* gcc.dg/store-motion-fgcse-sm.c (dg-final): Cleanup
[official-gcc.git] / gcc / function.c
blobf069fed61a2b4bdb7a497d387a4d995b8f14d87b
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "tm.h"
38 #include "rtl-error.h"
39 #include "tree.h"
40 #include "stor-layout.h"
41 #include "varasm.h"
42 #include "stringpool.h"
43 #include "flags.h"
44 #include "except.h"
45 #include "hashtab.h"
46 #include "hash-set.h"
47 #include "vec.h"
48 #include "machmode.h"
49 #include "hard-reg-set.h"
50 #include "input.h"
51 #include "function.h"
52 #include "expr.h"
53 #include "insn-codes.h"
54 #include "optabs.h"
55 #include "libfuncs.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "recog.h"
59 #include "output.h"
60 #include "tm_p.h"
61 #include "langhooks.h"
62 #include "target.h"
63 #include "common/common-target.h"
64 #include "gimple-expr.h"
65 #include "gimplify.h"
66 #include "tree-pass.h"
67 #include "predict.h"
68 #include "dominance.h"
69 #include "cfg.h"
70 #include "cfgrtl.h"
71 #include "cfganal.h"
72 #include "cfgbuild.h"
73 #include "cfgcleanup.h"
74 #include "basic-block.h"
75 #include "df.h"
76 #include "params.h"
77 #include "bb-reorder.h"
78 #include "shrink-wrap.h"
79 #include "toplev.h"
80 #include "rtl-iter.h"
81 #include "tree-chkp.h"
82 #include "rtl-chkp.h"
84 /* So we can assign to cfun in this file. */
85 #undef cfun
87 #ifndef STACK_ALIGNMENT_NEEDED
88 #define STACK_ALIGNMENT_NEEDED 1
89 #endif
91 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
93 /* Round a value to the lowest integer less than it that is a multiple of
94 the required alignment. Avoid using division in case the value is
95 negative. Assume the alignment is a power of two. */
96 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
98 /* Similar, but round to the next highest integer that meets the
99 alignment. */
100 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
102 /* Nonzero once virtual register instantiation has been done.
103 assign_stack_local uses frame_pointer_rtx when this is nonzero.
104 calls.c:emit_library_call_value_1 uses it to set up
105 post-instantiation libcalls. */
106 int virtuals_instantiated;
108 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
109 static GTY(()) int funcdef_no;
111 /* These variables hold pointers to functions to create and destroy
112 target specific, per-function data structures. */
113 struct machine_function * (*init_machine_status) (void);
115 /* The currently compiled function. */
116 struct function *cfun = 0;
118 /* These hashes record the prologue and epilogue insns. */
120 struct insn_cache_hasher : ggc_cache_hasher<rtx>
122 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
123 static bool equal (rtx a, rtx b) { return a == b; }
126 static GTY((cache))
127 hash_table<insn_cache_hasher> *prologue_insn_hash;
128 static GTY((cache))
129 hash_table<insn_cache_hasher> *epilogue_insn_hash;
132 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
133 vec<tree, va_gc> *types_used_by_cur_var_decl;
135 /* Forward declarations. */
137 static struct temp_slot *find_temp_slot_from_address (rtx);
138 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
139 static void pad_below (struct args_size *, machine_mode, tree);
140 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
141 static int all_blocks (tree, tree *);
142 static tree *get_block_vector (tree, int *);
143 extern tree debug_find_var_in_block_tree (tree, tree);
144 /* We always define `record_insns' even if it's not used so that we
145 can always export `prologue_epilogue_contains'. */
146 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
147 ATTRIBUTE_UNUSED;
148 static bool contains (const_rtx, hash_table<insn_cache_hasher> *);
149 static void prepare_function_start (void);
150 static void do_clobber_return_reg (rtx, void *);
151 static void do_use_return_reg (rtx, void *);
153 /* Stack of nested functions. */
154 /* Keep track of the cfun stack. */
156 typedef struct function *function_p;
158 static vec<function_p> function_context_stack;
160 /* Save the current context for compilation of a nested function.
161 This is called from language-specific code. */
163 void
164 push_function_context (void)
166 if (cfun == 0)
167 allocate_struct_function (NULL, false);
169 function_context_stack.safe_push (cfun);
170 set_cfun (NULL);
173 /* Restore the last saved context, at the end of a nested function.
174 This function is called from language-specific code. */
176 void
177 pop_function_context (void)
179 struct function *p = function_context_stack.pop ();
180 set_cfun (p);
181 current_function_decl = p->decl;
183 /* Reset variables that have known state during rtx generation. */
184 virtuals_instantiated = 0;
185 generating_concat_p = 1;
188 /* Clear out all parts of the state in F that can safely be discarded
189 after the function has been parsed, but not compiled, to let
190 garbage collection reclaim the memory. */
192 void
193 free_after_parsing (struct function *f)
195 f->language = 0;
198 /* Clear out all parts of the state in F that can safely be discarded
199 after the function has been compiled, to let garbage collection
200 reclaim the memory. */
202 void
203 free_after_compilation (struct function *f)
205 prologue_insn_hash = NULL;
206 epilogue_insn_hash = NULL;
208 free (crtl->emit.regno_pointer_align);
210 memset (crtl, 0, sizeof (struct rtl_data));
211 f->eh = NULL;
212 f->machine = NULL;
213 f->cfg = NULL;
215 regno_reg_rtx = NULL;
218 /* Return size needed for stack frame based on slots so far allocated.
219 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
220 the caller may have to do that. */
222 HOST_WIDE_INT
223 get_frame_size (void)
225 if (FRAME_GROWS_DOWNWARD)
226 return -frame_offset;
227 else
228 return frame_offset;
231 /* Issue an error message and return TRUE if frame OFFSET overflows in
232 the signed target pointer arithmetics for function FUNC. Otherwise
233 return FALSE. */
235 bool
236 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
238 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
240 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
241 /* Leave room for the fixed part of the frame. */
242 - 64 * UNITS_PER_WORD)
244 error_at (DECL_SOURCE_LOCATION (func),
245 "total size of local objects too large");
246 return TRUE;
249 return FALSE;
252 /* Return stack slot alignment in bits for TYPE and MODE. */
254 static unsigned int
255 get_stack_local_alignment (tree type, machine_mode mode)
257 unsigned int alignment;
259 if (mode == BLKmode)
260 alignment = BIGGEST_ALIGNMENT;
261 else
262 alignment = GET_MODE_ALIGNMENT (mode);
264 /* Allow the frond-end to (possibly) increase the alignment of this
265 stack slot. */
266 if (! type)
267 type = lang_hooks.types.type_for_mode (mode, 0);
269 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
272 /* Determine whether it is possible to fit a stack slot of size SIZE and
273 alignment ALIGNMENT into an area in the stack frame that starts at
274 frame offset START and has a length of LENGTH. If so, store the frame
275 offset to be used for the stack slot in *POFFSET and return true;
276 return false otherwise. This function will extend the frame size when
277 given a start/length pair that lies at the end of the frame. */
279 static bool
280 try_fit_stack_local (HOST_WIDE_INT start, HOST_WIDE_INT length,
281 HOST_WIDE_INT size, unsigned int alignment,
282 HOST_WIDE_INT *poffset)
284 HOST_WIDE_INT this_frame_offset;
285 int frame_off, frame_alignment, frame_phase;
287 /* Calculate how many bytes the start of local variables is off from
288 stack alignment. */
289 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
290 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
291 frame_phase = frame_off ? frame_alignment - frame_off : 0;
293 /* Round the frame offset to the specified alignment. */
295 /* We must be careful here, since FRAME_OFFSET might be negative and
296 division with a negative dividend isn't as well defined as we might
297 like. So we instead assume that ALIGNMENT is a power of two and
298 use logical operations which are unambiguous. */
299 if (FRAME_GROWS_DOWNWARD)
300 this_frame_offset
301 = (FLOOR_ROUND (start + length - size - frame_phase,
302 (unsigned HOST_WIDE_INT) alignment)
303 + frame_phase);
304 else
305 this_frame_offset
306 = (CEIL_ROUND (start - frame_phase,
307 (unsigned HOST_WIDE_INT) alignment)
308 + frame_phase);
310 /* See if it fits. If this space is at the edge of the frame,
311 consider extending the frame to make it fit. Our caller relies on
312 this when allocating a new slot. */
313 if (frame_offset == start && this_frame_offset < frame_offset)
314 frame_offset = this_frame_offset;
315 else if (this_frame_offset < start)
316 return false;
317 else if (start + length == frame_offset
318 && this_frame_offset + size > start + length)
319 frame_offset = this_frame_offset + size;
320 else if (this_frame_offset + size > start + length)
321 return false;
323 *poffset = this_frame_offset;
324 return true;
327 /* Create a new frame_space structure describing free space in the stack
328 frame beginning at START and ending at END, and chain it into the
329 function's frame_space_list. */
331 static void
332 add_frame_space (HOST_WIDE_INT start, HOST_WIDE_INT end)
334 struct frame_space *space = ggc_alloc<frame_space> ();
335 space->next = crtl->frame_space_list;
336 crtl->frame_space_list = space;
337 space->start = start;
338 space->length = end - start;
341 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
342 with machine mode MODE.
344 ALIGN controls the amount of alignment for the address of the slot:
345 0 means according to MODE,
346 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
347 -2 means use BITS_PER_UNIT,
348 positive specifies alignment boundary in bits.
350 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
351 alignment and ASLK_RECORD_PAD bit set if we should remember
352 extra space we allocated for alignment purposes. When we are
353 called from assign_stack_temp_for_type, it is not set so we don't
354 track the same stack slot in two independent lists.
356 We do not round to stack_boundary here. */
359 assign_stack_local_1 (machine_mode mode, HOST_WIDE_INT size,
360 int align, int kind)
362 rtx x, addr;
363 int bigend_correction = 0;
364 HOST_WIDE_INT slot_offset = 0, old_frame_offset;
365 unsigned int alignment, alignment_in_bits;
367 if (align == 0)
369 alignment = get_stack_local_alignment (NULL, mode);
370 alignment /= BITS_PER_UNIT;
372 else if (align == -1)
374 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
375 size = CEIL_ROUND (size, alignment);
377 else if (align == -2)
378 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
379 else
380 alignment = align / BITS_PER_UNIT;
382 alignment_in_bits = alignment * BITS_PER_UNIT;
384 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
385 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
387 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
388 alignment = alignment_in_bits / BITS_PER_UNIT;
391 if (SUPPORTS_STACK_ALIGNMENT)
393 if (crtl->stack_alignment_estimated < alignment_in_bits)
395 if (!crtl->stack_realign_processed)
396 crtl->stack_alignment_estimated = alignment_in_bits;
397 else
399 /* If stack is realigned and stack alignment value
400 hasn't been finalized, it is OK not to increase
401 stack_alignment_estimated. The bigger alignment
402 requirement is recorded in stack_alignment_needed
403 below. */
404 gcc_assert (!crtl->stack_realign_finalized);
405 if (!crtl->stack_realign_needed)
407 /* It is OK to reduce the alignment as long as the
408 requested size is 0 or the estimated stack
409 alignment >= mode alignment. */
410 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
411 || size == 0
412 || (crtl->stack_alignment_estimated
413 >= GET_MODE_ALIGNMENT (mode)));
414 alignment_in_bits = crtl->stack_alignment_estimated;
415 alignment = alignment_in_bits / BITS_PER_UNIT;
421 if (crtl->stack_alignment_needed < alignment_in_bits)
422 crtl->stack_alignment_needed = alignment_in_bits;
423 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
424 crtl->max_used_stack_slot_alignment = alignment_in_bits;
426 if (mode != BLKmode || size != 0)
428 if (kind & ASLK_RECORD_PAD)
430 struct frame_space **psp;
432 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
434 struct frame_space *space = *psp;
435 if (!try_fit_stack_local (space->start, space->length, size,
436 alignment, &slot_offset))
437 continue;
438 *psp = space->next;
439 if (slot_offset > space->start)
440 add_frame_space (space->start, slot_offset);
441 if (slot_offset + size < space->start + space->length)
442 add_frame_space (slot_offset + size,
443 space->start + space->length);
444 goto found_space;
448 else if (!STACK_ALIGNMENT_NEEDED)
450 slot_offset = frame_offset;
451 goto found_space;
454 old_frame_offset = frame_offset;
456 if (FRAME_GROWS_DOWNWARD)
458 frame_offset -= size;
459 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
461 if (kind & ASLK_RECORD_PAD)
463 if (slot_offset > frame_offset)
464 add_frame_space (frame_offset, slot_offset);
465 if (slot_offset + size < old_frame_offset)
466 add_frame_space (slot_offset + size, old_frame_offset);
469 else
471 frame_offset += size;
472 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
474 if (kind & ASLK_RECORD_PAD)
476 if (slot_offset > old_frame_offset)
477 add_frame_space (old_frame_offset, slot_offset);
478 if (slot_offset + size < frame_offset)
479 add_frame_space (slot_offset + size, frame_offset);
483 found_space:
484 /* On a big-endian machine, if we are allocating more space than we will use,
485 use the least significant bytes of those that are allocated. */
486 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
487 bigend_correction = size - GET_MODE_SIZE (mode);
489 /* If we have already instantiated virtual registers, return the actual
490 address relative to the frame pointer. */
491 if (virtuals_instantiated)
492 addr = plus_constant (Pmode, frame_pointer_rtx,
493 trunc_int_for_mode
494 (slot_offset + bigend_correction
495 + STARTING_FRAME_OFFSET, Pmode));
496 else
497 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
498 trunc_int_for_mode
499 (slot_offset + bigend_correction,
500 Pmode));
502 x = gen_rtx_MEM (mode, addr);
503 set_mem_align (x, alignment_in_bits);
504 MEM_NOTRAP_P (x) = 1;
506 stack_slot_list
507 = gen_rtx_EXPR_LIST (VOIDmode, x, stack_slot_list);
509 if (frame_offset_overflow (frame_offset, current_function_decl))
510 frame_offset = 0;
512 return x;
515 /* Wrap up assign_stack_local_1 with last parameter as false. */
518 assign_stack_local (machine_mode mode, HOST_WIDE_INT size, int align)
520 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
523 /* In order to evaluate some expressions, such as function calls returning
524 structures in memory, we need to temporarily allocate stack locations.
525 We record each allocated temporary in the following structure.
527 Associated with each temporary slot is a nesting level. When we pop up
528 one level, all temporaries associated with the previous level are freed.
529 Normally, all temporaries are freed after the execution of the statement
530 in which they were created. However, if we are inside a ({...}) grouping,
531 the result may be in a temporary and hence must be preserved. If the
532 result could be in a temporary, we preserve it if we can determine which
533 one it is in. If we cannot determine which temporary may contain the
534 result, all temporaries are preserved. A temporary is preserved by
535 pretending it was allocated at the previous nesting level. */
537 struct GTY(()) temp_slot {
538 /* Points to next temporary slot. */
539 struct temp_slot *next;
540 /* Points to previous temporary slot. */
541 struct temp_slot *prev;
542 /* The rtx to used to reference the slot. */
543 rtx slot;
544 /* The size, in units, of the slot. */
545 HOST_WIDE_INT size;
546 /* The type of the object in the slot, or zero if it doesn't correspond
547 to a type. We use this to determine whether a slot can be reused.
548 It can be reused if objects of the type of the new slot will always
549 conflict with objects of the type of the old slot. */
550 tree type;
551 /* The alignment (in bits) of the slot. */
552 unsigned int align;
553 /* Nonzero if this temporary is currently in use. */
554 char in_use;
555 /* Nesting level at which this slot is being used. */
556 int level;
557 /* The offset of the slot from the frame_pointer, including extra space
558 for alignment. This info is for combine_temp_slots. */
559 HOST_WIDE_INT base_offset;
560 /* The size of the slot, including extra space for alignment. This
561 info is for combine_temp_slots. */
562 HOST_WIDE_INT full_size;
565 /* Entry for the below hash table. */
566 struct GTY((for_user)) temp_slot_address_entry {
567 hashval_t hash;
568 rtx address;
569 struct temp_slot *temp_slot;
572 struct temp_address_hasher : ggc_hasher<temp_slot_address_entry *>
574 static hashval_t hash (temp_slot_address_entry *);
575 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
578 /* A table of addresses that represent a stack slot. The table is a mapping
579 from address RTXen to a temp slot. */
580 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
581 static size_t n_temp_slots_in_use;
583 /* Removes temporary slot TEMP from LIST. */
585 static void
586 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
588 if (temp->next)
589 temp->next->prev = temp->prev;
590 if (temp->prev)
591 temp->prev->next = temp->next;
592 else
593 *list = temp->next;
595 temp->prev = temp->next = NULL;
598 /* Inserts temporary slot TEMP to LIST. */
600 static void
601 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
603 temp->next = *list;
604 if (*list)
605 (*list)->prev = temp;
606 temp->prev = NULL;
607 *list = temp;
610 /* Returns the list of used temp slots at LEVEL. */
612 static struct temp_slot **
613 temp_slots_at_level (int level)
615 if (level >= (int) vec_safe_length (used_temp_slots))
616 vec_safe_grow_cleared (used_temp_slots, level + 1);
618 return &(*used_temp_slots)[level];
621 /* Returns the maximal temporary slot level. */
623 static int
624 max_slot_level (void)
626 if (!used_temp_slots)
627 return -1;
629 return used_temp_slots->length () - 1;
632 /* Moves temporary slot TEMP to LEVEL. */
634 static void
635 move_slot_to_level (struct temp_slot *temp, int level)
637 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
638 insert_slot_to_list (temp, temp_slots_at_level (level));
639 temp->level = level;
642 /* Make temporary slot TEMP available. */
644 static void
645 make_slot_available (struct temp_slot *temp)
647 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
648 insert_slot_to_list (temp, &avail_temp_slots);
649 temp->in_use = 0;
650 temp->level = -1;
651 n_temp_slots_in_use--;
654 /* Compute the hash value for an address -> temp slot mapping.
655 The value is cached on the mapping entry. */
656 static hashval_t
657 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
659 int do_not_record = 0;
660 return hash_rtx (t->address, GET_MODE (t->address),
661 &do_not_record, NULL, false);
664 /* Return the hash value for an address -> temp slot mapping. */
665 hashval_t
666 temp_address_hasher::hash (temp_slot_address_entry *t)
668 return t->hash;
671 /* Compare two address -> temp slot mapping entries. */
672 bool
673 temp_address_hasher::equal (temp_slot_address_entry *t1,
674 temp_slot_address_entry *t2)
676 return exp_equiv_p (t1->address, t2->address, 0, true);
679 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
680 static void
681 insert_temp_slot_address (rtx address, struct temp_slot *temp_slot)
683 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
684 t->address = address;
685 t->temp_slot = temp_slot;
686 t->hash = temp_slot_address_compute_hash (t);
687 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
690 /* Remove an address -> temp slot mapping entry if the temp slot is
691 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
693 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
695 const struct temp_slot_address_entry *t = *slot;
696 if (! t->temp_slot->in_use)
697 temp_slot_address_table->clear_slot (slot);
698 return 1;
701 /* Remove all mappings of addresses to unused temp slots. */
702 static void
703 remove_unused_temp_slot_addresses (void)
705 /* Use quicker clearing if there aren't any active temp slots. */
706 if (n_temp_slots_in_use)
707 temp_slot_address_table->traverse
708 <void *, remove_unused_temp_slot_addresses_1> (NULL);
709 else
710 temp_slot_address_table->empty ();
713 /* Find the temp slot corresponding to the object at address X. */
715 static struct temp_slot *
716 find_temp_slot_from_address (rtx x)
718 struct temp_slot *p;
719 struct temp_slot_address_entry tmp, *t;
721 /* First try the easy way:
722 See if X exists in the address -> temp slot mapping. */
723 tmp.address = x;
724 tmp.temp_slot = NULL;
725 tmp.hash = temp_slot_address_compute_hash (&tmp);
726 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
727 if (t)
728 return t->temp_slot;
730 /* If we have a sum involving a register, see if it points to a temp
731 slot. */
732 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
733 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
734 return p;
735 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
736 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
737 return p;
739 /* Last resort: Address is a virtual stack var address. */
740 if (GET_CODE (x) == PLUS
741 && XEXP (x, 0) == virtual_stack_vars_rtx
742 && CONST_INT_P (XEXP (x, 1)))
744 int i;
745 for (i = max_slot_level (); i >= 0; i--)
746 for (p = *temp_slots_at_level (i); p; p = p->next)
748 if (INTVAL (XEXP (x, 1)) >= p->base_offset
749 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size)
750 return p;
754 return NULL;
757 /* Allocate a temporary stack slot and record it for possible later
758 reuse.
760 MODE is the machine mode to be given to the returned rtx.
762 SIZE is the size in units of the space required. We do no rounding here
763 since assign_stack_local will do any required rounding.
765 TYPE is the type that will be used for the stack slot. */
768 assign_stack_temp_for_type (machine_mode mode, HOST_WIDE_INT size,
769 tree type)
771 unsigned int align;
772 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
773 rtx slot;
775 /* If SIZE is -1 it means that somebody tried to allocate a temporary
776 of a variable size. */
777 gcc_assert (size != -1);
779 align = get_stack_local_alignment (type, mode);
781 /* Try to find an available, already-allocated temporary of the proper
782 mode which meets the size and alignment requirements. Choose the
783 smallest one with the closest alignment.
785 If assign_stack_temp is called outside of the tree->rtl expansion,
786 we cannot reuse the stack slots (that may still refer to
787 VIRTUAL_STACK_VARS_REGNUM). */
788 if (!virtuals_instantiated)
790 for (p = avail_temp_slots; p; p = p->next)
792 if (p->align >= align && p->size >= size
793 && GET_MODE (p->slot) == mode
794 && objects_must_conflict_p (p->type, type)
795 && (best_p == 0 || best_p->size > p->size
796 || (best_p->size == p->size && best_p->align > p->align)))
798 if (p->align == align && p->size == size)
800 selected = p;
801 cut_slot_from_list (selected, &avail_temp_slots);
802 best_p = 0;
803 break;
805 best_p = p;
810 /* Make our best, if any, the one to use. */
811 if (best_p)
813 selected = best_p;
814 cut_slot_from_list (selected, &avail_temp_slots);
816 /* If there are enough aligned bytes left over, make them into a new
817 temp_slot so that the extra bytes don't get wasted. Do this only
818 for BLKmode slots, so that we can be sure of the alignment. */
819 if (GET_MODE (best_p->slot) == BLKmode)
821 int alignment = best_p->align / BITS_PER_UNIT;
822 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
824 if (best_p->size - rounded_size >= alignment)
826 p = ggc_alloc<temp_slot> ();
827 p->in_use = 0;
828 p->size = best_p->size - rounded_size;
829 p->base_offset = best_p->base_offset + rounded_size;
830 p->full_size = best_p->full_size - rounded_size;
831 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
832 p->align = best_p->align;
833 p->type = best_p->type;
834 insert_slot_to_list (p, &avail_temp_slots);
836 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
837 stack_slot_list);
839 best_p->size = rounded_size;
840 best_p->full_size = rounded_size;
845 /* If we still didn't find one, make a new temporary. */
846 if (selected == 0)
848 HOST_WIDE_INT frame_offset_old = frame_offset;
850 p = ggc_alloc<temp_slot> ();
852 /* We are passing an explicit alignment request to assign_stack_local.
853 One side effect of that is assign_stack_local will not round SIZE
854 to ensure the frame offset remains suitably aligned.
856 So for requests which depended on the rounding of SIZE, we go ahead
857 and round it now. We also make sure ALIGNMENT is at least
858 BIGGEST_ALIGNMENT. */
859 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
860 p->slot = assign_stack_local_1 (mode,
861 (mode == BLKmode
862 ? CEIL_ROUND (size,
863 (int) align
864 / BITS_PER_UNIT)
865 : size),
866 align, 0);
868 p->align = align;
870 /* The following slot size computation is necessary because we don't
871 know the actual size of the temporary slot until assign_stack_local
872 has performed all the frame alignment and size rounding for the
873 requested temporary. Note that extra space added for alignment
874 can be either above or below this stack slot depending on which
875 way the frame grows. We include the extra space if and only if it
876 is above this slot. */
877 if (FRAME_GROWS_DOWNWARD)
878 p->size = frame_offset_old - frame_offset;
879 else
880 p->size = size;
882 /* Now define the fields used by combine_temp_slots. */
883 if (FRAME_GROWS_DOWNWARD)
885 p->base_offset = frame_offset;
886 p->full_size = frame_offset_old - frame_offset;
888 else
890 p->base_offset = frame_offset_old;
891 p->full_size = frame_offset - frame_offset_old;
894 selected = p;
897 p = selected;
898 p->in_use = 1;
899 p->type = type;
900 p->level = temp_slot_level;
901 n_temp_slots_in_use++;
903 pp = temp_slots_at_level (p->level);
904 insert_slot_to_list (p, pp);
905 insert_temp_slot_address (XEXP (p->slot, 0), p);
907 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
908 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
909 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
911 /* If we know the alias set for the memory that will be used, use
912 it. If there's no TYPE, then we don't know anything about the
913 alias set for the memory. */
914 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
915 set_mem_align (slot, align);
917 /* If a type is specified, set the relevant flags. */
918 if (type != 0)
919 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
920 MEM_NOTRAP_P (slot) = 1;
922 return slot;
925 /* Allocate a temporary stack slot and record it for possible later
926 reuse. First two arguments are same as in preceding function. */
929 assign_stack_temp (machine_mode mode, HOST_WIDE_INT size)
931 return assign_stack_temp_for_type (mode, size, NULL_TREE);
934 /* Assign a temporary.
935 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
936 and so that should be used in error messages. In either case, we
937 allocate of the given type.
938 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
939 it is 0 if a register is OK.
940 DONT_PROMOTE is 1 if we should not promote values in register
941 to wider modes. */
944 assign_temp (tree type_or_decl, int memory_required,
945 int dont_promote ATTRIBUTE_UNUSED)
947 tree type, decl;
948 machine_mode mode;
949 #ifdef PROMOTE_MODE
950 int unsignedp;
951 #endif
953 if (DECL_P (type_or_decl))
954 decl = type_or_decl, type = TREE_TYPE (decl);
955 else
956 decl = NULL, type = type_or_decl;
958 mode = TYPE_MODE (type);
959 #ifdef PROMOTE_MODE
960 unsignedp = TYPE_UNSIGNED (type);
961 #endif
963 if (mode == BLKmode || memory_required)
965 HOST_WIDE_INT size = int_size_in_bytes (type);
966 rtx tmp;
968 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
969 problems with allocating the stack space. */
970 if (size == 0)
971 size = 1;
973 /* Unfortunately, we don't yet know how to allocate variable-sized
974 temporaries. However, sometimes we can find a fixed upper limit on
975 the size, so try that instead. */
976 else if (size == -1)
977 size = max_int_size_in_bytes (type);
979 /* The size of the temporary may be too large to fit into an integer. */
980 /* ??? Not sure this should happen except for user silliness, so limit
981 this to things that aren't compiler-generated temporaries. The
982 rest of the time we'll die in assign_stack_temp_for_type. */
983 if (decl && size == -1
984 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
986 error ("size of variable %q+D is too large", decl);
987 size = 1;
990 tmp = assign_stack_temp_for_type (mode, size, type);
991 return tmp;
994 #ifdef PROMOTE_MODE
995 if (! dont_promote)
996 mode = promote_mode (type, mode, &unsignedp);
997 #endif
999 return gen_reg_rtx (mode);
1002 /* Combine temporary stack slots which are adjacent on the stack.
1004 This allows for better use of already allocated stack space. This is only
1005 done for BLKmode slots because we can be sure that we won't have alignment
1006 problems in this case. */
1008 static void
1009 combine_temp_slots (void)
1011 struct temp_slot *p, *q, *next, *next_q;
1012 int num_slots;
1014 /* We can't combine slots, because the information about which slot
1015 is in which alias set will be lost. */
1016 if (flag_strict_aliasing)
1017 return;
1019 /* If there are a lot of temp slots, don't do anything unless
1020 high levels of optimization. */
1021 if (! flag_expensive_optimizations)
1022 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1023 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1024 return;
1026 for (p = avail_temp_slots; p; p = next)
1028 int delete_p = 0;
1030 next = p->next;
1032 if (GET_MODE (p->slot) != BLKmode)
1033 continue;
1035 for (q = p->next; q; q = next_q)
1037 int delete_q = 0;
1039 next_q = q->next;
1041 if (GET_MODE (q->slot) != BLKmode)
1042 continue;
1044 if (p->base_offset + p->full_size == q->base_offset)
1046 /* Q comes after P; combine Q into P. */
1047 p->size += q->size;
1048 p->full_size += q->full_size;
1049 delete_q = 1;
1051 else if (q->base_offset + q->full_size == p->base_offset)
1053 /* P comes after Q; combine P into Q. */
1054 q->size += p->size;
1055 q->full_size += p->full_size;
1056 delete_p = 1;
1057 break;
1059 if (delete_q)
1060 cut_slot_from_list (q, &avail_temp_slots);
1063 /* Either delete P or advance past it. */
1064 if (delete_p)
1065 cut_slot_from_list (p, &avail_temp_slots);
1069 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1070 slot that previously was known by OLD_RTX. */
1072 void
1073 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1075 struct temp_slot *p;
1077 if (rtx_equal_p (old_rtx, new_rtx))
1078 return;
1080 p = find_temp_slot_from_address (old_rtx);
1082 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1083 NEW_RTX is a register, see if one operand of the PLUS is a
1084 temporary location. If so, NEW_RTX points into it. Otherwise,
1085 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1086 in common between them. If so, try a recursive call on those
1087 values. */
1088 if (p == 0)
1090 if (GET_CODE (old_rtx) != PLUS)
1091 return;
1093 if (REG_P (new_rtx))
1095 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1096 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1097 return;
1099 else if (GET_CODE (new_rtx) != PLUS)
1100 return;
1102 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1103 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1104 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1105 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1106 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1107 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1108 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1109 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1111 return;
1114 /* Otherwise add an alias for the temp's address. */
1115 insert_temp_slot_address (new_rtx, p);
1118 /* If X could be a reference to a temporary slot, mark that slot as
1119 belonging to the to one level higher than the current level. If X
1120 matched one of our slots, just mark that one. Otherwise, we can't
1121 easily predict which it is, so upgrade all of them.
1123 This is called when an ({...}) construct occurs and a statement
1124 returns a value in memory. */
1126 void
1127 preserve_temp_slots (rtx x)
1129 struct temp_slot *p = 0, *next;
1131 if (x == 0)
1132 return;
1134 /* If X is a register that is being used as a pointer, see if we have
1135 a temporary slot we know it points to. */
1136 if (REG_P (x) && REG_POINTER (x))
1137 p = find_temp_slot_from_address (x);
1139 /* If X is not in memory or is at a constant address, it cannot be in
1140 a temporary slot. */
1141 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1142 return;
1144 /* First see if we can find a match. */
1145 if (p == 0)
1146 p = find_temp_slot_from_address (XEXP (x, 0));
1148 if (p != 0)
1150 if (p->level == temp_slot_level)
1151 move_slot_to_level (p, temp_slot_level - 1);
1152 return;
1155 /* Otherwise, preserve all non-kept slots at this level. */
1156 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1158 next = p->next;
1159 move_slot_to_level (p, temp_slot_level - 1);
1163 /* Free all temporaries used so far. This is normally called at the
1164 end of generating code for a statement. */
1166 void
1167 free_temp_slots (void)
1169 struct temp_slot *p, *next;
1170 bool some_available = false;
1172 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1174 next = p->next;
1175 make_slot_available (p);
1176 some_available = true;
1179 if (some_available)
1181 remove_unused_temp_slot_addresses ();
1182 combine_temp_slots ();
1186 /* Push deeper into the nesting level for stack temporaries. */
1188 void
1189 push_temp_slots (void)
1191 temp_slot_level++;
1194 /* Pop a temporary nesting level. All slots in use in the current level
1195 are freed. */
1197 void
1198 pop_temp_slots (void)
1200 free_temp_slots ();
1201 temp_slot_level--;
1204 /* Initialize temporary slots. */
1206 void
1207 init_temp_slots (void)
1209 /* We have not allocated any temporaries yet. */
1210 avail_temp_slots = 0;
1211 vec_alloc (used_temp_slots, 0);
1212 temp_slot_level = 0;
1213 n_temp_slots_in_use = 0;
1215 /* Set up the table to map addresses to temp slots. */
1216 if (! temp_slot_address_table)
1217 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1218 else
1219 temp_slot_address_table->empty ();
1222 /* Functions and data structures to keep track of the values hard regs
1223 had at the start of the function. */
1225 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1226 and has_hard_reg_initial_val.. */
1227 typedef struct GTY(()) initial_value_pair {
1228 rtx hard_reg;
1229 rtx pseudo;
1230 } initial_value_pair;
1231 /* ??? This could be a VEC but there is currently no way to define an
1232 opaque VEC type. This could be worked around by defining struct
1233 initial_value_pair in function.h. */
1234 typedef struct GTY(()) initial_value_struct {
1235 int num_entries;
1236 int max_entries;
1237 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1238 } initial_value_struct;
1240 /* If a pseudo represents an initial hard reg (or expression), return
1241 it, else return NULL_RTX. */
1244 get_hard_reg_initial_reg (rtx reg)
1246 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1247 int i;
1249 if (ivs == 0)
1250 return NULL_RTX;
1252 for (i = 0; i < ivs->num_entries; i++)
1253 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1254 return ivs->entries[i].hard_reg;
1256 return NULL_RTX;
1259 /* Make sure that there's a pseudo register of mode MODE that stores the
1260 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1263 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1265 struct initial_value_struct *ivs;
1266 rtx rv;
1268 rv = has_hard_reg_initial_val (mode, regno);
1269 if (rv)
1270 return rv;
1272 ivs = crtl->hard_reg_initial_vals;
1273 if (ivs == 0)
1275 ivs = ggc_alloc<initial_value_struct> ();
1276 ivs->num_entries = 0;
1277 ivs->max_entries = 5;
1278 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1279 crtl->hard_reg_initial_vals = ivs;
1282 if (ivs->num_entries >= ivs->max_entries)
1284 ivs->max_entries += 5;
1285 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1286 ivs->max_entries);
1289 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1290 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1292 return ivs->entries[ivs->num_entries++].pseudo;
1295 /* See if get_hard_reg_initial_val has been used to create a pseudo
1296 for the initial value of hard register REGNO in mode MODE. Return
1297 the associated pseudo if so, otherwise return NULL. */
1300 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1302 struct initial_value_struct *ivs;
1303 int i;
1305 ivs = crtl->hard_reg_initial_vals;
1306 if (ivs != 0)
1307 for (i = 0; i < ivs->num_entries; i++)
1308 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1309 && REGNO (ivs->entries[i].hard_reg) == regno)
1310 return ivs->entries[i].pseudo;
1312 return NULL_RTX;
1315 unsigned int
1316 emit_initial_value_sets (void)
1318 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1319 int i;
1320 rtx_insn *seq;
1322 if (ivs == 0)
1323 return 0;
1325 start_sequence ();
1326 for (i = 0; i < ivs->num_entries; i++)
1327 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1328 seq = get_insns ();
1329 end_sequence ();
1331 emit_insn_at_entry (seq);
1332 return 0;
1335 /* Return the hardreg-pseudoreg initial values pair entry I and
1336 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1337 bool
1338 initial_value_entry (int i, rtx *hreg, rtx *preg)
1340 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1341 if (!ivs || i >= ivs->num_entries)
1342 return false;
1344 *hreg = ivs->entries[i].hard_reg;
1345 *preg = ivs->entries[i].pseudo;
1346 return true;
1349 /* These routines are responsible for converting virtual register references
1350 to the actual hard register references once RTL generation is complete.
1352 The following four variables are used for communication between the
1353 routines. They contain the offsets of the virtual registers from their
1354 respective hard registers. */
1356 static int in_arg_offset;
1357 static int var_offset;
1358 static int dynamic_offset;
1359 static int out_arg_offset;
1360 static int cfa_offset;
1362 /* In most machines, the stack pointer register is equivalent to the bottom
1363 of the stack. */
1365 #ifndef STACK_POINTER_OFFSET
1366 #define STACK_POINTER_OFFSET 0
1367 #endif
1369 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1370 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1371 #endif
1373 /* If not defined, pick an appropriate default for the offset of dynamically
1374 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1375 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1377 #ifndef STACK_DYNAMIC_OFFSET
1379 /* The bottom of the stack points to the actual arguments. If
1380 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1381 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1382 stack space for register parameters is not pushed by the caller, but
1383 rather part of the fixed stack areas and hence not included in
1384 `crtl->outgoing_args_size'. Nevertheless, we must allow
1385 for it when allocating stack dynamic objects. */
1387 #ifdef INCOMING_REG_PARM_STACK_SPACE
1388 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1389 ((ACCUMULATE_OUTGOING_ARGS \
1390 ? (crtl->outgoing_args_size \
1391 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1392 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1393 : 0) + (STACK_POINTER_OFFSET))
1394 #else
1395 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1396 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : 0) \
1397 + (STACK_POINTER_OFFSET))
1398 #endif
1399 #endif
1402 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1403 is a virtual register, return the equivalent hard register and set the
1404 offset indirectly through the pointer. Otherwise, return 0. */
1406 static rtx
1407 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1409 rtx new_rtx;
1410 HOST_WIDE_INT offset;
1412 if (x == virtual_incoming_args_rtx)
1414 if (stack_realign_drap)
1416 /* Replace virtual_incoming_args_rtx with internal arg
1417 pointer if DRAP is used to realign stack. */
1418 new_rtx = crtl->args.internal_arg_pointer;
1419 offset = 0;
1421 else
1422 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1424 else if (x == virtual_stack_vars_rtx)
1425 new_rtx = frame_pointer_rtx, offset = var_offset;
1426 else if (x == virtual_stack_dynamic_rtx)
1427 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1428 else if (x == virtual_outgoing_args_rtx)
1429 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1430 else if (x == virtual_cfa_rtx)
1432 #ifdef FRAME_POINTER_CFA_OFFSET
1433 new_rtx = frame_pointer_rtx;
1434 #else
1435 new_rtx = arg_pointer_rtx;
1436 #endif
1437 offset = cfa_offset;
1439 else if (x == virtual_preferred_stack_boundary_rtx)
1441 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1442 offset = 0;
1444 else
1445 return NULL_RTX;
1447 *poffset = offset;
1448 return new_rtx;
1451 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1452 registers present inside of *LOC. The expression is simplified,
1453 as much as possible, but is not to be considered "valid" in any sense
1454 implied by the target. Return true if any change is made. */
1456 static bool
1457 instantiate_virtual_regs_in_rtx (rtx *loc)
1459 if (!*loc)
1460 return false;
1461 bool changed = false;
1462 subrtx_ptr_iterator::array_type array;
1463 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1465 rtx *loc = *iter;
1466 if (rtx x = *loc)
1468 rtx new_rtx;
1469 HOST_WIDE_INT offset;
1470 switch (GET_CODE (x))
1472 case REG:
1473 new_rtx = instantiate_new_reg (x, &offset);
1474 if (new_rtx)
1476 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1477 changed = true;
1479 iter.skip_subrtxes ();
1480 break;
1482 case PLUS:
1483 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1484 if (new_rtx)
1486 XEXP (x, 0) = new_rtx;
1487 *loc = plus_constant (GET_MODE (x), x, offset, true);
1488 changed = true;
1489 iter.skip_subrtxes ();
1490 break;
1493 /* FIXME -- from old code */
1494 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1495 we can commute the PLUS and SUBREG because pointers into the
1496 frame are well-behaved. */
1497 break;
1499 default:
1500 break;
1504 return changed;
1507 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1508 matches the predicate for insn CODE operand OPERAND. */
1510 static int
1511 safe_insn_predicate (int code, int operand, rtx x)
1513 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1516 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1517 registers present inside of insn. The result will be a valid insn. */
1519 static void
1520 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1522 HOST_WIDE_INT offset;
1523 int insn_code, i;
1524 bool any_change = false;
1525 rtx set, new_rtx, x;
1526 rtx_insn *seq;
1528 /* There are some special cases to be handled first. */
1529 set = single_set (insn);
1530 if (set)
1532 /* We're allowed to assign to a virtual register. This is interpreted
1533 to mean that the underlying register gets assigned the inverse
1534 transformation. This is used, for example, in the handling of
1535 non-local gotos. */
1536 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1537 if (new_rtx)
1539 start_sequence ();
1541 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1542 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1543 gen_int_mode (-offset, GET_MODE (new_rtx)));
1544 x = force_operand (x, new_rtx);
1545 if (x != new_rtx)
1546 emit_move_insn (new_rtx, x);
1548 seq = get_insns ();
1549 end_sequence ();
1551 emit_insn_before (seq, insn);
1552 delete_insn (insn);
1553 return;
1556 /* Handle a straight copy from a virtual register by generating a
1557 new add insn. The difference between this and falling through
1558 to the generic case is avoiding a new pseudo and eliminating a
1559 move insn in the initial rtl stream. */
1560 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1561 if (new_rtx && offset != 0
1562 && REG_P (SET_DEST (set))
1563 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1565 start_sequence ();
1567 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1568 gen_int_mode (offset,
1569 GET_MODE (SET_DEST (set))),
1570 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1571 if (x != SET_DEST (set))
1572 emit_move_insn (SET_DEST (set), x);
1574 seq = get_insns ();
1575 end_sequence ();
1577 emit_insn_before (seq, insn);
1578 delete_insn (insn);
1579 return;
1582 extract_insn (insn);
1583 insn_code = INSN_CODE (insn);
1585 /* Handle a plus involving a virtual register by determining if the
1586 operands remain valid if they're modified in place. */
1587 if (GET_CODE (SET_SRC (set)) == PLUS
1588 && recog_data.n_operands >= 3
1589 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1590 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1591 && CONST_INT_P (recog_data.operand[2])
1592 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1594 offset += INTVAL (recog_data.operand[2]);
1596 /* If the sum is zero, then replace with a plain move. */
1597 if (offset == 0
1598 && REG_P (SET_DEST (set))
1599 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1601 start_sequence ();
1602 emit_move_insn (SET_DEST (set), new_rtx);
1603 seq = get_insns ();
1604 end_sequence ();
1606 emit_insn_before (seq, insn);
1607 delete_insn (insn);
1608 return;
1611 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1613 /* Using validate_change and apply_change_group here leaves
1614 recog_data in an invalid state. Since we know exactly what
1615 we want to check, do those two by hand. */
1616 if (safe_insn_predicate (insn_code, 1, new_rtx)
1617 && safe_insn_predicate (insn_code, 2, x))
1619 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1620 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1621 any_change = true;
1623 /* Fall through into the regular operand fixup loop in
1624 order to take care of operands other than 1 and 2. */
1628 else
1630 extract_insn (insn);
1631 insn_code = INSN_CODE (insn);
1634 /* In the general case, we expect virtual registers to appear only in
1635 operands, and then only as either bare registers or inside memories. */
1636 for (i = 0; i < recog_data.n_operands; ++i)
1638 x = recog_data.operand[i];
1639 switch (GET_CODE (x))
1641 case MEM:
1643 rtx addr = XEXP (x, 0);
1645 if (!instantiate_virtual_regs_in_rtx (&addr))
1646 continue;
1648 start_sequence ();
1649 x = replace_equiv_address (x, addr, true);
1650 /* It may happen that the address with the virtual reg
1651 was valid (e.g. based on the virtual stack reg, which might
1652 be acceptable to the predicates with all offsets), whereas
1653 the address now isn't anymore, for instance when the address
1654 is still offsetted, but the base reg isn't virtual-stack-reg
1655 anymore. Below we would do a force_reg on the whole operand,
1656 but this insn might actually only accept memory. Hence,
1657 before doing that last resort, try to reload the address into
1658 a register, so this operand stays a MEM. */
1659 if (!safe_insn_predicate (insn_code, i, x))
1661 addr = force_reg (GET_MODE (addr), addr);
1662 x = replace_equiv_address (x, addr, true);
1664 seq = get_insns ();
1665 end_sequence ();
1666 if (seq)
1667 emit_insn_before (seq, insn);
1669 break;
1671 case REG:
1672 new_rtx = instantiate_new_reg (x, &offset);
1673 if (new_rtx == NULL)
1674 continue;
1675 if (offset == 0)
1676 x = new_rtx;
1677 else
1679 start_sequence ();
1681 /* Careful, special mode predicates may have stuff in
1682 insn_data[insn_code].operand[i].mode that isn't useful
1683 to us for computing a new value. */
1684 /* ??? Recognize address_operand and/or "p" constraints
1685 to see if (plus new offset) is a valid before we put
1686 this through expand_simple_binop. */
1687 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1688 gen_int_mode (offset, GET_MODE (x)),
1689 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1690 seq = get_insns ();
1691 end_sequence ();
1692 emit_insn_before (seq, insn);
1694 break;
1696 case SUBREG:
1697 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1698 if (new_rtx == NULL)
1699 continue;
1700 if (offset != 0)
1702 start_sequence ();
1703 new_rtx = expand_simple_binop
1704 (GET_MODE (new_rtx), PLUS, new_rtx,
1705 gen_int_mode (offset, GET_MODE (new_rtx)),
1706 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1707 seq = get_insns ();
1708 end_sequence ();
1709 emit_insn_before (seq, insn);
1711 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1712 GET_MODE (new_rtx), SUBREG_BYTE (x));
1713 gcc_assert (x);
1714 break;
1716 default:
1717 continue;
1720 /* At this point, X contains the new value for the operand.
1721 Validate the new value vs the insn predicate. Note that
1722 asm insns will have insn_code -1 here. */
1723 if (!safe_insn_predicate (insn_code, i, x))
1725 start_sequence ();
1726 if (REG_P (x))
1728 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1729 x = copy_to_reg (x);
1731 else
1732 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1733 seq = get_insns ();
1734 end_sequence ();
1735 if (seq)
1736 emit_insn_before (seq, insn);
1739 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1740 any_change = true;
1743 if (any_change)
1745 /* Propagate operand changes into the duplicates. */
1746 for (i = 0; i < recog_data.n_dups; ++i)
1747 *recog_data.dup_loc[i]
1748 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1750 /* Force re-recognition of the instruction for validation. */
1751 INSN_CODE (insn) = -1;
1754 if (asm_noperands (PATTERN (insn)) >= 0)
1756 if (!check_asm_operands (PATTERN (insn)))
1758 error_for_asm (insn, "impossible constraint in %<asm%>");
1759 /* For asm goto, instead of fixing up all the edges
1760 just clear the template and clear input operands
1761 (asm goto doesn't have any output operands). */
1762 if (JUMP_P (insn))
1764 rtx asm_op = extract_asm_operands (PATTERN (insn));
1765 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1766 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1767 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1769 else
1770 delete_insn (insn);
1773 else
1775 if (recog_memoized (insn) < 0)
1776 fatal_insn_not_found (insn);
1780 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1781 do any instantiation required. */
1783 void
1784 instantiate_decl_rtl (rtx x)
1786 rtx addr;
1788 if (x == 0)
1789 return;
1791 /* If this is a CONCAT, recurse for the pieces. */
1792 if (GET_CODE (x) == CONCAT)
1794 instantiate_decl_rtl (XEXP (x, 0));
1795 instantiate_decl_rtl (XEXP (x, 1));
1796 return;
1799 /* If this is not a MEM, no need to do anything. Similarly if the
1800 address is a constant or a register that is not a virtual register. */
1801 if (!MEM_P (x))
1802 return;
1804 addr = XEXP (x, 0);
1805 if (CONSTANT_P (addr)
1806 || (REG_P (addr)
1807 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1808 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1809 return;
1811 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1814 /* Helper for instantiate_decls called via walk_tree: Process all decls
1815 in the given DECL_VALUE_EXPR. */
1817 static tree
1818 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1820 tree t = *tp;
1821 if (! EXPR_P (t))
1823 *walk_subtrees = 0;
1824 if (DECL_P (t))
1826 if (DECL_RTL_SET_P (t))
1827 instantiate_decl_rtl (DECL_RTL (t));
1828 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1829 && DECL_INCOMING_RTL (t))
1830 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1831 if ((TREE_CODE (t) == VAR_DECL
1832 || TREE_CODE (t) == RESULT_DECL)
1833 && DECL_HAS_VALUE_EXPR_P (t))
1835 tree v = DECL_VALUE_EXPR (t);
1836 walk_tree (&v, instantiate_expr, NULL, NULL);
1840 return NULL;
1843 /* Subroutine of instantiate_decls: Process all decls in the given
1844 BLOCK node and all its subblocks. */
1846 static void
1847 instantiate_decls_1 (tree let)
1849 tree t;
1851 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1853 if (DECL_RTL_SET_P (t))
1854 instantiate_decl_rtl (DECL_RTL (t));
1855 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1857 tree v = DECL_VALUE_EXPR (t);
1858 walk_tree (&v, instantiate_expr, NULL, NULL);
1862 /* Process all subblocks. */
1863 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1864 instantiate_decls_1 (t);
1867 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1868 all virtual registers in their DECL_RTL's. */
1870 static void
1871 instantiate_decls (tree fndecl)
1873 tree decl;
1874 unsigned ix;
1876 /* Process all parameters of the function. */
1877 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1879 instantiate_decl_rtl (DECL_RTL (decl));
1880 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1881 if (DECL_HAS_VALUE_EXPR_P (decl))
1883 tree v = DECL_VALUE_EXPR (decl);
1884 walk_tree (&v, instantiate_expr, NULL, NULL);
1888 if ((decl = DECL_RESULT (fndecl))
1889 && TREE_CODE (decl) == RESULT_DECL)
1891 if (DECL_RTL_SET_P (decl))
1892 instantiate_decl_rtl (DECL_RTL (decl));
1893 if (DECL_HAS_VALUE_EXPR_P (decl))
1895 tree v = DECL_VALUE_EXPR (decl);
1896 walk_tree (&v, instantiate_expr, NULL, NULL);
1900 /* Process the saved static chain if it exists. */
1901 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1902 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1903 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1905 /* Now process all variables defined in the function or its subblocks. */
1906 instantiate_decls_1 (DECL_INITIAL (fndecl));
1908 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1909 if (DECL_RTL_SET_P (decl))
1910 instantiate_decl_rtl (DECL_RTL (decl));
1911 vec_free (cfun->local_decls);
1914 /* Pass through the INSNS of function FNDECL and convert virtual register
1915 references to hard register references. */
1917 static unsigned int
1918 instantiate_virtual_regs (void)
1920 rtx_insn *insn;
1922 /* Compute the offsets to use for this function. */
1923 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1924 var_offset = STARTING_FRAME_OFFSET;
1925 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1926 out_arg_offset = STACK_POINTER_OFFSET;
1927 #ifdef FRAME_POINTER_CFA_OFFSET
1928 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1929 #else
1930 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1931 #endif
1933 /* Initialize recognition, indicating that volatile is OK. */
1934 init_recog ();
1936 /* Scan through all the insns, instantiating every virtual register still
1937 present. */
1938 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1939 if (INSN_P (insn))
1941 /* These patterns in the instruction stream can never be recognized.
1942 Fortunately, they shouldn't contain virtual registers either. */
1943 if (GET_CODE (PATTERN (insn)) == USE
1944 || GET_CODE (PATTERN (insn)) == CLOBBER
1945 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1946 continue;
1947 else if (DEBUG_INSN_P (insn))
1948 instantiate_virtual_regs_in_rtx (&INSN_VAR_LOCATION (insn));
1949 else
1950 instantiate_virtual_regs_in_insn (insn);
1952 if (insn->deleted ())
1953 continue;
1955 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
1957 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1958 if (CALL_P (insn))
1959 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
1962 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1963 instantiate_decls (current_function_decl);
1965 targetm.instantiate_decls ();
1967 /* Indicate that, from now on, assign_stack_local should use
1968 frame_pointer_rtx. */
1969 virtuals_instantiated = 1;
1971 return 0;
1974 namespace {
1976 const pass_data pass_data_instantiate_virtual_regs =
1978 RTL_PASS, /* type */
1979 "vregs", /* name */
1980 OPTGROUP_NONE, /* optinfo_flags */
1981 TV_NONE, /* tv_id */
1982 0, /* properties_required */
1983 0, /* properties_provided */
1984 0, /* properties_destroyed */
1985 0, /* todo_flags_start */
1986 0, /* todo_flags_finish */
1989 class pass_instantiate_virtual_regs : public rtl_opt_pass
1991 public:
1992 pass_instantiate_virtual_regs (gcc::context *ctxt)
1993 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
1996 /* opt_pass methods: */
1997 virtual unsigned int execute (function *)
1999 return instantiate_virtual_regs ();
2002 }; // class pass_instantiate_virtual_regs
2004 } // anon namespace
2006 rtl_opt_pass *
2007 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2009 return new pass_instantiate_virtual_regs (ctxt);
2013 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
2014 This means a type for which function calls must pass an address to the
2015 function or get an address back from the function.
2016 EXP may be a type node or an expression (whose type is tested). */
2019 aggregate_value_p (const_tree exp, const_tree fntype)
2021 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2022 int i, regno, nregs;
2023 rtx reg;
2025 if (fntype)
2026 switch (TREE_CODE (fntype))
2028 case CALL_EXPR:
2030 tree fndecl = get_callee_fndecl (fntype);
2031 if (fndecl)
2032 fntype = TREE_TYPE (fndecl);
2033 else if (CALL_EXPR_FN (fntype))
2034 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2035 else
2036 /* For internal functions, assume nothing needs to be
2037 returned in memory. */
2038 return 0;
2040 break;
2041 case FUNCTION_DECL:
2042 fntype = TREE_TYPE (fntype);
2043 break;
2044 case FUNCTION_TYPE:
2045 case METHOD_TYPE:
2046 break;
2047 case IDENTIFIER_NODE:
2048 fntype = NULL_TREE;
2049 break;
2050 default:
2051 /* We don't expect other tree types here. */
2052 gcc_unreachable ();
2055 if (VOID_TYPE_P (type))
2056 return 0;
2058 /* If a record should be passed the same as its first (and only) member
2059 don't pass it as an aggregate. */
2060 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2061 return aggregate_value_p (first_field (type), fntype);
2063 /* If the front end has decided that this needs to be passed by
2064 reference, do so. */
2065 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2066 && DECL_BY_REFERENCE (exp))
2067 return 1;
2069 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2070 if (fntype && TREE_ADDRESSABLE (fntype))
2071 return 1;
2073 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2074 and thus can't be returned in registers. */
2075 if (TREE_ADDRESSABLE (type))
2076 return 1;
2078 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2079 return 1;
2081 if (targetm.calls.return_in_memory (type, fntype))
2082 return 1;
2084 /* Make sure we have suitable call-clobbered regs to return
2085 the value in; if not, we must return it in memory. */
2086 reg = hard_function_value (type, 0, fntype, 0);
2088 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2089 it is OK. */
2090 if (!REG_P (reg))
2091 return 0;
2093 regno = REGNO (reg);
2094 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
2095 for (i = 0; i < nregs; i++)
2096 if (! call_used_regs[regno + i])
2097 return 1;
2099 return 0;
2102 /* Return true if we should assign DECL a pseudo register; false if it
2103 should live on the local stack. */
2105 bool
2106 use_register_for_decl (const_tree decl)
2108 if (!targetm.calls.allocate_stack_slots_for_args ())
2109 return true;
2111 /* Honor volatile. */
2112 if (TREE_SIDE_EFFECTS (decl))
2113 return false;
2115 /* Honor addressability. */
2116 if (TREE_ADDRESSABLE (decl))
2117 return false;
2119 /* Decl is implicitly addressible by bound stores and loads
2120 if it is an aggregate holding bounds. */
2121 if (chkp_function_instrumented_p (current_function_decl)
2122 && TREE_TYPE (decl)
2123 && !BOUNDED_P (decl)
2124 && chkp_type_has_pointer (TREE_TYPE (decl)))
2125 return false;
2127 /* Only register-like things go in registers. */
2128 if (DECL_MODE (decl) == BLKmode)
2129 return false;
2131 /* If -ffloat-store specified, don't put explicit float variables
2132 into registers. */
2133 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2134 propagates values across these stores, and it probably shouldn't. */
2135 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2136 return false;
2138 /* If we're not interested in tracking debugging information for
2139 this decl, then we can certainly put it in a register. */
2140 if (DECL_IGNORED_P (decl))
2141 return true;
2143 if (optimize)
2144 return true;
2146 if (!DECL_REGISTER (decl))
2147 return false;
2149 switch (TREE_CODE (TREE_TYPE (decl)))
2151 case RECORD_TYPE:
2152 case UNION_TYPE:
2153 case QUAL_UNION_TYPE:
2154 /* When not optimizing, disregard register keyword for variables with
2155 types containing methods, otherwise the methods won't be callable
2156 from the debugger. */
2157 if (TYPE_METHODS (TREE_TYPE (decl)))
2158 return false;
2159 break;
2160 default:
2161 break;
2164 return true;
2167 /* Return true if TYPE should be passed by invisible reference. */
2169 bool
2170 pass_by_reference (CUMULATIVE_ARGS *ca, machine_mode mode,
2171 tree type, bool named_arg)
2173 if (type)
2175 /* If this type contains non-trivial constructors, then it is
2176 forbidden for the middle-end to create any new copies. */
2177 if (TREE_ADDRESSABLE (type))
2178 return true;
2180 /* GCC post 3.4 passes *all* variable sized types by reference. */
2181 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
2182 return true;
2184 /* If a record type should be passed the same as its first (and only)
2185 member, use the type and mode of that member. */
2186 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2188 type = TREE_TYPE (first_field (type));
2189 mode = TYPE_MODE (type);
2193 return targetm.calls.pass_by_reference (pack_cumulative_args (ca), mode,
2194 type, named_arg);
2197 /* Return true if TYPE, which is passed by reference, should be callee
2198 copied instead of caller copied. */
2200 bool
2201 reference_callee_copied (CUMULATIVE_ARGS *ca, machine_mode mode,
2202 tree type, bool named_arg)
2204 if (type && TREE_ADDRESSABLE (type))
2205 return false;
2206 return targetm.calls.callee_copies (pack_cumulative_args (ca), mode, type,
2207 named_arg);
2210 /* Structures to communicate between the subroutines of assign_parms.
2211 The first holds data persistent across all parameters, the second
2212 is cleared out for each parameter. */
2214 struct assign_parm_data_all
2216 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2217 should become a job of the target or otherwise encapsulated. */
2218 CUMULATIVE_ARGS args_so_far_v;
2219 cumulative_args_t args_so_far;
2220 struct args_size stack_args_size;
2221 tree function_result_decl;
2222 tree orig_fnargs;
2223 rtx_insn *first_conversion_insn;
2224 rtx_insn *last_conversion_insn;
2225 HOST_WIDE_INT pretend_args_size;
2226 HOST_WIDE_INT extra_pretend_bytes;
2227 int reg_parm_stack_space;
2230 struct assign_parm_data_one
2232 tree nominal_type;
2233 tree passed_type;
2234 rtx entry_parm;
2235 rtx stack_parm;
2236 machine_mode nominal_mode;
2237 machine_mode passed_mode;
2238 machine_mode promoted_mode;
2239 struct locate_and_pad_arg_data locate;
2240 int partial;
2241 BOOL_BITFIELD named_arg : 1;
2242 BOOL_BITFIELD passed_pointer : 1;
2243 BOOL_BITFIELD on_stack : 1;
2244 BOOL_BITFIELD loaded_in_reg : 1;
2247 struct bounds_parm_data
2249 assign_parm_data_one parm_data;
2250 tree bounds_parm;
2251 tree ptr_parm;
2252 rtx ptr_entry;
2253 int bound_no;
2256 /* A subroutine of assign_parms. Initialize ALL. */
2258 static void
2259 assign_parms_initialize_all (struct assign_parm_data_all *all)
2261 tree fntype ATTRIBUTE_UNUSED;
2263 memset (all, 0, sizeof (*all));
2265 fntype = TREE_TYPE (current_function_decl);
2267 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2268 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2269 #else
2270 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2271 current_function_decl, -1);
2272 #endif
2273 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2275 #ifdef INCOMING_REG_PARM_STACK_SPACE
2276 all->reg_parm_stack_space
2277 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2278 #endif
2281 /* If ARGS contains entries with complex types, split the entry into two
2282 entries of the component type. Return a new list of substitutions are
2283 needed, else the old list. */
2285 static void
2286 split_complex_args (vec<tree> *args)
2288 unsigned i;
2289 tree p;
2291 FOR_EACH_VEC_ELT (*args, i, p)
2293 tree type = TREE_TYPE (p);
2294 if (TREE_CODE (type) == COMPLEX_TYPE
2295 && targetm.calls.split_complex_arg (type))
2297 tree decl;
2298 tree subtype = TREE_TYPE (type);
2299 bool addressable = TREE_ADDRESSABLE (p);
2301 /* Rewrite the PARM_DECL's type with its component. */
2302 p = copy_node (p);
2303 TREE_TYPE (p) = subtype;
2304 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2305 DECL_MODE (p) = VOIDmode;
2306 DECL_SIZE (p) = NULL;
2307 DECL_SIZE_UNIT (p) = NULL;
2308 /* If this arg must go in memory, put it in a pseudo here.
2309 We can't allow it to go in memory as per normal parms,
2310 because the usual place might not have the imag part
2311 adjacent to the real part. */
2312 DECL_ARTIFICIAL (p) = addressable;
2313 DECL_IGNORED_P (p) = addressable;
2314 TREE_ADDRESSABLE (p) = 0;
2315 layout_decl (p, 0);
2316 (*args)[i] = p;
2318 /* Build a second synthetic decl. */
2319 decl = build_decl (EXPR_LOCATION (p),
2320 PARM_DECL, NULL_TREE, subtype);
2321 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2322 DECL_ARTIFICIAL (decl) = addressable;
2323 DECL_IGNORED_P (decl) = addressable;
2324 layout_decl (decl, 0);
2325 args->safe_insert (++i, decl);
2330 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2331 the hidden struct return argument, and (abi willing) complex args.
2332 Return the new parameter list. */
2334 static vec<tree>
2335 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2337 tree fndecl = current_function_decl;
2338 tree fntype = TREE_TYPE (fndecl);
2339 vec<tree> fnargs = vNULL;
2340 tree arg;
2342 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2343 fnargs.safe_push (arg);
2345 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2347 /* If struct value address is treated as the first argument, make it so. */
2348 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2349 && ! cfun->returns_pcc_struct
2350 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2352 tree type = build_pointer_type (TREE_TYPE (fntype));
2353 tree decl;
2355 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2356 PARM_DECL, get_identifier (".result_ptr"), type);
2357 DECL_ARG_TYPE (decl) = type;
2358 DECL_ARTIFICIAL (decl) = 1;
2359 DECL_NAMELESS (decl) = 1;
2360 TREE_CONSTANT (decl) = 1;
2362 DECL_CHAIN (decl) = all->orig_fnargs;
2363 all->orig_fnargs = decl;
2364 fnargs.safe_insert (0, decl);
2366 all->function_result_decl = decl;
2368 /* If function is instrumented then bounds of the
2369 passed structure address is the second argument. */
2370 if (chkp_function_instrumented_p (fndecl))
2372 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2373 PARM_DECL, get_identifier (".result_bnd"),
2374 pointer_bounds_type_node);
2375 DECL_ARG_TYPE (decl) = pointer_bounds_type_node;
2376 DECL_ARTIFICIAL (decl) = 1;
2377 DECL_NAMELESS (decl) = 1;
2378 TREE_CONSTANT (decl) = 1;
2380 DECL_CHAIN (decl) = DECL_CHAIN (all->orig_fnargs);
2381 DECL_CHAIN (all->orig_fnargs) = decl;
2382 fnargs.safe_insert (1, decl);
2386 /* If the target wants to split complex arguments into scalars, do so. */
2387 if (targetm.calls.split_complex_arg)
2388 split_complex_args (&fnargs);
2390 return fnargs;
2393 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2394 data for the parameter. Incorporate ABI specifics such as pass-by-
2395 reference and type promotion. */
2397 static void
2398 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2399 struct assign_parm_data_one *data)
2401 tree nominal_type, passed_type;
2402 machine_mode nominal_mode, passed_mode, promoted_mode;
2403 int unsignedp;
2405 memset (data, 0, sizeof (*data));
2407 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2408 if (!cfun->stdarg)
2409 data->named_arg = 1; /* No variadic parms. */
2410 else if (DECL_CHAIN (parm))
2411 data->named_arg = 1; /* Not the last non-variadic parm. */
2412 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2413 data->named_arg = 1; /* Only variadic ones are unnamed. */
2414 else
2415 data->named_arg = 0; /* Treat as variadic. */
2417 nominal_type = TREE_TYPE (parm);
2418 passed_type = DECL_ARG_TYPE (parm);
2420 /* Look out for errors propagating this far. Also, if the parameter's
2421 type is void then its value doesn't matter. */
2422 if (TREE_TYPE (parm) == error_mark_node
2423 /* This can happen after weird syntax errors
2424 or if an enum type is defined among the parms. */
2425 || TREE_CODE (parm) != PARM_DECL
2426 || passed_type == NULL
2427 || VOID_TYPE_P (nominal_type))
2429 nominal_type = passed_type = void_type_node;
2430 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2431 goto egress;
2434 /* Find mode of arg as it is passed, and mode of arg as it should be
2435 during execution of this function. */
2436 passed_mode = TYPE_MODE (passed_type);
2437 nominal_mode = TYPE_MODE (nominal_type);
2439 /* If the parm is to be passed as a transparent union or record, use the
2440 type of the first field for the tests below. We have already verified
2441 that the modes are the same. */
2442 if ((TREE_CODE (passed_type) == UNION_TYPE
2443 || TREE_CODE (passed_type) == RECORD_TYPE)
2444 && TYPE_TRANSPARENT_AGGR (passed_type))
2445 passed_type = TREE_TYPE (first_field (passed_type));
2447 /* See if this arg was passed by invisible reference. */
2448 if (pass_by_reference (&all->args_so_far_v, passed_mode,
2449 passed_type, data->named_arg))
2451 passed_type = nominal_type = build_pointer_type (passed_type);
2452 data->passed_pointer = true;
2453 passed_mode = nominal_mode = TYPE_MODE (nominal_type);
2456 /* Find mode as it is passed by the ABI. */
2457 unsignedp = TYPE_UNSIGNED (passed_type);
2458 promoted_mode = promote_function_mode (passed_type, passed_mode, &unsignedp,
2459 TREE_TYPE (current_function_decl), 0);
2461 egress:
2462 data->nominal_type = nominal_type;
2463 data->passed_type = passed_type;
2464 data->nominal_mode = nominal_mode;
2465 data->passed_mode = passed_mode;
2466 data->promoted_mode = promoted_mode;
2469 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2471 static void
2472 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2473 struct assign_parm_data_one *data, bool no_rtl)
2475 int varargs_pretend_bytes = 0;
2477 targetm.calls.setup_incoming_varargs (all->args_so_far,
2478 data->promoted_mode,
2479 data->passed_type,
2480 &varargs_pretend_bytes, no_rtl);
2482 /* If the back-end has requested extra stack space, record how much is
2483 needed. Do not change pretend_args_size otherwise since it may be
2484 nonzero from an earlier partial argument. */
2485 if (varargs_pretend_bytes > 0)
2486 all->pretend_args_size = varargs_pretend_bytes;
2489 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2490 the incoming location of the current parameter. */
2492 static void
2493 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2494 struct assign_parm_data_one *data)
2496 HOST_WIDE_INT pretend_bytes = 0;
2497 rtx entry_parm;
2498 bool in_regs;
2500 if (data->promoted_mode == VOIDmode)
2502 data->entry_parm = data->stack_parm = const0_rtx;
2503 return;
2506 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2507 data->promoted_mode,
2508 data->passed_type,
2509 data->named_arg);
2511 if (entry_parm == 0)
2512 data->promoted_mode = data->passed_mode;
2514 /* Determine parm's home in the stack, in case it arrives in the stack
2515 or we should pretend it did. Compute the stack position and rtx where
2516 the argument arrives and its size.
2518 There is one complexity here: If this was a parameter that would
2519 have been passed in registers, but wasn't only because it is
2520 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2521 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2522 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2523 as it was the previous time. */
2524 in_regs = (entry_parm != 0) || POINTER_BOUNDS_TYPE_P (data->passed_type);
2525 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2526 in_regs = true;
2527 #endif
2528 if (!in_regs && !data->named_arg)
2530 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2532 rtx tem;
2533 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2534 data->promoted_mode,
2535 data->passed_type, true);
2536 in_regs = tem != NULL;
2540 /* If this parameter was passed both in registers and in the stack, use
2541 the copy on the stack. */
2542 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2543 data->passed_type))
2544 entry_parm = 0;
2546 if (entry_parm)
2548 int partial;
2550 partial = targetm.calls.arg_partial_bytes (all->args_so_far,
2551 data->promoted_mode,
2552 data->passed_type,
2553 data->named_arg);
2554 data->partial = partial;
2556 /* The caller might already have allocated stack space for the
2557 register parameters. */
2558 if (partial != 0 && all->reg_parm_stack_space == 0)
2560 /* Part of this argument is passed in registers and part
2561 is passed on the stack. Ask the prologue code to extend
2562 the stack part so that we can recreate the full value.
2564 PRETEND_BYTES is the size of the registers we need to store.
2565 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2566 stack space that the prologue should allocate.
2568 Internally, gcc assumes that the argument pointer is aligned
2569 to STACK_BOUNDARY bits. This is used both for alignment
2570 optimizations (see init_emit) and to locate arguments that are
2571 aligned to more than PARM_BOUNDARY bits. We must preserve this
2572 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2573 a stack boundary. */
2575 /* We assume at most one partial arg, and it must be the first
2576 argument on the stack. */
2577 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2579 pretend_bytes = partial;
2580 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2582 /* We want to align relative to the actual stack pointer, so
2583 don't include this in the stack size until later. */
2584 all->extra_pretend_bytes = all->pretend_args_size;
2588 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2589 all->reg_parm_stack_space,
2590 entry_parm ? data->partial : 0, current_function_decl,
2591 &all->stack_args_size, &data->locate);
2593 /* Update parm_stack_boundary if this parameter is passed in the
2594 stack. */
2595 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2596 crtl->parm_stack_boundary = data->locate.boundary;
2598 /* Adjust offsets to include the pretend args. */
2599 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2600 data->locate.slot_offset.constant += pretend_bytes;
2601 data->locate.offset.constant += pretend_bytes;
2603 data->entry_parm = entry_parm;
2606 /* A subroutine of assign_parms. If there is actually space on the stack
2607 for this parm, count it in stack_args_size and return true. */
2609 static bool
2610 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2611 struct assign_parm_data_one *data)
2613 /* Bounds are never passed on the stack to keep compatibility
2614 with not instrumented code. */
2615 if (POINTER_BOUNDS_TYPE_P (data->passed_type))
2616 return false;
2617 /* Trivially true if we've no incoming register. */
2618 else if (data->entry_parm == NULL)
2620 /* Also true if we're partially in registers and partially not,
2621 since we've arranged to drop the entire argument on the stack. */
2622 else if (data->partial != 0)
2624 /* Also true if the target says that it's passed in both registers
2625 and on the stack. */
2626 else if (GET_CODE (data->entry_parm) == PARALLEL
2627 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2629 /* Also true if the target says that there's stack allocated for
2630 all register parameters. */
2631 else if (all->reg_parm_stack_space > 0)
2633 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2634 else
2635 return false;
2637 all->stack_args_size.constant += data->locate.size.constant;
2638 if (data->locate.size.var)
2639 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2641 return true;
2644 /* A subroutine of assign_parms. Given that this parameter is allocated
2645 stack space by the ABI, find it. */
2647 static void
2648 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2650 rtx offset_rtx, stack_parm;
2651 unsigned int align, boundary;
2653 /* If we're passing this arg using a reg, make its stack home the
2654 aligned stack slot. */
2655 if (data->entry_parm)
2656 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2657 else
2658 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2660 stack_parm = crtl->args.internal_arg_pointer;
2661 if (offset_rtx != const0_rtx)
2662 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2663 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2665 if (!data->passed_pointer)
2667 set_mem_attributes (stack_parm, parm, 1);
2668 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2669 while promoted mode's size is needed. */
2670 if (data->promoted_mode != BLKmode
2671 && data->promoted_mode != DECL_MODE (parm))
2673 set_mem_size (stack_parm, GET_MODE_SIZE (data->promoted_mode));
2674 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2676 int offset = subreg_lowpart_offset (DECL_MODE (parm),
2677 data->promoted_mode);
2678 if (offset)
2679 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2684 boundary = data->locate.boundary;
2685 align = BITS_PER_UNIT;
2687 /* If we're padding upward, we know that the alignment of the slot
2688 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2689 intentionally forcing upward padding. Otherwise we have to come
2690 up with a guess at the alignment based on OFFSET_RTX. */
2691 if (data->locate.where_pad != downward || data->entry_parm)
2692 align = boundary;
2693 else if (CONST_INT_P (offset_rtx))
2695 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2696 align = align & -align;
2698 set_mem_align (stack_parm, align);
2700 if (data->entry_parm)
2701 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2703 data->stack_parm = stack_parm;
2706 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2707 always valid and contiguous. */
2709 static void
2710 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2712 rtx entry_parm = data->entry_parm;
2713 rtx stack_parm = data->stack_parm;
2715 /* If this parm was passed part in regs and part in memory, pretend it
2716 arrived entirely in memory by pushing the register-part onto the stack.
2717 In the special case of a DImode or DFmode that is split, we could put
2718 it together in a pseudoreg directly, but for now that's not worth
2719 bothering with. */
2720 if (data->partial != 0)
2722 /* Handle calls that pass values in multiple non-contiguous
2723 locations. The Irix 6 ABI has examples of this. */
2724 if (GET_CODE (entry_parm) == PARALLEL)
2725 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2726 data->passed_type,
2727 int_size_in_bytes (data->passed_type));
2728 else
2730 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2731 move_block_from_reg (REGNO (entry_parm),
2732 validize_mem (copy_rtx (stack_parm)),
2733 data->partial / UNITS_PER_WORD);
2736 entry_parm = stack_parm;
2739 /* If we didn't decide this parm came in a register, by default it came
2740 on the stack. */
2741 else if (entry_parm == NULL)
2742 entry_parm = stack_parm;
2744 /* When an argument is passed in multiple locations, we can't make use
2745 of this information, but we can save some copying if the whole argument
2746 is passed in a single register. */
2747 else if (GET_CODE (entry_parm) == PARALLEL
2748 && data->nominal_mode != BLKmode
2749 && data->passed_mode != BLKmode)
2751 size_t i, len = XVECLEN (entry_parm, 0);
2753 for (i = 0; i < len; i++)
2754 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2755 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2756 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2757 == data->passed_mode)
2758 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2760 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2761 break;
2765 data->entry_parm = entry_parm;
2768 /* A subroutine of assign_parms. Reconstitute any values which were
2769 passed in multiple registers and would fit in a single register. */
2771 static void
2772 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2774 rtx entry_parm = data->entry_parm;
2776 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2777 This can be done with register operations rather than on the
2778 stack, even if we will store the reconstituted parameter on the
2779 stack later. */
2780 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2782 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2783 emit_group_store (parmreg, entry_parm, data->passed_type,
2784 GET_MODE_SIZE (GET_MODE (entry_parm)));
2785 entry_parm = parmreg;
2788 data->entry_parm = entry_parm;
2791 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2792 always valid and properly aligned. */
2794 static void
2795 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2797 rtx stack_parm = data->stack_parm;
2799 /* If we can't trust the parm stack slot to be aligned enough for its
2800 ultimate type, don't use that slot after entry. We'll make another
2801 stack slot, if we need one. */
2802 if (stack_parm
2803 && ((STRICT_ALIGNMENT
2804 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2805 || (data->nominal_type
2806 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2807 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2808 stack_parm = NULL;
2810 /* If parm was passed in memory, and we need to convert it on entry,
2811 don't store it back in that same slot. */
2812 else if (data->entry_parm == stack_parm
2813 && data->nominal_mode != BLKmode
2814 && data->nominal_mode != data->passed_mode)
2815 stack_parm = NULL;
2817 /* If stack protection is in effect for this function, don't leave any
2818 pointers in their passed stack slots. */
2819 else if (crtl->stack_protect_guard
2820 && (flag_stack_protect == 2
2821 || data->passed_pointer
2822 || POINTER_TYPE_P (data->nominal_type)))
2823 stack_parm = NULL;
2825 data->stack_parm = stack_parm;
2828 /* A subroutine of assign_parms. Return true if the current parameter
2829 should be stored as a BLKmode in the current frame. */
2831 static bool
2832 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2834 if (data->nominal_mode == BLKmode)
2835 return true;
2836 if (GET_MODE (data->entry_parm) == BLKmode)
2837 return true;
2839 #ifdef BLOCK_REG_PADDING
2840 /* Only assign_parm_setup_block knows how to deal with register arguments
2841 that are padded at the least significant end. */
2842 if (REG_P (data->entry_parm)
2843 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2844 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2845 == (BYTES_BIG_ENDIAN ? upward : downward)))
2846 return true;
2847 #endif
2849 return false;
2852 /* A subroutine of assign_parms. Arrange for the parameter to be
2853 present and valid in DATA->STACK_RTL. */
2855 static void
2856 assign_parm_setup_block (struct assign_parm_data_all *all,
2857 tree parm, struct assign_parm_data_one *data)
2859 rtx entry_parm = data->entry_parm;
2860 rtx stack_parm = data->stack_parm;
2861 HOST_WIDE_INT size;
2862 HOST_WIDE_INT size_stored;
2864 if (GET_CODE (entry_parm) == PARALLEL)
2865 entry_parm = emit_group_move_into_temps (entry_parm);
2867 size = int_size_in_bytes (data->passed_type);
2868 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2869 if (stack_parm == 0)
2871 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2872 stack_parm = assign_stack_local (BLKmode, size_stored,
2873 DECL_ALIGN (parm));
2874 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2875 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2876 set_mem_attributes (stack_parm, parm, 1);
2879 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2880 calls that pass values in multiple non-contiguous locations. */
2881 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2883 rtx mem;
2885 /* Note that we will be storing an integral number of words.
2886 So we have to be careful to ensure that we allocate an
2887 integral number of words. We do this above when we call
2888 assign_stack_local if space was not allocated in the argument
2889 list. If it was, this will not work if PARM_BOUNDARY is not
2890 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2891 if it becomes a problem. Exception is when BLKmode arrives
2892 with arguments not conforming to word_mode. */
2894 if (data->stack_parm == 0)
2896 else if (GET_CODE (entry_parm) == PARALLEL)
2898 else
2899 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2901 mem = validize_mem (copy_rtx (stack_parm));
2903 /* Handle values in multiple non-contiguous locations. */
2904 if (GET_CODE (entry_parm) == PARALLEL)
2906 push_to_sequence2 (all->first_conversion_insn,
2907 all->last_conversion_insn);
2908 emit_group_store (mem, entry_parm, data->passed_type, size);
2909 all->first_conversion_insn = get_insns ();
2910 all->last_conversion_insn = get_last_insn ();
2911 end_sequence ();
2914 else if (size == 0)
2917 /* If SIZE is that of a mode no bigger than a word, just use
2918 that mode's store operation. */
2919 else if (size <= UNITS_PER_WORD)
2921 machine_mode mode
2922 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2924 if (mode != BLKmode
2925 #ifdef BLOCK_REG_PADDING
2926 && (size == UNITS_PER_WORD
2927 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2928 != (BYTES_BIG_ENDIAN ? upward : downward)))
2929 #endif
2932 rtx reg;
2934 /* We are really truncating a word_mode value containing
2935 SIZE bytes into a value of mode MODE. If such an
2936 operation requires no actual instructions, we can refer
2937 to the value directly in mode MODE, otherwise we must
2938 start with the register in word_mode and explicitly
2939 convert it. */
2940 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2941 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2942 else
2944 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2945 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2947 emit_move_insn (change_address (mem, mode, 0), reg);
2950 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2951 machine must be aligned to the left before storing
2952 to memory. Note that the previous test doesn't
2953 handle all cases (e.g. SIZE == 3). */
2954 else if (size != UNITS_PER_WORD
2955 #ifdef BLOCK_REG_PADDING
2956 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2957 == downward)
2958 #else
2959 && BYTES_BIG_ENDIAN
2960 #endif
2963 rtx tem, x;
2964 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2965 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2967 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
2968 tem = change_address (mem, word_mode, 0);
2969 emit_move_insn (tem, x);
2971 else
2972 move_block_from_reg (REGNO (entry_parm), mem,
2973 size_stored / UNITS_PER_WORD);
2975 else
2976 move_block_from_reg (REGNO (entry_parm), mem,
2977 size_stored / UNITS_PER_WORD);
2979 else if (data->stack_parm == 0)
2981 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2982 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2983 BLOCK_OP_NORMAL);
2984 all->first_conversion_insn = get_insns ();
2985 all->last_conversion_insn = get_last_insn ();
2986 end_sequence ();
2989 data->stack_parm = stack_parm;
2990 SET_DECL_RTL (parm, stack_parm);
2993 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2994 parameter. Get it there. Perform all ABI specified conversions. */
2996 static void
2997 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2998 struct assign_parm_data_one *data)
3000 rtx parmreg, validated_mem;
3001 rtx equiv_stack_parm;
3002 machine_mode promoted_nominal_mode;
3003 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3004 bool did_conversion = false;
3005 bool need_conversion, moved;
3007 /* Store the parm in a pseudoregister during the function, but we may
3008 need to do it in a wider mode. Using 2 here makes the result
3009 consistent with promote_decl_mode and thus expand_expr_real_1. */
3010 promoted_nominal_mode
3011 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3012 TREE_TYPE (current_function_decl), 2);
3014 parmreg = gen_reg_rtx (promoted_nominal_mode);
3016 if (!DECL_ARTIFICIAL (parm))
3017 mark_user_reg (parmreg);
3019 /* If this was an item that we received a pointer to,
3020 set DECL_RTL appropriately. */
3021 if (data->passed_pointer)
3023 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
3024 set_mem_attributes (x, parm, 1);
3025 SET_DECL_RTL (parm, x);
3027 else
3028 SET_DECL_RTL (parm, parmreg);
3030 assign_parm_remove_parallels (data);
3032 /* Copy the value into the register, thus bridging between
3033 assign_parm_find_data_types and expand_expr_real_1. */
3035 equiv_stack_parm = data->stack_parm;
3036 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3038 need_conversion = (data->nominal_mode != data->passed_mode
3039 || promoted_nominal_mode != data->promoted_mode);
3040 moved = false;
3042 if (need_conversion
3043 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3044 && data->nominal_mode == data->passed_mode
3045 && data->nominal_mode == GET_MODE (data->entry_parm))
3047 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3048 mode, by the caller. We now have to convert it to
3049 NOMINAL_MODE, if different. However, PARMREG may be in
3050 a different mode than NOMINAL_MODE if it is being stored
3051 promoted.
3053 If ENTRY_PARM is a hard register, it might be in a register
3054 not valid for operating in its mode (e.g., an odd-numbered
3055 register for a DFmode). In that case, moves are the only
3056 thing valid, so we can't do a convert from there. This
3057 occurs when the calling sequence allow such misaligned
3058 usages.
3060 In addition, the conversion may involve a call, which could
3061 clobber parameters which haven't been copied to pseudo
3062 registers yet.
3064 First, we try to emit an insn which performs the necessary
3065 conversion. We verify that this insn does not clobber any
3066 hard registers. */
3068 enum insn_code icode;
3069 rtx op0, op1;
3071 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3072 unsignedp);
3074 op0 = parmreg;
3075 op1 = validated_mem;
3076 if (icode != CODE_FOR_nothing
3077 && insn_operand_matches (icode, 0, op0)
3078 && insn_operand_matches (icode, 1, op1))
3080 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3081 rtx_insn *insn, *insns;
3082 rtx t = op1;
3083 HARD_REG_SET hardregs;
3085 start_sequence ();
3086 /* If op1 is a hard register that is likely spilled, first
3087 force it into a pseudo, otherwise combiner might extend
3088 its lifetime too much. */
3089 if (GET_CODE (t) == SUBREG)
3090 t = SUBREG_REG (t);
3091 if (REG_P (t)
3092 && HARD_REGISTER_P (t)
3093 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3094 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3096 t = gen_reg_rtx (GET_MODE (op1));
3097 emit_move_insn (t, op1);
3099 else
3100 t = op1;
3101 rtx pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3102 data->passed_mode, unsignedp);
3103 emit_insn (pat);
3104 insns = get_insns ();
3106 moved = true;
3107 CLEAR_HARD_REG_SET (hardregs);
3108 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3110 if (INSN_P (insn))
3111 note_stores (PATTERN (insn), record_hard_reg_sets,
3112 &hardregs);
3113 if (!hard_reg_set_empty_p (hardregs))
3114 moved = false;
3117 end_sequence ();
3119 if (moved)
3121 emit_insn (insns);
3122 if (equiv_stack_parm != NULL_RTX)
3123 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3124 equiv_stack_parm);
3129 if (moved)
3130 /* Nothing to do. */
3132 else if (need_conversion)
3134 /* We did not have an insn to convert directly, or the sequence
3135 generated appeared unsafe. We must first copy the parm to a
3136 pseudo reg, and save the conversion until after all
3137 parameters have been moved. */
3139 int save_tree_used;
3140 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3142 emit_move_insn (tempreg, validated_mem);
3144 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3145 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3147 if (GET_CODE (tempreg) == SUBREG
3148 && GET_MODE (tempreg) == data->nominal_mode
3149 && REG_P (SUBREG_REG (tempreg))
3150 && data->nominal_mode == data->passed_mode
3151 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
3152 && GET_MODE_SIZE (GET_MODE (tempreg))
3153 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
3155 /* The argument is already sign/zero extended, so note it
3156 into the subreg. */
3157 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3158 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3161 /* TREE_USED gets set erroneously during expand_assignment. */
3162 save_tree_used = TREE_USED (parm);
3163 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3164 TREE_USED (parm) = save_tree_used;
3165 all->first_conversion_insn = get_insns ();
3166 all->last_conversion_insn = get_last_insn ();
3167 end_sequence ();
3169 did_conversion = true;
3171 else
3172 emit_move_insn (parmreg, validated_mem);
3174 /* If we were passed a pointer but the actual value can safely live
3175 in a register, retrieve it and use it directly. */
3176 if (data->passed_pointer && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3178 /* We can't use nominal_mode, because it will have been set to
3179 Pmode above. We must use the actual mode of the parm. */
3180 if (use_register_for_decl (parm))
3182 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3183 mark_user_reg (parmreg);
3185 else
3187 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3188 TYPE_MODE (TREE_TYPE (parm)),
3189 TYPE_ALIGN (TREE_TYPE (parm)));
3190 parmreg
3191 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3192 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3193 align);
3194 set_mem_attributes (parmreg, parm, 1);
3197 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
3199 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
3200 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3202 push_to_sequence2 (all->first_conversion_insn,
3203 all->last_conversion_insn);
3204 emit_move_insn (tempreg, DECL_RTL (parm));
3205 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3206 emit_move_insn (parmreg, tempreg);
3207 all->first_conversion_insn = get_insns ();
3208 all->last_conversion_insn = get_last_insn ();
3209 end_sequence ();
3211 did_conversion = true;
3213 else
3214 emit_move_insn (parmreg, DECL_RTL (parm));
3216 SET_DECL_RTL (parm, parmreg);
3218 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3219 now the parm. */
3220 data->stack_parm = NULL;
3223 /* Mark the register as eliminable if we did no conversion and it was
3224 copied from memory at a fixed offset, and the arg pointer was not
3225 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3226 offset formed an invalid address, such memory-equivalences as we
3227 make here would screw up life analysis for it. */
3228 if (data->nominal_mode == data->passed_mode
3229 && !did_conversion
3230 && data->stack_parm != 0
3231 && MEM_P (data->stack_parm)
3232 && data->locate.offset.var == 0
3233 && reg_mentioned_p (virtual_incoming_args_rtx,
3234 XEXP (data->stack_parm, 0)))
3236 rtx_insn *linsn = get_last_insn ();
3237 rtx_insn *sinsn;
3238 rtx set;
3240 /* Mark complex types separately. */
3241 if (GET_CODE (parmreg) == CONCAT)
3243 machine_mode submode
3244 = GET_MODE_INNER (GET_MODE (parmreg));
3245 int regnor = REGNO (XEXP (parmreg, 0));
3246 int regnoi = REGNO (XEXP (parmreg, 1));
3247 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3248 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3249 GET_MODE_SIZE (submode));
3251 /* Scan backwards for the set of the real and
3252 imaginary parts. */
3253 for (sinsn = linsn; sinsn != 0;
3254 sinsn = prev_nonnote_insn (sinsn))
3256 set = single_set (sinsn);
3257 if (set == 0)
3258 continue;
3260 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3261 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3262 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3263 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3266 else
3267 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3270 /* For pointer data type, suggest pointer register. */
3271 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3272 mark_reg_pointer (parmreg,
3273 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3276 /* A subroutine of assign_parms. Allocate stack space to hold the current
3277 parameter. Get it there. Perform all ABI specified conversions. */
3279 static void
3280 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3281 struct assign_parm_data_one *data)
3283 /* Value must be stored in the stack slot STACK_PARM during function
3284 execution. */
3285 bool to_conversion = false;
3287 assign_parm_remove_parallels (data);
3289 if (data->promoted_mode != data->nominal_mode)
3291 /* Conversion is required. */
3292 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3294 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3296 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3297 to_conversion = true;
3299 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3300 TYPE_UNSIGNED (TREE_TYPE (parm)));
3302 if (data->stack_parm)
3304 int offset = subreg_lowpart_offset (data->nominal_mode,
3305 GET_MODE (data->stack_parm));
3306 /* ??? This may need a big-endian conversion on sparc64. */
3307 data->stack_parm
3308 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3309 if (offset && MEM_OFFSET_KNOWN_P (data->stack_parm))
3310 set_mem_offset (data->stack_parm,
3311 MEM_OFFSET (data->stack_parm) + offset);
3315 if (data->entry_parm != data->stack_parm)
3317 rtx src, dest;
3319 if (data->stack_parm == 0)
3321 int align = STACK_SLOT_ALIGNMENT (data->passed_type,
3322 GET_MODE (data->entry_parm),
3323 TYPE_ALIGN (data->passed_type));
3324 data->stack_parm
3325 = assign_stack_local (GET_MODE (data->entry_parm),
3326 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3327 align);
3328 set_mem_attributes (data->stack_parm, parm, 1);
3331 dest = validize_mem (copy_rtx (data->stack_parm));
3332 src = validize_mem (copy_rtx (data->entry_parm));
3334 if (MEM_P (src))
3336 /* Use a block move to handle potentially misaligned entry_parm. */
3337 if (!to_conversion)
3338 push_to_sequence2 (all->first_conversion_insn,
3339 all->last_conversion_insn);
3340 to_conversion = true;
3342 emit_block_move (dest, src,
3343 GEN_INT (int_size_in_bytes (data->passed_type)),
3344 BLOCK_OP_NORMAL);
3346 else
3347 emit_move_insn (dest, src);
3350 if (to_conversion)
3352 all->first_conversion_insn = get_insns ();
3353 all->last_conversion_insn = get_last_insn ();
3354 end_sequence ();
3357 SET_DECL_RTL (parm, data->stack_parm);
3360 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3361 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3363 static void
3364 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3365 vec<tree> fnargs)
3367 tree parm;
3368 tree orig_fnargs = all->orig_fnargs;
3369 unsigned i = 0;
3371 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3373 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3374 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3376 rtx tmp, real, imag;
3377 machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3379 real = DECL_RTL (fnargs[i]);
3380 imag = DECL_RTL (fnargs[i + 1]);
3381 if (inner != GET_MODE (real))
3383 real = gen_lowpart_SUBREG (inner, real);
3384 imag = gen_lowpart_SUBREG (inner, imag);
3387 if (TREE_ADDRESSABLE (parm))
3389 rtx rmem, imem;
3390 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3391 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3392 DECL_MODE (parm),
3393 TYPE_ALIGN (TREE_TYPE (parm)));
3395 /* split_complex_arg put the real and imag parts in
3396 pseudos. Move them to memory. */
3397 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3398 set_mem_attributes (tmp, parm, 1);
3399 rmem = adjust_address_nv (tmp, inner, 0);
3400 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3401 push_to_sequence2 (all->first_conversion_insn,
3402 all->last_conversion_insn);
3403 emit_move_insn (rmem, real);
3404 emit_move_insn (imem, imag);
3405 all->first_conversion_insn = get_insns ();
3406 all->last_conversion_insn = get_last_insn ();
3407 end_sequence ();
3409 else
3410 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3411 SET_DECL_RTL (parm, tmp);
3413 real = DECL_INCOMING_RTL (fnargs[i]);
3414 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3415 if (inner != GET_MODE (real))
3417 real = gen_lowpart_SUBREG (inner, real);
3418 imag = gen_lowpart_SUBREG (inner, imag);
3420 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3421 set_decl_incoming_rtl (parm, tmp, false);
3422 i++;
3427 /* Load bounds of PARM from bounds table. */
3428 static void
3429 assign_parm_load_bounds (struct assign_parm_data_one *data,
3430 tree parm,
3431 rtx entry,
3432 unsigned bound_no)
3434 bitmap_iterator bi;
3435 unsigned i, offs = 0;
3436 int bnd_no = -1;
3437 rtx slot = NULL, ptr = NULL;
3439 if (parm)
3441 bitmap slots;
3442 bitmap_obstack_initialize (NULL);
3443 slots = BITMAP_ALLOC (NULL);
3444 chkp_find_bound_slots (TREE_TYPE (parm), slots);
3445 EXECUTE_IF_SET_IN_BITMAP (slots, 0, i, bi)
3447 if (bound_no)
3448 bound_no--;
3449 else
3451 bnd_no = i;
3452 break;
3455 BITMAP_FREE (slots);
3456 bitmap_obstack_release (NULL);
3459 /* We may have bounds not associated with any pointer. */
3460 if (bnd_no != -1)
3461 offs = bnd_no * POINTER_SIZE / BITS_PER_UNIT;
3463 /* Find associated pointer. */
3464 if (bnd_no == -1)
3466 /* If bounds are not associated with any bounds,
3467 then it is passed in a register or special slot. */
3468 gcc_assert (data->entry_parm);
3469 ptr = const0_rtx;
3471 else if (MEM_P (entry))
3472 slot = adjust_address (entry, Pmode, offs);
3473 else if (REG_P (entry))
3474 ptr = gen_rtx_REG (Pmode, REGNO (entry) + bnd_no);
3475 else if (GET_CODE (entry) == PARALLEL)
3476 ptr = chkp_get_value_with_offs (entry, GEN_INT (offs));
3477 else
3478 gcc_unreachable ();
3479 data->entry_parm = targetm.calls.load_bounds_for_arg (slot, ptr,
3480 data->entry_parm);
3483 /* Assign RTL expressions to the function's bounds parameters BNDARGS. */
3485 static void
3486 assign_bounds (vec<bounds_parm_data> &bndargs,
3487 struct assign_parm_data_all &all)
3489 unsigned i, pass, handled = 0;
3490 bounds_parm_data *pbdata;
3492 if (!bndargs.exists ())
3493 return;
3495 /* We make few passes to store input bounds. Firstly handle bounds
3496 passed in registers. After that we load bounds passed in special
3497 slots. Finally we load bounds from Bounds Table. */
3498 for (pass = 0; pass < 3; pass++)
3499 FOR_EACH_VEC_ELT (bndargs, i, pbdata)
3501 /* Pass 0 => regs only. */
3502 if (pass == 0
3503 && (!pbdata->parm_data.entry_parm
3504 || GET_CODE (pbdata->parm_data.entry_parm) != REG))
3505 continue;
3506 /* Pass 1 => slots only. */
3507 else if (pass == 1
3508 && (!pbdata->parm_data.entry_parm
3509 || GET_CODE (pbdata->parm_data.entry_parm) == REG))
3510 continue;
3511 /* Pass 2 => BT only. */
3512 else if (pass == 2
3513 && pbdata->parm_data.entry_parm)
3514 continue;
3516 if (!pbdata->parm_data.entry_parm
3517 || GET_CODE (pbdata->parm_data.entry_parm) != REG)
3518 assign_parm_load_bounds (&pbdata->parm_data, pbdata->ptr_parm,
3519 pbdata->ptr_entry, pbdata->bound_no);
3521 set_decl_incoming_rtl (pbdata->bounds_parm,
3522 pbdata->parm_data.entry_parm, false);
3524 if (assign_parm_setup_block_p (&pbdata->parm_data))
3525 assign_parm_setup_block (&all, pbdata->bounds_parm,
3526 &pbdata->parm_data);
3527 else if (pbdata->parm_data.passed_pointer
3528 || use_register_for_decl (pbdata->bounds_parm))
3529 assign_parm_setup_reg (&all, pbdata->bounds_parm,
3530 &pbdata->parm_data);
3531 else
3532 assign_parm_setup_stack (&all, pbdata->bounds_parm,
3533 &pbdata->parm_data);
3535 /* Count handled bounds to make sure we miss nothing. */
3536 handled++;
3539 gcc_assert (handled == bndargs.length ());
3541 bndargs.release ();
3544 /* Assign RTL expressions to the function's parameters. This may involve
3545 copying them into registers and using those registers as the DECL_RTL. */
3547 static void
3548 assign_parms (tree fndecl)
3550 struct assign_parm_data_all all;
3551 tree parm;
3552 vec<tree> fnargs;
3553 unsigned i, bound_no = 0;
3554 tree last_arg = NULL;
3555 rtx last_arg_entry = NULL;
3556 vec<bounds_parm_data> bndargs = vNULL;
3557 bounds_parm_data bdata;
3559 crtl->args.internal_arg_pointer
3560 = targetm.calls.internal_arg_pointer ();
3562 assign_parms_initialize_all (&all);
3563 fnargs = assign_parms_augmented_arg_list (&all);
3565 FOR_EACH_VEC_ELT (fnargs, i, parm)
3567 struct assign_parm_data_one data;
3569 /* Extract the type of PARM; adjust it according to ABI. */
3570 assign_parm_find_data_types (&all, parm, &data);
3572 /* Early out for errors and void parameters. */
3573 if (data.passed_mode == VOIDmode)
3575 SET_DECL_RTL (parm, const0_rtx);
3576 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3577 continue;
3580 /* Estimate stack alignment from parameter alignment. */
3581 if (SUPPORTS_STACK_ALIGNMENT)
3583 unsigned int align
3584 = targetm.calls.function_arg_boundary (data.promoted_mode,
3585 data.passed_type);
3586 align = MINIMUM_ALIGNMENT (data.passed_type, data.promoted_mode,
3587 align);
3588 if (TYPE_ALIGN (data.nominal_type) > align)
3589 align = MINIMUM_ALIGNMENT (data.nominal_type,
3590 TYPE_MODE (data.nominal_type),
3591 TYPE_ALIGN (data.nominal_type));
3592 if (crtl->stack_alignment_estimated < align)
3594 gcc_assert (!crtl->stack_realign_processed);
3595 crtl->stack_alignment_estimated = align;
3599 /* Find out where the parameter arrives in this function. */
3600 assign_parm_find_entry_rtl (&all, &data);
3602 /* Find out where stack space for this parameter might be. */
3603 if (assign_parm_is_stack_parm (&all, &data))
3605 assign_parm_find_stack_rtl (parm, &data);
3606 assign_parm_adjust_entry_rtl (&data);
3608 if (!POINTER_BOUNDS_TYPE_P (data.passed_type))
3610 /* Remember where last non bounds arg was passed in case
3611 we have to load associated bounds for it from Bounds
3612 Table. */
3613 last_arg = parm;
3614 last_arg_entry = data.entry_parm;
3615 bound_no = 0;
3617 /* Record permanently how this parm was passed. */
3618 if (data.passed_pointer)
3620 rtx incoming_rtl
3621 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.passed_type)),
3622 data.entry_parm);
3623 set_decl_incoming_rtl (parm, incoming_rtl, true);
3625 else
3626 set_decl_incoming_rtl (parm, data.entry_parm, false);
3628 /* Boudns should be loaded in the particular order to
3629 have registers allocated correctly. Collect info about
3630 input bounds and load them later. */
3631 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3633 /* Expect bounds in instrumented functions only. */
3634 gcc_assert (chkp_function_instrumented_p (fndecl));
3636 bdata.parm_data = data;
3637 bdata.bounds_parm = parm;
3638 bdata.ptr_parm = last_arg;
3639 bdata.ptr_entry = last_arg_entry;
3640 bdata.bound_no = bound_no;
3641 bndargs.safe_push (bdata);
3643 else
3645 assign_parm_adjust_stack_rtl (&data);
3647 if (assign_parm_setup_block_p (&data))
3648 assign_parm_setup_block (&all, parm, &data);
3649 else if (data.passed_pointer || use_register_for_decl (parm))
3650 assign_parm_setup_reg (&all, parm, &data);
3651 else
3652 assign_parm_setup_stack (&all, parm, &data);
3655 if (cfun->stdarg && !DECL_CHAIN (parm))
3657 int pretend_bytes = 0;
3659 assign_parms_setup_varargs (&all, &data, false);
3661 if (chkp_function_instrumented_p (fndecl))
3663 /* We expect this is the last parm. Otherwise it is wrong
3664 to assign bounds right now. */
3665 gcc_assert (i == (fnargs.length () - 1));
3666 assign_bounds (bndargs, all);
3667 targetm.calls.setup_incoming_vararg_bounds (all.args_so_far,
3668 data.promoted_mode,
3669 data.passed_type,
3670 &pretend_bytes,
3671 false);
3675 /* Update info on where next arg arrives in registers. */
3676 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3677 data.passed_type, data.named_arg);
3679 if (POINTER_BOUNDS_TYPE_P (data.passed_type))
3680 bound_no++;
3683 assign_bounds (bndargs, all);
3685 if (targetm.calls.split_complex_arg)
3686 assign_parms_unsplit_complex (&all, fnargs);
3688 fnargs.release ();
3690 /* Output all parameter conversion instructions (possibly including calls)
3691 now that all parameters have been copied out of hard registers. */
3692 emit_insn (all.first_conversion_insn);
3694 /* Estimate reload stack alignment from scalar return mode. */
3695 if (SUPPORTS_STACK_ALIGNMENT)
3697 if (DECL_RESULT (fndecl))
3699 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3700 machine_mode mode = TYPE_MODE (type);
3702 if (mode != BLKmode
3703 && mode != VOIDmode
3704 && !AGGREGATE_TYPE_P (type))
3706 unsigned int align = GET_MODE_ALIGNMENT (mode);
3707 if (crtl->stack_alignment_estimated < align)
3709 gcc_assert (!crtl->stack_realign_processed);
3710 crtl->stack_alignment_estimated = align;
3716 /* If we are receiving a struct value address as the first argument, set up
3717 the RTL for the function result. As this might require code to convert
3718 the transmitted address to Pmode, we do this here to ensure that possible
3719 preliminary conversions of the address have been emitted already. */
3720 if (all.function_result_decl)
3722 tree result = DECL_RESULT (current_function_decl);
3723 rtx addr = DECL_RTL (all.function_result_decl);
3724 rtx x;
3726 if (DECL_BY_REFERENCE (result))
3728 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3729 x = addr;
3731 else
3733 SET_DECL_VALUE_EXPR (result,
3734 build1 (INDIRECT_REF, TREE_TYPE (result),
3735 all.function_result_decl));
3736 addr = convert_memory_address (Pmode, addr);
3737 x = gen_rtx_MEM (DECL_MODE (result), addr);
3738 set_mem_attributes (x, result, 1);
3741 DECL_HAS_VALUE_EXPR_P (result) = 1;
3743 SET_DECL_RTL (result, x);
3746 /* We have aligned all the args, so add space for the pretend args. */
3747 crtl->args.pretend_args_size = all.pretend_args_size;
3748 all.stack_args_size.constant += all.extra_pretend_bytes;
3749 crtl->args.size = all.stack_args_size.constant;
3751 /* Adjust function incoming argument size for alignment and
3752 minimum length. */
3754 crtl->args.size = MAX (crtl->args.size, all.reg_parm_stack_space);
3755 crtl->args.size = CEIL_ROUND (crtl->args.size,
3756 PARM_BOUNDARY / BITS_PER_UNIT);
3758 #ifdef ARGS_GROW_DOWNWARD
3759 crtl->args.arg_offset_rtx
3760 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3761 : expand_expr (size_diffop (all.stack_args_size.var,
3762 size_int (-all.stack_args_size.constant)),
3763 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3764 #else
3765 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3766 #endif
3768 /* See how many bytes, if any, of its args a function should try to pop
3769 on return. */
3771 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3772 TREE_TYPE (fndecl),
3773 crtl->args.size);
3775 /* For stdarg.h function, save info about
3776 regs and stack space used by the named args. */
3778 crtl->args.info = all.args_so_far_v;
3780 /* Set the rtx used for the function return value. Put this in its
3781 own variable so any optimizers that need this information don't have
3782 to include tree.h. Do this here so it gets done when an inlined
3783 function gets output. */
3785 crtl->return_rtx
3786 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3787 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3789 /* If scalar return value was computed in a pseudo-reg, or was a named
3790 return value that got dumped to the stack, copy that to the hard
3791 return register. */
3792 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3794 tree decl_result = DECL_RESULT (fndecl);
3795 rtx decl_rtl = DECL_RTL (decl_result);
3797 if (REG_P (decl_rtl)
3798 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3799 : DECL_REGISTER (decl_result))
3801 rtx real_decl_rtl;
3803 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3804 fndecl, true);
3805 if (chkp_function_instrumented_p (fndecl))
3806 crtl->return_bnd
3807 = targetm.calls.chkp_function_value_bounds (TREE_TYPE (decl_result),
3808 fndecl, true);
3809 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3810 /* The delay slot scheduler assumes that crtl->return_rtx
3811 holds the hard register containing the return value, not a
3812 temporary pseudo. */
3813 crtl->return_rtx = real_decl_rtl;
3818 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3819 For all seen types, gimplify their sizes. */
3821 static tree
3822 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3824 tree t = *tp;
3826 *walk_subtrees = 0;
3827 if (TYPE_P (t))
3829 if (POINTER_TYPE_P (t))
3830 *walk_subtrees = 1;
3831 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3832 && !TYPE_SIZES_GIMPLIFIED (t))
3834 gimplify_type_sizes (t, (gimple_seq *) data);
3835 *walk_subtrees = 1;
3839 return NULL;
3842 /* Gimplify the parameter list for current_function_decl. This involves
3843 evaluating SAVE_EXPRs of variable sized parameters and generating code
3844 to implement callee-copies reference parameters. Returns a sequence of
3845 statements to add to the beginning of the function. */
3847 gimple_seq
3848 gimplify_parameters (void)
3850 struct assign_parm_data_all all;
3851 tree parm;
3852 gimple_seq stmts = NULL;
3853 vec<tree> fnargs;
3854 unsigned i;
3856 assign_parms_initialize_all (&all);
3857 fnargs = assign_parms_augmented_arg_list (&all);
3859 FOR_EACH_VEC_ELT (fnargs, i, parm)
3861 struct assign_parm_data_one data;
3863 /* Extract the type of PARM; adjust it according to ABI. */
3864 assign_parm_find_data_types (&all, parm, &data);
3866 /* Early out for errors and void parameters. */
3867 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3868 continue;
3870 /* Update info on where next arg arrives in registers. */
3871 targetm.calls.function_arg_advance (all.args_so_far, data.promoted_mode,
3872 data.passed_type, data.named_arg);
3874 /* ??? Once upon a time variable_size stuffed parameter list
3875 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3876 turned out to be less than manageable in the gimple world.
3877 Now we have to hunt them down ourselves. */
3878 walk_tree_without_duplicates (&data.passed_type,
3879 gimplify_parm_type, &stmts);
3881 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3883 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3884 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3887 if (data.passed_pointer)
3889 tree type = TREE_TYPE (data.passed_type);
3890 if (reference_callee_copied (&all.args_so_far_v, TYPE_MODE (type),
3891 type, data.named_arg))
3893 tree local, t;
3895 /* For constant-sized objects, this is trivial; for
3896 variable-sized objects, we have to play games. */
3897 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3898 && !(flag_stack_check == GENERIC_STACK_CHECK
3899 && compare_tree_int (DECL_SIZE_UNIT (parm),
3900 STACK_CHECK_MAX_VAR_SIZE) > 0))
3902 local = create_tmp_var (type, get_name (parm));
3903 DECL_IGNORED_P (local) = 0;
3904 /* If PARM was addressable, move that flag over
3905 to the local copy, as its address will be taken,
3906 not the PARMs. Keep the parms address taken
3907 as we'll query that flag during gimplification. */
3908 if (TREE_ADDRESSABLE (parm))
3909 TREE_ADDRESSABLE (local) = 1;
3910 else if (TREE_CODE (type) == COMPLEX_TYPE
3911 || TREE_CODE (type) == VECTOR_TYPE)
3912 DECL_GIMPLE_REG_P (local) = 1;
3914 else
3916 tree ptr_type, addr;
3918 ptr_type = build_pointer_type (type);
3919 addr = create_tmp_reg (ptr_type, get_name (parm));
3920 DECL_IGNORED_P (addr) = 0;
3921 local = build_fold_indirect_ref (addr);
3923 t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
3924 t = build_call_expr (t, 2, DECL_SIZE_UNIT (parm),
3925 size_int (DECL_ALIGN (parm)));
3927 /* The call has been built for a variable-sized object. */
3928 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3929 t = fold_convert (ptr_type, t);
3930 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3931 gimplify_and_add (t, &stmts);
3934 gimplify_assign (local, parm, &stmts);
3936 SET_DECL_VALUE_EXPR (parm, local);
3937 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3942 fnargs.release ();
3944 return stmts;
3947 /* Compute the size and offset from the start of the stacked arguments for a
3948 parm passed in mode PASSED_MODE and with type TYPE.
3950 INITIAL_OFFSET_PTR points to the current offset into the stacked
3951 arguments.
3953 The starting offset and size for this parm are returned in
3954 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3955 nonzero, the offset is that of stack slot, which is returned in
3956 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3957 padding required from the initial offset ptr to the stack slot.
3959 IN_REGS is nonzero if the argument will be passed in registers. It will
3960 never be set if REG_PARM_STACK_SPACE is not defined.
3962 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
3963 for arguments which are passed in registers.
3965 FNDECL is the function in which the argument was defined.
3967 There are two types of rounding that are done. The first, controlled by
3968 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
3969 argument list to be aligned to the specific boundary (in bits). This
3970 rounding affects the initial and starting offsets, but not the argument
3971 size.
3973 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3974 optionally rounds the size of the parm to PARM_BOUNDARY. The
3975 initial offset is not affected by this rounding, while the size always
3976 is and the starting offset may be. */
3978 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3979 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3980 callers pass in the total size of args so far as
3981 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3983 void
3984 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
3985 int reg_parm_stack_space, int partial,
3986 tree fndecl ATTRIBUTE_UNUSED,
3987 struct args_size *initial_offset_ptr,
3988 struct locate_and_pad_arg_data *locate)
3990 tree sizetree;
3991 enum direction where_pad;
3992 unsigned int boundary, round_boundary;
3993 int part_size_in_regs;
3995 /* If we have found a stack parm before we reach the end of the
3996 area reserved for registers, skip that area. */
3997 if (! in_regs)
3999 if (reg_parm_stack_space > 0)
4001 if (initial_offset_ptr->var)
4003 initial_offset_ptr->var
4004 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4005 ssize_int (reg_parm_stack_space));
4006 initial_offset_ptr->constant = 0;
4008 else if (initial_offset_ptr->constant < reg_parm_stack_space)
4009 initial_offset_ptr->constant = reg_parm_stack_space;
4013 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4015 sizetree
4016 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
4017 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
4018 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4019 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4020 type);
4021 locate->where_pad = where_pad;
4023 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4024 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4025 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4027 locate->boundary = boundary;
4029 if (SUPPORTS_STACK_ALIGNMENT)
4031 /* stack_alignment_estimated can't change after stack has been
4032 realigned. */
4033 if (crtl->stack_alignment_estimated < boundary)
4035 if (!crtl->stack_realign_processed)
4036 crtl->stack_alignment_estimated = boundary;
4037 else
4039 /* If stack is realigned and stack alignment value
4040 hasn't been finalized, it is OK not to increase
4041 stack_alignment_estimated. The bigger alignment
4042 requirement is recorded in stack_alignment_needed
4043 below. */
4044 gcc_assert (!crtl->stack_realign_finalized
4045 && crtl->stack_realign_needed);
4050 /* Remember if the outgoing parameter requires extra alignment on the
4051 calling function side. */
4052 if (crtl->stack_alignment_needed < boundary)
4053 crtl->stack_alignment_needed = boundary;
4054 if (crtl->preferred_stack_boundary < boundary)
4055 crtl->preferred_stack_boundary = boundary;
4057 #ifdef ARGS_GROW_DOWNWARD
4058 locate->slot_offset.constant = -initial_offset_ptr->constant;
4059 if (initial_offset_ptr->var)
4060 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4061 initial_offset_ptr->var);
4064 tree s2 = sizetree;
4065 if (where_pad != none
4066 && (!tree_fits_uhwi_p (sizetree)
4067 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4068 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4069 SUB_PARM_SIZE (locate->slot_offset, s2);
4072 locate->slot_offset.constant += part_size_in_regs;
4074 if (!in_regs || reg_parm_stack_space > 0)
4075 pad_to_arg_alignment (&locate->slot_offset, boundary,
4076 &locate->alignment_pad);
4078 locate->size.constant = (-initial_offset_ptr->constant
4079 - locate->slot_offset.constant);
4080 if (initial_offset_ptr->var)
4081 locate->size.var = size_binop (MINUS_EXPR,
4082 size_binop (MINUS_EXPR,
4083 ssize_int (0),
4084 initial_offset_ptr->var),
4085 locate->slot_offset.var);
4087 /* Pad_below needs the pre-rounded size to know how much to pad
4088 below. */
4089 locate->offset = locate->slot_offset;
4090 if (where_pad == downward)
4091 pad_below (&locate->offset, passed_mode, sizetree);
4093 #else /* !ARGS_GROW_DOWNWARD */
4094 if (!in_regs || reg_parm_stack_space > 0)
4095 pad_to_arg_alignment (initial_offset_ptr, boundary,
4096 &locate->alignment_pad);
4097 locate->slot_offset = *initial_offset_ptr;
4099 #ifdef PUSH_ROUNDING
4100 if (passed_mode != BLKmode)
4101 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4102 #endif
4104 /* Pad_below needs the pre-rounded size to know how much to pad below
4105 so this must be done before rounding up. */
4106 locate->offset = locate->slot_offset;
4107 if (where_pad == downward)
4108 pad_below (&locate->offset, passed_mode, sizetree);
4110 if (where_pad != none
4111 && (!tree_fits_uhwi_p (sizetree)
4112 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4113 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4115 ADD_PARM_SIZE (locate->size, sizetree);
4117 locate->size.constant -= part_size_in_regs;
4118 #endif /* ARGS_GROW_DOWNWARD */
4120 #ifdef FUNCTION_ARG_OFFSET
4121 locate->offset.constant += FUNCTION_ARG_OFFSET (passed_mode, type);
4122 #endif
4125 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4126 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4128 static void
4129 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4130 struct args_size *alignment_pad)
4132 tree save_var = NULL_TREE;
4133 HOST_WIDE_INT save_constant = 0;
4134 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4135 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
4137 #ifdef SPARC_STACK_BOUNDARY_HACK
4138 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4139 the real alignment of %sp. However, when it does this, the
4140 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4141 if (SPARC_STACK_BOUNDARY_HACK)
4142 sp_offset = 0;
4143 #endif
4145 if (boundary > PARM_BOUNDARY)
4147 save_var = offset_ptr->var;
4148 save_constant = offset_ptr->constant;
4151 alignment_pad->var = NULL_TREE;
4152 alignment_pad->constant = 0;
4154 if (boundary > BITS_PER_UNIT)
4156 if (offset_ptr->var)
4158 tree sp_offset_tree = ssize_int (sp_offset);
4159 tree offset = size_binop (PLUS_EXPR,
4160 ARGS_SIZE_TREE (*offset_ptr),
4161 sp_offset_tree);
4162 #ifdef ARGS_GROW_DOWNWARD
4163 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
4164 #else
4165 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
4166 #endif
4168 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4169 /* ARGS_SIZE_TREE includes constant term. */
4170 offset_ptr->constant = 0;
4171 if (boundary > PARM_BOUNDARY)
4172 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4173 save_var);
4175 else
4177 offset_ptr->constant = -sp_offset +
4178 #ifdef ARGS_GROW_DOWNWARD
4179 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
4180 #else
4181 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
4182 #endif
4183 if (boundary > PARM_BOUNDARY)
4184 alignment_pad->constant = offset_ptr->constant - save_constant;
4189 static void
4190 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4192 if (passed_mode != BLKmode)
4194 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
4195 offset_ptr->constant
4196 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
4197 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
4198 - GET_MODE_SIZE (passed_mode));
4200 else
4202 if (TREE_CODE (sizetree) != INTEGER_CST
4203 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
4205 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4206 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
4207 /* Add it in. */
4208 ADD_PARM_SIZE (*offset_ptr, s2);
4209 SUB_PARM_SIZE (*offset_ptr, sizetree);
4215 /* True if register REGNO was alive at a place where `setjmp' was
4216 called and was set more than once or is an argument. Such regs may
4217 be clobbered by `longjmp'. */
4219 static bool
4220 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4222 /* There appear to be cases where some local vars never reach the
4223 backend but have bogus regnos. */
4224 if (regno >= max_reg_num ())
4225 return false;
4227 return ((REG_N_SETS (regno) > 1
4228 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4229 regno))
4230 && REGNO_REG_SET_P (setjmp_crosses, regno));
4233 /* Walk the tree of blocks describing the binding levels within a
4234 function and warn about variables the might be killed by setjmp or
4235 vfork. This is done after calling flow_analysis before register
4236 allocation since that will clobber the pseudo-regs to hard
4237 regs. */
4239 static void
4240 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4242 tree decl, sub;
4244 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4246 if (TREE_CODE (decl) == VAR_DECL
4247 && DECL_RTL_SET_P (decl)
4248 && REG_P (DECL_RTL (decl))
4249 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4250 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4251 " %<longjmp%> or %<vfork%>", decl);
4254 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4255 setjmp_vars_warning (setjmp_crosses, sub);
4258 /* Do the appropriate part of setjmp_vars_warning
4259 but for arguments instead of local variables. */
4261 static void
4262 setjmp_args_warning (bitmap setjmp_crosses)
4264 tree decl;
4265 for (decl = DECL_ARGUMENTS (current_function_decl);
4266 decl; decl = DECL_CHAIN (decl))
4267 if (DECL_RTL (decl) != 0
4268 && REG_P (DECL_RTL (decl))
4269 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4270 warning (OPT_Wclobbered,
4271 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4272 decl);
4275 /* Generate warning messages for variables live across setjmp. */
4277 void
4278 generate_setjmp_warnings (void)
4280 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4282 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4283 || bitmap_empty_p (setjmp_crosses))
4284 return;
4286 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4287 setjmp_args_warning (setjmp_crosses);
4291 /* Reverse the order of elements in the fragment chain T of blocks,
4292 and return the new head of the chain (old last element).
4293 In addition to that clear BLOCK_SAME_RANGE flags when needed
4294 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4295 its super fragment origin. */
4297 static tree
4298 block_fragments_nreverse (tree t)
4300 tree prev = 0, block, next, prev_super = 0;
4301 tree super = BLOCK_SUPERCONTEXT (t);
4302 if (BLOCK_FRAGMENT_ORIGIN (super))
4303 super = BLOCK_FRAGMENT_ORIGIN (super);
4304 for (block = t; block; block = next)
4306 next = BLOCK_FRAGMENT_CHAIN (block);
4307 BLOCK_FRAGMENT_CHAIN (block) = prev;
4308 if ((prev && !BLOCK_SAME_RANGE (prev))
4309 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4310 != prev_super))
4311 BLOCK_SAME_RANGE (block) = 0;
4312 prev_super = BLOCK_SUPERCONTEXT (block);
4313 BLOCK_SUPERCONTEXT (block) = super;
4314 prev = block;
4316 t = BLOCK_FRAGMENT_ORIGIN (t);
4317 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4318 != prev_super)
4319 BLOCK_SAME_RANGE (t) = 0;
4320 BLOCK_SUPERCONTEXT (t) = super;
4321 return prev;
4324 /* Reverse the order of elements in the chain T of blocks,
4325 and return the new head of the chain (old last element).
4326 Also do the same on subblocks and reverse the order of elements
4327 in BLOCK_FRAGMENT_CHAIN as well. */
4329 static tree
4330 blocks_nreverse_all (tree t)
4332 tree prev = 0, block, next;
4333 for (block = t; block; block = next)
4335 next = BLOCK_CHAIN (block);
4336 BLOCK_CHAIN (block) = prev;
4337 if (BLOCK_FRAGMENT_CHAIN (block)
4338 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4340 BLOCK_FRAGMENT_CHAIN (block)
4341 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4342 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4343 BLOCK_SAME_RANGE (block) = 0;
4345 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4346 prev = block;
4348 return prev;
4352 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4353 and create duplicate blocks. */
4354 /* ??? Need an option to either create block fragments or to create
4355 abstract origin duplicates of a source block. It really depends
4356 on what optimization has been performed. */
4358 void
4359 reorder_blocks (void)
4361 tree block = DECL_INITIAL (current_function_decl);
4363 if (block == NULL_TREE)
4364 return;
4366 auto_vec<tree, 10> block_stack;
4368 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4369 clear_block_marks (block);
4371 /* Prune the old trees away, so that they don't get in the way. */
4372 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4373 BLOCK_CHAIN (block) = NULL_TREE;
4375 /* Recreate the block tree from the note nesting. */
4376 reorder_blocks_1 (get_insns (), block, &block_stack);
4377 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4380 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4382 void
4383 clear_block_marks (tree block)
4385 while (block)
4387 TREE_ASM_WRITTEN (block) = 0;
4388 clear_block_marks (BLOCK_SUBBLOCKS (block));
4389 block = BLOCK_CHAIN (block);
4393 static void
4394 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4395 vec<tree> *p_block_stack)
4397 rtx_insn *insn;
4398 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4400 for (insn = insns; insn; insn = NEXT_INSN (insn))
4402 if (NOTE_P (insn))
4404 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4406 tree block = NOTE_BLOCK (insn);
4407 tree origin;
4409 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4410 origin = block;
4412 if (prev_end)
4413 BLOCK_SAME_RANGE (prev_end) = 0;
4414 prev_end = NULL_TREE;
4416 /* If we have seen this block before, that means it now
4417 spans multiple address regions. Create a new fragment. */
4418 if (TREE_ASM_WRITTEN (block))
4420 tree new_block = copy_node (block);
4422 BLOCK_SAME_RANGE (new_block) = 0;
4423 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4424 BLOCK_FRAGMENT_CHAIN (new_block)
4425 = BLOCK_FRAGMENT_CHAIN (origin);
4426 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4428 NOTE_BLOCK (insn) = new_block;
4429 block = new_block;
4432 if (prev_beg == current_block && prev_beg)
4433 BLOCK_SAME_RANGE (block) = 1;
4435 prev_beg = origin;
4437 BLOCK_SUBBLOCKS (block) = 0;
4438 TREE_ASM_WRITTEN (block) = 1;
4439 /* When there's only one block for the entire function,
4440 current_block == block and we mustn't do this, it
4441 will cause infinite recursion. */
4442 if (block != current_block)
4444 tree super;
4445 if (block != origin)
4446 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4447 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4448 (origin))
4449 == current_block);
4450 if (p_block_stack->is_empty ())
4451 super = current_block;
4452 else
4454 super = p_block_stack->last ();
4455 gcc_assert (super == current_block
4456 || BLOCK_FRAGMENT_ORIGIN (super)
4457 == current_block);
4459 BLOCK_SUPERCONTEXT (block) = super;
4460 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4461 BLOCK_SUBBLOCKS (current_block) = block;
4462 current_block = origin;
4464 p_block_stack->safe_push (block);
4466 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4468 NOTE_BLOCK (insn) = p_block_stack->pop ();
4469 current_block = BLOCK_SUPERCONTEXT (current_block);
4470 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4471 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4472 prev_beg = NULL_TREE;
4473 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4474 ? NOTE_BLOCK (insn) : NULL_TREE;
4477 else
4479 prev_beg = NULL_TREE;
4480 if (prev_end)
4481 BLOCK_SAME_RANGE (prev_end) = 0;
4482 prev_end = NULL_TREE;
4487 /* Reverse the order of elements in the chain T of blocks,
4488 and return the new head of the chain (old last element). */
4490 tree
4491 blocks_nreverse (tree t)
4493 tree prev = 0, block, next;
4494 for (block = t; block; block = next)
4496 next = BLOCK_CHAIN (block);
4497 BLOCK_CHAIN (block) = prev;
4498 prev = block;
4500 return prev;
4503 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4504 by modifying the last node in chain 1 to point to chain 2. */
4506 tree
4507 block_chainon (tree op1, tree op2)
4509 tree t1;
4511 if (!op1)
4512 return op2;
4513 if (!op2)
4514 return op1;
4516 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4517 continue;
4518 BLOCK_CHAIN (t1) = op2;
4520 #ifdef ENABLE_TREE_CHECKING
4522 tree t2;
4523 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4524 gcc_assert (t2 != t1);
4526 #endif
4528 return op1;
4531 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4532 non-NULL, list them all into VECTOR, in a depth-first preorder
4533 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4534 blocks. */
4536 static int
4537 all_blocks (tree block, tree *vector)
4539 int n_blocks = 0;
4541 while (block)
4543 TREE_ASM_WRITTEN (block) = 0;
4545 /* Record this block. */
4546 if (vector)
4547 vector[n_blocks] = block;
4549 ++n_blocks;
4551 /* Record the subblocks, and their subblocks... */
4552 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4553 vector ? vector + n_blocks : 0);
4554 block = BLOCK_CHAIN (block);
4557 return n_blocks;
4560 /* Return a vector containing all the blocks rooted at BLOCK. The
4561 number of elements in the vector is stored in N_BLOCKS_P. The
4562 vector is dynamically allocated; it is the caller's responsibility
4563 to call `free' on the pointer returned. */
4565 static tree *
4566 get_block_vector (tree block, int *n_blocks_p)
4568 tree *block_vector;
4570 *n_blocks_p = all_blocks (block, NULL);
4571 block_vector = XNEWVEC (tree, *n_blocks_p);
4572 all_blocks (block, block_vector);
4574 return block_vector;
4577 static GTY(()) int next_block_index = 2;
4579 /* Set BLOCK_NUMBER for all the blocks in FN. */
4581 void
4582 number_blocks (tree fn)
4584 int i;
4585 int n_blocks;
4586 tree *block_vector;
4588 /* For SDB and XCOFF debugging output, we start numbering the blocks
4589 from 1 within each function, rather than keeping a running
4590 count. */
4591 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
4592 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
4593 next_block_index = 1;
4594 #endif
4596 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4598 /* The top-level BLOCK isn't numbered at all. */
4599 for (i = 1; i < n_blocks; ++i)
4600 /* We number the blocks from two. */
4601 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4603 free (block_vector);
4605 return;
4608 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4610 DEBUG_FUNCTION tree
4611 debug_find_var_in_block_tree (tree var, tree block)
4613 tree t;
4615 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4616 if (t == var)
4617 return block;
4619 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4621 tree ret = debug_find_var_in_block_tree (var, t);
4622 if (ret)
4623 return ret;
4626 return NULL_TREE;
4629 /* Keep track of whether we're in a dummy function context. If we are,
4630 we don't want to invoke the set_current_function hook, because we'll
4631 get into trouble if the hook calls target_reinit () recursively or
4632 when the initial initialization is not yet complete. */
4634 static bool in_dummy_function;
4636 /* Invoke the target hook when setting cfun. Update the optimization options
4637 if the function uses different options than the default. */
4639 static void
4640 invoke_set_current_function_hook (tree fndecl)
4642 if (!in_dummy_function)
4644 tree opts = ((fndecl)
4645 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4646 : optimization_default_node);
4648 if (!opts)
4649 opts = optimization_default_node;
4651 /* Change optimization options if needed. */
4652 if (optimization_current_node != opts)
4654 optimization_current_node = opts;
4655 cl_optimization_restore (&global_options, TREE_OPTIMIZATION (opts));
4658 targetm.set_current_function (fndecl);
4659 this_fn_optabs = this_target_optabs;
4661 if (opts != optimization_default_node)
4663 init_tree_optimization_optabs (opts);
4664 if (TREE_OPTIMIZATION_OPTABS (opts))
4665 this_fn_optabs = (struct target_optabs *)
4666 TREE_OPTIMIZATION_OPTABS (opts);
4671 /* cfun should never be set directly; use this function. */
4673 void
4674 set_cfun (struct function *new_cfun)
4676 if (cfun != new_cfun)
4678 cfun = new_cfun;
4679 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4683 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4685 static vec<function_p> cfun_stack;
4687 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4688 current_function_decl accordingly. */
4690 void
4691 push_cfun (struct function *new_cfun)
4693 gcc_assert ((!cfun && !current_function_decl)
4694 || (cfun && current_function_decl == cfun->decl));
4695 cfun_stack.safe_push (cfun);
4696 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4697 set_cfun (new_cfun);
4700 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4702 void
4703 pop_cfun (void)
4705 struct function *new_cfun = cfun_stack.pop ();
4706 /* When in_dummy_function, we do have a cfun but current_function_decl is
4707 NULL. We also allow pushing NULL cfun and subsequently changing
4708 current_function_decl to something else and have both restored by
4709 pop_cfun. */
4710 gcc_checking_assert (in_dummy_function
4711 || !cfun
4712 || current_function_decl == cfun->decl);
4713 set_cfun (new_cfun);
4714 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4717 /* Return value of funcdef and increase it. */
4719 get_next_funcdef_no (void)
4721 return funcdef_no++;
4724 /* Return value of funcdef. */
4726 get_last_funcdef_no (void)
4728 return funcdef_no;
4731 /* Allocate a function structure for FNDECL and set its contents
4732 to the defaults. Set cfun to the newly-allocated object.
4733 Some of the helper functions invoked during initialization assume
4734 that cfun has already been set. Therefore, assign the new object
4735 directly into cfun and invoke the back end hook explicitly at the
4736 very end, rather than initializing a temporary and calling set_cfun
4737 on it.
4739 ABSTRACT_P is true if this is a function that will never be seen by
4740 the middle-end. Such functions are front-end concepts (like C++
4741 function templates) that do not correspond directly to functions
4742 placed in object files. */
4744 void
4745 allocate_struct_function (tree fndecl, bool abstract_p)
4747 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4749 cfun = ggc_cleared_alloc<function> ();
4751 init_eh_for_function ();
4753 if (init_machine_status)
4754 cfun->machine = (*init_machine_status) ();
4756 #ifdef OVERRIDE_ABI_FORMAT
4757 OVERRIDE_ABI_FORMAT (fndecl);
4758 #endif
4760 if (fndecl != NULL_TREE)
4762 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4763 cfun->decl = fndecl;
4764 current_function_funcdef_no = get_next_funcdef_no ();
4767 invoke_set_current_function_hook (fndecl);
4769 if (fndecl != NULL_TREE)
4771 tree result = DECL_RESULT (fndecl);
4772 if (!abstract_p && aggregate_value_p (result, fndecl))
4774 #ifdef PCC_STATIC_STRUCT_RETURN
4775 cfun->returns_pcc_struct = 1;
4776 #endif
4777 cfun->returns_struct = 1;
4780 cfun->stdarg = stdarg_p (fntype);
4782 /* Assume all registers in stdarg functions need to be saved. */
4783 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4784 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4786 /* ??? This could be set on a per-function basis by the front-end
4787 but is this worth the hassle? */
4788 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4789 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4791 if (!profile_flag && !flag_instrument_function_entry_exit)
4792 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4796 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4797 instead of just setting it. */
4799 void
4800 push_struct_function (tree fndecl)
4802 /* When in_dummy_function we might be in the middle of a pop_cfun and
4803 current_function_decl and cfun may not match. */
4804 gcc_assert (in_dummy_function
4805 || (!cfun && !current_function_decl)
4806 || (cfun && current_function_decl == cfun->decl));
4807 cfun_stack.safe_push (cfun);
4808 current_function_decl = fndecl;
4809 allocate_struct_function (fndecl, false);
4812 /* Reset crtl and other non-struct-function variables to defaults as
4813 appropriate for emitting rtl at the start of a function. */
4815 static void
4816 prepare_function_start (void)
4818 gcc_assert (!crtl->emit.x_last_insn);
4819 init_temp_slots ();
4820 init_emit ();
4821 init_varasm_status ();
4822 init_expr ();
4823 default_rtl_profile ();
4825 if (flag_stack_usage_info)
4827 cfun->su = ggc_cleared_alloc<stack_usage> ();
4828 cfun->su->static_stack_size = -1;
4831 cse_not_expected = ! optimize;
4833 /* Caller save not needed yet. */
4834 caller_save_needed = 0;
4836 /* We haven't done register allocation yet. */
4837 reg_renumber = 0;
4839 /* Indicate that we have not instantiated virtual registers yet. */
4840 virtuals_instantiated = 0;
4842 /* Indicate that we want CONCATs now. */
4843 generating_concat_p = 1;
4845 /* Indicate we have no need of a frame pointer yet. */
4846 frame_pointer_needed = 0;
4849 /* Initialize the rtl expansion mechanism so that we can do simple things
4850 like generate sequences. This is used to provide a context during global
4851 initialization of some passes. You must call expand_dummy_function_end
4852 to exit this context. */
4854 void
4855 init_dummy_function_start (void)
4857 gcc_assert (!in_dummy_function);
4858 in_dummy_function = true;
4859 push_struct_function (NULL_TREE);
4860 prepare_function_start ();
4863 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4864 and initialize static variables for generating RTL for the statements
4865 of the function. */
4867 void
4868 init_function_start (tree subr)
4870 if (subr && DECL_STRUCT_FUNCTION (subr))
4871 set_cfun (DECL_STRUCT_FUNCTION (subr));
4872 else
4873 allocate_struct_function (subr, false);
4875 /* Initialize backend, if needed. */
4876 initialize_rtl ();
4878 prepare_function_start ();
4879 decide_function_section (subr);
4881 /* Warn if this value is an aggregate type,
4882 regardless of which calling convention we are using for it. */
4883 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4884 warning (OPT_Waggregate_return, "function returns an aggregate");
4887 /* Expand code to verify the stack_protect_guard. This is invoked at
4888 the end of a function to be protected. */
4890 #ifndef HAVE_stack_protect_test
4891 # define HAVE_stack_protect_test 0
4892 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4893 #endif
4895 void
4896 stack_protect_epilogue (void)
4898 tree guard_decl = targetm.stack_protect_guard ();
4899 rtx_code_label *label = gen_label_rtx ();
4900 rtx x, y, tmp;
4902 x = expand_normal (crtl->stack_protect_guard);
4903 y = expand_normal (guard_decl);
4905 /* Allow the target to compare Y with X without leaking either into
4906 a register. */
4907 switch ((int) (HAVE_stack_protect_test != 0))
4909 case 1:
4910 tmp = gen_stack_protect_test (x, y, label);
4911 if (tmp)
4913 emit_insn (tmp);
4914 break;
4916 /* FALLTHRU */
4918 default:
4919 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4920 break;
4923 /* The noreturn predictor has been moved to the tree level. The rtl-level
4924 predictors estimate this branch about 20%, which isn't enough to get
4925 things moved out of line. Since this is the only extant case of adding
4926 a noreturn function at the rtl level, it doesn't seem worth doing ought
4927 except adding the prediction by hand. */
4928 tmp = get_last_insn ();
4929 if (JUMP_P (tmp))
4930 predict_insn_def (as_a <rtx_insn *> (tmp), PRED_NORETURN, TAKEN);
4932 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
4933 free_temp_slots ();
4934 emit_label (label);
4937 /* Start the RTL for a new function, and set variables used for
4938 emitting RTL.
4939 SUBR is the FUNCTION_DECL node.
4940 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4941 the function's parameters, which must be run at any return statement. */
4943 void
4944 expand_function_start (tree subr)
4946 /* Make sure volatile mem refs aren't considered
4947 valid operands of arithmetic insns. */
4948 init_recog_no_volatile ();
4950 crtl->profile
4951 = (profile_flag
4952 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4954 crtl->limit_stack
4955 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4957 /* Make the label for return statements to jump to. Do not special
4958 case machines with special return instructions -- they will be
4959 handled later during jump, ifcvt, or epilogue creation. */
4960 return_label = gen_label_rtx ();
4962 /* Initialize rtx used to return the value. */
4963 /* Do this before assign_parms so that we copy the struct value address
4964 before any library calls that assign parms might generate. */
4966 /* Decide whether to return the value in memory or in a register. */
4967 if (aggregate_value_p (DECL_RESULT (subr), subr))
4969 /* Returning something that won't go in a register. */
4970 rtx value_address = 0;
4972 #ifdef PCC_STATIC_STRUCT_RETURN
4973 if (cfun->returns_pcc_struct)
4975 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4976 value_address = assemble_static_space (size);
4978 else
4979 #endif
4981 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4982 /* Expect to be passed the address of a place to store the value.
4983 If it is passed as an argument, assign_parms will take care of
4984 it. */
4985 if (sv)
4987 value_address = gen_reg_rtx (Pmode);
4988 emit_move_insn (value_address, sv);
4991 if (value_address)
4993 rtx x = value_address;
4994 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4996 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4997 set_mem_attributes (x, DECL_RESULT (subr), 1);
4999 SET_DECL_RTL (DECL_RESULT (subr), x);
5002 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
5003 /* If return mode is void, this decl rtl should not be used. */
5004 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
5005 else
5007 /* Compute the return values into a pseudo reg, which we will copy
5008 into the true return register after the cleanups are done. */
5009 tree return_type = TREE_TYPE (DECL_RESULT (subr));
5010 if (TYPE_MODE (return_type) != BLKmode
5011 && targetm.calls.return_in_msb (return_type))
5012 /* expand_function_end will insert the appropriate padding in
5013 this case. Use the return value's natural (unpadded) mode
5014 within the function proper. */
5015 SET_DECL_RTL (DECL_RESULT (subr),
5016 gen_reg_rtx (TYPE_MODE (return_type)));
5017 else
5019 /* In order to figure out what mode to use for the pseudo, we
5020 figure out what the mode of the eventual return register will
5021 actually be, and use that. */
5022 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5024 /* Structures that are returned in registers are not
5025 aggregate_value_p, so we may see a PARALLEL or a REG. */
5026 if (REG_P (hard_reg))
5027 SET_DECL_RTL (DECL_RESULT (subr),
5028 gen_reg_rtx (GET_MODE (hard_reg)));
5029 else
5031 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5032 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
5036 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5037 result to the real return register(s). */
5038 DECL_REGISTER (DECL_RESULT (subr)) = 1;
5040 if (chkp_function_instrumented_p (current_function_decl))
5042 tree return_type = TREE_TYPE (DECL_RESULT (subr));
5043 rtx bounds = targetm.calls.chkp_function_value_bounds (return_type,
5044 subr, 1);
5045 SET_DECL_BOUNDS_RTL (DECL_RESULT (subr), bounds);
5049 /* Initialize rtx for parameters and local variables.
5050 In some cases this requires emitting insns. */
5051 assign_parms (subr);
5053 /* If function gets a static chain arg, store it. */
5054 if (cfun->static_chain_decl)
5056 tree parm = cfun->static_chain_decl;
5057 rtx local, chain, insn;
5059 local = gen_reg_rtx (Pmode);
5060 chain = targetm.calls.static_chain (current_function_decl, true);
5062 set_decl_incoming_rtl (parm, chain, false);
5063 SET_DECL_RTL (parm, local);
5064 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5066 insn = emit_move_insn (local, chain);
5068 /* Mark the register as eliminable, similar to parameters. */
5069 if (MEM_P (chain)
5070 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5071 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5073 /* If we aren't optimizing, save the static chain onto the stack. */
5074 if (!optimize)
5076 tree saved_static_chain_decl
5077 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5078 DECL_NAME (parm), TREE_TYPE (parm));
5079 rtx saved_static_chain_rtx
5080 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5081 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5082 emit_move_insn (saved_static_chain_rtx, chain);
5083 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5084 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5088 /* If the function receives a non-local goto, then store the
5089 bits we need to restore the frame pointer. */
5090 if (cfun->nonlocal_goto_save_area)
5092 tree t_save;
5093 rtx r_save;
5095 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5096 gcc_assert (DECL_RTL_SET_P (var));
5098 t_save = build4 (ARRAY_REF,
5099 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5100 cfun->nonlocal_goto_save_area,
5101 integer_zero_node, NULL_TREE, NULL_TREE);
5102 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5103 gcc_assert (GET_MODE (r_save) == Pmode);
5105 emit_move_insn (r_save, targetm.builtin_setjmp_frame_value ());
5106 update_nonlocal_goto_save_area ();
5109 /* The following was moved from init_function_start.
5110 The move is supposed to make sdb output more accurate. */
5111 /* Indicate the beginning of the function body,
5112 as opposed to parm setup. */
5113 emit_note (NOTE_INSN_FUNCTION_BEG);
5115 gcc_assert (NOTE_P (get_last_insn ()));
5117 parm_birth_insn = get_last_insn ();
5119 if (crtl->profile)
5121 #ifdef PROFILE_HOOK
5122 PROFILE_HOOK (current_function_funcdef_no);
5123 #endif
5126 /* If we are doing generic stack checking, the probe should go here. */
5127 if (flag_stack_check == GENERIC_STACK_CHECK)
5128 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5131 /* Undo the effects of init_dummy_function_start. */
5132 void
5133 expand_dummy_function_end (void)
5135 gcc_assert (in_dummy_function);
5137 /* End any sequences that failed to be closed due to syntax errors. */
5138 while (in_sequence_p ())
5139 end_sequence ();
5141 /* Outside function body, can't compute type's actual size
5142 until next function's body starts. */
5144 free_after_parsing (cfun);
5145 free_after_compilation (cfun);
5146 pop_cfun ();
5147 in_dummy_function = false;
5150 /* Helper for diddle_return_value. */
5152 void
5153 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5155 if (! outgoing)
5156 return;
5158 if (REG_P (outgoing))
5159 (*doit) (outgoing, arg);
5160 else if (GET_CODE (outgoing) == PARALLEL)
5162 int i;
5164 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5166 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5168 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5169 (*doit) (x, arg);
5174 /* Call DOIT for each hard register used as a return value from
5175 the current function. */
5177 void
5178 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5180 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5181 diddle_return_value_1 (doit, arg, crtl->return_bnd);
5184 static void
5185 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5187 emit_clobber (reg);
5190 void
5191 clobber_return_register (void)
5193 diddle_return_value (do_clobber_return_reg, NULL);
5195 /* In case we do use pseudo to return value, clobber it too. */
5196 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5198 tree decl_result = DECL_RESULT (current_function_decl);
5199 rtx decl_rtl = DECL_RTL (decl_result);
5200 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5202 do_clobber_return_reg (decl_rtl, NULL);
5207 static void
5208 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5210 emit_use (reg);
5213 static void
5214 use_return_register (void)
5216 diddle_return_value (do_use_return_reg, NULL);
5219 /* Possibly warn about unused parameters. */
5220 void
5221 do_warn_unused_parameter (tree fn)
5223 tree decl;
5225 for (decl = DECL_ARGUMENTS (fn);
5226 decl; decl = DECL_CHAIN (decl))
5227 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
5228 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
5229 && !TREE_NO_WARNING (decl))
5230 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
5233 /* Set the location of the insn chain starting at INSN to LOC. */
5235 static void
5236 set_insn_locations (rtx_insn *insn, int loc)
5238 while (insn != NULL)
5240 if (INSN_P (insn))
5241 INSN_LOCATION (insn) = loc;
5242 insn = NEXT_INSN (insn);
5246 /* Generate RTL for the end of the current function. */
5248 void
5249 expand_function_end (void)
5251 rtx clobber_after;
5253 /* If arg_pointer_save_area was referenced only from a nested
5254 function, we will not have initialized it yet. Do that now. */
5255 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5256 get_arg_pointer_save_area ();
5258 /* If we are doing generic stack checking and this function makes calls,
5259 do a stack probe at the start of the function to ensure we have enough
5260 space for another stack frame. */
5261 if (flag_stack_check == GENERIC_STACK_CHECK)
5263 rtx_insn *insn, *seq;
5265 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5266 if (CALL_P (insn))
5268 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5269 start_sequence ();
5270 if (STACK_CHECK_MOVING_SP)
5271 anti_adjust_stack_and_probe (max_frame_size, true);
5272 else
5273 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5274 seq = get_insns ();
5275 end_sequence ();
5276 set_insn_locations (seq, prologue_location);
5277 emit_insn_before (seq, stack_check_probe_note);
5278 break;
5282 /* End any sequences that failed to be closed due to syntax errors. */
5283 while (in_sequence_p ())
5284 end_sequence ();
5286 clear_pending_stack_adjust ();
5287 do_pending_stack_adjust ();
5289 /* Output a linenumber for the end of the function.
5290 SDB depends on this. */
5291 set_curr_insn_location (input_location);
5293 /* Before the return label (if any), clobber the return
5294 registers so that they are not propagated live to the rest of
5295 the function. This can only happen with functions that drop
5296 through; if there had been a return statement, there would
5297 have either been a return rtx, or a jump to the return label.
5299 We delay actual code generation after the current_function_value_rtx
5300 is computed. */
5301 clobber_after = get_last_insn ();
5303 /* Output the label for the actual return from the function. */
5304 emit_label (return_label);
5306 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5308 /* Let except.c know where it should emit the call to unregister
5309 the function context for sjlj exceptions. */
5310 if (flag_exceptions)
5311 sjlj_emit_function_exit_after (get_last_insn ());
5313 else
5315 /* We want to ensure that instructions that may trap are not
5316 moved into the epilogue by scheduling, because we don't
5317 always emit unwind information for the epilogue. */
5318 if (cfun->can_throw_non_call_exceptions)
5319 emit_insn (gen_blockage ());
5322 /* If this is an implementation of throw, do what's necessary to
5323 communicate between __builtin_eh_return and the epilogue. */
5324 expand_eh_return ();
5326 /* If scalar return value was computed in a pseudo-reg, or was a named
5327 return value that got dumped to the stack, copy that to the hard
5328 return register. */
5329 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5331 tree decl_result = DECL_RESULT (current_function_decl);
5332 rtx decl_rtl = DECL_RTL (decl_result);
5334 if (REG_P (decl_rtl)
5335 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5336 : DECL_REGISTER (decl_result))
5338 rtx real_decl_rtl = crtl->return_rtx;
5340 /* This should be set in assign_parms. */
5341 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5343 /* If this is a BLKmode structure being returned in registers,
5344 then use the mode computed in expand_return. Note that if
5345 decl_rtl is memory, then its mode may have been changed,
5346 but that crtl->return_rtx has not. */
5347 if (GET_MODE (real_decl_rtl) == BLKmode)
5348 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5350 /* If a non-BLKmode return value should be padded at the least
5351 significant end of the register, shift it left by the appropriate
5352 amount. BLKmode results are handled using the group load/store
5353 machinery. */
5354 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5355 && REG_P (real_decl_rtl)
5356 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5358 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5359 REGNO (real_decl_rtl)),
5360 decl_rtl);
5361 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5363 /* If a named return value dumped decl_return to memory, then
5364 we may need to re-do the PROMOTE_MODE signed/unsigned
5365 extension. */
5366 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5368 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5369 promote_function_mode (TREE_TYPE (decl_result),
5370 GET_MODE (decl_rtl), &unsignedp,
5371 TREE_TYPE (current_function_decl), 1);
5373 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5375 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5377 /* If expand_function_start has created a PARALLEL for decl_rtl,
5378 move the result to the real return registers. Otherwise, do
5379 a group load from decl_rtl for a named return. */
5380 if (GET_CODE (decl_rtl) == PARALLEL)
5381 emit_group_move (real_decl_rtl, decl_rtl);
5382 else
5383 emit_group_load (real_decl_rtl, decl_rtl,
5384 TREE_TYPE (decl_result),
5385 int_size_in_bytes (TREE_TYPE (decl_result)));
5387 /* In the case of complex integer modes smaller than a word, we'll
5388 need to generate some non-trivial bitfield insertions. Do that
5389 on a pseudo and not the hard register. */
5390 else if (GET_CODE (decl_rtl) == CONCAT
5391 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
5392 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
5394 int old_generating_concat_p;
5395 rtx tmp;
5397 old_generating_concat_p = generating_concat_p;
5398 generating_concat_p = 0;
5399 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5400 generating_concat_p = old_generating_concat_p;
5402 emit_move_insn (tmp, decl_rtl);
5403 emit_move_insn (real_decl_rtl, tmp);
5405 else
5406 emit_move_insn (real_decl_rtl, decl_rtl);
5410 /* If returning a structure, arrange to return the address of the value
5411 in a place where debuggers expect to find it.
5413 If returning a structure PCC style,
5414 the caller also depends on this value.
5415 And cfun->returns_pcc_struct is not necessarily set. */
5416 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5417 && !targetm.calls.omit_struct_return_reg)
5419 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5420 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5421 rtx outgoing;
5423 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5424 type = TREE_TYPE (type);
5425 else
5426 value_address = XEXP (value_address, 0);
5428 outgoing = targetm.calls.function_value (build_pointer_type (type),
5429 current_function_decl, true);
5431 /* Mark this as a function return value so integrate will delete the
5432 assignment and USE below when inlining this function. */
5433 REG_FUNCTION_VALUE_P (outgoing) = 1;
5435 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5436 value_address = convert_memory_address (GET_MODE (outgoing),
5437 value_address);
5439 emit_move_insn (outgoing, value_address);
5441 /* Show return register used to hold result (in this case the address
5442 of the result. */
5443 crtl->return_rtx = outgoing;
5446 /* Emit the actual code to clobber return register. Don't emit
5447 it if clobber_after is a barrier, then the previous basic block
5448 certainly doesn't fall thru into the exit block. */
5449 if (!BARRIER_P (clobber_after))
5451 rtx seq;
5453 start_sequence ();
5454 clobber_return_register ();
5455 seq = get_insns ();
5456 end_sequence ();
5458 emit_insn_after (seq, clobber_after);
5461 /* Output the label for the naked return from the function. */
5462 if (naked_return_label)
5463 emit_label (naked_return_label);
5465 /* @@@ This is a kludge. We want to ensure that instructions that
5466 may trap are not moved into the epilogue by scheduling, because
5467 we don't always emit unwind information for the epilogue. */
5468 if (cfun->can_throw_non_call_exceptions
5469 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5470 emit_insn (gen_blockage ());
5472 /* If stack protection is enabled for this function, check the guard. */
5473 if (crtl->stack_protect_guard)
5474 stack_protect_epilogue ();
5476 /* If we had calls to alloca, and this machine needs
5477 an accurate stack pointer to exit the function,
5478 insert some code to save and restore the stack pointer. */
5479 if (! EXIT_IGNORE_STACK
5480 && cfun->calls_alloca)
5482 rtx tem = 0, seq;
5484 start_sequence ();
5485 emit_stack_save (SAVE_FUNCTION, &tem);
5486 seq = get_insns ();
5487 end_sequence ();
5488 emit_insn_before (seq, parm_birth_insn);
5490 emit_stack_restore (SAVE_FUNCTION, tem);
5493 /* ??? This should no longer be necessary since stupid is no longer with
5494 us, but there are some parts of the compiler (eg reload_combine, and
5495 sh mach_dep_reorg) that still try and compute their own lifetime info
5496 instead of using the general framework. */
5497 use_return_register ();
5501 get_arg_pointer_save_area (void)
5503 rtx ret = arg_pointer_save_area;
5505 if (! ret)
5507 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5508 arg_pointer_save_area = ret;
5511 if (! crtl->arg_pointer_save_area_init)
5513 rtx seq;
5515 /* Save the arg pointer at the beginning of the function. The
5516 generated stack slot may not be a valid memory address, so we
5517 have to check it and fix it if necessary. */
5518 start_sequence ();
5519 emit_move_insn (validize_mem (copy_rtx (ret)),
5520 crtl->args.internal_arg_pointer);
5521 seq = get_insns ();
5522 end_sequence ();
5524 push_topmost_sequence ();
5525 emit_insn_after (seq, entry_of_function ());
5526 pop_topmost_sequence ();
5528 crtl->arg_pointer_save_area_init = true;
5531 return ret;
5534 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5535 for the first time. */
5537 static void
5538 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5540 rtx_insn *tmp;
5541 hash_table<insn_cache_hasher> *hash = *hashp;
5543 if (hash == NULL)
5544 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5546 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5548 rtx *slot = hash->find_slot (tmp, INSERT);
5549 gcc_assert (*slot == NULL);
5550 *slot = tmp;
5554 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5555 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5556 insn, then record COPY as well. */
5558 void
5559 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5561 hash_table<insn_cache_hasher> *hash;
5562 rtx *slot;
5564 hash = epilogue_insn_hash;
5565 if (!hash || !hash->find (insn))
5567 hash = prologue_insn_hash;
5568 if (!hash || !hash->find (insn))
5569 return;
5572 slot = hash->find_slot (copy, INSERT);
5573 gcc_assert (*slot == NULL);
5574 *slot = copy;
5577 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5578 we can be running after reorg, SEQUENCE rtl is possible. */
5580 static bool
5581 contains (const_rtx insn, hash_table<insn_cache_hasher> *hash)
5583 if (hash == NULL)
5584 return false;
5586 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5588 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5589 int i;
5590 for (i = seq->len () - 1; i >= 0; i--)
5591 if (hash->find (seq->element (i)))
5592 return true;
5593 return false;
5596 return hash->find (const_cast<rtx> (insn)) != NULL;
5600 prologue_epilogue_contains (const_rtx insn)
5602 if (contains (insn, prologue_insn_hash))
5603 return 1;
5604 if (contains (insn, epilogue_insn_hash))
5605 return 1;
5606 return 0;
5609 #ifdef HAVE_return
5610 /* Insert use of return register before the end of BB. */
5612 static void
5613 emit_use_return_register_into_block (basic_block bb)
5615 rtx seq, insn;
5616 start_sequence ();
5617 use_return_register ();
5618 seq = get_insns ();
5619 end_sequence ();
5620 insn = BB_END (bb);
5621 #ifdef HAVE_cc0
5622 if (reg_mentioned_p (cc0_rtx, PATTERN (insn)))
5623 insn = prev_cc0_setter (insn);
5624 #endif
5625 emit_insn_before (seq, insn);
5629 /* Create a return pattern, either simple_return or return, depending on
5630 simple_p. */
5632 static rtx
5633 gen_return_pattern (bool simple_p)
5635 #ifdef HAVE_simple_return
5636 return simple_p ? gen_simple_return () : gen_return ();
5637 #else
5638 gcc_assert (!simple_p);
5639 return gen_return ();
5640 #endif
5643 /* Insert an appropriate return pattern at the end of block BB. This
5644 also means updating block_for_insn appropriately. SIMPLE_P is
5645 the same as in gen_return_pattern and passed to it. */
5647 void
5648 emit_return_into_block (bool simple_p, basic_block bb)
5650 rtx jump, pat;
5651 jump = emit_jump_insn_after (gen_return_pattern (simple_p), BB_END (bb));
5652 pat = PATTERN (jump);
5653 if (GET_CODE (pat) == PARALLEL)
5654 pat = XVECEXP (pat, 0, 0);
5655 gcc_assert (ANY_RETURN_P (pat));
5656 JUMP_LABEL (jump) = pat;
5658 #endif
5660 /* Set JUMP_LABEL for a return insn. */
5662 void
5663 set_return_jump_label (rtx returnjump)
5665 rtx pat = PATTERN (returnjump);
5666 if (GET_CODE (pat) == PARALLEL)
5667 pat = XVECEXP (pat, 0, 0);
5668 if (ANY_RETURN_P (pat))
5669 JUMP_LABEL (returnjump) = pat;
5670 else
5671 JUMP_LABEL (returnjump) = ret_rtx;
5674 #if defined (HAVE_return) || defined (HAVE_simple_return)
5675 /* Return true if there are any active insns between HEAD and TAIL. */
5676 bool
5677 active_insn_between (rtx_insn *head, rtx_insn *tail)
5679 while (tail)
5681 if (active_insn_p (tail))
5682 return true;
5683 if (tail == head)
5684 return false;
5685 tail = PREV_INSN (tail);
5687 return false;
5690 /* LAST_BB is a block that exits, and empty of active instructions.
5691 Examine its predecessors for jumps that can be converted to
5692 (conditional) returns. */
5693 vec<edge>
5694 convert_jumps_to_returns (basic_block last_bb, bool simple_p,
5695 vec<edge> unconverted ATTRIBUTE_UNUSED)
5697 int i;
5698 basic_block bb;
5699 rtx label;
5700 edge_iterator ei;
5701 edge e;
5702 auto_vec<basic_block> src_bbs (EDGE_COUNT (last_bb->preds));
5704 FOR_EACH_EDGE (e, ei, last_bb->preds)
5705 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5706 src_bbs.quick_push (e->src);
5708 label = BB_HEAD (last_bb);
5710 FOR_EACH_VEC_ELT (src_bbs, i, bb)
5712 rtx_insn *jump = BB_END (bb);
5714 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5715 continue;
5717 e = find_edge (bb, last_bb);
5719 /* If we have an unconditional jump, we can replace that
5720 with a simple return instruction. */
5721 if (simplejump_p (jump))
5723 /* The use of the return register might be present in the exit
5724 fallthru block. Either:
5725 - removing the use is safe, and we should remove the use in
5726 the exit fallthru block, or
5727 - removing the use is not safe, and we should add it here.
5728 For now, we conservatively choose the latter. Either of the
5729 2 helps in crossjumping. */
5730 emit_use_return_register_into_block (bb);
5732 emit_return_into_block (simple_p, bb);
5733 delete_insn (jump);
5736 /* If we have a conditional jump branching to the last
5737 block, we can try to replace that with a conditional
5738 return instruction. */
5739 else if (condjump_p (jump))
5741 rtx dest;
5743 if (simple_p)
5744 dest = simple_return_rtx;
5745 else
5746 dest = ret_rtx;
5747 if (!redirect_jump (jump, dest, 0))
5749 #ifdef HAVE_simple_return
5750 if (simple_p)
5752 if (dump_file)
5753 fprintf (dump_file,
5754 "Failed to redirect bb %d branch.\n", bb->index);
5755 unconverted.safe_push (e);
5757 #endif
5758 continue;
5761 /* See comment in simplejump_p case above. */
5762 emit_use_return_register_into_block (bb);
5764 /* If this block has only one successor, it both jumps
5765 and falls through to the fallthru block, so we can't
5766 delete the edge. */
5767 if (single_succ_p (bb))
5768 continue;
5770 else
5772 #ifdef HAVE_simple_return
5773 if (simple_p)
5775 if (dump_file)
5776 fprintf (dump_file,
5777 "Failed to redirect bb %d branch.\n", bb->index);
5778 unconverted.safe_push (e);
5780 #endif
5781 continue;
5784 /* Fix up the CFG for the successful change we just made. */
5785 redirect_edge_succ (e, EXIT_BLOCK_PTR_FOR_FN (cfun));
5786 e->flags &= ~EDGE_CROSSING;
5788 src_bbs.release ();
5789 return unconverted;
5792 /* Emit a return insn for the exit fallthru block. */
5793 basic_block
5794 emit_return_for_exit (edge exit_fallthru_edge, bool simple_p)
5796 basic_block last_bb = exit_fallthru_edge->src;
5798 if (JUMP_P (BB_END (last_bb)))
5800 last_bb = split_edge (exit_fallthru_edge);
5801 exit_fallthru_edge = single_succ_edge (last_bb);
5803 emit_barrier_after (BB_END (last_bb));
5804 emit_return_into_block (simple_p, last_bb);
5805 exit_fallthru_edge->flags &= ~EDGE_FALLTHRU;
5806 return last_bb;
5808 #endif
5811 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5812 this into place with notes indicating where the prologue ends and where
5813 the epilogue begins. Update the basic block information when possible.
5815 Notes on epilogue placement:
5816 There are several kinds of edges to the exit block:
5817 * a single fallthru edge from LAST_BB
5818 * possibly, edges from blocks containing sibcalls
5819 * possibly, fake edges from infinite loops
5821 The epilogue is always emitted on the fallthru edge from the last basic
5822 block in the function, LAST_BB, into the exit block.
5824 If LAST_BB is empty except for a label, it is the target of every
5825 other basic block in the function that ends in a return. If a
5826 target has a return or simple_return pattern (possibly with
5827 conditional variants), these basic blocks can be changed so that a
5828 return insn is emitted into them, and their target is adjusted to
5829 the real exit block.
5831 Notes on shrink wrapping: We implement a fairly conservative
5832 version of shrink-wrapping rather than the textbook one. We only
5833 generate a single prologue and a single epilogue. This is
5834 sufficient to catch a number of interesting cases involving early
5835 exits.
5837 First, we identify the blocks that require the prologue to occur before
5838 them. These are the ones that modify a call-saved register, or reference
5839 any of the stack or frame pointer registers. To simplify things, we then
5840 mark everything reachable from these blocks as also requiring a prologue.
5841 This takes care of loops automatically, and avoids the need to examine
5842 whether MEMs reference the frame, since it is sufficient to check for
5843 occurrences of the stack or frame pointer.
5845 We then compute the set of blocks for which the need for a prologue
5846 is anticipatable (borrowing terminology from the shrink-wrapping
5847 description in Muchnick's book). These are the blocks which either
5848 require a prologue themselves, or those that have only successors
5849 where the prologue is anticipatable. The prologue needs to be
5850 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
5851 is not. For the moment, we ensure that only one such edge exists.
5853 The epilogue is placed as described above, but we make a
5854 distinction between inserting return and simple_return patterns
5855 when modifying other blocks that end in a return. Blocks that end
5856 in a sibcall omit the sibcall_epilogue if the block is not in
5857 ANTIC. */
5859 void
5860 thread_prologue_and_epilogue_insns (void)
5862 bool inserted;
5863 #ifdef HAVE_simple_return
5864 vec<edge> unconverted_simple_returns = vNULL;
5865 bitmap_head bb_flags;
5866 #endif
5867 rtx_insn *returnjump;
5868 rtx_insn *epilogue_end ATTRIBUTE_UNUSED;
5869 rtx_insn *prologue_seq ATTRIBUTE_UNUSED, *split_prologue_seq ATTRIBUTE_UNUSED;
5870 edge e, entry_edge, orig_entry_edge, exit_fallthru_edge;
5871 edge_iterator ei;
5873 df_analyze ();
5875 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5877 inserted = false;
5878 epilogue_end = NULL;
5879 returnjump = NULL;
5881 /* Can't deal with multiple successors of the entry block at the
5882 moment. Function should always have at least one entry
5883 point. */
5884 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
5885 entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
5886 orig_entry_edge = entry_edge;
5888 split_prologue_seq = NULL;
5889 if (flag_split_stack
5890 && (lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl))
5891 == NULL))
5893 #ifndef HAVE_split_stack_prologue
5894 gcc_unreachable ();
5895 #else
5896 gcc_assert (HAVE_split_stack_prologue);
5898 start_sequence ();
5899 emit_insn (gen_split_stack_prologue ());
5900 split_prologue_seq = get_insns ();
5901 end_sequence ();
5903 record_insns (split_prologue_seq, NULL, &prologue_insn_hash);
5904 set_insn_locations (split_prologue_seq, prologue_location);
5905 #endif
5908 prologue_seq = NULL;
5909 #ifdef HAVE_prologue
5910 if (HAVE_prologue)
5912 start_sequence ();
5913 rtx_insn *seq = safe_as_a <rtx_insn *> (gen_prologue ());
5914 emit_insn (seq);
5916 /* Insert an explicit USE for the frame pointer
5917 if the profiling is on and the frame pointer is required. */
5918 if (crtl->profile && frame_pointer_needed)
5919 emit_use (hard_frame_pointer_rtx);
5921 /* Retain a map of the prologue insns. */
5922 record_insns (seq, NULL, &prologue_insn_hash);
5923 emit_note (NOTE_INSN_PROLOGUE_END);
5925 /* Ensure that instructions are not moved into the prologue when
5926 profiling is on. The call to the profiling routine can be
5927 emitted within the live range of a call-clobbered register. */
5928 if (!targetm.profile_before_prologue () && crtl->profile)
5929 emit_insn (gen_blockage ());
5931 prologue_seq = get_insns ();
5932 end_sequence ();
5933 set_insn_locations (prologue_seq, prologue_location);
5935 #endif
5937 #ifdef HAVE_simple_return
5938 bitmap_initialize (&bb_flags, &bitmap_default_obstack);
5940 /* Try to perform a kind of shrink-wrapping, making sure the
5941 prologue/epilogue is emitted only around those parts of the
5942 function that require it. */
5944 try_shrink_wrapping (&entry_edge, orig_entry_edge, &bb_flags, prologue_seq);
5945 #endif
5947 if (split_prologue_seq != NULL_RTX)
5949 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
5950 inserted = true;
5952 if (prologue_seq != NULL_RTX)
5954 insert_insn_on_edge (prologue_seq, entry_edge);
5955 inserted = true;
5958 /* If the exit block has no non-fake predecessors, we don't need
5959 an epilogue. */
5960 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5961 if ((e->flags & EDGE_FAKE) == 0)
5962 break;
5963 if (e == NULL)
5964 goto epilogue_done;
5966 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
5968 exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
5970 #ifdef HAVE_simple_return
5971 if (entry_edge != orig_entry_edge)
5972 exit_fallthru_edge
5973 = get_unconverted_simple_return (exit_fallthru_edge, bb_flags,
5974 &unconverted_simple_returns,
5975 &returnjump);
5976 #endif
5977 #ifdef HAVE_return
5978 if (HAVE_return)
5980 if (exit_fallthru_edge == NULL)
5981 goto epilogue_done;
5983 if (optimize)
5985 basic_block last_bb = exit_fallthru_edge->src;
5987 if (LABEL_P (BB_HEAD (last_bb))
5988 && !active_insn_between (BB_HEAD (last_bb), BB_END (last_bb)))
5989 convert_jumps_to_returns (last_bb, false, vNULL);
5991 if (EDGE_COUNT (last_bb->preds) != 0
5992 && single_succ_p (last_bb))
5994 last_bb = emit_return_for_exit (exit_fallthru_edge, false);
5995 epilogue_end = returnjump = BB_END (last_bb);
5996 #ifdef HAVE_simple_return
5997 /* Emitting the return may add a basic block.
5998 Fix bb_flags for the added block. */
5999 if (last_bb != exit_fallthru_edge->src)
6000 bitmap_set_bit (&bb_flags, last_bb->index);
6001 #endif
6002 goto epilogue_done;
6006 #endif
6008 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6009 this marker for the splits of EH_RETURN patterns, and nothing else
6010 uses the flag in the meantime. */
6011 epilogue_completed = 1;
6013 #ifdef HAVE_eh_return
6014 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6015 some targets, these get split to a special version of the epilogue
6016 code. In order to be able to properly annotate these with unwind
6017 info, try to split them now. If we get a valid split, drop an
6018 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6019 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6021 rtx_insn *prev, *last, *trial;
6023 if (e->flags & EDGE_FALLTHRU)
6024 continue;
6025 last = BB_END (e->src);
6026 if (!eh_returnjump_p (last))
6027 continue;
6029 prev = PREV_INSN (last);
6030 trial = try_split (PATTERN (last), last, 1);
6031 if (trial == last)
6032 continue;
6034 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6035 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6037 #endif
6039 /* If nothing falls through into the exit block, we don't need an
6040 epilogue. */
6042 if (exit_fallthru_edge == NULL)
6043 goto epilogue_done;
6045 #ifdef HAVE_epilogue
6046 if (HAVE_epilogue)
6048 start_sequence ();
6049 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
6050 rtx_insn *seq = as_a <rtx_insn *> (gen_epilogue ());
6051 if (seq)
6052 emit_jump_insn (seq);
6054 /* Retain a map of the epilogue insns. */
6055 record_insns (seq, NULL, &epilogue_insn_hash);
6056 set_insn_locations (seq, epilogue_location);
6058 seq = get_insns ();
6059 returnjump = get_last_insn ();
6060 end_sequence ();
6062 insert_insn_on_edge (seq, exit_fallthru_edge);
6063 inserted = true;
6065 if (JUMP_P (returnjump))
6066 set_return_jump_label (returnjump);
6068 else
6069 #endif
6071 basic_block cur_bb;
6073 if (! next_active_insn (BB_END (exit_fallthru_edge->src)))
6074 goto epilogue_done;
6075 /* We have a fall-through edge to the exit block, the source is not
6076 at the end of the function, and there will be an assembler epilogue
6077 at the end of the function.
6078 We can't use force_nonfallthru here, because that would try to
6079 use return. Inserting a jump 'by hand' is extremely messy, so
6080 we take advantage of cfg_layout_finalize using
6081 fixup_fallthru_exit_predecessor. */
6082 cfg_layout_initialize (0);
6083 FOR_EACH_BB_FN (cur_bb, cfun)
6084 if (cur_bb->index >= NUM_FIXED_BLOCKS
6085 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6086 cur_bb->aux = cur_bb->next_bb;
6087 cfg_layout_finalize ();
6090 epilogue_done:
6092 default_rtl_profile ();
6094 if (inserted)
6096 sbitmap blocks;
6098 commit_edge_insertions ();
6100 /* Look for basic blocks within the prologue insns. */
6101 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
6102 bitmap_clear (blocks);
6103 bitmap_set_bit (blocks, entry_edge->dest->index);
6104 bitmap_set_bit (blocks, orig_entry_edge->dest->index);
6105 find_many_sub_basic_blocks (blocks);
6106 sbitmap_free (blocks);
6108 /* The epilogue insns we inserted may cause the exit edge to no longer
6109 be fallthru. */
6110 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6112 if (((e->flags & EDGE_FALLTHRU) != 0)
6113 && returnjump_p (BB_END (e->src)))
6114 e->flags &= ~EDGE_FALLTHRU;
6118 #ifdef HAVE_simple_return
6119 convert_to_simple_return (entry_edge, orig_entry_edge, bb_flags, returnjump,
6120 unconverted_simple_returns);
6121 #endif
6123 #ifdef HAVE_sibcall_epilogue
6124 /* Emit sibling epilogues before any sibling call sites. */
6125 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds); (e =
6126 ei_safe_edge (ei));
6129 basic_block bb = e->src;
6130 rtx_insn *insn = BB_END (bb);
6131 rtx ep_seq;
6133 if (!CALL_P (insn)
6134 || ! SIBLING_CALL_P (insn)
6135 #ifdef HAVE_simple_return
6136 || (entry_edge != orig_entry_edge
6137 && !bitmap_bit_p (&bb_flags, bb->index))
6138 #endif
6141 ei_next (&ei);
6142 continue;
6145 ep_seq = gen_sibcall_epilogue ();
6146 if (ep_seq)
6148 start_sequence ();
6149 emit_note (NOTE_INSN_EPILOGUE_BEG);
6150 emit_insn (ep_seq);
6151 rtx_insn *seq = get_insns ();
6152 end_sequence ();
6154 /* Retain a map of the epilogue insns. Used in life analysis to
6155 avoid getting rid of sibcall epilogue insns. Do this before we
6156 actually emit the sequence. */
6157 record_insns (seq, NULL, &epilogue_insn_hash);
6158 set_insn_locations (seq, epilogue_location);
6160 emit_insn_before (seq, insn);
6162 ei_next (&ei);
6164 #endif
6166 #ifdef HAVE_epilogue
6167 if (epilogue_end)
6169 rtx_insn *insn, *next;
6171 /* Similarly, move any line notes that appear after the epilogue.
6172 There is no need, however, to be quite so anal about the existence
6173 of such a note. Also possibly move
6174 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6175 info generation. */
6176 for (insn = epilogue_end; insn; insn = next)
6178 next = NEXT_INSN (insn);
6179 if (NOTE_P (insn)
6180 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6181 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
6184 #endif
6186 #ifdef HAVE_simple_return
6187 bitmap_clear (&bb_flags);
6188 #endif
6190 /* Threading the prologue and epilogue changes the artificial refs
6191 in the entry and exit blocks. */
6192 epilogue_completed = 1;
6193 df_update_entry_exit_and_calls ();
6196 /* Reposition the prologue-end and epilogue-begin notes after
6197 instruction scheduling. */
6199 void
6200 reposition_prologue_and_epilogue_notes (void)
6202 #if defined (HAVE_prologue) || defined (HAVE_epilogue) \
6203 || defined (HAVE_sibcall_epilogue)
6204 /* Since the hash table is created on demand, the fact that it is
6205 non-null is a signal that it is non-empty. */
6206 if (prologue_insn_hash != NULL)
6208 size_t len = prologue_insn_hash->elements ();
6209 rtx_insn *insn, *last = NULL, *note = NULL;
6211 /* Scan from the beginning until we reach the last prologue insn. */
6212 /* ??? While we do have the CFG intact, there are two problems:
6213 (1) The prologue can contain loops (typically probing the stack),
6214 which means that the end of the prologue isn't in the first bb.
6215 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6216 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6218 if (NOTE_P (insn))
6220 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6221 note = insn;
6223 else if (contains (insn, prologue_insn_hash))
6225 last = insn;
6226 if (--len == 0)
6227 break;
6231 if (last)
6233 if (note == NULL)
6235 /* Scan forward looking for the PROLOGUE_END note. It should
6236 be right at the beginning of the block, possibly with other
6237 insn notes that got moved there. */
6238 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6240 if (NOTE_P (note)
6241 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6242 break;
6246 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6247 if (LABEL_P (last))
6248 last = NEXT_INSN (last);
6249 reorder_insns (note, note, last);
6253 if (epilogue_insn_hash != NULL)
6255 edge_iterator ei;
6256 edge e;
6258 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6260 rtx_insn *insn, *first = NULL, *note = NULL;
6261 basic_block bb = e->src;
6263 /* Scan from the beginning until we reach the first epilogue insn. */
6264 FOR_BB_INSNS (bb, insn)
6266 if (NOTE_P (insn))
6268 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6270 note = insn;
6271 if (first != NULL)
6272 break;
6275 else if (first == NULL && contains (insn, epilogue_insn_hash))
6277 first = insn;
6278 if (note != NULL)
6279 break;
6283 if (note)
6285 /* If the function has a single basic block, and no real
6286 epilogue insns (e.g. sibcall with no cleanup), the
6287 epilogue note can get scheduled before the prologue
6288 note. If we have frame related prologue insns, having
6289 them scanned during the epilogue will result in a crash.
6290 In this case re-order the epilogue note to just before
6291 the last insn in the block. */
6292 if (first == NULL)
6293 first = BB_END (bb);
6295 if (PREV_INSN (first) != note)
6296 reorder_insns (note, note, PREV_INSN (first));
6300 #endif /* HAVE_prologue or HAVE_epilogue */
6303 /* Returns the name of function declared by FNDECL. */
6304 const char *
6305 fndecl_name (tree fndecl)
6307 if (fndecl == NULL)
6308 return "(nofn)";
6309 return lang_hooks.decl_printable_name (fndecl, 2);
6312 /* Returns the name of function FN. */
6313 const char *
6314 function_name (struct function *fn)
6316 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6317 return fndecl_name (fndecl);
6320 /* Returns the name of the current function. */
6321 const char *
6322 current_function_name (void)
6324 return function_name (cfun);
6328 static unsigned int
6329 rest_of_handle_check_leaf_regs (void)
6331 #ifdef LEAF_REGISTERS
6332 crtl->uses_only_leaf_regs
6333 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6334 #endif
6335 return 0;
6338 /* Insert a TYPE into the used types hash table of CFUN. */
6340 static void
6341 used_types_insert_helper (tree type, struct function *func)
6343 if (type != NULL && func != NULL)
6345 if (func->used_types_hash == NULL)
6346 func->used_types_hash = hash_set<tree>::create_ggc (37);
6348 func->used_types_hash->add (type);
6352 /* Given a type, insert it into the used hash table in cfun. */
6353 void
6354 used_types_insert (tree t)
6356 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6357 if (TYPE_NAME (t))
6358 break;
6359 else
6360 t = TREE_TYPE (t);
6361 if (TREE_CODE (t) == ERROR_MARK)
6362 return;
6363 if (TYPE_NAME (t) == NULL_TREE
6364 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6365 t = TYPE_MAIN_VARIANT (t);
6366 if (debug_info_level > DINFO_LEVEL_NONE)
6368 if (cfun)
6369 used_types_insert_helper (t, cfun);
6370 else
6372 /* So this might be a type referenced by a global variable.
6373 Record that type so that we can later decide to emit its
6374 debug information. */
6375 vec_safe_push (types_used_by_cur_var_decl, t);
6380 /* Helper to Hash a struct types_used_by_vars_entry. */
6382 static hashval_t
6383 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6385 gcc_assert (entry && entry->var_decl && entry->type);
6387 return iterative_hash_object (entry->type,
6388 iterative_hash_object (entry->var_decl, 0));
6391 /* Hash function of the types_used_by_vars_entry hash table. */
6393 hashval_t
6394 used_type_hasher::hash (types_used_by_vars_entry *entry)
6396 return hash_types_used_by_vars_entry (entry);
6399 /*Equality function of the types_used_by_vars_entry hash table. */
6401 bool
6402 used_type_hasher::equal (types_used_by_vars_entry *e1,
6403 types_used_by_vars_entry *e2)
6405 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6408 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6410 void
6411 types_used_by_var_decl_insert (tree type, tree var_decl)
6413 if (type != NULL && var_decl != NULL)
6415 types_used_by_vars_entry **slot;
6416 struct types_used_by_vars_entry e;
6417 e.var_decl = var_decl;
6418 e.type = type;
6419 if (types_used_by_vars_hash == NULL)
6420 types_used_by_vars_hash
6421 = hash_table<used_type_hasher>::create_ggc (37);
6423 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6424 if (*slot == NULL)
6426 struct types_used_by_vars_entry *entry;
6427 entry = ggc_alloc<types_used_by_vars_entry> ();
6428 entry->type = type;
6429 entry->var_decl = var_decl;
6430 *slot = entry;
6435 namespace {
6437 const pass_data pass_data_leaf_regs =
6439 RTL_PASS, /* type */
6440 "*leaf_regs", /* name */
6441 OPTGROUP_NONE, /* optinfo_flags */
6442 TV_NONE, /* tv_id */
6443 0, /* properties_required */
6444 0, /* properties_provided */
6445 0, /* properties_destroyed */
6446 0, /* todo_flags_start */
6447 0, /* todo_flags_finish */
6450 class pass_leaf_regs : public rtl_opt_pass
6452 public:
6453 pass_leaf_regs (gcc::context *ctxt)
6454 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6457 /* opt_pass methods: */
6458 virtual unsigned int execute (function *)
6460 return rest_of_handle_check_leaf_regs ();
6463 }; // class pass_leaf_regs
6465 } // anon namespace
6467 rtl_opt_pass *
6468 make_pass_leaf_regs (gcc::context *ctxt)
6470 return new pass_leaf_regs (ctxt);
6473 static unsigned int
6474 rest_of_handle_thread_prologue_and_epilogue (void)
6476 if (optimize)
6477 cleanup_cfg (CLEANUP_EXPENSIVE);
6479 /* On some machines, the prologue and epilogue code, or parts thereof,
6480 can be represented as RTL. Doing so lets us schedule insns between
6481 it and the rest of the code and also allows delayed branch
6482 scheduling to operate in the epilogue. */
6483 thread_prologue_and_epilogue_insns ();
6485 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6486 see PR57320. */
6487 cleanup_cfg (0);
6489 /* The stack usage info is finalized during prologue expansion. */
6490 if (flag_stack_usage_info)
6491 output_stack_usage ();
6493 return 0;
6496 namespace {
6498 const pass_data pass_data_thread_prologue_and_epilogue =
6500 RTL_PASS, /* type */
6501 "pro_and_epilogue", /* name */
6502 OPTGROUP_NONE, /* optinfo_flags */
6503 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6504 0, /* properties_required */
6505 0, /* properties_provided */
6506 0, /* properties_destroyed */
6507 0, /* todo_flags_start */
6508 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6511 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6513 public:
6514 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6515 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6518 /* opt_pass methods: */
6519 virtual unsigned int execute (function *)
6521 return rest_of_handle_thread_prologue_and_epilogue ();
6524 }; // class pass_thread_prologue_and_epilogue
6526 } // anon namespace
6528 rtl_opt_pass *
6529 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6531 return new pass_thread_prologue_and_epilogue (ctxt);
6535 /* This mini-pass fixes fall-out from SSA in asm statements that have
6536 in-out constraints. Say you start with
6538 orig = inout;
6539 asm ("": "+mr" (inout));
6540 use (orig);
6542 which is transformed very early to use explicit output and match operands:
6544 orig = inout;
6545 asm ("": "=mr" (inout) : "0" (inout));
6546 use (orig);
6548 Or, after SSA and copyprop,
6550 asm ("": "=mr" (inout_2) : "0" (inout_1));
6551 use (inout_1);
6553 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6554 they represent two separate values, so they will get different pseudo
6555 registers during expansion. Then, since the two operands need to match
6556 per the constraints, but use different pseudo registers, reload can
6557 only register a reload for these operands. But reloads can only be
6558 satisfied by hardregs, not by memory, so we need a register for this
6559 reload, just because we are presented with non-matching operands.
6560 So, even though we allow memory for this operand, no memory can be
6561 used for it, just because the two operands don't match. This can
6562 cause reload failures on register-starved targets.
6564 So it's a symptom of reload not being able to use memory for reloads
6565 or, alternatively it's also a symptom of both operands not coming into
6566 reload as matching (in which case the pseudo could go to memory just
6567 fine, as the alternative allows it, and no reload would be necessary).
6568 We fix the latter problem here, by transforming
6570 asm ("": "=mr" (inout_2) : "0" (inout_1));
6572 back to
6574 inout_2 = inout_1;
6575 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6577 static void
6578 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6580 int i;
6581 bool changed = false;
6582 rtx op = SET_SRC (p_sets[0]);
6583 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6584 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6585 bool *output_matched = XALLOCAVEC (bool, noutputs);
6587 memset (output_matched, 0, noutputs * sizeof (bool));
6588 for (i = 0; i < ninputs; i++)
6590 rtx input, output;
6591 rtx_insn *insns;
6592 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6593 char *end;
6594 int match, j;
6596 if (*constraint == '%')
6597 constraint++;
6599 match = strtoul (constraint, &end, 10);
6600 if (end == constraint)
6601 continue;
6603 gcc_assert (match < noutputs);
6604 output = SET_DEST (p_sets[match]);
6605 input = RTVEC_ELT (inputs, i);
6606 /* Only do the transformation for pseudos. */
6607 if (! REG_P (output)
6608 || rtx_equal_p (output, input)
6609 || (GET_MODE (input) != VOIDmode
6610 && GET_MODE (input) != GET_MODE (output)))
6611 continue;
6613 /* We can't do anything if the output is also used as input,
6614 as we're going to overwrite it. */
6615 for (j = 0; j < ninputs; j++)
6616 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6617 break;
6618 if (j != ninputs)
6619 continue;
6621 /* Avoid changing the same input several times. For
6622 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6623 only change in once (to out1), rather than changing it
6624 first to out1 and afterwards to out2. */
6625 if (i > 0)
6627 for (j = 0; j < noutputs; j++)
6628 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6629 break;
6630 if (j != noutputs)
6631 continue;
6633 output_matched[match] = true;
6635 start_sequence ();
6636 emit_move_insn (output, input);
6637 insns = get_insns ();
6638 end_sequence ();
6639 emit_insn_before (insns, insn);
6641 /* Now replace all mentions of the input with output. We can't
6642 just replace the occurrence in inputs[i], as the register might
6643 also be used in some other input (or even in an address of an
6644 output), which would mean possibly increasing the number of
6645 inputs by one (namely 'output' in addition), which might pose
6646 a too complicated problem for reload to solve. E.g. this situation:
6648 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6650 Here 'input' is used in two occurrences as input (once for the
6651 input operand, once for the address in the second output operand).
6652 If we would replace only the occurrence of the input operand (to
6653 make the matching) we would be left with this:
6655 output = input
6656 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6658 Now we suddenly have two different input values (containing the same
6659 value, but different pseudos) where we formerly had only one.
6660 With more complicated asms this might lead to reload failures
6661 which wouldn't have happen without this pass. So, iterate over
6662 all operands and replace all occurrences of the register used. */
6663 for (j = 0; j < noutputs; j++)
6664 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6665 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6666 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6667 input, output);
6668 for (j = 0; j < ninputs; j++)
6669 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6670 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6671 input, output);
6673 changed = true;
6676 if (changed)
6677 df_insn_rescan (insn);
6680 /* Add the decl D to the local_decls list of FUN. */
6682 void
6683 add_local_decl (struct function *fun, tree d)
6685 gcc_assert (TREE_CODE (d) == VAR_DECL);
6686 vec_safe_push (fun->local_decls, d);
6689 namespace {
6691 const pass_data pass_data_match_asm_constraints =
6693 RTL_PASS, /* type */
6694 "asmcons", /* name */
6695 OPTGROUP_NONE, /* optinfo_flags */
6696 TV_NONE, /* tv_id */
6697 0, /* properties_required */
6698 0, /* properties_provided */
6699 0, /* properties_destroyed */
6700 0, /* todo_flags_start */
6701 0, /* todo_flags_finish */
6704 class pass_match_asm_constraints : public rtl_opt_pass
6706 public:
6707 pass_match_asm_constraints (gcc::context *ctxt)
6708 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6711 /* opt_pass methods: */
6712 virtual unsigned int execute (function *);
6714 }; // class pass_match_asm_constraints
6716 unsigned
6717 pass_match_asm_constraints::execute (function *fun)
6719 basic_block bb;
6720 rtx_insn *insn;
6721 rtx pat, *p_sets;
6722 int noutputs;
6724 if (!crtl->has_asm_statement)
6725 return 0;
6727 df_set_flags (DF_DEFER_INSN_RESCAN);
6728 FOR_EACH_BB_FN (bb, fun)
6730 FOR_BB_INSNS (bb, insn)
6732 if (!INSN_P (insn))
6733 continue;
6735 pat = PATTERN (insn);
6736 if (GET_CODE (pat) == PARALLEL)
6737 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6738 else if (GET_CODE (pat) == SET)
6739 p_sets = &PATTERN (insn), noutputs = 1;
6740 else
6741 continue;
6743 if (GET_CODE (*p_sets) == SET
6744 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6745 match_asm_constraints_1 (insn, p_sets, noutputs);
6749 return TODO_df_finish;
6752 } // anon namespace
6754 rtl_opt_pass *
6755 make_pass_match_asm_constraints (gcc::context *ctxt)
6757 return new pass_match_asm_constraints (ctxt);
6761 #include "gt-function.h"