumes both inputs are already in canonical form. */
5362 form_sum (machine_mode mode, rtx x, rtx y)
5364 rtx tem;
5366 gcc_assert (GET_MODE (x) == mode || GET_MODE (x) == VOIDmode);
5367 gcc_assert (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode);
5369 if (CONST_INT_P (x))
5370 return plus_constant (mode, y, INTVAL (x));
5371 else if (CONST_INT_P (y))
5372 return plus_constant (mode, x, INTVAL (y));
5373 else if (CONSTANT_P (x))
5374 tem = x, x = y, y = tem;
5376 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5377 return form_sum (mode, XEXP (x, 0), form_sum (mode, XEXP (x, 1), y));
5379 /* Note that if the operands of Y are specified in the opposite
5380 order in the recursive calls below, infinite recursion will occur. */
5381 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5382 return form_sum (mode, form_sum (mode, x, XEXP (y, 0)), XEXP (y, 1));
5384 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5385 constant will have been placed second. */
5386 if (CONSTANT_P (x) && CONSTANT_P (y))
5388 if (GET_CODE (x) == CONST)
5389 x = XEXP (x, 0);
5390 if (GET_CODE (y) == CONST)
5391 y = XEXP (y, 0);
5393 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5396 return gen_rtx_PLUS (mode, x, y);
5399 /* If ADDR is a sum containing a pseudo register that should be
5400 replaced with a constant (from reg_equiv_constant),
5401 return the result of doing so, and also apply the associative
5402 law so that the result is more likely to be a valid address.
5403 (But it is not guaranteed to be one.)
5405 Note that at most one register is replaced, even if more are
5406 replaceable. Also, we try to put the result into a canonical form
5407 so it is more likely to be a valid address.
5409 In all other cases, return ADDR. */
5411 static rtx
5412 subst_indexed_address (rtx addr)
5414 rtx op0 = 0, op1 = 0, op2 = 0;
5415 rtx tem;
5416 int regno;
5418 if (GET_CODE (addr) == PLUS)
5420 /* Try to find a register to replace. */
5421 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5422 if (REG_P (op0)
5423 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5424 && reg_renumber[regno] < 0
5425 && reg_equiv_constant (regno) != 0)
5426 op0 = reg_equiv_constant (regno);
5427 else if (REG_P (op1)
5428 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5429 && reg_renumber[regno] < 0
5430 && reg_equiv_constant (regno) != 0)
5431 op1 = reg_equiv_constant (regno);
5432 else if (GET_CODE (op0) == PLUS
5433 && (tem = subst_indexed_address (op0)) != op0)
5434 op0 = tem;
5435 else if (GET_CODE (op1) == PLUS
5436 && (tem = subst_indexed_address (op1)) != op1)
5437 op1 = tem;
5438 else
5439 return addr;
5441 /* Pick out up to three things to add. */
5442 if (GET_CODE (op1) == PLUS)
5443 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5444 else if (GET_CODE (op0) == PLUS)
5445 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5447 /* Compute the sum. */
5448 if (op2 != 0)
5449 op1 = form_sum (GET_MODE (addr), op1, op2);
5450 if (op1 != 0)
5451 op0 = form_sum (GET_MODE (addr), op0, op1);
5453 return op0;
5455 return addr;
5458 /* Update the REG_INC notes for an insn. It updates all REG_INC
5459 notes for the instruction which refer to REGNO the to refer
5460 to the reload number.
5462 INSN is the insn for which any REG_INC notes need updating.
5464 REGNO is the register number which has been reloaded.
5466 RELOADNUM is the reload number. */
5468 static void
5469 update_auto_inc_notes (rtx_insn *insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5470 int reloadnum ATTRIBUTE_UNUSED)
5472 #ifdef AUTO_INC_DEC
5473 rtx link;
5475 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5476 if (REG_NOTE_KIND (link) == REG_INC
5477 && (int) REGNO (XEXP (link, 0)) == regno)
5478 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5479 #endif
5482 /* Record the pseudo registers we must reload into hard registers in a
5483 subexpression of a would-be memory address, X referring to a value
5484 in mode MODE. (This function is not called if the address we find
5485 is strictly valid.)
5487 CONTEXT = 1 means we are considering regs as index regs,
5488 = 0 means we are considering them as base regs.
5489 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5490 or an autoinc code.
5491 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5492 is the code of the index part of the address. Otherwise, pass SCRATCH
5493 for this argument.
5494 OPNUM and TYPE specify the purpose of any reloads made.
5496 IND_LEVELS says how many levels of indirect addressing are
5497 supported at this point in the address.
5499 INSN, if nonzero, is the insn in which we do the reload. It is used
5500 to determine if we may generate output reloads.
5502 We return nonzero if X, as a whole, is reloaded or replaced. */
5504 /* Note that we take shortcuts assuming that no multi-reg machine mode
5505 occurs as part of an address.
5506 Also, this is not fully machine-customizable; it works for machines
5507 such as VAXen and 68000's and 32000's, but other possible machines
5508 could have addressing modes that this does not handle right.
5509 If you add push_reload calls here, you need to make sure gen_reload
5510 handles those cases gracefully. */
5512 static int
5513 find_reloads_address_1 (machine_mode mode, addr_space_t as,
5514 rtx x, int context,
5515 enum rtx_code outer_code, enum rtx_code index_code,
5516 rtx *loc, int opnum, enum reload_type type,
5517 int ind_levels, rtx_insn *insn)
5519 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, AS, OUTER, INDEX) \
5520 ((CONTEXT) == 0 \
5521 ? regno_ok_for_base_p (REGNO, MODE, AS, OUTER, INDEX) \
5522 : REGNO_OK_FOR_INDEX_P (REGNO))
5524 enum reg_class context_reg_class;
5525 RTX_CODE code = GET_CODE (x);
5526 bool reloaded_inner_of_autoinc = false;
5528 if (context == 1)
5529 context_reg_class = INDEX_REG_CLASS;
5530 else
5531 context_reg_class = base_reg_class (mode, as, outer_code, index_code);
5533 switch (code)
5535 case PLUS:
5537 rtx orig_op0 = XEXP (x, 0);
5538 rtx orig_op1 = XEXP (x, 1);
5539 RTX_CODE code0 = GET_CODE (orig_op0);
5540 RTX_CODE code1 = GET_CODE (orig_op1);
5541 rtx op0 = orig_op0;
5542 rtx op1 = orig_op1;
5544 if (GET_CODE (op0) == SUBREG)
5546 op0 = SUBREG_REG (op0);
5547 code0 = GET_CODE (op0);
5548 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5549 op0 = gen_rtx_REG (word_mode,
5550 (REGNO (op0) +
5551 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5552 GET_MODE (SUBREG_REG (orig_op0)),
5553 SUBREG_BYTE (orig_op0),
5554 GET_MODE (orig_op0))));
5557 if (GET_CODE (op1) == SUBREG)
5559 op1 = SUBREG_REG (op1);
5560 code1 = GET_CODE (op1);
5561 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5562 /* ??? Why is this given op1's mode and above for
5563 ??? op0 SUBREGs we use word_mode? */
5564 op1 = gen_rtx_REG (GET_MODE (op1),
5565 (REGNO (op1) +
5566 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5567 GET_MODE (SUBREG_REG (orig_op1)),
5568 SUBREG_BYTE (orig_op1),
5569 GET_MODE (orig_op1))));
5571 /* Plus in the index register may be created only as a result of
5572 register rematerialization for expression like &localvar*4. Reload it.
5573 It may be possible to combine the displacement on the outer level,
5574 but it is probably not worthwhile to do so. */
5575 if (context == 1)
5577 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5578 opnum, ADDR_TYPE (type), ind_levels, insn);
5579 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5580 context_reg_class,
5581 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5582 return 1;
5585 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5586 || code0 == ZERO_EXTEND || code1 == MEM)
5588 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5589 &XEXP (x, 0), opnum, type, ind_levels,
5590 insn);
5591 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5592 &XEXP (x, 1), opnum, type, ind_levels,
5593 insn);
5596 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5597 || code1 == ZERO_EXTEND || code0 == MEM)
5599 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5600 &XEXP (x, 0), opnum, type, ind_levels,
5601 insn);
5602 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5603 &XEXP (x, 1), opnum, type, ind_levels,
5604 insn);
5607 else if (code0 == CONST_INT || code0 == CONST
5608 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5609 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, code0,
5610 &XEXP (x, 1), opnum, type, ind_levels,
5611 insn);
5613 else if (code1 == CONST_INT || code1 == CONST
5614 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5615 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, code1,
5616 &XEXP (x, 0), opnum, type, ind_levels,
5617 insn);
5619 else if (code0 == REG && code1 == REG)
5621 if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5622 && regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5623 return 0;
5624 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5625 && regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5626 return 0;
5627 else if (regno_ok_for_base_p (REGNO (op0), mode, as, PLUS, REG))
5628 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5629 &XEXP (x, 1), opnum, type, ind_levels,
5630 insn);
5631 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5632 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5633 &XEXP (x, 0), opnum, type, ind_levels,
5634 insn);
5635 else if (regno_ok_for_base_p (REGNO (op1), mode, as, PLUS, REG))
5636 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5637 &XEXP (x, 0), opnum, type, ind_levels,
5638 insn);
5639 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5640 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5641 &XEXP (x, 1), opnum, type, ind_levels,
5642 insn);
5643 else
5645 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5646 &XEXP (x, 0), opnum, type, ind_levels,
5647 insn);
5648 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5649 &XEXP (x, 1), opnum, type, ind_levels,
5650 insn);
5654 else if (code0 == REG)
5656 find_reloads_address_1 (mode, as, orig_op0, 1, PLUS, SCRATCH,
5657 &XEXP (x, 0), opnum, type, ind_levels,
5658 insn);
5659 find_reloads_address_1 (mode, as, orig_op1, 0, PLUS, REG,
5660 &XEXP (x, 1), opnum, type, ind_levels,
5661 insn);
5664 else if (code1 == REG)
5666 find_reloads_address_1 (mode, as, orig_op1, 1, PLUS, SCRATCH,
5667 &XEXP (x, 1), opnum, type, ind_levels,
5668 insn);
5669 find_reloads_address_1 (mode, as, orig_op0, 0, PLUS, REG,
5670 &XEXP (x, 0), opnum, type, ind_levels,
5671 insn);
5675 return 0;
5677 case POST_MODIFY:
5678 case PRE_MODIFY:
5680 rtx op0 = XEXP (x, 0);
5681 rtx op1 = XEXP (x, 1);
5682 enum rtx_code index_code;
5683 int regno;
5684 int reloadnum;
5686 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5687 return 0;
5689 /* Currently, we only support {PRE,POST}_MODIFY constructs
5690 where a base register is {inc,dec}remented by the contents
5691 of another register or by a constant value. Thus, these
5692 operands must match. */
5693 gcc_assert (op0 == XEXP (op1, 0));
5695 /* Require index register (or constant). Let's just handle the
5696 register case in the meantime... If the target allows
5697 auto-modify by a constant then we could try replacing a pseudo
5698 register with its equivalent constant where applicable.
5700 We also handle the case where the register was eliminated
5701 resulting in a PLUS subexpression.
5703 If we later decide to reload the whole PRE_MODIFY or
5704 POST_MODIFY, inc_for_reload might clobber the reload register
5705 before reading the index. The index register might therefore
5706 need to live longer than a TYPE reload normally would, so be
5707 conservative and class it as RELOAD_OTHER. */
5708 if ((REG_P (XEXP (op1, 1))
5709 && !REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5710 || GET_CODE (XEXP (op1, 1)) == PLUS)
5711 find_reloads_address_1 (mode, as, XEXP (op1, 1), 1, code, SCRATCH,
5712 &XEXP (op1, 1), opnum, RELOAD_OTHER,
5713 ind_levels, insn);
5715 gcc_assert (REG_P (XEXP (op1, 0)));
5717 regno = REGNO (XEXP (op1, 0));
5718 index_code = GET_CODE (XEXP (op1, 1));
5720 /* A register that is incremented cannot be constant! */
5721 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5722 || reg_equiv_constant (regno) == 0);
5724 /* Handle a register that is equivalent to a memory location
5725 which cannot be addressed directly. */
5726 if (reg_equiv_memory_loc (regno) != 0
5727 && (reg_equiv_address (regno) != 0
5728 || num_not_at_initial_offset))
5730 rtx tem = make_memloc (XEXP (x, 0), regno);
5732 if (reg_equiv_address (regno)
5733 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5735 rtx orig = tem;
5737 /* First reload the memory location's address.
5738 We can't use ADDR_TYPE (type) here, because we need to
5739 write back the value after reading it, hence we actually
5740 need two registers. */
5741 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5742 &XEXP (tem, 0), opnum,
5743 RELOAD_OTHER,
5744 ind_levels, insn);
5746 if (!rtx_equal_p (tem, orig))
5747 push_reg_equiv_alt_mem (regno, tem);
5749 /* Then reload the memory location into a base
5750 register. */
5751 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5752 &XEXP (op1, 0),
5753 base_reg_class (mode, as,
5754 code, index_code),
5755 GET_MODE (x), GET_MODE (x), 0,
5756 0, opnum, RELOAD_OTHER);
5758 update_auto_inc_notes (this_insn, regno, reloadnum);
5759 return 0;
5763 if (reg_renumber[regno] >= 0)
5764 regno = reg_renumber[regno];
5766 /* We require a base register here... */
5767 if (!regno_ok_for_base_p (regno, GET_MODE (x), as, code, index_code))
5769 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5770 &XEXP (op1, 0), &XEXP (x, 0),
5771 base_reg_class (mode, as,
5772 code, index_code),
5773 GET_MODE (x), GET_MODE (x), 0, 0,
5774 opnum, RELOAD_OTHER);
5776 update_auto_inc_notes (this_insn, regno, reloadnum);
5777 return 0;
5780 return 0;
5782 case POST_INC:
5783 case POST_DEC:
5784 case PRE_INC:
5785 case PRE_DEC:
5786 if (REG_P (XEXP (x, 0)))
5788 int regno = REGNO (XEXP (x, 0));
5789 int value = 0;
5790 rtx x_orig = x;
5792 /* A register that is incremented cannot be constant! */
5793 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5794 || reg_equiv_constant (regno) == 0);
5796 /* Handle a register that is equivalent to a memory location
5797 which cannot be addressed directly. */
5798 if (reg_equiv_memory_loc (regno) != 0
5799 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5801 rtx tem = make_memloc (XEXP (x, 0), regno);
5802 if (reg_equiv_address (regno)
5803 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5805 rtx orig = tem;
5807 /* First reload the memory location's address.
5808 We can't use ADDR_TYPE (type) here, because we need to
5809 write back the value after reading it, hence we actually
5810 need two registers. */
5811 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5812 &XEXP (tem, 0), opnum, type,
5813 ind_levels, insn);
5814 reloaded_inner_of_autoinc = true;
5815 if (!rtx_equal_p (tem, orig))
5816 push_reg_equiv_alt_mem (regno, tem);
5817 /* Put this inside a new increment-expression. */
5818 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5819 /* Proceed to reload that, as if it contained a register. */
5823 /* If we have a hard register that is ok in this incdec context,
5824 don't make a reload. If the register isn't nice enough for
5825 autoincdec, we can reload it. But, if an autoincrement of a
5826 register that we here verified as playing nice, still outside
5827 isn't "valid", it must be that no autoincrement is "valid".
5828 If that is true and something made an autoincrement anyway,
5829 this must be a special context where one is allowed.
5830 (For example, a "push" instruction.)
5831 We can't improve this address, so leave it alone. */
5833 /* Otherwise, reload the autoincrement into a suitable hard reg
5834 and record how much to increment by. */
5836 if (reg_renumber[regno] >= 0)
5837 regno = reg_renumber[regno];
5838 if (regno >= FIRST_PSEUDO_REGISTER
5839 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, code,
5840 index_code))
5842 int reloadnum;
5844 /* If we can output the register afterwards, do so, this
5845 saves the extra update.
5846 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5847 CALL_INSN - and it does not set CC0.
5848 But don't do this if we cannot directly address the
5849 memory location, since this will make it harder to
5850 reuse address reloads, and increases register pressure.
5851 Also don't do this if we can probably update x directly. */
5852 rtx equiv = (MEM_P (XEXP (x, 0))
5853 ? XEXP (x, 0)
5854 : reg_equiv_mem (regno));
5855 enum insn_code icode = optab_handler (add_optab, GET_MODE (x));
5856 if (insn && NONJUMP_INSN_P (insn) && equiv
5857 && memory_operand (equiv, GET_MODE (equiv))
5858 #ifdef HAVE_cc0
5859 && ! sets_cc0_p (PATTERN (insn))
5860 #endif
5861 && ! (icode != CODE_FOR_nothing
5862 && insn_operand_matches (icode, 0, equiv)
5863 && insn_operand_matches (icode, 1, equiv))
5864 /* Using RELOAD_OTHER means we emit this and the reload we
5865 made earlier in the wrong order. */
5866 && !reloaded_inner_of_autoinc)
5868 /* We use the original pseudo for loc, so that
5869 emit_reload_insns() knows which pseudo this
5870 reload refers to and updates the pseudo rtx, not
5871 its equivalent memory location, as well as the
5872 corresponding entry in reg_last_reload_reg. */
5873 loc = &XEXP (x_orig, 0);
5874 x = XEXP (x, 0);
5875 reloadnum
5876 = push_reload (x, x, loc, loc,
5877 context_reg_class,
5878 GET_MODE (x), GET_MODE (x), 0, 0,
5879 opnum, RELOAD_OTHER);
5881 else
5883 reloadnum
5884 = push_reload (x, x, loc, (rtx*) 0,
5885 context_reg_class,
5886 GET_MODE (x), GET_MODE (x), 0, 0,
5887 opnum, type);
5888 rld[reloadnum].inc
5889 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5891 value = 1;
5894 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5895 reloadnum);
5897 return value;
5899 return 0;
5901 case TRUNCATE:
5902 case SIGN_EXTEND:
5903 case ZERO_EXTEND:
5904 /* Look for parts to reload in the inner expression and reload them
5905 too, in addition to this operation. Reloading all inner parts in
5906 addition to this one shouldn't be necessary, but at this point,
5907 we don't know if we can possibly omit any part that *can* be
5908 reloaded. Targets that are better off reloading just either part
5909 (or perhaps even a different part of an outer expression), should
5910 define LEGITIMIZE_RELOAD_ADDRESS. */
5911 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), as, XEXP (x, 0),
5912 context, code, SCRATCH, &XEXP (x, 0), opnum,
5913 type, ind_levels, insn);
5914 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5915 context_reg_class,
5916 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5917 return 1;
5919 case MEM:
5920 /* This is probably the result of a substitution, by eliminate_regs, of
5921 an equivalent address for a pseudo that was not allocated to a hard
5922 register. Verify that the specified address is valid and reload it
5923 into a register.
5925 Since we know we are going to reload this item, don't decrement for
5926 the indirection level.
5928 Note that this is actually conservative: it would be slightly more
5929 efficient to use the value of SPILL_INDIRECT_LEVELS from
5930 reload1.c here. */
5932 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5933 opnum, ADDR_TYPE (type), ind_levels, insn);
5934 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5935 context_reg_class,
5936 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5937 return 1;
5939 case REG:
5941 int regno = REGNO (x);
5943 if (reg_equiv_constant (regno) != 0)
5945 find_reloads_address_part (reg_equiv_constant (regno), loc,
5946 context_reg_class,
5947 GET_MODE (x), opnum, type, ind_levels);
5948 return 1;
5951 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5952 that feeds this insn. */
5953 if (reg_equiv_mem (regno) != 0)
5955 push_reload (reg_equiv_mem (regno), NULL_RTX, loc, (rtx*) 0,
5956 context_reg_class,
5957 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5958 return 1;
5960 #endif
5962 if (reg_equiv_memory_loc (regno)
5963 && (reg_equiv_address (regno) != 0 || num_not_at_initial_offset))
5965 rtx tem = make_memloc (x, regno);
5966 if (reg_equiv_address (regno) != 0
5967 || ! rtx_equal_p (tem, reg_equiv_mem (regno)))
5969 x = tem;
5970 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5971 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5972 ind_levels, insn);
5973 if (!rtx_equal_p (x, tem))
5974 push_reg_equiv_alt_mem (regno, x);
5978 if (reg_renumber[regno] >= 0)
5979 regno = reg_renumber[regno];
5981 if (regno >= FIRST_PSEUDO_REGISTER
5982 || !REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
5983 index_code))
5985 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5986 context_reg_class,
5987 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5988 return 1;
5991 /* If a register appearing in an address is the subject of a CLOBBER
5992 in this insn, reload it into some other register to be safe.
5993 The CLOBBER is supposed to make the register unavailable
5994 from before this insn to after it. */
5995 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5997 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5998 context_reg_class,
5999 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6000 return 1;
6003 return 0;
6005 case SUBREG:
6006 if (REG_P (SUBREG_REG (x)))
6008 /* If this is a SUBREG of a hard register and the resulting register
6009 is of the wrong class, reload the whole SUBREG. This avoids
6010 needless copies if SUBREG_REG is multi-word. */
6011 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6013 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
6015 if (!REG_OK_FOR_CONTEXT (context, regno, mode, as, outer_code,
6016 index_code))
6018 push_reload (x, NULL_RTX, loc, (rtx*) 0,
6019 context_reg_class,
6020 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6021 return 1;
6024 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
6025 is larger than the class size, then reload the whole SUBREG. */
6026 else
6028 enum reg_class rclass = context_reg_class;
6029 if (ira_reg_class_max_nregs [rclass][GET_MODE (SUBREG_REG (x))]
6030 > reg_class_size[(int) rclass])
6032 /* If the inner register will be replaced by a memory
6033 reference, we can do this only if we can replace the
6034 whole subreg by a (narrower) memory reference. If
6035 this is not possible, fall through and reload just
6036 the inner register (including address reloads). */
6037 if (reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
6039 rtx tem = find_reloads_subreg_address (x, opnum,
6040 ADDR_TYPE (type),
6041 ind_levels, insn,
6042 NULL);
6043 if (tem)
6045 push_reload (tem, NULL_RTX, loc, (rtx*) 0, rclass,
6046 GET_MODE (tem), VOIDmode, 0, 0,
6047 opnum, type);
6048 return 1;
6051 else
6053 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6054 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
6055 return 1;
6060 break;
6062 default:
6063 break;
6067 const char *fmt = GET_RTX_FORMAT (code);
6068 int i;
6070 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6072 if (fmt[i] == 'e')
6073 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
6074 we get here. */
6075 find_reloads_address_1 (mode, as, XEXP (x, i), context,
6076 code, SCRATCH, &XEXP (x, i),
6077 opnum, type, ind_levels, insn);
6081 #undef REG_OK_FOR_CONTEXT
6082 return 0;
6085 /* X, which is found at *LOC, is a part of an address that needs to be
6086 reloaded into a register of class RCLASS. If X is a constant, or if
6087 X is a PLUS that contains a constant, check that the constant is a
6088 legitimate operand and that we are supposed to be able to load
6089 it into the register.
6091 If not, force the constant into memory and reload the MEM instead.
6093 MODE is the mode to use, in case X is an integer constant.
6095 OPNUM and TYPE describe the purpose of any reloads made.
6097 IND_LEVELS says how many levels of indirect addressing this machine
6098 supports. */
6100 static void
6101 find_reloads_address_part (rtx x, rtx *loc, enum reg_class rclass,
6102 machine_mode mode, int opnum,
6103 enum reload_type type, int ind_levels)
6105 if (CONSTANT_P (x)
6106 && (!targetm.legitimate_constant_p (mode, x)
6107 || targetm.preferred_reload_class (x, rclass) == NO_REGS))
6109 x = force_const_mem (mode, x);
6110 find_reloads_address (mode, &x, XEXP (x, 0), &XEXP (x, 0),
6111 opnum, type, ind_levels, 0);
6114 else if (GET_CODE (x) == PLUS
6115 && CONSTANT_P (XEXP (x, 1))
6116 && (!targetm.legitimate_constant_p (GET_MODE (x), XEXP (x, 1))
6117 || targetm.preferred_reload_class (XEXP (x, 1), rclass)
6118 == NO_REGS))
6120 rtx tem;
6122 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
6123 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
6124 find_reloads_address (mode, &XEXP (x, 1), XEXP (tem, 0), &XEXP (tem, 0),
6125 opnum, type, ind_levels, 0);
6128 push_reload (x, NULL_RTX, loc, (rtx*) 0, rclass,
6129 mode, VOIDmode, 0, 0, opnum, type);
6132 /* X, a subreg of a pseudo, is a part of an address that needs to be
6133 reloaded, and the pseusdo is equivalent to a memory location.
6135 Attempt to replace the whole subreg by a (possibly narrower or wider)
6136 memory reference. If this is possible, return this new memory
6137 reference, and push all required address reloads. Otherwise,
6138 return NULL.
6140 OPNUM and TYPE identify the purpose of the reload.
6142 IND_LEVELS says how many levels of indirect addressing are
6143 supported at this point in the address.
6145 INSN, if nonzero, is the insn in which we do the reload. It is used
6146 to determine where to put USEs for pseudos that we have to replace with
6147 stack slots. */
6149 static rtx
6150 find_reloads_subreg_address (rtx x, int opnum, enum reload_type type,
6151 int ind_levels, rtx_insn *insn,
6152 int *address_reloaded)
6154 machine_mode outer_mode = GET_MODE (x);
6155 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
6156 int regno = REGNO (SUBREG_REG (x));
6157 int reloaded = 0;
6158 rtx tem, orig;
6159 int offset;
6161 gcc_assert (reg_equiv_memory_loc (regno) != 0);
6163 /* We cannot replace the subreg with a modified memory reference if:
6165 - we have a paradoxical subreg that implicitly acts as a zero or
6166 sign extension operation due to LOAD_EXTEND_OP;
6168 - we have a subreg that is implicitly supposed to act on the full
6169 register due to WORD_REGISTER_OPERATIONS (see also eliminate_regs);
6171 - the address of the equivalent memory location is mode-dependent; or
6173 - we have a paradoxical subreg and the resulting memory is not
6174 sufficiently aligned to allow access in the wider mode.
6176 In addition, we choose not to perform the replacement for *any*
6177 paradoxical subreg, even if it were possible in principle. This
6178 is to avoid generating wider memory references than necessary.
6180 This corresponds to how previous versions of reload used to handle
6181 paradoxical subregs where no address reload was required. */
6183 if (paradoxical_subreg_p (x))
6184 return NULL;
6186 #ifdef WORD_REGISTER_OPERATIONS
6187 if (GET_MODE_SIZE (outer_mode) < GET_MODE_SIZE (inner_mode)
6188 && ((GET_MODE_SIZE (outer_mode) - 1) / UNITS_PER_WORD
6189 == (GET_MODE_SIZE (inner_mode) - 1) / UNITS_PER_WORD))
6190 return NULL;
6191 #endif
6193 /* Since we don't attempt to handle paradoxical subregs, we can just
6194 call into simplify_subreg, which will handle all remaining checks
6195 for us. */
6196 orig = make_memloc (SUBREG_REG (x), regno);
6197 offset = SUBREG_BYTE (x);
6198 tem = simplify_subreg (outer_mode, orig, inner_mode, offset);
6199 if (!tem || !MEM_P (tem))
6200 return NULL;
6202 /* Now push all required address reloads, if any. */
6203 reloaded = find_reloads_address (GET_MODE (tem), &tem,
6204 XEXP (tem, 0), &XEXP (tem, 0),
6205 opnum, type, ind_levels, insn);
6206 /* ??? Do we need to handle nonzero offsets somehow? */
6207 if (!offset && !rtx_equal_p (tem, orig))
6208 push_reg_equiv_alt_mem (regno, tem);
6210 /* For some processors an address may be valid in the original mode but
6211 not in a smaller mode. For example, ARM accepts a scaled index register
6212 in SImode but not in HImode. Note that this is only a problem if the
6213 address in reg_equiv_mem is already invalid in the new mode; other
6214 cases would be fixed by find_reloads_address as usual.
6216 ??? We attempt to handle such cases here by doing an additional reload
6217 of the full address after the usual processing by find_reloads_address.
6218 Note that this may not work in the general case, but it seems to cover
6219 the cases where this situation currently occurs. A more general fix
6220 might be to reload the *value* instead of the address, but this would
6221 not be expected by the callers of this routine as-is.
6223 If find_reloads_address already completed replaced the address, there
6224 is nothing further to do. */
6225 if (reloaded == 0
6226 && reg_equiv_mem (regno) != 0
6227 && !strict_memory_address_addr_space_p
6228 (GET_MODE (x), XEXP (reg_equiv_mem (regno), 0),
6229 MEM_ADDR_SPACE (reg_equiv_mem (regno))))
6231 push_reload (XEXP (tem, 0), NULL_RTX, &XEXP (tem, 0), (rtx*) 0,
6232 base_reg_class (GET_MODE (tem), MEM_ADDR_SPACE (tem),
6233 MEM, SCRATCH),
6234 GET_MODE (XEXP (tem, 0)), VOIDmode, 0, 0, opnum, type);
6235 reloaded = 1;
6238 /* If this is not a toplevel operand, find_reloads doesn't see this
6239 substitution. We have to emit a USE of the pseudo so that
6240 delete_output_reload can see it. */
6241 if (replace_reloads && recog_data.operand[opnum] != x)
6242 /* We mark the USE with QImode so that we recognize it as one that
6243 can be safely deleted at the end of reload. */
6244 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, SUBREG_REG (x)), insn),
6245 QImode);
6247 if (address_reloaded)
6248 *address_reloaded = reloaded;
6250 return tem;
6253 /* Substitute into the current INSN the registers into which we have reloaded
6254 the things that need reloading. The array `replacements'
6255 contains the locations of all pointers that must be changed
6256 and says what to replace them with.
6258 Return the rtx that X translates into; usually X, but modified. */
6260 void
6261 subst_reloads (rtx_insn *insn)
6263 int i;
6265 for (i = 0; i < n_replacements; i++)
6267 struct replacement *r = &replacements[i];
6268 rtx reloadreg = rld[r->what].reg_rtx;
6269 if (reloadreg)
6271 #ifdef DEBUG_RELOAD
6272 /* This checking takes a very long time on some platforms
6273 causing the gcc.c-torture/compile/limits-fnargs.c test
6274 to time out during testing. See PR 31850.
6276 Internal consistency test. Check that we don't modify
6277 anything in the equivalence arrays. Whenever something from
6278 those arrays needs to be reloaded, it must be unshared before
6279 being substituted into; the equivalence must not be modified.
6280 Otherwise, if the equivalence is used after that, it will
6281 have been modified, and the thing substituted (probably a
6282 register) is likely overwritten and not a usable equivalence. */
6283 int check_regno;
6285 for (check_regno = 0; check_regno < max_regno; check_regno++)
6287 #define CHECK_MODF(ARRAY) \
6288 gcc_assert (!(*reg_equivs)[check_regno].ARRAY \
6289 || !loc_mentioned_in_p (r->where, \
6290 (*reg_equivs)[check_regno].ARRAY))
6292 CHECK_MODF (constant);
6293 CHECK_MODF (memory_loc);
6294 CHECK_MODF (address);
6295 CHECK_MODF (mem);
6296 #undef CHECK_MODF
6298 #endif /* DEBUG_RELOAD */
6300 /* If we're replacing a LABEL_REF with a register, there must
6301 already be an indication (to e.g. flow) which label this
6302 register refers to. */
6303 gcc_assert (GET_CODE (*r->where) != LABEL_REF
6304 || !JUMP_P (insn)
6305 || find_reg_note (insn,
6306 REG_LABEL_OPERAND,
6307 XEXP (*r->where, 0))
6308 || label_is_jump_target_p (XEXP (*r->where, 0), insn));
6310 /* Encapsulate RELOADREG so its machine mode matches what
6311 used to be there. Note that gen_lowpart_common will
6312 do the wrong thing if RELOADREG is multi-word. RELOADREG
6313 will always be a REG here. */
6314 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6315 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6317 *r->where = reloadreg;
6319 /* If reload got no reg and isn't optional, something's wrong. */
6320 else
6321 gcc_assert (rld[r->what].optional);
6325 /* Make a copy of any replacements being done into X and move those
6326 copies to locations in Y, a copy of X. */
6328 void
6329 copy_replacements (rtx x, rtx y)
6331 copy_replacements_1 (&x, &y, n_replacements);
6334 static void
6335 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6337 int i, j;
6338 rtx x, y;
6339 struct replacement *r;
6340 enum rtx_code code;
6341 const char *fmt;
6343 for (j = 0; j < orig_replacements; j++)
6344 if (replacements[j].where == px)
6346 r = &replacements[n_replacements++];
6347 r->where = py;
6348 r->what = replacements[j].what;
6349 r->mode = replacements[j].mode;
6352 x = *px;
6353 y = *py;
6354 code = GET_CODE (x);
6355 fmt = GET_RTX_FORMAT (code);
6357 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6359 if (fmt[i] == 'e')
6360 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6361 else if (fmt[i] == 'E')
6362 for (j = XVECLEN (x, i); --j >= 0; )
6363 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6364 orig_replacements);
6368 /* Change any replacements being done to *X to be done to *Y. */
6370 void
6371 move_replacements (rtx *x, rtx *y)
6373 int i;
6375 for (i = 0; i < n_replacements; i++)
6376 if (replacements[i].where == x)
6377 replacements[i].where = y;
6380 /* If LOC was scheduled to be replaced by something, return the replacement.
6381 Otherwise, return *LOC. */
6384 find_replacement (rtx *loc)
6386 struct replacement *r;
6388 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6390 rtx reloadreg = rld[r->what].reg_rtx;
6392 if (reloadreg && r->where == loc)
6394 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6395 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6397 return reloadreg;
6399 else if (reloadreg && GET_CODE (*loc) == SUBREG
6400 && r->where == &SUBREG_REG (*loc))
6402 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6403 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6405 return simplify_gen_subreg (GET_MODE (*loc), reloadreg,
6406 GET_MODE (SUBREG_REG (*loc)),
6407 SUBREG_BYTE (*loc));
6411 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6412 what's inside and make a new rtl if so. */
6413 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6414 || GET_CODE (*loc) == MULT)
6416 rtx x = find_replacement (&XEXP (*loc, 0));
6417 rtx y = find_replacement (&XEXP (*loc, 1));
6419 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6420 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6423 return *loc;
6426 /* Return nonzero if register in range [REGNO, ENDREGNO)
6427 appears either explicitly or implicitly in X
6428 other than being stored into (except for earlyclobber operands).
6430 References contained within the substructure at LOC do not count.
6431 LOC may be zero, meaning don't ignore anything.
6433 This is similar to refers_to_regno_p in rtlanal.c except that we
6434 look at equivalences for pseudos that didn't get hard registers. */
6436 static int
6437 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6438 rtx x, rtx *loc)
6440 int i;
6441 unsigned int r;
6442 RTX_CODE code;
6443 const char *fmt;
6445 if (x == 0)
6446 return 0;
6448 repeat:
6449 code = GET_CODE (x);
6451 switch (code)
6453 case REG:
6454 r = REGNO (x);
6456 /* If this is a pseudo, a hard register must not have been allocated.
6457 X must therefore either be a constant or be in memory. */
6458 if (r >= FIRST_PSEUDO_REGISTER)
6460 if (reg_equiv_memory_loc (r))
6461 return refers_to_regno_for_reload_p (regno, endregno,
6462 reg_equiv_memory_loc (r),
6463 (rtx*) 0);
6465 gcc_assert (reg_equiv_constant (r) || reg_equiv_invariant (r));
6466 return 0;
6469 return (endregno > r
6470 && regno < r + (r < FIRST_PSEUDO_REGISTER
6471 ? hard_regno_nregs[r][GET_MODE (x)]
6472 : 1));
6474 case SUBREG:
6475 /* If this is a SUBREG of a hard reg, we can see exactly which
6476 registers are being modified. Otherwise, handle normally. */
6477 if (REG_P (SUBREG_REG (x))
6478 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6480 unsigned int inner_regno = subreg_regno (x);
6481 unsigned int inner_endregno
6482 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6483 ? subreg_nregs (x) : 1);
6485 return endregno > inner_regno && regno < inner_endregno;
6487 break;
6489 case CLOBBER:
6490 case SET:
6491 if (&SET_DEST (x) != loc
6492 /* Note setting a SUBREG counts as referring to the REG it is in for
6493 a pseudo but not for hard registers since we can
6494 treat each word individually. */
6495 && ((GET_CODE (SET_DEST (x)) == SUBREG
6496 && loc != &SUBREG_REG (SET_DEST (x))
6497 && REG_P (SUBREG_REG (SET_DEST (x)))
6498 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6499 && refers_to_regno_for_reload_p (regno, endregno,
6500 SUBREG_REG (SET_DEST (x)),
6501 loc))
6502 /* If the output is an earlyclobber operand, this is
6503 a conflict. */
6504 || ((!REG_P (SET_DEST (x))
6505 || earlyclobber_operand_p (SET_DEST (x)))
6506 && refers_to_regno_for_reload_p (regno, endregno,
6507 SET_DEST (x), loc))))
6508 return 1;
6510 if (code == CLOBBER || loc == &SET_SRC (x))
6511 return 0;
6512 x = SET_SRC (x);
6513 goto repeat;
6515 default:
6516 break;
6519 /* X does not match, so try its subexpressions. */
6521 fmt = GET_RTX_FORMAT (code);
6522 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6524 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6526 if (i == 0)
6528 x = XEXP (x, 0);
6529 goto repeat;
6531 else
6532 if (refers_to_regno_for_reload_p (regno, endregno,
6533 XEXP (x, i), loc))
6534 return 1;
6536 else if (fmt[i] == 'E')
6538 int j;
6539 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6540 if (loc != &XVECEXP (x, i, j)
6541 && refers_to_regno_for_reload_p (regno, endregno,
6542 XVECEXP (x, i, j), loc))
6543 return 1;
6546 return 0;
6549 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6550 we check if any register number in X conflicts with the relevant register
6551 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6552 contains a MEM (we don't bother checking for memory addresses that can't
6553 conflict because we expect this to be a rare case.
6555 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6556 that we look at equivalences for pseudos that didn't get hard registers. */
6559 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6561 int regno, endregno;
6563 /* Overly conservative. */
6564 if (GET_CODE (x) == STRICT_LOW_PART
6565 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6566 x = XEXP (x, 0);
6568 /* If either argument is a constant, then modifying X can not affect IN. */
6569 if (CONSTANT_P (x) || CONSTANT_P (in))
6570 return 0;
6571 else if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
6572 return refers_to_mem_for_reload_p (in);
6573 else if (GET_CODE (x) == SUBREG)
6575 regno = REGNO (SUBREG_REG (x));
6576 if (regno < FIRST_PSEUDO_REGISTER)
6577 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6578 GET_MODE (SUBREG_REG (x)),
6579 SUBREG_BYTE (x),
6580 GET_MODE (x));
6581 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6582 ? subreg_nregs (x) : 1);
6584 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6586 else if (REG_P (x))
6588 regno = REGNO (x);
6590 /* If this is a pseudo, it must not have been assigned a hard register.
6591 Therefore, it must either be in memory or be a constant. */
6593 if (regno >= FIRST_PSEUDO_REGISTER)
6595 if (reg_equiv_memory_loc (regno))
6596 return refers_to_mem_for_reload_p (in);
6597 gcc_assert (reg_equiv_constant (regno));
6598 return 0;
6601 endregno = END_HARD_REGNO (x);
6603 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6605 else if (MEM_P (x))
6606 return refers_to_mem_for_reload_p (in);
6607 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6608 || GET_CODE (x) == CC0)
6609 return reg_mentioned_p (x, in);
6610 else
6612 gcc_assert (GET_CODE (x) == PLUS);
6614 /* We actually want to know if X is mentioned somewhere inside IN.
6615 We must not say that (plus (sp) (const_int 124)) is in
6616 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6617 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6618 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6619 while (MEM_P (in))
6620 in = XEXP (in, 0);
6621 if (REG_P (in))
6622 return 0;
6623 else if (GET_CODE (in) == PLUS)
6624 return (rtx_equal_p (x, in)
6625 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6626 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6627 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6628 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6631 gcc_unreachable ();
6634 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6635 registers. */
6637 static int
6638 refers_to_mem_for_reload_p (rtx x)
6640 const char *fmt;
6641 int i;
6643 if (MEM_P (x))
6644 return 1;
6646 if (REG_P (x))
6647 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6648 && reg_equiv_memory_loc (REGNO (x)));
6650 fmt = GET_RTX_FORMAT (GET_CODE (x));
6651 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6652 if (fmt[i] == 'e'
6653 && (MEM_P (XEXP (x, i))
6654 || refers_to_mem_for_reload_p (XEXP (x, i))))
6655 return 1;
6657 return 0;
6660 /* Check the insns before INSN to see if there is a suitable register
6661 containing the same value as GOAL.
6662 If OTHER is -1, look for a register in class RCLASS.
6663 Otherwise, just see if register number OTHER shares GOAL's value.
6665 Return an rtx for the register found, or zero if none is found.
6667 If RELOAD_REG_P is (short *)1,
6668 we reject any hard reg that appears in reload_reg_rtx
6669 because such a hard reg is also needed coming into this insn.
6671 If RELOAD_REG_P is any other nonzero value,
6672 it is a vector indexed by hard reg number
6673 and we reject any hard reg whose element in the vector is nonnegative
6674 as well as any that appears in reload_reg_rtx.
6676 If GOAL is zero, then GOALREG is a register number; we look
6677 for an equivalent for that register.
6679 MODE is the machine mode of the value we want an equivalence for.
6680 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6682 This function is used by jump.c as well as in the reload pass.
6684 If GOAL is the sum of the stack pointer and a constant, we treat it
6685 as if it were a constant except that sp is required to be unchanging. */
6688 find_equiv_reg (rtx goal, rtx_insn *insn, enum reg_class rclass, int other,
6689 short *reload_reg_p, int goalreg, machine_mode mode)
6691 rtx_insn *p = insn;
6692 rtx goaltry, valtry, value;
6693 rtx_insn *where;
6694 rtx pat;
6695 int regno = -1;
6696 int valueno;
6697 int goal_mem = 0;
6698 int goal_const = 0;
6699 int goal_mem_addr_varies = 0;
6700 int need_stable_sp = 0;
6701 int nregs;
6702 int valuenregs;
6703 int num = 0;
6705 if (goal == 0)
6706 regno = goalreg;
6707 else if (REG_P (goal))
6708 regno = REGNO (goal);
6709 else if (MEM_P (goal))
6711 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6712 if (MEM_VOLATILE_P (goal))
6713 return 0;
6714 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6715 return 0;
6716 /* An address with side effects must be reexecuted. */
6717 switch (code)
6719 case POST_INC:
6720 case PRE_INC:
6721 case POST_DEC:
6722 case PRE_DEC:
6723 case POST_MODIFY:
6724 case PRE_MODIFY:
6725 return 0;
6726 default:
6727 break;
6729 goal_mem = 1;
6731 else if (CONSTANT_P (goal))
6732 goal_const = 1;
6733 else if (GET_CODE (goal) == PLUS
6734 && XEXP (goal, 0) == stack_pointer_rtx
6735 && CONSTANT_P (XEXP (goal, 1)))
6736 goal_const = need_stable_sp = 1;
6737 else if (GET_CODE (goal) == PLUS
6738 && XEXP (goal, 0) == frame_pointer_rtx
6739 && CONSTANT_P (XEXP (goal, 1)))
6740 goal_const = 1;
6741 else
6742 return 0;
6744 num = 0;
6745 /* Scan insns back from INSN, looking for one that copies
6746 a value into or out of GOAL.
6747 Stop and give up if we reach a label. */
6749 while (1)
6751 p = PREV_INSN (p);
6752 if (p && DEBUG_INSN_P (p))
6753 continue;
6754 num++;
6755 if (p == 0 || LABEL_P (p)
6756 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6757 return 0;
6759 /* Don't reuse register contents from before a setjmp-type
6760 function call; on the second return (from the longjmp) it
6761 might have been clobbered by a later reuse. It doesn't
6762 seem worthwhile to actually go and see if it is actually
6763 reused even if that information would be readily available;
6764 just don't reuse it across the setjmp call. */
6765 if (CALL_P (p) && find_reg_note (p, REG_SETJMP, NULL_RTX))
6766 return 0;
6768 if (NONJUMP_INSN_P (p)
6769 /* If we don't want spill regs ... */
6770 && (! (reload_reg_p != 0
6771 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6772 /* ... then ignore insns introduced by reload; they aren't
6773 useful and can cause results in reload_as_needed to be
6774 different from what they were when calculating the need for
6775 spills. If we notice an input-reload insn here, we will
6776 reject it below, but it might hide a usable equivalent.
6777 That makes bad code. It may even fail: perhaps no reg was
6778 spilled for this insn because it was assumed we would find
6779 that equivalent. */
6780 || INSN_UID (p) < reload_first_uid))
6782 rtx tem;
6783 pat = single_set (p);
6785 /* First check for something that sets some reg equal to GOAL. */
6786 if (pat != 0
6787 && ((regno >= 0
6788 && true_regnum (SET_SRC (pat)) == regno
6789 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6791 (regno >= 0
6792 && true_regnum (SET_DEST (pat)) == regno
6793 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6795 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6796 /* When looking for stack pointer + const,
6797 make sure we don't use a stack adjust. */
6798 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6799 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6800 || (goal_mem
6801 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6802 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6803 || (goal_mem
6804 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6805 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6806 /* If we are looking for a constant,
6807 and something equivalent to that constant was copied
6808 into a reg, we can use that reg. */
6809 || (goal_const && REG_NOTES (p) != 0
6810 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6811 && ((rtx_equal_p (XEXP (tem, 0), goal)
6812 && (valueno
6813 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6814 || (REG_P (SET_DEST (pat))
6815 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6816 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6817 && CONST_INT_P (goal)
6818 && 0 != (goaltry
6819 = operand_subword (XEXP (tem, 0), 0, 0,
6820 VOIDmode))
6821 && rtx_equal_p (goal, goaltry)
6822 && (valtry
6823 = operand_subword (SET_DEST (pat), 0, 0,
6824 VOIDmode))
6825 && (valueno = true_regnum (valtry)) >= 0)))
6826 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6827 NULL_RTX))
6828 && REG_P (SET_DEST (pat))
6829 && CONST_DOUBLE_AS_FLOAT_P (XEXP (tem, 0))
6830 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6831 && CONST_INT_P (goal)
6832 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6833 VOIDmode))
6834 && rtx_equal_p (goal, goaltry)
6835 && (valtry
6836 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6837 && (valueno = true_regnum (valtry)) >= 0)))
6839 if (other >= 0)
6841 if (valueno != other)
6842 continue;
6844 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6845 continue;
6846 else if (!in_hard_reg_set_p (reg_class_contents[(int) rclass],
6847 mode, valueno))
6848 continue;
6849 value = valtry;
6850 where = p;
6851 break;
6856 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6857 (or copying VALUE into GOAL, if GOAL is also a register).
6858 Now verify that VALUE is really valid. */
6860 /* VALUENO is the register number of VALUE; a hard register. */
6862 /* Don't try to re-use something that is killed in this insn. We want
6863 to be able to trust REG_UNUSED notes. */
6864 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6865 return 0;
6867 /* If we propose to get the value from the stack pointer or if GOAL is
6868 a MEM based on the stack pointer, we need a stable SP. */
6869 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6870 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6871 goal)))
6872 need_stable_sp = 1;
6874 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6875 if (GET_MODE (value) != mode)
6876 return 0;
6878 /* Reject VALUE if it was loaded from GOAL
6879 and is also a register that appears in the address of GOAL. */
6881 if (goal_mem && value == SET_DEST (single_set (where))
6882 && refers_to_regno_for_reload_p (valueno, end_hard_regno (mode, valueno),
6883 goal, (rtx*) 0))
6884 return 0;
6886 /* Reject registers that overlap GOAL. */
6888 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6889 nregs = hard_regno_nregs[regno][mode];
6890 else
6891 nregs = 1;
6892 valuenregs = hard_regno_nregs[valueno][mode];
6894 if (!goal_mem && !goal_const
6895 && regno + nregs > valueno && regno < valueno + valuenregs)
6896 return 0;
6898 /* Reject VALUE if it is one of the regs reserved for reloads.
6899 Reload1 knows how to reuse them anyway, and it would get
6900 confused if we allocated one without its knowledge.
6901 (Now that insns introduced by reload are ignored above,
6902 this case shouldn't happen, but I'm not positive.) */
6904 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6906 int i;
6907 for (i = 0; i < valuenregs; ++i)
6908 if (reload_reg_p[valueno + i] >= 0)
6909 return 0;
6912 /* Reject VALUE if it is a register being used for an input reload
6913 even if it is not one of those reserved. */
6915 if (reload_reg_p != 0)
6917 int i;
6918 for (i = 0; i < n_reloads; i++)
6919 if (rld[i].reg_rtx != 0 && rld[i].in)
6921 int regno1 = REGNO (rld[i].reg_rtx);
6922 int nregs1 = hard_regno_nregs[regno1]
6923 [GET_MODE (rld[i].reg_rtx)];
6924 if (regno1 < valueno + valuenregs
6925 && regno1 + nregs1 > valueno)
6926 return 0;
6930 if (goal_mem)
6931 /* We must treat frame pointer as varying here,
6932 since it can vary--in a nonlocal goto as generated by expand_goto. */
6933 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6935 /* Now verify that the values of GOAL and VALUE remain unaltered
6936 until INSN is reached. */
6938 p = insn;
6939 while (1)
6941 p = PREV_INSN (p);
6942 if (p == where)
6943 return value;
6945 /* Don't trust the conversion past a function call
6946 if either of the two is in a call-clobbered register, or memory. */
6947 if (CALL_P (p))
6949 int i;
6951 if (goal_mem || need_stable_sp)
6952 return 0;
6954 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6955 for (i = 0; i < nregs; ++i)
6956 if (call_used_regs[regno + i]
6957 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6958 return 0;
6960 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6961 for (i = 0; i < valuenregs; ++i)
6962 if (call_used_regs[valueno + i]
6963 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6964 return 0;
6967 if (INSN_P (p))
6969 pat = PATTERN (p);
6971 /* Watch out for unspec_volatile, and volatile asms. */
6972 if (volatile_insn_p (pat))
6973 return 0;
6975 /* If this insn P stores in either GOAL or VALUE, return 0.
6976 If GOAL is a memory ref and this insn writes memory, return 0.
6977 If GOAL is a memory ref and its address is not constant,
6978 and this insn P changes a register used in GOAL, return 0. */
6980 if (GET_CODE (pat) == COND_EXEC)
6981 pat = COND_EXEC_CODE (pat);
6982 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6984 rtx dest = SET_DEST (pat);
6985 while (GET_CODE (dest) == SUBREG
6986 || GET_CODE (dest) == ZERO_EXTRACT
6987 || GET_CODE (dest) == STRICT_LOW_PART)
6988 dest = XEXP (dest, 0);
6989 if (REG_P (dest))
6991 int xregno = REGNO (dest);
6992 int xnregs;
6993 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6994 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6995 else
6996 xnregs = 1;
6997 if (xregno < regno + nregs && xregno + xnregs > regno)
6998 return 0;
6999 if (xregno < valueno + valuenregs
7000 && xregno + xnregs > valueno)
7001 return 0;
7002 if (goal_mem_addr_varies
7003 && reg_overlap_mentioned_for_reload_p (dest, goal))
7004 return 0;
7005 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7006 return 0;
7008 else if (goal_mem && MEM_P (dest)
7009 && ! push_operand (dest, GET_MODE (dest)))
7010 return 0;
7011 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7012 && reg_equiv_memory_loc (regno) != 0)
7013 return 0;
7014 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
7015 return 0;
7017 else if (GET_CODE (pat) == PARALLEL)
7019 int i;
7020 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
7022 rtx v1 = XVECEXP (pat, 0, i);
7023 if (GET_CODE (v1) == COND_EXEC)
7024 v1 = COND_EXEC_CODE (v1);
7025 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
7027 rtx dest = SET_DEST (v1);
7028 while (GET_CODE (dest) == SUBREG
7029 || GET_CODE (dest) == ZERO_EXTRACT
7030 || GET_CODE (dest) == STRICT_LOW_PART)
7031 dest = XEXP (dest, 0);
7032 if (REG_P (dest))
7034 int xregno = REGNO (dest);
7035 int xnregs;
7036 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
7037 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
7038 else
7039 xnregs = 1;
7040 if (xregno < regno + nregs
7041 && xregno + xnregs > regno)
7042 return 0;
7043 if (xregno < valueno + valuenregs
7044 && xregno + xnregs > valueno)
7045 return 0;
7046 if (goal_mem_addr_varies
7047 && reg_overlap_mentioned_for_reload_p (dest,
7048 goal))
7049 return 0;
7050 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
7051 return 0;
7053 else if (goal_mem && MEM_P (dest)
7054 && ! push_operand (dest, GET_MODE (dest)))
7055 return 0;
7056 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
7057 && reg_equiv_memory_loc (regno) != 0)
7058 return 0;
7059 else if (need_stable_sp
7060 && push_operand (dest, GET_MODE (dest)))
7061 return 0;
7066 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
7068 rtx link;
7070 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
7071 link = XEXP (link, 1))
7073 pat = XEXP (link, 0);
7074 if (GET_CODE (pat) == CLOBBER)
7076 rtx dest = SET_DEST (pat);
7078 if (REG_P (dest))
7080 int xregno = REGNO (dest);
7081 int xnregs
7082 = hard_regno_nregs[xregno][GET_MODE (dest)];
7084 if (xregno < regno + nregs
7085 && xregno + xnregs > regno)
7086 return 0;
7087 else if (xregno < valueno + valuenregs
7088 && xregno + xnregs > valueno)
7089 return 0;
7090 else if (goal_mem_addr_varies
7091 && reg_overlap_mentioned_for_reload_p (dest,
7092 goal))
7093 return 0;
7096 else if (goal_mem && MEM_P (dest)
7097 && ! push_operand (dest, GET_MODE (dest)))
7098 return 0;
7099 else if (need_stable_sp
7100 && push_operand (dest, GET_MODE (dest)))
7101 return 0;
7106 #ifdef AUTO_INC_DEC
7107 /* If this insn auto-increments or auto-decrements
7108 either regno or valueno, return 0 now.
7109 If GOAL is a memory ref and its address is not constant,
7110 and this insn P increments a register used in GOAL, return 0. */
7112 rtx link;
7114 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
7115 if (REG_NOTE_KIND (link) == REG_INC
7116 && REG_P (XEXP (link, 0)))
7118 int incno = REGNO (XEXP (link, 0));
7119 if (incno < regno + nregs && incno >= regno)
7120 return 0;
7121 if (incno < valueno + valuenregs && incno >= valueno)
7122 return 0;
7123 if (goal_mem_addr_varies
7124 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
7125 goal))
7126 return 0;
7129 #endif
7134 /* Find a place where INCED appears in an increment or decrement operator
7135 within X, and return the amount INCED is incremented or decremented by.
7136 The value is always positive. */
7138 static int
7139 find_inc_amount (rtx x, rtx inced)
7141 enum rtx_code code = GET_CODE (x);
7142 const char *fmt;
7143 int i;
7145 if (code == MEM)
7147 rtx addr = XEXP (x, 0);
7148 if ((GET_CODE (addr) == PRE_DEC
7149 || GET_CODE (addr) == POST_DEC
7150 || GET_CODE (addr) == PRE_INC
7151 || GET_CODE (addr) == POST_INC)
7152 && XEXP (addr, 0) == inced)
7153 return GET_MODE_SIZE (GET_MODE (x));
7154 else if ((GET_CODE (addr) == PRE_MODIFY
7155 || GET_CODE (addr) == POST_MODIFY)
7156 && GET_CODE (XEXP (addr, 1)) == PLUS
7157 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
7158 && XEXP (addr, 0) == inced
7159 && CONST_INT_P (XEXP (XEXP (addr, 1), 1)))
7161 i = INTVAL (XEXP (XEXP (addr, 1), 1));
7162 return i < 0 ? -i : i;
7166 fmt = GET_RTX_FORMAT (code);
7167 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7169 if (fmt[i] == 'e')
7171 int tem = find_inc_amount (XEXP (x, i), inced);
7172 if (tem != 0)
7173 return tem;
7175 if (fmt[i] == 'E')
7177 int j;
7178 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7180 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7181 if (tem != 0)
7182 return tem;
7187 return 0;
7190 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7191 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7193 #ifdef AUTO_INC_DEC
7194 static int
7195 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7196 rtx insn)
7198 rtx link;
7200 gcc_assert (insn);
7202 if (! INSN_P (insn))
7203 return 0;
7205 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7206 if (REG_NOTE_KIND (link) == REG_INC)
7208 unsigned int test = (int) REGNO (XEXP (link, 0));
7209 if (test >= regno && test < endregno)
7210 return 1;
7212 return 0;
7214 #else
7216 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7218 #endif
7220 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7221 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7222 REG_INC. REGNO must refer to a hard register. */
7225 regno_clobbered_p (unsigned int regno, rtx_insn *insn, machine_mode mode,
7226 int sets)
7228 unsigned int nregs, endregno;
7230 /* regno must be a hard register. */
7231 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7233 nregs = hard_regno_nregs[regno][mode];
7234 endregno = regno + nregs;
7236 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7237 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7238 && REG_P (XEXP (PATTERN (insn), 0)))
7240 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7242 return test >= regno && test < endregno;
7245 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7246 return 1;
7248 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7250 int i = XVECLEN (PATTERN (insn), 0) - 1;
7252 for (; i >= 0; i--)
7254 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7255 if ((GET_CODE (elt) == CLOBBER
7256 || (sets == 1 && GET_CODE (elt) == SET))
7257 && REG_P (XEXP (elt, 0)))
7259 unsigned int test = REGNO (XEXP (elt, 0));
7261 if (test >= regno && test < endregno)
7262 return 1;
7264 if (sets == 2
7265 && reg_inc_found_and_valid_p (regno, endregno, elt))
7266 return 1;
7270 return 0;
7273 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7275 reload_adjust_reg_for_mode (rtx reloadreg, machine_mode mode)
7277 int regno;
7279 if (GET_MODE (reloadreg) == mode)
7280 return reloadreg;
7282 regno = REGNO (reloadreg);
7284 if (REG_WORDS_BIG_ENDIAN)
7285 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7286 - (int) hard_regno_nregs[regno][mode];
7288 return gen_rtx_REG (mode, regno);
7291 static const char *const reload_when_needed_name[] =
7293 "RELOAD_FOR_INPUT",
7294 "RELOAD_FOR_OUTPUT",
7295 "RELOAD_FOR_INSN",
7296 "RELOAD_FOR_INPUT_ADDRESS",
7297 "RELOAD_FOR_INPADDR_ADDRESS",
7298 "RELOAD_FOR_OUTPUT_ADDRESS",
7299 "RELOAD_FOR_OUTADDR_ADDRESS",
7300 "RELOAD_FOR_OPERAND_ADDRESS",
7301 "RELOAD_FOR_OPADDR_ADDR",
7302 "RELOAD_OTHER",
7303 "RELOAD_FOR_OTHER_ADDRESS"
7306 /* These functions are used to print the variables set by 'find_reloads' */
7308 DEBUG_FUNCTION void
7309 debug_reload_to_stream (FILE *f)
7311 int r;
7312 const char *prefix;
7314 if (! f)
7315 f = stderr;
7316 for (r = 0; r < n_reloads; r++)
7318 fprintf (f, "Reload %d: ", r);
7320 if (rld[r].in != 0)
7322 fprintf (f, "reload_in (%s) = ",
7323 GET_MODE_NAME (rld[r].inmode));
7324 print_inline_rtx (f, rld[r].in, 24);
7325 fprintf (f, "\n\t");
7328 if (rld[r].out != 0)
7330 fprintf (f, "reload_out (%s) = ",
7331 GET_MODE_NAME (rld[r].outmode));
7332 print_inline_rtx (f, rld[r].out, 24);
7333 fprintf (f, "\n\t");
7336 fprintf (f, "%s, ", reg_class_names[(int) rld[r].rclass]);
7338 fprintf (f, "%s (opnum = %d)",
7339 reload_when_needed_name[(int) rld[r].when_needed],
7340 rld[r].opnum);
7342 if (rld[r].optional)
7343 fprintf (f, ", optional");
7345 if (rld[r].nongroup)
7346 fprintf (f, ", nongroup");
7348 if (rld[r].inc != 0)
7349 fprintf (f, ", inc by %d", rld[r].inc);
7351 if (rld[r].nocombine)
7352 fprintf (f, ", can't combine");
7354 if (rld[r].secondary_p)
7355 fprintf (f, ", secondary_reload_p");
7357 if (rld[r].in_reg != 0)
7359 fprintf (f, "\n\treload_in_reg: ");
7360 print_inline_rtx (f, rld[r].in_reg, 24);
7363 if (rld[r].out_reg != 0)
7365 fprintf (f, "\n\treload_out_reg: ");
7366 print_inline_rtx (f, rld[r].out_reg, 24);
7369 if (rld[r].reg_rtx != 0)
7371 fprintf (f, "\n\treload_reg_rtx: ");
7372 print_inline_rtx (f, rld[r].reg_rtx, 24);
7375 prefix = "\n\t";
7376 if (rld[r].secondary_in_reload != -1)
7378 fprintf (f, "%ssecondary_in_reload = %d",
7379 prefix, rld[r].secondary_in_reload);
7380 prefix = ", ";
7383 if (rld[r].secondary_out_reload != -1)
7384 fprintf (f, "%ssecondary_out_reload = %d\n",
7385 prefix, rld[r].secondary_out_reload);
7387 prefix = "\n\t";
7388 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7390 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7391 insn_data[rld[r].secondary_in_icode].name);
7392 prefix = ", ";
7395 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7396 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7397 insn_data[rld[r].secondary_out_icode].name);
7399 fprintf (f, "\n");
7403 DEBUG_FUNCTION void
7404 debug_reload (void)
7406 debug_reload_to_stream (stderr);