1 /* IRA hard register and memory cost calculation for allocnos or pseudos.
2 Copyright (C) 2006-2014 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "hash-table.h"
26 #include "hard-reg-set.h"
38 #include "dominance.h"
40 #include "basic-block.h"
42 #include "addresses.h"
43 #include "insn-config.h"
46 #include "diagnostic-core.h"
51 /* The flags is set up every time when we calculate pseudo register
52 classes through function ira_set_pseudo_classes. */
53 static bool pseudo_classes_defined_p
= false;
55 /* TRUE if we work with allocnos. Otherwise we work with pseudos. */
56 static bool allocno_p
;
58 /* Number of elements in array `costs'. */
59 static int cost_elements_num
;
61 /* The `costs' struct records the cost of using hard registers of each
62 class considered for the calculation and of using memory for each
67 /* Costs for register classes start here. We process only some
72 #define max_struct_costs_size \
73 (this_target_ira_int->x_max_struct_costs_size)
75 (this_target_ira_int->x_init_cost)
77 (this_target_ira_int->x_temp_costs)
79 (this_target_ira_int->x_op_costs)
80 #define this_op_costs \
81 (this_target_ira_int->x_this_op_costs)
83 /* Costs of each class for each allocno or pseudo. */
84 static struct costs
*costs
;
86 /* Accumulated costs of each class for each allocno. */
87 static struct costs
*total_allocno_costs
;
89 /* It is the current size of struct costs. */
90 static int struct_costs_size
;
92 /* Return pointer to structure containing costs of allocno or pseudo
93 with given NUM in array ARR. */
94 #define COSTS(arr, num) \
95 ((struct costs *) ((char *) (arr) + (num) * struct_costs_size))
97 /* Return index in COSTS when processing reg with REGNO. */
98 #define COST_INDEX(regno) (allocno_p \
99 ? ALLOCNO_NUM (ira_curr_regno_allocno_map[regno]) \
102 /* Record register class preferences of each allocno or pseudo. Null
103 value means no preferences. It happens on the 1st iteration of the
105 static enum reg_class
*pref
;
107 /* Allocated buffers for pref. */
108 static enum reg_class
*pref_buffer
;
110 /* Record allocno class of each allocno with the same regno. */
111 static enum reg_class
*regno_aclass
;
113 /* Record cost gains for not allocating a register with an invariant
115 static int *regno_equiv_gains
;
117 /* Execution frequency of the current insn. */
118 static int frequency
;
122 /* Info about reg classes whose costs are calculated for a pseudo. */
125 /* Number of the cost classes in the subsequent array. */
127 /* Container of the cost classes. */
128 enum reg_class classes
[N_REG_CLASSES
];
129 /* Map reg class -> index of the reg class in the previous array.
130 -1 if it is not a cost class. */
131 int index
[N_REG_CLASSES
];
132 /* Map hard regno index of first class in array CLASSES containing
133 the hard regno, -1 otherwise. */
134 int hard_regno_index
[FIRST_PSEUDO_REGISTER
];
137 /* Types of pointers to the structure above. */
138 typedef struct cost_classes
*cost_classes_t
;
139 typedef const struct cost_classes
*const_cost_classes_t
;
141 /* Info about cost classes for each pseudo. */
142 static cost_classes_t
*regno_cost_classes
;
144 /* Helper for cost_classes hashing. */
146 struct cost_classes_hasher
148 typedef cost_classes value_type
;
149 typedef cost_classes compare_type
;
150 static inline hashval_t
hash (const value_type
*);
151 static inline bool equal (const value_type
*, const compare_type
*);
152 static inline void remove (value_type
*);
155 /* Returns hash value for cost classes info HV. */
157 cost_classes_hasher::hash (const value_type
*hv
)
159 return iterative_hash (&hv
->classes
, sizeof (enum reg_class
) * hv
->num
, 0);
162 /* Compares cost classes info HV1 and HV2. */
164 cost_classes_hasher::equal (const value_type
*hv1
, const compare_type
*hv2
)
166 return (hv1
->num
== hv2
->num
167 && memcmp (hv1
->classes
, hv2
->classes
,
168 sizeof (enum reg_class
) * hv1
->num
) == 0);
171 /* Delete cost classes info V from the hash table. */
173 cost_classes_hasher::remove (value_type
*v
)
178 /* Hash table of unique cost classes. */
179 static hash_table
<cost_classes_hasher
> *cost_classes_htab
;
181 /* Map allocno class -> cost classes for pseudo of given allocno
183 static cost_classes_t cost_classes_aclass_cache
[N_REG_CLASSES
];
185 /* Map mode -> cost classes for pseudo of give mode. */
186 static cost_classes_t cost_classes_mode_cache
[MAX_MACHINE_MODE
];
188 /* Cost classes that include all classes in ira_important_classes. */
189 static cost_classes all_cost_classes
;
191 /* Use the array of classes in CLASSES_PTR to fill out the rest of
194 complete_cost_classes (cost_classes_t classes_ptr
)
196 for (int i
= 0; i
< N_REG_CLASSES
; i
++)
197 classes_ptr
->index
[i
] = -1;
198 for (int i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
199 classes_ptr
->hard_regno_index
[i
] = -1;
200 for (int i
= 0; i
< classes_ptr
->num
; i
++)
202 enum reg_class cl
= classes_ptr
->classes
[i
];
203 classes_ptr
->index
[cl
] = i
;
204 for (int j
= ira_class_hard_regs_num
[cl
] - 1; j
>= 0; j
--)
206 unsigned int hard_regno
= ira_class_hard_regs
[cl
][j
];
207 if (classes_ptr
->hard_regno_index
[hard_regno
] < 0)
208 classes_ptr
->hard_regno_index
[hard_regno
] = i
;
213 /* Initialize info about the cost classes for each pseudo. */
215 initiate_regno_cost_classes (void)
217 int size
= sizeof (cost_classes_t
) * max_reg_num ();
219 regno_cost_classes
= (cost_classes_t
*) ira_allocate (size
);
220 memset (regno_cost_classes
, 0, size
);
221 memset (cost_classes_aclass_cache
, 0,
222 sizeof (cost_classes_t
) * N_REG_CLASSES
);
223 memset (cost_classes_mode_cache
, 0,
224 sizeof (cost_classes_t
) * MAX_MACHINE_MODE
);
225 cost_classes_htab
= new hash_table
<cost_classes_hasher
> (200);
226 all_cost_classes
.num
= ira_important_classes_num
;
227 for (int i
= 0; i
< ira_important_classes_num
; i
++)
228 all_cost_classes
.classes
[i
] = ira_important_classes
[i
];
229 complete_cost_classes (&all_cost_classes
);
232 /* Create new cost classes from cost classes FROM and set up members
233 index and hard_regno_index. Return the new classes. The function
234 implements some common code of two functions
235 setup_regno_cost_classes_by_aclass and
236 setup_regno_cost_classes_by_mode. */
237 static cost_classes_t
238 setup_cost_classes (cost_classes_t from
)
240 cost_classes_t classes_ptr
;
242 classes_ptr
= (cost_classes_t
) ira_allocate (sizeof (struct cost_classes
));
243 classes_ptr
->num
= from
->num
;
244 for (int i
= 0; i
< from
->num
; i
++)
245 classes_ptr
->classes
[i
] = from
->classes
[i
];
246 complete_cost_classes (classes_ptr
);
250 /* Return a version of FULL that only considers registers in REGS that are
251 valid for mode MODE. Both FULL and the returned class are globally
253 static cost_classes_t
254 restrict_cost_classes (cost_classes_t full
, machine_mode mode
,
255 const HARD_REG_SET
®s
)
257 static struct cost_classes narrow
;
258 int map
[N_REG_CLASSES
];
260 for (int i
= 0; i
< full
->num
; i
++)
262 /* Assume that we'll drop the class. */
265 /* Ignore classes that are too small for the mode. */
266 enum reg_class cl
= full
->classes
[i
];
267 if (!contains_reg_of_mode
[cl
][mode
])
270 /* Calculate the set of registers in CL that belong to REGS and
271 are valid for MODE. */
272 HARD_REG_SET valid_for_cl
;
273 COPY_HARD_REG_SET (valid_for_cl
, reg_class_contents
[cl
]);
274 AND_HARD_REG_SET (valid_for_cl
, regs
);
275 AND_COMPL_HARD_REG_SET (valid_for_cl
,
276 ira_prohibited_class_mode_regs
[cl
][mode
]);
277 AND_COMPL_HARD_REG_SET (valid_for_cl
, ira_no_alloc_regs
);
278 if (hard_reg_set_empty_p (valid_for_cl
))
281 /* Don't use this class if the set of valid registers is a subset
282 of an existing class. For example, suppose we have two classes
283 GR_REGS and FR_REGS and a union class GR_AND_FR_REGS. Suppose
284 that the mode changes allowed by FR_REGS are not as general as
285 the mode changes allowed by GR_REGS.
287 In this situation, the mode changes for GR_AND_FR_REGS could
288 either be seen as the union or the intersection of the mode
289 changes allowed by the two subclasses. The justification for
290 the union-based definition would be that, if you want a mode
291 change that's only allowed by GR_REGS, you can pick a register
292 from the GR_REGS subclass. The justification for the
293 intersection-based definition would be that every register
294 from the class would allow the mode change.
296 However, if we have a register that needs to be in GR_REGS,
297 using GR_AND_FR_REGS with the intersection-based definition
298 would be too pessimistic, since it would bring in restrictions
299 that only apply to FR_REGS. Conversely, if we have a register
300 that needs to be in FR_REGS, using GR_AND_FR_REGS with the
301 union-based definition would lose the extra restrictions
302 placed on FR_REGS. GR_AND_FR_REGS is therefore only useful
303 for cases where GR_REGS and FP_REGS are both valid. */
305 for (pos
= 0; pos
< narrow
.num
; ++pos
)
307 enum reg_class cl2
= narrow
.classes
[pos
];
308 if (hard_reg_set_subset_p (valid_for_cl
, reg_class_contents
[cl2
]))
312 if (pos
== narrow
.num
)
314 /* If several classes are equivalent, prefer to use the one
315 that was chosen as the allocno class. */
316 enum reg_class cl2
= ira_allocno_class_translate
[cl
];
317 if (ira_class_hard_regs_num
[cl
] == ira_class_hard_regs_num
[cl2
])
319 narrow
.classes
[narrow
.num
++] = cl
;
322 if (narrow
.num
== full
->num
)
325 cost_classes
**slot
= cost_classes_htab
->find_slot (&narrow
, INSERT
);
328 cost_classes_t classes
= setup_cost_classes (&narrow
);
329 /* Map equivalent classes to the representative that we chose above. */
330 for (int i
= 0; i
< ira_important_classes_num
; i
++)
332 enum reg_class cl
= ira_important_classes
[i
];
333 int index
= full
->index
[cl
];
335 classes
->index
[cl
] = map
[index
];
342 /* Setup cost classes for pseudo REGNO whose allocno class is ACLASS.
343 This function is used when we know an initial approximation of
344 allocno class of the pseudo already, e.g. on the second iteration
345 of class cost calculation or after class cost calculation in
346 register-pressure sensitive insn scheduling or register-pressure
347 sensitive loop-invariant motion. */
349 setup_regno_cost_classes_by_aclass (int regno
, enum reg_class aclass
)
351 static struct cost_classes classes
;
352 cost_classes_t classes_ptr
;
356 HARD_REG_SET temp
, temp2
;
359 if ((classes_ptr
= cost_classes_aclass_cache
[aclass
]) == NULL
)
361 COPY_HARD_REG_SET (temp
, reg_class_contents
[aclass
]);
362 AND_COMPL_HARD_REG_SET (temp
, ira_no_alloc_regs
);
363 /* We exclude classes from consideration which are subsets of
364 ACLASS only if ACLASS is an uniform class. */
365 exclude_p
= ira_uniform_class_p
[aclass
];
367 for (i
= 0; i
< ira_important_classes_num
; i
++)
369 cl
= ira_important_classes
[i
];
372 /* Exclude non-uniform classes which are subsets of
374 COPY_HARD_REG_SET (temp2
, reg_class_contents
[cl
]);
375 AND_COMPL_HARD_REG_SET (temp2
, ira_no_alloc_regs
);
376 if (hard_reg_set_subset_p (temp2
, temp
) && cl
!= aclass
)
379 classes
.classes
[classes
.num
++] = cl
;
381 slot
= cost_classes_htab
->find_slot (&classes
, INSERT
);
384 classes_ptr
= setup_cost_classes (&classes
);
387 classes_ptr
= cost_classes_aclass_cache
[aclass
] = (cost_classes_t
) *slot
;
389 if (regno_reg_rtx
[regno
] != NULL_RTX
)
391 /* Restrict the classes to those that are valid for REGNO's mode
392 (which might for example exclude singleton classes if the mode
393 requires two registers). Also restrict the classes to those that
394 are valid for subregs of REGNO. */
395 const HARD_REG_SET
*valid_regs
= valid_mode_changes_for_regno (regno
);
397 valid_regs
= ®_class_contents
[ALL_REGS
];
398 classes_ptr
= restrict_cost_classes (classes_ptr
,
399 PSEUDO_REGNO_MODE (regno
),
402 regno_cost_classes
[regno
] = classes_ptr
;
405 /* Setup cost classes for pseudo REGNO with MODE. Usage of MODE can
406 decrease number of cost classes for the pseudo, if hard registers
407 of some important classes can not hold a value of MODE. So the
408 pseudo can not get hard register of some important classes and cost
409 calculation for such important classes is only wasting CPU
412 setup_regno_cost_classes_by_mode (int regno
, machine_mode mode
)
414 if (const HARD_REG_SET
*valid_regs
= valid_mode_changes_for_regno (regno
))
415 regno_cost_classes
[regno
] = restrict_cost_classes (&all_cost_classes
,
419 if (cost_classes_mode_cache
[mode
] == NULL
)
420 cost_classes_mode_cache
[mode
]
421 = restrict_cost_classes (&all_cost_classes
, mode
,
422 reg_class_contents
[ALL_REGS
]);
423 regno_cost_classes
[regno
] = cost_classes_mode_cache
[mode
];
427 /* Finalize info about the cost classes for each pseudo. */
429 finish_regno_cost_classes (void)
431 ira_free (regno_cost_classes
);
432 delete cost_classes_htab
;
433 cost_classes_htab
= NULL
;
438 /* Compute the cost of loading X into (if TO_P is TRUE) or from (if
439 TO_P is FALSE) a register of class RCLASS in mode MODE. X must not
440 be a pseudo register. */
442 copy_cost (rtx x
, machine_mode mode
, reg_class_t rclass
, bool to_p
,
443 secondary_reload_info
*prev_sri
)
445 secondary_reload_info sri
;
446 reg_class_t secondary_class
= NO_REGS
;
448 /* If X is a SCRATCH, there is actually nothing to move since we are
449 assuming optimal allocation. */
450 if (GET_CODE (x
) == SCRATCH
)
453 /* Get the class we will actually use for a reload. */
454 rclass
= targetm
.preferred_reload_class (x
, rclass
);
456 /* If we need a secondary reload for an intermediate, the cost is
457 that to load the input into the intermediate register, then to
459 sri
.prev_sri
= prev_sri
;
461 secondary_class
= targetm
.secondary_reload (to_p
, x
, rclass
, mode
, &sri
);
463 if (secondary_class
!= NO_REGS
)
465 ira_init_register_move_cost_if_necessary (mode
);
466 return (ira_register_move_cost
[mode
][(int) secondary_class
][(int) rclass
]
468 + copy_cost (x
, mode
, secondary_class
, to_p
, &sri
));
471 /* For memory, use the memory move cost, for (hard) registers, use
472 the cost to move between the register classes, and use 2 for
473 everything else (constants). */
474 if (MEM_P (x
) || rclass
== NO_REGS
)
475 return sri
.extra_cost
476 + ira_memory_move_cost
[mode
][(int) rclass
][to_p
!= 0];
479 reg_class_t x_class
= REGNO_REG_CLASS (REGNO (x
));
481 ira_init_register_move_cost_if_necessary (mode
);
482 return (sri
.extra_cost
483 + ira_register_move_cost
[mode
][(int) x_class
][(int) rclass
]);
486 /* If this is a constant, we may eventually want to call rtx_cost
488 return sri
.extra_cost
+ COSTS_N_INSNS (1);
493 /* Record the cost of using memory or hard registers of various
494 classes for the operands in INSN.
496 N_ALTS is the number of alternatives.
497 N_OPS is the number of operands.
498 OPS is an array of the operands.
499 MODES are the modes of the operands, in case any are VOIDmode.
500 CONSTRAINTS are the constraints to use for the operands. This array
501 is modified by this procedure.
503 This procedure works alternative by alternative. For each
504 alternative we assume that we will be able to allocate all allocnos
505 to their ideal register class and calculate the cost of using that
506 alternative. Then we compute, for each operand that is a
507 pseudo-register, the cost of having the allocno allocated to each
508 register class and using it in that alternative. To this cost is
509 added the cost of the alternative.
511 The cost of each class for this insn is its lowest cost among all
514 record_reg_classes (int n_alts
, int n_ops
, rtx
*ops
,
515 machine_mode
*modes
, const char **constraints
,
516 rtx_insn
*insn
, enum reg_class
*pref
)
520 int insn_allows_mem
[MAX_RECOG_OPERANDS
];
521 move_table
*move_in_cost
, *move_out_cost
;
522 short (*mem_cost
)[2];
524 for (i
= 0; i
< n_ops
; i
++)
525 insn_allows_mem
[i
] = 0;
527 /* Process each alternative, each time minimizing an operand's cost
528 with the cost for each operand in that alternative. */
529 alternative_mask preferred
= get_preferred_alternatives (insn
);
530 for (alt
= 0; alt
< n_alts
; alt
++)
532 enum reg_class classes
[MAX_RECOG_OPERANDS
];
533 int allows_mem
[MAX_RECOG_OPERANDS
];
534 enum reg_class rclass
;
536 int alt_cost
= 0, op_cost_add
;
538 if (!TEST_BIT (preferred
, alt
))
540 for (i
= 0; i
< recog_data
.n_operands
; i
++)
541 constraints
[i
] = skip_alternative (constraints
[i
]);
546 for (i
= 0; i
< n_ops
; i
++)
549 const char *p
= constraints
[i
];
551 machine_mode mode
= modes
[i
];
555 /* Initially show we know nothing about the register class. */
556 classes
[i
] = NO_REGS
;
559 /* If this operand has no constraints at all, we can
560 conclude nothing about it since anything is valid. */
563 if (REG_P (op
) && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
564 memset (this_op_costs
[i
], 0, struct_costs_size
);
568 /* If this alternative is only relevant when this operand
569 matches a previous operand, we do different things
570 depending on whether this operand is a allocno-reg or not.
571 We must process any modifiers for the operand before we
572 can make this test. */
573 while (*p
== '%' || *p
== '=' || *p
== '+' || *p
== '&')
576 if (p
[0] >= '0' && p
[0] <= '0' + i
&& (p
[1] == ',' || p
[1] == 0))
578 /* Copy class and whether memory is allowed from the
579 matching alternative. Then perform any needed cost
580 computations and/or adjustments. */
582 classes
[i
] = classes
[j
];
583 allows_mem
[i
] = allows_mem
[j
];
585 insn_allows_mem
[i
] = 1;
587 if (! REG_P (op
) || REGNO (op
) < FIRST_PSEUDO_REGISTER
)
589 /* If this matches the other operand, we have no
590 added cost and we win. */
591 if (rtx_equal_p (ops
[j
], op
))
593 /* If we can put the other operand into a register,
594 add to the cost of this alternative the cost to
595 copy this operand to the register used for the
597 else if (classes
[j
] != NO_REGS
)
599 alt_cost
+= copy_cost (op
, mode
, classes
[j
], 1, NULL
);
603 else if (! REG_P (ops
[j
])
604 || REGNO (ops
[j
]) < FIRST_PSEUDO_REGISTER
)
606 /* This op is an allocno but the one it matches is
609 /* If we can't put the other operand into a
610 register, this alternative can't be used. */
612 if (classes
[j
] == NO_REGS
)
614 /* Otherwise, add to the cost of this alternative
615 the cost to copy the other operand to the hard
616 register used for this operand. */
618 alt_cost
+= copy_cost (ops
[j
], mode
, classes
[j
], 1, NULL
);
622 /* The costs of this operand are not the same as the
623 other operand since move costs are not symmetric.
624 Moreover, if we cannot tie them, this alternative
625 needs to do a copy, which is one insn. */
626 struct costs
*pp
= this_op_costs
[i
];
627 int *pp_costs
= pp
->cost
;
628 cost_classes_t cost_classes_ptr
629 = regno_cost_classes
[REGNO (op
)];
630 enum reg_class
*cost_classes
= cost_classes_ptr
->classes
;
631 bool in_p
= recog_data
.operand_type
[i
] != OP_OUT
;
632 bool out_p
= recog_data
.operand_type
[i
] != OP_IN
;
633 enum reg_class op_class
= classes
[i
];
635 ira_init_register_move_cost_if_necessary (mode
);
639 if (op_class
== NO_REGS
)
641 mem_cost
= ira_memory_move_cost
[mode
];
642 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
644 rclass
= cost_classes
[k
];
645 pp_costs
[k
] = mem_cost
[rclass
][0] * frequency
;
650 move_out_cost
= ira_may_move_out_cost
[mode
];
651 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
653 rclass
= cost_classes
[k
];
655 = move_out_cost
[op_class
][rclass
] * frequency
;
662 if (op_class
== NO_REGS
)
664 mem_cost
= ira_memory_move_cost
[mode
];
665 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
667 rclass
= cost_classes
[k
];
668 pp_costs
[k
] = mem_cost
[rclass
][1] * frequency
;
673 move_in_cost
= ira_may_move_in_cost
[mode
];
674 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
676 rclass
= cost_classes
[k
];
678 = move_in_cost
[rclass
][op_class
] * frequency
;
684 if (op_class
== NO_REGS
)
686 mem_cost
= ira_memory_move_cost
[mode
];
687 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
689 rclass
= cost_classes
[k
];
690 pp_costs
[k
] = ((mem_cost
[rclass
][0]
691 + mem_cost
[rclass
][1])
697 move_in_cost
= ira_may_move_in_cost
[mode
];
698 move_out_cost
= ira_may_move_out_cost
[mode
];
699 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
701 rclass
= cost_classes
[k
];
702 pp_costs
[k
] = ((move_in_cost
[rclass
][op_class
]
703 + move_out_cost
[op_class
][rclass
])
709 /* If the alternative actually allows memory, make
710 things a bit cheaper since we won't need an extra
713 = ((out_p
? ira_memory_move_cost
[mode
][op_class
][0] : 0)
714 + (in_p
? ira_memory_move_cost
[mode
][op_class
][1] : 0)
715 - allows_mem
[i
]) * frequency
;
717 /* If we have assigned a class to this allocno in
718 our first pass, add a cost to this alternative
719 corresponding to what we would add if this
720 allocno were not in the appropriate class. */
723 enum reg_class pref_class
= pref
[COST_INDEX (REGNO (op
))];
725 if (pref_class
== NO_REGS
)
728 ? ira_memory_move_cost
[mode
][op_class
][0] : 0)
730 ? ira_memory_move_cost
[mode
][op_class
][1]
732 else if (ira_reg_class_intersect
733 [pref_class
][op_class
] == NO_REGS
)
735 += ira_register_move_cost
[mode
][pref_class
][op_class
];
737 if (REGNO (ops
[i
]) != REGNO (ops
[j
])
738 && ! find_reg_note (insn
, REG_DEAD
, op
))
741 /* This is in place of ordinary cost computation for
742 this operand, so skip to the end of the
743 alternative (should be just one character). */
744 while (*p
&& *p
++ != ',')
752 /* Scan all the constraint letters. See if the operand
753 matches any of the constraints. Collect the valid
754 register classes and see if this operand accepts
761 /* Ignore the next letter for this pass. */
772 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))))
774 insn_allows_mem
[i
] = allows_mem
[i
] = 1;
775 classes
[i
] = ira_reg_class_subunion
[classes
[i
]][GENERAL_REGS
];
779 enum constraint_num cn
= lookup_constraint (p
);
781 switch (get_constraint_type (cn
))
784 cl
= reg_class_for_constraint (cn
);
786 classes
[i
] = ira_reg_class_subunion
[classes
[i
]][cl
];
791 && insn_const_int_ok_for_constraint (INTVAL (op
), cn
))
796 /* Every MEM can be reloaded to fit. */
797 insn_allows_mem
[i
] = allows_mem
[i
] = 1;
803 /* Every address can be reloaded to fit. */
805 if (address_operand (op
, GET_MODE (op
))
806 || constraint_satisfied_p (op
, cn
))
808 /* We know this operand is an address, so we
809 want it to be allocated to a hard register
810 that can be the base of an address,
811 i.e. BASE_REG_CLASS. */
813 = ira_reg_class_subunion
[classes
[i
]]
814 [base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
819 if (constraint_satisfied_p (op
, cn
))
825 p
+= CONSTRAINT_LEN (c
, p
);
832 /* How we account for this operand now depends on whether it
833 is a pseudo register or not. If it is, we first check if
834 any register classes are valid. If not, we ignore this
835 alternative, since we want to assume that all allocnos get
836 allocated for register preferencing. If some register
837 class is valid, compute the costs of moving the allocno
839 if (REG_P (op
) && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
841 if (classes
[i
] == NO_REGS
&& ! allows_mem
[i
])
843 /* We must always fail if the operand is a REG, but
844 we did not find a suitable class and memory is
847 Otherwise we may perform an uninitialized read
848 from this_op_costs after the `continue' statement
854 unsigned int regno
= REGNO (op
);
855 struct costs
*pp
= this_op_costs
[i
];
856 int *pp_costs
= pp
->cost
;
857 cost_classes_t cost_classes_ptr
= regno_cost_classes
[regno
];
858 enum reg_class
*cost_classes
= cost_classes_ptr
->classes
;
859 bool in_p
= recog_data
.operand_type
[i
] != OP_OUT
;
860 bool out_p
= recog_data
.operand_type
[i
] != OP_IN
;
861 enum reg_class op_class
= classes
[i
];
863 ira_init_register_move_cost_if_necessary (mode
);
867 if (op_class
== NO_REGS
)
869 mem_cost
= ira_memory_move_cost
[mode
];
870 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
872 rclass
= cost_classes
[k
];
873 pp_costs
[k
] = mem_cost
[rclass
][0] * frequency
;
878 move_out_cost
= ira_may_move_out_cost
[mode
];
879 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
881 rclass
= cost_classes
[k
];
883 = move_out_cost
[op_class
][rclass
] * frequency
;
890 if (op_class
== NO_REGS
)
892 mem_cost
= ira_memory_move_cost
[mode
];
893 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
895 rclass
= cost_classes
[k
];
896 pp_costs
[k
] = mem_cost
[rclass
][1] * frequency
;
901 move_in_cost
= ira_may_move_in_cost
[mode
];
902 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
904 rclass
= cost_classes
[k
];
906 = move_in_cost
[rclass
][op_class
] * frequency
;
912 if (op_class
== NO_REGS
)
914 mem_cost
= ira_memory_move_cost
[mode
];
915 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
917 rclass
= cost_classes
[k
];
918 pp_costs
[k
] = ((mem_cost
[rclass
][0]
919 + mem_cost
[rclass
][1])
925 move_in_cost
= ira_may_move_in_cost
[mode
];
926 move_out_cost
= ira_may_move_out_cost
[mode
];
927 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
929 rclass
= cost_classes
[k
];
930 pp_costs
[k
] = ((move_in_cost
[rclass
][op_class
]
931 + move_out_cost
[op_class
][rclass
])
937 if (op_class
== NO_REGS
)
938 /* Although we don't need insn to reload from
939 memory, still accessing memory is usually more
940 expensive than a register. */
941 pp
->mem_cost
= frequency
;
943 /* If the alternative actually allows memory, make
944 things a bit cheaper since we won't need an
945 extra insn to load it. */
947 = ((out_p
? ira_memory_move_cost
[mode
][op_class
][0] : 0)
948 + (in_p
? ira_memory_move_cost
[mode
][op_class
][1] : 0)
949 - allows_mem
[i
]) * frequency
;
950 /* If we have assigned a class to this allocno in
951 our first pass, add a cost to this alternative
952 corresponding to what we would add if this
953 allocno were not in the appropriate class. */
956 enum reg_class pref_class
= pref
[COST_INDEX (REGNO (op
))];
958 if (pref_class
== NO_REGS
)
960 if (op_class
!= NO_REGS
)
963 ? ira_memory_move_cost
[mode
][op_class
][0]
966 ? ira_memory_move_cost
[mode
][op_class
][1]
969 else if (op_class
== NO_REGS
)
972 ? ira_memory_move_cost
[mode
][pref_class
][1]
975 ? ira_memory_move_cost
[mode
][pref_class
][0]
977 else if (ira_reg_class_intersect
[pref_class
][op_class
]
979 alt_cost
+= (ira_register_move_cost
980 [mode
][pref_class
][op_class
]);
985 /* Otherwise, if this alternative wins, either because we
986 have already determined that or if we have a hard
987 register of the proper class, there is no cost for this
989 else if (win
|| (REG_P (op
)
990 && reg_fits_class_p (op
, classes
[i
],
994 /* If registers are valid, the cost of this alternative
995 includes copying the object to and/or from a
997 else if (classes
[i
] != NO_REGS
)
999 if (recog_data
.operand_type
[i
] != OP_OUT
)
1000 alt_cost
+= copy_cost (op
, mode
, classes
[i
], 1, NULL
);
1002 if (recog_data
.operand_type
[i
] != OP_IN
)
1003 alt_cost
+= copy_cost (op
, mode
, classes
[i
], 0, NULL
);
1005 /* The only other way this alternative can be used is if
1006 this is a constant that could be placed into memory. */
1007 else if (CONSTANT_P (op
) && (allows_addr
|| allows_mem
[i
]))
1008 alt_cost
+= ira_memory_move_cost
[mode
][classes
[i
]][1];
1016 op_cost_add
= alt_cost
* frequency
;
1017 /* Finally, update the costs with the information we've
1018 calculated about this alternative. */
1019 for (i
= 0; i
< n_ops
; i
++)
1020 if (REG_P (ops
[i
]) && REGNO (ops
[i
]) >= FIRST_PSEUDO_REGISTER
)
1022 struct costs
*pp
= op_costs
[i
], *qq
= this_op_costs
[i
];
1023 int *pp_costs
= pp
->cost
, *qq_costs
= qq
->cost
;
1024 int scale
= 1 + (recog_data
.operand_type
[i
] == OP_INOUT
);
1025 cost_classes_t cost_classes_ptr
1026 = regno_cost_classes
[REGNO (ops
[i
])];
1028 pp
->mem_cost
= MIN (pp
->mem_cost
,
1029 (qq
->mem_cost
+ op_cost_add
) * scale
);
1031 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
1033 = MIN (pp_costs
[k
], (qq_costs
[k
] + op_cost_add
) * scale
);
1038 for (i
= 0; i
< n_ops
; i
++)
1043 if (! REG_P (op
) || REGNO (op
) < FIRST_PSEUDO_REGISTER
)
1045 a
= ira_curr_regno_allocno_map
[REGNO (op
)];
1046 if (! ALLOCNO_BAD_SPILL_P (a
) && insn_allows_mem
[i
] == 0)
1047 ALLOCNO_BAD_SPILL_P (a
) = true;
1054 /* Wrapper around REGNO_OK_FOR_INDEX_P, to allow pseudo registers. */
1056 ok_for_index_p_nonstrict (rtx reg
)
1058 unsigned regno
= REGNO (reg
);
1060 return regno
>= FIRST_PSEUDO_REGISTER
|| REGNO_OK_FOR_INDEX_P (regno
);
1063 /* A version of regno_ok_for_base_p for use here, when all
1064 pseudo-registers should count as OK. Arguments as for
1065 regno_ok_for_base_p. */
1067 ok_for_base_p_nonstrict (rtx reg
, machine_mode mode
, addr_space_t as
,
1068 enum rtx_code outer_code
, enum rtx_code index_code
)
1070 unsigned regno
= REGNO (reg
);
1072 if (regno
>= FIRST_PSEUDO_REGISTER
)
1074 return ok_for_base_p_1 (regno
, mode
, as
, outer_code
, index_code
);
1077 /* Record the pseudo registers we must reload into hard registers in a
1078 subexpression of a memory address, X.
1080 If CONTEXT is 0, we are looking at the base part of an address,
1081 otherwise we are looking at the index part.
1083 MODE and AS are the mode and address space of the memory reference;
1084 OUTER_CODE and INDEX_CODE give the context that the rtx appears in.
1085 These four arguments are passed down to base_reg_class.
1087 SCALE is twice the amount to multiply the cost by (it is twice so
1088 we can represent half-cost adjustments). */
1090 record_address_regs (machine_mode mode
, addr_space_t as
, rtx x
,
1091 int context
, enum rtx_code outer_code
,
1092 enum rtx_code index_code
, int scale
)
1094 enum rtx_code code
= GET_CODE (x
);
1095 enum reg_class rclass
;
1098 rclass
= INDEX_REG_CLASS
;
1100 rclass
= base_reg_class (mode
, as
, outer_code
, index_code
);
1113 /* When we have an address that is a sum, we must determine
1114 whether registers are "base" or "index" regs. If there is a
1115 sum of two registers, we must choose one to be the "base".
1116 Luckily, we can use the REG_POINTER to make a good choice
1117 most of the time. We only need to do this on machines that
1118 can have two registers in an address and where the base and
1119 index register classes are different.
1121 ??? This code used to set REGNO_POINTER_FLAG in some cases,
1122 but that seems bogus since it should only be set when we are
1123 sure the register is being used as a pointer. */
1125 rtx arg0
= XEXP (x
, 0);
1126 rtx arg1
= XEXP (x
, 1);
1127 enum rtx_code code0
= GET_CODE (arg0
);
1128 enum rtx_code code1
= GET_CODE (arg1
);
1130 /* Look inside subregs. */
1131 if (code0
== SUBREG
)
1132 arg0
= SUBREG_REG (arg0
), code0
= GET_CODE (arg0
);
1133 if (code1
== SUBREG
)
1134 arg1
= SUBREG_REG (arg1
), code1
= GET_CODE (arg1
);
1136 /* If this machine only allows one register per address, it
1137 must be in the first operand. */
1138 if (MAX_REGS_PER_ADDRESS
== 1)
1139 record_address_regs (mode
, as
, arg0
, 0, PLUS
, code1
, scale
);
1141 /* If index and base registers are the same on this machine,
1142 just record registers in any non-constant operands. We
1143 assume here, as well as in the tests below, that all
1144 addresses are in canonical form. */
1145 else if (INDEX_REG_CLASS
1146 == base_reg_class (VOIDmode
, as
, PLUS
, SCRATCH
))
1148 record_address_regs (mode
, as
, arg0
, context
, PLUS
, code1
, scale
);
1149 if (! CONSTANT_P (arg1
))
1150 record_address_regs (mode
, as
, arg1
, context
, PLUS
, code0
, scale
);
1153 /* If the second operand is a constant integer, it doesn't
1154 change what class the first operand must be. */
1155 else if (CONST_SCALAR_INT_P (arg1
))
1156 record_address_regs (mode
, as
, arg0
, context
, PLUS
, code1
, scale
);
1157 /* If the second operand is a symbolic constant, the first
1158 operand must be an index register. */
1159 else if (code1
== SYMBOL_REF
|| code1
== CONST
|| code1
== LABEL_REF
)
1160 record_address_regs (mode
, as
, arg0
, 1, PLUS
, code1
, scale
);
1161 /* If both operands are registers but one is already a hard
1162 register of index or reg-base class, give the other the
1163 class that the hard register is not. */
1164 else if (code0
== REG
&& code1
== REG
1165 && REGNO (arg0
) < FIRST_PSEUDO_REGISTER
1166 && (ok_for_base_p_nonstrict (arg0
, mode
, as
, PLUS
, REG
)
1167 || ok_for_index_p_nonstrict (arg0
)))
1168 record_address_regs (mode
, as
, arg1
,
1169 ok_for_base_p_nonstrict (arg0
, mode
, as
,
1172 else if (code0
== REG
&& code1
== REG
1173 && REGNO (arg1
) < FIRST_PSEUDO_REGISTER
1174 && (ok_for_base_p_nonstrict (arg1
, mode
, as
, PLUS
, REG
)
1175 || ok_for_index_p_nonstrict (arg1
)))
1176 record_address_regs (mode
, as
, arg0
,
1177 ok_for_base_p_nonstrict (arg1
, mode
, as
,
1180 /* If one operand is known to be a pointer, it must be the
1181 base with the other operand the index. Likewise if the
1182 other operand is a MULT. */
1183 else if ((code0
== REG
&& REG_POINTER (arg0
)) || code1
== MULT
)
1185 record_address_regs (mode
, as
, arg0
, 0, PLUS
, code1
, scale
);
1186 record_address_regs (mode
, as
, arg1
, 1, PLUS
, code0
, scale
);
1188 else if ((code1
== REG
&& REG_POINTER (arg1
)) || code0
== MULT
)
1190 record_address_regs (mode
, as
, arg0
, 1, PLUS
, code1
, scale
);
1191 record_address_regs (mode
, as
, arg1
, 0, PLUS
, code0
, scale
);
1193 /* Otherwise, count equal chances that each might be a base or
1194 index register. This case should be rare. */
1197 record_address_regs (mode
, as
, arg0
, 0, PLUS
, code1
, scale
/ 2);
1198 record_address_regs (mode
, as
, arg0
, 1, PLUS
, code1
, scale
/ 2);
1199 record_address_regs (mode
, as
, arg1
, 0, PLUS
, code0
, scale
/ 2);
1200 record_address_regs (mode
, as
, arg1
, 1, PLUS
, code0
, scale
/ 2);
1205 /* Double the importance of an allocno that is incremented or
1206 decremented, since it would take two extra insns if it ends
1207 up in the wrong place. */
1210 record_address_regs (mode
, as
, XEXP (x
, 0), 0, code
,
1211 GET_CODE (XEXP (XEXP (x
, 1), 1)), 2 * scale
);
1212 if (REG_P (XEXP (XEXP (x
, 1), 1)))
1213 record_address_regs (mode
, as
, XEXP (XEXP (x
, 1), 1), 1, code
, REG
,
1221 /* Double the importance of an allocno that is incremented or
1222 decremented, since it would take two extra insns if it ends
1223 up in the wrong place. */
1224 record_address_regs (mode
, as
, XEXP (x
, 0), 0, code
, SCRATCH
, 2 * scale
);
1232 int k
, regno
, add_cost
;
1233 cost_classes_t cost_classes_ptr
;
1234 enum reg_class
*cost_classes
;
1235 move_table
*move_in_cost
;
1237 if (REGNO (x
) < FIRST_PSEUDO_REGISTER
)
1242 ALLOCNO_BAD_SPILL_P (ira_curr_regno_allocno_map
[regno
]) = true;
1243 pp
= COSTS (costs
, COST_INDEX (regno
));
1244 add_cost
= (ira_memory_move_cost
[Pmode
][rclass
][1] * scale
) / 2;
1245 if (INT_MAX
- add_cost
< pp
->mem_cost
)
1246 pp
->mem_cost
= INT_MAX
;
1248 pp
->mem_cost
+= add_cost
;
1249 cost_classes_ptr
= regno_cost_classes
[regno
];
1250 cost_classes
= cost_classes_ptr
->classes
;
1251 pp_costs
= pp
->cost
;
1252 ira_init_register_move_cost_if_necessary (Pmode
);
1253 move_in_cost
= ira_may_move_in_cost
[Pmode
];
1254 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
1256 i
= cost_classes
[k
];
1257 add_cost
= (move_in_cost
[i
][rclass
] * scale
) / 2;
1258 if (INT_MAX
- add_cost
< pp_costs
[k
])
1259 pp_costs
[k
] = INT_MAX
;
1261 pp_costs
[k
] += add_cost
;
1268 const char *fmt
= GET_RTX_FORMAT (code
);
1270 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
1272 record_address_regs (mode
, as
, XEXP (x
, i
), context
, code
, SCRATCH
,
1280 /* Calculate the costs of insn operands. */
1282 record_operand_costs (rtx_insn
*insn
, enum reg_class
*pref
)
1284 const char *constraints
[MAX_RECOG_OPERANDS
];
1285 machine_mode modes
[MAX_RECOG_OPERANDS
];
1286 rtx ops
[MAX_RECOG_OPERANDS
];
1290 for (i
= 0; i
< recog_data
.n_operands
; i
++)
1292 constraints
[i
] = recog_data
.constraints
[i
];
1293 modes
[i
] = recog_data
.operand_mode
[i
];
1296 /* If we get here, we are set up to record the costs of all the
1297 operands for this insn. Start by initializing the costs. Then
1298 handle any address registers. Finally record the desired classes
1299 for any allocnos, doing it twice if some pair of operands are
1301 for (i
= 0; i
< recog_data
.n_operands
; i
++)
1303 memcpy (op_costs
[i
], init_cost
, struct_costs_size
);
1305 ops
[i
] = recog_data
.operand
[i
];
1306 if (GET_CODE (recog_data
.operand
[i
]) == SUBREG
)
1307 recog_data
.operand
[i
] = SUBREG_REG (recog_data
.operand
[i
]);
1309 if (MEM_P (recog_data
.operand
[i
]))
1310 record_address_regs (GET_MODE (recog_data
.operand
[i
]),
1311 MEM_ADDR_SPACE (recog_data
.operand
[i
]),
1312 XEXP (recog_data
.operand
[i
], 0),
1313 0, MEM
, SCRATCH
, frequency
* 2);
1314 else if (constraints
[i
][0] == 'p'
1315 || (insn_extra_address_constraint
1316 (lookup_constraint (constraints
[i
]))))
1317 record_address_regs (VOIDmode
, ADDR_SPACE_GENERIC
,
1318 recog_data
.operand
[i
], 0, ADDRESS
, SCRATCH
,
1322 /* Check for commutative in a separate loop so everything will have
1323 been initialized. We must do this even if one operand is a
1324 constant--see addsi3 in m68k.md. */
1325 for (i
= 0; i
< (int) recog_data
.n_operands
- 1; i
++)
1326 if (constraints
[i
][0] == '%')
1328 const char *xconstraints
[MAX_RECOG_OPERANDS
];
1331 /* Handle commutative operands by swapping the constraints.
1332 We assume the modes are the same. */
1333 for (j
= 0; j
< recog_data
.n_operands
; j
++)
1334 xconstraints
[j
] = constraints
[j
];
1336 xconstraints
[i
] = constraints
[i
+1];
1337 xconstraints
[i
+1] = constraints
[i
];
1338 record_reg_classes (recog_data
.n_alternatives
, recog_data
.n_operands
,
1339 recog_data
.operand
, modes
,
1340 xconstraints
, insn
, pref
);
1342 record_reg_classes (recog_data
.n_alternatives
, recog_data
.n_operands
,
1343 recog_data
.operand
, modes
,
1344 constraints
, insn
, pref
);
1346 /* If this insn is a single set copying operand 1 to operand 0 and
1347 one operand is an allocno with the other a hard reg or an allocno
1348 that prefers a hard register that is in its own register class
1349 then we may want to adjust the cost of that register class to -1.
1351 Avoid the adjustment if the source does not die to avoid
1352 stressing of register allocator by preferencing two colliding
1353 registers into single class.
1355 Also avoid the adjustment if a copy between hard registers of the
1356 class is expensive (ten times the cost of a default copy is
1357 considered arbitrarily expensive). This avoids losing when the
1358 preferred class is very expensive as the source of a copy
1360 if ((set
= single_set (insn
)) != NULL_RTX
1361 /* In rare cases the single set insn might have less 2 operands
1362 as the source can be a fixed special reg. */
1363 && recog_data
.n_operands
> 1
1364 && ops
[0] == SET_DEST (set
) && ops
[1] == SET_SRC (set
))
1366 int regno
, other_regno
;
1367 rtx dest
= SET_DEST (set
);
1368 rtx src
= SET_SRC (set
);
1370 dest
= SET_DEST (set
);
1371 src
= SET_SRC (set
);
1372 if (GET_CODE (dest
) == SUBREG
1373 && (GET_MODE_SIZE (GET_MODE (dest
))
1374 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))))
1375 dest
= SUBREG_REG (dest
);
1376 if (GET_CODE (src
) == SUBREG
1377 && (GET_MODE_SIZE (GET_MODE (src
))
1378 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))))
1379 src
= SUBREG_REG (src
);
1380 if (REG_P (src
) && REG_P (dest
)
1381 && find_regno_note (insn
, REG_DEAD
, REGNO (src
))
1382 && (((regno
= REGNO (src
)) >= FIRST_PSEUDO_REGISTER
1383 && (other_regno
= REGNO (dest
)) < FIRST_PSEUDO_REGISTER
)
1384 || ((regno
= REGNO (dest
)) >= FIRST_PSEUDO_REGISTER
1385 && (other_regno
= REGNO (src
)) < FIRST_PSEUDO_REGISTER
)))
1387 machine_mode mode
= GET_MODE (src
);
1388 cost_classes_t cost_classes_ptr
= regno_cost_classes
[regno
];
1389 enum reg_class
*cost_classes
= cost_classes_ptr
->classes
;
1393 i
= regno
== (int) REGNO (src
) ? 1 : 0;
1394 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
1396 rclass
= cost_classes
[k
];
1397 if (TEST_HARD_REG_BIT (reg_class_contents
[rclass
], other_regno
)
1398 && (reg_class_size
[(int) rclass
]
1399 == ira_reg_class_max_nregs
[(int) rclass
][(int) mode
]))
1401 if (reg_class_size
[rclass
] == 1)
1402 op_costs
[i
]->cost
[k
] = -frequency
;
1406 nr
< hard_regno_nregs
[other_regno
][mode
];
1408 if (! TEST_HARD_REG_BIT (reg_class_contents
[rclass
],
1412 if (nr
== hard_regno_nregs
[other_regno
][mode
])
1413 op_costs
[i
]->cost
[k
] = -frequency
;
1423 /* Process one insn INSN. Scan it and record each time it would save
1424 code to put a certain allocnos in a certain class. Return the last
1425 insn processed, so that the scan can be continued from there. */
1427 scan_one_insn (rtx_insn
*insn
)
1429 enum rtx_code pat_code
;
1434 if (!NONDEBUG_INSN_P (insn
))
1437 pat_code
= GET_CODE (PATTERN (insn
));
1438 if (pat_code
== USE
|| pat_code
== CLOBBER
|| pat_code
== ASM_INPUT
)
1441 counted_mem
= false;
1442 set
= single_set (insn
);
1443 extract_insn (insn
);
1445 /* If this insn loads a parameter from its stack slot, then it
1446 represents a savings, rather than a cost, if the parameter is
1447 stored in memory. Record this fact.
1449 Similarly if we're loading other constants from memory (constant
1450 pool, TOC references, small data areas, etc) and this is the only
1451 assignment to the destination pseudo.
1453 Don't do this if SET_SRC (set) isn't a general operand, if it is
1454 a memory requiring special instructions to load it, decreasing
1455 mem_cost might result in it being loaded using the specialized
1456 instruction into a register, then stored into stack and loaded
1457 again from the stack. See PR52208.
1459 Don't do this if SET_SRC (set) has side effect. See PR56124. */
1460 if (set
!= 0 && REG_P (SET_DEST (set
)) && MEM_P (SET_SRC (set
))
1461 && (note
= find_reg_note (insn
, REG_EQUIV
, NULL_RTX
)) != NULL_RTX
1462 && ((MEM_P (XEXP (note
, 0))
1463 && !side_effects_p (SET_SRC (set
)))
1464 || (CONSTANT_P (XEXP (note
, 0))
1465 && targetm
.legitimate_constant_p (GET_MODE (SET_DEST (set
)),
1467 && REG_N_SETS (REGNO (SET_DEST (set
))) == 1))
1468 && general_operand (SET_SRC (set
), GET_MODE (SET_SRC (set
))))
1470 enum reg_class cl
= GENERAL_REGS
;
1471 rtx reg
= SET_DEST (set
);
1472 int num
= COST_INDEX (REGNO (reg
));
1474 COSTS (costs
, num
)->mem_cost
1475 -= ira_memory_move_cost
[GET_MODE (reg
)][cl
][1] * frequency
;
1476 record_address_regs (GET_MODE (SET_SRC (set
)),
1477 MEM_ADDR_SPACE (SET_SRC (set
)),
1478 XEXP (SET_SRC (set
), 0), 0, MEM
, SCRATCH
,
1483 record_operand_costs (insn
, pref
);
1485 /* Now add the cost for each operand to the total costs for its
1487 for (i
= 0; i
< recog_data
.n_operands
; i
++)
1488 if (REG_P (recog_data
.operand
[i
])
1489 && REGNO (recog_data
.operand
[i
]) >= FIRST_PSEUDO_REGISTER
)
1491 int regno
= REGNO (recog_data
.operand
[i
]);
1492 struct costs
*p
= COSTS (costs
, COST_INDEX (regno
));
1493 struct costs
*q
= op_costs
[i
];
1494 int *p_costs
= p
->cost
, *q_costs
= q
->cost
;
1495 cost_classes_t cost_classes_ptr
= regno_cost_classes
[regno
];
1498 /* If the already accounted for the memory "cost" above, don't
1502 add_cost
= q
->mem_cost
;
1503 if (add_cost
> 0 && INT_MAX
- add_cost
< p
->mem_cost
)
1504 p
->mem_cost
= INT_MAX
;
1506 p
->mem_cost
+= add_cost
;
1508 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
1510 add_cost
= q_costs
[k
];
1511 if (add_cost
> 0 && INT_MAX
- add_cost
< p_costs
[k
])
1512 p_costs
[k
] = INT_MAX
;
1514 p_costs
[k
] += add_cost
;
1523 /* Print allocnos costs to file F. */
1525 print_allocno_costs (FILE *f
)
1529 ira_allocno_iterator ai
;
1531 ira_assert (allocno_p
);
1533 FOR_EACH_ALLOCNO (a
, ai
)
1537 int regno
= ALLOCNO_REGNO (a
);
1538 cost_classes_t cost_classes_ptr
= regno_cost_classes
[regno
];
1539 enum reg_class
*cost_classes
= cost_classes_ptr
->classes
;
1541 i
= ALLOCNO_NUM (a
);
1542 fprintf (f
, " a%d(r%d,", i
, regno
);
1543 if ((bb
= ALLOCNO_LOOP_TREE_NODE (a
)->bb
) != NULL
)
1544 fprintf (f
, "b%d", bb
->index
);
1546 fprintf (f
, "l%d", ALLOCNO_LOOP_TREE_NODE (a
)->loop_num
);
1547 fprintf (f
, ") costs:");
1548 for (k
= 0; k
< cost_classes_ptr
->num
; k
++)
1550 rclass
= cost_classes
[k
];
1551 fprintf (f
, " %s:%d", reg_class_names
[rclass
],
1552 COSTS (costs
, i
)->cost
[k
]);
1553 if (flag_ira_region
== IRA_REGION_ALL
1554 || flag_ira_region
== IRA_REGION_MIXED
)
1555 fprintf (f
, ",%d", COSTS (total_allocno_costs
, i
)->cost
[k
]);
1557 fprintf (f
, " MEM:%i", COSTS (costs
, i
)->mem_cost
);
1558 if (flag_ira_region
== IRA_REGION_ALL
1559 || flag_ira_region
== IRA_REGION_MIXED
)
1560 fprintf (f
, ",%d", COSTS (total_allocno_costs
, i
)->mem_cost
);
1565 /* Print pseudo costs to file F. */
1567 print_pseudo_costs (FILE *f
)
1571 cost_classes_t cost_classes_ptr
;
1572 enum reg_class
*cost_classes
;
1574 ira_assert (! allocno_p
);
1576 for (regno
= max_reg_num () - 1; regno
>= FIRST_PSEUDO_REGISTER
; regno
--)
1578 if (REG_N_REFS (regno
) <= 0)
1580 cost_classes_ptr
= regno_cost_classes
[regno
];
1581 cost_classes
= cost_classes_ptr
->classes
;
1582 fprintf (f
, " r%d costs:", regno
);
1583 for (k
= 0; k
< cost_classes_ptr
->num
; k
++)
1585 rclass
= cost_classes
[k
];
1586 fprintf (f
, " %s:%d", reg_class_names
[rclass
],
1587 COSTS (costs
, regno
)->cost
[k
]);
1589 fprintf (f
, " MEM:%i\n", COSTS (costs
, regno
)->mem_cost
);
1593 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1596 process_bb_for_costs (basic_block bb
)
1600 frequency
= REG_FREQ_FROM_BB (bb
);
1603 FOR_BB_INSNS (bb
, insn
)
1604 insn
= scan_one_insn (insn
);
1607 /* Traverse the BB represented by LOOP_TREE_NODE to update the allocno
1610 process_bb_node_for_costs (ira_loop_tree_node_t loop_tree_node
)
1614 bb
= loop_tree_node
->bb
;
1616 process_bb_for_costs (bb
);
1619 /* Find costs of register classes and memory for allocnos or pseudos
1620 and their best costs. Set up preferred, alternative and allocno
1621 classes for pseudos. */
1623 find_costs_and_classes (FILE *dump_file
)
1625 int i
, k
, start
, max_cost_classes_num
;
1628 enum reg_class
*regno_best_class
;
1632 = (enum reg_class
*) ira_allocate (max_reg_num ()
1633 * sizeof (enum reg_class
));
1634 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
1635 regno_best_class
[i
] = NO_REGS
;
1636 if (!resize_reg_info () && allocno_p
1637 && pseudo_classes_defined_p
&& flag_expensive_optimizations
)
1640 ira_allocno_iterator ai
;
1643 max_cost_classes_num
= 1;
1644 FOR_EACH_ALLOCNO (a
, ai
)
1646 pref
[ALLOCNO_NUM (a
)] = reg_preferred_class (ALLOCNO_REGNO (a
));
1647 setup_regno_cost_classes_by_aclass
1648 (ALLOCNO_REGNO (a
), pref
[ALLOCNO_NUM (a
)]);
1649 max_cost_classes_num
1650 = MAX (max_cost_classes_num
,
1651 regno_cost_classes
[ALLOCNO_REGNO (a
)]->num
);
1658 max_cost_classes_num
= ira_important_classes_num
;
1659 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
1660 if (regno_reg_rtx
[i
] != NULL_RTX
)
1661 setup_regno_cost_classes_by_mode (i
, PSEUDO_REGNO_MODE (i
));
1663 setup_regno_cost_classes_by_aclass (i
, ALL_REGS
);
1667 /* Clear the flag for the next compiled function. */
1668 pseudo_classes_defined_p
= false;
1669 /* Normally we scan the insns once and determine the best class to
1670 use for each allocno. However, if -fexpensive-optimizations are
1671 on, we do so twice, the second time using the tentative best
1672 classes to guide the selection. */
1673 for (pass
= start
; pass
<= flag_expensive_optimizations
; pass
++)
1675 if ((!allocno_p
|| internal_flag_ira_verbose
> 0) && dump_file
)
1677 "\nPass %i for finding pseudo/allocno costs\n\n", pass
);
1681 max_cost_classes_num
= 1;
1682 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
1684 setup_regno_cost_classes_by_aclass (i
, regno_best_class
[i
]);
1685 max_cost_classes_num
1686 = MAX (max_cost_classes_num
, regno_cost_classes
[i
]->num
);
1691 = sizeof (struct costs
) + sizeof (int) * (max_cost_classes_num
- 1);
1692 /* Zero out our accumulation of the cost of each class for each
1694 memset (costs
, 0, cost_elements_num
* struct_costs_size
);
1698 /* Scan the instructions and record each time it would save code
1699 to put a certain allocno in a certain class. */
1700 ira_traverse_loop_tree (true, ira_loop_tree_root
,
1701 process_bb_node_for_costs
, NULL
);
1703 memcpy (total_allocno_costs
, costs
,
1704 max_struct_costs_size
* ira_allocnos_num
);
1710 FOR_EACH_BB_FN (bb
, cfun
)
1711 process_bb_for_costs (bb
);
1717 /* Now for each allocno look at how desirable each class is and
1718 find which class is preferred. */
1719 for (i
= max_reg_num () - 1; i
>= FIRST_PSEUDO_REGISTER
; i
--)
1721 ira_allocno_t a
, parent_a
;
1722 int rclass
, a_num
, parent_a_num
, add_cost
;
1723 ira_loop_tree_node_t parent
;
1724 int best_cost
, allocno_cost
;
1725 enum reg_class best
, alt_class
;
1726 cost_classes_t cost_classes_ptr
= regno_cost_classes
[i
];
1727 enum reg_class
*cost_classes
= cost_classes_ptr
->classes
;
1728 int *i_costs
= temp_costs
->cost
;
1730 int equiv_savings
= regno_equiv_gains
[i
];
1734 if (regno_reg_rtx
[i
] == NULL_RTX
)
1736 memcpy (temp_costs
, COSTS (costs
, i
), struct_costs_size
);
1737 i_mem_cost
= temp_costs
->mem_cost
;
1741 if (ira_regno_allocno_map
[i
] == NULL
)
1743 memset (temp_costs
, 0, struct_costs_size
);
1745 /* Find cost of all allocnos with the same regno. */
1746 for (a
= ira_regno_allocno_map
[i
];
1748 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
1750 int *a_costs
, *p_costs
;
1752 a_num
= ALLOCNO_NUM (a
);
1753 if ((flag_ira_region
== IRA_REGION_ALL
1754 || flag_ira_region
== IRA_REGION_MIXED
)
1755 && (parent
= ALLOCNO_LOOP_TREE_NODE (a
)->parent
) != NULL
1756 && (parent_a
= parent
->regno_allocno_map
[i
]) != NULL
1757 /* There are no caps yet. */
1758 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE
1759 (a
)->border_allocnos
,
1762 /* Propagate costs to upper levels in the region
1764 parent_a_num
= ALLOCNO_NUM (parent_a
);
1765 a_costs
= COSTS (total_allocno_costs
, a_num
)->cost
;
1766 p_costs
= COSTS (total_allocno_costs
, parent_a_num
)->cost
;
1767 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
1769 add_cost
= a_costs
[k
];
1770 if (add_cost
> 0 && INT_MAX
- add_cost
< p_costs
[k
])
1771 p_costs
[k
] = INT_MAX
;
1773 p_costs
[k
] += add_cost
;
1775 add_cost
= COSTS (total_allocno_costs
, a_num
)->mem_cost
;
1777 && (INT_MAX
- add_cost
1778 < COSTS (total_allocno_costs
,
1779 parent_a_num
)->mem_cost
))
1780 COSTS (total_allocno_costs
, parent_a_num
)->mem_cost
1783 COSTS (total_allocno_costs
, parent_a_num
)->mem_cost
1786 if (i
>= first_moveable_pseudo
&& i
< last_moveable_pseudo
)
1787 COSTS (total_allocno_costs
, parent_a_num
)->mem_cost
= 0;
1789 a_costs
= COSTS (costs
, a_num
)->cost
;
1790 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
1792 add_cost
= a_costs
[k
];
1793 if (add_cost
> 0 && INT_MAX
- add_cost
< i_costs
[k
])
1794 i_costs
[k
] = INT_MAX
;
1796 i_costs
[k
] += add_cost
;
1798 add_cost
= COSTS (costs
, a_num
)->mem_cost
;
1799 if (add_cost
> 0 && INT_MAX
- add_cost
< i_mem_cost
)
1800 i_mem_cost
= INT_MAX
;
1802 i_mem_cost
+= add_cost
;
1805 if (i
>= first_moveable_pseudo
&& i
< last_moveable_pseudo
)
1807 else if (equiv_savings
< 0)
1808 i_mem_cost
= -equiv_savings
;
1809 else if (equiv_savings
> 0)
1812 for (k
= cost_classes_ptr
->num
- 1; k
>= 0; k
--)
1813 i_costs
[k
] += equiv_savings
;
1816 best_cost
= (1 << (HOST_BITS_PER_INT
- 2)) - 1;
1818 alt_class
= NO_REGS
;
1819 /* Find best common class for all allocnos with the same
1821 for (k
= 0; k
< cost_classes_ptr
->num
; k
++)
1823 rclass
= cost_classes
[k
];
1824 if (i_costs
[k
] < best_cost
)
1826 best_cost
= i_costs
[k
];
1827 best
= (enum reg_class
) rclass
;
1829 else if (i_costs
[k
] == best_cost
)
1830 best
= ira_reg_class_subunion
[best
][rclass
];
1831 if (pass
== flag_expensive_optimizations
1832 /* We still prefer registers to memory even at this
1833 stage if their costs are the same. We will make
1834 a final decision during assigning hard registers
1835 when we have all info including more accurate
1836 costs which might be affected by assigning hard
1837 registers to other pseudos because the pseudos
1838 involved in moves can be coalesced. */
1839 && i_costs
[k
] <= i_mem_cost
1840 && (reg_class_size
[reg_class_subunion
[alt_class
][rclass
]]
1841 > reg_class_size
[alt_class
]))
1842 alt_class
= reg_class_subunion
[alt_class
][rclass
];
1844 alt_class
= ira_allocno_class_translate
[alt_class
];
1845 if (best_cost
> i_mem_cost
)
1846 regno_aclass
[i
] = NO_REGS
;
1847 else if (!optimize
&& !targetm
.class_likely_spilled_p (best
))
1848 /* Registers in the alternative class are likely to need
1849 longer or slower sequences than registers in the best class.
1850 When optimizing we make some effort to use the best class
1851 over the alternative class where possible, but at -O0 we
1852 effectively give the alternative class equal weight.
1853 We then run the risk of using slower alternative registers
1854 when plenty of registers from the best class are still free.
1855 This is especially true because live ranges tend to be very
1856 short in -O0 code and so register pressure tends to be low.
1858 Avoid that by ignoring the alternative class if the best
1859 class has plenty of registers. */
1860 regno_aclass
[i
] = best
;
1863 /* Make the common class the biggest class of best and
1866 = ira_reg_class_superunion
[best
][alt_class
];
1867 ira_assert (regno_aclass
[i
] != NO_REGS
1868 && ira_reg_allocno_class_p
[regno_aclass
[i
]]);
1870 if (pass
== flag_expensive_optimizations
)
1872 if (best_cost
> i_mem_cost
)
1873 best
= alt_class
= NO_REGS
;
1874 else if (best
== alt_class
)
1875 alt_class
= NO_REGS
;
1876 setup_reg_classes (i
, best
, alt_class
, regno_aclass
[i
]);
1877 if ((!allocno_p
|| internal_flag_ira_verbose
> 2)
1878 && dump_file
!= NULL
)
1880 " r%d: preferred %s, alternative %s, allocno %s\n",
1881 i
, reg_class_names
[best
], reg_class_names
[alt_class
],
1882 reg_class_names
[regno_aclass
[i
]]);
1884 regno_best_class
[i
] = best
;
1887 pref
[i
] = best_cost
> i_mem_cost
? NO_REGS
: best
;
1890 for (a
= ira_regno_allocno_map
[i
];
1892 a
= ALLOCNO_NEXT_REGNO_ALLOCNO (a
))
1894 enum reg_class aclass
= regno_aclass
[i
];
1895 int a_num
= ALLOCNO_NUM (a
);
1896 int *total_a_costs
= COSTS (total_allocno_costs
, a_num
)->cost
;
1897 int *a_costs
= COSTS (costs
, a_num
)->cost
;
1899 if (aclass
== NO_REGS
)
1903 /* Finding best class which is subset of the common
1905 best_cost
= (1 << (HOST_BITS_PER_INT
- 2)) - 1;
1906 allocno_cost
= best_cost
;
1908 for (k
= 0; k
< cost_classes_ptr
->num
; k
++)
1910 rclass
= cost_classes
[k
];
1911 if (! ira_class_subset_p
[rclass
][aclass
])
1913 if (total_a_costs
[k
] < best_cost
)
1915 best_cost
= total_a_costs
[k
];
1916 allocno_cost
= a_costs
[k
];
1917 best
= (enum reg_class
) rclass
;
1919 else if (total_a_costs
[k
] == best_cost
)
1921 best
= ira_reg_class_subunion
[best
][rclass
];
1922 allocno_cost
= MAX (allocno_cost
, a_costs
[k
]);
1925 ALLOCNO_CLASS_COST (a
) = allocno_cost
;
1927 if (internal_flag_ira_verbose
> 2 && dump_file
!= NULL
1928 && (pass
== 0 || pref
[a_num
] != best
))
1930 fprintf (dump_file
, " a%d (r%d,", a_num
, i
);
1931 if ((bb
= ALLOCNO_LOOP_TREE_NODE (a
)->bb
) != NULL
)
1932 fprintf (dump_file
, "b%d", bb
->index
);
1934 fprintf (dump_file
, "l%d",
1935 ALLOCNO_LOOP_TREE_NODE (a
)->loop_num
);
1936 fprintf (dump_file
, ") best %s, allocno %s\n",
1937 reg_class_names
[best
],
1938 reg_class_names
[aclass
]);
1941 if (pass
== flag_expensive_optimizations
&& best
!= aclass
1942 && ira_class_hard_regs_num
[best
] > 0
1943 && (ira_reg_class_max_nregs
[best
][ALLOCNO_MODE (a
)]
1944 >= ira_class_hard_regs_num
[best
]))
1946 int ind
= cost_classes_ptr
->index
[aclass
];
1948 ira_assert (ind
>= 0);
1949 ira_init_register_move_cost_if_necessary (ALLOCNO_MODE (a
));
1950 ira_add_allocno_pref (a
, ira_class_hard_regs
[best
][0],
1951 (a_costs
[ind
] - ALLOCNO_CLASS_COST (a
))
1952 / (ira_register_move_cost
1953 [ALLOCNO_MODE (a
)][best
][aclass
]));
1954 for (k
= 0; k
< cost_classes_ptr
->num
; k
++)
1955 if (ira_class_subset_p
[cost_classes
[k
]][best
])
1956 a_costs
[k
] = a_costs
[ind
];
1961 if (internal_flag_ira_verbose
> 4 && dump_file
)
1964 print_allocno_costs (dump_file
);
1966 print_pseudo_costs (dump_file
);
1967 fprintf (dump_file
,"\n");
1970 ira_free (regno_best_class
);
1975 /* Process moves involving hard regs to modify allocno hard register
1976 costs. We can do this only after determining allocno class. If a
1977 hard register forms a register class, then moves with the hard
1978 register are already taken into account in class costs for the
1981 process_bb_node_for_hard_reg_moves (ira_loop_tree_node_t loop_tree_node
)
1983 int i
, freq
, src_regno
, dst_regno
, hard_regno
, a_regno
;
1985 ira_allocno_t a
, curr_a
;
1986 ira_loop_tree_node_t curr_loop_tree_node
;
1987 enum reg_class rclass
;
1992 bb
= loop_tree_node
->bb
;
1995 freq
= REG_FREQ_FROM_BB (bb
);
1998 FOR_BB_INSNS (bb
, insn
)
2000 if (!NONDEBUG_INSN_P (insn
))
2002 set
= single_set (insn
);
2003 if (set
== NULL_RTX
)
2005 dst
= SET_DEST (set
);
2006 src
= SET_SRC (set
);
2007 if (! REG_P (dst
) || ! REG_P (src
))
2009 dst_regno
= REGNO (dst
);
2010 src_regno
= REGNO (src
);
2011 if (dst_regno
>= FIRST_PSEUDO_REGISTER
2012 && src_regno
< FIRST_PSEUDO_REGISTER
)
2014 hard_regno
= src_regno
;
2015 a
= ira_curr_regno_allocno_map
[dst_regno
];
2018 else if (src_regno
>= FIRST_PSEUDO_REGISTER
2019 && dst_regno
< FIRST_PSEUDO_REGISTER
)
2021 hard_regno
= dst_regno
;
2022 a
= ira_curr_regno_allocno_map
[src_regno
];
2027 rclass
= ALLOCNO_CLASS (a
);
2028 if (! TEST_HARD_REG_BIT (reg_class_contents
[rclass
], hard_regno
))
2030 i
= ira_class_hard_reg_index
[rclass
][hard_regno
];
2033 a_regno
= ALLOCNO_REGNO (a
);
2034 for (curr_loop_tree_node
= ALLOCNO_LOOP_TREE_NODE (a
);
2035 curr_loop_tree_node
!= NULL
;
2036 curr_loop_tree_node
= curr_loop_tree_node
->parent
)
2037 if ((curr_a
= curr_loop_tree_node
->regno_allocno_map
[a_regno
]) != NULL
)
2038 ira_add_allocno_pref (curr_a
, hard_regno
, freq
);
2041 enum reg_class hard_reg_class
;
2044 mode
= ALLOCNO_MODE (a
);
2045 hard_reg_class
= REGNO_REG_CLASS (hard_regno
);
2046 ira_init_register_move_cost_if_necessary (mode
);
2047 cost
= (to_p
? ira_register_move_cost
[mode
][hard_reg_class
][rclass
]
2048 : ira_register_move_cost
[mode
][rclass
][hard_reg_class
]) * freq
;
2049 ira_allocate_and_set_costs (&ALLOCNO_HARD_REG_COSTS (a
), rclass
,
2050 ALLOCNO_CLASS_COST (a
));
2051 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a
),
2053 ALLOCNO_HARD_REG_COSTS (a
)[i
] -= cost
;
2054 ALLOCNO_CONFLICT_HARD_REG_COSTS (a
)[i
] -= cost
;
2055 ALLOCNO_CLASS_COST (a
) = MIN (ALLOCNO_CLASS_COST (a
),
2056 ALLOCNO_HARD_REG_COSTS (a
)[i
]);
2061 /* After we find hard register and memory costs for allocnos, define
2062 its class and modify hard register cost because insns moving
2063 allocno to/from hard registers. */
2065 setup_allocno_class_and_costs (void)
2067 int i
, j
, n
, regno
, hard_regno
, num
;
2069 enum reg_class aclass
, rclass
;
2071 ira_allocno_iterator ai
;
2072 cost_classes_t cost_classes_ptr
;
2074 ira_assert (allocno_p
);
2075 FOR_EACH_ALLOCNO (a
, ai
)
2077 i
= ALLOCNO_NUM (a
);
2078 regno
= ALLOCNO_REGNO (a
);
2079 aclass
= regno_aclass
[regno
];
2080 cost_classes_ptr
= regno_cost_classes
[regno
];
2081 ira_assert (pref
[i
] == NO_REGS
|| aclass
!= NO_REGS
);
2082 ALLOCNO_MEMORY_COST (a
) = COSTS (costs
, i
)->mem_cost
;
2083 ira_set_allocno_class (a
, aclass
);
2084 if (aclass
== NO_REGS
)
2086 if (optimize
&& ALLOCNO_CLASS (a
) != pref
[i
])
2088 n
= ira_class_hard_regs_num
[aclass
];
2089 ALLOCNO_HARD_REG_COSTS (a
)
2090 = reg_costs
= ira_allocate_cost_vector (aclass
);
2091 for (j
= n
- 1; j
>= 0; j
--)
2093 hard_regno
= ira_class_hard_regs
[aclass
][j
];
2094 if (TEST_HARD_REG_BIT (reg_class_contents
[pref
[i
]], hard_regno
))
2095 reg_costs
[j
] = ALLOCNO_CLASS_COST (a
);
2098 rclass
= REGNO_REG_CLASS (hard_regno
);
2099 num
= cost_classes_ptr
->index
[rclass
];
2102 num
= cost_classes_ptr
->hard_regno_index
[hard_regno
];
2103 ira_assert (num
>= 0);
2105 reg_costs
[j
] = COSTS (costs
, i
)->cost
[num
];
2111 ira_traverse_loop_tree (true, ira_loop_tree_root
,
2112 process_bb_node_for_hard_reg_moves
, NULL
);
2117 /* Function called once during compiler work. */
2119 ira_init_costs_once (void)
2124 for (i
= 0; i
< MAX_RECOG_OPERANDS
; i
++)
2127 this_op_costs
[i
] = NULL
;
2132 /* Free allocated temporary cost vectors. */
2134 target_ira_int::free_ira_costs ()
2140 for (i
= 0; i
< MAX_RECOG_OPERANDS
; i
++)
2142 free (x_op_costs
[i
]);
2143 free (x_this_op_costs
[i
]);
2144 x_op_costs
[i
] = x_this_op_costs
[i
] = NULL
;
2146 free (x_temp_costs
);
2147 x_temp_costs
= NULL
;
2150 /* This is called each time register related information is
2153 ira_init_costs (void)
2157 this_target_ira_int
->free_ira_costs ();
2158 max_struct_costs_size
2159 = sizeof (struct costs
) + sizeof (int) * (ira_important_classes_num
- 1);
2160 /* Don't use ira_allocate because vectors live through several IRA
2162 init_cost
= (struct costs
*) xmalloc (max_struct_costs_size
);
2163 init_cost
->mem_cost
= 1000000;
2164 for (i
= 0; i
< ira_important_classes_num
; i
++)
2165 init_cost
->cost
[i
] = 1000000;
2166 for (i
= 0; i
< MAX_RECOG_OPERANDS
; i
++)
2168 op_costs
[i
] = (struct costs
*) xmalloc (max_struct_costs_size
);
2169 this_op_costs
[i
] = (struct costs
*) xmalloc (max_struct_costs_size
);
2171 temp_costs
= (struct costs
*) xmalloc (max_struct_costs_size
);
2176 /* Common initialization function for ira_costs and
2177 ira_set_pseudo_classes. */
2181 init_subregs_of_mode ();
2182 costs
= (struct costs
*) ira_allocate (max_struct_costs_size
2183 * cost_elements_num
);
2184 pref_buffer
= (enum reg_class
*) ira_allocate (sizeof (enum reg_class
)
2185 * cost_elements_num
);
2186 regno_aclass
= (enum reg_class
*) ira_allocate (sizeof (enum reg_class
)
2188 regno_equiv_gains
= (int *) ira_allocate (sizeof (int) * max_reg_num ());
2189 memset (regno_equiv_gains
, 0, sizeof (int) * max_reg_num ());
2192 /* Common finalization function for ira_costs and
2193 ira_set_pseudo_classes. */
2197 finish_subregs_of_mode ();
2198 ira_free (regno_equiv_gains
);
2199 ira_free (regno_aclass
);
2200 ira_free (pref_buffer
);
2204 /* Entry function which defines register class, memory and hard
2205 register costs for each allocno. */
2210 cost_elements_num
= ira_allocnos_num
;
2212 total_allocno_costs
= (struct costs
*) ira_allocate (max_struct_costs_size
2213 * ira_allocnos_num
);
2214 initiate_regno_cost_classes ();
2215 calculate_elim_costs_all_insns ();
2216 find_costs_and_classes (ira_dump_file
);
2217 setup_allocno_class_and_costs ();
2218 finish_regno_cost_classes ();
2220 ira_free (total_allocno_costs
);
2223 /* Entry function which defines classes for pseudos.
2224 Set pseudo_classes_defined_p only if DEFINE_PSEUDO_CLASSES is true. */
2226 ira_set_pseudo_classes (bool define_pseudo_classes
, FILE *dump_file
)
2229 internal_flag_ira_verbose
= flag_ira_verbose
;
2230 cost_elements_num
= max_reg_num ();
2232 initiate_regno_cost_classes ();
2233 find_costs_and_classes (dump_file
);
2234 finish_regno_cost_classes ();
2235 if (define_pseudo_classes
)
2236 pseudo_classes_defined_p
= true;
2243 /* Change hard register costs for allocnos which lives through
2244 function calls. This is called only when we found all intersected
2245 calls during building allocno live ranges. */
2247 ira_tune_allocno_costs (void)
2250 int cost
, min_cost
, *reg_costs
;
2251 enum reg_class aclass
, rclass
;
2254 ira_allocno_iterator ai
;
2255 ira_allocno_object_iterator oi
;
2258 HARD_REG_SET
*crossed_calls_clobber_regs
;
2260 FOR_EACH_ALLOCNO (a
, ai
)
2262 aclass
= ALLOCNO_CLASS (a
);
2263 if (aclass
== NO_REGS
)
2265 mode
= ALLOCNO_MODE (a
);
2266 n
= ira_class_hard_regs_num
[aclass
];
2268 if (ALLOCNO_CALLS_CROSSED_NUM (a
)
2269 != ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a
))
2271 ira_allocate_and_set_costs
2272 (&ALLOCNO_HARD_REG_COSTS (a
), aclass
,
2273 ALLOCNO_CLASS_COST (a
));
2274 reg_costs
= ALLOCNO_HARD_REG_COSTS (a
);
2275 for (j
= n
- 1; j
>= 0; j
--)
2277 regno
= ira_class_hard_regs
[aclass
][j
];
2279 FOR_EACH_ALLOCNO_OBJECT (a
, obj
, oi
)
2281 if (ira_hard_reg_set_intersection_p (regno
, mode
,
2282 OBJECT_CONFLICT_HARD_REGS
2291 rclass
= REGNO_REG_CLASS (regno
);
2293 crossed_calls_clobber_regs
2294 = &(ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a
));
2295 if (ira_hard_reg_set_intersection_p (regno
, mode
,
2296 *crossed_calls_clobber_regs
)
2297 && (ira_hard_reg_set_intersection_p (regno
, mode
,
2299 || HARD_REGNO_CALL_PART_CLOBBERED (regno
, mode
)))
2300 cost
+= (ALLOCNO_CALL_FREQ (a
)
2301 * (ira_memory_move_cost
[mode
][rclass
][0]
2302 + ira_memory_move_cost
[mode
][rclass
][1]));
2303 #ifdef IRA_HARD_REGNO_ADD_COST_MULTIPLIER
2304 cost
+= ((ira_memory_move_cost
[mode
][rclass
][0]
2305 + ira_memory_move_cost
[mode
][rclass
][1])
2307 * IRA_HARD_REGNO_ADD_COST_MULTIPLIER (regno
) / 2);
2309 if (INT_MAX
- cost
< reg_costs
[j
])
2310 reg_costs
[j
] = INT_MAX
;
2312 reg_costs
[j
] += cost
;
2313 if (min_cost
> reg_costs
[j
])
2314 min_cost
= reg_costs
[j
];
2317 if (min_cost
!= INT_MAX
)
2318 ALLOCNO_CLASS_COST (a
) = min_cost
;
2320 /* Some targets allow pseudos to be allocated to unaligned sequences
2321 of hard registers. However, selecting an unaligned sequence can
2322 unnecessarily restrict later allocations. So increase the cost of
2323 unaligned hard regs to encourage the use of aligned hard regs. */
2325 const int nregs
= ira_reg_class_max_nregs
[aclass
][ALLOCNO_MODE (a
)];
2329 ira_allocate_and_set_costs
2330 (&ALLOCNO_HARD_REG_COSTS (a
), aclass
, ALLOCNO_CLASS_COST (a
));
2331 reg_costs
= ALLOCNO_HARD_REG_COSTS (a
);
2332 for (j
= n
- 1; j
>= 0; j
--)
2334 regno
= ira_non_ordered_class_hard_regs
[aclass
][j
];
2335 if ((regno
% nregs
) != 0)
2337 int index
= ira_class_hard_reg_index
[aclass
][regno
];
2338 ira_assert (index
!= -1);
2339 reg_costs
[index
] += ALLOCNO_FREQ (a
);
2347 /* Add COST to the estimated gain for eliminating REGNO with its
2348 equivalence. If COST is zero, record that no such elimination is
2352 ira_adjust_equiv_reg_cost (unsigned regno
, int cost
)
2355 regno_equiv_gains
[regno
] = 0;
2357 regno_equiv_gains
[regno
] += cost
;
2361 ira_costs_c_finalize (void)
2363 this_target_ira_int
->free_ira_costs ();