* gcc.dg/store-motion-fgcse-sm.c (dg-final): Cleanup
[official-gcc.git] / gcc / ira-lives.c
blob0604c47060997c6c4364707ecfa4cc5dadd59bef
1 /* IRA processing allocno lives to build allocno live ranges.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "regs.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "target.h"
29 #include "flags.h"
30 #include "except.h"
31 #include "hard-reg-set.h"
32 #include "predict.h"
33 #include "vec.h"
34 #include "hashtab.h"
35 #include "hash-set.h"
36 #include "machmode.h"
37 #include "input.h"
38 #include "function.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "recog.h"
42 #include "diagnostic-core.h"
43 #include "params.h"
44 #include "df.h"
45 #include "sbitmap.h"
46 #include "sparseset.h"
47 #include "ira-int.h"
49 /* The code in this file is similar to one in global but the code
50 works on the allocno basis and creates live ranges instead of
51 pseudo-register conflicts. */
53 /* Program points are enumerated by numbers from range
54 0..IRA_MAX_POINT-1. There are approximately two times more program
55 points than insns. Program points are places in the program where
56 liveness info can be changed. In most general case (there are more
57 complicated cases too) some program points correspond to places
58 where input operand dies and other ones correspond to places where
59 output operands are born. */
60 int ira_max_point;
62 /* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
63 live ranges with given start/finish point. */
64 live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
66 /* Number of the current program point. */
67 static int curr_point;
69 /* Point where register pressure excess started or -1 if there is no
70 register pressure excess. Excess pressure for a register class at
71 some point means that there are more allocnos of given register
72 class living at the point than number of hard-registers of the
73 class available for the allocation. It is defined only for
74 pressure classes. */
75 static int high_pressure_start_point[N_REG_CLASSES];
77 /* Objects live at current point in the scan. */
78 static sparseset objects_live;
80 /* A temporary bitmap used in functions that wish to avoid visiting an allocno
81 multiple times. */
82 static sparseset allocnos_processed;
84 /* Set of hard regs (except eliminable ones) currently live. */
85 static HARD_REG_SET hard_regs_live;
87 /* The loop tree node corresponding to the current basic block. */
88 static ira_loop_tree_node_t curr_bb_node;
90 /* The number of the last processed call. */
91 static int last_call_num;
92 /* The number of last call at which given allocno was saved. */
93 static int *allocno_saved_at_call;
95 /* The value of get_preferred_alternatives for the current instruction,
96 supplemental to recog_data. */
97 static alternative_mask preferred_alternatives;
99 /* Record the birth of hard register REGNO, updating hard_regs_live and
100 hard reg conflict information for living allocnos. */
101 static void
102 make_hard_regno_born (int regno)
104 unsigned int i;
106 SET_HARD_REG_BIT (hard_regs_live, regno);
107 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
109 ira_object_t obj = ira_object_id_map[i];
111 SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
112 SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
116 /* Process the death of hard register REGNO. This updates
117 hard_regs_live. */
118 static void
119 make_hard_regno_dead (int regno)
121 CLEAR_HARD_REG_BIT (hard_regs_live, regno);
124 /* Record the birth of object OBJ. Set a bit for it in objects_live,
125 start a new live range for it if necessary and update hard register
126 conflicts. */
127 static void
128 make_object_born (ira_object_t obj)
130 live_range_t lr = OBJECT_LIVE_RANGES (obj);
132 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
133 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), hard_regs_live);
134 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), hard_regs_live);
136 if (lr == NULL
137 || (lr->finish != curr_point && lr->finish + 1 != curr_point))
138 ira_add_live_range_to_object (obj, curr_point, -1);
141 /* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
142 associated with object OBJ. */
143 static void
144 update_allocno_pressure_excess_length (ira_object_t obj)
146 ira_allocno_t a = OBJECT_ALLOCNO (obj);
147 int start, i;
148 enum reg_class aclass, pclass, cl;
149 live_range_t p;
151 aclass = ALLOCNO_CLASS (a);
152 pclass = ira_pressure_class_translate[aclass];
153 for (i = 0;
154 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
155 i++)
157 if (! ira_reg_pressure_class_p[cl])
158 continue;
159 if (high_pressure_start_point[cl] < 0)
160 continue;
161 p = OBJECT_LIVE_RANGES (obj);
162 ira_assert (p != NULL);
163 start = (high_pressure_start_point[cl] > p->start
164 ? high_pressure_start_point[cl] : p->start);
165 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
169 /* Process the death of object OBJ, which is associated with allocno
170 A. This finishes the current live range for it. */
171 static void
172 make_object_dead (ira_object_t obj)
174 live_range_t lr;
176 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
177 lr = OBJECT_LIVE_RANGES (obj);
178 ira_assert (lr != NULL);
179 lr->finish = curr_point;
180 update_allocno_pressure_excess_length (obj);
183 /* The current register pressures for each pressure class for the current
184 basic block. */
185 static int curr_reg_pressure[N_REG_CLASSES];
187 /* Record that register pressure for PCLASS increased by N registers.
188 Update the current register pressure, maximal register pressure for
189 the current BB and the start point of the register pressure
190 excess. */
191 static void
192 inc_register_pressure (enum reg_class pclass, int n)
194 int i;
195 enum reg_class cl;
197 for (i = 0;
198 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
199 i++)
201 if (! ira_reg_pressure_class_p[cl])
202 continue;
203 curr_reg_pressure[cl] += n;
204 if (high_pressure_start_point[cl] < 0
205 && (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
206 high_pressure_start_point[cl] = curr_point;
207 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
208 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
212 /* Record that register pressure for PCLASS has decreased by NREGS
213 registers; update current register pressure, start point of the
214 register pressure excess, and register pressure excess length for
215 living allocnos. */
217 static void
218 dec_register_pressure (enum reg_class pclass, int nregs)
220 int i;
221 unsigned int j;
222 enum reg_class cl;
223 bool set_p = false;
225 for (i = 0;
226 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
227 i++)
229 if (! ira_reg_pressure_class_p[cl])
230 continue;
231 curr_reg_pressure[cl] -= nregs;
232 ira_assert (curr_reg_pressure[cl] >= 0);
233 if (high_pressure_start_point[cl] >= 0
234 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
235 set_p = true;
237 if (set_p)
239 EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
240 update_allocno_pressure_excess_length (ira_object_id_map[j]);
241 for (i = 0;
242 (cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
243 i++)
245 if (! ira_reg_pressure_class_p[cl])
246 continue;
247 if (high_pressure_start_point[cl] >= 0
248 && curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
249 high_pressure_start_point[cl] = -1;
254 /* Determine from the objects_live bitmap whether REGNO is currently live,
255 and occupies only one object. Return false if we have no information. */
256 static bool
257 pseudo_regno_single_word_and_live_p (int regno)
259 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
260 ira_object_t obj;
262 if (a == NULL)
263 return false;
264 if (ALLOCNO_NUM_OBJECTS (a) > 1)
265 return false;
267 obj = ALLOCNO_OBJECT (a, 0);
269 return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
272 /* Mark the pseudo register REGNO as live. Update all information about
273 live ranges and register pressure. */
274 static void
275 mark_pseudo_regno_live (int regno)
277 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
278 enum reg_class pclass;
279 int i, n, nregs;
281 if (a == NULL)
282 return;
284 /* Invalidate because it is referenced. */
285 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
287 n = ALLOCNO_NUM_OBJECTS (a);
288 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
289 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
290 if (n > 1)
292 /* We track every subobject separately. */
293 gcc_assert (nregs == n);
294 nregs = 1;
297 for (i = 0; i < n; i++)
299 ira_object_t obj = ALLOCNO_OBJECT (a, i);
301 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
302 continue;
304 inc_register_pressure (pclass, nregs);
305 make_object_born (obj);
309 /* Like mark_pseudo_regno_live, but try to only mark one subword of
310 the pseudo as live. SUBWORD indicates which; a value of 0
311 indicates the low part. */
312 static void
313 mark_pseudo_regno_subword_live (int regno, int subword)
315 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
316 int n;
317 enum reg_class pclass;
318 ira_object_t obj;
320 if (a == NULL)
321 return;
323 /* Invalidate because it is referenced. */
324 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
326 n = ALLOCNO_NUM_OBJECTS (a);
327 if (n == 1)
329 mark_pseudo_regno_live (regno);
330 return;
333 pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
334 gcc_assert
335 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
336 obj = ALLOCNO_OBJECT (a, subword);
338 if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
339 return;
341 inc_register_pressure (pclass, 1);
342 make_object_born (obj);
345 /* Mark the register REG as live. Store a 1 in hard_regs_live for
346 this register, record how many consecutive hardware registers it
347 actually needs. */
348 static void
349 mark_hard_reg_live (rtx reg)
351 int regno = REGNO (reg);
353 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
355 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
356 enum reg_class aclass, pclass;
358 while (regno < last)
360 if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
361 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
363 aclass = ira_hard_regno_allocno_class[regno];
364 pclass = ira_pressure_class_translate[aclass];
365 inc_register_pressure (pclass, 1);
366 make_hard_regno_born (regno);
368 regno++;
373 /* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
374 register number; ORIG_REG is the access in the insn, which may be a
375 subreg. */
376 static void
377 mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
379 if (df_read_modify_subreg_p (orig_reg))
381 mark_pseudo_regno_subword_live (regno,
382 subreg_lowpart_p (orig_reg) ? 0 : 1);
384 else
385 mark_pseudo_regno_live (regno);
388 /* Mark the register referenced by use or def REF as live. */
389 static void
390 mark_ref_live (df_ref ref)
392 rtx reg = DF_REF_REG (ref);
393 rtx orig_reg = reg;
395 if (GET_CODE (reg) == SUBREG)
396 reg = SUBREG_REG (reg);
398 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
399 mark_pseudo_reg_live (orig_reg, REGNO (reg));
400 else
401 mark_hard_reg_live (reg);
404 /* Mark the pseudo register REGNO as dead. Update all information about
405 live ranges and register pressure. */
406 static void
407 mark_pseudo_regno_dead (int regno)
409 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
410 int n, i, nregs;
411 enum reg_class cl;
413 if (a == NULL)
414 return;
416 /* Invalidate because it is referenced. */
417 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
419 n = ALLOCNO_NUM_OBJECTS (a);
420 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
421 nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
422 if (n > 1)
424 /* We track every subobject separately. */
425 gcc_assert (nregs == n);
426 nregs = 1;
428 for (i = 0; i < n; i++)
430 ira_object_t obj = ALLOCNO_OBJECT (a, i);
431 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
432 continue;
434 dec_register_pressure (cl, nregs);
435 make_object_dead (obj);
439 /* Like mark_pseudo_regno_dead, but called when we know that only part of the
440 register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
441 static void
442 mark_pseudo_regno_subword_dead (int regno, int subword)
444 ira_allocno_t a = ira_curr_regno_allocno_map[regno];
445 int n;
446 enum reg_class cl;
447 ira_object_t obj;
449 if (a == NULL)
450 return;
452 /* Invalidate because it is referenced. */
453 allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
455 n = ALLOCNO_NUM_OBJECTS (a);
456 if (n == 1)
457 /* The allocno as a whole doesn't die in this case. */
458 return;
460 cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
461 gcc_assert
462 (n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
464 obj = ALLOCNO_OBJECT (a, subword);
465 if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
466 return;
468 dec_register_pressure (cl, 1);
469 make_object_dead (obj);
472 /* Mark the hard register REG as dead. Store a 0 in hard_regs_live for the
473 register. */
474 static void
475 mark_hard_reg_dead (rtx reg)
477 int regno = REGNO (reg);
479 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
481 int last = regno + hard_regno_nregs[regno][GET_MODE (reg)];
482 enum reg_class aclass, pclass;
484 while (regno < last)
486 if (TEST_HARD_REG_BIT (hard_regs_live, regno))
488 aclass = ira_hard_regno_allocno_class[regno];
489 pclass = ira_pressure_class_translate[aclass];
490 dec_register_pressure (pclass, 1);
491 make_hard_regno_dead (regno);
493 regno++;
498 /* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
499 register number; ORIG_REG is the access in the insn, which may be a
500 subreg. */
501 static void
502 mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
504 if (df_read_modify_subreg_p (orig_reg))
506 mark_pseudo_regno_subword_dead (regno,
507 subreg_lowpart_p (orig_reg) ? 0 : 1);
509 else
510 mark_pseudo_regno_dead (regno);
513 /* Mark the register referenced by definition DEF as dead, if the
514 definition is a total one. */
515 static void
516 mark_ref_dead (df_ref def)
518 rtx reg = DF_REF_REG (def);
519 rtx orig_reg = reg;
521 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
522 return;
524 if (GET_CODE (reg) == SUBREG)
525 reg = SUBREG_REG (reg);
527 if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
528 && (GET_CODE (orig_reg) != SUBREG
529 || REGNO (reg) < FIRST_PSEUDO_REGISTER
530 || !df_read_modify_subreg_p (orig_reg)))
531 return;
533 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
534 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
535 else
536 mark_hard_reg_dead (reg);
539 /* If REG is a pseudo or a subreg of it, and the class of its allocno
540 intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
541 rtx actually accessed, it may be identical to DREG or a subreg of it.
542 Advance the current program point before making the conflict if
543 ADVANCE_P. Return TRUE if we will need to advance the current
544 program point. */
545 static bool
546 make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
547 bool advance_p)
549 rtx orig_reg = reg;
550 ira_allocno_t a;
552 if (GET_CODE (reg) == SUBREG)
553 reg = SUBREG_REG (reg);
555 if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
556 return advance_p;
558 a = ira_curr_regno_allocno_map[REGNO (reg)];
559 if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
560 return advance_p;
562 if (advance_p)
563 curr_point++;
565 mark_pseudo_reg_live (orig_reg, REGNO (reg));
566 mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
567 mark_pseudo_reg_dead (orig_reg, REGNO (reg));
568 mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
570 return false;
573 /* Check and make if necessary conflicts for pseudo DREG of class
574 DEF_CL of the current insn with input operand USE of class USE_CL.
575 ORIG_DREG is the rtx actually accessed, it may be identical to
576 DREG or a subreg of it. Advance the current program point before
577 making the conflict if ADVANCE_P. Return TRUE if we will need to
578 advance the current program point. */
579 static bool
580 check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
581 enum reg_class def_cl, int use,
582 enum reg_class use_cl, bool advance_p)
584 if (! reg_classes_intersect_p (def_cl, use_cl))
585 return advance_p;
587 advance_p = make_pseudo_conflict (recog_data.operand[use],
588 use_cl, dreg, orig_dreg, advance_p);
590 /* Reload may end up swapping commutative operands, so you
591 have to take both orderings into account. The
592 constraints for the two operands can be completely
593 different. (Indeed, if the constraints for the two
594 operands are the same for all alternatives, there's no
595 point marking them as commutative.) */
596 if (use < recog_data.n_operands - 1
597 && recog_data.constraints[use][0] == '%')
598 advance_p
599 = make_pseudo_conflict (recog_data.operand[use + 1],
600 use_cl, dreg, orig_dreg, advance_p);
601 if (use >= 1
602 && recog_data.constraints[use - 1][0] == '%')
603 advance_p
604 = make_pseudo_conflict (recog_data.operand[use - 1],
605 use_cl, dreg, orig_dreg, advance_p);
606 return advance_p;
609 /* Check and make if necessary conflicts for definition DEF of class
610 DEF_CL of the current insn with input operands. Process only
611 constraints of alternative ALT. */
612 static void
613 check_and_make_def_conflict (int alt, int def, enum reg_class def_cl)
615 int use, use_match;
616 ira_allocno_t a;
617 enum reg_class use_cl, acl;
618 bool advance_p;
619 rtx dreg = recog_data.operand[def];
620 rtx orig_dreg = dreg;
622 if (def_cl == NO_REGS)
623 return;
625 if (GET_CODE (dreg) == SUBREG)
626 dreg = SUBREG_REG (dreg);
628 if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
629 return;
631 a = ira_curr_regno_allocno_map[REGNO (dreg)];
632 acl = ALLOCNO_CLASS (a);
633 if (! reg_classes_intersect_p (acl, def_cl))
634 return;
636 advance_p = true;
638 int n_operands = recog_data.n_operands;
639 const operand_alternative *op_alt = &recog_op_alt[alt * n_operands];
640 for (use = 0; use < n_operands; use++)
642 int alt1;
644 if (use == def || recog_data.operand_type[use] == OP_OUT)
645 continue;
647 if (op_alt[use].anything_ok)
648 use_cl = ALL_REGS;
649 else
650 use_cl = op_alt[use].cl;
652 /* If there's any alternative that allows USE to match DEF, do not
653 record a conflict. If that causes us to create an invalid
654 instruction due to the earlyclobber, reload must fix it up. */
655 for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
657 if (!TEST_BIT (preferred_alternatives, alt1))
658 continue;
659 const operand_alternative *op_alt1
660 = &recog_op_alt[alt1 * n_operands];
661 if (op_alt1[use].matches == def
662 || (use < n_operands - 1
663 && recog_data.constraints[use][0] == '%'
664 && op_alt1[use + 1].matches == def)
665 || (use >= 1
666 && recog_data.constraints[use - 1][0] == '%'
667 && op_alt1[use - 1].matches == def))
668 break;
671 if (alt1 < recog_data.n_alternatives)
672 continue;
674 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
675 use, use_cl, advance_p);
677 if ((use_match = op_alt[use].matches) >= 0)
679 if (use_match == def)
680 continue;
682 if (op_alt[use_match].anything_ok)
683 use_cl = ALL_REGS;
684 else
685 use_cl = op_alt[use_match].cl;
686 advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
687 use, use_cl, advance_p);
692 /* Make conflicts of early clobber pseudo registers of the current
693 insn with its inputs. Avoid introducing unnecessary conflicts by
694 checking classes of the constraints and pseudos because otherwise
695 significant code degradation is possible for some targets. */
696 static void
697 make_early_clobber_and_input_conflicts (void)
699 int alt;
700 int def, def_match;
701 enum reg_class def_cl;
703 int n_alternatives = recog_data.n_alternatives;
704 int n_operands = recog_data.n_operands;
705 const operand_alternative *op_alt = recog_op_alt;
706 for (alt = 0; alt < n_alternatives; alt++, op_alt += n_operands)
707 if (TEST_BIT (preferred_alternatives, alt))
708 for (def = 0; def < n_operands; def++)
710 def_cl = NO_REGS;
711 if (op_alt[def].earlyclobber)
713 if (op_alt[def].anything_ok)
714 def_cl = ALL_REGS;
715 else
716 def_cl = op_alt[def].cl;
717 check_and_make_def_conflict (alt, def, def_cl);
719 if ((def_match = op_alt[def].matches) >= 0
720 && (op_alt[def_match].earlyclobber
721 || op_alt[def].earlyclobber))
723 if (op_alt[def_match].anything_ok)
724 def_cl = ALL_REGS;
725 else
726 def_cl = op_alt[def_match].cl;
727 check_and_make_def_conflict (alt, def, def_cl);
732 /* Mark early clobber hard registers of the current INSN as live (if
733 LIVE_P) or dead. Return true if there are such registers. */
734 static bool
735 mark_hard_reg_early_clobbers (rtx_insn *insn, bool live_p)
737 df_ref def;
738 bool set_p = false;
740 FOR_EACH_INSN_DEF (def, insn)
741 if (DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER))
743 rtx dreg = DF_REF_REG (def);
745 if (GET_CODE (dreg) == SUBREG)
746 dreg = SUBREG_REG (dreg);
747 if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
748 continue;
750 /* Hard register clobbers are believed to be early clobber
751 because there is no way to say that non-operand hard
752 register clobbers are not early ones. */
753 if (live_p)
754 mark_ref_live (def);
755 else
756 mark_ref_dead (def);
757 set_p = true;
760 return set_p;
763 /* Checks that CONSTRAINTS permits to use only one hard register. If
764 it is so, the function returns the class of the hard register.
765 Otherwise it returns NO_REGS. */
766 static enum reg_class
767 single_reg_class (const char *constraints, rtx op, rtx equiv_const)
769 int c;
770 enum reg_class cl, next_cl;
771 enum constraint_num cn;
773 cl = NO_REGS;
774 alternative_mask preferred = preferred_alternatives;
775 for (; (c = *constraints); constraints += CONSTRAINT_LEN (c, constraints))
776 if (c == '#')
777 preferred &= ~ALTERNATIVE_BIT (0);
778 else if (c == ',')
779 preferred >>= 1;
780 else if (preferred & 1)
781 switch (c)
783 case 'g':
784 return NO_REGS;
786 default:
787 /* ??? Is this the best way to handle memory constraints? */
788 cn = lookup_constraint (constraints);
789 if (insn_extra_memory_constraint (cn)
790 || insn_extra_address_constraint (cn))
791 return NO_REGS;
792 if (constraint_satisfied_p (op, cn)
793 || (equiv_const != NULL_RTX
794 && CONSTANT_P (equiv_const)
795 && constraint_satisfied_p (equiv_const, cn)))
796 return NO_REGS;
797 next_cl = reg_class_for_constraint (cn);
798 if (next_cl == NO_REGS)
799 break;
800 if (cl == NO_REGS
801 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
802 : (ira_class_singleton[cl][GET_MODE (op)]
803 != ira_class_singleton[next_cl][GET_MODE (op)]))
804 return NO_REGS;
805 cl = next_cl;
806 break;
808 case '0': case '1': case '2': case '3': case '4':
809 case '5': case '6': case '7': case '8': case '9':
810 next_cl
811 = single_reg_class (recog_data.constraints[c - '0'],
812 recog_data.operand[c - '0'], NULL_RTX);
813 if (cl == NO_REGS
814 ? ira_class_singleton[next_cl][GET_MODE (op)] < 0
815 : (ira_class_singleton[cl][GET_MODE (op)]
816 != ira_class_singleton[next_cl][GET_MODE (op)]))
817 return NO_REGS;
818 cl = next_cl;
819 break;
821 return cl;
824 /* The function checks that operand OP_NUM of the current insn can use
825 only one hard register. If it is so, the function returns the
826 class of the hard register. Otherwise it returns NO_REGS. */
827 static enum reg_class
828 single_reg_operand_class (int op_num)
830 if (op_num < 0 || recog_data.n_alternatives == 0)
831 return NO_REGS;
832 return single_reg_class (recog_data.constraints[op_num],
833 recog_data.operand[op_num], NULL_RTX);
836 /* The function sets up hard register set *SET to hard registers which
837 might be used by insn reloads because the constraints are too
838 strict. */
839 void
840 ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set)
842 int i, c, regno = 0;
843 enum reg_class cl;
844 rtx op;
845 machine_mode mode;
847 CLEAR_HARD_REG_SET (*set);
848 for (i = 0; i < recog_data.n_operands; i++)
850 op = recog_data.operand[i];
852 if (GET_CODE (op) == SUBREG)
853 op = SUBREG_REG (op);
855 if (GET_CODE (op) == SCRATCH
856 || (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
858 const char *p = recog_data.constraints[i];
860 mode = (GET_CODE (op) == SCRATCH
861 ? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
862 cl = NO_REGS;
863 alternative_mask preferred = preferred_alternatives;
864 for (; (c = *p); p += CONSTRAINT_LEN (c, p))
865 if (c == '#')
866 preferred &= ~ALTERNATIVE_BIT (0);
867 else if (c == ',')
868 preferred >>= 1;
869 else if (preferred & 1)
871 cl = reg_class_for_constraint (lookup_constraint (p));
872 if (cl != NO_REGS)
874 /* There is no register pressure problem if all of the
875 regs in this class are fixed. */
876 int regno = ira_class_singleton[cl][mode];
877 if (regno >= 0)
878 add_to_hard_reg_set (set, mode, regno);
884 /* Processes input operands, if IN_P, or output operands otherwise of
885 the current insn with FREQ to find allocno which can use only one
886 hard register and makes other currently living allocnos conflicting
887 with the hard register. */
888 static void
889 process_single_reg_class_operands (bool in_p, int freq)
891 int i, regno;
892 unsigned int px;
893 enum reg_class cl;
894 rtx operand;
895 ira_allocno_t operand_a, a;
897 for (i = 0; i < recog_data.n_operands; i++)
899 operand = recog_data.operand[i];
900 if (in_p && recog_data.operand_type[i] != OP_IN
901 && recog_data.operand_type[i] != OP_INOUT)
902 continue;
903 if (! in_p && recog_data.operand_type[i] != OP_OUT
904 && recog_data.operand_type[i] != OP_INOUT)
905 continue;
906 cl = single_reg_operand_class (i);
907 if (cl == NO_REGS)
908 continue;
910 operand_a = NULL;
912 if (GET_CODE (operand) == SUBREG)
913 operand = SUBREG_REG (operand);
915 if (REG_P (operand)
916 && (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
918 enum reg_class aclass;
920 operand_a = ira_curr_regno_allocno_map[regno];
921 aclass = ALLOCNO_CLASS (operand_a);
922 if (ira_class_subset_p[cl][aclass])
924 /* View the desired allocation of OPERAND as:
926 (REG:YMODE YREGNO),
928 a simplification of:
930 (subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
931 machine_mode ymode, xmode;
932 int xregno, yregno;
933 HOST_WIDE_INT offset;
935 xmode = recog_data.operand_mode[i];
936 xregno = ira_class_singleton[cl][xmode];
937 gcc_assert (xregno >= 0);
938 ymode = ALLOCNO_MODE (operand_a);
939 offset = subreg_lowpart_offset (ymode, xmode);
940 yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
941 if (yregno >= 0
942 && ira_class_hard_reg_index[aclass][yregno] >= 0)
944 int cost;
946 ira_allocate_and_set_costs
947 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
948 aclass, 0);
949 ira_init_register_move_cost_if_necessary (xmode);
950 cost = freq * (in_p
951 ? ira_register_move_cost[xmode][aclass][cl]
952 : ira_register_move_cost[xmode][cl][aclass]);
953 ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
954 [ira_class_hard_reg_index[aclass][yregno]] -= cost;
959 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
961 ira_object_t obj = ira_object_id_map[px];
962 a = OBJECT_ALLOCNO (obj);
963 if (a != operand_a)
965 /* We could increase costs of A instead of making it
966 conflicting with the hard register. But it works worse
967 because it will be spilled in reload in anyway. */
968 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
969 reg_class_contents[cl]);
970 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
971 reg_class_contents[cl]);
977 /* Return true when one of the predecessor edges of BB is marked with
978 EDGE_ABNORMAL_CALL or EDGE_EH. */
979 static bool
980 bb_has_abnormal_call_pred (basic_block bb)
982 edge e;
983 edge_iterator ei;
985 FOR_EACH_EDGE (e, ei, bb->preds)
987 if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH))
988 return true;
990 return false;
993 /* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
994 we find a SET rtx that we can use to deduce that a register can be cheaply
995 caller-saved. Return such a register, or NULL_RTX if none is found. */
996 static rtx
997 find_call_crossed_cheap_reg (rtx_insn *insn)
999 rtx cheap_reg = NULL_RTX;
1000 rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
1002 while (exp != NULL)
1004 rtx x = XEXP (exp, 0);
1005 if (GET_CODE (x) == SET)
1007 exp = x;
1008 break;
1010 exp = XEXP (exp, 1);
1012 if (exp != NULL)
1014 basic_block bb = BLOCK_FOR_INSN (insn);
1015 rtx reg = SET_SRC (exp);
1016 rtx_insn *prev = PREV_INSN (insn);
1017 while (prev && !(INSN_P (prev)
1018 && BLOCK_FOR_INSN (prev) != bb))
1020 if (NONDEBUG_INSN_P (prev))
1022 rtx set = single_set (prev);
1024 if (set && rtx_equal_p (SET_DEST (set), reg))
1026 rtx src = SET_SRC (set);
1027 if (!REG_P (src) || HARD_REGISTER_P (src)
1028 || !pseudo_regno_single_word_and_live_p (REGNO (src)))
1029 break;
1030 if (!modified_between_p (src, prev, insn))
1031 cheap_reg = src;
1032 break;
1034 if (set && rtx_equal_p (SET_SRC (set), reg))
1036 rtx dest = SET_DEST (set);
1037 if (!REG_P (dest) || HARD_REGISTER_P (dest)
1038 || !pseudo_regno_single_word_and_live_p (REGNO (dest)))
1039 break;
1040 if (!modified_between_p (dest, prev, insn))
1041 cheap_reg = dest;
1042 break;
1045 if (reg_overlap_mentioned_p (reg, PATTERN (prev)))
1046 break;
1048 prev = PREV_INSN (prev);
1051 return cheap_reg;
1054 /* Process insns of the basic block given by its LOOP_TREE_NODE to
1055 update allocno live ranges, allocno hard register conflicts,
1056 intersected calls, and register pressure info for allocnos for the
1057 basic block for and regions containing the basic block. */
1058 static void
1059 process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
1061 int i, freq;
1062 unsigned int j;
1063 basic_block bb;
1064 rtx_insn *insn;
1065 bitmap_iterator bi;
1066 bitmap reg_live_out;
1067 unsigned int px;
1068 bool set_p;
1070 bb = loop_tree_node->bb;
1071 if (bb != NULL)
1073 for (i = 0; i < ira_pressure_classes_num; i++)
1075 curr_reg_pressure[ira_pressure_classes[i]] = 0;
1076 high_pressure_start_point[ira_pressure_classes[i]] = -1;
1078 curr_bb_node = loop_tree_node;
1079 reg_live_out = df_get_live_out (bb);
1080 sparseset_clear (objects_live);
1081 REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
1082 AND_COMPL_HARD_REG_SET (hard_regs_live, eliminable_regset);
1083 AND_COMPL_HARD_REG_SET (hard_regs_live, ira_no_alloc_regs);
1084 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1085 if (TEST_HARD_REG_BIT (hard_regs_live, i))
1087 enum reg_class aclass, pclass, cl;
1089 aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
1090 pclass = ira_pressure_class_translate[aclass];
1091 for (j = 0;
1092 (cl = ira_reg_class_super_classes[pclass][j])
1093 != LIM_REG_CLASSES;
1094 j++)
1096 if (! ira_reg_pressure_class_p[cl])
1097 continue;
1098 curr_reg_pressure[cl]++;
1099 if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
1100 curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
1101 ira_assert (curr_reg_pressure[cl]
1102 <= ira_class_hard_regs_num[cl]);
1105 EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
1106 mark_pseudo_regno_live (j);
1108 freq = REG_FREQ_FROM_BB (bb);
1109 if (freq == 0)
1110 freq = 1;
1112 /* Invalidate all allocno_saved_at_call entries. */
1113 last_call_num++;
1115 /* Scan the code of this basic block, noting which allocnos and
1116 hard regs are born or die.
1118 Note that this loop treats uninitialized values as live until
1119 the beginning of the block. For example, if an instruction
1120 uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
1121 set, FOO will remain live until the beginning of the block.
1122 Likewise if FOO is not set at all. This is unnecessarily
1123 pessimistic, but it probably doesn't matter much in practice. */
1124 FOR_BB_INSNS_REVERSE (bb, insn)
1126 df_ref def, use;
1127 bool call_p;
1129 if (!NONDEBUG_INSN_P (insn))
1130 continue;
1132 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1133 fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
1134 INSN_UID (insn), loop_tree_node->parent->loop_num,
1135 curr_point);
1137 /* Mark each defined value as live. We need to do this for
1138 unused values because they still conflict with quantities
1139 that are live at the time of the definition.
1141 Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
1142 references represent the effect of the called function
1143 on a call-clobbered register. Marking the register as
1144 live would stop us from allocating it to a call-crossing
1145 allocno. */
1146 call_p = CALL_P (insn);
1147 FOR_EACH_INSN_DEF (def, insn)
1148 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1149 mark_ref_live (def);
1151 /* If INSN has multiple outputs, then any value used in one
1152 of the outputs conflicts with the other outputs. Model this
1153 by making the used value live during the output phase.
1155 It is unsafe to use !single_set here since it will ignore
1156 an unused output. Just because an output is unused does
1157 not mean the compiler can assume the side effect will not
1158 occur. Consider if ALLOCNO appears in the address of an
1159 output and we reload the output. If we allocate ALLOCNO
1160 to the same hard register as an unused output we could
1161 set the hard register before the output reload insn. */
1162 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1163 FOR_EACH_INSN_USE (use, insn)
1165 int i;
1166 rtx reg;
1168 reg = DF_REF_REG (use);
1169 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
1171 rtx set;
1173 set = XVECEXP (PATTERN (insn), 0, i);
1174 if (GET_CODE (set) == SET
1175 && reg_overlap_mentioned_p (reg, SET_DEST (set)))
1177 /* After the previous loop, this is a no-op if
1178 REG is contained within SET_DEST (SET). */
1179 mark_ref_live (use);
1180 break;
1185 extract_insn (insn);
1186 preferred_alternatives = get_preferred_alternatives (insn);
1187 preprocess_constraints (insn);
1188 process_single_reg_class_operands (false, freq);
1190 /* See which defined values die here. */
1191 FOR_EACH_INSN_DEF (def, insn)
1192 if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
1193 mark_ref_dead (def);
1195 if (call_p)
1197 /* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
1198 there, try to find a pseudo that is live across the call but
1199 can be cheaply reconstructed from the return value. */
1200 rtx cheap_reg = find_call_crossed_cheap_reg (insn);
1201 if (cheap_reg != NULL_RTX)
1202 add_reg_note (insn, REG_RETURNED, cheap_reg);
1204 last_call_num++;
1205 sparseset_clear (allocnos_processed);
1206 /* The current set of live allocnos are live across the call. */
1207 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1209 ira_object_t obj = ira_object_id_map[i];
1210 ira_allocno_t a = OBJECT_ALLOCNO (obj);
1211 int num = ALLOCNO_NUM (a);
1212 HARD_REG_SET this_call_used_reg_set;
1214 get_call_reg_set_usage (insn, &this_call_used_reg_set,
1215 call_used_reg_set);
1217 /* Don't allocate allocnos that cross setjmps or any
1218 call, if this function receives a nonlocal
1219 goto. */
1220 if (cfun->has_nonlocal_label
1221 || find_reg_note (insn, REG_SETJMP,
1222 NULL_RTX) != NULL_RTX)
1224 SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
1225 SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
1227 if (can_throw_internal (insn))
1229 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
1230 this_call_used_reg_set);
1231 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
1232 this_call_used_reg_set);
1235 if (sparseset_bit_p (allocnos_processed, num))
1236 continue;
1237 sparseset_set_bit (allocnos_processed, num);
1239 if (allocno_saved_at_call[num] != last_call_num)
1240 /* Here we are mimicking caller-save.c behavior
1241 which does not save hard register at a call if
1242 it was saved on previous call in the same basic
1243 block and the hard register was not mentioned
1244 between the two calls. */
1245 ALLOCNO_CALL_FREQ (a) += freq;
1246 /* Mark it as saved at the next call. */
1247 allocno_saved_at_call[num] = last_call_num + 1;
1248 ALLOCNO_CALLS_CROSSED_NUM (a)++;
1249 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
1250 this_call_used_reg_set);
1251 if (cheap_reg != NULL_RTX
1252 && ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
1253 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
1257 make_early_clobber_and_input_conflicts ();
1259 curr_point++;
1261 /* Mark each used value as live. */
1262 FOR_EACH_INSN_USE (use, insn)
1263 mark_ref_live (use);
1265 process_single_reg_class_operands (true, freq);
1267 set_p = mark_hard_reg_early_clobbers (insn, true);
1269 if (set_p)
1271 mark_hard_reg_early_clobbers (insn, false);
1273 /* Mark each hard reg as live again. For example, a
1274 hard register can be in clobber and in an insn
1275 input. */
1276 FOR_EACH_INSN_USE (use, insn)
1278 rtx ureg = DF_REF_REG (use);
1280 if (GET_CODE (ureg) == SUBREG)
1281 ureg = SUBREG_REG (ureg);
1282 if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
1283 continue;
1285 mark_ref_live (use);
1289 curr_point++;
1292 #ifdef EH_RETURN_DATA_REGNO
1293 if (bb_has_eh_pred (bb))
1294 for (j = 0; ; ++j)
1296 unsigned int regno = EH_RETURN_DATA_REGNO (j);
1297 if (regno == INVALID_REGNUM)
1298 break;
1299 make_hard_regno_born (regno);
1301 #endif
1303 /* Allocnos can't go in stack regs at the start of a basic block
1304 that is reached by an abnormal edge. Likewise for call
1305 clobbered regs, because caller-save, fixup_abnormal_edges and
1306 possibly the table driven EH machinery are not quite ready to
1307 handle such allocnos live across such edges. */
1308 if (bb_has_abnormal_pred (bb))
1310 #ifdef STACK_REGS
1311 EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
1313 ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
1315 ALLOCNO_NO_STACK_REG_P (a) = true;
1316 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
1318 for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
1319 make_hard_regno_born (px);
1320 #endif
1321 /* No need to record conflicts for call clobbered regs if we
1322 have nonlocal labels around, as we don't ever try to
1323 allocate such regs in this case. */
1324 if (!cfun->has_nonlocal_label && bb_has_abnormal_call_pred (bb))
1325 for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
1326 if (call_used_regs[px])
1327 make_hard_regno_born (px);
1330 EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
1331 make_object_dead (ira_object_id_map[i]);
1333 curr_point++;
1336 /* Propagate register pressure to upper loop tree nodes. */
1337 if (loop_tree_node != ira_loop_tree_root)
1338 for (i = 0; i < ira_pressure_classes_num; i++)
1340 enum reg_class pclass;
1342 pclass = ira_pressure_classes[i];
1343 if (loop_tree_node->reg_pressure[pclass]
1344 > loop_tree_node->parent->reg_pressure[pclass])
1345 loop_tree_node->parent->reg_pressure[pclass]
1346 = loop_tree_node->reg_pressure[pclass];
1350 /* Create and set up IRA_START_POINT_RANGES and
1351 IRA_FINISH_POINT_RANGES. */
1352 static void
1353 create_start_finish_chains (void)
1355 ira_object_t obj;
1356 ira_object_iterator oi;
1357 live_range_t r;
1359 ira_start_point_ranges
1360 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1361 memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1362 ira_finish_point_ranges
1363 = (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
1364 memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
1365 FOR_EACH_OBJECT (obj, oi)
1366 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1368 r->start_next = ira_start_point_ranges[r->start];
1369 ira_start_point_ranges[r->start] = r;
1370 r->finish_next = ira_finish_point_ranges[r->finish];
1371 ira_finish_point_ranges[r->finish] = r;
1375 /* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
1376 new live ranges and program points were added as a result if new
1377 insn generation. */
1378 void
1379 ira_rebuild_start_finish_chains (void)
1381 ira_free (ira_finish_point_ranges);
1382 ira_free (ira_start_point_ranges);
1383 create_start_finish_chains ();
1386 /* Compress allocno live ranges by removing program points where
1387 nothing happens. */
1388 static void
1389 remove_some_program_points_and_update_live_ranges (void)
1391 unsigned i;
1392 int n;
1393 int *map;
1394 ira_object_t obj;
1395 ira_object_iterator oi;
1396 live_range_t r, prev_r, next_r;
1397 sbitmap born_or_dead, born, dead;
1398 sbitmap_iterator sbi;
1399 bool born_p, dead_p, prev_born_p, prev_dead_p;
1401 born = sbitmap_alloc (ira_max_point);
1402 dead = sbitmap_alloc (ira_max_point);
1403 bitmap_clear (born);
1404 bitmap_clear (dead);
1405 FOR_EACH_OBJECT (obj, oi)
1406 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
1408 ira_assert (r->start <= r->finish);
1409 bitmap_set_bit (born, r->start);
1410 bitmap_set_bit (dead, r->finish);
1413 born_or_dead = sbitmap_alloc (ira_max_point);
1414 bitmap_ior (born_or_dead, born, dead);
1415 map = (int *) ira_allocate (sizeof (int) * ira_max_point);
1416 n = -1;
1417 prev_born_p = prev_dead_p = false;
1418 EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
1420 born_p = bitmap_bit_p (born, i);
1421 dead_p = bitmap_bit_p (dead, i);
1422 if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
1423 || (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
1424 map[i] = n;
1425 else
1426 map[i] = ++n;
1427 prev_born_p = born_p;
1428 prev_dead_p = dead_p;
1430 sbitmap_free (born_or_dead);
1431 sbitmap_free (born);
1432 sbitmap_free (dead);
1433 n++;
1434 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1435 fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
1436 ira_max_point, n, 100 * n / ira_max_point);
1437 ira_max_point = n;
1439 FOR_EACH_OBJECT (obj, oi)
1440 for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
1442 next_r = r->next;
1443 r->start = map[r->start];
1444 r->finish = map[r->finish];
1445 if (prev_r == NULL || prev_r->start > r->finish + 1)
1447 prev_r = r;
1448 continue;
1450 prev_r->start = r->start;
1451 prev_r->next = next_r;
1452 ira_finish_live_range (r);
1455 ira_free (map);
1458 /* Print live ranges R to file F. */
1459 void
1460 ira_print_live_range_list (FILE *f, live_range_t r)
1462 for (; r != NULL; r = r->next)
1463 fprintf (f, " [%d..%d]", r->start, r->finish);
1464 fprintf (f, "\n");
1467 DEBUG_FUNCTION void
1468 debug (live_range &ref)
1470 ira_print_live_range_list (stderr, &ref);
1473 DEBUG_FUNCTION void
1474 debug (live_range *ptr)
1476 if (ptr)
1477 debug (*ptr);
1478 else
1479 fprintf (stderr, "<nil>\n");
1482 /* Print live ranges R to stderr. */
1483 void
1484 ira_debug_live_range_list (live_range_t r)
1486 ira_print_live_range_list (stderr, r);
1489 /* Print live ranges of object OBJ to file F. */
1490 static void
1491 print_object_live_ranges (FILE *f, ira_object_t obj)
1493 ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
1496 /* Print live ranges of allocno A to file F. */
1497 static void
1498 print_allocno_live_ranges (FILE *f, ira_allocno_t a)
1500 int n = ALLOCNO_NUM_OBJECTS (a);
1501 int i;
1503 for (i = 0; i < n; i++)
1505 fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1506 if (n > 1)
1507 fprintf (f, " [%d]", i);
1508 fprintf (f, "):");
1509 print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
1513 /* Print live ranges of allocno A to stderr. */
1514 void
1515 ira_debug_allocno_live_ranges (ira_allocno_t a)
1517 print_allocno_live_ranges (stderr, a);
1520 /* Print live ranges of all allocnos to file F. */
1521 static void
1522 print_live_ranges (FILE *f)
1524 ira_allocno_t a;
1525 ira_allocno_iterator ai;
1527 FOR_EACH_ALLOCNO (a, ai)
1528 print_allocno_live_ranges (f, a);
1531 /* Print live ranges of all allocnos to stderr. */
1532 void
1533 ira_debug_live_ranges (void)
1535 print_live_ranges (stderr);
1538 /* The main entry function creates live ranges, set up
1539 CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
1540 calculate register pressure info. */
1541 void
1542 ira_create_allocno_live_ranges (void)
1544 objects_live = sparseset_alloc (ira_objects_num);
1545 allocnos_processed = sparseset_alloc (ira_allocnos_num);
1546 curr_point = 0;
1547 last_call_num = 0;
1548 allocno_saved_at_call
1549 = (int *) ira_allocate (ira_allocnos_num * sizeof (int));
1550 memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
1551 ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
1552 process_bb_node_lives);
1553 ira_max_point = curr_point;
1554 create_start_finish_chains ();
1555 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1556 print_live_ranges (ira_dump_file);
1557 /* Clean up. */
1558 ira_free (allocno_saved_at_call);
1559 sparseset_free (objects_live);
1560 sparseset_free (allocnos_processed);
1563 /* Compress allocno live ranges. */
1564 void
1565 ira_compress_allocno_live_ranges (void)
1567 remove_some_program_points_and_update_live_ranges ();
1568 ira_rebuild_start_finish_chains ();
1569 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1571 fprintf (ira_dump_file, "Ranges after the compression:\n");
1572 print_live_ranges (ira_dump_file);
1576 /* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
1577 void
1578 ira_finish_allocno_live_ranges (void)
1580 ira_free (ira_finish_point_ranges);
1581 ira_free (ira_start_point_ranges);