* gcc.dg/store-motion-fgcse-sm.c (dg-final): Cleanup
[official-gcc.git] / gcc / lra-constraints.c
bloba67bf8a2f7ca446495f24e42daca47bbd41e34a4
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
107 #undef REG_OK_STRICT
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "tm.h"
113 #include "hard-reg-set.h"
114 #include "rtl.h"
115 #include "tm_p.h"
116 #include "regs.h"
117 #include "insn-config.h"
118 #include "insn-codes.h"
119 #include "recog.h"
120 #include "output.h"
121 #include "addresses.h"
122 #include "target.h"
123 #include "hashtab.h"
124 #include "hash-set.h"
125 #include "vec.h"
126 #include "machmode.h"
127 #include "input.h"
128 #include "function.h"
129 #include "expr.h"
130 #include "predict.h"
131 #include "dominance.h"
132 #include "cfg.h"
133 #include "cfgrtl.h"
134 #include "basic-block.h"
135 #include "except.h"
136 #include "optabs.h"
137 #include "df.h"
138 #include "ira.h"
139 #include "rtl-error.h"
140 #include "lra-int.h"
142 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
143 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
144 reload insns. */
145 static int bb_reload_num;
147 /* The current insn being processed and corresponding its single set
148 (NULL otherwise), its data (basic block, the insn data, the insn
149 static data, and the mode of each operand). */
150 static rtx_insn *curr_insn;
151 static rtx curr_insn_set;
152 static basic_block curr_bb;
153 static lra_insn_recog_data_t curr_id;
154 static struct lra_static_insn_data *curr_static_id;
155 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
159 /* Start numbers for new registers and insns at the current constraints
160 pass start. */
161 static int new_regno_start;
162 static int new_insn_uid_start;
164 /* If LOC is nonnull, strip any outer subreg from it. */
165 static inline rtx *
166 strip_subreg (rtx *loc)
168 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
171 /* Return hard regno of REGNO or if it is was not assigned to a hard
172 register, use a hard register from its allocno class. */
173 static int
174 get_try_hard_regno (int regno)
176 int hard_regno;
177 enum reg_class rclass;
179 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
180 hard_regno = lra_get_regno_hard_regno (regno);
181 if (hard_regno >= 0)
182 return hard_regno;
183 rclass = lra_get_allocno_class (regno);
184 if (rclass == NO_REGS)
185 return -1;
186 return ira_class_hard_regs[rclass][0];
189 /* Return final hard regno (plus offset) which will be after
190 elimination. We do this for matching constraints because the final
191 hard regno could have a different class. */
192 static int
193 get_final_hard_regno (int hard_regno, int offset)
195 if (hard_regno < 0)
196 return hard_regno;
197 hard_regno = lra_get_elimination_hard_regno (hard_regno);
198 return hard_regno + offset;
201 /* Return hard regno of X after removing subreg and making
202 elimination. If X is not a register or subreg of register, return
203 -1. For pseudo use its assignment. */
204 static int
205 get_hard_regno (rtx x)
207 rtx reg;
208 int offset, hard_regno;
210 reg = x;
211 if (GET_CODE (x) == SUBREG)
212 reg = SUBREG_REG (x);
213 if (! REG_P (reg))
214 return -1;
215 if ((hard_regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
216 hard_regno = lra_get_regno_hard_regno (hard_regno);
217 if (hard_regno < 0)
218 return -1;
219 offset = 0;
220 if (GET_CODE (x) == SUBREG)
221 offset += subreg_regno_offset (hard_regno, GET_MODE (reg),
222 SUBREG_BYTE (x), GET_MODE (x));
223 return get_final_hard_regno (hard_regno, offset);
226 /* If REGNO is a hard register or has been allocated a hard register,
227 return the class of that register. If REGNO is a reload pseudo
228 created by the current constraints pass, return its allocno class.
229 Return NO_REGS otherwise. */
230 static enum reg_class
231 get_reg_class (int regno)
233 int hard_regno;
235 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
236 hard_regno = lra_get_regno_hard_regno (regno);
237 if (hard_regno >= 0)
239 hard_regno = get_final_hard_regno (hard_regno, 0);
240 return REGNO_REG_CLASS (hard_regno);
242 if (regno >= new_regno_start)
243 return lra_get_allocno_class (regno);
244 return NO_REGS;
247 /* Return true if REG satisfies (or will satisfy) reg class constraint
248 CL. Use elimination first if REG is a hard register. If REG is a
249 reload pseudo created by this constraints pass, assume that it will
250 be allocated a hard register from its allocno class, but allow that
251 class to be narrowed to CL if it is currently a superset of CL.
253 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
254 REGNO (reg), or NO_REGS if no change in its class was needed. */
255 static bool
256 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
258 enum reg_class rclass, common_class;
259 machine_mode reg_mode;
260 int class_size, hard_regno, nregs, i, j;
261 int regno = REGNO (reg);
263 if (new_class != NULL)
264 *new_class = NO_REGS;
265 if (regno < FIRST_PSEUDO_REGISTER)
267 rtx final_reg = reg;
268 rtx *final_loc = &final_reg;
270 lra_eliminate_reg_if_possible (final_loc);
271 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
273 reg_mode = GET_MODE (reg);
274 rclass = get_reg_class (regno);
275 if (regno < new_regno_start
276 /* Do not allow the constraints for reload instructions to
277 influence the classes of new pseudos. These reloads are
278 typically moves that have many alternatives, and restricting
279 reload pseudos for one alternative may lead to situations
280 where other reload pseudos are no longer allocatable. */
281 || (INSN_UID (curr_insn) >= new_insn_uid_start
282 && curr_insn_set != NULL
283 && ((OBJECT_P (SET_SRC (curr_insn_set))
284 && ! CONSTANT_P (SET_SRC (curr_insn_set)))
285 || (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
286 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set)))
287 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set)))))))
288 /* When we don't know what class will be used finally for reload
289 pseudos, we use ALL_REGS. */
290 return ((regno >= new_regno_start && rclass == ALL_REGS)
291 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
292 && ! hard_reg_set_subset_p (reg_class_contents[cl],
293 lra_no_alloc_regs)));
294 else
296 common_class = ira_reg_class_subset[rclass][cl];
297 if (new_class != NULL)
298 *new_class = common_class;
299 if (hard_reg_set_subset_p (reg_class_contents[common_class],
300 lra_no_alloc_regs))
301 return false;
302 /* Check that there are enough allocatable regs. */
303 class_size = ira_class_hard_regs_num[common_class];
304 for (i = 0; i < class_size; i++)
306 hard_regno = ira_class_hard_regs[common_class][i];
307 nregs = hard_regno_nregs[hard_regno][reg_mode];
308 if (nregs == 1)
309 return true;
310 for (j = 0; j < nregs; j++)
311 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
312 || ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
313 hard_regno + j))
314 break;
315 if (j >= nregs)
316 return true;
318 return false;
322 /* Return true if REGNO satisfies a memory constraint. */
323 static bool
324 in_mem_p (int regno)
326 return get_reg_class (regno) == NO_REGS;
329 /* Return 1 if ADDR is a valid memory address for mode MODE in address
330 space AS, and check that each pseudo has the proper kind of hard
331 reg. */
332 static int
333 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
334 rtx addr, addr_space_t as)
336 #ifdef GO_IF_LEGITIMATE_ADDRESS
337 lra_assert (ADDR_SPACE_GENERIC_P (as));
338 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
339 return 0;
341 win:
342 return 1;
343 #else
344 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
345 #endif
348 namespace {
349 /* Temporarily eliminates registers in an address (for the lifetime of
350 the object). */
351 class address_eliminator {
352 public:
353 address_eliminator (struct address_info *ad);
354 ~address_eliminator ();
356 private:
357 struct address_info *m_ad;
358 rtx *m_base_loc;
359 rtx m_base_reg;
360 rtx *m_index_loc;
361 rtx m_index_reg;
365 address_eliminator::address_eliminator (struct address_info *ad)
366 : m_ad (ad),
367 m_base_loc (strip_subreg (ad->base_term)),
368 m_base_reg (NULL_RTX),
369 m_index_loc (strip_subreg (ad->index_term)),
370 m_index_reg (NULL_RTX)
372 if (m_base_loc != NULL)
374 m_base_reg = *m_base_loc;
375 lra_eliminate_reg_if_possible (m_base_loc);
376 if (m_ad->base_term2 != NULL)
377 *m_ad->base_term2 = *m_ad->base_term;
379 if (m_index_loc != NULL)
381 m_index_reg = *m_index_loc;
382 lra_eliminate_reg_if_possible (m_index_loc);
386 address_eliminator::~address_eliminator ()
388 if (m_base_loc && *m_base_loc != m_base_reg)
390 *m_base_loc = m_base_reg;
391 if (m_ad->base_term2 != NULL)
392 *m_ad->base_term2 = *m_ad->base_term;
394 if (m_index_loc && *m_index_loc != m_index_reg)
395 *m_index_loc = m_index_reg;
398 /* Return true if the eliminated form of AD is a legitimate target address. */
399 static bool
400 valid_address_p (struct address_info *ad)
402 address_eliminator eliminator (ad);
403 return valid_address_p (ad->mode, *ad->outer, ad->as);
406 /* Return true if the eliminated form of memory reference OP satisfies
407 extra memory constraint CONSTRAINT. */
408 static bool
409 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
411 struct address_info ad;
413 decompose_mem_address (&ad, op);
414 address_eliminator eliminator (&ad);
415 return constraint_satisfied_p (op, constraint);
418 /* Return true if the eliminated form of address AD satisfies extra
419 address constraint CONSTRAINT. */
420 static bool
421 satisfies_address_constraint_p (struct address_info *ad,
422 enum constraint_num constraint)
424 address_eliminator eliminator (ad);
425 return constraint_satisfied_p (*ad->outer, constraint);
428 /* Return true if the eliminated form of address OP satisfies extra
429 address constraint CONSTRAINT. */
430 static bool
431 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
433 struct address_info ad;
435 decompose_lea_address (&ad, &op);
436 return satisfies_address_constraint_p (&ad, constraint);
439 /* Initiate equivalences for LRA. As we keep original equivalences
440 before any elimination, we need to make copies otherwise any change
441 in insns might change the equivalences. */
442 void
443 lra_init_equiv (void)
445 ira_expand_reg_equiv ();
446 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
448 rtx res;
450 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
451 ira_reg_equiv[i].memory = copy_rtx (res);
452 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
453 ira_reg_equiv[i].invariant = copy_rtx (res);
457 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
459 /* Update equivalence for REGNO. We need to this as the equivalence
460 might contain other pseudos which are changed by their
461 equivalences. */
462 static void
463 update_equiv (int regno)
465 rtx x;
467 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
468 ira_reg_equiv[regno].memory
469 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
470 NULL_RTX);
471 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
472 ira_reg_equiv[regno].invariant
473 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
474 NULL_RTX);
477 /* If we have decided to substitute X with another value, return that
478 value, otherwise return X. */
479 static rtx
480 get_equiv (rtx x)
482 int regno;
483 rtx res;
485 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
486 || ! ira_reg_equiv[regno].defined_p
487 || ! ira_reg_equiv[regno].profitable_p
488 || lra_get_regno_hard_regno (regno) >= 0)
489 return x;
490 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
491 return res;
492 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
493 return res;
494 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
495 return res;
496 gcc_unreachable ();
499 /* If we have decided to substitute X with the equivalent value,
500 return that value after elimination for INSN, otherwise return
501 X. */
502 static rtx
503 get_equiv_with_elimination (rtx x, rtx_insn *insn)
505 rtx res = get_equiv (x);
507 if (x == res || CONSTANT_P (res))
508 return res;
509 return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
510 0, false, false, true);
513 /* Set up curr_operand_mode. */
514 static void
515 init_curr_operand_mode (void)
517 int nop = curr_static_id->n_operands;
518 for (int i = 0; i < nop; i++)
520 machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
521 if (mode == VOIDmode)
523 /* The .md mode for address operands is the mode of the
524 addressed value rather than the mode of the address itself. */
525 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
526 mode = Pmode;
527 else
528 mode = curr_static_id->operand[i].mode;
530 curr_operand_mode[i] = mode;
536 /* The page contains code to reuse input reloads. */
538 /* Structure describes input reload of the current insns. */
539 struct input_reload
541 /* Reloaded value. */
542 rtx input;
543 /* Reload pseudo used. */
544 rtx reg;
547 /* The number of elements in the following array. */
548 static int curr_insn_input_reloads_num;
549 /* Array containing info about input reloads. It is used to find the
550 same input reload and reuse the reload pseudo in this case. */
551 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
553 /* Initiate data concerning reuse of input reloads for the current
554 insn. */
555 static void
556 init_curr_insn_input_reloads (void)
558 curr_insn_input_reloads_num = 0;
561 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
562 created input reload pseudo (only if TYPE is not OP_OUT). Don't
563 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
564 wrapped up in SUBREG. The result pseudo is returned through
565 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
566 reused the already created input reload pseudo. Use TITLE to
567 describe new registers for debug purposes. */
568 static bool
569 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
570 enum reg_class rclass, bool in_subreg_p,
571 const char *title, rtx *result_reg)
573 int i, regno;
574 enum reg_class new_class;
576 if (type == OP_OUT)
578 *result_reg
579 = lra_create_new_reg_with_unique_value (mode, original, rclass, title);
580 return true;
582 /* Prevent reuse value of expression with side effects,
583 e.g. volatile memory. */
584 if (! side_effects_p (original))
585 for (i = 0; i < curr_insn_input_reloads_num; i++)
586 if (rtx_equal_p (curr_insn_input_reloads[i].input, original)
587 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
589 rtx reg = curr_insn_input_reloads[i].reg;
590 regno = REGNO (reg);
591 /* If input is equal to original and both are VOIDmode,
592 GET_MODE (reg) might be still different from mode.
593 Ensure we don't return *result_reg with wrong mode. */
594 if (GET_MODE (reg) != mode)
596 if (in_subreg_p)
597 continue;
598 if (GET_MODE_SIZE (GET_MODE (reg)) < GET_MODE_SIZE (mode))
599 continue;
600 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
601 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
602 continue;
604 *result_reg = reg;
605 if (lra_dump_file != NULL)
607 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
608 dump_value_slim (lra_dump_file, original, 1);
610 if (new_class != lra_get_allocno_class (regno))
611 lra_change_class (regno, new_class, ", change to", false);
612 if (lra_dump_file != NULL)
613 fprintf (lra_dump_file, "\n");
614 return false;
616 *result_reg = lra_create_new_reg (mode, original, rclass, title);
617 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
618 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
619 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
620 return true;
625 /* The page contains code to extract memory address parts. */
627 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudos. */
628 static inline bool
629 ok_for_index_p_nonstrict (rtx reg)
631 unsigned regno = REGNO (reg);
633 return regno >= FIRST_PSEUDO_REGISTER || REGNO_OK_FOR_INDEX_P (regno);
636 /* A version of regno_ok_for_base_p for use here, when all pseudos
637 should count as OK. Arguments as for regno_ok_for_base_p. */
638 static inline bool
639 ok_for_base_p_nonstrict (rtx reg, machine_mode mode, addr_space_t as,
640 enum rtx_code outer_code, enum rtx_code index_code)
642 unsigned regno = REGNO (reg);
644 if (regno >= FIRST_PSEUDO_REGISTER)
645 return true;
646 return ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
651 /* The page contains major code to choose the current insn alternative
652 and generate reloads for it. */
654 /* Return the offset from REGNO of the least significant register
655 in (reg:MODE REGNO).
657 This function is used to tell whether two registers satisfy
658 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
660 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
661 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
663 lra_constraint_offset (int regno, machine_mode mode)
665 lra_assert (regno < FIRST_PSEUDO_REGISTER);
666 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (mode) > UNITS_PER_WORD
667 && SCALAR_INT_MODE_P (mode))
668 return hard_regno_nregs[regno][mode] - 1;
669 return 0;
672 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
673 if they are the same hard reg, and has special hacks for
674 auto-increment and auto-decrement. This is specifically intended for
675 process_alt_operands to use in determining whether two operands
676 match. X is the operand whose number is the lower of the two.
678 It is supposed that X is the output operand and Y is the input
679 operand. Y_HARD_REGNO is the final hard regno of register Y or
680 register in subreg Y as we know it now. Otherwise, it is a
681 negative value. */
682 static bool
683 operands_match_p (rtx x, rtx y, int y_hard_regno)
685 int i;
686 RTX_CODE code = GET_CODE (x);
687 const char *fmt;
689 if (x == y)
690 return true;
691 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
692 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
694 int j;
696 i = get_hard_regno (x);
697 if (i < 0)
698 goto slow;
700 if ((j = y_hard_regno) < 0)
701 goto slow;
703 i += lra_constraint_offset (i, GET_MODE (x));
704 j += lra_constraint_offset (j, GET_MODE (y));
706 return i == j;
709 /* If two operands must match, because they are really a single
710 operand of an assembler insn, then two post-increments are invalid
711 because the assembler insn would increment only once. On the
712 other hand, a post-increment matches ordinary indexing if the
713 post-increment is the output operand. */
714 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
715 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
717 /* Two pre-increments are invalid because the assembler insn would
718 increment only once. On the other hand, a pre-increment matches
719 ordinary indexing if the pre-increment is the input operand. */
720 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
721 || GET_CODE (y) == PRE_MODIFY)
722 return operands_match_p (x, XEXP (y, 0), -1);
724 slow:
726 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
727 && x == SUBREG_REG (y))
728 return true;
729 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
730 && SUBREG_REG (x) == y)
731 return true;
733 /* Now we have disposed of all the cases in which different rtx
734 codes can match. */
735 if (code != GET_CODE (y))
736 return false;
738 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
739 if (GET_MODE (x) != GET_MODE (y))
740 return false;
742 switch (code)
744 CASE_CONST_UNIQUE:
745 return false;
747 case LABEL_REF:
748 return LABEL_REF_LABEL (x) == LABEL_REF_LABEL (y);
749 case SYMBOL_REF:
750 return XSTR (x, 0) == XSTR (y, 0);
752 default:
753 break;
756 /* Compare the elements. If any pair of corresponding elements fail
757 to match, return false for the whole things. */
759 fmt = GET_RTX_FORMAT (code);
760 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
762 int val, j;
763 switch (fmt[i])
765 case 'w':
766 if (XWINT (x, i) != XWINT (y, i))
767 return false;
768 break;
770 case 'i':
771 if (XINT (x, i) != XINT (y, i))
772 return false;
773 break;
775 case 'e':
776 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
777 if (val == 0)
778 return false;
779 break;
781 case '0':
782 break;
784 case 'E':
785 if (XVECLEN (x, i) != XVECLEN (y, i))
786 return false;
787 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
789 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
790 if (val == 0)
791 return false;
793 break;
795 /* It is believed that rtx's at this level will never
796 contain anything but integers and other rtx's, except for
797 within LABEL_REFs and SYMBOL_REFs. */
798 default:
799 gcc_unreachable ();
802 return true;
805 /* True if X is a constant that can be forced into the constant pool.
806 MODE is the mode of the operand, or VOIDmode if not known. */
807 #define CONST_POOL_OK_P(MODE, X) \
808 ((MODE) != VOIDmode \
809 && CONSTANT_P (X) \
810 && GET_CODE (X) != HIGH \
811 && !targetm.cannot_force_const_mem (MODE, X))
813 /* True if C is a non-empty register class that has too few registers
814 to be safely used as a reload target class. */
815 #define SMALL_REGISTER_CLASS_P(C) \
816 (ira_class_hard_regs_num [(C)] == 1 \
817 || (ira_class_hard_regs_num [(C)] >= 1 \
818 && targetm.class_likely_spilled_p (C)))
820 /* If REG is a reload pseudo, try to make its class satisfying CL. */
821 static void
822 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
824 enum reg_class rclass;
826 /* Do not make more accurate class from reloads generated. They are
827 mostly moves with a lot of constraints. Making more accurate
828 class may results in very narrow class and impossibility of find
829 registers for several reloads of one insn. */
830 if (INSN_UID (curr_insn) >= new_insn_uid_start)
831 return;
832 if (GET_CODE (reg) == SUBREG)
833 reg = SUBREG_REG (reg);
834 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
835 return;
836 if (in_class_p (reg, cl, &rclass) && rclass != cl)
837 lra_change_class (REGNO (reg), rclass, " Change to", true);
840 /* Generate reloads for matching OUT and INS (array of input operand
841 numbers with end marker -1) with reg class GOAL_CLASS. Add input
842 and output reloads correspondingly to the lists *BEFORE and *AFTER.
843 OUT might be negative. In this case we generate input reloads for
844 matched input operands INS. */
845 static void
846 match_reload (signed char out, signed char *ins, enum reg_class goal_class,
847 rtx_insn **before, rtx_insn **after)
849 int i, in;
850 rtx new_in_reg, new_out_reg, reg, clobber;
851 machine_mode inmode, outmode;
852 rtx in_rtx = *curr_id->operand_loc[ins[0]];
853 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
855 inmode = curr_operand_mode[ins[0]];
856 outmode = out < 0 ? inmode : curr_operand_mode[out];
857 push_to_sequence (*before);
858 if (inmode != outmode)
860 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
862 reg = new_in_reg
863 = lra_create_new_reg_with_unique_value (inmode, in_rtx,
864 goal_class, "");
865 if (SCALAR_INT_MODE_P (inmode))
866 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
867 else
868 new_out_reg = gen_rtx_SUBREG (outmode, reg, 0);
869 LRA_SUBREG_P (new_out_reg) = 1;
870 /* If the input reg is dying here, we can use the same hard
871 register for REG and IN_RTX. We do it only for original
872 pseudos as reload pseudos can die although original
873 pseudos still live where reload pseudos dies. */
874 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
875 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx)))
876 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
878 else
880 reg = new_out_reg
881 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
882 goal_class, "");
883 if (SCALAR_INT_MODE_P (outmode))
884 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
885 else
886 new_in_reg = gen_rtx_SUBREG (inmode, reg, 0);
887 /* NEW_IN_REG is non-paradoxical subreg. We don't want
888 NEW_OUT_REG living above. We add clobber clause for
889 this. This is just a temporary clobber. We can remove
890 it at the end of LRA work. */
891 clobber = emit_clobber (new_out_reg);
892 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
893 LRA_SUBREG_P (new_in_reg) = 1;
894 if (GET_CODE (in_rtx) == SUBREG)
896 rtx subreg_reg = SUBREG_REG (in_rtx);
898 /* If SUBREG_REG is dying here and sub-registers IN_RTX
899 and NEW_IN_REG are similar, we can use the same hard
900 register for REG and SUBREG_REG. */
901 if (REG_P (subreg_reg)
902 && (int) REGNO (subreg_reg) < lra_new_regno_start
903 && GET_MODE (subreg_reg) == outmode
904 && SUBREG_BYTE (in_rtx) == SUBREG_BYTE (new_in_reg)
905 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg)))
906 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
910 else
912 /* Pseudos have values -- see comments for lra_reg_info.
913 Different pseudos with the same value do not conflict even if
914 they live in the same place. When we create a pseudo we
915 assign value of original pseudo (if any) from which we
916 created the new pseudo. If we create the pseudo from the
917 input pseudo, the new pseudo will no conflict with the input
918 pseudo which is wrong when the input pseudo lives after the
919 insn and as the new pseudo value is changed by the insn
920 output. Therefore we create the new pseudo from the output.
922 We cannot reuse the current output register because we might
923 have a situation like "a <- a op b", where the constraints
924 force the second input operand ("b") to match the output
925 operand ("a"). "b" must then be copied into a new register
926 so that it doesn't clobber the current value of "a". */
928 new_in_reg = new_out_reg
929 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
930 goal_class, "");
932 /* In operand can be got from transformations before processing insn
933 constraints. One example of such transformations is subreg
934 reloading (see function simplify_operand_subreg). The new
935 pseudos created by the transformations might have inaccurate
936 class (ALL_REGS) and we should make their classes more
937 accurate. */
938 narrow_reload_pseudo_class (in_rtx, goal_class);
939 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
940 *before = get_insns ();
941 end_sequence ();
942 for (i = 0; (in = ins[i]) >= 0; i++)
944 lra_assert
945 (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
946 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
947 *curr_id->operand_loc[in] = new_in_reg;
949 lra_update_dups (curr_id, ins);
950 if (out < 0)
951 return;
952 /* See a comment for the input operand above. */
953 narrow_reload_pseudo_class (out_rtx, goal_class);
954 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
956 start_sequence ();
957 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
958 emit_insn (*after);
959 *after = get_insns ();
960 end_sequence ();
962 *curr_id->operand_loc[out] = new_out_reg;
963 lra_update_dup (curr_id, out);
966 /* Return register class which is union of all reg classes in insn
967 constraint alternative string starting with P. */
968 static enum reg_class
969 reg_class_from_constraints (const char *p)
971 int c, len;
972 enum reg_class op_class = NO_REGS;
975 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
977 case '#':
978 case ',':
979 return op_class;
981 case 'g':
982 op_class = reg_class_subunion[op_class][GENERAL_REGS];
983 break;
985 default:
986 enum constraint_num cn = lookup_constraint (p);
987 enum reg_class cl = reg_class_for_constraint (cn);
988 if (cl == NO_REGS)
990 if (insn_extra_address_constraint (cn))
991 op_class
992 = (reg_class_subunion
993 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
994 ADDRESS, SCRATCH)]);
995 break;
998 op_class = reg_class_subunion[op_class][cl];
999 break;
1001 while ((p += len), c);
1002 return op_class;
1005 /* If OP is a register, return the class of the register as per
1006 get_reg_class, otherwise return NO_REGS. */
1007 static inline enum reg_class
1008 get_op_class (rtx op)
1010 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1013 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1014 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1015 SUBREG for VAL to make them equal. */
1016 static rtx_insn *
1017 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1019 if (GET_MODE (mem_pseudo) != GET_MODE (val))
1021 /* Usually size of mem_pseudo is greater than val size but in
1022 rare cases it can be less as it can be defined by target
1023 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1024 if (! MEM_P (val))
1026 val = gen_rtx_SUBREG (GET_MODE (mem_pseudo),
1027 GET_CODE (val) == SUBREG ? SUBREG_REG (val) : val,
1029 LRA_SUBREG_P (val) = 1;
1031 else
1033 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1034 LRA_SUBREG_P (mem_pseudo) = 1;
1037 return as_a <rtx_insn *> (to_p
1038 ? gen_move_insn (mem_pseudo, val)
1039 : gen_move_insn (val, mem_pseudo));
1042 /* Process a special case insn (register move), return true if we
1043 don't need to process it anymore. INSN should be a single set
1044 insn. Set up that RTL was changed through CHANGE_P and macro
1045 SECONDARY_MEMORY_NEEDED says to use secondary memory through
1046 SEC_MEM_P. */
1047 static bool
1048 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1050 int sregno, dregno;
1051 rtx dest, src, dreg, sreg, old_sreg, new_reg, scratch_reg;
1052 rtx_insn *before;
1053 enum reg_class dclass, sclass, secondary_class;
1054 machine_mode sreg_mode;
1055 secondary_reload_info sri;
1057 lra_assert (curr_insn_set != NULL_RTX);
1058 dreg = dest = SET_DEST (curr_insn_set);
1059 sreg = src = SET_SRC (curr_insn_set);
1060 if (GET_CODE (dest) == SUBREG)
1061 dreg = SUBREG_REG (dest);
1062 if (GET_CODE (src) == SUBREG)
1063 sreg = SUBREG_REG (src);
1064 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1065 return false;
1066 sclass = dclass = NO_REGS;
1067 if (REG_P (dreg))
1068 dclass = get_reg_class (REGNO (dreg));
1069 if (dclass == ALL_REGS)
1070 /* ALL_REGS is used for new pseudos created by transformations
1071 like reload of SUBREG_REG (see function
1072 simplify_operand_subreg). We don't know their class yet. We
1073 should figure out the class from processing the insn
1074 constraints not in this fast path function. Even if ALL_REGS
1075 were a right class for the pseudo, secondary_... hooks usually
1076 are not define for ALL_REGS. */
1077 return false;
1078 sreg_mode = GET_MODE (sreg);
1079 old_sreg = sreg;
1080 if (REG_P (sreg))
1081 sclass = get_reg_class (REGNO (sreg));
1082 if (sclass == ALL_REGS)
1083 /* See comments above. */
1084 return false;
1085 if (sclass == NO_REGS && dclass == NO_REGS)
1086 return false;
1087 #ifdef SECONDARY_MEMORY_NEEDED
1088 if (SECONDARY_MEMORY_NEEDED (sclass, dclass, GET_MODE (src))
1089 #ifdef SECONDARY_MEMORY_NEEDED_MODE
1090 && ((sclass != NO_REGS && dclass != NO_REGS)
1091 || GET_MODE (src) != SECONDARY_MEMORY_NEEDED_MODE (GET_MODE (src)))
1092 #endif
1095 *sec_mem_p = true;
1096 return false;
1098 #endif
1099 if (! REG_P (dreg) || ! REG_P (sreg))
1100 return false;
1101 sri.prev_sri = NULL;
1102 sri.icode = CODE_FOR_nothing;
1103 sri.extra_cost = 0;
1104 secondary_class = NO_REGS;
1105 /* Set up hard register for a reload pseudo for hook
1106 secondary_reload because some targets just ignore unassigned
1107 pseudos in the hook. */
1108 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1110 dregno = REGNO (dreg);
1111 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1113 else
1114 dregno = -1;
1115 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1117 sregno = REGNO (sreg);
1118 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1120 else
1121 sregno = -1;
1122 if (sclass != NO_REGS)
1123 secondary_class
1124 = (enum reg_class) targetm.secondary_reload (false, dest,
1125 (reg_class_t) sclass,
1126 GET_MODE (src), &sri);
1127 if (sclass == NO_REGS
1128 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1129 && dclass != NO_REGS))
1131 enum reg_class old_sclass = secondary_class;
1132 secondary_reload_info old_sri = sri;
1134 sri.prev_sri = NULL;
1135 sri.icode = CODE_FOR_nothing;
1136 sri.extra_cost = 0;
1137 secondary_class
1138 = (enum reg_class) targetm.secondary_reload (true, sreg,
1139 (reg_class_t) dclass,
1140 sreg_mode, &sri);
1141 /* Check the target hook consistency. */
1142 lra_assert
1143 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1144 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1145 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1147 if (sregno >= 0)
1148 reg_renumber [sregno] = -1;
1149 if (dregno >= 0)
1150 reg_renumber [dregno] = -1;
1151 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1152 return false;
1153 *change_p = true;
1154 new_reg = NULL_RTX;
1155 if (secondary_class != NO_REGS)
1156 new_reg = lra_create_new_reg_with_unique_value (sreg_mode, NULL_RTX,
1157 secondary_class,
1158 "secondary");
1159 start_sequence ();
1160 if (old_sreg != sreg)
1161 sreg = copy_rtx (sreg);
1162 if (sri.icode == CODE_FOR_nothing)
1163 lra_emit_move (new_reg, sreg);
1164 else
1166 enum reg_class scratch_class;
1168 scratch_class = (reg_class_from_constraints
1169 (insn_data[sri.icode].operand[2].constraint));
1170 scratch_reg = (lra_create_new_reg_with_unique_value
1171 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1172 scratch_class, "scratch"));
1173 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1174 sreg, scratch_reg));
1176 before = get_insns ();
1177 end_sequence ();
1178 lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1179 if (new_reg != NULL_RTX)
1181 if (GET_CODE (src) == SUBREG)
1182 SUBREG_REG (src) = new_reg;
1183 else
1184 SET_SRC (curr_insn_set) = new_reg;
1186 else
1188 if (lra_dump_file != NULL)
1190 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1191 dump_insn_slim (lra_dump_file, curr_insn);
1193 lra_set_insn_deleted (curr_insn);
1194 return true;
1196 return false;
1199 /* The following data describe the result of process_alt_operands.
1200 The data are used in curr_insn_transform to generate reloads. */
1202 /* The chosen reg classes which should be used for the corresponding
1203 operands. */
1204 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1205 /* True if the operand should be the same as another operand and that
1206 other operand does not need a reload. */
1207 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1208 /* True if the operand does not need a reload. */
1209 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1210 /* True if the operand can be offsetable memory. */
1211 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1212 /* The number of an operand to which given operand can be matched to. */
1213 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1214 /* The number of elements in the following array. */
1215 static int goal_alt_dont_inherit_ops_num;
1216 /* Numbers of operands whose reload pseudos should not be inherited. */
1217 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1218 /* True if the insn commutative operands should be swapped. */
1219 static bool goal_alt_swapped;
1220 /* The chosen insn alternative. */
1221 static int goal_alt_number;
1223 /* The following five variables are used to choose the best insn
1224 alternative. They reflect final characteristics of the best
1225 alternative. */
1227 /* Number of necessary reloads and overall cost reflecting the
1228 previous value and other unpleasantness of the best alternative. */
1229 static int best_losers, best_overall;
1230 /* Overall number hard registers used for reloads. For example, on
1231 some targets we need 2 general registers to reload DFmode and only
1232 one floating point register. */
1233 static int best_reload_nregs;
1234 /* Overall number reflecting distances of previous reloading the same
1235 value. The distances are counted from the current BB start. It is
1236 used to improve inheritance chances. */
1237 static int best_reload_sum;
1239 /* True if the current insn should have no correspondingly input or
1240 output reloads. */
1241 static bool no_input_reloads_p, no_output_reloads_p;
1243 /* True if we swapped the commutative operands in the current
1244 insn. */
1245 static int curr_swapped;
1247 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1248 register of class CL. Add any input reloads to list BEFORE. AFTER
1249 is nonnull if *LOC is an automodified value; handle that case by
1250 adding the required output reloads to list AFTER. Return true if
1251 the RTL was changed.
1253 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1254 register. Return false if the address register is correct. */
1255 static bool
1256 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1257 enum reg_class cl)
1259 int regno;
1260 enum reg_class rclass, new_class;
1261 rtx reg;
1262 rtx new_reg;
1263 machine_mode mode;
1264 bool subreg_p, before_p = false;
1266 subreg_p = GET_CODE (*loc) == SUBREG;
1267 if (subreg_p)
1268 loc = &SUBREG_REG (*loc);
1269 reg = *loc;
1270 mode = GET_MODE (reg);
1271 if (! REG_P (reg))
1273 if (check_only_p)
1274 return true;
1275 /* Always reload memory in an address even if the target supports
1276 such addresses. */
1277 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1278 before_p = true;
1280 else
1282 regno = REGNO (reg);
1283 rclass = get_reg_class (regno);
1284 if (! check_only_p
1285 && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1287 if (lra_dump_file != NULL)
1289 fprintf (lra_dump_file,
1290 "Changing pseudo %d in address of insn %u on equiv ",
1291 REGNO (reg), INSN_UID (curr_insn));
1292 dump_value_slim (lra_dump_file, *loc, 1);
1293 fprintf (lra_dump_file, "\n");
1295 *loc = copy_rtx (*loc);
1297 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1299 if (check_only_p)
1300 return true;
1301 reg = *loc;
1302 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1303 mode, reg, cl, subreg_p, "address", &new_reg))
1304 before_p = true;
1306 else if (new_class != NO_REGS && rclass != new_class)
1308 if (check_only_p)
1309 return true;
1310 lra_change_class (regno, new_class, " Change to", true);
1311 return false;
1313 else
1314 return false;
1316 if (before_p)
1318 push_to_sequence (*before);
1319 lra_emit_move (new_reg, reg);
1320 *before = get_insns ();
1321 end_sequence ();
1323 *loc = new_reg;
1324 if (after != NULL)
1326 start_sequence ();
1327 lra_emit_move (reg, new_reg);
1328 emit_insn (*after);
1329 *after = get_insns ();
1330 end_sequence ();
1332 return true;
1335 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1336 the insn to be inserted before curr insn. AFTER returns the
1337 the insn to be inserted after curr insn. ORIGREG and NEWREG
1338 are the original reg and new reg for reload. */
1339 static void
1340 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1341 rtx newreg)
1343 if (before)
1345 push_to_sequence (*before);
1346 lra_emit_move (newreg, origreg);
1347 *before = get_insns ();
1348 end_sequence ();
1350 if (after)
1352 start_sequence ();
1353 lra_emit_move (origreg, newreg);
1354 emit_insn (*after);
1355 *after = get_insns ();
1356 end_sequence ();
1360 static int valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1362 /* Make reloads for subreg in operand NOP with internal subreg mode
1363 REG_MODE, add new reloads for further processing. Return true if
1364 any reload was generated. */
1365 static bool
1366 simplify_operand_subreg (int nop, machine_mode reg_mode)
1368 int hard_regno;
1369 rtx_insn *before, *after;
1370 machine_mode mode;
1371 rtx reg, new_reg;
1372 rtx operand = *curr_id->operand_loc[nop];
1373 enum reg_class regclass;
1374 enum op_type type;
1376 before = after = NULL;
1378 if (GET_CODE (operand) != SUBREG)
1379 return false;
1381 mode = GET_MODE (operand);
1382 reg = SUBREG_REG (operand);
1383 type = curr_static_id->operand[nop].type;
1384 /* If we change address for paradoxical subreg of memory, the
1385 address might violate the necessary alignment or the access might
1386 be slow. So take this into consideration. We should not worry
1387 about access beyond allocated memory for paradoxical memory
1388 subregs as we don't substitute such equiv memory (see processing
1389 equivalences in function lra_constraints) and because for spilled
1390 pseudos we allocate stack memory enough for the biggest
1391 corresponding paradoxical subreg. */
1392 if (MEM_P (reg)
1393 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (reg))
1394 || MEM_ALIGN (reg) >= GET_MODE_ALIGNMENT (mode)))
1396 rtx subst, old = *curr_id->operand_loc[nop];
1398 alter_subreg (curr_id->operand_loc[nop], false);
1399 subst = *curr_id->operand_loc[nop];
1400 lra_assert (MEM_P (subst));
1401 if (! valid_address_p (GET_MODE (reg), XEXP (reg, 0),
1402 MEM_ADDR_SPACE (reg))
1403 || valid_address_p (GET_MODE (subst), XEXP (subst, 0),
1404 MEM_ADDR_SPACE (subst)))
1405 return true;
1406 /* If the address was valid and became invalid, prefer to reload
1407 the memory. Typical case is when the index scale should
1408 correspond the memory. */
1409 *curr_id->operand_loc[nop] = old;
1411 else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1413 alter_subreg (curr_id->operand_loc[nop], false);
1414 return true;
1416 /* Put constant into memory when we have mixed modes. It generates
1417 a better code in most cases as it does not need a secondary
1418 reload memory. It also prevents LRA looping when LRA is using
1419 secondary reload memory again and again. */
1420 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1421 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1423 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1424 alter_subreg (curr_id->operand_loc[nop], false);
1425 return true;
1427 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1428 if there may be a problem accessing OPERAND in the outer
1429 mode. */
1430 if ((REG_P (reg)
1431 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1432 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1433 /* Don't reload paradoxical subregs because we could be looping
1434 having repeatedly final regno out of hard regs range. */
1435 && (hard_regno_nregs[hard_regno][GET_MODE (reg)]
1436 >= hard_regno_nregs[hard_regno][mode])
1437 && simplify_subreg_regno (hard_regno, GET_MODE (reg),
1438 SUBREG_BYTE (operand), mode) < 0
1439 /* Don't reload subreg for matching reload. It is actually
1440 valid subreg in LRA. */
1441 && ! LRA_SUBREG_P (operand))
1442 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1444 enum reg_class rclass;
1446 if (REG_P (reg))
1447 /* There is a big probability that we will get the same class
1448 for the new pseudo and we will get the same insn which
1449 means infinite looping. So spill the new pseudo. */
1450 rclass = NO_REGS;
1451 else
1452 /* The class will be defined later in curr_insn_transform. */
1453 rclass
1454 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1456 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1457 rclass, TRUE, "subreg reg", &new_reg))
1459 bool insert_before, insert_after;
1460 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1462 insert_before = (type != OP_OUT
1463 || GET_MODE_SIZE (GET_MODE (reg)) > GET_MODE_SIZE (mode));
1464 insert_after = (type != OP_IN);
1465 insert_move_for_subreg (insert_before ? &before : NULL,
1466 insert_after ? &after : NULL,
1467 reg, new_reg);
1469 SUBREG_REG (operand) = new_reg;
1470 lra_process_new_insns (curr_insn, before, after,
1471 "Inserting subreg reload");
1472 return true;
1474 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1475 IRA allocates hardreg to the inner pseudo reg according to its mode
1476 instead of the outermode, so the size of the hardreg may not be enough
1477 to contain the outermode operand, in that case we may need to insert
1478 reload for the reg. For the following two types of paradoxical subreg,
1479 we need to insert reload:
1480 1. If the op_type is OP_IN, and the hardreg could not be paired with
1481 other hardreg to contain the outermode operand
1482 (checked by in_hard_reg_set_p), we need to insert the reload.
1483 2. If the op_type is OP_OUT or OP_INOUT.
1485 Here is a paradoxical subreg example showing how the reload is generated:
1487 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1488 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1490 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1491 here, if reg107 is assigned to hardreg R15, because R15 is the last
1492 hardreg, compiler cannot find another hardreg to pair with R15 to
1493 contain TImode data. So we insert a TImode reload reg180 for it.
1494 After reload is inserted:
1496 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1497 (reg:DI 107 [ __comp ])) -1
1498 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1499 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1501 Two reload hard registers will be allocated to reg180 to save TImode data
1502 in LRA_assign. */
1503 else if (REG_P (reg)
1504 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1505 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1506 && (hard_regno_nregs[hard_regno][GET_MODE (reg)]
1507 < hard_regno_nregs[hard_regno][mode])
1508 && (regclass = lra_get_allocno_class (REGNO (reg)))
1509 && (type != OP_IN
1510 || !in_hard_reg_set_p (reg_class_contents[regclass],
1511 mode, hard_regno)))
1513 /* The class will be defined later in curr_insn_transform. */
1514 enum reg_class rclass
1515 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1517 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1518 rclass, TRUE, "paradoxical subreg", &new_reg))
1520 rtx subreg;
1521 bool insert_before, insert_after;
1523 PUT_MODE (new_reg, mode);
1524 subreg = simplify_gen_subreg (GET_MODE (reg), new_reg, mode, 0);
1525 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1527 insert_before = (type != OP_OUT);
1528 insert_after = (type != OP_IN);
1529 insert_move_for_subreg (insert_before ? &before : NULL,
1530 insert_after ? &after : NULL,
1531 reg, subreg);
1533 SUBREG_REG (operand) = new_reg;
1534 lra_process_new_insns (curr_insn, before, after,
1535 "Inserting paradoxical subreg reload");
1536 return true;
1538 return false;
1541 /* Return TRUE if X refers for a hard register from SET. */
1542 static bool
1543 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1545 int i, j, x_hard_regno;
1546 machine_mode mode;
1547 const char *fmt;
1548 enum rtx_code code;
1550 if (x == NULL_RTX)
1551 return false;
1552 code = GET_CODE (x);
1553 mode = GET_MODE (x);
1554 if (code == SUBREG)
1556 x = SUBREG_REG (x);
1557 code = GET_CODE (x);
1558 if (GET_MODE_SIZE (GET_MODE (x)) > GET_MODE_SIZE (mode))
1559 mode = GET_MODE (x);
1562 if (REG_P (x))
1564 x_hard_regno = get_hard_regno (x);
1565 return (x_hard_regno >= 0
1566 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1568 if (MEM_P (x))
1570 struct address_info ad;
1572 decompose_mem_address (&ad, x);
1573 if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1574 return true;
1575 if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1576 return true;
1578 fmt = GET_RTX_FORMAT (code);
1579 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1581 if (fmt[i] == 'e')
1583 if (uses_hard_regs_p (XEXP (x, i), set))
1584 return true;
1586 else if (fmt[i] == 'E')
1588 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1589 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1590 return true;
1593 return false;
1596 /* Return true if OP is a spilled pseudo. */
1597 static inline bool
1598 spilled_pseudo_p (rtx op)
1600 return (REG_P (op)
1601 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1604 /* Return true if X is a general constant. */
1605 static inline bool
1606 general_constant_p (rtx x)
1608 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1611 static bool
1612 reg_in_class_p (rtx reg, enum reg_class cl)
1614 if (cl == NO_REGS)
1615 return get_reg_class (REGNO (reg)) == NO_REGS;
1616 return in_class_p (reg, cl, NULL);
1619 /* Major function to choose the current insn alternative and what
1620 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1621 negative we should consider only this alternative. Return false if
1622 we can not choose the alternative or find how to reload the
1623 operands. */
1624 static bool
1625 process_alt_operands (int only_alternative)
1627 bool ok_p = false;
1628 int nop, overall, nalt;
1629 int n_alternatives = curr_static_id->n_alternatives;
1630 int n_operands = curr_static_id->n_operands;
1631 /* LOSERS counts the operands that don't fit this alternative and
1632 would require loading. */
1633 int losers;
1634 /* REJECT is a count of how undesirable this alternative says it is
1635 if any reloading is required. If the alternative matches exactly
1636 then REJECT is ignored, but otherwise it gets this much counted
1637 against it in addition to the reloading needed. */
1638 int reject;
1639 /* The number of elements in the following array. */
1640 int early_clobbered_regs_num;
1641 /* Numbers of operands which are early clobber registers. */
1642 int early_clobbered_nops[MAX_RECOG_OPERANDS];
1643 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1644 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1645 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1646 bool curr_alt_win[MAX_RECOG_OPERANDS];
1647 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1648 int curr_alt_matches[MAX_RECOG_OPERANDS];
1649 /* The number of elements in the following array. */
1650 int curr_alt_dont_inherit_ops_num;
1651 /* Numbers of operands whose reload pseudos should not be inherited. */
1652 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1653 rtx op;
1654 /* The register when the operand is a subreg of register, otherwise the
1655 operand itself. */
1656 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1657 /* The register if the operand is a register or subreg of register,
1658 otherwise NULL. */
1659 rtx operand_reg[MAX_RECOG_OPERANDS];
1660 int hard_regno[MAX_RECOG_OPERANDS];
1661 machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1662 int reload_nregs, reload_sum;
1663 bool costly_p;
1664 enum reg_class cl;
1666 /* Calculate some data common for all alternatives to speed up the
1667 function. */
1668 for (nop = 0; nop < n_operands; nop++)
1670 rtx reg;
1672 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
1673 /* The real hard regno of the operand after the allocation. */
1674 hard_regno[nop] = get_hard_regno (op);
1676 operand_reg[nop] = reg = op;
1677 biggest_mode[nop] = GET_MODE (op);
1678 if (GET_CODE (op) == SUBREG)
1680 operand_reg[nop] = reg = SUBREG_REG (op);
1681 if (GET_MODE_SIZE (biggest_mode[nop])
1682 < GET_MODE_SIZE (GET_MODE (reg)))
1683 biggest_mode[nop] = GET_MODE (reg);
1685 if (! REG_P (reg))
1686 operand_reg[nop] = NULL_RTX;
1687 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
1688 || ((int) REGNO (reg)
1689 == lra_get_elimination_hard_regno (REGNO (reg))))
1690 no_subreg_reg_operand[nop] = reg;
1691 else
1692 operand_reg[nop] = no_subreg_reg_operand[nop]
1693 /* Just use natural mode for elimination result. It should
1694 be enough for extra constraints hooks. */
1695 = regno_reg_rtx[hard_regno[nop]];
1698 /* The constraints are made of several alternatives. Each operand's
1699 constraint looks like foo,bar,... with commas separating the
1700 alternatives. The first alternatives for all operands go
1701 together, the second alternatives go together, etc.
1703 First loop over alternatives. */
1704 alternative_mask preferred = curr_id->preferred_alternatives;
1705 if (only_alternative >= 0)
1706 preferred &= ALTERNATIVE_BIT (only_alternative);
1708 for (nalt = 0; nalt < n_alternatives; nalt++)
1710 /* Loop over operands for one constraint alternative. */
1711 if (!TEST_BIT (preferred, nalt))
1712 continue;
1714 overall = losers = reject = reload_nregs = reload_sum = 0;
1715 for (nop = 0; nop < n_operands; nop++)
1717 int inc = (curr_static_id
1718 ->operand_alternative[nalt * n_operands + nop].reject);
1719 if (lra_dump_file != NULL && inc != 0)
1720 fprintf (lra_dump_file,
1721 " Staticly defined alt reject+=%d\n", inc);
1722 reject += inc;
1724 early_clobbered_regs_num = 0;
1726 for (nop = 0; nop < n_operands; nop++)
1728 const char *p;
1729 char *end;
1730 int len, c, m, i, opalt_num, this_alternative_matches;
1731 bool win, did_match, offmemok, early_clobber_p;
1732 /* false => this operand can be reloaded somehow for this
1733 alternative. */
1734 bool badop;
1735 /* true => this operand can be reloaded if the alternative
1736 allows regs. */
1737 bool winreg;
1738 /* True if a constant forced into memory would be OK for
1739 this operand. */
1740 bool constmemok;
1741 enum reg_class this_alternative, this_costly_alternative;
1742 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
1743 bool this_alternative_match_win, this_alternative_win;
1744 bool this_alternative_offmemok;
1745 bool scratch_p;
1746 machine_mode mode;
1747 enum constraint_num cn;
1749 opalt_num = nalt * n_operands + nop;
1750 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
1752 /* Fast track for no constraints at all. */
1753 curr_alt[nop] = NO_REGS;
1754 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
1755 curr_alt_win[nop] = true;
1756 curr_alt_match_win[nop] = false;
1757 curr_alt_offmemok[nop] = false;
1758 curr_alt_matches[nop] = -1;
1759 continue;
1762 op = no_subreg_reg_operand[nop];
1763 mode = curr_operand_mode[nop];
1765 win = did_match = winreg = offmemok = constmemok = false;
1766 badop = true;
1768 early_clobber_p = false;
1769 p = curr_static_id->operand_alternative[opalt_num].constraint;
1771 this_costly_alternative = this_alternative = NO_REGS;
1772 /* We update set of possible hard regs besides its class
1773 because reg class might be inaccurate. For example,
1774 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
1775 is translated in HI_REGS because classes are merged by
1776 pairs and there is no accurate intermediate class. */
1777 CLEAR_HARD_REG_SET (this_alternative_set);
1778 CLEAR_HARD_REG_SET (this_costly_alternative_set);
1779 this_alternative_win = false;
1780 this_alternative_match_win = false;
1781 this_alternative_offmemok = false;
1782 this_alternative_matches = -1;
1784 /* An empty constraint should be excluded by the fast
1785 track. */
1786 lra_assert (*p != 0 && *p != ',');
1788 /* Scan this alternative's specs for this operand; set WIN
1789 if the operand fits any letter in this alternative.
1790 Otherwise, clear BADOP if this operand could fit some
1791 letter after reloads, or set WINREG if this operand could
1792 fit after reloads provided the constraint allows some
1793 registers. */
1794 costly_p = false;
1797 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1799 case '\0':
1800 len = 0;
1801 break;
1802 case ',':
1803 c = '\0';
1804 break;
1806 case '&':
1807 early_clobber_p = true;
1808 break;
1810 case '#':
1811 /* Ignore rest of this alternative. */
1812 c = '\0';
1813 break;
1815 case '0': case '1': case '2': case '3': case '4':
1816 case '5': case '6': case '7': case '8': case '9':
1818 int m_hregno;
1819 bool match_p;
1821 m = strtoul (p, &end, 10);
1822 p = end;
1823 len = 0;
1824 lra_assert (nop > m);
1826 this_alternative_matches = m;
1827 m_hregno = get_hard_regno (*curr_id->operand_loc[m]);
1828 /* We are supposed to match a previous operand.
1829 If we do, we win if that one did. If we do
1830 not, count both of the operands as losers.
1831 (This is too conservative, since most of the
1832 time only a single reload insn will be needed
1833 to make the two operands win. As a result,
1834 this alternative may be rejected when it is
1835 actually desirable.) */
1836 match_p = false;
1837 if (operands_match_p (*curr_id->operand_loc[nop],
1838 *curr_id->operand_loc[m], m_hregno))
1840 /* We should reject matching of an early
1841 clobber operand if the matching operand is
1842 not dying in the insn. */
1843 if (! curr_static_id->operand[m].early_clobber
1844 || operand_reg[nop] == NULL_RTX
1845 || (find_regno_note (curr_insn, REG_DEAD,
1846 REGNO (op))
1847 || REGNO (op) == REGNO (operand_reg[m])))
1848 match_p = true;
1850 if (match_p)
1852 /* If we are matching a non-offsettable
1853 address where an offsettable address was
1854 expected, then we must reject this
1855 combination, because we can't reload
1856 it. */
1857 if (curr_alt_offmemok[m]
1858 && MEM_P (*curr_id->operand_loc[m])
1859 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
1860 continue;
1862 else
1864 /* Operands don't match. Both operands must
1865 allow a reload register, otherwise we
1866 cannot make them match. */
1867 if (curr_alt[m] == NO_REGS)
1868 break;
1869 /* Retroactively mark the operand we had to
1870 match as a loser, if it wasn't already and
1871 it wasn't matched to a register constraint
1872 (e.g it might be matched by memory). */
1873 if (curr_alt_win[m]
1874 && (operand_reg[m] == NULL_RTX
1875 || hard_regno[m] < 0))
1877 losers++;
1878 reload_nregs
1879 += (ira_reg_class_max_nregs[curr_alt[m]]
1880 [GET_MODE (*curr_id->operand_loc[m])]);
1883 /* Prefer matching earlyclobber alternative as
1884 it results in less hard regs required for
1885 the insn than a non-matching earlyclobber
1886 alternative. */
1887 if (curr_static_id->operand[m].early_clobber)
1889 if (lra_dump_file != NULL)
1890 fprintf
1891 (lra_dump_file,
1892 " %d Matching earlyclobber alt:"
1893 " reject--\n",
1894 nop);
1895 reject--;
1897 /* Otherwise we prefer no matching
1898 alternatives because it gives more freedom
1899 in RA. */
1900 else if (operand_reg[nop] == NULL_RTX
1901 || (find_regno_note (curr_insn, REG_DEAD,
1902 REGNO (operand_reg[nop]))
1903 == NULL_RTX))
1905 if (lra_dump_file != NULL)
1906 fprintf
1907 (lra_dump_file,
1908 " %d Matching alt: reject+=2\n",
1909 nop);
1910 reject += 2;
1913 /* If we have to reload this operand and some
1914 previous operand also had to match the same
1915 thing as this operand, we don't know how to do
1916 that. */
1917 if (!match_p || !curr_alt_win[m])
1919 for (i = 0; i < nop; i++)
1920 if (curr_alt_matches[i] == m)
1921 break;
1922 if (i < nop)
1923 break;
1925 else
1926 did_match = true;
1928 /* This can be fixed with reloads if the operand
1929 we are supposed to match can be fixed with
1930 reloads. */
1931 badop = false;
1932 this_alternative = curr_alt[m];
1933 COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
1934 winreg = this_alternative != NO_REGS;
1935 break;
1938 case 'g':
1939 if (MEM_P (op)
1940 || general_constant_p (op)
1941 || spilled_pseudo_p (op))
1942 win = true;
1943 cl = GENERAL_REGS;
1944 goto reg;
1946 default:
1947 cn = lookup_constraint (p);
1948 switch (get_constraint_type (cn))
1950 case CT_REGISTER:
1951 cl = reg_class_for_constraint (cn);
1952 if (cl != NO_REGS)
1953 goto reg;
1954 break;
1956 case CT_CONST_INT:
1957 if (CONST_INT_P (op)
1958 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
1959 win = true;
1960 break;
1962 case CT_MEMORY:
1963 if (MEM_P (op)
1964 && satisfies_memory_constraint_p (op, cn))
1965 win = true;
1966 else if (spilled_pseudo_p (op))
1967 win = true;
1969 /* If we didn't already win, we can reload constants
1970 via force_const_mem or put the pseudo value into
1971 memory, or make other memory by reloading the
1972 address like for 'o'. */
1973 if (CONST_POOL_OK_P (mode, op)
1974 || MEM_P (op) || REG_P (op))
1975 badop = false;
1976 constmemok = true;
1977 offmemok = true;
1978 break;
1980 case CT_ADDRESS:
1981 /* If we didn't already win, we can reload the address
1982 into a base register. */
1983 if (satisfies_address_constraint_p (op, cn))
1984 win = true;
1985 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1986 ADDRESS, SCRATCH);
1987 badop = false;
1988 goto reg;
1990 case CT_FIXED_FORM:
1991 if (constraint_satisfied_p (op, cn))
1992 win = true;
1993 break;
1995 break;
1997 reg:
1998 this_alternative = reg_class_subunion[this_alternative][cl];
1999 IOR_HARD_REG_SET (this_alternative_set,
2000 reg_class_contents[cl]);
2001 if (costly_p)
2003 this_costly_alternative
2004 = reg_class_subunion[this_costly_alternative][cl];
2005 IOR_HARD_REG_SET (this_costly_alternative_set,
2006 reg_class_contents[cl]);
2008 if (mode == BLKmode)
2009 break;
2010 winreg = true;
2011 if (REG_P (op))
2013 if (hard_regno[nop] >= 0
2014 && in_hard_reg_set_p (this_alternative_set,
2015 mode, hard_regno[nop]))
2016 win = true;
2017 else if (hard_regno[nop] < 0
2018 && in_class_p (op, this_alternative, NULL))
2019 win = true;
2021 break;
2023 if (c != ' ' && c != '\t')
2024 costly_p = c == '*';
2026 while ((p += len), c);
2028 scratch_p = (operand_reg[nop] != NULL_RTX
2029 && lra_former_scratch_p (REGNO (operand_reg[nop])));
2030 /* Record which operands fit this alternative. */
2031 if (win)
2033 this_alternative_win = true;
2034 if (operand_reg[nop] != NULL_RTX)
2036 if (hard_regno[nop] >= 0)
2038 if (in_hard_reg_set_p (this_costly_alternative_set,
2039 mode, hard_regno[nop]))
2041 if (lra_dump_file != NULL)
2042 fprintf (lra_dump_file,
2043 " %d Costly set: reject++\n",
2044 nop);
2045 reject++;
2048 else
2050 /* Prefer won reg to spilled pseudo under other
2051 equal conditions for possibe inheritance. */
2052 if (! scratch_p)
2054 if (lra_dump_file != NULL)
2055 fprintf
2056 (lra_dump_file,
2057 " %d Non pseudo reload: reject++\n",
2058 nop);
2059 reject++;
2061 if (in_class_p (operand_reg[nop],
2062 this_costly_alternative, NULL))
2064 if (lra_dump_file != NULL)
2065 fprintf
2066 (lra_dump_file,
2067 " %d Non pseudo costly reload:"
2068 " reject++\n",
2069 nop);
2070 reject++;
2073 /* We simulate the behaviour of old reload here.
2074 Although scratches need hard registers and it
2075 might result in spilling other pseudos, no reload
2076 insns are generated for the scratches. So it
2077 might cost something but probably less than old
2078 reload pass believes. */
2079 if (scratch_p)
2081 if (lra_dump_file != NULL)
2082 fprintf (lra_dump_file,
2083 " %d Scratch win: reject+=2\n",
2084 nop);
2085 reject += 2;
2089 else if (did_match)
2090 this_alternative_match_win = true;
2091 else
2093 int const_to_mem = 0;
2094 bool no_regs_p;
2096 /* Never do output reload of stack pointer. It makes
2097 impossible to do elimination when SP is changed in
2098 RTL. */
2099 if (op == stack_pointer_rtx && ! frame_pointer_needed
2100 && curr_static_id->operand[nop].type != OP_IN)
2101 goto fail;
2103 /* If this alternative asks for a specific reg class, see if there
2104 is at least one allocatable register in that class. */
2105 no_regs_p
2106 = (this_alternative == NO_REGS
2107 || (hard_reg_set_subset_p
2108 (reg_class_contents[this_alternative],
2109 lra_no_alloc_regs)));
2111 /* For asms, verify that the class for this alternative is possible
2112 for the mode that is specified. */
2113 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2115 int i;
2116 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2117 if (HARD_REGNO_MODE_OK (i, mode)
2118 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2119 mode, i))
2120 break;
2121 if (i == FIRST_PSEUDO_REGISTER)
2122 winreg = false;
2125 /* If this operand accepts a register, and if the
2126 register class has at least one allocatable register,
2127 then this operand can be reloaded. */
2128 if (winreg && !no_regs_p)
2129 badop = false;
2131 if (badop)
2133 if (lra_dump_file != NULL)
2134 fprintf (lra_dump_file,
2135 " alt=%d: Bad operand -- refuse\n",
2136 nalt);
2137 goto fail;
2140 /* If not assigned pseudo has a class which a subset of
2141 required reg class, it is a less costly alternative
2142 as the pseudo still can get a hard reg of necessary
2143 class. */
2144 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2145 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2146 && ira_class_subset_p[this_alternative][cl])
2148 if (lra_dump_file != NULL)
2149 fprintf
2150 (lra_dump_file,
2151 " %d Super set class reg: reject-=3\n", nop);
2152 reject -= 3;
2155 this_alternative_offmemok = offmemok;
2156 if (this_costly_alternative != NO_REGS)
2158 if (lra_dump_file != NULL)
2159 fprintf (lra_dump_file,
2160 " %d Costly loser: reject++\n", nop);
2161 reject++;
2163 /* If the operand is dying, has a matching constraint,
2164 and satisfies constraints of the matched operand
2165 which failed to satisfy the own constraints, most probably
2166 the reload for this operand will be gone. */
2167 if (this_alternative_matches >= 0
2168 && !curr_alt_win[this_alternative_matches]
2169 && REG_P (op)
2170 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2171 && (hard_regno[nop] >= 0
2172 ? in_hard_reg_set_p (this_alternative_set,
2173 mode, hard_regno[nop])
2174 : in_class_p (op, this_alternative, NULL)))
2176 if (lra_dump_file != NULL)
2177 fprintf
2178 (lra_dump_file,
2179 " %d Dying matched operand reload: reject++\n",
2180 nop);
2181 reject++;
2183 else
2185 /* Strict_low_part requires to reload the register
2186 not the sub-register. In this case we should
2187 check that a final reload hard reg can hold the
2188 value mode. */
2189 if (curr_static_id->operand[nop].strict_low
2190 && REG_P (op)
2191 && hard_regno[nop] < 0
2192 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2193 && ira_class_hard_regs_num[this_alternative] > 0
2194 && ! HARD_REGNO_MODE_OK (ira_class_hard_regs
2195 [this_alternative][0],
2196 GET_MODE
2197 (*curr_id->operand_loc[nop])))
2199 if (lra_dump_file != NULL)
2200 fprintf
2201 (lra_dump_file,
2202 " alt=%d: Strict low subreg reload -- refuse\n",
2203 nalt);
2204 goto fail;
2206 losers++;
2208 if (operand_reg[nop] != NULL_RTX
2209 /* Output operands and matched input operands are
2210 not inherited. The following conditions do not
2211 exactly describe the previous statement but they
2212 are pretty close. */
2213 && curr_static_id->operand[nop].type != OP_OUT
2214 && (this_alternative_matches < 0
2215 || curr_static_id->operand[nop].type != OP_IN))
2217 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2218 (operand_reg[nop])]
2219 .last_reload);
2221 /* The value of reload_sum has sense only if we
2222 process insns in their order. It happens only on
2223 the first constraints sub-pass when we do most of
2224 reload work. */
2225 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2226 reload_sum += last_reload - bb_reload_num;
2228 /* If this is a constant that is reloaded into the
2229 desired class by copying it to memory first, count
2230 that as another reload. This is consistent with
2231 other code and is required to avoid choosing another
2232 alternative when the constant is moved into memory.
2233 Note that the test here is precisely the same as in
2234 the code below that calls force_const_mem. */
2235 if (CONST_POOL_OK_P (mode, op)
2236 && ((targetm.preferred_reload_class
2237 (op, this_alternative) == NO_REGS)
2238 || no_input_reloads_p))
2240 const_to_mem = 1;
2241 if (! no_regs_p)
2242 losers++;
2245 /* Alternative loses if it requires a type of reload not
2246 permitted for this insn. We can always reload
2247 objects with a REG_UNUSED note. */
2248 if ((curr_static_id->operand[nop].type != OP_IN
2249 && no_output_reloads_p
2250 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2251 || (curr_static_id->operand[nop].type != OP_OUT
2252 && no_input_reloads_p && ! const_to_mem)
2253 || (this_alternative_matches >= 0
2254 && (no_input_reloads_p
2255 || (no_output_reloads_p
2256 && (curr_static_id->operand
2257 [this_alternative_matches].type != OP_IN)
2258 && ! find_reg_note (curr_insn, REG_UNUSED,
2259 no_subreg_reg_operand
2260 [this_alternative_matches])))))
2262 if (lra_dump_file != NULL)
2263 fprintf
2264 (lra_dump_file,
2265 " alt=%d: No input/otput reload -- refuse\n",
2266 nalt);
2267 goto fail;
2270 /* Check strong discouragement of reload of non-constant
2271 into class THIS_ALTERNATIVE. */
2272 if (! CONSTANT_P (op) && ! no_regs_p
2273 && (targetm.preferred_reload_class
2274 (op, this_alternative) == NO_REGS
2275 || (curr_static_id->operand[nop].type == OP_OUT
2276 && (targetm.preferred_output_reload_class
2277 (op, this_alternative) == NO_REGS))))
2279 if (lra_dump_file != NULL)
2280 fprintf (lra_dump_file,
2281 " %d Non-prefered reload: reject+=%d\n",
2282 nop, LRA_MAX_REJECT);
2283 reject += LRA_MAX_REJECT;
2286 if (! (MEM_P (op) && offmemok)
2287 && ! (const_to_mem && constmemok))
2289 /* We prefer to reload pseudos over reloading other
2290 things, since such reloads may be able to be
2291 eliminated later. So bump REJECT in other cases.
2292 Don't do this in the case where we are forcing a
2293 constant into memory and it will then win since
2294 we don't want to have a different alternative
2295 match then. */
2296 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2298 if (lra_dump_file != NULL)
2299 fprintf
2300 (lra_dump_file,
2301 " %d Non-pseudo reload: reject+=2\n",
2302 nop);
2303 reject += 2;
2306 if (! no_regs_p)
2307 reload_nregs
2308 += ira_reg_class_max_nregs[this_alternative][mode];
2310 if (SMALL_REGISTER_CLASS_P (this_alternative))
2312 if (lra_dump_file != NULL)
2313 fprintf
2314 (lra_dump_file,
2315 " %d Small class reload: reject+=%d\n",
2316 nop, LRA_LOSER_COST_FACTOR / 2);
2317 reject += LRA_LOSER_COST_FACTOR / 2;
2321 /* We are trying to spill pseudo into memory. It is
2322 usually more costly than moving to a hard register
2323 although it might takes the same number of
2324 reloads. */
2325 if (no_regs_p && REG_P (op) && hard_regno[nop] >= 0)
2327 if (lra_dump_file != NULL)
2328 fprintf
2329 (lra_dump_file,
2330 " %d Spill pseudo into memory: reject+=3\n",
2331 nop);
2332 reject += 3;
2333 if (VECTOR_MODE_P (mode))
2335 /* Spilling vectors into memory is usually more
2336 costly as they contain big values. */
2337 if (lra_dump_file != NULL)
2338 fprintf
2339 (lra_dump_file,
2340 " %d Spill vector pseudo: reject+=2\n",
2341 nop);
2342 reject += 2;
2346 #ifdef SECONDARY_MEMORY_NEEDED
2347 /* If reload requires moving value through secondary
2348 memory, it will need one more insn at least. */
2349 if (this_alternative != NO_REGS
2350 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2351 && ((curr_static_id->operand[nop].type != OP_OUT
2352 && SECONDARY_MEMORY_NEEDED (cl, this_alternative,
2353 GET_MODE (op)))
2354 || (curr_static_id->operand[nop].type != OP_IN
2355 && SECONDARY_MEMORY_NEEDED (this_alternative, cl,
2356 GET_MODE (op)))))
2357 losers++;
2358 #endif
2359 /* Input reloads can be inherited more often than output
2360 reloads can be removed, so penalize output
2361 reloads. */
2362 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2364 if (lra_dump_file != NULL)
2365 fprintf
2366 (lra_dump_file,
2367 " %d Non input pseudo reload: reject++\n",
2368 nop);
2369 reject++;
2373 if (early_clobber_p && ! scratch_p)
2375 if (lra_dump_file != NULL)
2376 fprintf (lra_dump_file,
2377 " %d Early clobber: reject++\n", nop);
2378 reject++;
2380 /* ??? We check early clobbers after processing all operands
2381 (see loop below) and there we update the costs more.
2382 Should we update the cost (may be approximately) here
2383 because of early clobber register reloads or it is a rare
2384 or non-important thing to be worth to do it. */
2385 overall = losers * LRA_LOSER_COST_FACTOR + reject;
2386 if ((best_losers == 0 || losers != 0) && best_overall < overall)
2388 if (lra_dump_file != NULL)
2389 fprintf (lra_dump_file,
2390 " alt=%d,overall=%d,losers=%d -- refuse\n",
2391 nalt, overall, losers);
2392 goto fail;
2395 curr_alt[nop] = this_alternative;
2396 COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
2397 curr_alt_win[nop] = this_alternative_win;
2398 curr_alt_match_win[nop] = this_alternative_match_win;
2399 curr_alt_offmemok[nop] = this_alternative_offmemok;
2400 curr_alt_matches[nop] = this_alternative_matches;
2402 if (this_alternative_matches >= 0
2403 && !did_match && !this_alternative_win)
2404 curr_alt_win[this_alternative_matches] = false;
2406 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2407 early_clobbered_nops[early_clobbered_regs_num++] = nop;
2409 if (curr_insn_set != NULL_RTX && n_operands == 2
2410 /* Prevent processing non-move insns. */
2411 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2412 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2413 && ((! curr_alt_win[0] && ! curr_alt_win[1]
2414 && REG_P (no_subreg_reg_operand[0])
2415 && REG_P (no_subreg_reg_operand[1])
2416 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2417 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2418 || (! curr_alt_win[0] && curr_alt_win[1]
2419 && REG_P (no_subreg_reg_operand[1])
2420 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2421 || (curr_alt_win[0] && ! curr_alt_win[1]
2422 && REG_P (no_subreg_reg_operand[0])
2423 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2424 && (! CONST_POOL_OK_P (curr_operand_mode[1],
2425 no_subreg_reg_operand[1])
2426 || (targetm.preferred_reload_class
2427 (no_subreg_reg_operand[1],
2428 (enum reg_class) curr_alt[1]) != NO_REGS))
2429 /* If it is a result of recent elimination in move
2430 insn we can transform it into an add still by
2431 using this alternative. */
2432 && GET_CODE (no_subreg_reg_operand[1]) != PLUS)))
2434 /* We have a move insn and a new reload insn will be similar
2435 to the current insn. We should avoid such situation as it
2436 results in LRA cycling. */
2437 overall += LRA_MAX_REJECT;
2439 ok_p = true;
2440 curr_alt_dont_inherit_ops_num = 0;
2441 for (nop = 0; nop < early_clobbered_regs_num; nop++)
2443 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
2444 HARD_REG_SET temp_set;
2446 i = early_clobbered_nops[nop];
2447 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
2448 || hard_regno[i] < 0)
2449 continue;
2450 lra_assert (operand_reg[i] != NULL_RTX);
2451 clobbered_hard_regno = hard_regno[i];
2452 CLEAR_HARD_REG_SET (temp_set);
2453 add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
2454 first_conflict_j = last_conflict_j = -1;
2455 for (j = 0; j < n_operands; j++)
2456 if (j == i
2457 /* We don't want process insides of match_operator and
2458 match_parallel because otherwise we would process
2459 their operands once again generating a wrong
2460 code. */
2461 || curr_static_id->operand[j].is_operator)
2462 continue;
2463 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
2464 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
2465 continue;
2466 /* If we don't reload j-th operand, check conflicts. */
2467 else if ((curr_alt_win[j] || curr_alt_match_win[j])
2468 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
2470 if (first_conflict_j < 0)
2471 first_conflict_j = j;
2472 last_conflict_j = j;
2474 if (last_conflict_j < 0)
2475 continue;
2476 /* If earlyclobber operand conflicts with another
2477 non-matching operand which is actually the same register
2478 as the earlyclobber operand, it is better to reload the
2479 another operand as an operand matching the earlyclobber
2480 operand can be also the same. */
2481 if (first_conflict_j == last_conflict_j
2482 && operand_reg[last_conflict_j]
2483 != NULL_RTX && ! curr_alt_match_win[last_conflict_j]
2484 && REGNO (operand_reg[i]) == REGNO (operand_reg[last_conflict_j]))
2486 curr_alt_win[last_conflict_j] = false;
2487 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
2488 = last_conflict_j;
2489 losers++;
2490 /* Early clobber was already reflected in REJECT. */
2491 lra_assert (reject > 0);
2492 if (lra_dump_file != NULL)
2493 fprintf
2494 (lra_dump_file,
2495 " %d Conflict early clobber reload: reject--\n",
2497 reject--;
2498 overall += LRA_LOSER_COST_FACTOR - 1;
2500 else
2502 /* We need to reload early clobbered register and the
2503 matched registers. */
2504 for (j = 0; j < n_operands; j++)
2505 if (curr_alt_matches[j] == i)
2507 curr_alt_match_win[j] = false;
2508 losers++;
2509 overall += LRA_LOSER_COST_FACTOR;
2511 if (! curr_alt_match_win[i])
2512 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
2513 else
2515 /* Remember pseudos used for match reloads are never
2516 inherited. */
2517 lra_assert (curr_alt_matches[i] >= 0);
2518 curr_alt_win[curr_alt_matches[i]] = false;
2520 curr_alt_win[i] = curr_alt_match_win[i] = false;
2521 losers++;
2522 /* Early clobber was already reflected in REJECT. */
2523 lra_assert (reject > 0);
2524 if (lra_dump_file != NULL)
2525 fprintf
2526 (lra_dump_file,
2527 " %d Matched conflict early clobber reloads:"
2528 "reject--\n",
2530 reject--;
2531 overall += LRA_LOSER_COST_FACTOR - 1;
2534 if (lra_dump_file != NULL)
2535 fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
2536 nalt, overall, losers, reload_nregs);
2538 /* If this alternative can be made to work by reloading, and it
2539 needs less reloading than the others checked so far, record
2540 it as the chosen goal for reloading. */
2541 if ((best_losers != 0 && losers == 0)
2542 || (((best_losers == 0 && losers == 0)
2543 || (best_losers != 0 && losers != 0))
2544 && (best_overall > overall
2545 || (best_overall == overall
2546 /* If the cost of the reloads is the same,
2547 prefer alternative which requires minimal
2548 number of reload regs. */
2549 && (reload_nregs < best_reload_nregs
2550 || (reload_nregs == best_reload_nregs
2551 && (best_reload_sum < reload_sum
2552 || (best_reload_sum == reload_sum
2553 && nalt < goal_alt_number))))))))
2555 for (nop = 0; nop < n_operands; nop++)
2557 goal_alt_win[nop] = curr_alt_win[nop];
2558 goal_alt_match_win[nop] = curr_alt_match_win[nop];
2559 goal_alt_matches[nop] = curr_alt_matches[nop];
2560 goal_alt[nop] = curr_alt[nop];
2561 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
2563 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
2564 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
2565 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
2566 goal_alt_swapped = curr_swapped;
2567 best_overall = overall;
2568 best_losers = losers;
2569 best_reload_nregs = reload_nregs;
2570 best_reload_sum = reload_sum;
2571 goal_alt_number = nalt;
2573 if (losers == 0)
2574 /* Everything is satisfied. Do not process alternatives
2575 anymore. */
2576 break;
2577 fail:
2580 return ok_p;
2583 /* Make reload base reg from address AD. */
2584 static rtx
2585 base_to_reg (struct address_info *ad)
2587 enum reg_class cl;
2588 int code = -1;
2589 rtx new_inner = NULL_RTX;
2590 rtx new_reg = NULL_RTX;
2591 rtx_insn *insn;
2592 rtx_insn *last_insn = get_last_insn();
2594 lra_assert (ad->base == ad->base_term && ad->disp == ad->disp_term);
2595 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
2596 get_index_code (ad));
2597 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
2598 cl, "base");
2599 new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
2600 ad->disp_term == NULL
2601 ? gen_int_mode (0, ad->mode)
2602 : *ad->disp_term);
2603 if (!valid_address_p (ad->mode, new_inner, ad->as))
2604 return NULL_RTX;
2605 insn = emit_insn (gen_rtx_SET (ad->mode, new_reg, *ad->base_term));
2606 code = recog_memoized (insn);
2607 if (code < 0)
2609 delete_insns_since (last_insn);
2610 return NULL_RTX;
2613 return new_inner;
2616 /* Make reload base reg + disp from address AD. Return the new pseudo. */
2617 static rtx
2618 base_plus_disp_to_reg (struct address_info *ad)
2620 enum reg_class cl;
2621 rtx new_reg;
2623 lra_assert (ad->base == ad->base_term && ad->disp == ad->disp_term);
2624 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
2625 get_index_code (ad));
2626 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
2627 cl, "base + disp");
2628 lra_emit_add (new_reg, *ad->base_term, *ad->disp_term);
2629 return new_reg;
2632 /* Make reload of index part of address AD. Return the new
2633 pseudo. */
2634 static rtx
2635 index_part_to_reg (struct address_info *ad)
2637 rtx new_reg;
2639 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
2640 INDEX_REG_CLASS, "index term");
2641 expand_mult (GET_MODE (*ad->index), *ad->index_term,
2642 GEN_INT (get_index_scale (ad)), new_reg, 1);
2643 return new_reg;
2646 /* Return true if we can add a displacement to address AD, even if that
2647 makes the address invalid. The fix-up code requires any new address
2648 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
2649 static bool
2650 can_add_disp_p (struct address_info *ad)
2652 return (!ad->autoinc_p
2653 && ad->segment == NULL
2654 && ad->base == ad->base_term
2655 && ad->disp == ad->disp_term);
2658 /* Make equiv substitution in address AD. Return true if a substitution
2659 was made. */
2660 static bool
2661 equiv_address_substitution (struct address_info *ad)
2663 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
2664 HOST_WIDE_INT disp, scale;
2665 bool change_p;
2667 base_term = strip_subreg (ad->base_term);
2668 if (base_term == NULL)
2669 base_reg = new_base_reg = NULL_RTX;
2670 else
2672 base_reg = *base_term;
2673 new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
2675 index_term = strip_subreg (ad->index_term);
2676 if (index_term == NULL)
2677 index_reg = new_index_reg = NULL_RTX;
2678 else
2680 index_reg = *index_term;
2681 new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
2683 if (base_reg == new_base_reg && index_reg == new_index_reg)
2684 return false;
2685 disp = 0;
2686 change_p = false;
2687 if (lra_dump_file != NULL)
2689 fprintf (lra_dump_file, "Changing address in insn %d ",
2690 INSN_UID (curr_insn));
2691 dump_value_slim (lra_dump_file, *ad->outer, 1);
2693 if (base_reg != new_base_reg)
2695 if (REG_P (new_base_reg))
2697 *base_term = new_base_reg;
2698 change_p = true;
2700 else if (GET_CODE (new_base_reg) == PLUS
2701 && REG_P (XEXP (new_base_reg, 0))
2702 && CONST_INT_P (XEXP (new_base_reg, 1))
2703 && can_add_disp_p (ad))
2705 disp += INTVAL (XEXP (new_base_reg, 1));
2706 *base_term = XEXP (new_base_reg, 0);
2707 change_p = true;
2709 if (ad->base_term2 != NULL)
2710 *ad->base_term2 = *ad->base_term;
2712 if (index_reg != new_index_reg)
2714 if (REG_P (new_index_reg))
2716 *index_term = new_index_reg;
2717 change_p = true;
2719 else if (GET_CODE (new_index_reg) == PLUS
2720 && REG_P (XEXP (new_index_reg, 0))
2721 && CONST_INT_P (XEXP (new_index_reg, 1))
2722 && can_add_disp_p (ad)
2723 && (scale = get_index_scale (ad)))
2725 disp += INTVAL (XEXP (new_index_reg, 1)) * scale;
2726 *index_term = XEXP (new_index_reg, 0);
2727 change_p = true;
2730 if (disp != 0)
2732 if (ad->disp != NULL)
2733 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
2734 else
2736 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
2737 update_address (ad);
2739 change_p = true;
2741 if (lra_dump_file != NULL)
2743 if (! change_p)
2744 fprintf (lra_dump_file, " -- no change\n");
2745 else
2747 fprintf (lra_dump_file, " on equiv ");
2748 dump_value_slim (lra_dump_file, *ad->outer, 1);
2749 fprintf (lra_dump_file, "\n");
2752 return change_p;
2755 /* Major function to make reloads for an address in operand NOP or
2756 check its correctness (If CHECK_ONLY_P is true). The supported
2757 cases are:
2759 1) an address that existed before LRA started, at which point it
2760 must have been valid. These addresses are subject to elimination
2761 and may have become invalid due to the elimination offset being out
2762 of range.
2764 2) an address created by forcing a constant to memory
2765 (force_const_to_mem). The initial form of these addresses might
2766 not be valid, and it is this function's job to make them valid.
2768 3) a frame address formed from a register and a (possibly zero)
2769 constant offset. As above, these addresses might not be valid and
2770 this function must make them so.
2772 Add reloads to the lists *BEFORE and *AFTER. We might need to add
2773 reloads to *AFTER because of inc/dec, {pre, post} modify in the
2774 address. Return true for any RTL change.
2776 The function is a helper function which does not produce all
2777 transformations (when CHECK_ONLY_P is false) which can be
2778 necessary. It does just basic steps. To do all necessary
2779 transformations use function process_address. */
2780 static bool
2781 process_address_1 (int nop, bool check_only_p,
2782 rtx_insn **before, rtx_insn **after)
2784 struct address_info ad;
2785 rtx new_reg;
2786 rtx op = *curr_id->operand_loc[nop];
2787 const char *constraint = curr_static_id->operand[nop].constraint;
2788 enum constraint_num cn = lookup_constraint (constraint);
2789 bool change_p = false;
2791 if (insn_extra_address_constraint (cn))
2792 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
2793 else if (MEM_P (op))
2794 decompose_mem_address (&ad, op);
2795 else if (GET_CODE (op) == SUBREG
2796 && MEM_P (SUBREG_REG (op)))
2797 decompose_mem_address (&ad, SUBREG_REG (op));
2798 else
2799 return false;
2800 if (! check_only_p)
2801 change_p = equiv_address_substitution (&ad);
2802 if (ad.base_term != NULL
2803 && (process_addr_reg
2804 (ad.base_term, check_only_p, before,
2805 (ad.autoinc_p
2806 && !(REG_P (*ad.base_term)
2807 && find_regno_note (curr_insn, REG_DEAD,
2808 REGNO (*ad.base_term)) != NULL_RTX)
2809 ? after : NULL),
2810 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
2811 get_index_code (&ad)))))
2813 change_p = true;
2814 if (ad.base_term2 != NULL)
2815 *ad.base_term2 = *ad.base_term;
2817 if (ad.index_term != NULL
2818 && process_addr_reg (ad.index_term, check_only_p,
2819 before, NULL, INDEX_REG_CLASS))
2820 change_p = true;
2822 /* Target hooks sometimes don't treat extra-constraint addresses as
2823 legitimate address_operands, so handle them specially. */
2824 if (insn_extra_address_constraint (cn)
2825 && satisfies_address_constraint_p (&ad, cn))
2826 return change_p;
2828 if (check_only_p)
2829 return change_p;
2831 /* There are three cases where the shape of *AD.INNER may now be invalid:
2833 1) the original address was valid, but either elimination or
2834 equiv_address_substitution was applied and that made
2835 the address invalid.
2837 2) the address is an invalid symbolic address created by
2838 force_const_to_mem.
2840 3) the address is a frame address with an invalid offset.
2842 4) the address is a frame address with an invalid base.
2844 All these cases involve a non-autoinc address, so there is no
2845 point revalidating other types. */
2846 if (ad.autoinc_p || valid_address_p (&ad))
2847 return change_p;
2849 /* Any index existed before LRA started, so we can assume that the
2850 presence and shape of the index is valid. */
2851 push_to_sequence (*before);
2852 lra_assert (ad.disp == ad.disp_term);
2853 if (ad.base == NULL)
2855 if (ad.index == NULL)
2857 int code = -1;
2858 enum reg_class cl = base_reg_class (ad.mode, ad.as,
2859 SCRATCH, SCRATCH);
2860 rtx addr = *ad.inner;
2862 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
2863 #ifdef HAVE_lo_sum
2865 rtx_insn *insn;
2866 rtx_insn *last = get_last_insn ();
2868 /* addr => lo_sum (new_base, addr), case (2) above. */
2869 insn = emit_insn (gen_rtx_SET
2870 (VOIDmode, new_reg,
2871 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
2872 code = recog_memoized (insn);
2873 if (code >= 0)
2875 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
2876 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
2878 /* Try to put lo_sum into register. */
2879 insn = emit_insn (gen_rtx_SET
2880 (VOIDmode, new_reg,
2881 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
2882 code = recog_memoized (insn);
2883 if (code >= 0)
2885 *ad.inner = new_reg;
2886 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
2888 *ad.inner = addr;
2889 code = -1;
2895 if (code < 0)
2896 delete_insns_since (last);
2898 #endif
2899 if (code < 0)
2901 /* addr => new_base, case (2) above. */
2902 lra_emit_move (new_reg, addr);
2903 *ad.inner = new_reg;
2906 else
2908 /* index * scale + disp => new base + index * scale,
2909 case (1) above. */
2910 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
2911 GET_CODE (*ad.index));
2913 lra_assert (INDEX_REG_CLASS != NO_REGS);
2914 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
2915 lra_emit_move (new_reg, *ad.disp);
2916 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
2917 new_reg, *ad.index);
2920 else if (ad.index == NULL)
2922 int regno;
2923 enum reg_class cl;
2924 rtx set;
2925 rtx_insn *insns, *last_insn;
2926 /* Try to reload base into register only if the base is invalid
2927 for the address but with valid offset, case (4) above. */
2928 start_sequence ();
2929 new_reg = base_to_reg (&ad);
2931 /* base + disp => new base, cases (1) and (3) above. */
2932 /* Another option would be to reload the displacement into an
2933 index register. However, postreload has code to optimize
2934 address reloads that have the same base and different
2935 displacements, so reloading into an index register would
2936 not necessarily be a win. */
2937 if (new_reg == NULL_RTX)
2938 new_reg = base_plus_disp_to_reg (&ad);
2939 insns = get_insns ();
2940 last_insn = get_last_insn ();
2941 /* If we generated at least two insns, try last insn source as
2942 an address. If we succeed, we generate one less insn. */
2943 if (last_insn != insns && (set = single_set (last_insn)) != NULL_RTX
2944 && GET_CODE (SET_SRC (set)) == PLUS
2945 && REG_P (XEXP (SET_SRC (set), 0))
2946 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
2948 *ad.inner = SET_SRC (set);
2949 if (valid_address_p (ad.mode, *ad.outer, ad.as))
2951 *ad.base_term = XEXP (SET_SRC (set), 0);
2952 *ad.disp_term = XEXP (SET_SRC (set), 1);
2953 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
2954 get_index_code (&ad));
2955 regno = REGNO (*ad.base_term);
2956 if (regno >= FIRST_PSEUDO_REGISTER
2957 && cl != lra_get_allocno_class (regno))
2958 lra_change_class (regno, cl, " Change to", true);
2959 new_reg = SET_SRC (set);
2960 delete_insns_since (PREV_INSN (last_insn));
2963 end_sequence ();
2964 emit_insn (insns);
2965 *ad.inner = new_reg;
2967 else if (ad.disp_term != NULL)
2969 /* base + scale * index + disp => new base + scale * index,
2970 case (1) above. */
2971 new_reg = base_plus_disp_to_reg (&ad);
2972 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
2973 new_reg, *ad.index);
2975 else if (get_index_scale (&ad) == 1)
2977 /* The last transformation to one reg will be made in
2978 curr_insn_transform function. */
2979 end_sequence ();
2980 return false;
2982 else
2984 /* base + scale * index => base + new_reg,
2985 case (1) above.
2986 Index part of address may become invalid. For example, we
2987 changed pseudo on the equivalent memory and a subreg of the
2988 pseudo onto the memory of different mode for which the scale is
2989 prohibitted. */
2990 new_reg = index_part_to_reg (&ad);
2991 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
2992 *ad.base_term, new_reg);
2994 *before = get_insns ();
2995 end_sequence ();
2996 return true;
2999 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3000 Use process_address_1 as a helper function. Return true for any
3001 RTL changes.
3003 If CHECK_ONLY_P is true, just check address correctness. Return
3004 false if the address correct. */
3005 static bool
3006 process_address (int nop, bool check_only_p,
3007 rtx_insn **before, rtx_insn **after)
3009 bool res = false;
3011 while (process_address_1 (nop, check_only_p, before, after))
3013 if (check_only_p)
3014 return true;
3015 res = true;
3017 return res;
3020 /* Emit insns to reload VALUE into a new register. VALUE is an
3021 auto-increment or auto-decrement RTX whose operand is a register or
3022 memory location; so reloading involves incrementing that location.
3023 IN is either identical to VALUE, or some cheaper place to reload
3024 value being incremented/decremented from.
3026 INC_AMOUNT is the number to increment or decrement by (always
3027 positive and ignored for POST_MODIFY/PRE_MODIFY).
3029 Return pseudo containing the result. */
3030 static rtx
3031 emit_inc (enum reg_class new_rclass, rtx in, rtx value, int inc_amount)
3033 /* REG or MEM to be copied and incremented. */
3034 rtx incloc = XEXP (value, 0);
3035 /* Nonzero if increment after copying. */
3036 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3037 || GET_CODE (value) == POST_MODIFY);
3038 rtx_insn *last;
3039 rtx inc;
3040 rtx_insn *add_insn;
3041 int code;
3042 rtx real_in = in == value ? incloc : in;
3043 rtx result;
3044 bool plus_p = true;
3046 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3048 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3049 || GET_CODE (XEXP (value, 1)) == MINUS);
3050 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3051 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3052 inc = XEXP (XEXP (value, 1), 1);
3054 else
3056 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3057 inc_amount = -inc_amount;
3059 inc = GEN_INT (inc_amount);
3062 if (! post && REG_P (incloc))
3063 result = incloc;
3064 else
3065 result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
3066 "INC/DEC result");
3068 if (real_in != result)
3070 /* First copy the location to the result register. */
3071 lra_assert (REG_P (result));
3072 emit_insn (gen_move_insn (result, real_in));
3075 /* We suppose that there are insns to add/sub with the constant
3076 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3077 old reload worked with this assumption. If the assumption
3078 becomes wrong, we should use approach in function
3079 base_plus_disp_to_reg. */
3080 if (in == value)
3082 /* See if we can directly increment INCLOC. */
3083 last = get_last_insn ();
3084 add_insn = emit_insn (plus_p
3085 ? gen_add2_insn (incloc, inc)
3086 : gen_sub2_insn (incloc, inc));
3088 code = recog_memoized (add_insn);
3089 if (code >= 0)
3091 if (! post && result != incloc)
3092 emit_insn (gen_move_insn (result, incloc));
3093 return result;
3095 delete_insns_since (last);
3098 /* If couldn't do the increment directly, must increment in RESULT.
3099 The way we do this depends on whether this is pre- or
3100 post-increment. For pre-increment, copy INCLOC to the reload
3101 register, increment it there, then save back. */
3102 if (! post)
3104 if (real_in != result)
3105 emit_insn (gen_move_insn (result, real_in));
3106 if (plus_p)
3107 emit_insn (gen_add2_insn (result, inc));
3108 else
3109 emit_insn (gen_sub2_insn (result, inc));
3110 if (result != incloc)
3111 emit_insn (gen_move_insn (incloc, result));
3113 else
3115 /* Post-increment.
3117 Because this might be a jump insn or a compare, and because
3118 RESULT may not be available after the insn in an input
3119 reload, we must do the incrementing before the insn being
3120 reloaded for.
3122 We have already copied IN to RESULT. Increment the copy in
3123 RESULT, save that back, then decrement RESULT so it has
3124 the original value. */
3125 if (plus_p)
3126 emit_insn (gen_add2_insn (result, inc));
3127 else
3128 emit_insn (gen_sub2_insn (result, inc));
3129 emit_insn (gen_move_insn (incloc, result));
3130 /* Restore non-modified value for the result. We prefer this
3131 way because it does not require an additional hard
3132 register. */
3133 if (plus_p)
3135 if (CONST_INT_P (inc))
3136 emit_insn (gen_add2_insn (result,
3137 gen_int_mode (-INTVAL (inc),
3138 GET_MODE (result))));
3139 else
3140 emit_insn (gen_sub2_insn (result, inc));
3142 else
3143 emit_insn (gen_add2_insn (result, inc));
3145 return result;
3148 /* Return true if the current move insn does not need processing as we
3149 already know that it satisfies its constraints. */
3150 static bool
3151 simple_move_p (void)
3153 rtx dest, src;
3154 enum reg_class dclass, sclass;
3156 lra_assert (curr_insn_set != NULL_RTX);
3157 dest = SET_DEST (curr_insn_set);
3158 src = SET_SRC (curr_insn_set);
3159 return ((dclass = get_op_class (dest)) != NO_REGS
3160 && (sclass = get_op_class (src)) != NO_REGS
3161 /* The backend guarantees that register moves of cost 2
3162 never need reloads. */
3163 && targetm.register_move_cost (GET_MODE (src), dclass, sclass) == 2);
3166 /* Swap operands NOP and NOP + 1. */
3167 static inline void
3168 swap_operands (int nop)
3170 machine_mode mode = curr_operand_mode[nop];
3171 curr_operand_mode[nop] = curr_operand_mode[nop + 1];
3172 curr_operand_mode[nop + 1] = mode;
3173 rtx x = *curr_id->operand_loc[nop];
3174 *curr_id->operand_loc[nop] = *curr_id->operand_loc[nop + 1];
3175 *curr_id->operand_loc[nop + 1] = x;
3176 /* Swap the duplicates too. */
3177 lra_update_dup (curr_id, nop);
3178 lra_update_dup (curr_id, nop + 1);
3181 /* Main entry point of the constraint code: search the body of the
3182 current insn to choose the best alternative. It is mimicking insn
3183 alternative cost calculation model of former reload pass. That is
3184 because machine descriptions were written to use this model. This
3185 model can be changed in future. Make commutative operand exchange
3186 if it is chosen.
3188 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3189 constraints. Return true if any change happened during function
3190 call.
3192 If CHECK_ONLY_P is true then don't do any transformation. Just
3193 check that the insn satisfies all constraints. If the insn does
3194 not satisfy any constraint, return true. */
3195 static bool
3196 curr_insn_transform (bool check_only_p)
3198 int i, j, k;
3199 int n_operands;
3200 int n_alternatives;
3201 int commutative;
3202 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
3203 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
3204 rtx_insn *before, *after;
3205 bool alt_p = false;
3206 /* Flag that the insn has been changed through a transformation. */
3207 bool change_p;
3208 bool sec_mem_p;
3209 #ifdef SECONDARY_MEMORY_NEEDED
3210 bool use_sec_mem_p;
3211 #endif
3212 int max_regno_before;
3213 int reused_alternative_num;
3215 curr_insn_set = single_set (curr_insn);
3216 if (curr_insn_set != NULL_RTX && simple_move_p ())
3217 return false;
3219 no_input_reloads_p = no_output_reloads_p = false;
3220 goal_alt_number = -1;
3221 change_p = sec_mem_p = false;
3222 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3223 reloads; neither are insns that SET cc0. Insns that use CC0 are
3224 not allowed to have any input reloads. */
3225 if (JUMP_P (curr_insn) || CALL_P (curr_insn))
3226 no_output_reloads_p = true;
3228 #ifdef HAVE_cc0
3229 if (reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
3230 no_input_reloads_p = true;
3231 if (reg_set_p (cc0_rtx, PATTERN (curr_insn)))
3232 no_output_reloads_p = true;
3233 #endif
3235 n_operands = curr_static_id->n_operands;
3236 n_alternatives = curr_static_id->n_alternatives;
3238 /* Just return "no reloads" if insn has no operands with
3239 constraints. */
3240 if (n_operands == 0 || n_alternatives == 0)
3241 return false;
3243 max_regno_before = max_reg_num ();
3245 for (i = 0; i < n_operands; i++)
3247 goal_alt_matched[i][0] = -1;
3248 goal_alt_matches[i] = -1;
3251 commutative = curr_static_id->commutative;
3253 /* Now see what we need for pseudos that didn't get hard regs or got
3254 the wrong kind of hard reg. For this, we must consider all the
3255 operands together against the register constraints. */
3257 best_losers = best_overall = INT_MAX;
3258 best_reload_sum = 0;
3260 curr_swapped = false;
3261 goal_alt_swapped = false;
3263 if (! check_only_p)
3264 /* Make equivalence substitution and memory subreg elimination
3265 before address processing because an address legitimacy can
3266 depend on memory mode. */
3267 for (i = 0; i < n_operands; i++)
3269 rtx op = *curr_id->operand_loc[i];
3270 rtx subst, old = op;
3271 bool op_change_p = false;
3273 if (GET_CODE (old) == SUBREG)
3274 old = SUBREG_REG (old);
3275 subst = get_equiv_with_elimination (old, curr_insn);
3276 if (subst != old)
3278 subst = copy_rtx (subst);
3279 lra_assert (REG_P (old));
3280 if (GET_CODE (op) == SUBREG)
3281 SUBREG_REG (op) = subst;
3282 else
3283 *curr_id->operand_loc[i] = subst;
3284 if (lra_dump_file != NULL)
3286 fprintf (lra_dump_file,
3287 "Changing pseudo %d in operand %i of insn %u on equiv ",
3288 REGNO (old), i, INSN_UID (curr_insn));
3289 dump_value_slim (lra_dump_file, subst, 1);
3290 fprintf (lra_dump_file, "\n");
3292 op_change_p = change_p = true;
3294 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
3296 change_p = true;
3297 lra_update_dup (curr_id, i);
3301 /* Reload address registers and displacements. We do it before
3302 finding an alternative because of memory constraints. */
3303 before = after = NULL;
3304 for (i = 0; i < n_operands; i++)
3305 if (! curr_static_id->operand[i].is_operator
3306 && process_address (i, check_only_p, &before, &after))
3308 if (check_only_p)
3309 return true;
3310 change_p = true;
3311 lra_update_dup (curr_id, i);
3314 if (change_p)
3315 /* If we've changed the instruction then any alternative that
3316 we chose previously may no longer be valid. */
3317 lra_set_used_insn_alternative (curr_insn, -1);
3319 if (! check_only_p && curr_insn_set != NULL_RTX
3320 && check_and_process_move (&change_p, &sec_mem_p))
3321 return change_p;
3323 try_swapped:
3325 reused_alternative_num = check_only_p ? -1 : curr_id->used_insn_alternative;
3326 if (lra_dump_file != NULL && reused_alternative_num >= 0)
3327 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
3328 reused_alternative_num, INSN_UID (curr_insn));
3330 if (process_alt_operands (reused_alternative_num))
3331 alt_p = true;
3333 if (check_only_p)
3334 return ! alt_p || best_losers != 0;
3336 /* If insn is commutative (it's safe to exchange a certain pair of
3337 operands) then we need to try each alternative twice, the second
3338 time matching those two operands as if we had exchanged them. To
3339 do this, really exchange them in operands.
3341 If we have just tried the alternatives the second time, return
3342 operands to normal and drop through. */
3344 if (reused_alternative_num < 0 && commutative >= 0)
3346 curr_swapped = !curr_swapped;
3347 if (curr_swapped)
3349 swap_operands (commutative);
3350 goto try_swapped;
3352 else
3353 swap_operands (commutative);
3356 if (! alt_p && ! sec_mem_p)
3358 /* No alternative works with reloads?? */
3359 if (INSN_CODE (curr_insn) >= 0)
3360 fatal_insn ("unable to generate reloads for:", curr_insn);
3361 error_for_asm (curr_insn,
3362 "inconsistent operand constraints in an %<asm%>");
3363 /* Avoid further trouble with this insn. */
3364 PATTERN (curr_insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3365 lra_invalidate_insn_data (curr_insn);
3366 return true;
3369 /* If the best alternative is with operands 1 and 2 swapped, swap
3370 them. Update the operand numbers of any reloads already
3371 pushed. */
3373 if (goal_alt_swapped)
3375 if (lra_dump_file != NULL)
3376 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
3377 INSN_UID (curr_insn));
3379 /* Swap the duplicates too. */
3380 swap_operands (commutative);
3381 change_p = true;
3384 #ifdef SECONDARY_MEMORY_NEEDED
3385 /* Some target macros SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
3386 too conservatively. So we use the secondary memory only if there
3387 is no any alternative without reloads. */
3388 use_sec_mem_p = false;
3389 if (! alt_p)
3390 use_sec_mem_p = true;
3391 else if (sec_mem_p)
3393 for (i = 0; i < n_operands; i++)
3394 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
3395 break;
3396 use_sec_mem_p = i < n_operands;
3399 if (use_sec_mem_p)
3401 rtx new_reg, src, dest, rld;
3402 machine_mode sec_mode, rld_mode;
3404 lra_assert (sec_mem_p);
3405 lra_assert (curr_static_id->operand[0].type == OP_OUT
3406 && curr_static_id->operand[1].type == OP_IN);
3407 dest = *curr_id->operand_loc[0];
3408 src = *curr_id->operand_loc[1];
3409 rld = (GET_MODE_SIZE (GET_MODE (dest)) <= GET_MODE_SIZE (GET_MODE (src))
3410 ? dest : src);
3411 rld_mode = GET_MODE (rld);
3412 #ifdef SECONDARY_MEMORY_NEEDED_MODE
3413 sec_mode = SECONDARY_MEMORY_NEEDED_MODE (rld_mode);
3414 #else
3415 sec_mode = rld_mode;
3416 #endif
3417 new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
3418 NO_REGS, "secondary");
3419 /* If the mode is changed, it should be wider. */
3420 lra_assert (GET_MODE_SIZE (sec_mode) >= GET_MODE_SIZE (rld_mode));
3421 if (sec_mode != rld_mode)
3423 /* If the target says specifically to use another mode for
3424 secondary memory moves we can not reuse the original
3425 insn. */
3426 after = emit_spill_move (false, new_reg, dest);
3427 lra_process_new_insns (curr_insn, NULL, after,
3428 "Inserting the sec. move");
3429 /* We may have non null BEFORE here (e.g. after address
3430 processing. */
3431 push_to_sequence (before);
3432 before = emit_spill_move (true, new_reg, src);
3433 emit_insn (before);
3434 before = get_insns ();
3435 end_sequence ();
3436 lra_process_new_insns (curr_insn, before, NULL, "Changing on");
3437 lra_set_insn_deleted (curr_insn);
3439 else if (dest == rld)
3441 *curr_id->operand_loc[0] = new_reg;
3442 after = emit_spill_move (false, new_reg, dest);
3443 lra_process_new_insns (curr_insn, NULL, after,
3444 "Inserting the sec. move");
3446 else
3448 *curr_id->operand_loc[1] = new_reg;
3449 /* See comments above. */
3450 push_to_sequence (before);
3451 before = emit_spill_move (true, new_reg, src);
3452 emit_insn (before);
3453 before = get_insns ();
3454 end_sequence ();
3455 lra_process_new_insns (curr_insn, before, NULL,
3456 "Inserting the sec. move");
3458 lra_update_insn_regno_info (curr_insn);
3459 return true;
3461 #endif
3463 lra_assert (goal_alt_number >= 0);
3464 lra_set_used_insn_alternative (curr_insn, goal_alt_number);
3466 if (lra_dump_file != NULL)
3468 const char *p;
3470 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
3471 goal_alt_number, INSN_UID (curr_insn));
3472 for (i = 0; i < n_operands; i++)
3474 p = (curr_static_id->operand_alternative
3475 [goal_alt_number * n_operands + i].constraint);
3476 if (*p == '\0')
3477 continue;
3478 fprintf (lra_dump_file, " (%d) ", i);
3479 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
3480 fputc (*p, lra_dump_file);
3482 if (INSN_CODE (curr_insn) >= 0
3483 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
3484 fprintf (lra_dump_file, " {%s}", p);
3485 if (curr_id->sp_offset != 0)
3486 fprintf (lra_dump_file, " (sp_off=%" HOST_WIDE_INT_PRINT "d)",
3487 curr_id->sp_offset);
3488 fprintf (lra_dump_file, "\n");
3491 /* Right now, for any pair of operands I and J that are required to
3492 match, with J < I, goal_alt_matches[I] is J. Add I to
3493 goal_alt_matched[J]. */
3495 for (i = 0; i < n_operands; i++)
3496 if ((j = goal_alt_matches[i]) >= 0)
3498 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
3500 /* We allow matching one output operand and several input
3501 operands. */
3502 lra_assert (k == 0
3503 || (curr_static_id->operand[j].type == OP_OUT
3504 && curr_static_id->operand[i].type == OP_IN
3505 && (curr_static_id->operand
3506 [goal_alt_matched[j][0]].type == OP_IN)));
3507 goal_alt_matched[j][k] = i;
3508 goal_alt_matched[j][k + 1] = -1;
3511 for (i = 0; i < n_operands; i++)
3512 goal_alt_win[i] |= goal_alt_match_win[i];
3514 /* Any constants that aren't allowed and can't be reloaded into
3515 registers are here changed into memory references. */
3516 for (i = 0; i < n_operands; i++)
3517 if (goal_alt_win[i])
3519 int regno;
3520 enum reg_class new_class;
3521 rtx reg = *curr_id->operand_loc[i];
3523 if (GET_CODE (reg) == SUBREG)
3524 reg = SUBREG_REG (reg);
3526 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
3528 bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
3530 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
3532 lra_assert (ok_p);
3533 lra_change_class (regno, new_class, " Change to", true);
3537 else
3539 const char *constraint;
3540 char c;
3541 rtx op = *curr_id->operand_loc[i];
3542 rtx subreg = NULL_RTX;
3543 machine_mode mode = curr_operand_mode[i];
3545 if (GET_CODE (op) == SUBREG)
3547 subreg = op;
3548 op = SUBREG_REG (op);
3549 mode = GET_MODE (op);
3552 if (CONST_POOL_OK_P (mode, op)
3553 && ((targetm.preferred_reload_class
3554 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
3555 || no_input_reloads_p))
3557 rtx tem = force_const_mem (mode, op);
3559 change_p = true;
3560 if (subreg != NULL_RTX)
3561 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
3563 *curr_id->operand_loc[i] = tem;
3564 lra_update_dup (curr_id, i);
3565 process_address (i, false, &before, &after);
3567 /* If the alternative accepts constant pool refs directly
3568 there will be no reload needed at all. */
3569 if (subreg != NULL_RTX)
3570 continue;
3571 /* Skip alternatives before the one requested. */
3572 constraint = (curr_static_id->operand_alternative
3573 [goal_alt_number * n_operands + i].constraint);
3574 for (;
3575 (c = *constraint) && c != ',' && c != '#';
3576 constraint += CONSTRAINT_LEN (c, constraint))
3578 enum constraint_num cn = lookup_constraint (constraint);
3579 if (insn_extra_memory_constraint (cn)
3580 && satisfies_memory_constraint_p (tem, cn))
3581 break;
3583 if (c == '\0' || c == ',' || c == '#')
3584 continue;
3586 goal_alt_win[i] = true;
3590 for (i = 0; i < n_operands; i++)
3592 int regno;
3593 bool optional_p = false;
3594 rtx old, new_reg;
3595 rtx op = *curr_id->operand_loc[i];
3597 if (goal_alt_win[i])
3599 if (goal_alt[i] == NO_REGS
3600 && REG_P (op)
3601 /* When we assign NO_REGS it means that we will not
3602 assign a hard register to the scratch pseudo by
3603 assigment pass and the scratch pseudo will be
3604 spilled. Spilled scratch pseudos are transformed
3605 back to scratches at the LRA end. */
3606 && lra_former_scratch_operand_p (curr_insn, i))
3608 int regno = REGNO (op);
3609 lra_change_class (regno, NO_REGS, " Change to", true);
3610 if (lra_get_regno_hard_regno (regno) >= 0)
3611 /* We don't have to mark all insn affected by the
3612 spilled pseudo as there is only one such insn, the
3613 current one. */
3614 reg_renumber[regno] = -1;
3616 /* We can do an optional reload. If the pseudo got a hard
3617 reg, we might improve the code through inheritance. If
3618 it does not get a hard register we coalesce memory/memory
3619 moves later. Ignore move insns to avoid cycling. */
3620 if (! lra_simple_p
3621 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
3622 && goal_alt[i] != NO_REGS && REG_P (op)
3623 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
3624 && regno < new_regno_start
3625 && ! lra_former_scratch_p (regno)
3626 && reg_renumber[regno] < 0
3627 && (curr_insn_set == NULL_RTX
3628 || !((REG_P (SET_SRC (curr_insn_set))
3629 || MEM_P (SET_SRC (curr_insn_set))
3630 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
3631 && (REG_P (SET_DEST (curr_insn_set))
3632 || MEM_P (SET_DEST (curr_insn_set))
3633 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
3634 optional_p = true;
3635 else
3636 continue;
3639 /* Operands that match previous ones have already been handled. */
3640 if (goal_alt_matches[i] >= 0)
3641 continue;
3643 /* We should not have an operand with a non-offsettable address
3644 appearing where an offsettable address will do. It also may
3645 be a case when the address should be special in other words
3646 not a general one (e.g. it needs no index reg). */
3647 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
3649 enum reg_class rclass;
3650 rtx *loc = &XEXP (op, 0);
3651 enum rtx_code code = GET_CODE (*loc);
3653 push_to_sequence (before);
3654 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
3655 MEM, SCRATCH);
3656 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
3657 new_reg = emit_inc (rclass, *loc, *loc,
3658 /* This value does not matter for MODIFY. */
3659 GET_MODE_SIZE (GET_MODE (op)));
3660 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, FALSE,
3661 "offsetable address", &new_reg))
3662 lra_emit_move (new_reg, *loc);
3663 before = get_insns ();
3664 end_sequence ();
3665 *loc = new_reg;
3666 lra_update_dup (curr_id, i);
3668 else if (goal_alt_matched[i][0] == -1)
3670 machine_mode mode;
3671 rtx reg, *loc;
3672 int hard_regno, byte;
3673 enum op_type type = curr_static_id->operand[i].type;
3675 loc = curr_id->operand_loc[i];
3676 mode = curr_operand_mode[i];
3677 if (GET_CODE (*loc) == SUBREG)
3679 reg = SUBREG_REG (*loc);
3680 byte = SUBREG_BYTE (*loc);
3681 if (REG_P (reg)
3682 /* Strict_low_part requires reload the register not
3683 the sub-register. */
3684 && (curr_static_id->operand[i].strict_low
3685 || (GET_MODE_SIZE (mode)
3686 <= GET_MODE_SIZE (GET_MODE (reg))
3687 && (hard_regno
3688 = get_try_hard_regno (REGNO (reg))) >= 0
3689 && (simplify_subreg_regno
3690 (hard_regno,
3691 GET_MODE (reg), byte, mode) < 0)
3692 && (goal_alt[i] == NO_REGS
3693 || (simplify_subreg_regno
3694 (ira_class_hard_regs[goal_alt[i]][0],
3695 GET_MODE (reg), byte, mode) >= 0)))))
3697 loc = &SUBREG_REG (*loc);
3698 mode = GET_MODE (*loc);
3701 old = *loc;
3702 if (get_reload_reg (type, mode, old, goal_alt[i],
3703 loc != curr_id->operand_loc[i], "", &new_reg)
3704 && type != OP_OUT)
3706 push_to_sequence (before);
3707 lra_emit_move (new_reg, old);
3708 before = get_insns ();
3709 end_sequence ();
3711 *loc = new_reg;
3712 if (type != OP_IN
3713 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
3715 start_sequence ();
3716 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
3717 emit_insn (after);
3718 after = get_insns ();
3719 end_sequence ();
3720 *loc = new_reg;
3722 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
3723 if (goal_alt_dont_inherit_ops[j] == i)
3725 lra_set_regno_unique_value (REGNO (new_reg));
3726 break;
3728 lra_update_dup (curr_id, i);
3730 else if (curr_static_id->operand[i].type == OP_IN
3731 && (curr_static_id->operand[goal_alt_matched[i][0]].type
3732 == OP_OUT))
3734 /* generate reloads for input and matched outputs. */
3735 match_inputs[0] = i;
3736 match_inputs[1] = -1;
3737 match_reload (goal_alt_matched[i][0], match_inputs,
3738 goal_alt[i], &before, &after);
3740 else if (curr_static_id->operand[i].type == OP_OUT
3741 && (curr_static_id->operand[goal_alt_matched[i][0]].type
3742 == OP_IN))
3743 /* Generate reloads for output and matched inputs. */
3744 match_reload (i, goal_alt_matched[i], goal_alt[i], &before, &after);
3745 else if (curr_static_id->operand[i].type == OP_IN
3746 && (curr_static_id->operand[goal_alt_matched[i][0]].type
3747 == OP_IN))
3749 /* Generate reloads for matched inputs. */
3750 match_inputs[0] = i;
3751 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
3752 match_inputs[j + 1] = k;
3753 match_inputs[j + 1] = -1;
3754 match_reload (-1, match_inputs, goal_alt[i], &before, &after);
3756 else
3757 /* We must generate code in any case when function
3758 process_alt_operands decides that it is possible. */
3759 gcc_unreachable ();
3760 if (optional_p)
3762 lra_assert (REG_P (op));
3763 regno = REGNO (op);
3764 op = *curr_id->operand_loc[i]; /* Substitution. */
3765 if (GET_CODE (op) == SUBREG)
3766 op = SUBREG_REG (op);
3767 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
3768 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
3769 lra_reg_info[REGNO (op)].restore_regno = regno;
3770 if (lra_dump_file != NULL)
3771 fprintf (lra_dump_file,
3772 " Making reload reg %d for reg %d optional\n",
3773 REGNO (op), regno);
3776 if (before != NULL_RTX || after != NULL_RTX
3777 || max_regno_before != max_reg_num ())
3778 change_p = true;
3779 if (change_p)
3781 lra_update_operator_dups (curr_id);
3782 /* Something changes -- process the insn. */
3783 lra_update_insn_regno_info (curr_insn);
3785 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
3786 return change_p;
3789 /* Return true if INSN satisfies all constraints. In other words, no
3790 reload insns are needed. */
3791 bool
3792 lra_constrain_insn (rtx_insn *insn)
3794 int saved_new_regno_start = new_regno_start;
3795 int saved_new_insn_uid_start = new_insn_uid_start;
3796 bool change_p;
3798 curr_insn = insn;
3799 curr_id = lra_get_insn_recog_data (curr_insn);
3800 curr_static_id = curr_id->insn_static_data;
3801 new_insn_uid_start = get_max_uid ();
3802 new_regno_start = max_reg_num ();
3803 change_p = curr_insn_transform (true);
3804 new_regno_start = saved_new_regno_start;
3805 new_insn_uid_start = saved_new_insn_uid_start;
3806 return ! change_p;
3809 /* Return true if X is in LIST. */
3810 static bool
3811 in_list_p (rtx x, rtx list)
3813 for (; list != NULL_RTX; list = XEXP (list, 1))
3814 if (XEXP (list, 0) == x)
3815 return true;
3816 return false;
3819 /* Return true if X contains an allocatable hard register (if
3820 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
3821 static bool
3822 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
3824 int i, j;
3825 const char *fmt;
3826 enum rtx_code code;
3828 code = GET_CODE (x);
3829 if (REG_P (x))
3831 int regno = REGNO (x);
3832 HARD_REG_SET alloc_regs;
3834 if (hard_reg_p)
3836 if (regno >= FIRST_PSEUDO_REGISTER)
3837 regno = lra_get_regno_hard_regno (regno);
3838 if (regno < 0)
3839 return false;
3840 COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
3841 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
3843 else
3845 if (regno < FIRST_PSEUDO_REGISTER)
3846 return false;
3847 if (! spilled_p)
3848 return true;
3849 return lra_get_regno_hard_regno (regno) < 0;
3852 fmt = GET_RTX_FORMAT (code);
3853 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3855 if (fmt[i] == 'e')
3857 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
3858 return true;
3860 else if (fmt[i] == 'E')
3862 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3863 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
3864 return true;
3867 return false;
3870 /* Return true if X contains a symbol reg. */
3871 static bool
3872 contains_symbol_ref_p (rtx x)
3874 int i, j;
3875 const char *fmt;
3876 enum rtx_code code;
3878 code = GET_CODE (x);
3879 if (code == SYMBOL_REF)
3880 return true;
3881 fmt = GET_RTX_FORMAT (code);
3882 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3884 if (fmt[i] == 'e')
3886 if (contains_symbol_ref_p (XEXP (x, i)))
3887 return true;
3889 else if (fmt[i] == 'E')
3891 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3892 if (contains_symbol_ref_p (XVECEXP (x, i, j)))
3893 return true;
3896 return false;
3899 /* Process all regs in location *LOC and change them on equivalent
3900 substitution. Return true if any change was done. */
3901 static bool
3902 loc_equivalence_change_p (rtx *loc)
3904 rtx subst, reg, x = *loc;
3905 bool result = false;
3906 enum rtx_code code = GET_CODE (x);
3907 const char *fmt;
3908 int i, j;
3910 if (code == SUBREG)
3912 reg = SUBREG_REG (x);
3913 if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
3914 && GET_MODE (subst) == VOIDmode)
3916 /* We cannot reload debug location. Simplify subreg here
3917 while we know the inner mode. */
3918 *loc = simplify_gen_subreg (GET_MODE (x), subst,
3919 GET_MODE (reg), SUBREG_BYTE (x));
3920 return true;
3923 if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
3925 *loc = subst;
3926 return true;
3929 /* Scan all the operand sub-expressions. */
3930 fmt = GET_RTX_FORMAT (code);
3931 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3933 if (fmt[i] == 'e')
3934 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
3935 else if (fmt[i] == 'E')
3936 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3937 result
3938 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
3940 return result;
3943 /* Similar to loc_equivalence_change_p, but for use as
3944 simplify_replace_fn_rtx callback. DATA is insn for which the
3945 elimination is done. If it null we don't do the elimination. */
3946 static rtx
3947 loc_equivalence_callback (rtx loc, const_rtx, void *data)
3949 if (!REG_P (loc))
3950 return NULL_RTX;
3952 rtx subst = (data == NULL
3953 ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
3954 if (subst != loc)
3955 return subst;
3957 return NULL_RTX;
3960 /* Maximum number of generated reload insns per an insn. It is for
3961 preventing this pass cycling in a bug case. */
3962 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
3964 /* The current iteration number of this LRA pass. */
3965 int lra_constraint_iter;
3967 /* True if we substituted equiv which needs checking register
3968 allocation correctness because the equivalent value contains
3969 allocatable hard registers or when we restore multi-register
3970 pseudo. */
3971 bool lra_risky_transformations_p;
3973 /* Return true if REGNO is referenced in more than one block. */
3974 static bool
3975 multi_block_pseudo_p (int regno)
3977 basic_block bb = NULL;
3978 unsigned int uid;
3979 bitmap_iterator bi;
3981 if (regno < FIRST_PSEUDO_REGISTER)
3982 return false;
3984 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
3985 if (bb == NULL)
3986 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
3987 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
3988 return true;
3989 return false;
3992 /* Return true if LIST contains a deleted insn. */
3993 static bool
3994 contains_deleted_insn_p (rtx_insn_list *list)
3996 for (; list != NULL_RTX; list = list->next ())
3997 if (NOTE_P (list->insn ())
3998 && NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
3999 return true;
4000 return false;
4003 /* Return true if X contains a pseudo dying in INSN. */
4004 static bool
4005 dead_pseudo_p (rtx x, rtx insn)
4007 int i, j;
4008 const char *fmt;
4009 enum rtx_code code;
4011 if (REG_P (x))
4012 return (insn != NULL_RTX
4013 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
4014 code = GET_CODE (x);
4015 fmt = GET_RTX_FORMAT (code);
4016 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4018 if (fmt[i] == 'e')
4020 if (dead_pseudo_p (XEXP (x, i), insn))
4021 return true;
4023 else if (fmt[i] == 'E')
4025 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4026 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
4027 return true;
4030 return false;
4033 /* Return true if INSN contains a dying pseudo in INSN right hand
4034 side. */
4035 static bool
4036 insn_rhs_dead_pseudo_p (rtx_insn *insn)
4038 rtx set = single_set (insn);
4040 gcc_assert (set != NULL);
4041 return dead_pseudo_p (SET_SRC (set), insn);
4044 /* Return true if any init insn of REGNO contains a dying pseudo in
4045 insn right hand side. */
4046 static bool
4047 init_insn_rhs_dead_pseudo_p (int regno)
4049 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4051 if (insns == NULL)
4052 return false;
4053 for (; insns != NULL_RTX; insns = insns->next ())
4054 if (insn_rhs_dead_pseudo_p (insns->insn ()))
4055 return true;
4056 return false;
4059 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4060 reverse only if we have one init insn with given REGNO as a
4061 source. */
4062 static bool
4063 reverse_equiv_p (int regno)
4065 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4066 rtx set;
4068 if (insns == NULL)
4069 return false;
4070 if (! INSN_P (insns->insn ())
4071 || insns->next () != NULL)
4072 return false;
4073 if ((set = single_set (insns->insn ())) == NULL_RTX)
4074 return false;
4075 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
4078 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4079 call this function only for non-reverse equivalence. */
4080 static bool
4081 contains_reloaded_insn_p (int regno)
4083 rtx set;
4084 rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
4086 for (; list != NULL; list = list->next ())
4087 if ((set = single_set (list->insn ())) == NULL_RTX
4088 || ! REG_P (SET_DEST (set))
4089 || (int) REGNO (SET_DEST (set)) != regno)
4090 return true;
4091 return false;
4094 /* Entry function of LRA constraint pass. Return true if the
4095 constraint pass did change the code. */
4096 bool
4097 lra_constraints (bool first_p)
4099 bool changed_p;
4100 int i, hard_regno, new_insns_num;
4101 unsigned int min_len, new_min_len, uid;
4102 rtx set, x, reg, dest_reg;
4103 basic_block last_bb;
4104 bitmap_head equiv_insn_bitmap;
4105 bitmap_iterator bi;
4107 lra_constraint_iter++;
4108 if (lra_dump_file != NULL)
4109 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
4110 lra_constraint_iter);
4111 changed_p = false;
4112 if (pic_offset_table_rtx
4113 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
4114 lra_risky_transformations_p = true;
4115 else
4116 lra_risky_transformations_p = false;
4117 new_insn_uid_start = get_max_uid ();
4118 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
4119 /* Mark used hard regs for target stack size calulations. */
4120 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4121 if (lra_reg_info[i].nrefs != 0
4122 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4124 int j, nregs;
4126 nregs = hard_regno_nregs[hard_regno][lra_reg_info[i].biggest_mode];
4127 for (j = 0; j < nregs; j++)
4128 df_set_regs_ever_live (hard_regno + j, true);
4130 /* Do elimination before the equivalence processing as we can spill
4131 some pseudos during elimination. */
4132 lra_eliminate (false, first_p);
4133 bitmap_initialize (&equiv_insn_bitmap, &reg_obstack);
4134 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4135 if (lra_reg_info[i].nrefs != 0)
4137 ira_reg_equiv[i].profitable_p = true;
4138 reg = regno_reg_rtx[i];
4139 if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
4141 bool pseudo_p = contains_reg_p (x, false, false);
4143 /* After RTL transformation, we can not guarantee that
4144 pseudo in the substitution was not reloaded which might
4145 make equivalence invalid. For example, in reverse
4146 equiv of p0
4148 p0 <- ...
4150 equiv_mem <- p0
4152 the memory address register was reloaded before the 2nd
4153 insn. */
4154 if ((! first_p && pseudo_p)
4155 /* We don't use DF for compilation speed sake. So it
4156 is problematic to update live info when we use an
4157 equivalence containing pseudos in more than one
4158 BB. */
4159 || (pseudo_p && multi_block_pseudo_p (i))
4160 /* If an init insn was deleted for some reason, cancel
4161 the equiv. We could update the equiv insns after
4162 transformations including an equiv insn deletion
4163 but it is not worthy as such cases are extremely
4164 rare. */
4165 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
4166 /* If it is not a reverse equivalence, we check that a
4167 pseudo in rhs of the init insn is not dying in the
4168 insn. Otherwise, the live info at the beginning of
4169 the corresponding BB might be wrong after we
4170 removed the insn. When the equiv can be a
4171 constant, the right hand side of the init insn can
4172 be a pseudo. */
4173 || (! reverse_equiv_p (i)
4174 && (init_insn_rhs_dead_pseudo_p (i)
4175 /* If we reloaded the pseudo in an equivalence
4176 init insn, we can not remove the equiv init
4177 insns and the init insns might write into
4178 const memory in this case. */
4179 || contains_reloaded_insn_p (i)))
4180 /* Prevent access beyond equivalent memory for
4181 paradoxical subregs. */
4182 || (MEM_P (x)
4183 && (GET_MODE_SIZE (lra_reg_info[i].biggest_mode)
4184 > GET_MODE_SIZE (GET_MODE (x))))
4185 || (pic_offset_table_rtx
4186 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
4187 && (targetm.preferred_reload_class
4188 (x, lra_get_allocno_class (i)) == NO_REGS))
4189 || contains_symbol_ref_p (x))))
4190 ira_reg_equiv[i].defined_p = false;
4191 if (contains_reg_p (x, false, true))
4192 ira_reg_equiv[i].profitable_p = false;
4193 if (get_equiv (reg) != reg)
4194 bitmap_ior_into (&equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
4197 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4198 update_equiv (i);
4199 /* We should add all insns containing pseudos which should be
4200 substituted by their equivalences. */
4201 EXECUTE_IF_SET_IN_BITMAP (&equiv_insn_bitmap, 0, uid, bi)
4202 lra_push_insn_by_uid (uid);
4203 min_len = lra_insn_stack_length ();
4204 new_insns_num = 0;
4205 last_bb = NULL;
4206 changed_p = false;
4207 while ((new_min_len = lra_insn_stack_length ()) != 0)
4209 curr_insn = lra_pop_insn ();
4210 --new_min_len;
4211 curr_bb = BLOCK_FOR_INSN (curr_insn);
4212 if (curr_bb != last_bb)
4214 last_bb = curr_bb;
4215 bb_reload_num = lra_curr_reload_num;
4217 if (min_len > new_min_len)
4219 min_len = new_min_len;
4220 new_insns_num = 0;
4222 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
4223 internal_error
4224 ("Max. number of generated reload insns per insn is achieved (%d)\n",
4225 MAX_RELOAD_INSNS_NUMBER);
4226 new_insns_num++;
4227 if (DEBUG_INSN_P (curr_insn))
4229 /* We need to check equivalence in debug insn and change
4230 pseudo to the equivalent value if necessary. */
4231 curr_id = lra_get_insn_recog_data (curr_insn);
4232 if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn)))
4234 rtx old = *curr_id->operand_loc[0];
4235 *curr_id->operand_loc[0]
4236 = simplify_replace_fn_rtx (old, NULL_RTX,
4237 loc_equivalence_callback, curr_insn);
4238 if (old != *curr_id->operand_loc[0])
4240 lra_update_insn_regno_info (curr_insn);
4241 changed_p = true;
4245 else if (INSN_P (curr_insn))
4247 if ((set = single_set (curr_insn)) != NULL_RTX)
4249 dest_reg = SET_DEST (set);
4250 /* The equivalence pseudo could be set up as SUBREG in a
4251 case when it is a call restore insn in a mode
4252 different from the pseudo mode. */
4253 if (GET_CODE (dest_reg) == SUBREG)
4254 dest_reg = SUBREG_REG (dest_reg);
4255 if ((REG_P (dest_reg)
4256 && (x = get_equiv (dest_reg)) != dest_reg
4257 /* Remove insns which set up a pseudo whose value
4258 can not be changed. Such insns might be not in
4259 init_insns because we don't update equiv data
4260 during insn transformations.
4262 As an example, let suppose that a pseudo got
4263 hard register and on the 1st pass was not
4264 changed to equivalent constant. We generate an
4265 additional insn setting up the pseudo because of
4266 secondary memory movement. Then the pseudo is
4267 spilled and we use the equiv constant. In this
4268 case we should remove the additional insn and
4269 this insn is not init_insns list. */
4270 && (! MEM_P (x) || MEM_READONLY_P (x)
4271 /* Check that this is actually an insn setting
4272 up the equivalence. */
4273 || in_list_p (curr_insn,
4274 ira_reg_equiv
4275 [REGNO (dest_reg)].init_insns)))
4276 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
4277 && in_list_p (curr_insn,
4278 ira_reg_equiv
4279 [REGNO (SET_SRC (set))].init_insns)))
4281 /* This is equiv init insn of pseudo which did not get a
4282 hard register -- remove the insn. */
4283 if (lra_dump_file != NULL)
4285 fprintf (lra_dump_file,
4286 " Removing equiv init insn %i (freq=%d)\n",
4287 INSN_UID (curr_insn),
4288 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
4289 dump_insn_slim (lra_dump_file, curr_insn);
4291 if (contains_reg_p (x, true, false))
4292 lra_risky_transformations_p = true;
4293 lra_set_insn_deleted (curr_insn);
4294 continue;
4297 curr_id = lra_get_insn_recog_data (curr_insn);
4298 curr_static_id = curr_id->insn_static_data;
4299 init_curr_insn_input_reloads ();
4300 init_curr_operand_mode ();
4301 if (curr_insn_transform (false))
4302 changed_p = true;
4303 /* Check non-transformed insns too for equiv change as USE
4304 or CLOBBER don't need reloads but can contain pseudos
4305 being changed on their equivalences. */
4306 else if (bitmap_bit_p (&equiv_insn_bitmap, INSN_UID (curr_insn))
4307 && loc_equivalence_change_p (&PATTERN (curr_insn)))
4309 lra_update_insn_regno_info (curr_insn);
4310 changed_p = true;
4314 bitmap_clear (&equiv_insn_bitmap);
4315 /* If we used a new hard regno, changed_p should be true because the
4316 hard reg is assigned to a new pseudo. */
4317 #ifdef ENABLE_CHECKING
4318 if (! changed_p)
4320 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4321 if (lra_reg_info[i].nrefs != 0
4322 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4324 int j, nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (i)];
4326 for (j = 0; j < nregs; j++)
4327 lra_assert (df_regs_ever_live_p (hard_regno + j));
4330 #endif
4331 return changed_p;
4334 /* Initiate the LRA constraint pass. It is done once per
4335 function. */
4336 void
4337 lra_constraints_init (void)
4341 /* Finalize the LRA constraint pass. It is done once per
4342 function. */
4343 void
4344 lra_constraints_finish (void)
4350 /* This page contains code to do inheritance/split
4351 transformations. */
4353 /* Number of reloads passed so far in current EBB. */
4354 static int reloads_num;
4356 /* Number of calls passed so far in current EBB. */
4357 static int calls_num;
4359 /* Current reload pseudo check for validity of elements in
4360 USAGE_INSNS. */
4361 static int curr_usage_insns_check;
4363 /* Info about last usage of registers in EBB to do inheritance/split
4364 transformation. Inheritance transformation is done from a spilled
4365 pseudo and split transformations from a hard register or a pseudo
4366 assigned to a hard register. */
4367 struct usage_insns
4369 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
4370 value INSNS is valid. The insns is chain of optional debug insns
4371 and a finishing non-debug insn using the corresponding reg. The
4372 value is also used to mark the registers which are set up in the
4373 current insn. The negated insn uid is used for this. */
4374 int check;
4375 /* Value of global reloads_num at the last insn in INSNS. */
4376 int reloads_num;
4377 /* Value of global reloads_nums at the last insn in INSNS. */
4378 int calls_num;
4379 /* It can be true only for splitting. And it means that the restore
4380 insn should be put after insn given by the following member. */
4381 bool after_p;
4382 /* Next insns in the current EBB which use the original reg and the
4383 original reg value is not changed between the current insn and
4384 the next insns. In order words, e.g. for inheritance, if we need
4385 to use the original reg value again in the next insns we can try
4386 to use the value in a hard register from a reload insn of the
4387 current insn. */
4388 rtx insns;
4391 /* Map: regno -> corresponding pseudo usage insns. */
4392 static struct usage_insns *usage_insns;
4394 static void
4395 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
4397 usage_insns[regno].check = curr_usage_insns_check;
4398 usage_insns[regno].insns = insn;
4399 usage_insns[regno].reloads_num = reloads_num;
4400 usage_insns[regno].calls_num = calls_num;
4401 usage_insns[regno].after_p = after_p;
4404 /* The function is used to form list REGNO usages which consists of
4405 optional debug insns finished by a non-debug insn using REGNO.
4406 RELOADS_NUM is current number of reload insns processed so far. */
4407 static void
4408 add_next_usage_insn (int regno, rtx insn, int reloads_num)
4410 rtx next_usage_insns;
4412 if (usage_insns[regno].check == curr_usage_insns_check
4413 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
4414 && DEBUG_INSN_P (insn))
4416 /* Check that we did not add the debug insn yet. */
4417 if (next_usage_insns != insn
4418 && (GET_CODE (next_usage_insns) != INSN_LIST
4419 || XEXP (next_usage_insns, 0) != insn))
4420 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
4421 next_usage_insns);
4423 else if (NONDEBUG_INSN_P (insn))
4424 setup_next_usage_insn (regno, insn, reloads_num, false);
4425 else
4426 usage_insns[regno].check = 0;
4429 /* Return first non-debug insn in list USAGE_INSNS. */
4430 static rtx_insn *
4431 skip_usage_debug_insns (rtx usage_insns)
4433 rtx insn;
4435 /* Skip debug insns. */
4436 for (insn = usage_insns;
4437 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
4438 insn = XEXP (insn, 1))
4440 return safe_as_a <rtx_insn *> (insn);
4443 /* Return true if we need secondary memory moves for insn in
4444 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
4445 into the insn. */
4446 static bool
4447 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
4448 rtx usage_insns ATTRIBUTE_UNUSED)
4450 #ifndef SECONDARY_MEMORY_NEEDED
4451 return false;
4452 #else
4453 rtx_insn *insn;
4454 rtx set, dest;
4455 enum reg_class cl;
4457 if (inher_cl == ALL_REGS
4458 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
4459 return false;
4460 lra_assert (INSN_P (insn));
4461 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
4462 return false;
4463 dest = SET_DEST (set);
4464 if (! REG_P (dest))
4465 return false;
4466 lra_assert (inher_cl != NO_REGS);
4467 cl = get_reg_class (REGNO (dest));
4468 return (cl != NO_REGS && cl != ALL_REGS
4469 && SECONDARY_MEMORY_NEEDED (inher_cl, cl, GET_MODE (dest)));
4470 #endif
4473 /* Registers involved in inheritance/split in the current EBB
4474 (inheritance/split pseudos and original registers). */
4475 static bitmap_head check_only_regs;
4477 /* Do inheritance transformations for insn INSN, which defines (if
4478 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
4479 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
4480 form as the "insns" field of usage_insns. Return true if we
4481 succeed in such transformation.
4483 The transformations look like:
4485 p <- ... i <- ...
4486 ... p <- i (new insn)
4487 ... =>
4488 <- ... p ... <- ... i ...
4490 ... i <- p (new insn)
4491 <- ... p ... <- ... i ...
4492 ... =>
4493 <- ... p ... <- ... i ...
4494 where p is a spilled original pseudo and i is a new inheritance pseudo.
4497 The inheritance pseudo has the smallest class of two classes CL and
4498 class of ORIGINAL REGNO. */
4499 static bool
4500 inherit_reload_reg (bool def_p, int original_regno,
4501 enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
4503 if (optimize_function_for_size_p (cfun))
4504 return false;
4506 enum reg_class rclass = lra_get_allocno_class (original_regno);
4507 rtx original_reg = regno_reg_rtx[original_regno];
4508 rtx new_reg, usage_insn;
4509 rtx_insn *new_insns;
4511 lra_assert (! usage_insns[original_regno].after_p);
4512 if (lra_dump_file != NULL)
4513 fprintf (lra_dump_file,
4514 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
4515 if (! ira_reg_classes_intersect_p[cl][rclass])
4517 if (lra_dump_file != NULL)
4519 fprintf (lra_dump_file,
4520 " Rejecting inheritance for %d "
4521 "because of disjoint classes %s and %s\n",
4522 original_regno, reg_class_names[cl],
4523 reg_class_names[rclass]);
4524 fprintf (lra_dump_file,
4525 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4527 return false;
4529 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
4530 /* We don't use a subset of two classes because it can be
4531 NO_REGS. This transformation is still profitable in most
4532 cases even if the classes are not intersected as register
4533 move is probably cheaper than a memory load. */
4534 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
4536 if (lra_dump_file != NULL)
4537 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
4538 reg_class_names[cl], reg_class_names[rclass]);
4540 rclass = cl;
4542 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
4544 /* Reject inheritance resulting in secondary memory moves.
4545 Otherwise, there is a danger in LRA cycling. Also such
4546 transformation will be unprofitable. */
4547 if (lra_dump_file != NULL)
4549 rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
4550 rtx set = single_set (insn);
4552 lra_assert (set != NULL_RTX);
4554 rtx dest = SET_DEST (set);
4556 lra_assert (REG_P (dest));
4557 fprintf (lra_dump_file,
4558 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
4559 "as secondary mem is needed\n",
4560 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
4561 original_regno, reg_class_names[rclass]);
4562 fprintf (lra_dump_file,
4563 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4565 return false;
4567 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
4568 rclass, "inheritance");
4569 start_sequence ();
4570 if (def_p)
4571 lra_emit_move (original_reg, new_reg);
4572 else
4573 lra_emit_move (new_reg, original_reg);
4574 new_insns = get_insns ();
4575 end_sequence ();
4576 if (NEXT_INSN (new_insns) != NULL_RTX)
4578 if (lra_dump_file != NULL)
4580 fprintf (lra_dump_file,
4581 " Rejecting inheritance %d->%d "
4582 "as it results in 2 or more insns:\n",
4583 original_regno, REGNO (new_reg));
4584 dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
4585 fprintf (lra_dump_file,
4586 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4588 return false;
4590 lra_substitute_pseudo_within_insn (insn, original_regno, new_reg);
4591 lra_update_insn_regno_info (insn);
4592 if (! def_p)
4593 /* We now have a new usage insn for original regno. */
4594 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
4595 if (lra_dump_file != NULL)
4596 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
4597 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
4598 lra_reg_info[REGNO (new_reg)].restore_regno = original_regno;
4599 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
4600 bitmap_set_bit (&check_only_regs, original_regno);
4601 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
4602 if (def_p)
4603 lra_process_new_insns (insn, NULL, new_insns,
4604 "Add original<-inheritance");
4605 else
4606 lra_process_new_insns (insn, new_insns, NULL,
4607 "Add inheritance<-original");
4608 while (next_usage_insns != NULL_RTX)
4610 if (GET_CODE (next_usage_insns) != INSN_LIST)
4612 usage_insn = next_usage_insns;
4613 lra_assert (NONDEBUG_INSN_P (usage_insn));
4614 next_usage_insns = NULL;
4616 else
4618 usage_insn = XEXP (next_usage_insns, 0);
4619 lra_assert (DEBUG_INSN_P (usage_insn));
4620 next_usage_insns = XEXP (next_usage_insns, 1);
4622 lra_substitute_pseudo (&usage_insn, original_regno, new_reg);
4623 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
4624 if (lra_dump_file != NULL)
4626 fprintf (lra_dump_file,
4627 " Inheritance reuse change %d->%d (bb%d):\n",
4628 original_regno, REGNO (new_reg),
4629 BLOCK_FOR_INSN (usage_insn)->index);
4630 dump_insn_slim (lra_dump_file, usage_insn);
4633 if (lra_dump_file != NULL)
4634 fprintf (lra_dump_file,
4635 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
4636 return true;
4639 /* Return true if we need a caller save/restore for pseudo REGNO which
4640 was assigned to a hard register. */
4641 static inline bool
4642 need_for_call_save_p (int regno)
4644 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
4645 return (usage_insns[regno].calls_num < calls_num
4646 && (overlaps_hard_reg_set_p
4647 ((flag_use_caller_save &&
4648 ! hard_reg_set_empty_p (lra_reg_info[regno].actual_call_used_reg_set))
4649 ? lra_reg_info[regno].actual_call_used_reg_set
4650 : call_used_reg_set,
4651 PSEUDO_REGNO_MODE (regno), reg_renumber[regno])
4652 || HARD_REGNO_CALL_PART_CLOBBERED (reg_renumber[regno],
4653 PSEUDO_REGNO_MODE (regno))));
4656 /* Global registers occurring in the current EBB. */
4657 static bitmap_head ebb_global_regs;
4659 /* Return true if we need a split for hard register REGNO or pseudo
4660 REGNO which was assigned to a hard register.
4661 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
4662 used for reloads since the EBB end. It is an approximation of the
4663 used hard registers in the split range. The exact value would
4664 require expensive calculations. If we were aggressive with
4665 splitting because of the approximation, the split pseudo will save
4666 the same hard register assignment and will be removed in the undo
4667 pass. We still need the approximation because too aggressive
4668 splitting would result in too inaccurate cost calculation in the
4669 assignment pass because of too many generated moves which will be
4670 probably removed in the undo pass. */
4671 static inline bool
4672 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
4674 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
4676 lra_assert (hard_regno >= 0);
4677 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
4678 /* Don't split eliminable hard registers, otherwise we can
4679 split hard registers like hard frame pointer, which
4680 lives on BB start/end according to DF-infrastructure,
4681 when there is a pseudo assigned to the register and
4682 living in the same BB. */
4683 && (regno >= FIRST_PSEUDO_REGISTER
4684 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
4685 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
4686 /* Don't split call clobbered hard regs living through
4687 calls, otherwise we might have a check problem in the
4688 assign sub-pass as in the most cases (exception is a
4689 situation when lra_risky_transformations_p value is
4690 true) the assign pass assumes that all pseudos living
4691 through calls are assigned to call saved hard regs. */
4692 && (regno >= FIRST_PSEUDO_REGISTER
4693 || ! TEST_HARD_REG_BIT (call_used_reg_set, regno)
4694 || usage_insns[regno].calls_num == calls_num)
4695 /* We need at least 2 reloads to make pseudo splitting
4696 profitable. We should provide hard regno splitting in
4697 any case to solve 1st insn scheduling problem when
4698 moving hard register definition up might result in
4699 impossibility to find hard register for reload pseudo of
4700 small register class. */
4701 && (usage_insns[regno].reloads_num
4702 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
4703 && (regno < FIRST_PSEUDO_REGISTER
4704 /* For short living pseudos, spilling + inheritance can
4705 be considered a substitution for splitting.
4706 Therefore we do not splitting for local pseudos. It
4707 decreases also aggressiveness of splitting. The
4708 minimal number of references is chosen taking into
4709 account that for 2 references splitting has no sense
4710 as we can just spill the pseudo. */
4711 || (regno >= FIRST_PSEUDO_REGISTER
4712 && lra_reg_info[regno].nrefs > 3
4713 && bitmap_bit_p (&ebb_global_regs, regno))))
4714 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
4717 /* Return class for the split pseudo created from original pseudo with
4718 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
4719 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
4720 results in no secondary memory movements. */
4721 static enum reg_class
4722 choose_split_class (enum reg_class allocno_class,
4723 int hard_regno ATTRIBUTE_UNUSED,
4724 machine_mode mode ATTRIBUTE_UNUSED)
4726 #ifndef SECONDARY_MEMORY_NEEDED
4727 return allocno_class;
4728 #else
4729 int i;
4730 enum reg_class cl, best_cl = NO_REGS;
4731 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
4732 = REGNO_REG_CLASS (hard_regno);
4734 if (! SECONDARY_MEMORY_NEEDED (allocno_class, allocno_class, mode)
4735 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
4736 return allocno_class;
4737 for (i = 0;
4738 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
4739 i++)
4740 if (! SECONDARY_MEMORY_NEEDED (cl, hard_reg_class, mode)
4741 && ! SECONDARY_MEMORY_NEEDED (hard_reg_class, cl, mode)
4742 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
4743 && (best_cl == NO_REGS
4744 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
4745 best_cl = cl;
4746 return best_cl;
4747 #endif
4750 /* Do split transformations for insn INSN, which defines or uses
4751 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
4752 the EBB next uses ORIGINAL_REGNO; it has the same form as the
4753 "insns" field of usage_insns.
4755 The transformations look like:
4757 p <- ... p <- ...
4758 ... s <- p (new insn -- save)
4759 ... =>
4760 ... p <- s (new insn -- restore)
4761 <- ... p ... <- ... p ...
4763 <- ... p ... <- ... p ...
4764 ... s <- p (new insn -- save)
4765 ... =>
4766 ... p <- s (new insn -- restore)
4767 <- ... p ... <- ... p ...
4769 where p is an original pseudo got a hard register or a hard
4770 register and s is a new split pseudo. The save is put before INSN
4771 if BEFORE_P is true. Return true if we succeed in such
4772 transformation. */
4773 static bool
4774 split_reg (bool before_p, int original_regno, rtx_insn *insn,
4775 rtx next_usage_insns)
4777 enum reg_class rclass;
4778 rtx original_reg;
4779 int hard_regno, nregs;
4780 rtx new_reg, usage_insn;
4781 rtx_insn *restore, *save;
4782 bool after_p;
4783 bool call_save_p;
4785 if (original_regno < FIRST_PSEUDO_REGISTER)
4787 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
4788 hard_regno = original_regno;
4789 call_save_p = false;
4790 nregs = 1;
4792 else
4794 hard_regno = reg_renumber[original_regno];
4795 nregs = hard_regno_nregs[hard_regno][PSEUDO_REGNO_MODE (original_regno)];
4796 rclass = lra_get_allocno_class (original_regno);
4797 original_reg = regno_reg_rtx[original_regno];
4798 call_save_p = need_for_call_save_p (original_regno);
4800 original_reg = regno_reg_rtx[original_regno];
4801 lra_assert (hard_regno >= 0);
4802 if (lra_dump_file != NULL)
4803 fprintf (lra_dump_file,
4804 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
4805 if (call_save_p)
4807 machine_mode mode = GET_MODE (original_reg);
4809 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
4810 hard_regno_nregs[hard_regno][mode],
4811 mode);
4812 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
4814 else
4816 rclass = choose_split_class (rclass, hard_regno,
4817 GET_MODE (original_reg));
4818 if (rclass == NO_REGS)
4820 if (lra_dump_file != NULL)
4822 fprintf (lra_dump_file,
4823 " Rejecting split of %d(%s): "
4824 "no good reg class for %d(%s)\n",
4825 original_regno,
4826 reg_class_names[lra_get_allocno_class (original_regno)],
4827 hard_regno,
4828 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
4829 fprintf
4830 (lra_dump_file,
4831 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4833 return false;
4835 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
4836 rclass, "split");
4837 reg_renumber[REGNO (new_reg)] = hard_regno;
4839 save = emit_spill_move (true, new_reg, original_reg);
4840 if (NEXT_INSN (save) != NULL_RTX)
4842 lra_assert (! call_save_p);
4843 if (lra_dump_file != NULL)
4845 fprintf
4846 (lra_dump_file,
4847 " Rejecting split %d->%d resulting in > 2 %s save insns:\n",
4848 original_regno, REGNO (new_reg), call_save_p ? "call" : "");
4849 dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
4850 fprintf (lra_dump_file,
4851 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4853 return false;
4855 restore = emit_spill_move (false, new_reg, original_reg);
4856 if (NEXT_INSN (restore) != NULL_RTX)
4858 lra_assert (! call_save_p);
4859 if (lra_dump_file != NULL)
4861 fprintf (lra_dump_file,
4862 " Rejecting split %d->%d "
4863 "resulting in > 2 %s restore insns:\n",
4864 original_regno, REGNO (new_reg), call_save_p ? "call" : "");
4865 dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
4866 fprintf (lra_dump_file,
4867 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4869 return false;
4871 after_p = usage_insns[original_regno].after_p;
4872 lra_reg_info[REGNO (new_reg)].restore_regno = original_regno;
4873 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
4874 bitmap_set_bit (&check_only_regs, original_regno);
4875 bitmap_set_bit (&lra_split_regs, REGNO (new_reg));
4876 for (;;)
4878 if (GET_CODE (next_usage_insns) != INSN_LIST)
4880 usage_insn = next_usage_insns;
4881 break;
4883 usage_insn = XEXP (next_usage_insns, 0);
4884 lra_assert (DEBUG_INSN_P (usage_insn));
4885 next_usage_insns = XEXP (next_usage_insns, 1);
4886 lra_substitute_pseudo (&usage_insn, original_regno, new_reg);
4887 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
4888 if (lra_dump_file != NULL)
4890 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
4891 original_regno, REGNO (new_reg));
4892 dump_insn_slim (lra_dump_file, usage_insn);
4895 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
4896 lra_assert (usage_insn != insn || (after_p && before_p));
4897 lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
4898 after_p ? NULL : restore,
4899 after_p ? restore : NULL,
4900 call_save_p
4901 ? "Add reg<-save" : "Add reg<-split");
4902 lra_process_new_insns (insn, before_p ? save : NULL,
4903 before_p ? NULL : save,
4904 call_save_p
4905 ? "Add save<-reg" : "Add split<-reg");
4906 if (nregs > 1)
4907 /* If we are trying to split multi-register. We should check
4908 conflicts on the next assignment sub-pass. IRA can allocate on
4909 sub-register levels, LRA do this on pseudos level right now and
4910 this discrepancy may create allocation conflicts after
4911 splitting. */
4912 lra_risky_transformations_p = true;
4913 if (lra_dump_file != NULL)
4914 fprintf (lra_dump_file,
4915 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
4916 return true;
4919 /* Recognize that we need a split transformation for insn INSN, which
4920 defines or uses REGNO in its insn biggest MODE (we use it only if
4921 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
4922 hard registers which might be used for reloads since the EBB end.
4923 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
4924 uid before starting INSN processing. Return true if we succeed in
4925 such transformation. */
4926 static bool
4927 split_if_necessary (int regno, machine_mode mode,
4928 HARD_REG_SET potential_reload_hard_regs,
4929 bool before_p, rtx_insn *insn, int max_uid)
4931 bool res = false;
4932 int i, nregs = 1;
4933 rtx next_usage_insns;
4935 if (regno < FIRST_PSEUDO_REGISTER)
4936 nregs = hard_regno_nregs[regno][mode];
4937 for (i = 0; i < nregs; i++)
4938 if (usage_insns[regno + i].check == curr_usage_insns_check
4939 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
4940 /* To avoid processing the register twice or more. */
4941 && ((GET_CODE (next_usage_insns) != INSN_LIST
4942 && INSN_UID (next_usage_insns) < max_uid)
4943 || (GET_CODE (next_usage_insns) == INSN_LIST
4944 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
4945 && need_for_split_p (potential_reload_hard_regs, regno + i)
4946 && split_reg (before_p, regno + i, insn, next_usage_insns))
4947 res = true;
4948 return res;
4951 /* Check only registers living at the current program point in the
4952 current EBB. */
4953 static bitmap_head live_regs;
4955 /* Update live info in EBB given by its HEAD and TAIL insns after
4956 inheritance/split transformation. The function removes dead moves
4957 too. */
4958 static void
4959 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
4961 unsigned int j;
4962 int i, regno;
4963 bool live_p;
4964 rtx_insn *prev_insn;
4965 rtx set;
4966 bool remove_p;
4967 basic_block last_bb, prev_bb, curr_bb;
4968 bitmap_iterator bi;
4969 struct lra_insn_reg *reg;
4970 edge e;
4971 edge_iterator ei;
4973 last_bb = BLOCK_FOR_INSN (tail);
4974 prev_bb = NULL;
4975 for (curr_insn = tail;
4976 curr_insn != PREV_INSN (head);
4977 curr_insn = prev_insn)
4979 prev_insn = PREV_INSN (curr_insn);
4980 /* We need to process empty blocks too. They contain
4981 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
4982 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
4983 continue;
4984 curr_bb = BLOCK_FOR_INSN (curr_insn);
4985 if (curr_bb != prev_bb)
4987 if (prev_bb != NULL)
4989 /* Update df_get_live_in (prev_bb): */
4990 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
4991 if (bitmap_bit_p (&live_regs, j))
4992 bitmap_set_bit (df_get_live_in (prev_bb), j);
4993 else
4994 bitmap_clear_bit (df_get_live_in (prev_bb), j);
4996 if (curr_bb != last_bb)
4998 /* Update df_get_live_out (curr_bb): */
4999 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
5001 live_p = bitmap_bit_p (&live_regs, j);
5002 if (! live_p)
5003 FOR_EACH_EDGE (e, ei, curr_bb->succs)
5004 if (bitmap_bit_p (df_get_live_in (e->dest), j))
5006 live_p = true;
5007 break;
5009 if (live_p)
5010 bitmap_set_bit (df_get_live_out (curr_bb), j);
5011 else
5012 bitmap_clear_bit (df_get_live_out (curr_bb), j);
5015 prev_bb = curr_bb;
5016 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
5018 if (! NONDEBUG_INSN_P (curr_insn))
5019 continue;
5020 curr_id = lra_get_insn_recog_data (curr_insn);
5021 curr_static_id = curr_id->insn_static_data;
5022 remove_p = false;
5023 if ((set = single_set (curr_insn)) != NULL_RTX && REG_P (SET_DEST (set))
5024 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
5025 && bitmap_bit_p (&check_only_regs, regno)
5026 && ! bitmap_bit_p (&live_regs, regno))
5027 remove_p = true;
5028 /* See which defined values die here. */
5029 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5030 if (reg->type == OP_OUT && ! reg->subreg_p)
5031 bitmap_clear_bit (&live_regs, reg->regno);
5032 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5033 if (reg->type == OP_OUT && ! reg->subreg_p)
5034 bitmap_clear_bit (&live_regs, reg->regno);
5035 /* Mark each used value as live. */
5036 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5037 if (reg->type != OP_OUT
5038 && bitmap_bit_p (&check_only_regs, reg->regno))
5039 bitmap_set_bit (&live_regs, reg->regno);
5040 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
5041 if (reg->type != OP_OUT
5042 && bitmap_bit_p (&check_only_regs, reg->regno))
5043 bitmap_set_bit (&live_regs, reg->regno);
5044 if (curr_id->arg_hard_regs != NULL)
5045 /* Make argument hard registers live. */
5046 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5047 if (bitmap_bit_p (&check_only_regs, regno))
5048 bitmap_set_bit (&live_regs, regno);
5049 /* It is quite important to remove dead move insns because it
5050 means removing dead store. We don't need to process them for
5051 constraints. */
5052 if (remove_p)
5054 if (lra_dump_file != NULL)
5056 fprintf (lra_dump_file, " Removing dead insn:\n ");
5057 dump_insn_slim (lra_dump_file, curr_insn);
5059 lra_set_insn_deleted (curr_insn);
5064 /* The structure describes info to do an inheritance for the current
5065 insn. We need to collect such info first before doing the
5066 transformations because the transformations change the insn
5067 internal representation. */
5068 struct to_inherit
5070 /* Original regno. */
5071 int regno;
5072 /* Subsequent insns which can inherit original reg value. */
5073 rtx insns;
5076 /* Array containing all info for doing inheritance from the current
5077 insn. */
5078 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
5080 /* Number elements in the previous array. */
5081 static int to_inherit_num;
5083 /* Add inheritance info REGNO and INSNS. Their meaning is described in
5084 structure to_inherit. */
5085 static void
5086 add_to_inherit (int regno, rtx insns)
5088 int i;
5090 for (i = 0; i < to_inherit_num; i++)
5091 if (to_inherit[i].regno == regno)
5092 return;
5093 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
5094 to_inherit[to_inherit_num].regno = regno;
5095 to_inherit[to_inherit_num++].insns = insns;
5098 /* Return the last non-debug insn in basic block BB, or the block begin
5099 note if none. */
5100 static rtx_insn *
5101 get_last_insertion_point (basic_block bb)
5103 rtx_insn *insn;
5105 FOR_BB_INSNS_REVERSE (bb, insn)
5106 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
5107 return insn;
5108 gcc_unreachable ();
5111 /* Set up RES by registers living on edges FROM except the edge (FROM,
5112 TO) or by registers set up in a jump insn in BB FROM. */
5113 static void
5114 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
5116 rtx_insn *last;
5117 struct lra_insn_reg *reg;
5118 edge e;
5119 edge_iterator ei;
5121 lra_assert (to != NULL);
5122 bitmap_clear (res);
5123 FOR_EACH_EDGE (e, ei, from->succs)
5124 if (e->dest != to)
5125 bitmap_ior_into (res, df_get_live_in (e->dest));
5126 last = get_last_insertion_point (from);
5127 if (! JUMP_P (last))
5128 return;
5129 curr_id = lra_get_insn_recog_data (last);
5130 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5131 if (reg->type != OP_IN)
5132 bitmap_set_bit (res, reg->regno);
5135 /* Used as a temporary results of some bitmap calculations. */
5136 static bitmap_head temp_bitmap;
5138 /* We split for reloads of small class of hard regs. The following
5139 defines how many hard regs the class should have to be qualified as
5140 small. The code is mostly oriented to x86/x86-64 architecture
5141 where some insns need to use only specific register or pair of
5142 registers and these register can live in RTL explicitly, e.g. for
5143 parameter passing. */
5144 static const int max_small_class_regs_num = 2;
5146 /* Do inheritance/split transformations in EBB starting with HEAD and
5147 finishing on TAIL. We process EBB insns in the reverse order.
5148 Return true if we did any inheritance/split transformation in the
5149 EBB.
5151 We should avoid excessive splitting which results in worse code
5152 because of inaccurate cost calculations for spilling new split
5153 pseudos in such case. To achieve this we do splitting only if
5154 register pressure is high in given basic block and there are reload
5155 pseudos requiring hard registers. We could do more register
5156 pressure calculations at any given program point to avoid necessary
5157 splitting even more but it is to expensive and the current approach
5158 works well enough. */
5159 static bool
5160 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
5162 int i, src_regno, dst_regno, nregs;
5163 bool change_p, succ_p, update_reloads_num_p;
5164 rtx_insn *prev_insn, *last_insn;
5165 rtx next_usage_insns, set;
5166 enum reg_class cl;
5167 struct lra_insn_reg *reg;
5168 basic_block last_processed_bb, curr_bb = NULL;
5169 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
5170 bitmap to_process;
5171 unsigned int j;
5172 bitmap_iterator bi;
5173 bool head_p, after_p;
5175 change_p = false;
5176 curr_usage_insns_check++;
5177 reloads_num = calls_num = 0;
5178 bitmap_clear (&check_only_regs);
5179 last_processed_bb = NULL;
5180 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
5181 COPY_HARD_REG_SET (live_hard_regs, eliminable_regset);
5182 IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
5183 /* We don't process new insns generated in the loop. */
5184 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
5186 prev_insn = PREV_INSN (curr_insn);
5187 if (BLOCK_FOR_INSN (curr_insn) != NULL)
5188 curr_bb = BLOCK_FOR_INSN (curr_insn);
5189 if (last_processed_bb != curr_bb)
5191 /* We are at the end of BB. Add qualified living
5192 pseudos for potential splitting. */
5193 to_process = df_get_live_out (curr_bb);
5194 if (last_processed_bb != NULL)
5196 /* We are somewhere in the middle of EBB. */
5197 get_live_on_other_edges (curr_bb, last_processed_bb,
5198 &temp_bitmap);
5199 to_process = &temp_bitmap;
5201 last_processed_bb = curr_bb;
5202 last_insn = get_last_insertion_point (curr_bb);
5203 after_p = (! JUMP_P (last_insn)
5204 && (! CALL_P (last_insn)
5205 || (find_reg_note (last_insn,
5206 REG_NORETURN, NULL_RTX) == NULL_RTX
5207 && ! SIBLING_CALL_P (last_insn))));
5208 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
5209 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
5211 if ((int) j >= lra_constraint_new_regno_start)
5212 break;
5213 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
5215 if (j < FIRST_PSEUDO_REGISTER)
5216 SET_HARD_REG_BIT (live_hard_regs, j);
5217 else
5218 add_to_hard_reg_set (&live_hard_regs,
5219 PSEUDO_REGNO_MODE (j),
5220 reg_renumber[j]);
5221 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
5225 src_regno = dst_regno = -1;
5226 if (NONDEBUG_INSN_P (curr_insn)
5227 && (set = single_set (curr_insn)) != NULL_RTX
5228 && REG_P (SET_DEST (set)) && REG_P (SET_SRC (set)))
5230 src_regno = REGNO (SET_SRC (set));
5231 dst_regno = REGNO (SET_DEST (set));
5233 update_reloads_num_p = true;
5234 if (src_regno < lra_constraint_new_regno_start
5235 && src_regno >= FIRST_PSEUDO_REGISTER
5236 && reg_renumber[src_regno] < 0
5237 && dst_regno >= lra_constraint_new_regno_start
5238 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
5240 /* 'reload_pseudo <- original_pseudo'. */
5241 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
5242 reloads_num++;
5243 update_reloads_num_p = false;
5244 succ_p = false;
5245 if (usage_insns[src_regno].check == curr_usage_insns_check
5246 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
5247 succ_p = inherit_reload_reg (false, src_regno, cl,
5248 curr_insn, next_usage_insns);
5249 if (succ_p)
5250 change_p = true;
5251 else
5252 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
5253 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
5254 IOR_HARD_REG_SET (potential_reload_hard_regs,
5255 reg_class_contents[cl]);
5257 else if (src_regno >= lra_constraint_new_regno_start
5258 && dst_regno < lra_constraint_new_regno_start
5259 && dst_regno >= FIRST_PSEUDO_REGISTER
5260 && reg_renumber[dst_regno] < 0
5261 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
5262 && usage_insns[dst_regno].check == curr_usage_insns_check
5263 && (next_usage_insns
5264 = usage_insns[dst_regno].insns) != NULL_RTX)
5266 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
5267 reloads_num++;
5268 update_reloads_num_p = false;
5269 /* 'original_pseudo <- reload_pseudo'. */
5270 if (! JUMP_P (curr_insn)
5271 && inherit_reload_reg (true, dst_regno, cl,
5272 curr_insn, next_usage_insns))
5273 change_p = true;
5274 /* Invalidate. */
5275 usage_insns[dst_regno].check = 0;
5276 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
5277 IOR_HARD_REG_SET (potential_reload_hard_regs,
5278 reg_class_contents[cl]);
5280 else if (INSN_P (curr_insn))
5282 int iter;
5283 int max_uid = get_max_uid ();
5285 curr_id = lra_get_insn_recog_data (curr_insn);
5286 curr_static_id = curr_id->insn_static_data;
5287 to_inherit_num = 0;
5288 /* Process insn definitions. */
5289 for (iter = 0; iter < 2; iter++)
5290 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
5291 reg != NULL;
5292 reg = reg->next)
5293 if (reg->type != OP_IN
5294 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
5296 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
5297 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
5298 && usage_insns[dst_regno].check == curr_usage_insns_check
5299 && (next_usage_insns
5300 = usage_insns[dst_regno].insns) != NULL_RTX)
5302 struct lra_insn_reg *r;
5304 for (r = curr_id->regs; r != NULL; r = r->next)
5305 if (r->type != OP_OUT && r->regno == dst_regno)
5306 break;
5307 /* Don't do inheritance if the pseudo is also
5308 used in the insn. */
5309 if (r == NULL)
5310 /* We can not do inheritance right now
5311 because the current insn reg info (chain
5312 regs) can change after that. */
5313 add_to_inherit (dst_regno, next_usage_insns);
5315 /* We can not process one reg twice here because of
5316 usage_insns invalidation. */
5317 if ((dst_regno < FIRST_PSEUDO_REGISTER
5318 || reg_renumber[dst_regno] >= 0)
5319 && ! reg->subreg_p && reg->type != OP_IN)
5321 HARD_REG_SET s;
5323 if (split_if_necessary (dst_regno, reg->biggest_mode,
5324 potential_reload_hard_regs,
5325 false, curr_insn, max_uid))
5326 change_p = true;
5327 CLEAR_HARD_REG_SET (s);
5328 if (dst_regno < FIRST_PSEUDO_REGISTER)
5329 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
5330 else
5331 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
5332 reg_renumber[dst_regno]);
5333 AND_COMPL_HARD_REG_SET (live_hard_regs, s);
5335 /* We should invalidate potential inheritance or
5336 splitting for the current insn usages to the next
5337 usage insns (see code below) as the output pseudo
5338 prevents this. */
5339 if ((dst_regno >= FIRST_PSEUDO_REGISTER
5340 && reg_renumber[dst_regno] < 0)
5341 || (reg->type == OP_OUT && ! reg->subreg_p
5342 && (dst_regno < FIRST_PSEUDO_REGISTER
5343 || reg_renumber[dst_regno] >= 0)))
5345 /* Invalidate and mark definitions. */
5346 if (dst_regno >= FIRST_PSEUDO_REGISTER)
5347 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
5348 else
5350 nregs = hard_regno_nregs[dst_regno][reg->biggest_mode];
5351 for (i = 0; i < nregs; i++)
5352 usage_insns[dst_regno + i].check
5353 = -(int) INSN_UID (curr_insn);
5357 if (! JUMP_P (curr_insn))
5358 for (i = 0; i < to_inherit_num; i++)
5359 if (inherit_reload_reg (true, to_inherit[i].regno,
5360 ALL_REGS, curr_insn,
5361 to_inherit[i].insns))
5362 change_p = true;
5363 if (CALL_P (curr_insn))
5365 rtx cheap, pat, dest;
5366 rtx_insn *restore;
5367 int regno, hard_regno;
5369 calls_num++;
5370 if ((cheap = find_reg_note (curr_insn,
5371 REG_RETURNED, NULL_RTX)) != NULL_RTX
5372 && ((cheap = XEXP (cheap, 0)), true)
5373 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
5374 && (hard_regno = reg_renumber[regno]) >= 0
5375 /* If there are pending saves/restores, the
5376 optimization is not worth. */
5377 && usage_insns[regno].calls_num == calls_num - 1
5378 && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
5380 /* Restore the pseudo from the call result as
5381 REG_RETURNED note says that the pseudo value is
5382 in the call result and the pseudo is an argument
5383 of the call. */
5384 pat = PATTERN (curr_insn);
5385 if (GET_CODE (pat) == PARALLEL)
5386 pat = XVECEXP (pat, 0, 0);
5387 dest = SET_DEST (pat);
5388 /* For multiple return values dest is PARALLEL.
5389 Currently we handle only single return value case. */
5390 if (REG_P (dest))
5392 start_sequence ();
5393 emit_move_insn (cheap, copy_rtx (dest));
5394 restore = get_insns ();
5395 end_sequence ();
5396 lra_process_new_insns (curr_insn, NULL, restore,
5397 "Inserting call parameter restore");
5398 /* We don't need to save/restore of the pseudo from
5399 this call. */
5400 usage_insns[regno].calls_num = calls_num;
5401 bitmap_set_bit (&check_only_regs, regno);
5405 to_inherit_num = 0;
5406 /* Process insn usages. */
5407 for (iter = 0; iter < 2; iter++)
5408 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
5409 reg != NULL;
5410 reg = reg->next)
5411 if ((reg->type != OP_OUT
5412 || (reg->type == OP_OUT && reg->subreg_p))
5413 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
5415 if (src_regno >= FIRST_PSEUDO_REGISTER
5416 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
5418 if (usage_insns[src_regno].check == curr_usage_insns_check
5419 && (next_usage_insns
5420 = usage_insns[src_regno].insns) != NULL_RTX
5421 && NONDEBUG_INSN_P (curr_insn))
5422 add_to_inherit (src_regno, next_usage_insns);
5423 else if (usage_insns[src_regno].check
5424 != -(int) INSN_UID (curr_insn))
5425 /* Add usages but only if the reg is not set up
5426 in the same insn. */
5427 add_next_usage_insn (src_regno, curr_insn, reloads_num);
5429 else if (src_regno < FIRST_PSEUDO_REGISTER
5430 || reg_renumber[src_regno] >= 0)
5432 bool before_p;
5433 rtx use_insn = curr_insn;
5435 before_p = (JUMP_P (curr_insn)
5436 || (CALL_P (curr_insn) && reg->type == OP_IN));
5437 if (NONDEBUG_INSN_P (curr_insn)
5438 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
5439 && split_if_necessary (src_regno, reg->biggest_mode,
5440 potential_reload_hard_regs,
5441 before_p, curr_insn, max_uid))
5443 if (reg->subreg_p)
5444 lra_risky_transformations_p = true;
5445 change_p = true;
5446 /* Invalidate. */
5447 usage_insns[src_regno].check = 0;
5448 if (before_p)
5449 use_insn = PREV_INSN (curr_insn);
5451 if (NONDEBUG_INSN_P (curr_insn))
5453 if (src_regno < FIRST_PSEUDO_REGISTER)
5454 add_to_hard_reg_set (&live_hard_regs,
5455 reg->biggest_mode, src_regno);
5456 else
5457 add_to_hard_reg_set (&live_hard_regs,
5458 PSEUDO_REGNO_MODE (src_regno),
5459 reg_renumber[src_regno]);
5461 add_next_usage_insn (src_regno, use_insn, reloads_num);
5464 /* Process call args. */
5465 if (curr_id->arg_hard_regs != NULL)
5466 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
5467 if (src_regno < FIRST_PSEUDO_REGISTER)
5469 SET_HARD_REG_BIT (live_hard_regs, src_regno);
5470 add_next_usage_insn (src_regno, curr_insn, reloads_num);
5472 for (i = 0; i < to_inherit_num; i++)
5474 src_regno = to_inherit[i].regno;
5475 if (inherit_reload_reg (false, src_regno, ALL_REGS,
5476 curr_insn, to_inherit[i].insns))
5477 change_p = true;
5478 else
5479 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
5482 if (update_reloads_num_p
5483 && NONDEBUG_INSN_P (curr_insn)
5484 && (set = single_set (curr_insn)) != NULL_RTX)
5486 int regno = -1;
5487 if ((REG_P (SET_DEST (set))
5488 && (regno = REGNO (SET_DEST (set))) >= lra_constraint_new_regno_start
5489 && reg_renumber[regno] < 0
5490 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
5491 || (REG_P (SET_SRC (set))
5492 && (regno = REGNO (SET_SRC (set))) >= lra_constraint_new_regno_start
5493 && reg_renumber[regno] < 0
5494 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
5496 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
5497 reloads_num++;
5498 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
5499 IOR_HARD_REG_SET (potential_reload_hard_regs,
5500 reg_class_contents[cl]);
5503 /* We reached the start of the current basic block. */
5504 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
5505 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
5507 /* We reached the beginning of the current block -- do
5508 rest of spliting in the current BB. */
5509 to_process = df_get_live_in (curr_bb);
5510 if (BLOCK_FOR_INSN (head) != curr_bb)
5512 /* We are somewhere in the middle of EBB. */
5513 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
5514 curr_bb, &temp_bitmap);
5515 to_process = &temp_bitmap;
5517 head_p = true;
5518 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
5520 if ((int) j >= lra_constraint_new_regno_start)
5521 break;
5522 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
5523 && usage_insns[j].check == curr_usage_insns_check
5524 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
5526 if (need_for_split_p (potential_reload_hard_regs, j))
5528 if (lra_dump_file != NULL && head_p)
5530 fprintf (lra_dump_file,
5531 " ----------------------------------\n");
5532 head_p = false;
5534 if (split_reg (false, j, bb_note (curr_bb),
5535 next_usage_insns))
5536 change_p = true;
5538 usage_insns[j].check = 0;
5543 return change_p;
5546 /* This value affects EBB forming. If probability of edge from EBB to
5547 a BB is not greater than the following value, we don't add the BB
5548 to EBB. */
5549 #define EBB_PROBABILITY_CUTOFF ((REG_BR_PROB_BASE * 50) / 100)
5551 /* Current number of inheritance/split iteration. */
5552 int lra_inheritance_iter;
5554 /* Entry function for inheritance/split pass. */
5555 void
5556 lra_inheritance (void)
5558 int i;
5559 basic_block bb, start_bb;
5560 edge e;
5562 lra_inheritance_iter++;
5563 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
5564 return;
5565 timevar_push (TV_LRA_INHERITANCE);
5566 if (lra_dump_file != NULL)
5567 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
5568 lra_inheritance_iter);
5569 curr_usage_insns_check = 0;
5570 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
5571 for (i = 0; i < lra_constraint_new_regno_start; i++)
5572 usage_insns[i].check = 0;
5573 bitmap_initialize (&check_only_regs, &reg_obstack);
5574 bitmap_initialize (&live_regs, &reg_obstack);
5575 bitmap_initialize (&temp_bitmap, &reg_obstack);
5576 bitmap_initialize (&ebb_global_regs, &reg_obstack);
5577 FOR_EACH_BB_FN (bb, cfun)
5579 start_bb = bb;
5580 if (lra_dump_file != NULL)
5581 fprintf (lra_dump_file, "EBB");
5582 /* Form a EBB starting with BB. */
5583 bitmap_clear (&ebb_global_regs);
5584 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
5585 for (;;)
5587 if (lra_dump_file != NULL)
5588 fprintf (lra_dump_file, " %d", bb->index);
5589 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
5590 || LABEL_P (BB_HEAD (bb->next_bb)))
5591 break;
5592 e = find_fallthru_edge (bb->succs);
5593 if (! e)
5594 break;
5595 if (e->probability <= EBB_PROBABILITY_CUTOFF)
5596 break;
5597 bb = bb->next_bb;
5599 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
5600 if (lra_dump_file != NULL)
5601 fprintf (lra_dump_file, "\n");
5602 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
5603 /* Remember that the EBB head and tail can change in
5604 inherit_in_ebb. */
5605 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
5607 bitmap_clear (&ebb_global_regs);
5608 bitmap_clear (&temp_bitmap);
5609 bitmap_clear (&live_regs);
5610 bitmap_clear (&check_only_regs);
5611 free (usage_insns);
5613 timevar_pop (TV_LRA_INHERITANCE);
5618 /* This page contains code to undo failed inheritance/split
5619 transformations. */
5621 /* Current number of iteration undoing inheritance/split. */
5622 int lra_undo_inheritance_iter;
5624 /* Fix BB live info LIVE after removing pseudos created on pass doing
5625 inheritance/split which are REMOVED_PSEUDOS. */
5626 static void
5627 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
5629 unsigned int regno;
5630 bitmap_iterator bi;
5632 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
5633 if (bitmap_clear_bit (live, regno))
5634 bitmap_set_bit (live, lra_reg_info[regno].restore_regno);
5637 /* Return regno of the (subreg of) REG. Otherwise, return a negative
5638 number. */
5639 static int
5640 get_regno (rtx reg)
5642 if (GET_CODE (reg) == SUBREG)
5643 reg = SUBREG_REG (reg);
5644 if (REG_P (reg))
5645 return REGNO (reg);
5646 return -1;
5649 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
5650 return true if we did any change. The undo transformations for
5651 inheritance looks like
5652 i <- i2
5653 p <- i => p <- i2
5654 or removing
5655 p <- i, i <- p, and i <- i3
5656 where p is original pseudo from which inheritance pseudo i was
5657 created, i and i3 are removed inheritance pseudos, i2 is another
5658 not removed inheritance pseudo. All split pseudos or other
5659 occurrences of removed inheritance pseudos are changed on the
5660 corresponding original pseudos.
5662 The function also schedules insns changed and created during
5663 inheritance/split pass for processing by the subsequent constraint
5664 pass. */
5665 static bool
5666 remove_inheritance_pseudos (bitmap remove_pseudos)
5668 basic_block bb;
5669 int regno, sregno, prev_sregno, dregno, restore_regno;
5670 rtx set, prev_set;
5671 rtx_insn *prev_insn;
5672 bool change_p, done_p;
5674 change_p = ! bitmap_empty_p (remove_pseudos);
5675 /* We can not finish the function right away if CHANGE_P is true
5676 because we need to marks insns affected by previous
5677 inheritance/split pass for processing by the subsequent
5678 constraint pass. */
5679 FOR_EACH_BB_FN (bb, cfun)
5681 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
5682 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
5683 FOR_BB_INSNS_REVERSE (bb, curr_insn)
5685 if (! INSN_P (curr_insn))
5686 continue;
5687 done_p = false;
5688 sregno = dregno = -1;
5689 if (change_p && NONDEBUG_INSN_P (curr_insn)
5690 && (set = single_set (curr_insn)) != NULL_RTX)
5692 dregno = get_regno (SET_DEST (set));
5693 sregno = get_regno (SET_SRC (set));
5696 if (sregno >= 0 && dregno >= 0)
5698 if ((bitmap_bit_p (remove_pseudos, sregno)
5699 && (lra_reg_info[sregno].restore_regno == dregno
5700 || (bitmap_bit_p (remove_pseudos, dregno)
5701 && (lra_reg_info[sregno].restore_regno
5702 == lra_reg_info[dregno].restore_regno))))
5703 || (bitmap_bit_p (remove_pseudos, dregno)
5704 && lra_reg_info[dregno].restore_regno == sregno))
5705 /* One of the following cases:
5706 original <- removed inheritance pseudo
5707 removed inherit pseudo <- another removed inherit pseudo
5708 removed inherit pseudo <- original pseudo
5710 removed_split_pseudo <- original_reg
5711 original_reg <- removed_split_pseudo */
5713 if (lra_dump_file != NULL)
5715 fprintf (lra_dump_file, " Removing %s:\n",
5716 bitmap_bit_p (&lra_split_regs, sregno)
5717 || bitmap_bit_p (&lra_split_regs, dregno)
5718 ? "split" : "inheritance");
5719 dump_insn_slim (lra_dump_file, curr_insn);
5721 lra_set_insn_deleted (curr_insn);
5722 done_p = true;
5724 else if (bitmap_bit_p (remove_pseudos, sregno)
5725 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
5727 /* Search the following pattern:
5728 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
5729 original_pseudo <- inherit_or_split_pseudo1
5730 where the 2nd insn is the current insn and
5731 inherit_or_split_pseudo2 is not removed. If it is found,
5732 change the current insn onto:
5733 original_pseudo <- inherit_or_split_pseudo2. */
5734 for (prev_insn = PREV_INSN (curr_insn);
5735 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
5736 prev_insn = PREV_INSN (prev_insn))
5738 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
5739 && (prev_set = single_set (prev_insn)) != NULL_RTX
5740 /* There should be no subregs in insn we are
5741 searching because only the original reg might
5742 be in subreg when we changed the mode of
5743 load/store for splitting. */
5744 && REG_P (SET_DEST (prev_set))
5745 && REG_P (SET_SRC (prev_set))
5746 && (int) REGNO (SET_DEST (prev_set)) == sregno
5747 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
5748 >= FIRST_PSEUDO_REGISTER)
5749 /* As we consider chain of inheritance or
5750 splitting described in above comment we should
5751 check that sregno and prev_sregno were
5752 inheritance/split pseudos created from the
5753 same original regno. */
5754 && (lra_reg_info[sregno].restore_regno
5755 == lra_reg_info[prev_sregno].restore_regno)
5756 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
5758 lra_assert (GET_MODE (SET_SRC (prev_set))
5759 == GET_MODE (regno_reg_rtx[sregno]));
5760 if (GET_CODE (SET_SRC (set)) == SUBREG)
5761 SUBREG_REG (SET_SRC (set)) = SET_SRC (prev_set);
5762 else
5763 SET_SRC (set) = SET_SRC (prev_set);
5764 /* As we are finishing with processing the insn
5765 here, check the destination too as it might
5766 inheritance pseudo for another pseudo. */
5767 if (bitmap_bit_p (remove_pseudos, dregno)
5768 && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
5769 && (restore_regno
5770 = lra_reg_info[dregno].restore_regno) >= 0)
5772 if (GET_CODE (SET_DEST (set)) == SUBREG)
5773 SUBREG_REG (SET_DEST (set))
5774 = regno_reg_rtx[restore_regno];
5775 else
5776 SET_DEST (set) = regno_reg_rtx[restore_regno];
5778 lra_push_insn_and_update_insn_regno_info (curr_insn);
5779 lra_set_used_insn_alternative_by_uid
5780 (INSN_UID (curr_insn), -1);
5781 done_p = true;
5782 if (lra_dump_file != NULL)
5784 fprintf (lra_dump_file, " Change reload insn:\n");
5785 dump_insn_slim (lra_dump_file, curr_insn);
5790 if (! done_p)
5792 struct lra_insn_reg *reg;
5793 bool restored_regs_p = false;
5794 bool kept_regs_p = false;
5796 curr_id = lra_get_insn_recog_data (curr_insn);
5797 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
5799 regno = reg->regno;
5800 restore_regno = lra_reg_info[regno].restore_regno;
5801 if (restore_regno >= 0)
5803 if (change_p && bitmap_bit_p (remove_pseudos, regno))
5805 lra_substitute_pseudo_within_insn (
5806 curr_insn, regno, regno_reg_rtx[restore_regno]);
5807 restored_regs_p = true;
5809 else
5810 kept_regs_p = true;
5813 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
5815 /* The instruction has changed since the previous
5816 constraints pass. */
5817 lra_push_insn_and_update_insn_regno_info (curr_insn);
5818 lra_set_used_insn_alternative_by_uid
5819 (INSN_UID (curr_insn), -1);
5821 else if (restored_regs_p)
5822 /* The instruction has been restored to the form that
5823 it had during the previous constraints pass. */
5824 lra_update_insn_regno_info (curr_insn);
5825 if (restored_regs_p && lra_dump_file != NULL)
5827 fprintf (lra_dump_file, " Insn after restoring regs:\n");
5828 dump_insn_slim (lra_dump_file, curr_insn);
5833 return change_p;
5836 /* If optional reload pseudos failed to get a hard register or was not
5837 inherited, it is better to remove optional reloads. We do this
5838 transformation after undoing inheritance to figure out necessity to
5839 remove optional reloads easier. Return true if we do any
5840 change. */
5841 static bool
5842 undo_optional_reloads (void)
5844 bool change_p, keep_p;
5845 unsigned int regno, uid;
5846 bitmap_iterator bi, bi2;
5847 rtx_insn *insn;
5848 rtx set, src, dest;
5849 bitmap_head removed_optional_reload_pseudos, insn_bitmap;
5851 bitmap_initialize (&removed_optional_reload_pseudos, &reg_obstack);
5852 bitmap_copy (&removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
5853 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
5855 keep_p = false;
5856 /* Keep optional reloads from previous subpasses. */
5857 if (lra_reg_info[regno].restore_regno < 0
5858 /* If the original pseudo changed its allocation, just
5859 removing the optional pseudo is dangerous as the original
5860 pseudo will have longer live range. */
5861 || reg_renumber[lra_reg_info[regno].restore_regno] >= 0)
5862 keep_p = true;
5863 else if (reg_renumber[regno] >= 0)
5864 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
5866 insn = lra_insn_recog_data[uid]->insn;
5867 if ((set = single_set (insn)) == NULL_RTX)
5868 continue;
5869 src = SET_SRC (set);
5870 dest = SET_DEST (set);
5871 if (! REG_P (src) || ! REG_P (dest))
5872 continue;
5873 if (REGNO (dest) == regno
5874 /* Ignore insn for optional reloads itself. */
5875 && lra_reg_info[regno].restore_regno != (int) REGNO (src)
5876 /* Check only inheritance on last inheritance pass. */
5877 && (int) REGNO (src) >= new_regno_start
5878 /* Check that the optional reload was inherited. */
5879 && bitmap_bit_p (&lra_inheritance_pseudos, REGNO (src)))
5881 keep_p = true;
5882 break;
5885 if (keep_p)
5887 bitmap_clear_bit (&removed_optional_reload_pseudos, regno);
5888 if (lra_dump_file != NULL)
5889 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
5892 change_p = ! bitmap_empty_p (&removed_optional_reload_pseudos);
5893 bitmap_initialize (&insn_bitmap, &reg_obstack);
5894 EXECUTE_IF_SET_IN_BITMAP (&removed_optional_reload_pseudos, 0, regno, bi)
5896 if (lra_dump_file != NULL)
5897 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
5898 bitmap_copy (&insn_bitmap, &lra_reg_info[regno].insn_bitmap);
5899 EXECUTE_IF_SET_IN_BITMAP (&insn_bitmap, 0, uid, bi2)
5901 insn = lra_insn_recog_data[uid]->insn;
5902 if ((set = single_set (insn)) != NULL_RTX)
5904 src = SET_SRC (set);
5905 dest = SET_DEST (set);
5906 if (REG_P (src) && REG_P (dest)
5907 && ((REGNO (src) == regno
5908 && (lra_reg_info[regno].restore_regno
5909 == (int) REGNO (dest)))
5910 || (REGNO (dest) == regno
5911 && (lra_reg_info[regno].restore_regno
5912 == (int) REGNO (src)))))
5914 if (lra_dump_file != NULL)
5916 fprintf (lra_dump_file, " Deleting move %u\n",
5917 INSN_UID (insn));
5918 dump_insn_slim (lra_dump_file, insn);
5920 lra_set_insn_deleted (insn);
5921 continue;
5923 /* We should not worry about generation memory-memory
5924 moves here as if the corresponding inheritance did
5925 not work (inheritance pseudo did not get a hard reg),
5926 we remove the inheritance pseudo and the optional
5927 reload. */
5929 lra_substitute_pseudo_within_insn (
5930 insn, regno,
5931 regno_reg_rtx[lra_reg_info[regno].restore_regno]);
5932 lra_update_insn_regno_info (insn);
5933 if (lra_dump_file != NULL)
5935 fprintf (lra_dump_file,
5936 " Restoring original insn:\n");
5937 dump_insn_slim (lra_dump_file, insn);
5941 /* Clear restore_regnos. */
5942 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
5943 lra_reg_info[regno].restore_regno = -1;
5944 bitmap_clear (&insn_bitmap);
5945 bitmap_clear (&removed_optional_reload_pseudos);
5946 return change_p;
5949 /* Entry function for undoing inheritance/split transformation. Return true
5950 if we did any RTL change in this pass. */
5951 bool
5952 lra_undo_inheritance (void)
5954 unsigned int regno;
5955 int restore_regno, hard_regno;
5956 int n_all_inherit, n_inherit, n_all_split, n_split;
5957 bitmap_head remove_pseudos;
5958 bitmap_iterator bi;
5959 bool change_p;
5961 lra_undo_inheritance_iter++;
5962 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
5963 return false;
5964 if (lra_dump_file != NULL)
5965 fprintf (lra_dump_file,
5966 "\n********** Undoing inheritance #%d: **********\n\n",
5967 lra_undo_inheritance_iter);
5968 bitmap_initialize (&remove_pseudos, &reg_obstack);
5969 n_inherit = n_all_inherit = 0;
5970 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
5971 if (lra_reg_info[regno].restore_regno >= 0)
5973 n_all_inherit++;
5974 if (reg_renumber[regno] < 0
5975 /* If the original pseudo changed its allocation, just
5976 removing inheritance is dangerous as for changing
5977 allocation we used shorter live-ranges. */
5978 && reg_renumber[lra_reg_info[regno].restore_regno] < 0)
5979 bitmap_set_bit (&remove_pseudos, regno);
5980 else
5981 n_inherit++;
5983 if (lra_dump_file != NULL && n_all_inherit != 0)
5984 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
5985 n_inherit, n_all_inherit,
5986 (double) n_inherit / n_all_inherit * 100);
5987 n_split = n_all_split = 0;
5988 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
5989 if ((restore_regno = lra_reg_info[regno].restore_regno) >= 0)
5991 n_all_split++;
5992 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
5993 ? reg_renumber[restore_regno] : restore_regno);
5994 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
5995 bitmap_set_bit (&remove_pseudos, regno);
5996 else
5998 n_split++;
5999 if (lra_dump_file != NULL)
6000 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
6001 regno, restore_regno);
6004 if (lra_dump_file != NULL && n_all_split != 0)
6005 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
6006 n_split, n_all_split,
6007 (double) n_split / n_all_split * 100);
6008 change_p = remove_inheritance_pseudos (&remove_pseudos);
6009 bitmap_clear (&remove_pseudos);
6010 /* Clear restore_regnos. */
6011 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
6012 lra_reg_info[regno].restore_regno = -1;
6013 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
6014 lra_reg_info[regno].restore_regno = -1;
6015 change_p = undo_optional_reloads () || change_p;
6016 return change_p;