1 /* Vector API for GNU compiler.
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin (dan@cgsoftware.com).
4 Re-implemented in C++ by Martin Liska <mliska@suse.cz>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Fibonacci heaps are somewhat complex, but, there's an article in
23 DDJ that explains them pretty well:
25 http://www.ddj.com/articles/1997/9701/9701o/9701o.htm?topic=algoritms
27 Introduction to algorithms by Corman and Rivest also goes over them.
29 The original paper that introduced them is "Fibonacci heaps and their
30 uses in improved network optimization algorithms" by Tarjan and
31 Fredman (JACM 34(3), July 1987).
33 Amortized and real worst case time for operations:
35 ExtractMin: O(lg n) amortized. O(n) worst case.
36 DecreaseKey: O(1) amortized. O(lg n) worst case.
37 Insert: O(1) amortized.
38 Union: O(1) amortized. */
40 #ifndef GCC_FIBONACCI_HEAP_H
41 #define GCC_FIBONACCI_HEAP_H
43 /* Forward definition. */
45 template<class K
, class V
>
48 /* Fibonacci heap node class. */
50 template<class K
, class V
>
53 typedef fibonacci_node
<K
,V
> fibonacci_node_t
;
54 friend class fibonacci_heap
<K
,V
>;
57 /* Default constructor. */
58 fibonacci_node (): m_parent (NULL
), m_child (NULL
), m_left (this),
59 m_right (this), m_degree (0), m_mark (0)
63 /* Constructor for a node with given KEY. */
64 fibonacci_node (K key
): m_parent (NULL
), m_child (NULL
), m_left (this),
65 m_right (this), m_key (key
),
66 m_degree (0), m_mark (0)
70 /* Compare fibonacci node with OTHER node. */
71 int compare (fibonacci_node_t
*other
)
73 if (m_key
< other
->m_key
)
75 if (m_key
> other
->m_key
)
80 /* Compare the node with a given KEY. */
81 int compare_data (K key
)
83 return fibonacci_node_t (key
).compare (this);
86 /* Remove fibonacci heap node. */
87 fibonacci_node_t
*remove ();
89 /* Link the node with PARENT. */
90 void link (fibonacci_node_t
*parent
);
92 /* Return key associated with the node. */
98 /* Return data associated with the node. */
105 /* Put node B after this node. */
106 void insert_after (fibonacci_node_t
*b
);
108 /* Insert fibonacci node B after this node. */
109 void insert_before (fibonacci_node_t
*b
)
111 m_left
->insert_after (b
);
115 fibonacci_node
*m_parent
;
117 fibonacci_node
*m_child
;
119 fibonacci_node
*m_left
;
121 fibonacci_node
*m_right
;
122 /* Key associated with node. */
124 /* Data associated with node. */
127 #if defined (__GNUC__) && (!defined (SIZEOF_INT) || SIZEOF_INT < 4)
128 /* Degree of the node. */
129 __extension__
unsigned long int m_degree
: 31;
130 /* Mark of the node. */
131 __extension__
unsigned long int m_mark
: 1;
133 /* Degree of the node. */
134 unsigned int m_degree
: 31;
135 /* Mark of the node. */
136 unsigned int m_mark
: 1;
140 /* Fibonacci heap class. */
141 template<class K
, class V
>
144 typedef fibonacci_node
<K
,V
> fibonacci_node_t
;
145 friend class fibonacci_node
<K
,V
>;
148 /* Default constructor. */
149 fibonacci_heap (K global_min_key
): m_nodes (0), m_min (NULL
), m_root (NULL
),
150 m_global_min_key (global_min_key
)
157 while (m_min
!= NULL
)
158 delete (extract_minimum_node ());
161 /* Insert new node given by KEY and DATA associated with the key. */
162 fibonacci_node_t
*insert (K key
, V
*data
);
164 /* Return true if no entry is present. */
170 /* Return the number of nodes. */
176 /* Return minimal key presented in the heap. */
185 /* For given NODE, set new KEY value. */
186 K
decrease_key (fibonacci_node_t
*node
, K key
)
188 K okey
= node
->m_key
;
189 gcc_assert (key
<= okey
);
191 replace_key_data (node
, key
, node
->m_data
);
195 /* For given NODE, set new KEY and DATA value. */
196 V
*replace_key_data (fibonacci_node_t
*node
, K key
, V
*data
);
198 /* Extract minimum node in the heap. */
201 /* Return value associated with minimum node in the heap. */
210 /* Replace data associated with NODE and replace it with DATA. */
211 V
*replace_data (fibonacci_node_t
*node
, V
*data
)
213 return replace_key_data (node
, node
->m_key
, data
);
216 /* Delete NODE in the heap. */
217 V
*delete_node (fibonacci_node_t
*node
);
219 /* Union the heap with HEAPB. */
220 fibonacci_heap
*union_with (fibonacci_heap
*heapb
);
223 /* Insert it into the root list. */
224 void insert_root (fibonacci_node_t
*node
);
226 /* Remove NODE from PARENT's child list. */
227 void cut (fibonacci_node_t
*node
, fibonacci_node_t
*parent
);
229 /* Process cut of node Y and do it recursivelly. */
230 void cascading_cut (fibonacci_node_t
*y
);
232 /* Extract minimum node from the heap. */
233 fibonacci_node_t
* extract_minimum_node ();
235 /* Remove root NODE from the heap. */
236 void remove_root (fibonacci_node_t
*node
);
238 /* Consolidate heap. */
241 /* Number of nodes. */
243 /* Minimum node of the heap. */
244 fibonacci_node_t
*m_min
;
245 /* Root node of the heap. */
246 fibonacci_node_t
*m_root
;
247 /* Global minimum given in the heap construction. */
251 /* Remove fibonacci heap node. */
253 template<class K
, class V
>
254 fibonacci_node
<K
,V
> *
255 fibonacci_node
<K
,V
>::remove ()
257 fibonacci_node
<K
,V
> *ret
;
264 if (m_parent
!= NULL
&& m_parent
->m_child
== this)
265 m_parent
->m_child
= ret
;
267 m_right
->m_left
= m_left
;
268 m_left
->m_right
= m_right
;
277 /* Link the node with PARENT. */
279 template<class K
, class V
>
281 fibonacci_node
<K
,V
>::link (fibonacci_node
<K
,V
> *parent
)
283 if (parent
->m_child
== NULL
)
284 parent
->m_child
= this;
286 parent
->m_child
->insert_before (this);
292 /* Put node B after this node. */
294 template<class K
, class V
>
296 fibonacci_node
<K
,V
>::insert_after (fibonacci_node
<K
,V
> *b
)
298 fibonacci_node
<K
,V
> *a
= this;
309 b
->m_right
= a
->m_right
;
310 a
->m_right
->m_left
= b
;
316 /* Insert new node given by KEY and DATA associated with the key. */
318 template<class K
, class V
>
320 fibonacci_heap
<K
,V
>::insert (K key
, V
*data
)
322 /* Create the new node. */
323 fibonacci_node
<K
,V
> *node
= new fibonacci_node_t ();
325 /* Set the node's data. */
329 /* Insert it into the root list. */
332 /* If their was no minimum, or this key is less than the min,
334 if (m_min
== NULL
|| node
->m_key
< m_min
->m_key
)
342 /* For given NODE, set new KEY and DATA value. */
343 template<class K
, class V
>
345 fibonacci_heap
<K
,V
>::replace_key_data (fibonacci_node
<K
,V
> *node
, K key
,
350 fibonacci_node
<K
,V
> *y
;
352 /* If we wanted to, we could actually do a real increase by redeleting and
353 inserting. However, this would require O (log n) time. So just bail out
355 if (node
->compare_data (key
) > 0)
358 odata
= node
->m_data
;
364 /* Short-circuit if the key is the same, as we then don't have to
365 do anything. Except if we're trying to force the new node to
366 be the new minimum for delete. */
367 if (okey
== key
&& okey
!= m_global_min_key
)
370 /* These two compares are specifically <= 0 to make sure that in the case
371 of equality, a node we replaced the data on, becomes the new min. This
372 is needed so that delete's call to extractmin gets the right node. */
373 if (y
!= NULL
&& node
->compare (y
) <= 0)
379 if (node
->compare (m_min
) <= 0)
385 /* Extract minimum node in the heap. */
386 template<class K
, class V
>
388 fibonacci_heap
<K
,V
>::extract_min ()
390 fibonacci_node
<K
,V
> *z
;
393 /* If we don't have a min set, it means we have no nodes. */
396 /* Otherwise, extract the min node, free the node, and return the
398 z
= extract_minimum_node ();
406 /* Delete NODE in the heap. */
408 template<class K
, class V
>
410 fibonacci_heap
<K
,V
>::delete_node (fibonacci_node
<K
,V
> *node
)
412 V
*ret
= node
->m_data
;
414 /* To perform delete, we just make it the min key, and extract. */
415 decrease_key (node
, m_global_min_key
);
418 fprintf (stderr
, "Can't force minimum on fibheap.\n");
426 /* Union the heap with HEAPB. */
428 template<class K
, class V
>
430 fibonacci_heap
<K
,V
>::union_with (fibonacci_heap
<K
,V
> *heapb
)
432 fibonacci_heap
<K
,V
> *heapa
= this;
434 fibonacci_node
<K
,V
> *a_root
, *b_root
, *temp
;
436 /* If one of the heaps is empty, the union is just the other heap. */
437 if ((a_root
= heapa
->m_root
) == NULL
)
442 if ((b_root
= heapb
->m_root
) == NULL
)
448 /* Merge them to the next nodes on the opposite chain. */
449 a_root
->m_left
->m_right
= b_root
;
450 b_root
->m_left
->m_right
= a_root
;
451 temp
= a_root
->m_left
;
452 a_root
->m_left
= b_root
->m_left
;
453 b_root
->m_left
= temp
;
454 heapa
->m_nodes
+= heapb
->m_nodes
;
456 /* And set the new minimum, if it's changed. */
457 if (heapb
->min
->compare (heapa
->min
) < 0)
458 heapa
->m_min
= heapb
->m_min
;
464 /* Insert it into the root list. */
466 template<class K
, class V
>
468 fibonacci_heap
<K
,V
>::insert_root (fibonacci_node_t
*node
)
470 /* If the heap is currently empty, the new node becomes the singleton
471 circular root list. */
476 node
->m_right
= node
;
480 /* Otherwise, insert it in the circular root list between the root
481 and it's right node. */
482 m_root
->insert_after (node
);
485 /* Remove NODE from PARENT's child list. */
487 template<class K
, class V
>
489 fibonacci_heap
<K
,V
>::cut (fibonacci_node
<K
,V
> *node
,
490 fibonacci_node
<K
,V
> *parent
)
495 node
->m_parent
= NULL
;
499 /* Process cut of node Y and do it recursivelly. */
501 template<class K
, class V
>
503 fibonacci_heap
<K
,V
>::cascading_cut (fibonacci_node
<K
,V
> *y
)
505 fibonacci_node
<K
,V
> *z
;
507 while ((z
= y
->m_parent
) != NULL
)
522 /* Extract minimum node from the heap. */
523 template<class K
, class V
>
525 fibonacci_heap
<K
,V
>::extract_minimum_node ()
527 fibonacci_node
<K
,V
> *ret
= m_min
;
528 fibonacci_node
<K
,V
> *x
, *y
, *orig
;
530 /* Attach the child list of the minimum node to the root list of the heap.
531 If there is no child list, we don't do squat. */
532 for (x
= ret
->m_child
, orig
= NULL
; x
!= orig
&& x
!= NULL
; x
= y
)
541 /* Remove the old root. */
545 /* If we are left with no nodes, then the min is NULL. */
550 /* Otherwise, consolidate to find new minimum, as well as do the reorg
551 work that needs to be done. */
552 m_min
= ret
->m_right
;
559 /* Remove root NODE from the heap. */
561 template<class K
, class V
>
563 fibonacci_heap
<K
,V
>::remove_root (fibonacci_node
<K
,V
> *node
)
565 if (node
->m_left
== node
)
568 m_root
= node
->remove ();
571 /* Consolidate heap. */
573 template<class K
, class V
>
574 void fibonacci_heap
<K
,V
>::consolidate ()
576 int D
= 1 + 8 * sizeof (long);
577 auto_vec
<fibonacci_node
<K
,V
> *> a (D
);
578 a
.safe_grow_cleared (D
);
579 fibonacci_node
<K
,V
> *w
, *x
, *y
;
582 while ((w
= m_root
) != NULL
)
590 if (x
->compare (y
) > 0)
599 for (i
= 0; i
< D
; i
++)
603 if (m_min
== NULL
|| a
[i
]->compare (m_min
) < 0)
608 #endif // GCC_FIBONACCI_HEAP_H