1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
80 #include "coretypes.h"
84 #include "stor-layout.h"
88 #include "hard-reg-set.h"
96 #include "dominance.h"
99 #include "cfgcleanup.h"
100 #include "basic-block.h"
101 #include "insn-config.h"
102 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
104 #include "insn-attr.h"
106 #include "diagnostic-core.h"
108 #include "insn-codes.h"
110 #include "rtlhooks-def.h"
112 #include "tree-pass.h"
114 #include "valtrack.h"
115 #include "hash-map.h"
117 #include "plugin-api.h"
121 #include "statistics.h"
123 #include "rtl-iter.h"
125 /* Number of attempts to combine instructions in this function. */
127 static int combine_attempts
;
129 /* Number of attempts that got as far as substitution in this function. */
131 static int combine_merges
;
133 /* Number of instructions combined with added SETs in this function. */
135 static int combine_extras
;
137 /* Number of instructions combined in this function. */
139 static int combine_successes
;
141 /* Totals over entire compilation. */
143 static int total_attempts
, total_merges
, total_extras
, total_successes
;
145 /* combine_instructions may try to replace the right hand side of the
146 second instruction with the value of an associated REG_EQUAL note
147 before throwing it at try_combine. That is problematic when there
148 is a REG_DEAD note for a register used in the old right hand side
149 and can cause distribute_notes to do wrong things. This is the
150 second instruction if it has been so modified, null otherwise. */
152 static rtx_insn
*i2mod
;
154 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
156 static rtx i2mod_old_rhs
;
158 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
160 static rtx i2mod_new_rhs
;
162 typedef struct reg_stat_struct
{
163 /* Record last point of death of (hard or pseudo) register n. */
164 rtx_insn
*last_death
;
166 /* Record last point of modification of (hard or pseudo) register n. */
169 /* The next group of fields allows the recording of the last value assigned
170 to (hard or pseudo) register n. We use this information to see if an
171 operation being processed is redundant given a prior operation performed
172 on the register. For example, an `and' with a constant is redundant if
173 all the zero bits are already known to be turned off.
175 We use an approach similar to that used by cse, but change it in the
178 (1) We do not want to reinitialize at each label.
179 (2) It is useful, but not critical, to know the actual value assigned
180 to a register. Often just its form is helpful.
182 Therefore, we maintain the following fields:
184 last_set_value the last value assigned
185 last_set_label records the value of label_tick when the
186 register was assigned
187 last_set_table_tick records the value of label_tick when a
188 value using the register is assigned
189 last_set_invalid set to nonzero when it is not valid
190 to use the value of this register in some
193 To understand the usage of these tables, it is important to understand
194 the distinction between the value in last_set_value being valid and
195 the register being validly contained in some other expression in the
198 (The next two parameters are out of date).
200 reg_stat[i].last_set_value is valid if it is nonzero, and either
201 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
203 Register I may validly appear in any expression returned for the value
204 of another register if reg_n_sets[i] is 1. It may also appear in the
205 value for register J if reg_stat[j].last_set_invalid is zero, or
206 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
208 If an expression is found in the table containing a register which may
209 not validly appear in an expression, the register is replaced by
210 something that won't match, (clobber (const_int 0)). */
212 /* Record last value assigned to (hard or pseudo) register n. */
216 /* Record the value of label_tick when an expression involving register n
217 is placed in last_set_value. */
219 int last_set_table_tick
;
221 /* Record the value of label_tick when the value for register n is placed in
226 /* These fields are maintained in parallel with last_set_value and are
227 used to store the mode in which the register was last set, the bits
228 that were known to be zero when it was last set, and the number of
229 sign bits copies it was known to have when it was last set. */
231 unsigned HOST_WIDE_INT last_set_nonzero_bits
;
232 char last_set_sign_bit_copies
;
233 ENUM_BITFIELD(machine_mode
) last_set_mode
: 8;
235 /* Set nonzero if references to register n in expressions should not be
236 used. last_set_invalid is set nonzero when this register is being
237 assigned to and last_set_table_tick == label_tick. */
239 char last_set_invalid
;
241 /* Some registers that are set more than once and used in more than one
242 basic block are nevertheless always set in similar ways. For example,
243 a QImode register may be loaded from memory in two places on a machine
244 where byte loads zero extend.
246 We record in the following fields if a register has some leading bits
247 that are always equal to the sign bit, and what we know about the
248 nonzero bits of a register, specifically which bits are known to be
251 If an entry is zero, it means that we don't know anything special. */
253 unsigned char sign_bit_copies
;
255 unsigned HOST_WIDE_INT nonzero_bits
;
257 /* Record the value of the label_tick when the last truncation
258 happened. The field truncated_to_mode is only valid if
259 truncation_label == label_tick. */
261 int truncation_label
;
263 /* Record the last truncation seen for this register. If truncation
264 is not a nop to this mode we might be able to save an explicit
265 truncation if we know that value already contains a truncated
268 ENUM_BITFIELD(machine_mode
) truncated_to_mode
: 8;
272 static vec
<reg_stat_type
> reg_stat
;
274 /* Record the luid of the last insn that invalidated memory
275 (anything that writes memory, and subroutine calls, but not pushes). */
277 static int mem_last_set
;
279 /* Record the luid of the last CALL_INSN
280 so we can tell whether a potential combination crosses any calls. */
282 static int last_call_luid
;
284 /* When `subst' is called, this is the insn that is being modified
285 (by combining in a previous insn). The PATTERN of this insn
286 is still the old pattern partially modified and it should not be
287 looked at, but this may be used to examine the successors of the insn
288 to judge whether a simplification is valid. */
290 static rtx_insn
*subst_insn
;
292 /* This is the lowest LUID that `subst' is currently dealing with.
293 get_last_value will not return a value if the register was set at or
294 after this LUID. If not for this mechanism, we could get confused if
295 I2 or I1 in try_combine were an insn that used the old value of a register
296 to obtain a new value. In that case, we might erroneously get the
297 new value of the register when we wanted the old one. */
299 static int subst_low_luid
;
301 /* This contains any hard registers that are used in newpat; reg_dead_at_p
302 must consider all these registers to be always live. */
304 static HARD_REG_SET newpat_used_regs
;
306 /* This is an insn to which a LOG_LINKS entry has been added. If this
307 insn is the earlier than I2 or I3, combine should rescan starting at
310 static rtx_insn
*added_links_insn
;
312 /* Basic block in which we are performing combines. */
313 static basic_block this_basic_block
;
314 static bool optimize_this_for_speed_p
;
317 /* Length of the currently allocated uid_insn_cost array. */
319 static int max_uid_known
;
321 /* The following array records the insn_rtx_cost for every insn
322 in the instruction stream. */
324 static int *uid_insn_cost
;
326 /* The following array records the LOG_LINKS for every insn in the
327 instruction stream as struct insn_link pointers. */
331 struct insn_link
*next
;
334 static struct insn_link
**uid_log_links
;
336 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
337 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
339 #define FOR_EACH_LOG_LINK(L, INSN) \
340 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
342 /* Links for LOG_LINKS are allocated from this obstack. */
344 static struct obstack insn_link_obstack
;
346 /* Allocate a link. */
348 static inline struct insn_link
*
349 alloc_insn_link (rtx_insn
*insn
, struct insn_link
*next
)
352 = (struct insn_link
*) obstack_alloc (&insn_link_obstack
,
353 sizeof (struct insn_link
));
359 /* Incremented for each basic block. */
361 static int label_tick
;
363 /* Reset to label_tick for each extended basic block in scanning order. */
365 static int label_tick_ebb_start
;
367 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
368 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
370 static machine_mode nonzero_bits_mode
;
372 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
373 be safely used. It is zero while computing them and after combine has
374 completed. This former test prevents propagating values based on
375 previously set values, which can be incorrect if a variable is modified
378 static int nonzero_sign_valid
;
381 /* Record one modification to rtl structure
382 to be undone by storing old_contents into *where. */
384 enum undo_kind
{ UNDO_RTX
, UNDO_INT
, UNDO_MODE
, UNDO_LINKS
};
390 union { rtx r
; int i
; machine_mode m
; struct insn_link
*l
; } old_contents
;
391 union { rtx
*r
; int *i
; struct insn_link
**l
; } where
;
394 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
395 num_undo says how many are currently recorded.
397 other_insn is nonzero if we have modified some other insn in the process
398 of working on subst_insn. It must be verified too. */
404 rtx_insn
*other_insn
;
407 static struct undobuf undobuf
;
409 /* Number of times the pseudo being substituted for
410 was found and replaced. */
412 static int n_occurrences
;
414 static rtx
reg_nonzero_bits_for_combine (const_rtx
, machine_mode
, const_rtx
,
416 unsigned HOST_WIDE_INT
,
417 unsigned HOST_WIDE_INT
*);
418 static rtx
reg_num_sign_bit_copies_for_combine (const_rtx
, machine_mode
, const_rtx
,
420 unsigned int, unsigned int *);
421 static void do_SUBST (rtx
*, rtx
);
422 static void do_SUBST_INT (int *, int);
423 static void init_reg_last (void);
424 static void setup_incoming_promotions (rtx_insn
*);
425 static void set_nonzero_bits_and_sign_copies (rtx
, const_rtx
, void *);
426 static int cant_combine_insn_p (rtx_insn
*);
427 static int can_combine_p (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
428 rtx_insn
*, rtx_insn
*, rtx
*, rtx
*);
429 static int combinable_i3pat (rtx_insn
*, rtx
*, rtx
, rtx
, rtx
, int, int, rtx
*);
430 static int contains_muldiv (rtx
);
431 static rtx_insn
*try_combine (rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx_insn
*,
433 static void undo_all (void);
434 static void undo_commit (void);
435 static rtx
*find_split_point (rtx
*, rtx_insn
*, bool);
436 static rtx
subst (rtx
, rtx
, rtx
, int, int, int);
437 static rtx
combine_simplify_rtx (rtx
, machine_mode
, int, int);
438 static rtx
simplify_if_then_else (rtx
);
439 static rtx
simplify_set (rtx
);
440 static rtx
simplify_logical (rtx
);
441 static rtx
expand_compound_operation (rtx
);
442 static const_rtx
expand_field_assignment (const_rtx
);
443 static rtx
make_extraction (machine_mode
, rtx
, HOST_WIDE_INT
,
444 rtx
, unsigned HOST_WIDE_INT
, int, int, int);
445 static rtx
extract_left_shift (rtx
, int);
446 static int get_pos_from_mask (unsigned HOST_WIDE_INT
,
447 unsigned HOST_WIDE_INT
*);
448 static rtx
canon_reg_for_combine (rtx
, rtx
);
449 static rtx
force_to_mode (rtx
, machine_mode
,
450 unsigned HOST_WIDE_INT
, int);
451 static rtx
if_then_else_cond (rtx
, rtx
*, rtx
*);
452 static rtx
known_cond (rtx
, enum rtx_code
, rtx
, rtx
);
453 static int rtx_equal_for_field_assignment_p (rtx
, rtx
);
454 static rtx
make_field_assignment (rtx
);
455 static rtx
apply_distributive_law (rtx
);
456 static rtx
distribute_and_simplify_rtx (rtx
, int);
457 static rtx
simplify_and_const_int_1 (machine_mode
, rtx
,
458 unsigned HOST_WIDE_INT
);
459 static rtx
simplify_and_const_int (rtx
, machine_mode
, rtx
,
460 unsigned HOST_WIDE_INT
);
461 static int merge_outer_ops (enum rtx_code
*, HOST_WIDE_INT
*, enum rtx_code
,
462 HOST_WIDE_INT
, machine_mode
, int *);
463 static rtx
simplify_shift_const_1 (enum rtx_code
, machine_mode
, rtx
, int);
464 static rtx
simplify_shift_const (rtx
, enum rtx_code
, machine_mode
, rtx
,
466 static int recog_for_combine (rtx
*, rtx_insn
*, rtx
*);
467 static rtx
gen_lowpart_for_combine (machine_mode
, rtx
);
468 static enum rtx_code
simplify_compare_const (enum rtx_code
, machine_mode
,
470 static enum rtx_code
simplify_comparison (enum rtx_code
, rtx
*, rtx
*);
471 static void update_table_tick (rtx
);
472 static void record_value_for_reg (rtx
, rtx_insn
*, rtx
);
473 static void check_promoted_subreg (rtx_insn
*, rtx
);
474 static void record_dead_and_set_regs_1 (rtx
, const_rtx
, void *);
475 static void record_dead_and_set_regs (rtx_insn
*);
476 static int get_last_value_validate (rtx
*, rtx_insn
*, int, int);
477 static rtx
get_last_value (const_rtx
);
478 static int use_crosses_set_p (const_rtx
, int);
479 static void reg_dead_at_p_1 (rtx
, const_rtx
, void *);
480 static int reg_dead_at_p (rtx
, rtx_insn
*);
481 static void move_deaths (rtx
, rtx
, int, rtx_insn
*, rtx
*);
482 static int reg_bitfield_target_p (rtx
, rtx
);
483 static void distribute_notes (rtx
, rtx_insn
*, rtx_insn
*, rtx_insn
*, rtx
, rtx
, rtx
);
484 static void distribute_links (struct insn_link
*);
485 static void mark_used_regs_combine (rtx
);
486 static void record_promoted_value (rtx_insn
*, rtx
);
487 static bool unmentioned_reg_p (rtx
, rtx
);
488 static void record_truncated_values (rtx
*, void *);
489 static bool reg_truncated_to_mode (machine_mode
, const_rtx
);
490 static rtx
gen_lowpart_or_truncate (machine_mode
, rtx
);
493 /* It is not safe to use ordinary gen_lowpart in combine.
494 See comments in gen_lowpart_for_combine. */
495 #undef RTL_HOOKS_GEN_LOWPART
496 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
498 /* Our implementation of gen_lowpart never emits a new pseudo. */
499 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
500 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
502 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
503 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
505 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
506 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
508 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
509 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
511 static const struct rtl_hooks combine_rtl_hooks
= RTL_HOOKS_INITIALIZER
;
514 /* Convenience wrapper for the canonicalize_comparison target hook.
515 Target hooks cannot use enum rtx_code. */
517 target_canonicalize_comparison (enum rtx_code
*code
, rtx
*op0
, rtx
*op1
,
518 bool op0_preserve_value
)
520 int code_int
= (int)*code
;
521 targetm
.canonicalize_comparison (&code_int
, op0
, op1
, op0_preserve_value
);
522 *code
= (enum rtx_code
)code_int
;
525 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
526 PATTERN can not be split. Otherwise, it returns an insn sequence.
527 This is a wrapper around split_insns which ensures that the
528 reg_stat vector is made larger if the splitter creates a new
532 combine_split_insns (rtx pattern
, rtx insn
)
537 ret
= safe_as_a
<rtx_insn
*> (split_insns (pattern
, insn
));
538 nregs
= max_reg_num ();
539 if (nregs
> reg_stat
.length ())
540 reg_stat
.safe_grow_cleared (nregs
);
544 /* This is used by find_single_use to locate an rtx in LOC that
545 contains exactly one use of DEST, which is typically either a REG
546 or CC0. It returns a pointer to the innermost rtx expression
547 containing DEST. Appearances of DEST that are being used to
548 totally replace it are not counted. */
551 find_single_use_1 (rtx dest
, rtx
*loc
)
554 enum rtx_code code
= GET_CODE (x
);
570 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
571 of a REG that occupies all of the REG, the insn uses DEST if
572 it is mentioned in the destination or the source. Otherwise, we
573 need just check the source. */
574 if (GET_CODE (SET_DEST (x
)) != CC0
575 && GET_CODE (SET_DEST (x
)) != PC
576 && !REG_P (SET_DEST (x
))
577 && ! (GET_CODE (SET_DEST (x
)) == SUBREG
578 && REG_P (SUBREG_REG (SET_DEST (x
)))
579 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
580 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
581 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
582 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))))
585 return find_single_use_1 (dest
, &SET_SRC (x
));
589 return find_single_use_1 (dest
, &XEXP (x
, 0));
595 /* If it wasn't one of the common cases above, check each expression and
596 vector of this code. Look for a unique usage of DEST. */
598 fmt
= GET_RTX_FORMAT (code
);
599 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
603 if (dest
== XEXP (x
, i
)
604 || (REG_P (dest
) && REG_P (XEXP (x
, i
))
605 && REGNO (dest
) == REGNO (XEXP (x
, i
))))
608 this_result
= find_single_use_1 (dest
, &XEXP (x
, i
));
611 result
= this_result
;
612 else if (this_result
)
613 /* Duplicate usage. */
616 else if (fmt
[i
] == 'E')
620 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
622 if (XVECEXP (x
, i
, j
) == dest
624 && REG_P (XVECEXP (x
, i
, j
))
625 && REGNO (XVECEXP (x
, i
, j
)) == REGNO (dest
)))
628 this_result
= find_single_use_1 (dest
, &XVECEXP (x
, i
, j
));
631 result
= this_result
;
632 else if (this_result
)
642 /* See if DEST, produced in INSN, is used only a single time in the
643 sequel. If so, return a pointer to the innermost rtx expression in which
646 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
648 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
649 care about REG_DEAD notes or LOG_LINKS.
651 Otherwise, we find the single use by finding an insn that has a
652 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
653 only referenced once in that insn, we know that it must be the first
654 and last insn referencing DEST. */
657 find_single_use (rtx dest
, rtx_insn
*insn
, rtx_insn
**ploc
)
662 struct insn_link
*link
;
667 next
= NEXT_INSN (insn
);
669 || (!NONJUMP_INSN_P (next
) && !JUMP_P (next
)))
672 result
= find_single_use_1 (dest
, &PATTERN (next
));
682 bb
= BLOCK_FOR_INSN (insn
);
683 for (next
= NEXT_INSN (insn
);
684 next
&& BLOCK_FOR_INSN (next
) == bb
;
685 next
= NEXT_INSN (next
))
686 if (INSN_P (next
) && dead_or_set_p (next
, dest
))
688 FOR_EACH_LOG_LINK (link
, next
)
689 if (link
->insn
== insn
)
694 result
= find_single_use_1 (dest
, &PATTERN (next
));
704 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
705 insn. The substitution can be undone by undo_all. If INTO is already
706 set to NEWVAL, do not record this change. Because computing NEWVAL might
707 also call SUBST, we have to compute it before we put anything into
711 do_SUBST (rtx
*into
, rtx newval
)
716 if (oldval
== newval
)
719 /* We'd like to catch as many invalid transformations here as
720 possible. Unfortunately, there are way too many mode changes
721 that are perfectly valid, so we'd waste too much effort for
722 little gain doing the checks here. Focus on catching invalid
723 transformations involving integer constants. */
724 if (GET_MODE_CLASS (GET_MODE (oldval
)) == MODE_INT
725 && CONST_INT_P (newval
))
727 /* Sanity check that we're replacing oldval with a CONST_INT
728 that is a valid sign-extension for the original mode. */
729 gcc_assert (INTVAL (newval
)
730 == trunc_int_for_mode (INTVAL (newval
), GET_MODE (oldval
)));
732 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
733 CONST_INT is not valid, because after the replacement, the
734 original mode would be gone. Unfortunately, we can't tell
735 when do_SUBST is called to replace the operand thereof, so we
736 perform this test on oldval instead, checking whether an
737 invalid replacement took place before we got here. */
738 gcc_assert (!(GET_CODE (oldval
) == SUBREG
739 && CONST_INT_P (SUBREG_REG (oldval
))));
740 gcc_assert (!(GET_CODE (oldval
) == ZERO_EXTEND
741 && CONST_INT_P (XEXP (oldval
, 0))));
745 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
747 buf
= XNEW (struct undo
);
749 buf
->kind
= UNDO_RTX
;
751 buf
->old_contents
.r
= oldval
;
754 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
757 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
759 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
760 for the value of a HOST_WIDE_INT value (including CONST_INT) is
764 do_SUBST_INT (int *into
, int newval
)
769 if (oldval
== newval
)
773 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
775 buf
= XNEW (struct undo
);
777 buf
->kind
= UNDO_INT
;
779 buf
->old_contents
.i
= oldval
;
782 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
785 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
787 /* Similar to SUBST, but just substitute the mode. This is used when
788 changing the mode of a pseudo-register, so that any other
789 references to the entry in the regno_reg_rtx array will change as
793 do_SUBST_MODE (rtx
*into
, machine_mode newval
)
796 machine_mode oldval
= GET_MODE (*into
);
798 if (oldval
== newval
)
802 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
804 buf
= XNEW (struct undo
);
806 buf
->kind
= UNDO_MODE
;
808 buf
->old_contents
.m
= oldval
;
809 adjust_reg_mode (*into
, newval
);
811 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
814 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
817 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
820 do_SUBST_LINK (struct insn_link
**into
, struct insn_link
*newval
)
823 struct insn_link
* oldval
= *into
;
825 if (oldval
== newval
)
829 buf
= undobuf
.frees
, undobuf
.frees
= buf
->next
;
831 buf
= XNEW (struct undo
);
833 buf
->kind
= UNDO_LINKS
;
835 buf
->old_contents
.l
= oldval
;
838 buf
->next
= undobuf
.undos
, undobuf
.undos
= buf
;
841 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
844 /* Subroutine of try_combine. Determine whether the replacement patterns
845 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_rtx_cost
846 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
847 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
848 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
849 of all the instructions can be estimated and the replacements are more
850 expensive than the original sequence. */
853 combine_validate_cost (rtx_insn
*i0
, rtx_insn
*i1
, rtx_insn
*i2
, rtx_insn
*i3
,
854 rtx newpat
, rtx newi2pat
, rtx newotherpat
)
856 int i0_cost
, i1_cost
, i2_cost
, i3_cost
;
857 int new_i2_cost
, new_i3_cost
;
858 int old_cost
, new_cost
;
860 /* Lookup the original insn_rtx_costs. */
861 i2_cost
= INSN_COST (i2
);
862 i3_cost
= INSN_COST (i3
);
866 i1_cost
= INSN_COST (i1
);
869 i0_cost
= INSN_COST (i0
);
870 old_cost
= (i0_cost
> 0 && i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
871 ? i0_cost
+ i1_cost
+ i2_cost
+ i3_cost
: 0);
875 old_cost
= (i1_cost
> 0 && i2_cost
> 0 && i3_cost
> 0
876 ? i1_cost
+ i2_cost
+ i3_cost
: 0);
882 old_cost
= (i2_cost
> 0 && i3_cost
> 0) ? i2_cost
+ i3_cost
: 0;
883 i1_cost
= i0_cost
= 0;
886 /* Calculate the replacement insn_rtx_costs. */
887 new_i3_cost
= insn_rtx_cost (newpat
, optimize_this_for_speed_p
);
890 new_i2_cost
= insn_rtx_cost (newi2pat
, optimize_this_for_speed_p
);
891 new_cost
= (new_i2_cost
> 0 && new_i3_cost
> 0)
892 ? new_i2_cost
+ new_i3_cost
: 0;
896 new_cost
= new_i3_cost
;
900 if (undobuf
.other_insn
)
902 int old_other_cost
, new_other_cost
;
904 old_other_cost
= INSN_COST (undobuf
.other_insn
);
905 new_other_cost
= insn_rtx_cost (newotherpat
, optimize_this_for_speed_p
);
906 if (old_other_cost
> 0 && new_other_cost
> 0)
908 old_cost
+= old_other_cost
;
909 new_cost
+= new_other_cost
;
915 /* Disallow this combination if both new_cost and old_cost are greater than
916 zero, and new_cost is greater than old cost. */
917 int reject
= old_cost
> 0 && new_cost
> old_cost
;
921 fprintf (dump_file
, "%s combination of insns ",
922 reject
? "rejecting" : "allowing");
924 fprintf (dump_file
, "%d, ", INSN_UID (i0
));
926 fprintf (dump_file
, "%d, ", INSN_UID (i1
));
927 fprintf (dump_file
, "%d and %d\n", INSN_UID (i2
), INSN_UID (i3
));
929 fprintf (dump_file
, "original costs ");
931 fprintf (dump_file
, "%d + ", i0_cost
);
933 fprintf (dump_file
, "%d + ", i1_cost
);
934 fprintf (dump_file
, "%d + %d = %d\n", i2_cost
, i3_cost
, old_cost
);
937 fprintf (dump_file
, "replacement costs %d + %d = %d\n",
938 new_i2_cost
, new_i3_cost
, new_cost
);
940 fprintf (dump_file
, "replacement cost %d\n", new_cost
);
946 /* Update the uid_insn_cost array with the replacement costs. */
947 INSN_COST (i2
) = new_i2_cost
;
948 INSN_COST (i3
) = new_i3_cost
;
960 /* Delete any insns that copy a register to itself. */
963 delete_noop_moves (void)
965 rtx_insn
*insn
, *next
;
968 FOR_EACH_BB_FN (bb
, cfun
)
970 for (insn
= BB_HEAD (bb
); insn
!= NEXT_INSN (BB_END (bb
)); insn
= next
)
972 next
= NEXT_INSN (insn
);
973 if (INSN_P (insn
) && noop_move_p (insn
))
976 fprintf (dump_file
, "deleting noop move %d\n", INSN_UID (insn
));
978 delete_insn_and_edges (insn
);
985 /* Fill in log links field for all insns. */
988 create_log_links (void)
995 next_use
= XCNEWVEC (rtx_insn
*, max_reg_num ());
997 /* Pass through each block from the end, recording the uses of each
998 register and establishing log links when def is encountered.
999 Note that we do not clear next_use array in order to save time,
1000 so we have to test whether the use is in the same basic block as def.
1002 There are a few cases below when we do not consider the definition or
1003 usage -- these are taken from original flow.c did. Don't ask me why it is
1004 done this way; I don't know and if it works, I don't want to know. */
1006 FOR_EACH_BB_FN (bb
, cfun
)
1008 FOR_BB_INSNS_REVERSE (bb
, insn
)
1010 if (!NONDEBUG_INSN_P (insn
))
1013 /* Log links are created only once. */
1014 gcc_assert (!LOG_LINKS (insn
));
1016 FOR_EACH_INSN_DEF (def
, insn
)
1018 int regno
= DF_REF_REGNO (def
);
1021 if (!next_use
[regno
])
1024 /* Do not consider if it is pre/post modification in MEM. */
1025 if (DF_REF_FLAGS (def
) & DF_REF_PRE_POST_MODIFY
)
1028 /* Do not make the log link for frame pointer. */
1029 if ((regno
== FRAME_POINTER_REGNUM
1030 && (! reload_completed
|| frame_pointer_needed
))
1031 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1032 || (regno
== HARD_FRAME_POINTER_REGNUM
1033 && (! reload_completed
|| frame_pointer_needed
))
1035 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1036 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
1041 use_insn
= next_use
[regno
];
1042 if (BLOCK_FOR_INSN (use_insn
) == bb
)
1046 We don't build a LOG_LINK for hard registers contained
1047 in ASM_OPERANDs. If these registers get replaced,
1048 we might wind up changing the semantics of the insn,
1049 even if reload can make what appear to be valid
1050 assignments later. */
1051 if (regno
>= FIRST_PSEUDO_REGISTER
1052 || asm_noperands (PATTERN (use_insn
)) < 0)
1054 /* Don't add duplicate links between instructions. */
1055 struct insn_link
*links
;
1056 FOR_EACH_LOG_LINK (links
, use_insn
)
1057 if (insn
== links
->insn
)
1061 LOG_LINKS (use_insn
)
1062 = alloc_insn_link (insn
, LOG_LINKS (use_insn
));
1065 next_use
[regno
] = NULL
;
1068 FOR_EACH_INSN_USE (use
, insn
)
1070 int regno
= DF_REF_REGNO (use
);
1072 /* Do not consider the usage of the stack pointer
1073 by function call. */
1074 if (DF_REF_FLAGS (use
) & DF_REF_CALL_STACK_USAGE
)
1077 next_use
[regno
] = insn
;
1085 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1086 true if we found a LOG_LINK that proves that A feeds B. This only works
1087 if there are no instructions between A and B which could have a link
1088 depending on A, since in that case we would not record a link for B.
1089 We also check the implicit dependency created by a cc0 setter/user
1093 insn_a_feeds_b (rtx_insn
*a
, rtx_insn
*b
)
1095 struct insn_link
*links
;
1096 FOR_EACH_LOG_LINK (links
, b
)
1097 if (links
->insn
== a
)
1106 /* Main entry point for combiner. F is the first insn of the function.
1107 NREGS is the first unused pseudo-reg number.
1109 Return nonzero if the combiner has turned an indirect jump
1110 instruction into a direct jump. */
1112 combine_instructions (rtx_insn
*f
, unsigned int nregs
)
1114 rtx_insn
*insn
, *next
;
1118 struct insn_link
*links
, *nextlinks
;
1120 basic_block last_bb
;
1122 int new_direct_jump_p
= 0;
1124 for (first
= f
; first
&& !INSN_P (first
); )
1125 first
= NEXT_INSN (first
);
1129 combine_attempts
= 0;
1132 combine_successes
= 0;
1134 rtl_hooks
= combine_rtl_hooks
;
1136 reg_stat
.safe_grow_cleared (nregs
);
1138 init_recog_no_volatile ();
1140 /* Allocate array for insn info. */
1141 max_uid_known
= get_max_uid ();
1142 uid_log_links
= XCNEWVEC (struct insn_link
*, max_uid_known
+ 1);
1143 uid_insn_cost
= XCNEWVEC (int, max_uid_known
+ 1);
1144 gcc_obstack_init (&insn_link_obstack
);
1146 nonzero_bits_mode
= mode_for_size (HOST_BITS_PER_WIDE_INT
, MODE_INT
, 0);
1148 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1149 problems when, for example, we have j <<= 1 in a loop. */
1151 nonzero_sign_valid
= 0;
1152 label_tick
= label_tick_ebb_start
= 1;
1154 /* Scan all SETs and see if we can deduce anything about what
1155 bits are known to be zero for some registers and how many copies
1156 of the sign bit are known to exist for those registers.
1158 Also set any known values so that we can use it while searching
1159 for what bits are known to be set. */
1161 setup_incoming_promotions (first
);
1162 /* Allow the entry block and the first block to fall into the same EBB.
1163 Conceptually the incoming promotions are assigned to the entry block. */
1164 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1166 create_log_links ();
1167 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1169 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1174 if (!single_pred_p (this_basic_block
)
1175 || single_pred (this_basic_block
) != last_bb
)
1176 label_tick_ebb_start
= label_tick
;
1177 last_bb
= this_basic_block
;
1179 FOR_BB_INSNS (this_basic_block
, insn
)
1180 if (INSN_P (insn
) && BLOCK_FOR_INSN (insn
))
1186 subst_low_luid
= DF_INSN_LUID (insn
);
1189 note_stores (PATTERN (insn
), set_nonzero_bits_and_sign_copies
,
1191 record_dead_and_set_regs (insn
);
1194 for (links
= REG_NOTES (insn
); links
; links
= XEXP (links
, 1))
1195 if (REG_NOTE_KIND (links
) == REG_INC
)
1196 set_nonzero_bits_and_sign_copies (XEXP (links
, 0), NULL_RTX
,
1200 /* Record the current insn_rtx_cost of this instruction. */
1201 if (NONJUMP_INSN_P (insn
))
1202 INSN_COST (insn
) = insn_rtx_cost (PATTERN (insn
),
1203 optimize_this_for_speed_p
);
1205 fprintf (dump_file
, "insn_cost %d: %d\n",
1206 INSN_UID (insn
), INSN_COST (insn
));
1210 nonzero_sign_valid
= 1;
1212 /* Now scan all the insns in forward order. */
1213 label_tick
= label_tick_ebb_start
= 1;
1215 setup_incoming_promotions (first
);
1216 last_bb
= ENTRY_BLOCK_PTR_FOR_FN (cfun
);
1217 int max_combine
= PARAM_VALUE (PARAM_MAX_COMBINE_INSNS
);
1219 FOR_EACH_BB_FN (this_basic_block
, cfun
)
1221 rtx_insn
*last_combined_insn
= NULL
;
1222 optimize_this_for_speed_p
= optimize_bb_for_speed_p (this_basic_block
);
1227 if (!single_pred_p (this_basic_block
)
1228 || single_pred (this_basic_block
) != last_bb
)
1229 label_tick_ebb_start
= label_tick
;
1230 last_bb
= this_basic_block
;
1232 rtl_profile_for_bb (this_basic_block
);
1233 for (insn
= BB_HEAD (this_basic_block
);
1234 insn
!= NEXT_INSN (BB_END (this_basic_block
));
1235 insn
= next
? next
: NEXT_INSN (insn
))
1238 if (!NONDEBUG_INSN_P (insn
))
1241 while (last_combined_insn
1242 && last_combined_insn
->deleted ())
1243 last_combined_insn
= PREV_INSN (last_combined_insn
);
1244 if (last_combined_insn
== NULL_RTX
1245 || BARRIER_P (last_combined_insn
)
1246 || BLOCK_FOR_INSN (last_combined_insn
) != this_basic_block
1247 || DF_INSN_LUID (last_combined_insn
) <= DF_INSN_LUID (insn
))
1248 last_combined_insn
= insn
;
1250 /* See if we know about function return values before this
1251 insn based upon SUBREG flags. */
1252 check_promoted_subreg (insn
, PATTERN (insn
));
1254 /* See if we can find hardregs and subreg of pseudos in
1255 narrower modes. This could help turning TRUNCATEs
1257 note_uses (&PATTERN (insn
), record_truncated_values
, NULL
);
1259 /* Try this insn with each insn it links back to. */
1261 FOR_EACH_LOG_LINK (links
, insn
)
1262 if ((next
= try_combine (insn
, links
->insn
, NULL
,
1263 NULL
, &new_direct_jump_p
,
1264 last_combined_insn
)) != 0)
1266 statistics_counter_event (cfun
, "two-insn combine", 1);
1270 /* Try each sequence of three linked insns ending with this one. */
1272 if (max_combine
>= 3)
1273 FOR_EACH_LOG_LINK (links
, insn
)
1275 rtx_insn
*link
= links
->insn
;
1277 /* If the linked insn has been replaced by a note, then there
1278 is no point in pursuing this chain any further. */
1282 FOR_EACH_LOG_LINK (nextlinks
, link
)
1283 if ((next
= try_combine (insn
, link
, nextlinks
->insn
,
1284 NULL
, &new_direct_jump_p
,
1285 last_combined_insn
)) != 0)
1287 statistics_counter_event (cfun
, "three-insn combine", 1);
1293 /* Try to combine a jump insn that uses CC0
1294 with a preceding insn that sets CC0, and maybe with its
1295 logical predecessor as well.
1296 This is how we make decrement-and-branch insns.
1297 We need this special code because data flow connections
1298 via CC0 do not get entered in LOG_LINKS. */
1301 && (prev
= prev_nonnote_insn (insn
)) != 0
1302 && NONJUMP_INSN_P (prev
)
1303 && sets_cc0_p (PATTERN (prev
)))
1305 if ((next
= try_combine (insn
, prev
, NULL
, NULL
,
1307 last_combined_insn
)) != 0)
1310 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1311 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1312 NULL
, &new_direct_jump_p
,
1313 last_combined_insn
)) != 0)
1317 /* Do the same for an insn that explicitly references CC0. */
1318 if (NONJUMP_INSN_P (insn
)
1319 && (prev
= prev_nonnote_insn (insn
)) != 0
1320 && NONJUMP_INSN_P (prev
)
1321 && sets_cc0_p (PATTERN (prev
))
1322 && GET_CODE (PATTERN (insn
)) == SET
1323 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (insn
))))
1325 if ((next
= try_combine (insn
, prev
, NULL
, NULL
,
1327 last_combined_insn
)) != 0)
1330 FOR_EACH_LOG_LINK (nextlinks
, prev
)
1331 if ((next
= try_combine (insn
, prev
, nextlinks
->insn
,
1332 NULL
, &new_direct_jump_p
,
1333 last_combined_insn
)) != 0)
1337 /* Finally, see if any of the insns that this insn links to
1338 explicitly references CC0. If so, try this insn, that insn,
1339 and its predecessor if it sets CC0. */
1340 FOR_EACH_LOG_LINK (links
, insn
)
1341 if (NONJUMP_INSN_P (links
->insn
)
1342 && GET_CODE (PATTERN (links
->insn
)) == SET
1343 && reg_mentioned_p (cc0_rtx
, SET_SRC (PATTERN (links
->insn
)))
1344 && (prev
= prev_nonnote_insn (links
->insn
)) != 0
1345 && NONJUMP_INSN_P (prev
)
1346 && sets_cc0_p (PATTERN (prev
))
1347 && (next
= try_combine (insn
, links
->insn
,
1348 prev
, NULL
, &new_direct_jump_p
,
1349 last_combined_insn
)) != 0)
1353 /* Try combining an insn with two different insns whose results it
1355 if (max_combine
>= 3)
1356 FOR_EACH_LOG_LINK (links
, insn
)
1357 for (nextlinks
= links
->next
; nextlinks
;
1358 nextlinks
= nextlinks
->next
)
1359 if ((next
= try_combine (insn
, links
->insn
,
1360 nextlinks
->insn
, NULL
,
1362 last_combined_insn
)) != 0)
1365 statistics_counter_event (cfun
, "three-insn combine", 1);
1369 /* Try four-instruction combinations. */
1370 if (max_combine
>= 4)
1371 FOR_EACH_LOG_LINK (links
, insn
)
1373 struct insn_link
*next1
;
1374 rtx_insn
*link
= links
->insn
;
1376 /* If the linked insn has been replaced by a note, then there
1377 is no point in pursuing this chain any further. */
1381 FOR_EACH_LOG_LINK (next1
, link
)
1383 rtx_insn
*link1
= next1
->insn
;
1386 /* I0 -> I1 -> I2 -> I3. */
1387 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1388 if ((next
= try_combine (insn
, link
, link1
,
1391 last_combined_insn
)) != 0)
1393 statistics_counter_event (cfun
, "four-insn combine", 1);
1396 /* I0, I1 -> I2, I2 -> I3. */
1397 for (nextlinks
= next1
->next
; nextlinks
;
1398 nextlinks
= nextlinks
->next
)
1399 if ((next
= try_combine (insn
, link
, link1
,
1402 last_combined_insn
)) != 0)
1404 statistics_counter_event (cfun
, "four-insn combine", 1);
1409 for (next1
= links
->next
; next1
; next1
= next1
->next
)
1411 rtx_insn
*link1
= next1
->insn
;
1414 /* I0 -> I2; I1, I2 -> I3. */
1415 FOR_EACH_LOG_LINK (nextlinks
, link
)
1416 if ((next
= try_combine (insn
, link
, link1
,
1419 last_combined_insn
)) != 0)
1421 statistics_counter_event (cfun
, "four-insn combine", 1);
1424 /* I0 -> I1; I1, I2 -> I3. */
1425 FOR_EACH_LOG_LINK (nextlinks
, link1
)
1426 if ((next
= try_combine (insn
, link
, link1
,
1429 last_combined_insn
)) != 0)
1431 statistics_counter_event (cfun
, "four-insn combine", 1);
1437 /* Try this insn with each REG_EQUAL note it links back to. */
1438 FOR_EACH_LOG_LINK (links
, insn
)
1441 rtx_insn
*temp
= links
->insn
;
1442 if ((set
= single_set (temp
)) != 0
1443 && (note
= find_reg_equal_equiv_note (temp
)) != 0
1444 && (note
= XEXP (note
, 0), GET_CODE (note
)) != EXPR_LIST
1445 /* Avoid using a register that may already been marked
1446 dead by an earlier instruction. */
1447 && ! unmentioned_reg_p (note
, SET_SRC (set
))
1448 && (GET_MODE (note
) == VOIDmode
1449 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set
)))
1450 : GET_MODE (SET_DEST (set
)) == GET_MODE (note
)))
1452 /* Temporarily replace the set's source with the
1453 contents of the REG_EQUAL note. The insn will
1454 be deleted or recognized by try_combine. */
1455 rtx orig
= SET_SRC (set
);
1456 SET_SRC (set
) = note
;
1458 i2mod_old_rhs
= copy_rtx (orig
);
1459 i2mod_new_rhs
= copy_rtx (note
);
1460 next
= try_combine (insn
, i2mod
, NULL
, NULL
,
1462 last_combined_insn
);
1466 statistics_counter_event (cfun
, "insn-with-note combine", 1);
1469 SET_SRC (set
) = orig
;
1474 record_dead_and_set_regs (insn
);
1481 default_rtl_profile ();
1483 new_direct_jump_p
|= purge_all_dead_edges ();
1484 delete_noop_moves ();
1487 obstack_free (&insn_link_obstack
, NULL
);
1488 free (uid_log_links
);
1489 free (uid_insn_cost
);
1490 reg_stat
.release ();
1493 struct undo
*undo
, *next
;
1494 for (undo
= undobuf
.frees
; undo
; undo
= next
)
1502 total_attempts
+= combine_attempts
;
1503 total_merges
+= combine_merges
;
1504 total_extras
+= combine_extras
;
1505 total_successes
+= combine_successes
;
1507 nonzero_sign_valid
= 0;
1508 rtl_hooks
= general_rtl_hooks
;
1510 /* Make recognizer allow volatile MEMs again. */
1513 return new_direct_jump_p
;
1516 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1519 init_reg_last (void)
1524 FOR_EACH_VEC_ELT (reg_stat
, i
, p
)
1525 memset (p
, 0, offsetof (reg_stat_type
, sign_bit_copies
));
1528 /* Set up any promoted values for incoming argument registers. */
1531 setup_incoming_promotions (rtx_insn
*first
)
1534 bool strictly_local
= false;
1536 for (arg
= DECL_ARGUMENTS (current_function_decl
); arg
;
1537 arg
= DECL_CHAIN (arg
))
1539 rtx x
, reg
= DECL_INCOMING_RTL (arg
);
1541 machine_mode mode1
, mode2
, mode3
, mode4
;
1543 /* Only continue if the incoming argument is in a register. */
1547 /* Determine, if possible, whether all call sites of the current
1548 function lie within the current compilation unit. (This does
1549 take into account the exporting of a function via taking its
1550 address, and so forth.) */
1551 strictly_local
= cgraph_node::local_info (current_function_decl
)->local
;
1553 /* The mode and signedness of the argument before any promotions happen
1554 (equal to the mode of the pseudo holding it at that stage). */
1555 mode1
= TYPE_MODE (TREE_TYPE (arg
));
1556 uns1
= TYPE_UNSIGNED (TREE_TYPE (arg
));
1558 /* The mode and signedness of the argument after any source language and
1559 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1560 mode2
= TYPE_MODE (DECL_ARG_TYPE (arg
));
1561 uns3
= TYPE_UNSIGNED (DECL_ARG_TYPE (arg
));
1563 /* The mode and signedness of the argument as it is actually passed,
1564 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1565 mode3
= promote_function_mode (DECL_ARG_TYPE (arg
), mode2
, &uns3
,
1566 TREE_TYPE (cfun
->decl
), 0);
1568 /* The mode of the register in which the argument is being passed. */
1569 mode4
= GET_MODE (reg
);
1571 /* Eliminate sign extensions in the callee when:
1572 (a) A mode promotion has occurred; */
1575 /* (b) The mode of the register is the same as the mode of
1576 the argument as it is passed; */
1579 /* (c) There's no language level extension; */
1582 /* (c.1) All callers are from the current compilation unit. If that's
1583 the case we don't have to rely on an ABI, we only have to know
1584 what we're generating right now, and we know that we will do the
1585 mode1 to mode2 promotion with the given sign. */
1586 else if (!strictly_local
)
1588 /* (c.2) The combination of the two promotions is useful. This is
1589 true when the signs match, or if the first promotion is unsigned.
1590 In the later case, (sign_extend (zero_extend x)) is the same as
1591 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1597 /* Record that the value was promoted from mode1 to mode3,
1598 so that any sign extension at the head of the current
1599 function may be eliminated. */
1600 x
= gen_rtx_CLOBBER (mode1
, const0_rtx
);
1601 x
= gen_rtx_fmt_e ((uns3
? ZERO_EXTEND
: SIGN_EXTEND
), mode3
, x
);
1602 record_value_for_reg (reg
, first
, x
);
1606 /* Called via note_stores. If X is a pseudo that is narrower than
1607 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1609 If we are setting only a portion of X and we can't figure out what
1610 portion, assume all bits will be used since we don't know what will
1613 Similarly, set how many bits of X are known to be copies of the sign bit
1614 at all locations in the function. This is the smallest number implied
1618 set_nonzero_bits_and_sign_copies (rtx x
, const_rtx set
, void *data
)
1620 rtx_insn
*insn
= (rtx_insn
*) data
;
1624 && REGNO (x
) >= FIRST_PSEUDO_REGISTER
1625 /* If this register is undefined at the start of the file, we can't
1626 say what its contents were. */
1627 && ! REGNO_REG_SET_P
1628 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), REGNO (x
))
1629 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
)))
1631 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
1633 if (set
== 0 || GET_CODE (set
) == CLOBBER
)
1635 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1636 rsp
->sign_bit_copies
= 1;
1640 /* If this register is being initialized using itself, and the
1641 register is uninitialized in this basic block, and there are
1642 no LOG_LINKS which set the register, then part of the
1643 register is uninitialized. In that case we can't assume
1644 anything about the number of nonzero bits.
1646 ??? We could do better if we checked this in
1647 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1648 could avoid making assumptions about the insn which initially
1649 sets the register, while still using the information in other
1650 insns. We would have to be careful to check every insn
1651 involved in the combination. */
1654 && reg_referenced_p (x
, PATTERN (insn
))
1655 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn
)),
1658 struct insn_link
*link
;
1660 FOR_EACH_LOG_LINK (link
, insn
)
1661 if (dead_or_set_p (link
->insn
, x
))
1665 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1666 rsp
->sign_bit_copies
= 1;
1671 /* If this is a complex assignment, see if we can convert it into a
1672 simple assignment. */
1673 set
= expand_field_assignment (set
);
1675 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1676 set what we know about X. */
1678 if (SET_DEST (set
) == x
1679 || (paradoxical_subreg_p (SET_DEST (set
))
1680 && SUBREG_REG (SET_DEST (set
)) == x
))
1682 rtx src
= SET_SRC (set
);
1684 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1685 /* If X is narrower than a word and SRC is a non-negative
1686 constant that would appear negative in the mode of X,
1687 sign-extend it for use in reg_stat[].nonzero_bits because some
1688 machines (maybe most) will actually do the sign-extension
1689 and this is the conservative approach.
1691 ??? For 2.5, try to tighten up the MD files in this regard
1692 instead of this kludge. */
1694 if (GET_MODE_PRECISION (GET_MODE (x
)) < BITS_PER_WORD
1695 && CONST_INT_P (src
)
1697 && val_signbit_known_set_p (GET_MODE (x
), INTVAL (src
)))
1698 src
= GEN_INT (INTVAL (src
) | ~GET_MODE_MASK (GET_MODE (x
)));
1701 /* Don't call nonzero_bits if it cannot change anything. */
1702 if (rsp
->nonzero_bits
!= ~(unsigned HOST_WIDE_INT
) 0)
1703 rsp
->nonzero_bits
|= nonzero_bits (src
, nonzero_bits_mode
);
1704 num
= num_sign_bit_copies (SET_SRC (set
), GET_MODE (x
));
1705 if (rsp
->sign_bit_copies
== 0
1706 || rsp
->sign_bit_copies
> num
)
1707 rsp
->sign_bit_copies
= num
;
1711 rsp
->nonzero_bits
= GET_MODE_MASK (GET_MODE (x
));
1712 rsp
->sign_bit_copies
= 1;
1717 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1718 optionally insns that were previously combined into I3 or that will be
1719 combined into the merger of INSN and I3. The order is PRED, PRED2,
1720 INSN, SUCC, SUCC2, I3.
1722 Return 0 if the combination is not allowed for any reason.
1724 If the combination is allowed, *PDEST will be set to the single
1725 destination of INSN and *PSRC to the single source, and this function
1729 can_combine_p (rtx_insn
*insn
, rtx_insn
*i3
, rtx_insn
*pred ATTRIBUTE_UNUSED
,
1730 rtx_insn
*pred2 ATTRIBUTE_UNUSED
, rtx_insn
*succ
, rtx_insn
*succ2
,
1731 rtx
*pdest
, rtx
*psrc
)
1740 bool all_adjacent
= true;
1741 int (*is_volatile_p
) (const_rtx
);
1747 if (next_active_insn (succ2
) != i3
)
1748 all_adjacent
= false;
1749 if (next_active_insn (succ
) != succ2
)
1750 all_adjacent
= false;
1752 else if (next_active_insn (succ
) != i3
)
1753 all_adjacent
= false;
1754 if (next_active_insn (insn
) != succ
)
1755 all_adjacent
= false;
1757 else if (next_active_insn (insn
) != i3
)
1758 all_adjacent
= false;
1760 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1761 or a PARALLEL consisting of such a SET and CLOBBERs.
1763 If INSN has CLOBBER parallel parts, ignore them for our processing.
1764 By definition, these happen during the execution of the insn. When it
1765 is merged with another insn, all bets are off. If they are, in fact,
1766 needed and aren't also supplied in I3, they may be added by
1767 recog_for_combine. Otherwise, it won't match.
1769 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1772 Get the source and destination of INSN. If more than one, can't
1775 if (GET_CODE (PATTERN (insn
)) == SET
)
1776 set
= PATTERN (insn
);
1777 else if (GET_CODE (PATTERN (insn
)) == PARALLEL
1778 && GET_CODE (XVECEXP (PATTERN (insn
), 0, 0)) == SET
)
1780 for (i
= 0; i
< XVECLEN (PATTERN (insn
), 0); i
++)
1782 rtx elt
= XVECEXP (PATTERN (insn
), 0, i
);
1784 switch (GET_CODE (elt
))
1786 /* This is important to combine floating point insns
1787 for the SH4 port. */
1789 /* Combining an isolated USE doesn't make sense.
1790 We depend here on combinable_i3pat to reject them. */
1791 /* The code below this loop only verifies that the inputs of
1792 the SET in INSN do not change. We call reg_set_between_p
1793 to verify that the REG in the USE does not change between
1795 If the USE in INSN was for a pseudo register, the matching
1796 insn pattern will likely match any register; combining this
1797 with any other USE would only be safe if we knew that the
1798 used registers have identical values, or if there was
1799 something to tell them apart, e.g. different modes. For
1800 now, we forgo such complicated tests and simply disallow
1801 combining of USES of pseudo registers with any other USE. */
1802 if (REG_P (XEXP (elt
, 0))
1803 && GET_CODE (PATTERN (i3
)) == PARALLEL
)
1805 rtx i3pat
= PATTERN (i3
);
1806 int i
= XVECLEN (i3pat
, 0) - 1;
1807 unsigned int regno
= REGNO (XEXP (elt
, 0));
1811 rtx i3elt
= XVECEXP (i3pat
, 0, i
);
1813 if (GET_CODE (i3elt
) == USE
1814 && REG_P (XEXP (i3elt
, 0))
1815 && (REGNO (XEXP (i3elt
, 0)) == regno
1816 ? reg_set_between_p (XEXP (elt
, 0),
1817 PREV_INSN (insn
), i3
)
1818 : regno
>= FIRST_PSEUDO_REGISTER
))
1825 /* We can ignore CLOBBERs. */
1830 /* Ignore SETs whose result isn't used but not those that
1831 have side-effects. */
1832 if (find_reg_note (insn
, REG_UNUSED
, SET_DEST (elt
))
1833 && insn_nothrow_p (insn
)
1834 && !side_effects_p (elt
))
1837 /* If we have already found a SET, this is a second one and
1838 so we cannot combine with this insn. */
1846 /* Anything else means we can't combine. */
1852 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1853 so don't do anything with it. */
1854 || GET_CODE (SET_SRC (set
)) == ASM_OPERANDS
)
1863 /* The simplification in expand_field_assignment may call back to
1864 get_last_value, so set safe guard here. */
1865 subst_low_luid
= DF_INSN_LUID (insn
);
1867 set
= expand_field_assignment (set
);
1868 src
= SET_SRC (set
), dest
= SET_DEST (set
);
1870 /* Don't eliminate a store in the stack pointer. */
1871 if (dest
== stack_pointer_rtx
1872 /* Don't combine with an insn that sets a register to itself if it has
1873 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1874 || (rtx_equal_p (src
, dest
) && find_reg_note (insn
, REG_EQUAL
, NULL_RTX
))
1875 /* Can't merge an ASM_OPERANDS. */
1876 || GET_CODE (src
) == ASM_OPERANDS
1877 /* Can't merge a function call. */
1878 || GET_CODE (src
) == CALL
1879 /* Don't eliminate a function call argument. */
1881 && (find_reg_fusage (i3
, USE
, dest
)
1883 && REGNO (dest
) < FIRST_PSEUDO_REGISTER
1884 && global_regs
[REGNO (dest
)])))
1885 /* Don't substitute into an incremented register. */
1886 || FIND_REG_INC_NOTE (i3
, dest
)
1887 || (succ
&& FIND_REG_INC_NOTE (succ
, dest
))
1888 || (succ2
&& FIND_REG_INC_NOTE (succ2
, dest
))
1889 /* Don't substitute into a non-local goto, this confuses CFG. */
1890 || (JUMP_P (i3
) && find_reg_note (i3
, REG_NON_LOCAL_GOTO
, NULL_RTX
))
1891 /* Make sure that DEST is not used after SUCC but before I3. */
1894 && (reg_used_between_p (dest
, succ2
, i3
)
1895 || reg_used_between_p (dest
, succ
, succ2
)))
1896 || (!succ2
&& succ
&& reg_used_between_p (dest
, succ
, i3
))))
1897 /* Make sure that the value that is to be substituted for the register
1898 does not use any registers whose values alter in between. However,
1899 If the insns are adjacent, a use can't cross a set even though we
1900 think it might (this can happen for a sequence of insns each setting
1901 the same destination; last_set of that register might point to
1902 a NOTE). If INSN has a REG_EQUIV note, the register is always
1903 equivalent to the memory so the substitution is valid even if there
1904 are intervening stores. Also, don't move a volatile asm or
1905 UNSPEC_VOLATILE across any other insns. */
1908 || ! find_reg_note (insn
, REG_EQUIV
, src
))
1909 && use_crosses_set_p (src
, DF_INSN_LUID (insn
)))
1910 || (GET_CODE (src
) == ASM_OPERANDS
&& MEM_VOLATILE_P (src
))
1911 || GET_CODE (src
) == UNSPEC_VOLATILE
))
1912 /* Don't combine across a CALL_INSN, because that would possibly
1913 change whether the life span of some REGs crosses calls or not,
1914 and it is a pain to update that information.
1915 Exception: if source is a constant, moving it later can't hurt.
1916 Accept that as a special case. */
1917 || (DF_INSN_LUID (insn
) < last_call_luid
&& ! CONSTANT_P (src
)))
1920 /* DEST must either be a REG or CC0. */
1923 /* If register alignment is being enforced for multi-word items in all
1924 cases except for parameters, it is possible to have a register copy
1925 insn referencing a hard register that is not allowed to contain the
1926 mode being copied and which would not be valid as an operand of most
1927 insns. Eliminate this problem by not combining with such an insn.
1929 Also, on some machines we don't want to extend the life of a hard
1933 && ((REGNO (dest
) < FIRST_PSEUDO_REGISTER
1934 && ! HARD_REGNO_MODE_OK (REGNO (dest
), GET_MODE (dest
)))
1935 /* Don't extend the life of a hard register unless it is
1936 user variable (if we have few registers) or it can't
1937 fit into the desired register (meaning something special
1939 Also avoid substituting a return register into I3, because
1940 reload can't handle a conflict with constraints of other
1942 || (REGNO (src
) < FIRST_PSEUDO_REGISTER
1943 && ! HARD_REGNO_MODE_OK (REGNO (src
), GET_MODE (src
)))))
1946 else if (GET_CODE (dest
) != CC0
)
1950 if (GET_CODE (PATTERN (i3
)) == PARALLEL
)
1951 for (i
= XVECLEN (PATTERN (i3
), 0) - 1; i
>= 0; i
--)
1952 if (GET_CODE (XVECEXP (PATTERN (i3
), 0, i
)) == CLOBBER
)
1954 rtx reg
= XEXP (XVECEXP (PATTERN (i3
), 0, i
), 0);
1956 /* If the clobber represents an earlyclobber operand, we must not
1957 substitute an expression containing the clobbered register.
1958 As we do not analyze the constraint strings here, we have to
1959 make the conservative assumption. However, if the register is
1960 a fixed hard reg, the clobber cannot represent any operand;
1961 we leave it up to the machine description to either accept or
1962 reject use-and-clobber patterns. */
1964 || REGNO (reg
) >= FIRST_PSEUDO_REGISTER
1965 || !fixed_regs
[REGNO (reg
)])
1966 if (reg_overlap_mentioned_p (reg
, src
))
1970 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1971 or not), reject, unless nothing volatile comes between it and I3 */
1973 if (GET_CODE (src
) == ASM_OPERANDS
|| volatile_refs_p (src
))
1975 /* Make sure neither succ nor succ2 contains a volatile reference. */
1976 if (succ2
!= 0 && volatile_refs_p (PATTERN (succ2
)))
1978 if (succ
!= 0 && volatile_refs_p (PATTERN (succ
)))
1980 /* We'll check insns between INSN and I3 below. */
1983 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1984 to be an explicit register variable, and was chosen for a reason. */
1986 if (GET_CODE (src
) == ASM_OPERANDS
1987 && REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
)
1990 /* If INSN contains volatile references (specifically volatile MEMs),
1991 we cannot combine across any other volatile references.
1992 Even if INSN doesn't contain volatile references, any intervening
1993 volatile insn might affect machine state. */
1995 is_volatile_p
= volatile_refs_p (PATTERN (insn
))
1999 for (p
= NEXT_INSN (insn
); p
!= i3
; p
= NEXT_INSN (p
))
2000 if (INSN_P (p
) && p
!= succ
&& p
!= succ2
&& is_volatile_p (PATTERN (p
)))
2003 /* If INSN contains an autoincrement or autodecrement, make sure that
2004 register is not used between there and I3, and not already used in
2005 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2006 Also insist that I3 not be a jump; if it were one
2007 and the incremented register were spilled, we would lose. */
2010 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
2011 if (REG_NOTE_KIND (link
) == REG_INC
2013 || reg_used_between_p (XEXP (link
, 0), insn
, i3
)
2014 || (pred
!= NULL_RTX
2015 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred
)))
2016 || (pred2
!= NULL_RTX
2017 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (pred2
)))
2018 || (succ
!= NULL_RTX
2019 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ
)))
2020 || (succ2
!= NULL_RTX
2021 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (succ2
)))
2022 || reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i3
))))
2027 /* Don't combine an insn that follows a CC0-setting insn.
2028 An insn that uses CC0 must not be separated from the one that sets it.
2029 We do, however, allow I2 to follow a CC0-setting insn if that insn
2030 is passed as I1; in that case it will be deleted also.
2031 We also allow combining in this case if all the insns are adjacent
2032 because that would leave the two CC0 insns adjacent as well.
2033 It would be more logical to test whether CC0 occurs inside I1 or I2,
2034 but that would be much slower, and this ought to be equivalent. */
2036 p
= prev_nonnote_insn (insn
);
2037 if (p
&& p
!= pred
&& NONJUMP_INSN_P (p
) && sets_cc0_p (PATTERN (p
))
2042 /* If we get here, we have passed all the tests and the combination is
2051 /* LOC is the location within I3 that contains its pattern or the component
2052 of a PARALLEL of the pattern. We validate that it is valid for combining.
2054 One problem is if I3 modifies its output, as opposed to replacing it
2055 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2056 doing so would produce an insn that is not equivalent to the original insns.
2060 (set (reg:DI 101) (reg:DI 100))
2061 (set (subreg:SI (reg:DI 101) 0) <foo>)
2063 This is NOT equivalent to:
2065 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2066 (set (reg:DI 101) (reg:DI 100))])
2068 Not only does this modify 100 (in which case it might still be valid
2069 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2071 We can also run into a problem if I2 sets a register that I1
2072 uses and I1 gets directly substituted into I3 (not via I2). In that
2073 case, we would be getting the wrong value of I2DEST into I3, so we
2074 must reject the combination. This case occurs when I2 and I1 both
2075 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2076 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2077 of a SET must prevent combination from occurring. The same situation
2078 can occur for I0, in which case I0_NOT_IN_SRC is set.
2080 Before doing the above check, we first try to expand a field assignment
2081 into a set of logical operations.
2083 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2084 we place a register that is both set and used within I3. If more than one
2085 such register is detected, we fail.
2087 Return 1 if the combination is valid, zero otherwise. */
2090 combinable_i3pat (rtx_insn
*i3
, rtx
*loc
, rtx i2dest
, rtx i1dest
, rtx i0dest
,
2091 int i1_not_in_src
, int i0_not_in_src
, rtx
*pi3dest_killed
)
2095 if (GET_CODE (x
) == SET
)
2098 rtx dest
= SET_DEST (set
);
2099 rtx src
= SET_SRC (set
);
2100 rtx inner_dest
= dest
;
2103 while (GET_CODE (inner_dest
) == STRICT_LOW_PART
2104 || GET_CODE (inner_dest
) == SUBREG
2105 || GET_CODE (inner_dest
) == ZERO_EXTRACT
)
2106 inner_dest
= XEXP (inner_dest
, 0);
2108 /* Check for the case where I3 modifies its output, as discussed
2109 above. We don't want to prevent pseudos from being combined
2110 into the address of a MEM, so only prevent the combination if
2111 i1 or i2 set the same MEM. */
2112 if ((inner_dest
!= dest
&&
2113 (!MEM_P (inner_dest
)
2114 || rtx_equal_p (i2dest
, inner_dest
)
2115 || (i1dest
&& rtx_equal_p (i1dest
, inner_dest
))
2116 || (i0dest
&& rtx_equal_p (i0dest
, inner_dest
)))
2117 && (reg_overlap_mentioned_p (i2dest
, inner_dest
)
2118 || (i1dest
&& reg_overlap_mentioned_p (i1dest
, inner_dest
))
2119 || (i0dest
&& reg_overlap_mentioned_p (i0dest
, inner_dest
))))
2121 /* This is the same test done in can_combine_p except we can't test
2122 all_adjacent; we don't have to, since this instruction will stay
2123 in place, thus we are not considering increasing the lifetime of
2126 Also, if this insn sets a function argument, combining it with
2127 something that might need a spill could clobber a previous
2128 function argument; the all_adjacent test in can_combine_p also
2129 checks this; here, we do a more specific test for this case. */
2131 || (REG_P (inner_dest
)
2132 && REGNO (inner_dest
) < FIRST_PSEUDO_REGISTER
2133 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest
),
2134 GET_MODE (inner_dest
))))
2135 || (i1_not_in_src
&& reg_overlap_mentioned_p (i1dest
, src
))
2136 || (i0_not_in_src
&& reg_overlap_mentioned_p (i0dest
, src
)))
2139 /* If DEST is used in I3, it is being killed in this insn, so
2140 record that for later. We have to consider paradoxical
2141 subregs here, since they kill the whole register, but we
2142 ignore partial subregs, STRICT_LOW_PART, etc.
2143 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2144 STACK_POINTER_REGNUM, since these are always considered to be
2145 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2147 if (GET_CODE (subdest
) == SUBREG
2148 && (GET_MODE_SIZE (GET_MODE (subdest
))
2149 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest
)))))
2150 subdest
= SUBREG_REG (subdest
);
2153 && reg_referenced_p (subdest
, PATTERN (i3
))
2154 && REGNO (subdest
) != FRAME_POINTER_REGNUM
2155 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
2156 && REGNO (subdest
) != HARD_FRAME_POINTER_REGNUM
2158 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
2159 && (REGNO (subdest
) != ARG_POINTER_REGNUM
2160 || ! fixed_regs
[REGNO (subdest
)])
2162 && REGNO (subdest
) != STACK_POINTER_REGNUM
)
2164 if (*pi3dest_killed
)
2167 *pi3dest_killed
= subdest
;
2171 else if (GET_CODE (x
) == PARALLEL
)
2175 for (i
= 0; i
< XVECLEN (x
, 0); i
++)
2176 if (! combinable_i3pat (i3
, &XVECEXP (x
, 0, i
), i2dest
, i1dest
, i0dest
,
2177 i1_not_in_src
, i0_not_in_src
, pi3dest_killed
))
2184 /* Return 1 if X is an arithmetic expression that contains a multiplication
2185 and division. We don't count multiplications by powers of two here. */
2188 contains_muldiv (rtx x
)
2190 switch (GET_CODE (x
))
2192 case MOD
: case DIV
: case UMOD
: case UDIV
:
2196 return ! (CONST_INT_P (XEXP (x
, 1))
2197 && exact_log2 (UINTVAL (XEXP (x
, 1))) >= 0);
2200 return contains_muldiv (XEXP (x
, 0))
2201 || contains_muldiv (XEXP (x
, 1));
2204 return contains_muldiv (XEXP (x
, 0));
2210 /* Determine whether INSN can be used in a combination. Return nonzero if
2211 not. This is used in try_combine to detect early some cases where we
2212 can't perform combinations. */
2215 cant_combine_insn_p (rtx_insn
*insn
)
2220 /* If this isn't really an insn, we can't do anything.
2221 This can occur when flow deletes an insn that it has merged into an
2222 auto-increment address. */
2223 if (! INSN_P (insn
))
2226 /* Never combine loads and stores involving hard regs that are likely
2227 to be spilled. The register allocator can usually handle such
2228 reg-reg moves by tying. If we allow the combiner to make
2229 substitutions of likely-spilled regs, reload might die.
2230 As an exception, we allow combinations involving fixed regs; these are
2231 not available to the register allocator so there's no risk involved. */
2233 set
= single_set (insn
);
2236 src
= SET_SRC (set
);
2237 dest
= SET_DEST (set
);
2238 if (GET_CODE (src
) == SUBREG
)
2239 src
= SUBREG_REG (src
);
2240 if (GET_CODE (dest
) == SUBREG
)
2241 dest
= SUBREG_REG (dest
);
2242 if (REG_P (src
) && REG_P (dest
)
2243 && ((HARD_REGISTER_P (src
)
2244 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (src
))
2245 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src
))))
2246 || (HARD_REGISTER_P (dest
)
2247 && ! TEST_HARD_REG_BIT (fixed_reg_set
, REGNO (dest
))
2248 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest
))))))
2254 struct likely_spilled_retval_info
2256 unsigned regno
, nregs
;
2260 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2261 hard registers that are known to be written to / clobbered in full. */
2263 likely_spilled_retval_1 (rtx x
, const_rtx set
, void *data
)
2265 struct likely_spilled_retval_info
*const info
=
2266 (struct likely_spilled_retval_info
*) data
;
2267 unsigned regno
, nregs
;
2270 if (!REG_P (XEXP (set
, 0)))
2273 if (regno
>= info
->regno
+ info
->nregs
)
2275 nregs
= hard_regno_nregs
[regno
][GET_MODE (x
)];
2276 if (regno
+ nregs
<= info
->regno
)
2278 new_mask
= (2U << (nregs
- 1)) - 1;
2279 if (regno
< info
->regno
)
2280 new_mask
>>= info
->regno
- regno
;
2282 new_mask
<<= regno
- info
->regno
;
2283 info
->mask
&= ~new_mask
;
2286 /* Return nonzero iff part of the return value is live during INSN, and
2287 it is likely spilled. This can happen when more than one insn is needed
2288 to copy the return value, e.g. when we consider to combine into the
2289 second copy insn for a complex value. */
2292 likely_spilled_retval_p (rtx_insn
*insn
)
2294 rtx_insn
*use
= BB_END (this_basic_block
);
2297 unsigned regno
, nregs
;
2298 /* We assume here that no machine mode needs more than
2299 32 hard registers when the value overlaps with a register
2300 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2302 struct likely_spilled_retval_info info
;
2304 if (!NONJUMP_INSN_P (use
) || GET_CODE (PATTERN (use
)) != USE
|| insn
== use
)
2306 reg
= XEXP (PATTERN (use
), 0);
2307 if (!REG_P (reg
) || !targetm
.calls
.function_value_regno_p (REGNO (reg
)))
2309 regno
= REGNO (reg
);
2310 nregs
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
2313 mask
= (2U << (nregs
- 1)) - 1;
2315 /* Disregard parts of the return value that are set later. */
2319 for (p
= PREV_INSN (use
); info
.mask
&& p
!= insn
; p
= PREV_INSN (p
))
2321 note_stores (PATTERN (p
), likely_spilled_retval_1
, &info
);
2324 /* Check if any of the (probably) live return value registers is
2329 if ((mask
& 1 << nregs
)
2330 && targetm
.class_likely_spilled_p (REGNO_REG_CLASS (regno
+ nregs
)))
2336 /* Adjust INSN after we made a change to its destination.
2338 Changing the destination can invalidate notes that say something about
2339 the results of the insn and a LOG_LINK pointing to the insn. */
2342 adjust_for_new_dest (rtx_insn
*insn
)
2344 /* For notes, be conservative and simply remove them. */
2345 remove_reg_equal_equiv_notes (insn
);
2347 /* The new insn will have a destination that was previously the destination
2348 of an insn just above it. Call distribute_links to make a LOG_LINK from
2349 the next use of that destination. */
2350 distribute_links (alloc_insn_link (insn
, NULL
));
2352 df_insn_rescan (insn
);
2355 /* Return TRUE if combine can reuse reg X in mode MODE.
2356 ADDED_SETS is nonzero if the original set is still required. */
2358 can_change_dest_mode (rtx x
, int added_sets
, machine_mode mode
)
2366 /* Allow hard registers if the new mode is legal, and occupies no more
2367 registers than the old mode. */
2368 if (regno
< FIRST_PSEUDO_REGISTER
)
2369 return (HARD_REGNO_MODE_OK (regno
, mode
)
2370 && (hard_regno_nregs
[regno
][GET_MODE (x
)]
2371 >= hard_regno_nregs
[regno
][mode
]));
2373 /* Or a pseudo that is only used once. */
2374 return (REG_N_SETS (regno
) == 1 && !added_sets
2375 && !REG_USERVAR_P (x
));
2379 /* Check whether X, the destination of a set, refers to part of
2380 the register specified by REG. */
2383 reg_subword_p (rtx x
, rtx reg
)
2385 /* Check that reg is an integer mode register. */
2386 if (!REG_P (reg
) || GET_MODE_CLASS (GET_MODE (reg
)) != MODE_INT
)
2389 if (GET_CODE (x
) == STRICT_LOW_PART
2390 || GET_CODE (x
) == ZERO_EXTRACT
)
2393 return GET_CODE (x
) == SUBREG
2394 && SUBREG_REG (x
) == reg
2395 && GET_MODE_CLASS (GET_MODE (x
)) == MODE_INT
;
2398 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2399 Note that the INSN should be deleted *after* removing dead edges, so
2400 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2401 but not for a (set (pc) (label_ref FOO)). */
2404 update_cfg_for_uncondjump (rtx_insn
*insn
)
2406 basic_block bb
= BLOCK_FOR_INSN (insn
);
2407 gcc_assert (BB_END (bb
) == insn
);
2409 purge_dead_edges (bb
);
2412 if (EDGE_COUNT (bb
->succs
) == 1)
2416 single_succ_edge (bb
)->flags
|= EDGE_FALLTHRU
;
2418 /* Remove barriers from the footer if there are any. */
2419 for (insn
= BB_FOOTER (bb
); insn
; insn
= NEXT_INSN (insn
))
2420 if (BARRIER_P (insn
))
2422 if (PREV_INSN (insn
))
2423 SET_NEXT_INSN (PREV_INSN (insn
)) = NEXT_INSN (insn
);
2425 BB_FOOTER (bb
) = NEXT_INSN (insn
);
2426 if (NEXT_INSN (insn
))
2427 SET_PREV_INSN (NEXT_INSN (insn
)) = PREV_INSN (insn
);
2429 else if (LABEL_P (insn
))
2434 /* Try to combine the insns I0, I1 and I2 into I3.
2435 Here I0, I1 and I2 appear earlier than I3.
2436 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2439 If we are combining more than two insns and the resulting insn is not
2440 recognized, try splitting it into two insns. If that happens, I2 and I3
2441 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2442 Otherwise, I0, I1 and I2 are pseudo-deleted.
2444 Return 0 if the combination does not work. Then nothing is changed.
2445 If we did the combination, return the insn at which combine should
2448 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2449 new direct jump instruction.
2451 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2452 been I3 passed to an earlier try_combine within the same basic
2456 try_combine (rtx_insn
*i3
, rtx_insn
*i2
, rtx_insn
*i1
, rtx_insn
*i0
,
2457 int *new_direct_jump_p
, rtx_insn
*last_combined_insn
)
2459 /* New patterns for I3 and I2, respectively. */
2460 rtx newpat
, newi2pat
= 0;
2461 rtvec newpat_vec_with_clobbers
= 0;
2462 int substed_i2
= 0, substed_i1
= 0, substed_i0
= 0;
2463 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2465 int added_sets_0
, added_sets_1
, added_sets_2
;
2466 /* Total number of SETs to put into I3. */
2468 /* Nonzero if I2's or I1's body now appears in I3. */
2469 int i2_is_used
= 0, i1_is_used
= 0;
2470 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2471 int insn_code_number
, i2_code_number
= 0, other_code_number
= 0;
2472 /* Contains I3 if the destination of I3 is used in its source, which means
2473 that the old life of I3 is being killed. If that usage is placed into
2474 I2 and not in I3, a REG_DEAD note must be made. */
2475 rtx i3dest_killed
= 0;
2476 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2477 rtx i2dest
= 0, i2src
= 0, i1dest
= 0, i1src
= 0, i0dest
= 0, i0src
= 0;
2478 /* Copy of SET_SRC of I1 and I0, if needed. */
2479 rtx i1src_copy
= 0, i0src_copy
= 0, i0src_copy2
= 0;
2480 /* Set if I2DEST was reused as a scratch register. */
2481 bool i2scratch
= false;
2482 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2483 rtx i0pat
= 0, i1pat
= 0, i2pat
= 0;
2484 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2485 int i2dest_in_i2src
= 0, i1dest_in_i1src
= 0, i2dest_in_i1src
= 0;
2486 int i0dest_in_i0src
= 0, i1dest_in_i0src
= 0, i2dest_in_i0src
= 0;
2487 int i2dest_killed
= 0, i1dest_killed
= 0, i0dest_killed
= 0;
2488 int i1_feeds_i2_n
= 0, i0_feeds_i2_n
= 0, i0_feeds_i1_n
= 0;
2489 /* Notes that must be added to REG_NOTES in I3 and I2. */
2490 rtx new_i3_notes
, new_i2_notes
;
2491 /* Notes that we substituted I3 into I2 instead of the normal case. */
2492 int i3_subst_into_i2
= 0;
2493 /* Notes that I1, I2 or I3 is a MULT operation. */
2496 int changed_i3_dest
= 0;
2499 rtx_insn
*temp_insn
;
2501 struct insn_link
*link
;
2503 rtx new_other_notes
;
2506 /* Only try four-insn combinations when there's high likelihood of
2507 success. Look for simple insns, such as loads of constants or
2508 binary operations involving a constant. */
2515 if (!flag_expensive_optimizations
)
2518 for (i
= 0; i
< 4; i
++)
2520 rtx_insn
*insn
= i
== 0 ? i0
: i
== 1 ? i1
: i
== 2 ? i2
: i3
;
2521 rtx set
= single_set (insn
);
2525 src
= SET_SRC (set
);
2526 if (CONSTANT_P (src
))
2531 else if (BINARY_P (src
) && CONSTANT_P (XEXP (src
, 1)))
2533 else if (GET_CODE (src
) == ASHIFT
|| GET_CODE (src
) == ASHIFTRT
2534 || GET_CODE (src
) == LSHIFTRT
)
2537 if (ngood
< 2 && nshift
< 2)
2541 /* Exit early if one of the insns involved can't be used for
2544 || (i1
&& CALL_P (i1
))
2545 || (i0
&& CALL_P (i0
))
2546 || cant_combine_insn_p (i3
)
2547 || cant_combine_insn_p (i2
)
2548 || (i1
&& cant_combine_insn_p (i1
))
2549 || (i0
&& cant_combine_insn_p (i0
))
2550 || likely_spilled_retval_p (i3
))
2554 undobuf
.other_insn
= 0;
2556 /* Reset the hard register usage information. */
2557 CLEAR_HARD_REG_SET (newpat_used_regs
);
2559 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
2562 fprintf (dump_file
, "\nTrying %d, %d, %d -> %d:\n",
2563 INSN_UID (i0
), INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2565 fprintf (dump_file
, "\nTrying %d, %d -> %d:\n",
2566 INSN_UID (i1
), INSN_UID (i2
), INSN_UID (i3
));
2568 fprintf (dump_file
, "\nTrying %d -> %d:\n",
2569 INSN_UID (i2
), INSN_UID (i3
));
2572 /* If multiple insns feed into one of I2 or I3, they can be in any
2573 order. To simplify the code below, reorder them in sequence. */
2574 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i2
))
2575 temp_insn
= i2
, i2
= i0
, i0
= temp_insn
;
2576 if (i0
&& DF_INSN_LUID (i0
) > DF_INSN_LUID (i1
))
2577 temp_insn
= i1
, i1
= i0
, i0
= temp_insn
;
2578 if (i1
&& DF_INSN_LUID (i1
) > DF_INSN_LUID (i2
))
2579 temp_insn
= i1
, i1
= i2
, i2
= temp_insn
;
2581 added_links_insn
= 0;
2583 /* First check for one important special case that the code below will
2584 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2585 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2586 we may be able to replace that destination with the destination of I3.
2587 This occurs in the common code where we compute both a quotient and
2588 remainder into a structure, in which case we want to do the computation
2589 directly into the structure to avoid register-register copies.
2591 Note that this case handles both multiple sets in I2 and also cases
2592 where I2 has a number of CLOBBERs inside the PARALLEL.
2594 We make very conservative checks below and only try to handle the
2595 most common cases of this. For example, we only handle the case
2596 where I2 and I3 are adjacent to avoid making difficult register
2599 if (i1
== 0 && NONJUMP_INSN_P (i3
) && GET_CODE (PATTERN (i3
)) == SET
2600 && REG_P (SET_SRC (PATTERN (i3
)))
2601 && REGNO (SET_SRC (PATTERN (i3
))) >= FIRST_PSEUDO_REGISTER
2602 && find_reg_note (i3
, REG_DEAD
, SET_SRC (PATTERN (i3
)))
2603 && GET_CODE (PATTERN (i2
)) == PARALLEL
2604 && ! side_effects_p (SET_DEST (PATTERN (i3
)))
2605 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2606 below would need to check what is inside (and reg_overlap_mentioned_p
2607 doesn't support those codes anyway). Don't allow those destinations;
2608 the resulting insn isn't likely to be recognized anyway. */
2609 && GET_CODE (SET_DEST (PATTERN (i3
))) != ZERO_EXTRACT
2610 && GET_CODE (SET_DEST (PATTERN (i3
))) != STRICT_LOW_PART
2611 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3
)),
2612 SET_DEST (PATTERN (i3
)))
2613 && next_active_insn (i2
) == i3
)
2615 rtx p2
= PATTERN (i2
);
2617 /* Make sure that the destination of I3,
2618 which we are going to substitute into one output of I2,
2619 is not used within another output of I2. We must avoid making this:
2620 (parallel [(set (mem (reg 69)) ...)
2621 (set (reg 69) ...)])
2622 which is not well-defined as to order of actions.
2623 (Besides, reload can't handle output reloads for this.)
2625 The problem can also happen if the dest of I3 is a memory ref,
2626 if another dest in I2 is an indirect memory ref. */
2627 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2628 if ((GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2629 || GET_CODE (XVECEXP (p2
, 0, i
)) == CLOBBER
)
2630 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3
)),
2631 SET_DEST (XVECEXP (p2
, 0, i
))))
2634 if (i
== XVECLEN (p2
, 0))
2635 for (i
= 0; i
< XVECLEN (p2
, 0); i
++)
2636 if (GET_CODE (XVECEXP (p2
, 0, i
)) == SET
2637 && SET_DEST (XVECEXP (p2
, 0, i
)) == SET_SRC (PATTERN (i3
)))
2642 subst_low_luid
= DF_INSN_LUID (i2
);
2644 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2645 i2src
= SET_SRC (XVECEXP (p2
, 0, i
));
2646 i2dest
= SET_DEST (XVECEXP (p2
, 0, i
));
2647 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2649 /* Replace the dest in I2 with our dest and make the resulting
2650 insn the new pattern for I3. Then skip to where we validate
2651 the pattern. Everything was set up above. */
2652 SUBST (SET_DEST (XVECEXP (p2
, 0, i
)), SET_DEST (PATTERN (i3
)));
2654 i3_subst_into_i2
= 1;
2655 goto validate_replacement
;
2659 /* If I2 is setting a pseudo to a constant and I3 is setting some
2660 sub-part of it to another constant, merge them by making a new
2663 && (temp_expr
= single_set (i2
)) != 0
2664 && CONST_SCALAR_INT_P (SET_SRC (temp_expr
))
2665 && GET_CODE (PATTERN (i3
)) == SET
2666 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3
)))
2667 && reg_subword_p (SET_DEST (PATTERN (i3
)), SET_DEST (temp_expr
)))
2669 rtx dest
= SET_DEST (PATTERN (i3
));
2673 if (GET_CODE (dest
) == ZERO_EXTRACT
)
2675 if (CONST_INT_P (XEXP (dest
, 1))
2676 && CONST_INT_P (XEXP (dest
, 2)))
2678 width
= INTVAL (XEXP (dest
, 1));
2679 offset
= INTVAL (XEXP (dest
, 2));
2680 dest
= XEXP (dest
, 0);
2681 if (BITS_BIG_ENDIAN
)
2682 offset
= GET_MODE_PRECISION (GET_MODE (dest
)) - width
- offset
;
2687 if (GET_CODE (dest
) == STRICT_LOW_PART
)
2688 dest
= XEXP (dest
, 0);
2689 width
= GET_MODE_PRECISION (GET_MODE (dest
));
2695 /* If this is the low part, we're done. */
2696 if (subreg_lowpart_p (dest
))
2698 /* Handle the case where inner is twice the size of outer. */
2699 else if (GET_MODE_PRECISION (GET_MODE (SET_DEST (temp_expr
)))
2700 == 2 * GET_MODE_PRECISION (GET_MODE (dest
)))
2701 offset
+= GET_MODE_PRECISION (GET_MODE (dest
));
2702 /* Otherwise give up for now. */
2709 rtx inner
= SET_SRC (PATTERN (i3
));
2710 rtx outer
= SET_SRC (temp_expr
);
2713 = wi::insert (std::make_pair (outer
, GET_MODE (SET_DEST (temp_expr
))),
2714 std::make_pair (inner
, GET_MODE (dest
)),
2719 subst_low_luid
= DF_INSN_LUID (i2
);
2720 added_sets_2
= added_sets_1
= added_sets_0
= 0;
2721 i2dest
= SET_DEST (temp_expr
);
2722 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2724 /* Replace the source in I2 with the new constant and make the
2725 resulting insn the new pattern for I3. Then skip to where we
2726 validate the pattern. Everything was set up above. */
2727 SUBST (SET_SRC (temp_expr
),
2728 immed_wide_int_const (o
, GET_MODE (SET_DEST (temp_expr
))));
2730 newpat
= PATTERN (i2
);
2732 /* The dest of I3 has been replaced with the dest of I2. */
2733 changed_i3_dest
= 1;
2734 goto validate_replacement
;
2739 /* If we have no I1 and I2 looks like:
2740 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2742 make up a dummy I1 that is
2745 (set (reg:CC X) (compare:CC Y (const_int 0)))
2747 (We can ignore any trailing CLOBBERs.)
2749 This undoes a previous combination and allows us to match a branch-and-
2752 if (i1
== 0 && GET_CODE (PATTERN (i2
)) == PARALLEL
2753 && XVECLEN (PATTERN (i2
), 0) >= 2
2754 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 0)) == SET
2755 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2
), 0, 0))))
2757 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0))) == COMPARE
2758 && XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 1) == const0_rtx
2759 && GET_CODE (XVECEXP (PATTERN (i2
), 0, 1)) == SET
2760 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, 1)))
2761 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2
), 0, 0)), 0),
2762 SET_SRC (XVECEXP (PATTERN (i2
), 0, 1))))
2764 for (i
= XVECLEN (PATTERN (i2
), 0) - 1; i
>= 2; i
--)
2765 if (GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) != CLOBBER
)
2770 /* We make I1 with the same INSN_UID as I2. This gives it
2771 the same DF_INSN_LUID for value tracking. Our fake I1 will
2772 never appear in the insn stream so giving it the same INSN_UID
2773 as I2 will not cause a problem. */
2775 i1
= gen_rtx_INSN (VOIDmode
, NULL
, i2
, BLOCK_FOR_INSN (i2
),
2776 XVECEXP (PATTERN (i2
), 0, 1), INSN_LOCATION (i2
),
2778 INSN_UID (i1
) = INSN_UID (i2
);
2780 SUBST (PATTERN (i2
), XVECEXP (PATTERN (i2
), 0, 0));
2781 SUBST (XEXP (SET_SRC (PATTERN (i2
)), 0),
2782 SET_DEST (PATTERN (i1
)));
2783 SUBST_LINK (LOG_LINKS (i2
), alloc_insn_link (i1
, LOG_LINKS (i2
)));
2788 /* Verify that I2 and I1 are valid for combining. */
2789 if (! can_combine_p (i2
, i3
, i0
, i1
, NULL
, NULL
, &i2dest
, &i2src
)
2790 || (i1
&& ! can_combine_p (i1
, i3
, i0
, NULL
, i2
, NULL
,
2792 || (i0
&& ! can_combine_p (i0
, i3
, NULL
, NULL
, i1
, i2
,
2799 /* Record whether I2DEST is used in I2SRC and similarly for the other
2800 cases. Knowing this will help in register status updating below. */
2801 i2dest_in_i2src
= reg_overlap_mentioned_p (i2dest
, i2src
);
2802 i1dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i1dest
, i1src
);
2803 i2dest_in_i1src
= i1
&& reg_overlap_mentioned_p (i2dest
, i1src
);
2804 i0dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i0dest
, i0src
);
2805 i1dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i1dest
, i0src
);
2806 i2dest_in_i0src
= i0
&& reg_overlap_mentioned_p (i2dest
, i0src
);
2807 i2dest_killed
= dead_or_set_p (i2
, i2dest
);
2808 i1dest_killed
= i1
&& dead_or_set_p (i1
, i1dest
);
2809 i0dest_killed
= i0
&& dead_or_set_p (i0
, i0dest
);
2811 /* For the earlier insns, determine which of the subsequent ones they
2813 i1_feeds_i2_n
= i1
&& insn_a_feeds_b (i1
, i2
);
2814 i0_feeds_i1_n
= i0
&& insn_a_feeds_b (i0
, i1
);
2815 i0_feeds_i2_n
= (i0
&& (!i0_feeds_i1_n
? insn_a_feeds_b (i0
, i2
)
2816 : (!reg_overlap_mentioned_p (i1dest
, i0dest
)
2817 && reg_overlap_mentioned_p (i0dest
, i2src
))));
2819 /* Ensure that I3's pattern can be the destination of combines. */
2820 if (! combinable_i3pat (i3
, &PATTERN (i3
), i2dest
, i1dest
, i0dest
,
2821 i1
&& i2dest_in_i1src
&& !i1_feeds_i2_n
,
2822 i0
&& ((i2dest_in_i0src
&& !i0_feeds_i2_n
)
2823 || (i1dest_in_i0src
&& !i0_feeds_i1_n
)),
2830 /* See if any of the insns is a MULT operation. Unless one is, we will
2831 reject a combination that is, since it must be slower. Be conservative
2833 if (GET_CODE (i2src
) == MULT
2834 || (i1
!= 0 && GET_CODE (i1src
) == MULT
)
2835 || (i0
!= 0 && GET_CODE (i0src
) == MULT
)
2836 || (GET_CODE (PATTERN (i3
)) == SET
2837 && GET_CODE (SET_SRC (PATTERN (i3
))) == MULT
))
2840 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2841 We used to do this EXCEPT in one case: I3 has a post-inc in an
2842 output operand. However, that exception can give rise to insns like
2844 which is a famous insn on the PDP-11 where the value of r3 used as the
2845 source was model-dependent. Avoid this sort of thing. */
2848 if (!(GET_CODE (PATTERN (i3
)) == SET
2849 && REG_P (SET_SRC (PATTERN (i3
)))
2850 && MEM_P (SET_DEST (PATTERN (i3
)))
2851 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_INC
2852 || GET_CODE (XEXP (SET_DEST (PATTERN (i3
)), 0)) == POST_DEC
)))
2853 /* It's not the exception. */
2858 for (link
= REG_NOTES (i3
); link
; link
= XEXP (link
, 1))
2859 if (REG_NOTE_KIND (link
) == REG_INC
2860 && (reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i2
))
2862 && reg_overlap_mentioned_p (XEXP (link
, 0), PATTERN (i1
)))))
2870 /* See if the SETs in I1 or I2 need to be kept around in the merged
2871 instruction: whenever the value set there is still needed past I3.
2872 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
2874 For the SET in I1, we have two cases: if I1 and I2 independently feed
2875 into I3, the set in I1 needs to be kept around unless I1DEST dies
2876 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2877 in I1 needs to be kept around unless I1DEST dies or is set in either
2878 I2 or I3. The same considerations apply to I0. */
2880 added_sets_2
= !dead_or_set_p (i3
, i2dest
);
2883 added_sets_1
= !(dead_or_set_p (i3
, i1dest
)
2884 || (i1_feeds_i2_n
&& dead_or_set_p (i2
, i1dest
)));
2889 added_sets_0
= !(dead_or_set_p (i3
, i0dest
)
2890 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
))
2891 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
2892 && dead_or_set_p (i2
, i0dest
)));
2896 /* We are about to copy insns for the case where they need to be kept
2897 around. Check that they can be copied in the merged instruction. */
2899 if (targetm
.cannot_copy_insn_p
2900 && ((added_sets_2
&& targetm
.cannot_copy_insn_p (i2
))
2901 || (i1
&& added_sets_1
&& targetm
.cannot_copy_insn_p (i1
))
2902 || (i0
&& added_sets_0
&& targetm
.cannot_copy_insn_p (i0
))))
2908 /* If the set in I2 needs to be kept around, we must make a copy of
2909 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2910 PATTERN (I2), we are only substituting for the original I1DEST, not into
2911 an already-substituted copy. This also prevents making self-referential
2912 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2917 if (GET_CODE (PATTERN (i2
)) == PARALLEL
)
2918 i2pat
= gen_rtx_SET (VOIDmode
, i2dest
, copy_rtx (i2src
));
2920 i2pat
= copy_rtx (PATTERN (i2
));
2925 if (GET_CODE (PATTERN (i1
)) == PARALLEL
)
2926 i1pat
= gen_rtx_SET (VOIDmode
, i1dest
, copy_rtx (i1src
));
2928 i1pat
= copy_rtx (PATTERN (i1
));
2933 if (GET_CODE (PATTERN (i0
)) == PARALLEL
)
2934 i0pat
= gen_rtx_SET (VOIDmode
, i0dest
, copy_rtx (i0src
));
2936 i0pat
= copy_rtx (PATTERN (i0
));
2941 /* Substitute in the latest insn for the regs set by the earlier ones. */
2943 maxreg
= max_reg_num ();
2948 /* Many machines that don't use CC0 have insns that can both perform an
2949 arithmetic operation and set the condition code. These operations will
2950 be represented as a PARALLEL with the first element of the vector
2951 being a COMPARE of an arithmetic operation with the constant zero.
2952 The second element of the vector will set some pseudo to the result
2953 of the same arithmetic operation. If we simplify the COMPARE, we won't
2954 match such a pattern and so will generate an extra insn. Here we test
2955 for this case, where both the comparison and the operation result are
2956 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2957 I2SRC. Later we will make the PARALLEL that contains I2. */
2959 if (i1
== 0 && added_sets_2
&& GET_CODE (PATTERN (i3
)) == SET
2960 && GET_CODE (SET_SRC (PATTERN (i3
))) == COMPARE
2961 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3
)), 1))
2962 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3
)), 0), i2dest
))
2965 rtx
*cc_use_loc
= NULL
;
2966 rtx_insn
*cc_use_insn
= NULL
;
2967 rtx op0
= i2src
, op1
= XEXP (SET_SRC (PATTERN (i3
)), 1);
2968 machine_mode compare_mode
, orig_compare_mode
;
2969 enum rtx_code compare_code
= UNKNOWN
, orig_compare_code
= UNKNOWN
;
2971 newpat
= PATTERN (i3
);
2972 newpat_dest
= SET_DEST (newpat
);
2973 compare_mode
= orig_compare_mode
= GET_MODE (newpat_dest
);
2975 if (undobuf
.other_insn
== 0
2976 && (cc_use_loc
= find_single_use (SET_DEST (newpat
), i3
,
2979 compare_code
= orig_compare_code
= GET_CODE (*cc_use_loc
);
2980 compare_code
= simplify_compare_const (compare_code
,
2981 GET_MODE (i2dest
), op0
, &op1
);
2982 target_canonicalize_comparison (&compare_code
, &op0
, &op1
, 1);
2985 /* Do the rest only if op1 is const0_rtx, which may be the
2986 result of simplification. */
2987 if (op1
== const0_rtx
)
2989 /* If a single use of the CC is found, prepare to modify it
2990 when SELECT_CC_MODE returns a new CC-class mode, or when
2991 the above simplify_compare_const() returned a new comparison
2992 operator. undobuf.other_insn is assigned the CC use insn
2993 when modifying it. */
2996 #ifdef SELECT_CC_MODE
2997 machine_mode new_mode
2998 = SELECT_CC_MODE (compare_code
, op0
, op1
);
2999 if (new_mode
!= orig_compare_mode
3000 && can_change_dest_mode (SET_DEST (newpat
),
3001 added_sets_2
, new_mode
))
3003 unsigned int regno
= REGNO (newpat_dest
);
3004 compare_mode
= new_mode
;
3005 if (regno
< FIRST_PSEUDO_REGISTER
)
3006 newpat_dest
= gen_rtx_REG (compare_mode
, regno
);
3009 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
3010 newpat_dest
= regno_reg_rtx
[regno
];
3014 /* Cases for modifying the CC-using comparison. */
3015 if (compare_code
!= orig_compare_code
3016 /* ??? Do we need to verify the zero rtx? */
3017 && XEXP (*cc_use_loc
, 1) == const0_rtx
)
3019 /* Replace cc_use_loc with entire new RTX. */
3021 gen_rtx_fmt_ee (compare_code
, compare_mode
,
3022 newpat_dest
, const0_rtx
));
3023 undobuf
.other_insn
= cc_use_insn
;
3025 else if (compare_mode
!= orig_compare_mode
)
3027 /* Just replace the CC reg with a new mode. */
3028 SUBST (XEXP (*cc_use_loc
, 0), newpat_dest
);
3029 undobuf
.other_insn
= cc_use_insn
;
3033 /* Now we modify the current newpat:
3034 First, SET_DEST(newpat) is updated if the CC mode has been
3035 altered. For targets without SELECT_CC_MODE, this should be
3037 if (compare_mode
!= orig_compare_mode
)
3038 SUBST (SET_DEST (newpat
), newpat_dest
);
3039 /* This is always done to propagate i2src into newpat. */
3040 SUBST (SET_SRC (newpat
),
3041 gen_rtx_COMPARE (compare_mode
, op0
, op1
));
3042 /* Create new version of i2pat if needed; the below PARALLEL
3043 creation needs this to work correctly. */
3044 if (! rtx_equal_p (i2src
, op0
))
3045 i2pat
= gen_rtx_SET (VOIDmode
, i2dest
, op0
);
3051 if (i2_is_used
== 0)
3053 /* It is possible that the source of I2 or I1 may be performing
3054 an unneeded operation, such as a ZERO_EXTEND of something
3055 that is known to have the high part zero. Handle that case
3056 by letting subst look at the inner insns.
3058 Another way to do this would be to have a function that tries
3059 to simplify a single insn instead of merging two or more
3060 insns. We don't do this because of the potential of infinite
3061 loops and because of the potential extra memory required.
3062 However, doing it the way we are is a bit of a kludge and
3063 doesn't catch all cases.
3065 But only do this if -fexpensive-optimizations since it slows
3066 things down and doesn't usually win.
3068 This is not done in the COMPARE case above because the
3069 unmodified I2PAT is used in the PARALLEL and so a pattern
3070 with a modified I2SRC would not match. */
3072 if (flag_expensive_optimizations
)
3074 /* Pass pc_rtx so no substitutions are done, just
3078 subst_low_luid
= DF_INSN_LUID (i1
);
3079 i1src
= subst (i1src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3082 subst_low_luid
= DF_INSN_LUID (i2
);
3083 i2src
= subst (i2src
, pc_rtx
, pc_rtx
, 0, 0, 0);
3086 n_occurrences
= 0; /* `subst' counts here */
3087 subst_low_luid
= DF_INSN_LUID (i2
);
3089 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3090 copy of I2SRC each time we substitute it, in order to avoid creating
3091 self-referential RTL when we will be substituting I1SRC for I1DEST
3092 later. Likewise if I0 feeds into I2, either directly or indirectly
3093 through I1, and I0DEST is in I0SRC. */
3094 newpat
= subst (PATTERN (i3
), i2dest
, i2src
, 0, 0,
3095 (i1_feeds_i2_n
&& i1dest_in_i1src
)
3096 || ((i0_feeds_i2_n
|| (i0_feeds_i1_n
&& i1_feeds_i2_n
))
3097 && i0dest_in_i0src
));
3100 /* Record whether I2's body now appears within I3's body. */
3101 i2_is_used
= n_occurrences
;
3104 /* If we already got a failure, don't try to do more. Otherwise, try to
3105 substitute I1 if we have it. */
3107 if (i1
&& GET_CODE (newpat
) != CLOBBER
)
3109 /* Check that an autoincrement side-effect on I1 has not been lost.
3110 This happens if I1DEST is mentioned in I2 and dies there, and
3111 has disappeared from the new pattern. */
3112 if ((FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3114 && dead_or_set_p (i2
, i1dest
)
3115 && !reg_overlap_mentioned_p (i1dest
, newpat
))
3116 /* Before we can do this substitution, we must redo the test done
3117 above (see detailed comments there) that ensures I1DEST isn't
3118 mentioned in any SETs in NEWPAT that are field assignments. */
3119 || !combinable_i3pat (NULL
, &newpat
, i1dest
, NULL_RTX
, NULL_RTX
,
3127 subst_low_luid
= DF_INSN_LUID (i1
);
3129 /* If the following substitution will modify I1SRC, make a copy of it
3130 for the case where it is substituted for I1DEST in I2PAT later. */
3131 if (added_sets_2
&& i1_feeds_i2_n
)
3132 i1src_copy
= copy_rtx (i1src
);
3134 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3135 copy of I1SRC each time we substitute it, in order to avoid creating
3136 self-referential RTL when we will be substituting I0SRC for I0DEST
3138 newpat
= subst (newpat
, i1dest
, i1src
, 0, 0,
3139 i0_feeds_i1_n
&& i0dest_in_i0src
);
3142 /* Record whether I1's body now appears within I3's body. */
3143 i1_is_used
= n_occurrences
;
3146 /* Likewise for I0 if we have it. */
3148 if (i0
&& GET_CODE (newpat
) != CLOBBER
)
3150 if ((FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3151 && ((i0_feeds_i2_n
&& dead_or_set_p (i2
, i0dest
))
3152 || (i0_feeds_i1_n
&& dead_or_set_p (i1
, i0dest
)))
3153 && !reg_overlap_mentioned_p (i0dest
, newpat
))
3154 || !combinable_i3pat (NULL
, &newpat
, i0dest
, NULL_RTX
, NULL_RTX
,
3161 /* If the following substitution will modify I0SRC, make a copy of it
3162 for the case where it is substituted for I0DEST in I1PAT later. */
3163 if (added_sets_1
&& i0_feeds_i1_n
)
3164 i0src_copy
= copy_rtx (i0src
);
3165 /* And a copy for I0DEST in I2PAT substitution. */
3166 if (added_sets_2
&& ((i0_feeds_i1_n
&& i1_feeds_i2_n
)
3167 || (i0_feeds_i2_n
)))
3168 i0src_copy2
= copy_rtx (i0src
);
3171 subst_low_luid
= DF_INSN_LUID (i0
);
3172 newpat
= subst (newpat
, i0dest
, i0src
, 0, 0, 0);
3176 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3177 to count all the ways that I2SRC and I1SRC can be used. */
3178 if ((FIND_REG_INC_NOTE (i2
, NULL_RTX
) != 0
3179 && i2_is_used
+ added_sets_2
> 1)
3180 || (i1
!= 0 && FIND_REG_INC_NOTE (i1
, NULL_RTX
) != 0
3181 && (i1_is_used
+ added_sets_1
+ (added_sets_2
&& i1_feeds_i2_n
)
3183 || (i0
!= 0 && FIND_REG_INC_NOTE (i0
, NULL_RTX
) != 0
3184 && (n_occurrences
+ added_sets_0
3185 + (added_sets_1
&& i0_feeds_i1_n
)
3186 + (added_sets_2
&& i0_feeds_i2_n
)
3188 /* Fail if we tried to make a new register. */
3189 || max_reg_num () != maxreg
3190 /* Fail if we couldn't do something and have a CLOBBER. */
3191 || GET_CODE (newpat
) == CLOBBER
3192 /* Fail if this new pattern is a MULT and we didn't have one before
3193 at the outer level. */
3194 || (GET_CODE (newpat
) == SET
&& GET_CODE (SET_SRC (newpat
)) == MULT
3201 /* If the actions of the earlier insns must be kept
3202 in addition to substituting them into the latest one,
3203 we must make a new PARALLEL for the latest insn
3204 to hold additional the SETs. */
3206 if (added_sets_0
|| added_sets_1
|| added_sets_2
)
3208 int extra_sets
= added_sets_0
+ added_sets_1
+ added_sets_2
;
3211 if (GET_CODE (newpat
) == PARALLEL
)
3213 rtvec old
= XVEC (newpat
, 0);
3214 total_sets
= XVECLEN (newpat
, 0) + extra_sets
;
3215 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3216 memcpy (XVEC (newpat
, 0)->elem
, &old
->elem
[0],
3217 sizeof (old
->elem
[0]) * old
->num_elem
);
3222 total_sets
= 1 + extra_sets
;
3223 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (total_sets
));
3224 XVECEXP (newpat
, 0, 0) = old
;
3228 XVECEXP (newpat
, 0, --total_sets
) = i0pat
;
3234 t
= subst (t
, i0dest
, i0src_copy
? i0src_copy
: i0src
, 0, 0, 0);
3236 XVECEXP (newpat
, 0, --total_sets
) = t
;
3242 t
= subst (t
, i1dest
, i1src_copy
? i1src_copy
: i1src
, 0, 0,
3243 i0_feeds_i1_n
&& i0dest_in_i0src
);
3244 if ((i0_feeds_i1_n
&& i1_feeds_i2_n
) || i0_feeds_i2_n
)
3245 t
= subst (t
, i0dest
, i0src_copy2
? i0src_copy2
: i0src
, 0, 0, 0);
3247 XVECEXP (newpat
, 0, --total_sets
) = t
;
3251 validate_replacement
:
3253 /* Note which hard regs this insn has as inputs. */
3254 mark_used_regs_combine (newpat
);
3256 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3257 consider splitting this pattern, we might need these clobbers. */
3258 if (i1
&& GET_CODE (newpat
) == PARALLEL
3259 && GET_CODE (XVECEXP (newpat
, 0, XVECLEN (newpat
, 0) - 1)) == CLOBBER
)
3261 int len
= XVECLEN (newpat
, 0);
3263 newpat_vec_with_clobbers
= rtvec_alloc (len
);
3264 for (i
= 0; i
< len
; i
++)
3265 RTVEC_ELT (newpat_vec_with_clobbers
, i
) = XVECEXP (newpat
, 0, i
);
3268 /* We have recognized nothing yet. */
3269 insn_code_number
= -1;
3271 /* See if this is a PARALLEL of two SETs where one SET's destination is
3272 a register that is unused and this isn't marked as an instruction that
3273 might trap in an EH region. In that case, we just need the other SET.
3274 We prefer this over the PARALLEL.
3276 This can occur when simplifying a divmod insn. We *must* test for this
3277 case here because the code below that splits two independent SETs doesn't
3278 handle this case correctly when it updates the register status.
3280 It's pointless doing this if we originally had two sets, one from
3281 i3, and one from i2. Combining then splitting the parallel results
3282 in the original i2 again plus an invalid insn (which we delete).
3283 The net effect is only to move instructions around, which makes
3284 debug info less accurate. */
3286 if (!(added_sets_2
&& i1
== 0)
3287 && GET_CODE (newpat
) == PARALLEL
3288 && XVECLEN (newpat
, 0) == 2
3289 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3290 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3291 && asm_noperands (newpat
) < 0)
3293 rtx set0
= XVECEXP (newpat
, 0, 0);
3294 rtx set1
= XVECEXP (newpat
, 0, 1);
3295 rtx oldpat
= newpat
;
3297 if (((REG_P (SET_DEST (set1
))
3298 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set1
)))
3299 || (GET_CODE (SET_DEST (set1
)) == SUBREG
3300 && find_reg_note (i3
, REG_UNUSED
, SUBREG_REG (SET_DEST (set1
)))))
3301 && insn_nothrow_p (i3
)
3302 && !side_effects_p (SET_SRC (set1
)))
3305 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3308 else if (((REG_P (SET_DEST (set0
))
3309 && find_reg_note (i3
, REG_UNUSED
, SET_DEST (set0
)))
3310 || (GET_CODE (SET_DEST (set0
)) == SUBREG
3311 && find_reg_note (i3
, REG_UNUSED
,
3312 SUBREG_REG (SET_DEST (set0
)))))
3313 && insn_nothrow_p (i3
)
3314 && !side_effects_p (SET_SRC (set0
)))
3317 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3319 if (insn_code_number
>= 0)
3320 changed_i3_dest
= 1;
3323 if (insn_code_number
< 0)
3327 /* Is the result of combination a valid instruction? */
3328 if (insn_code_number
< 0)
3329 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3331 /* If we were combining three insns and the result is a simple SET
3332 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3333 insns. There are two ways to do this. It can be split using a
3334 machine-specific method (like when you have an addition of a large
3335 constant) or by combine in the function find_split_point. */
3337 if (i1
&& insn_code_number
< 0 && GET_CODE (newpat
) == SET
3338 && asm_noperands (newpat
) < 0)
3340 rtx parallel
, *split
;
3341 rtx_insn
*m_split_insn
;
3343 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3344 use I2DEST as a scratch register will help. In the latter case,
3345 convert I2DEST to the mode of the source of NEWPAT if we can. */
3347 m_split_insn
= combine_split_insns (newpat
, i3
);
3349 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3350 inputs of NEWPAT. */
3352 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3353 possible to try that as a scratch reg. This would require adding
3354 more code to make it work though. */
3356 if (m_split_insn
== 0 && ! reg_overlap_mentioned_p (i2dest
, newpat
))
3358 machine_mode new_mode
= GET_MODE (SET_DEST (newpat
));
3360 /* First try to split using the original register as a
3361 scratch register. */
3362 parallel
= gen_rtx_PARALLEL (VOIDmode
,
3363 gen_rtvec (2, newpat
,
3364 gen_rtx_CLOBBER (VOIDmode
,
3366 m_split_insn
= combine_split_insns (parallel
, i3
);
3368 /* If that didn't work, try changing the mode of I2DEST if
3370 if (m_split_insn
== 0
3371 && new_mode
!= GET_MODE (i2dest
)
3372 && new_mode
!= VOIDmode
3373 && can_change_dest_mode (i2dest
, added_sets_2
, new_mode
))
3375 machine_mode old_mode
= GET_MODE (i2dest
);
3378 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3379 ni2dest
= gen_rtx_REG (new_mode
, REGNO (i2dest
));
3382 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], new_mode
);
3383 ni2dest
= regno_reg_rtx
[REGNO (i2dest
)];
3386 parallel
= (gen_rtx_PARALLEL
3388 gen_rtvec (2, newpat
,
3389 gen_rtx_CLOBBER (VOIDmode
,
3391 m_split_insn
= combine_split_insns (parallel
, i3
);
3393 if (m_split_insn
== 0
3394 && REGNO (i2dest
) >= FIRST_PSEUDO_REGISTER
)
3398 adjust_reg_mode (regno_reg_rtx
[REGNO (i2dest
)], old_mode
);
3399 buf
= undobuf
.undos
;
3400 undobuf
.undos
= buf
->next
;
3401 buf
->next
= undobuf
.frees
;
3402 undobuf
.frees
= buf
;
3406 i2scratch
= m_split_insn
!= 0;
3409 /* If recog_for_combine has discarded clobbers, try to use them
3410 again for the split. */
3411 if (m_split_insn
== 0 && newpat_vec_with_clobbers
)
3413 parallel
= gen_rtx_PARALLEL (VOIDmode
, newpat_vec_with_clobbers
);
3414 m_split_insn
= combine_split_insns (parallel
, i3
);
3417 if (m_split_insn
&& NEXT_INSN (m_split_insn
) == NULL_RTX
)
3419 rtx m_split_pat
= PATTERN (m_split_insn
);
3420 insn_code_number
= recog_for_combine (&m_split_pat
, i3
, &new_i3_notes
);
3421 if (insn_code_number
>= 0)
3422 newpat
= m_split_pat
;
3424 else if (m_split_insn
&& NEXT_INSN (NEXT_INSN (m_split_insn
)) == NULL_RTX
3425 && (next_nonnote_nondebug_insn (i2
) == i3
3426 || ! use_crosses_set_p (PATTERN (m_split_insn
), DF_INSN_LUID (i2
))))
3429 rtx newi3pat
= PATTERN (NEXT_INSN (m_split_insn
));
3430 newi2pat
= PATTERN (m_split_insn
);
3432 i3set
= single_set (NEXT_INSN (m_split_insn
));
3433 i2set
= single_set (m_split_insn
);
3435 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3437 /* If I2 or I3 has multiple SETs, we won't know how to track
3438 register status, so don't use these insns. If I2's destination
3439 is used between I2 and I3, we also can't use these insns. */
3441 if (i2_code_number
>= 0 && i2set
&& i3set
3442 && (next_nonnote_nondebug_insn (i2
) == i3
3443 || ! reg_used_between_p (SET_DEST (i2set
), i2
, i3
)))
3444 insn_code_number
= recog_for_combine (&newi3pat
, i3
,
3446 if (insn_code_number
>= 0)
3449 /* It is possible that both insns now set the destination of I3.
3450 If so, we must show an extra use of it. */
3452 if (insn_code_number
>= 0)
3454 rtx new_i3_dest
= SET_DEST (i3set
);
3455 rtx new_i2_dest
= SET_DEST (i2set
);
3457 while (GET_CODE (new_i3_dest
) == ZERO_EXTRACT
3458 || GET_CODE (new_i3_dest
) == STRICT_LOW_PART
3459 || GET_CODE (new_i3_dest
) == SUBREG
)
3460 new_i3_dest
= XEXP (new_i3_dest
, 0);
3462 while (GET_CODE (new_i2_dest
) == ZERO_EXTRACT
3463 || GET_CODE (new_i2_dest
) == STRICT_LOW_PART
3464 || GET_CODE (new_i2_dest
) == SUBREG
)
3465 new_i2_dest
= XEXP (new_i2_dest
, 0);
3467 if (REG_P (new_i3_dest
)
3468 && REG_P (new_i2_dest
)
3469 && REGNO (new_i3_dest
) == REGNO (new_i2_dest
))
3470 INC_REG_N_SETS (REGNO (new_i2_dest
), 1);
3474 /* If we can split it and use I2DEST, go ahead and see if that
3475 helps things be recognized. Verify that none of the registers
3476 are set between I2 and I3. */
3477 if (insn_code_number
< 0
3478 && (split
= find_split_point (&newpat
, i3
, false)) != 0
3482 /* We need I2DEST in the proper mode. If it is a hard register
3483 or the only use of a pseudo, we can change its mode.
3484 Make sure we don't change a hard register to have a mode that
3485 isn't valid for it, or change the number of registers. */
3486 && (GET_MODE (*split
) == GET_MODE (i2dest
)
3487 || GET_MODE (*split
) == VOIDmode
3488 || can_change_dest_mode (i2dest
, added_sets_2
,
3490 && (next_nonnote_nondebug_insn (i2
) == i3
3491 || ! use_crosses_set_p (*split
, DF_INSN_LUID (i2
)))
3492 /* We can't overwrite I2DEST if its value is still used by
3494 && ! reg_referenced_p (i2dest
, newpat
))
3496 rtx newdest
= i2dest
;
3497 enum rtx_code split_code
= GET_CODE (*split
);
3498 machine_mode split_mode
= GET_MODE (*split
);
3499 bool subst_done
= false;
3500 newi2pat
= NULL_RTX
;
3504 /* *SPLIT may be part of I2SRC, so make sure we have the
3505 original expression around for later debug processing.
3506 We should not need I2SRC any more in other cases. */
3507 if (MAY_HAVE_DEBUG_INSNS
)
3508 i2src
= copy_rtx (i2src
);
3512 /* Get NEWDEST as a register in the proper mode. We have already
3513 validated that we can do this. */
3514 if (GET_MODE (i2dest
) != split_mode
&& split_mode
!= VOIDmode
)
3516 if (REGNO (i2dest
) < FIRST_PSEUDO_REGISTER
)
3517 newdest
= gen_rtx_REG (split_mode
, REGNO (i2dest
));
3520 SUBST_MODE (regno_reg_rtx
[REGNO (i2dest
)], split_mode
);
3521 newdest
= regno_reg_rtx
[REGNO (i2dest
)];
3525 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3526 an ASHIFT. This can occur if it was inside a PLUS and hence
3527 appeared to be a memory address. This is a kludge. */
3528 if (split_code
== MULT
3529 && CONST_INT_P (XEXP (*split
, 1))
3530 && INTVAL (XEXP (*split
, 1)) > 0
3531 && (i
= exact_log2 (UINTVAL (XEXP (*split
, 1)))) >= 0)
3533 SUBST (*split
, gen_rtx_ASHIFT (split_mode
,
3534 XEXP (*split
, 0), GEN_INT (i
)));
3535 /* Update split_code because we may not have a multiply
3537 split_code
= GET_CODE (*split
);
3540 #ifdef INSN_SCHEDULING
3541 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3542 be written as a ZERO_EXTEND. */
3543 if (split_code
== SUBREG
&& MEM_P (SUBREG_REG (*split
)))
3545 #ifdef LOAD_EXTEND_OP
3546 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3547 what it really is. */
3548 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split
)))
3550 SUBST (*split
, gen_rtx_SIGN_EXTEND (split_mode
,
3551 SUBREG_REG (*split
)));
3554 SUBST (*split
, gen_rtx_ZERO_EXTEND (split_mode
,
3555 SUBREG_REG (*split
)));
3559 /* Attempt to split binary operators using arithmetic identities. */
3560 if (BINARY_P (SET_SRC (newpat
))
3561 && split_mode
== GET_MODE (SET_SRC (newpat
))
3562 && ! side_effects_p (SET_SRC (newpat
)))
3564 rtx setsrc
= SET_SRC (newpat
);
3565 machine_mode mode
= GET_MODE (setsrc
);
3566 enum rtx_code code
= GET_CODE (setsrc
);
3567 rtx src_op0
= XEXP (setsrc
, 0);
3568 rtx src_op1
= XEXP (setsrc
, 1);
3570 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3571 if (rtx_equal_p (src_op0
, src_op1
))
3573 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, src_op0
);
3574 SUBST (XEXP (setsrc
, 0), newdest
);
3575 SUBST (XEXP (setsrc
, 1), newdest
);
3578 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3579 else if ((code
== PLUS
|| code
== MULT
)
3580 && GET_CODE (src_op0
) == code
3581 && GET_CODE (XEXP (src_op0
, 0)) == code
3582 && (INTEGRAL_MODE_P (mode
)
3583 || (FLOAT_MODE_P (mode
)
3584 && flag_unsafe_math_optimizations
)))
3586 rtx p
= XEXP (XEXP (src_op0
, 0), 0);
3587 rtx q
= XEXP (XEXP (src_op0
, 0), 1);
3588 rtx r
= XEXP (src_op0
, 1);
3591 /* Split both "((X op Y) op X) op Y" and
3592 "((X op Y) op Y) op X" as "T op T" where T is
3594 if ((rtx_equal_p (p
,r
) && rtx_equal_p (q
,s
))
3595 || (rtx_equal_p (p
,s
) && rtx_equal_p (q
,r
)))
3597 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
,
3599 SUBST (XEXP (setsrc
, 0), newdest
);
3600 SUBST (XEXP (setsrc
, 1), newdest
);
3603 /* Split "((X op X) op Y) op Y)" as "T op T" where
3605 else if (rtx_equal_p (p
,q
) && rtx_equal_p (r
,s
))
3607 rtx tmp
= simplify_gen_binary (code
, mode
, p
, r
);
3608 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, tmp
);
3609 SUBST (XEXP (setsrc
, 0), newdest
);
3610 SUBST (XEXP (setsrc
, 1), newdest
);
3618 newi2pat
= gen_rtx_SET (VOIDmode
, newdest
, *split
);
3619 SUBST (*split
, newdest
);
3622 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3624 /* recog_for_combine might have added CLOBBERs to newi2pat.
3625 Make sure NEWPAT does not depend on the clobbered regs. */
3626 if (GET_CODE (newi2pat
) == PARALLEL
)
3627 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3628 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3630 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3631 if (reg_overlap_mentioned_p (reg
, newpat
))
3638 /* If the split point was a MULT and we didn't have one before,
3639 don't use one now. */
3640 if (i2_code_number
>= 0 && ! (split_code
== MULT
&& ! have_mult
))
3641 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3645 /* Check for a case where we loaded from memory in a narrow mode and
3646 then sign extended it, but we need both registers. In that case,
3647 we have a PARALLEL with both loads from the same memory location.
3648 We can split this into a load from memory followed by a register-register
3649 copy. This saves at least one insn, more if register allocation can
3652 We cannot do this if the destination of the first assignment is a
3653 condition code register or cc0. We eliminate this case by making sure
3654 the SET_DEST and SET_SRC have the same mode.
3656 We cannot do this if the destination of the second assignment is
3657 a register that we have already assumed is zero-extended. Similarly
3658 for a SUBREG of such a register. */
3660 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3661 && GET_CODE (newpat
) == PARALLEL
3662 && XVECLEN (newpat
, 0) == 2
3663 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3664 && GET_CODE (SET_SRC (XVECEXP (newpat
, 0, 0))) == SIGN_EXTEND
3665 && (GET_MODE (SET_DEST (XVECEXP (newpat
, 0, 0)))
3666 == GET_MODE (SET_SRC (XVECEXP (newpat
, 0, 0))))
3667 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3668 && rtx_equal_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3669 XEXP (SET_SRC (XVECEXP (newpat
, 0, 0)), 0))
3670 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat
, 0, 1)),
3672 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3673 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3674 && ! (temp_expr
= SET_DEST (XVECEXP (newpat
, 0, 1)),
3676 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
3677 && GET_MODE_PRECISION (GET_MODE (temp_expr
)) < BITS_PER_WORD
3678 && GET_MODE_PRECISION (GET_MODE (temp_expr
)) < HOST_BITS_PER_INT
3679 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
3680 != GET_MODE_MASK (word_mode
))))
3681 && ! (GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) == SUBREG
3682 && (temp_expr
= SUBREG_REG (SET_DEST (XVECEXP (newpat
, 0, 1))),
3684 && reg_stat
[REGNO (temp_expr
)].nonzero_bits
!= 0
3685 && GET_MODE_PRECISION (GET_MODE (temp_expr
)) < BITS_PER_WORD
3686 && GET_MODE_PRECISION (GET_MODE (temp_expr
)) < HOST_BITS_PER_INT
3687 && (reg_stat
[REGNO (temp_expr
)].nonzero_bits
3688 != GET_MODE_MASK (word_mode
)))))
3689 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3690 SET_SRC (XVECEXP (newpat
, 0, 1)))
3691 && ! find_reg_note (i3
, REG_UNUSED
,
3692 SET_DEST (XVECEXP (newpat
, 0, 0))))
3696 newi2pat
= XVECEXP (newpat
, 0, 0);
3697 ni2dest
= SET_DEST (XVECEXP (newpat
, 0, 0));
3698 newpat
= XVECEXP (newpat
, 0, 1);
3699 SUBST (SET_SRC (newpat
),
3700 gen_lowpart (GET_MODE (SET_SRC (newpat
)), ni2dest
));
3701 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3703 if (i2_code_number
>= 0)
3704 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3706 if (insn_code_number
>= 0)
3710 /* Similarly, check for a case where we have a PARALLEL of two independent
3711 SETs but we started with three insns. In this case, we can do the sets
3712 as two separate insns. This case occurs when some SET allows two
3713 other insns to combine, but the destination of that SET is still live. */
3715 else if (i1
&& insn_code_number
< 0 && asm_noperands (newpat
) < 0
3716 && GET_CODE (newpat
) == PARALLEL
3717 && XVECLEN (newpat
, 0) == 2
3718 && GET_CODE (XVECEXP (newpat
, 0, 0)) == SET
3719 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != ZERO_EXTRACT
3720 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 0))) != STRICT_LOW_PART
3721 && GET_CODE (XVECEXP (newpat
, 0, 1)) == SET
3722 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != ZERO_EXTRACT
3723 && GET_CODE (SET_DEST (XVECEXP (newpat
, 0, 1))) != STRICT_LOW_PART
3724 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 1)),
3725 XVECEXP (newpat
, 0, 0))
3726 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat
, 0, 0)),
3727 XVECEXP (newpat
, 0, 1))
3728 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 0)))
3729 && contains_muldiv (SET_SRC (XVECEXP (newpat
, 0, 1)))))
3731 rtx set0
= XVECEXP (newpat
, 0, 0);
3732 rtx set1
= XVECEXP (newpat
, 0, 1);
3734 /* Normally, it doesn't matter which of the two is done first,
3735 but the one that references cc0 can't be the second, and
3736 one which uses any regs/memory set in between i2 and i3 can't
3737 be first. The PARALLEL might also have been pre-existing in i3,
3738 so we need to make sure that we won't wrongly hoist a SET to i2
3739 that would conflict with a death note present in there. */
3740 if (!use_crosses_set_p (SET_SRC (set1
), DF_INSN_LUID (i2
))
3741 && !(REG_P (SET_DEST (set1
))
3742 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set1
)))
3743 && !(GET_CODE (SET_DEST (set1
)) == SUBREG
3744 && find_reg_note (i2
, REG_DEAD
,
3745 SUBREG_REG (SET_DEST (set1
))))
3747 && !reg_referenced_p (cc0_rtx
, set0
)
3749 /* If I3 is a jump, ensure that set0 is a jump so that
3750 we do not create invalid RTL. */
3751 && (!JUMP_P (i3
) || SET_DEST (set0
) == pc_rtx
)
3757 else if (!use_crosses_set_p (SET_SRC (set0
), DF_INSN_LUID (i2
))
3758 && !(REG_P (SET_DEST (set0
))
3759 && find_reg_note (i2
, REG_DEAD
, SET_DEST (set0
)))
3760 && !(GET_CODE (SET_DEST (set0
)) == SUBREG
3761 && find_reg_note (i2
, REG_DEAD
,
3762 SUBREG_REG (SET_DEST (set0
))))
3764 && !reg_referenced_p (cc0_rtx
, set1
)
3766 /* If I3 is a jump, ensure that set1 is a jump so that
3767 we do not create invalid RTL. */
3768 && (!JUMP_P (i3
) || SET_DEST (set1
) == pc_rtx
)
3780 i2_code_number
= recog_for_combine (&newi2pat
, i2
, &new_i2_notes
);
3782 if (i2_code_number
>= 0)
3784 /* recog_for_combine might have added CLOBBERs to newi2pat.
3785 Make sure NEWPAT does not depend on the clobbered regs. */
3786 if (GET_CODE (newi2pat
) == PARALLEL
)
3788 for (i
= XVECLEN (newi2pat
, 0) - 1; i
>= 0; i
--)
3789 if (GET_CODE (XVECEXP (newi2pat
, 0, i
)) == CLOBBER
)
3791 rtx reg
= XEXP (XVECEXP (newi2pat
, 0, i
), 0);
3792 if (reg_overlap_mentioned_p (reg
, newpat
))
3800 insn_code_number
= recog_for_combine (&newpat
, i3
, &new_i3_notes
);
3804 /* If it still isn't recognized, fail and change things back the way they
3806 if ((insn_code_number
< 0
3807 /* Is the result a reasonable ASM_OPERANDS? */
3808 && (! check_asm_operands (newpat
) || added_sets_1
|| added_sets_2
)))
3814 /* If we had to change another insn, make sure it is valid also. */
3815 if (undobuf
.other_insn
)
3817 CLEAR_HARD_REG_SET (newpat_used_regs
);
3819 other_pat
= PATTERN (undobuf
.other_insn
);
3820 other_code_number
= recog_for_combine (&other_pat
, undobuf
.other_insn
,
3823 if (other_code_number
< 0 && ! check_asm_operands (other_pat
))
3831 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3832 they are adjacent to each other or not. */
3834 rtx_insn
*p
= prev_nonnote_insn (i3
);
3835 if (p
&& p
!= i2
&& NONJUMP_INSN_P (p
) && newi2pat
3836 && sets_cc0_p (newi2pat
))
3844 /* Only allow this combination if insn_rtx_costs reports that the
3845 replacement instructions are cheaper than the originals. */
3846 if (!combine_validate_cost (i0
, i1
, i2
, i3
, newpat
, newi2pat
, other_pat
))
3852 if (MAY_HAVE_DEBUG_INSNS
)
3856 for (undo
= undobuf
.undos
; undo
; undo
= undo
->next
)
3857 if (undo
->kind
== UNDO_MODE
)
3859 rtx reg
= *undo
->where
.r
;
3860 machine_mode new_mode
= GET_MODE (reg
);
3861 machine_mode old_mode
= undo
->old_contents
.m
;
3863 /* Temporarily revert mode back. */
3864 adjust_reg_mode (reg
, old_mode
);
3866 if (reg
== i2dest
&& i2scratch
)
3868 /* If we used i2dest as a scratch register with a
3869 different mode, substitute it for the original
3870 i2src while its original mode is temporarily
3871 restored, and then clear i2scratch so that we don't
3872 do it again later. */
3873 propagate_for_debug (i2
, last_combined_insn
, reg
, i2src
,
3876 /* Put back the new mode. */
3877 adjust_reg_mode (reg
, new_mode
);
3881 rtx tempreg
= gen_raw_REG (old_mode
, REGNO (reg
));
3882 rtx_insn
*first
, *last
;
3887 last
= last_combined_insn
;
3892 last
= undobuf
.other_insn
;
3894 if (DF_INSN_LUID (last
)
3895 < DF_INSN_LUID (last_combined_insn
))
3896 last
= last_combined_insn
;
3899 /* We're dealing with a reg that changed mode but not
3900 meaning, so we want to turn it into a subreg for
3901 the new mode. However, because of REG sharing and
3902 because its mode had already changed, we have to do
3903 it in two steps. First, replace any debug uses of
3904 reg, with its original mode temporarily restored,
3905 with this copy we have created; then, replace the
3906 copy with the SUBREG of the original shared reg,
3907 once again changed to the new mode. */
3908 propagate_for_debug (first
, last
, reg
, tempreg
,
3910 adjust_reg_mode (reg
, new_mode
);
3911 propagate_for_debug (first
, last
, tempreg
,
3912 lowpart_subreg (old_mode
, reg
, new_mode
),
3918 /* If we will be able to accept this, we have made a
3919 change to the destination of I3. This requires us to
3920 do a few adjustments. */
3922 if (changed_i3_dest
)
3924 PATTERN (i3
) = newpat
;
3925 adjust_for_new_dest (i3
);
3928 /* We now know that we can do this combination. Merge the insns and
3929 update the status of registers and LOG_LINKS. */
3931 if (undobuf
.other_insn
)
3935 PATTERN (undobuf
.other_insn
) = other_pat
;
3937 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
3938 ensure that they are still valid. Then add any non-duplicate
3939 notes added by recog_for_combine. */
3940 for (note
= REG_NOTES (undobuf
.other_insn
); note
; note
= next
)
3942 next
= XEXP (note
, 1);
3944 if ((REG_NOTE_KIND (note
) == REG_DEAD
3945 && !reg_referenced_p (XEXP (note
, 0),
3946 PATTERN (undobuf
.other_insn
)))
3947 ||(REG_NOTE_KIND (note
) == REG_UNUSED
3948 && !reg_set_p (XEXP (note
, 0),
3949 PATTERN (undobuf
.other_insn
))))
3950 remove_note (undobuf
.other_insn
, note
);
3953 distribute_notes (new_other_notes
, undobuf
.other_insn
,
3954 undobuf
.other_insn
, NULL
, NULL_RTX
, NULL_RTX
,
3961 struct insn_link
*link
;
3964 /* I3 now uses what used to be its destination and which is now
3965 I2's destination. This requires us to do a few adjustments. */
3966 PATTERN (i3
) = newpat
;
3967 adjust_for_new_dest (i3
);
3969 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3972 However, some later insn might be using I2's dest and have
3973 a LOG_LINK pointing at I3. We must remove this link.
3974 The simplest way to remove the link is to point it at I1,
3975 which we know will be a NOTE. */
3977 /* newi2pat is usually a SET here; however, recog_for_combine might
3978 have added some clobbers. */
3979 if (GET_CODE (newi2pat
) == PARALLEL
)
3980 ni2dest
= SET_DEST (XVECEXP (newi2pat
, 0, 0));
3982 ni2dest
= SET_DEST (newi2pat
);
3984 for (insn
= NEXT_INSN (i3
);
3985 insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
3986 || insn
!= BB_HEAD (this_basic_block
->next_bb
));
3987 insn
= NEXT_INSN (insn
))
3989 if (INSN_P (insn
) && reg_referenced_p (ni2dest
, PATTERN (insn
)))
3991 FOR_EACH_LOG_LINK (link
, insn
)
3992 if (link
->insn
== i3
)
4001 rtx i3notes
, i2notes
, i1notes
= 0, i0notes
= 0;
4002 struct insn_link
*i3links
, *i2links
, *i1links
= 0, *i0links
= 0;
4005 /* Compute which registers we expect to eliminate. newi2pat may be setting
4006 either i3dest or i2dest, so we must check it. Also, i1dest may be the
4007 same as i3dest, in which case newi2pat may be setting i1dest. */
4008 rtx elim_i2
= ((newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4009 || i2dest_in_i2src
|| i2dest_in_i1src
|| i2dest_in_i0src
4012 rtx elim_i1
= (i1
== 0 || i1dest_in_i1src
|| i1dest_in_i0src
4013 || (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4016 rtx elim_i0
= (i0
== 0 || i0dest_in_i0src
4017 || (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4021 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4023 i3notes
= REG_NOTES (i3
), i3links
= LOG_LINKS (i3
);
4024 i2notes
= REG_NOTES (i2
), i2links
= LOG_LINKS (i2
);
4026 i1notes
= REG_NOTES (i1
), i1links
= LOG_LINKS (i1
);
4028 i0notes
= REG_NOTES (i0
), i0links
= LOG_LINKS (i0
);
4030 /* Ensure that we do not have something that should not be shared but
4031 occurs multiple times in the new insns. Check this by first
4032 resetting all the `used' flags and then copying anything is shared. */
4034 reset_used_flags (i3notes
);
4035 reset_used_flags (i2notes
);
4036 reset_used_flags (i1notes
);
4037 reset_used_flags (i0notes
);
4038 reset_used_flags (newpat
);
4039 reset_used_flags (newi2pat
);
4040 if (undobuf
.other_insn
)
4041 reset_used_flags (PATTERN (undobuf
.other_insn
));
4043 i3notes
= copy_rtx_if_shared (i3notes
);
4044 i2notes
= copy_rtx_if_shared (i2notes
);
4045 i1notes
= copy_rtx_if_shared (i1notes
);
4046 i0notes
= copy_rtx_if_shared (i0notes
);
4047 newpat
= copy_rtx_if_shared (newpat
);
4048 newi2pat
= copy_rtx_if_shared (newi2pat
);
4049 if (undobuf
.other_insn
)
4050 reset_used_flags (PATTERN (undobuf
.other_insn
));
4052 INSN_CODE (i3
) = insn_code_number
;
4053 PATTERN (i3
) = newpat
;
4055 if (CALL_P (i3
) && CALL_INSN_FUNCTION_USAGE (i3
))
4057 rtx call_usage
= CALL_INSN_FUNCTION_USAGE (i3
);
4059 reset_used_flags (call_usage
);
4060 call_usage
= copy_rtx (call_usage
);
4064 /* I2SRC must still be meaningful at this point. Some splitting
4065 operations can invalidate I2SRC, but those operations do not
4068 replace_rtx (call_usage
, i2dest
, i2src
);
4072 replace_rtx (call_usage
, i1dest
, i1src
);
4074 replace_rtx (call_usage
, i0dest
, i0src
);
4076 CALL_INSN_FUNCTION_USAGE (i3
) = call_usage
;
4079 if (undobuf
.other_insn
)
4080 INSN_CODE (undobuf
.other_insn
) = other_code_number
;
4082 /* We had one special case above where I2 had more than one set and
4083 we replaced a destination of one of those sets with the destination
4084 of I3. In that case, we have to update LOG_LINKS of insns later
4085 in this basic block. Note that this (expensive) case is rare.
4087 Also, in this case, we must pretend that all REG_NOTEs for I2
4088 actually came from I3, so that REG_UNUSED notes from I2 will be
4089 properly handled. */
4091 if (i3_subst_into_i2
)
4093 for (i
= 0; i
< XVECLEN (PATTERN (i2
), 0); i
++)
4094 if ((GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == SET
4095 || GET_CODE (XVECEXP (PATTERN (i2
), 0, i
)) == CLOBBER
)
4096 && REG_P (SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)))
4097 && SET_DEST (XVECEXP (PATTERN (i2
), 0, i
)) != i2dest
4098 && ! find_reg_note (i2
, REG_UNUSED
,
4099 SET_DEST (XVECEXP (PATTERN (i2
), 0, i
))))
4100 for (temp_insn
= NEXT_INSN (i2
);
4102 && (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
4103 || BB_HEAD (this_basic_block
) != temp_insn
);
4104 temp_insn
= NEXT_INSN (temp_insn
))
4105 if (temp_insn
!= i3
&& INSN_P (temp_insn
))
4106 FOR_EACH_LOG_LINK (link
, temp_insn
)
4107 if (link
->insn
== i2
)
4113 while (XEXP (link
, 1))
4114 link
= XEXP (link
, 1);
4115 XEXP (link
, 1) = i2notes
;
4122 LOG_LINKS (i3
) = NULL
;
4124 LOG_LINKS (i2
) = NULL
;
4129 if (MAY_HAVE_DEBUG_INSNS
&& i2scratch
)
4130 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4132 INSN_CODE (i2
) = i2_code_number
;
4133 PATTERN (i2
) = newi2pat
;
4137 if (MAY_HAVE_DEBUG_INSNS
&& i2src
)
4138 propagate_for_debug (i2
, last_combined_insn
, i2dest
, i2src
,
4140 SET_INSN_DELETED (i2
);
4145 LOG_LINKS (i1
) = NULL
;
4147 if (MAY_HAVE_DEBUG_INSNS
)
4148 propagate_for_debug (i1
, last_combined_insn
, i1dest
, i1src
,
4150 SET_INSN_DELETED (i1
);
4155 LOG_LINKS (i0
) = NULL
;
4157 if (MAY_HAVE_DEBUG_INSNS
)
4158 propagate_for_debug (i0
, last_combined_insn
, i0dest
, i0src
,
4160 SET_INSN_DELETED (i0
);
4163 /* Get death notes for everything that is now used in either I3 or
4164 I2 and used to die in a previous insn. If we built two new
4165 patterns, move from I1 to I2 then I2 to I3 so that we get the
4166 proper movement on registers that I2 modifies. */
4169 from_luid
= DF_INSN_LUID (i0
);
4171 from_luid
= DF_INSN_LUID (i1
);
4173 from_luid
= DF_INSN_LUID (i2
);
4175 move_deaths (newi2pat
, NULL_RTX
, from_luid
, i2
, &midnotes
);
4176 move_deaths (newpat
, newi2pat
, from_luid
, i3
, &midnotes
);
4178 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4180 distribute_notes (i3notes
, i3
, i3
, newi2pat
? i2
: NULL
,
4181 elim_i2
, elim_i1
, elim_i0
);
4183 distribute_notes (i2notes
, i2
, i3
, newi2pat
? i2
: NULL
,
4184 elim_i2
, elim_i1
, elim_i0
);
4186 distribute_notes (i1notes
, i1
, i3
, newi2pat
? i2
: NULL
,
4187 elim_i2
, elim_i1
, elim_i0
);
4189 distribute_notes (i0notes
, i0
, i3
, newi2pat
? i2
: NULL
,
4190 elim_i2
, elim_i1
, elim_i0
);
4192 distribute_notes (midnotes
, NULL
, i3
, newi2pat
? i2
: NULL
,
4193 elim_i2
, elim_i1
, elim_i0
);
4195 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4196 know these are REG_UNUSED and want them to go to the desired insn,
4197 so we always pass it as i3. */
4199 if (newi2pat
&& new_i2_notes
)
4200 distribute_notes (new_i2_notes
, i2
, i2
, NULL
, NULL_RTX
, NULL_RTX
,
4204 distribute_notes (new_i3_notes
, i3
, i3
, NULL
, NULL_RTX
, NULL_RTX
,
4207 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4208 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4209 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4210 in that case, it might delete I2. Similarly for I2 and I1.
4211 Show an additional death due to the REG_DEAD note we make here. If
4212 we discard it in distribute_notes, we will decrement it again. */
4216 rtx new_note
= alloc_reg_note (REG_DEAD
, i3dest_killed
, NULL_RTX
);
4217 if (newi2pat
&& reg_set_p (i3dest_killed
, newi2pat
))
4218 distribute_notes (new_note
, NULL
, i2
, NULL
, elim_i2
,
4221 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4222 elim_i2
, elim_i1
, elim_i0
);
4225 if (i2dest_in_i2src
)
4227 rtx new_note
= alloc_reg_note (REG_DEAD
, i2dest
, NULL_RTX
);
4228 if (newi2pat
&& reg_set_p (i2dest
, newi2pat
))
4229 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4230 NULL_RTX
, NULL_RTX
);
4232 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4233 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4236 if (i1dest_in_i1src
)
4238 rtx new_note
= alloc_reg_note (REG_DEAD
, i1dest
, NULL_RTX
);
4239 if (newi2pat
&& reg_set_p (i1dest
, newi2pat
))
4240 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4241 NULL_RTX
, NULL_RTX
);
4243 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4244 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4247 if (i0dest_in_i0src
)
4249 rtx new_note
= alloc_reg_note (REG_DEAD
, i0dest
, NULL_RTX
);
4250 if (newi2pat
&& reg_set_p (i0dest
, newi2pat
))
4251 distribute_notes (new_note
, NULL
, i2
, NULL
, NULL_RTX
,
4252 NULL_RTX
, NULL_RTX
);
4254 distribute_notes (new_note
, NULL
, i3
, newi2pat
? i2
: NULL
,
4255 NULL_RTX
, NULL_RTX
, NULL_RTX
);
4258 distribute_links (i3links
);
4259 distribute_links (i2links
);
4260 distribute_links (i1links
);
4261 distribute_links (i0links
);
4265 struct insn_link
*link
;
4266 rtx_insn
*i2_insn
= 0;
4267 rtx i2_val
= 0, set
;
4269 /* The insn that used to set this register doesn't exist, and
4270 this life of the register may not exist either. See if one of
4271 I3's links points to an insn that sets I2DEST. If it does,
4272 that is now the last known value for I2DEST. If we don't update
4273 this and I2 set the register to a value that depended on its old
4274 contents, we will get confused. If this insn is used, thing
4275 will be set correctly in combine_instructions. */
4276 FOR_EACH_LOG_LINK (link
, i3
)
4277 if ((set
= single_set (link
->insn
)) != 0
4278 && rtx_equal_p (i2dest
, SET_DEST (set
)))
4279 i2_insn
= link
->insn
, i2_val
= SET_SRC (set
);
4281 record_value_for_reg (i2dest
, i2_insn
, i2_val
);
4283 /* If the reg formerly set in I2 died only once and that was in I3,
4284 zero its use count so it won't make `reload' do any work. */
4286 && (newi2pat
== 0 || ! reg_mentioned_p (i2dest
, newi2pat
))
4287 && ! i2dest_in_i2src
)
4288 INC_REG_N_SETS (REGNO (i2dest
), -1);
4291 if (i1
&& REG_P (i1dest
))
4293 struct insn_link
*link
;
4294 rtx_insn
*i1_insn
= 0;
4295 rtx i1_val
= 0, set
;
4297 FOR_EACH_LOG_LINK (link
, i3
)
4298 if ((set
= single_set (link
->insn
)) != 0
4299 && rtx_equal_p (i1dest
, SET_DEST (set
)))
4300 i1_insn
= link
->insn
, i1_val
= SET_SRC (set
);
4302 record_value_for_reg (i1dest
, i1_insn
, i1_val
);
4304 if (! added_sets_1
&& ! i1dest_in_i1src
)
4305 INC_REG_N_SETS (REGNO (i1dest
), -1);
4308 if (i0
&& REG_P (i0dest
))
4310 struct insn_link
*link
;
4311 rtx_insn
*i0_insn
= 0;
4312 rtx i0_val
= 0, set
;
4314 FOR_EACH_LOG_LINK (link
, i3
)
4315 if ((set
= single_set (link
->insn
)) != 0
4316 && rtx_equal_p (i0dest
, SET_DEST (set
)))
4317 i0_insn
= link
->insn
, i0_val
= SET_SRC (set
);
4319 record_value_for_reg (i0dest
, i0_insn
, i0_val
);
4321 if (! added_sets_0
&& ! i0dest_in_i0src
)
4322 INC_REG_N_SETS (REGNO (i0dest
), -1);
4325 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4326 been made to this insn. The order is important, because newi2pat
4327 can affect nonzero_bits of newpat. */
4329 note_stores (newi2pat
, set_nonzero_bits_and_sign_copies
, NULL
);
4330 note_stores (newpat
, set_nonzero_bits_and_sign_copies
, NULL
);
4333 if (undobuf
.other_insn
!= NULL_RTX
)
4337 fprintf (dump_file
, "modifying other_insn ");
4338 dump_insn_slim (dump_file
, undobuf
.other_insn
);
4340 df_insn_rescan (undobuf
.other_insn
);
4343 if (i0
&& !(NOTE_P (i0
) && (NOTE_KIND (i0
) == NOTE_INSN_DELETED
)))
4347 fprintf (dump_file
, "modifying insn i0 ");
4348 dump_insn_slim (dump_file
, i0
);
4350 df_insn_rescan (i0
);
4353 if (i1
&& !(NOTE_P (i1
) && (NOTE_KIND (i1
) == NOTE_INSN_DELETED
)))
4357 fprintf (dump_file
, "modifying insn i1 ");
4358 dump_insn_slim (dump_file
, i1
);
4360 df_insn_rescan (i1
);
4363 if (i2
&& !(NOTE_P (i2
) && (NOTE_KIND (i2
) == NOTE_INSN_DELETED
)))
4367 fprintf (dump_file
, "modifying insn i2 ");
4368 dump_insn_slim (dump_file
, i2
);
4370 df_insn_rescan (i2
);
4373 if (i3
&& !(NOTE_P (i3
) && (NOTE_KIND (i3
) == NOTE_INSN_DELETED
)))
4377 fprintf (dump_file
, "modifying insn i3 ");
4378 dump_insn_slim (dump_file
, i3
);
4380 df_insn_rescan (i3
);
4383 /* Set new_direct_jump_p if a new return or simple jump instruction
4384 has been created. Adjust the CFG accordingly. */
4385 if (returnjump_p (i3
) || any_uncondjump_p (i3
))
4387 *new_direct_jump_p
= 1;
4388 mark_jump_label (PATTERN (i3
), i3
, 0);
4389 update_cfg_for_uncondjump (i3
);
4392 if (undobuf
.other_insn
!= NULL_RTX
4393 && (returnjump_p (undobuf
.other_insn
)
4394 || any_uncondjump_p (undobuf
.other_insn
)))
4396 *new_direct_jump_p
= 1;
4397 update_cfg_for_uncondjump (undobuf
.other_insn
);
4400 /* A noop might also need cleaning up of CFG, if it comes from the
4401 simplification of a jump. */
4403 && GET_CODE (newpat
) == SET
4404 && SET_SRC (newpat
) == pc_rtx
4405 && SET_DEST (newpat
) == pc_rtx
)
4407 *new_direct_jump_p
= 1;
4408 update_cfg_for_uncondjump (i3
);
4411 if (undobuf
.other_insn
!= NULL_RTX
4412 && JUMP_P (undobuf
.other_insn
)
4413 && GET_CODE (PATTERN (undobuf
.other_insn
)) == SET
4414 && SET_SRC (PATTERN (undobuf
.other_insn
)) == pc_rtx
4415 && SET_DEST (PATTERN (undobuf
.other_insn
)) == pc_rtx
)
4417 *new_direct_jump_p
= 1;
4418 update_cfg_for_uncondjump (undobuf
.other_insn
);
4421 combine_successes
++;
4424 if (added_links_insn
4425 && (newi2pat
== 0 || DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (i2
))
4426 && DF_INSN_LUID (added_links_insn
) < DF_INSN_LUID (i3
))
4427 return added_links_insn
;
4429 return newi2pat
? i2
: i3
;
4432 /* Undo all the modifications recorded in undobuf. */
4437 struct undo
*undo
, *next
;
4439 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4445 *undo
->where
.r
= undo
->old_contents
.r
;
4448 *undo
->where
.i
= undo
->old_contents
.i
;
4451 adjust_reg_mode (*undo
->where
.r
, undo
->old_contents
.m
);
4454 *undo
->where
.l
= undo
->old_contents
.l
;
4460 undo
->next
= undobuf
.frees
;
4461 undobuf
.frees
= undo
;
4467 /* We've committed to accepting the changes we made. Move all
4468 of the undos to the free list. */
4473 struct undo
*undo
, *next
;
4475 for (undo
= undobuf
.undos
; undo
; undo
= next
)
4478 undo
->next
= undobuf
.frees
;
4479 undobuf
.frees
= undo
;
4484 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4485 where we have an arithmetic expression and return that point. LOC will
4488 try_combine will call this function to see if an insn can be split into
4492 find_split_point (rtx
*loc
, rtx_insn
*insn
, bool set_src
)
4495 enum rtx_code code
= GET_CODE (x
);
4497 unsigned HOST_WIDE_INT len
= 0;
4498 HOST_WIDE_INT pos
= 0;
4500 rtx inner
= NULL_RTX
;
4502 /* First special-case some codes. */
4506 #ifdef INSN_SCHEDULING
4507 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4509 if (MEM_P (SUBREG_REG (x
)))
4512 return find_split_point (&SUBREG_REG (x
), insn
, false);
4516 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4517 using LO_SUM and HIGH. */
4518 if (GET_CODE (XEXP (x
, 0)) == CONST
4519 || GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
4521 machine_mode address_mode
= get_address_mode (x
);
4524 gen_rtx_LO_SUM (address_mode
,
4525 gen_rtx_HIGH (address_mode
, XEXP (x
, 0)),
4527 return &XEXP (XEXP (x
, 0), 0);
4531 /* If we have a PLUS whose second operand is a constant and the
4532 address is not valid, perhaps will can split it up using
4533 the machine-specific way to split large constants. We use
4534 the first pseudo-reg (one of the virtual regs) as a placeholder;
4535 it will not remain in the result. */
4536 if (GET_CODE (XEXP (x
, 0)) == PLUS
4537 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
4538 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4539 MEM_ADDR_SPACE (x
)))
4541 rtx reg
= regno_reg_rtx
[FIRST_PSEUDO_REGISTER
];
4542 rtx_insn
*seq
= combine_split_insns (gen_rtx_SET (VOIDmode
, reg
,
4546 /* This should have produced two insns, each of which sets our
4547 placeholder. If the source of the second is a valid address,
4548 we can make put both sources together and make a split point
4552 && NEXT_INSN (seq
) != NULL_RTX
4553 && NEXT_INSN (NEXT_INSN (seq
)) == NULL_RTX
4554 && NONJUMP_INSN_P (seq
)
4555 && GET_CODE (PATTERN (seq
)) == SET
4556 && SET_DEST (PATTERN (seq
)) == reg
4557 && ! reg_mentioned_p (reg
,
4558 SET_SRC (PATTERN (seq
)))
4559 && NONJUMP_INSN_P (NEXT_INSN (seq
))
4560 && GET_CODE (PATTERN (NEXT_INSN (seq
))) == SET
4561 && SET_DEST (PATTERN (NEXT_INSN (seq
))) == reg
4562 && memory_address_addr_space_p
4563 (GET_MODE (x
), SET_SRC (PATTERN (NEXT_INSN (seq
))),
4564 MEM_ADDR_SPACE (x
)))
4566 rtx src1
= SET_SRC (PATTERN (seq
));
4567 rtx src2
= SET_SRC (PATTERN (NEXT_INSN (seq
)));
4569 /* Replace the placeholder in SRC2 with SRC1. If we can
4570 find where in SRC2 it was placed, that can become our
4571 split point and we can replace this address with SRC2.
4572 Just try two obvious places. */
4574 src2
= replace_rtx (src2
, reg
, src1
);
4576 if (XEXP (src2
, 0) == src1
)
4577 split
= &XEXP (src2
, 0);
4578 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2
, 0)))[0] == 'e'
4579 && XEXP (XEXP (src2
, 0), 0) == src1
)
4580 split
= &XEXP (XEXP (src2
, 0), 0);
4584 SUBST (XEXP (x
, 0), src2
);
4589 /* If that didn't work, perhaps the first operand is complex and
4590 needs to be computed separately, so make a split point there.
4591 This will occur on machines that just support REG + CONST
4592 and have a constant moved through some previous computation. */
4594 else if (!OBJECT_P (XEXP (XEXP (x
, 0), 0))
4595 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4596 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4597 return &XEXP (XEXP (x
, 0), 0);
4600 /* If we have a PLUS whose first operand is complex, try computing it
4601 separately by making a split there. */
4602 if (GET_CODE (XEXP (x
, 0)) == PLUS
4603 && ! memory_address_addr_space_p (GET_MODE (x
), XEXP (x
, 0),
4605 && ! OBJECT_P (XEXP (XEXP (x
, 0), 0))
4606 && ! (GET_CODE (XEXP (XEXP (x
, 0), 0)) == SUBREG
4607 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x
, 0), 0)))))
4608 return &XEXP (XEXP (x
, 0), 0);
4613 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4614 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4615 we need to put the operand into a register. So split at that
4618 if (SET_DEST (x
) == cc0_rtx
4619 && GET_CODE (SET_SRC (x
)) != COMPARE
4620 && GET_CODE (SET_SRC (x
)) != ZERO_EXTRACT
4621 && !OBJECT_P (SET_SRC (x
))
4622 && ! (GET_CODE (SET_SRC (x
)) == SUBREG
4623 && OBJECT_P (SUBREG_REG (SET_SRC (x
)))))
4624 return &SET_SRC (x
);
4627 /* See if we can split SET_SRC as it stands. */
4628 split
= find_split_point (&SET_SRC (x
), insn
, true);
4629 if (split
&& split
!= &SET_SRC (x
))
4632 /* See if we can split SET_DEST as it stands. */
4633 split
= find_split_point (&SET_DEST (x
), insn
, false);
4634 if (split
&& split
!= &SET_DEST (x
))
4637 /* See if this is a bitfield assignment with everything constant. If
4638 so, this is an IOR of an AND, so split it into that. */
4639 if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
4640 && HWI_COMPUTABLE_MODE_P (GET_MODE (XEXP (SET_DEST (x
), 0)))
4641 && CONST_INT_P (XEXP (SET_DEST (x
), 1))
4642 && CONST_INT_P (XEXP (SET_DEST (x
), 2))
4643 && CONST_INT_P (SET_SRC (x
))
4644 && ((INTVAL (XEXP (SET_DEST (x
), 1))
4645 + INTVAL (XEXP (SET_DEST (x
), 2)))
4646 <= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x
), 0))))
4647 && ! side_effects_p (XEXP (SET_DEST (x
), 0)))
4649 HOST_WIDE_INT pos
= INTVAL (XEXP (SET_DEST (x
), 2));
4650 unsigned HOST_WIDE_INT len
= INTVAL (XEXP (SET_DEST (x
), 1));
4651 unsigned HOST_WIDE_INT src
= INTVAL (SET_SRC (x
));
4652 rtx dest
= XEXP (SET_DEST (x
), 0);
4653 machine_mode mode
= GET_MODE (dest
);
4654 unsigned HOST_WIDE_INT mask
4655 = ((unsigned HOST_WIDE_INT
) 1 << len
) - 1;
4658 if (BITS_BIG_ENDIAN
)
4659 pos
= GET_MODE_PRECISION (mode
) - len
- pos
;
4661 or_mask
= gen_int_mode (src
<< pos
, mode
);
4664 simplify_gen_binary (IOR
, mode
, dest
, or_mask
));
4667 rtx negmask
= gen_int_mode (~(mask
<< pos
), mode
);
4669 simplify_gen_binary (IOR
, mode
,
4670 simplify_gen_binary (AND
, mode
,
4675 SUBST (SET_DEST (x
), dest
);
4677 split
= find_split_point (&SET_SRC (x
), insn
, true);
4678 if (split
&& split
!= &SET_SRC (x
))
4682 /* Otherwise, see if this is an operation that we can split into two.
4683 If so, try to split that. */
4684 code
= GET_CODE (SET_SRC (x
));
4689 /* If we are AND'ing with a large constant that is only a single
4690 bit and the result is only being used in a context where we
4691 need to know if it is zero or nonzero, replace it with a bit
4692 extraction. This will avoid the large constant, which might
4693 have taken more than one insn to make. If the constant were
4694 not a valid argument to the AND but took only one insn to make,
4695 this is no worse, but if it took more than one insn, it will
4698 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
4699 && REG_P (XEXP (SET_SRC (x
), 0))
4700 && (pos
= exact_log2 (UINTVAL (XEXP (SET_SRC (x
), 1)))) >= 7
4701 && REG_P (SET_DEST (x
))
4702 && (split
= find_single_use (SET_DEST (x
), insn
, NULL
)) != 0
4703 && (GET_CODE (*split
) == EQ
|| GET_CODE (*split
) == NE
)
4704 && XEXP (*split
, 0) == SET_DEST (x
)
4705 && XEXP (*split
, 1) == const0_rtx
)
4707 rtx extraction
= make_extraction (GET_MODE (SET_DEST (x
)),
4708 XEXP (SET_SRC (x
), 0),
4709 pos
, NULL_RTX
, 1, 1, 0, 0);
4710 if (extraction
!= 0)
4712 SUBST (SET_SRC (x
), extraction
);
4713 return find_split_point (loc
, insn
, false);
4719 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4720 is known to be on, this can be converted into a NEG of a shift. */
4721 if (STORE_FLAG_VALUE
== -1 && XEXP (SET_SRC (x
), 1) == const0_rtx
4722 && GET_MODE (SET_SRC (x
)) == GET_MODE (XEXP (SET_SRC (x
), 0))
4723 && 1 <= (pos
= exact_log2
4724 (nonzero_bits (XEXP (SET_SRC (x
), 0),
4725 GET_MODE (XEXP (SET_SRC (x
), 0))))))
4727 machine_mode mode
= GET_MODE (XEXP (SET_SRC (x
), 0));
4731 gen_rtx_LSHIFTRT (mode
,
4732 XEXP (SET_SRC (x
), 0),
4735 split
= find_split_point (&SET_SRC (x
), insn
, true);
4736 if (split
&& split
!= &SET_SRC (x
))
4742 inner
= XEXP (SET_SRC (x
), 0);
4744 /* We can't optimize if either mode is a partial integer
4745 mode as we don't know how many bits are significant
4747 if (GET_MODE_CLASS (GET_MODE (inner
)) == MODE_PARTIAL_INT
4748 || GET_MODE_CLASS (GET_MODE (SET_SRC (x
))) == MODE_PARTIAL_INT
)
4752 len
= GET_MODE_PRECISION (GET_MODE (inner
));
4758 if (CONST_INT_P (XEXP (SET_SRC (x
), 1))
4759 && CONST_INT_P (XEXP (SET_SRC (x
), 2)))
4761 inner
= XEXP (SET_SRC (x
), 0);
4762 len
= INTVAL (XEXP (SET_SRC (x
), 1));
4763 pos
= INTVAL (XEXP (SET_SRC (x
), 2));
4765 if (BITS_BIG_ENDIAN
)
4766 pos
= GET_MODE_PRECISION (GET_MODE (inner
)) - len
- pos
;
4767 unsignedp
= (code
== ZERO_EXTRACT
);
4776 && pos
+ len
<= GET_MODE_PRECISION (GET_MODE (inner
)))
4778 machine_mode mode
= GET_MODE (SET_SRC (x
));
4780 /* For unsigned, we have a choice of a shift followed by an
4781 AND or two shifts. Use two shifts for field sizes where the
4782 constant might be too large. We assume here that we can
4783 always at least get 8-bit constants in an AND insn, which is
4784 true for every current RISC. */
4786 if (unsignedp
&& len
<= 8)
4788 unsigned HOST_WIDE_INT mask
4789 = ((unsigned HOST_WIDE_INT
) 1 << len
) - 1;
4793 (mode
, gen_lowpart (mode
, inner
),
4795 gen_int_mode (mask
, mode
)));
4797 split
= find_split_point (&SET_SRC (x
), insn
, true);
4798 if (split
&& split
!= &SET_SRC (x
))
4805 (unsignedp
? LSHIFTRT
: ASHIFTRT
, mode
,
4806 gen_rtx_ASHIFT (mode
,
4807 gen_lowpart (mode
, inner
),
4808 GEN_INT (GET_MODE_PRECISION (mode
)
4810 GEN_INT (GET_MODE_PRECISION (mode
) - len
)));
4812 split
= find_split_point (&SET_SRC (x
), insn
, true);
4813 if (split
&& split
!= &SET_SRC (x
))
4818 /* See if this is a simple operation with a constant as the second
4819 operand. It might be that this constant is out of range and hence
4820 could be used as a split point. */
4821 if (BINARY_P (SET_SRC (x
))
4822 && CONSTANT_P (XEXP (SET_SRC (x
), 1))
4823 && (OBJECT_P (XEXP (SET_SRC (x
), 0))
4824 || (GET_CODE (XEXP (SET_SRC (x
), 0)) == SUBREG
4825 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x
), 0))))))
4826 return &XEXP (SET_SRC (x
), 1);
4828 /* Finally, see if this is a simple operation with its first operand
4829 not in a register. The operation might require this operand in a
4830 register, so return it as a split point. We can always do this
4831 because if the first operand were another operation, we would have
4832 already found it as a split point. */
4833 if ((BINARY_P (SET_SRC (x
)) || UNARY_P (SET_SRC (x
)))
4834 && ! register_operand (XEXP (SET_SRC (x
), 0), VOIDmode
))
4835 return &XEXP (SET_SRC (x
), 0);
4841 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4842 it is better to write this as (not (ior A B)) so we can split it.
4843 Similarly for IOR. */
4844 if (GET_CODE (XEXP (x
, 0)) == NOT
&& GET_CODE (XEXP (x
, 1)) == NOT
)
4847 gen_rtx_NOT (GET_MODE (x
),
4848 gen_rtx_fmt_ee (code
== IOR
? AND
: IOR
,
4850 XEXP (XEXP (x
, 0), 0),
4851 XEXP (XEXP (x
, 1), 0))));
4852 return find_split_point (loc
, insn
, set_src
);
4855 /* Many RISC machines have a large set of logical insns. If the
4856 second operand is a NOT, put it first so we will try to split the
4857 other operand first. */
4858 if (GET_CODE (XEXP (x
, 1)) == NOT
)
4860 rtx tem
= XEXP (x
, 0);
4861 SUBST (XEXP (x
, 0), XEXP (x
, 1));
4862 SUBST (XEXP (x
, 1), tem
);
4868 /* Canonicalization can produce (minus A (mult B C)), where C is a
4869 constant. It may be better to try splitting (plus (mult B -C) A)
4870 instead if this isn't a multiply by a power of two. */
4871 if (set_src
&& code
== MINUS
&& GET_CODE (XEXP (x
, 1)) == MULT
4872 && GET_CODE (XEXP (XEXP (x
, 1), 1)) == CONST_INT
4873 && exact_log2 (INTVAL (XEXP (XEXP (x
, 1), 1))) < 0)
4875 machine_mode mode
= GET_MODE (x
);
4876 unsigned HOST_WIDE_INT this_int
= INTVAL (XEXP (XEXP (x
, 1), 1));
4877 HOST_WIDE_INT other_int
= trunc_int_for_mode (-this_int
, mode
);
4878 SUBST (*loc
, gen_rtx_PLUS (mode
,
4880 XEXP (XEXP (x
, 1), 0),
4881 gen_int_mode (other_int
,
4884 return find_split_point (loc
, insn
, set_src
);
4887 /* Split at a multiply-accumulate instruction. However if this is
4888 the SET_SRC, we likely do not have such an instruction and it's
4889 worthless to try this split. */
4890 if (!set_src
&& GET_CODE (XEXP (x
, 0)) == MULT
)
4897 /* Otherwise, select our actions depending on our rtx class. */
4898 switch (GET_RTX_CLASS (code
))
4900 case RTX_BITFIELD_OPS
: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4902 split
= find_split_point (&XEXP (x
, 2), insn
, false);
4905 /* ... fall through ... */
4907 case RTX_COMM_ARITH
:
4909 case RTX_COMM_COMPARE
:
4910 split
= find_split_point (&XEXP (x
, 1), insn
, false);
4913 /* ... fall through ... */
4915 /* Some machines have (and (shift ...) ...) insns. If X is not
4916 an AND, but XEXP (X, 0) is, use it as our split point. */
4917 if (GET_CODE (x
) != AND
&& GET_CODE (XEXP (x
, 0)) == AND
)
4918 return &XEXP (x
, 0);
4920 split
= find_split_point (&XEXP (x
, 0), insn
, false);
4926 /* Otherwise, we don't have a split point. */
4931 /* Throughout X, replace FROM with TO, and return the result.
4932 The result is TO if X is FROM;
4933 otherwise the result is X, but its contents may have been modified.
4934 If they were modified, a record was made in undobuf so that
4935 undo_all will (among other things) return X to its original state.
4937 If the number of changes necessary is too much to record to undo,
4938 the excess changes are not made, so the result is invalid.
4939 The changes already made can still be undone.
4940 undobuf.num_undo is incremented for such changes, so by testing that
4941 the caller can tell whether the result is valid.
4943 `n_occurrences' is incremented each time FROM is replaced.
4945 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4947 IN_COND is nonzero if we are at the top level of a condition.
4949 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4950 by copying if `n_occurrences' is nonzero. */
4953 subst (rtx x
, rtx from
, rtx to
, int in_dest
, int in_cond
, int unique_copy
)
4955 enum rtx_code code
= GET_CODE (x
);
4956 machine_mode op0_mode
= VOIDmode
;
4961 /* Two expressions are equal if they are identical copies of a shared
4962 RTX or if they are both registers with the same register number
4965 #define COMBINE_RTX_EQUAL_P(X,Y) \
4967 || (REG_P (X) && REG_P (Y) \
4968 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4970 /* Do not substitute into clobbers of regs -- this will never result in
4972 if (GET_CODE (x
) == CLOBBER
&& REG_P (XEXP (x
, 0)))
4975 if (! in_dest
&& COMBINE_RTX_EQUAL_P (x
, from
))
4978 return (unique_copy
&& n_occurrences
> 1 ? copy_rtx (to
) : to
);
4981 /* If X and FROM are the same register but different modes, they
4982 will not have been seen as equal above. However, the log links code
4983 will make a LOG_LINKS entry for that case. If we do nothing, we
4984 will try to rerecognize our original insn and, when it succeeds,
4985 we will delete the feeding insn, which is incorrect.
4987 So force this insn not to match in this (rare) case. */
4988 if (! in_dest
&& code
== REG
&& REG_P (from
)
4989 && reg_overlap_mentioned_p (x
, from
))
4990 return gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
4992 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4993 of which may contain things that can be combined. */
4994 if (code
!= MEM
&& code
!= LO_SUM
&& OBJECT_P (x
))
4997 /* It is possible to have a subexpression appear twice in the insn.
4998 Suppose that FROM is a register that appears within TO.
4999 Then, after that subexpression has been scanned once by `subst',
5000 the second time it is scanned, TO may be found. If we were
5001 to scan TO here, we would find FROM within it and create a
5002 self-referent rtl structure which is completely wrong. */
5003 if (COMBINE_RTX_EQUAL_P (x
, to
))
5006 /* Parallel asm_operands need special attention because all of the
5007 inputs are shared across the arms. Furthermore, unsharing the
5008 rtl results in recognition failures. Failure to handle this case
5009 specially can result in circular rtl.
5011 Solve this by doing a normal pass across the first entry of the
5012 parallel, and only processing the SET_DESTs of the subsequent
5015 if (code
== PARALLEL
5016 && GET_CODE (XVECEXP (x
, 0, 0)) == SET
5017 && GET_CODE (SET_SRC (XVECEXP (x
, 0, 0))) == ASM_OPERANDS
)
5019 new_rtx
= subst (XVECEXP (x
, 0, 0), from
, to
, 0, 0, unique_copy
);
5021 /* If this substitution failed, this whole thing fails. */
5022 if (GET_CODE (new_rtx
) == CLOBBER
5023 && XEXP (new_rtx
, 0) == const0_rtx
)
5026 SUBST (XVECEXP (x
, 0, 0), new_rtx
);
5028 for (i
= XVECLEN (x
, 0) - 1; i
>= 1; i
--)
5030 rtx dest
= SET_DEST (XVECEXP (x
, 0, i
));
5033 && GET_CODE (dest
) != CC0
5034 && GET_CODE (dest
) != PC
)
5036 new_rtx
= subst (dest
, from
, to
, 0, 0, unique_copy
);
5038 /* If this substitution failed, this whole thing fails. */
5039 if (GET_CODE (new_rtx
) == CLOBBER
5040 && XEXP (new_rtx
, 0) == const0_rtx
)
5043 SUBST (SET_DEST (XVECEXP (x
, 0, i
)), new_rtx
);
5049 len
= GET_RTX_LENGTH (code
);
5050 fmt
= GET_RTX_FORMAT (code
);
5052 /* We don't need to process a SET_DEST that is a register, CC0,
5053 or PC, so set up to skip this common case. All other cases
5054 where we want to suppress replacing something inside a
5055 SET_SRC are handled via the IN_DEST operand. */
5057 && (REG_P (SET_DEST (x
))
5058 || GET_CODE (SET_DEST (x
)) == CC0
5059 || GET_CODE (SET_DEST (x
)) == PC
))
5062 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5065 op0_mode
= GET_MODE (XEXP (x
, 0));
5067 for (i
= 0; i
< len
; i
++)
5072 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
5074 if (COMBINE_RTX_EQUAL_P (XVECEXP (x
, i
, j
), from
))
5076 new_rtx
= (unique_copy
&& n_occurrences
5077 ? copy_rtx (to
) : to
);
5082 new_rtx
= subst (XVECEXP (x
, i
, j
), from
, to
, 0, 0,
5085 /* If this substitution failed, this whole thing
5087 if (GET_CODE (new_rtx
) == CLOBBER
5088 && XEXP (new_rtx
, 0) == const0_rtx
)
5092 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
5095 else if (fmt
[i
] == 'e')
5097 /* If this is a register being set, ignore it. */
5098 new_rtx
= XEXP (x
, i
);
5101 && (((code
== SUBREG
|| code
== ZERO_EXTRACT
)
5103 || code
== STRICT_LOW_PART
))
5106 else if (COMBINE_RTX_EQUAL_P (XEXP (x
, i
), from
))
5108 /* In general, don't install a subreg involving two
5109 modes not tieable. It can worsen register
5110 allocation, and can even make invalid reload
5111 insns, since the reg inside may need to be copied
5112 from in the outside mode, and that may be invalid
5113 if it is an fp reg copied in integer mode.
5115 We allow two exceptions to this: It is valid if
5116 it is inside another SUBREG and the mode of that
5117 SUBREG and the mode of the inside of TO is
5118 tieable and it is valid if X is a SET that copies
5121 if (GET_CODE (to
) == SUBREG
5122 && ! MODES_TIEABLE_P (GET_MODE (to
),
5123 GET_MODE (SUBREG_REG (to
)))
5124 && ! (code
== SUBREG
5125 && MODES_TIEABLE_P (GET_MODE (x
),
5126 GET_MODE (SUBREG_REG (to
))))
5128 && ! (code
== SET
&& i
== 1 && XEXP (x
, 0) == cc0_rtx
)
5131 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5135 && REGNO (to
) < FIRST_PSEUDO_REGISTER
5136 && simplify_subreg_regno (REGNO (to
), GET_MODE (to
),
5139 return gen_rtx_CLOBBER (VOIDmode
, const0_rtx
);
5141 new_rtx
= (unique_copy
&& n_occurrences
? copy_rtx (to
) : to
);
5145 /* If we are in a SET_DEST, suppress most cases unless we
5146 have gone inside a MEM, in which case we want to
5147 simplify the address. We assume here that things that
5148 are actually part of the destination have their inner
5149 parts in the first expression. This is true for SUBREG,
5150 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5151 things aside from REG and MEM that should appear in a
5153 new_rtx
= subst (XEXP (x
, i
), from
, to
,
5155 && (code
== SUBREG
|| code
== STRICT_LOW_PART
5156 || code
== ZERO_EXTRACT
))
5159 code
== IF_THEN_ELSE
&& i
== 0,
5162 /* If we found that we will have to reject this combination,
5163 indicate that by returning the CLOBBER ourselves, rather than
5164 an expression containing it. This will speed things up as
5165 well as prevent accidents where two CLOBBERs are considered
5166 to be equal, thus producing an incorrect simplification. */
5168 if (GET_CODE (new_rtx
) == CLOBBER
&& XEXP (new_rtx
, 0) == const0_rtx
)
5171 if (GET_CODE (x
) == SUBREG
&& CONST_SCALAR_INT_P (new_rtx
))
5173 machine_mode mode
= GET_MODE (x
);
5175 x
= simplify_subreg (GET_MODE (x
), new_rtx
,
5176 GET_MODE (SUBREG_REG (x
)),
5179 x
= gen_rtx_CLOBBER (mode
, const0_rtx
);
5181 else if (CONST_SCALAR_INT_P (new_rtx
)
5182 && GET_CODE (x
) == ZERO_EXTEND
)
5184 x
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
5185 new_rtx
, GET_MODE (XEXP (x
, 0)));
5189 SUBST (XEXP (x
, i
), new_rtx
);
5194 /* Check if we are loading something from the constant pool via float
5195 extension; in this case we would undo compress_float_constant
5196 optimization and degenerate constant load to an immediate value. */
5197 if (GET_CODE (x
) == FLOAT_EXTEND
5198 && MEM_P (XEXP (x
, 0))
5199 && MEM_READONLY_P (XEXP (x
, 0)))
5201 rtx tmp
= avoid_constant_pool_reference (x
);
5206 /* Try to simplify X. If the simplification changed the code, it is likely
5207 that further simplification will help, so loop, but limit the number
5208 of repetitions that will be performed. */
5210 for (i
= 0; i
< 4; i
++)
5212 /* If X is sufficiently simple, don't bother trying to do anything
5214 if (code
!= CONST_INT
&& code
!= REG
&& code
!= CLOBBER
)
5215 x
= combine_simplify_rtx (x
, op0_mode
, in_dest
, in_cond
);
5217 if (GET_CODE (x
) == code
)
5220 code
= GET_CODE (x
);
5222 /* We no longer know the original mode of operand 0 since we
5223 have changed the form of X) */
5224 op0_mode
= VOIDmode
;
5230 /* Simplify X, a piece of RTL. We just operate on the expression at the
5231 outer level; call `subst' to simplify recursively. Return the new
5234 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5235 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5239 combine_simplify_rtx (rtx x
, machine_mode op0_mode
, int in_dest
,
5242 enum rtx_code code
= GET_CODE (x
);
5243 machine_mode mode
= GET_MODE (x
);
5247 /* If this is a commutative operation, put a constant last and a complex
5248 expression first. We don't need to do this for comparisons here. */
5249 if (COMMUTATIVE_ARITH_P (x
)
5250 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
5253 SUBST (XEXP (x
, 0), XEXP (x
, 1));
5254 SUBST (XEXP (x
, 1), temp
);
5257 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5258 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5259 things. Check for cases where both arms are testing the same
5262 Don't do anything if all operands are very simple. */
5265 && ((!OBJECT_P (XEXP (x
, 0))
5266 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5267 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))
5268 || (!OBJECT_P (XEXP (x
, 1))
5269 && ! (GET_CODE (XEXP (x
, 1)) == SUBREG
5270 && OBJECT_P (SUBREG_REG (XEXP (x
, 1)))))))
5272 && (!OBJECT_P (XEXP (x
, 0))
5273 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5274 && OBJECT_P (SUBREG_REG (XEXP (x
, 0)))))))
5276 rtx cond
, true_rtx
, false_rtx
;
5278 cond
= if_then_else_cond (x
, &true_rtx
, &false_rtx
);
5280 /* If everything is a comparison, what we have is highly unlikely
5281 to be simpler, so don't use it. */
5282 && ! (COMPARISON_P (x
)
5283 && (COMPARISON_P (true_rtx
) || COMPARISON_P (false_rtx
))))
5285 rtx cop1
= const0_rtx
;
5286 enum rtx_code cond_code
= simplify_comparison (NE
, &cond
, &cop1
);
5288 if (cond_code
== NE
&& COMPARISON_P (cond
))
5291 /* Simplify the alternative arms; this may collapse the true and
5292 false arms to store-flag values. Be careful to use copy_rtx
5293 here since true_rtx or false_rtx might share RTL with x as a
5294 result of the if_then_else_cond call above. */
5295 true_rtx
= subst (copy_rtx (true_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5296 false_rtx
= subst (copy_rtx (false_rtx
), pc_rtx
, pc_rtx
, 0, 0, 0);
5298 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5299 is unlikely to be simpler. */
5300 if (general_operand (true_rtx
, VOIDmode
)
5301 && general_operand (false_rtx
, VOIDmode
))
5303 enum rtx_code reversed
;
5305 /* Restarting if we generate a store-flag expression will cause
5306 us to loop. Just drop through in this case. */
5308 /* If the result values are STORE_FLAG_VALUE and zero, we can
5309 just make the comparison operation. */
5310 if (true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5311 x
= simplify_gen_relational (cond_code
, mode
, VOIDmode
,
5313 else if (true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5314 && ((reversed
= reversed_comparison_code_parts
5315 (cond_code
, cond
, cop1
, NULL
))
5317 x
= simplify_gen_relational (reversed
, mode
, VOIDmode
,
5320 /* Likewise, we can make the negate of a comparison operation
5321 if the result values are - STORE_FLAG_VALUE and zero. */
5322 else if (CONST_INT_P (true_rtx
)
5323 && INTVAL (true_rtx
) == - STORE_FLAG_VALUE
5324 && false_rtx
== const0_rtx
)
5325 x
= simplify_gen_unary (NEG
, mode
,
5326 simplify_gen_relational (cond_code
,
5330 else if (CONST_INT_P (false_rtx
)
5331 && INTVAL (false_rtx
) == - STORE_FLAG_VALUE
5332 && true_rtx
== const0_rtx
5333 && ((reversed
= reversed_comparison_code_parts
5334 (cond_code
, cond
, cop1
, NULL
))
5336 x
= simplify_gen_unary (NEG
, mode
,
5337 simplify_gen_relational (reversed
,
5342 return gen_rtx_IF_THEN_ELSE (mode
,
5343 simplify_gen_relational (cond_code
,
5348 true_rtx
, false_rtx
);
5350 code
= GET_CODE (x
);
5351 op0_mode
= VOIDmode
;
5356 /* Try to fold this expression in case we have constants that weren't
5359 switch (GET_RTX_CLASS (code
))
5362 if (op0_mode
== VOIDmode
)
5363 op0_mode
= GET_MODE (XEXP (x
, 0));
5364 temp
= simplify_unary_operation (code
, mode
, XEXP (x
, 0), op0_mode
);
5367 case RTX_COMM_COMPARE
:
5369 machine_mode cmp_mode
= GET_MODE (XEXP (x
, 0));
5370 if (cmp_mode
== VOIDmode
)
5372 cmp_mode
= GET_MODE (XEXP (x
, 1));
5373 if (cmp_mode
== VOIDmode
)
5374 cmp_mode
= op0_mode
;
5376 temp
= simplify_relational_operation (code
, mode
, cmp_mode
,
5377 XEXP (x
, 0), XEXP (x
, 1));
5380 case RTX_COMM_ARITH
:
5382 temp
= simplify_binary_operation (code
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5384 case RTX_BITFIELD_OPS
:
5386 temp
= simplify_ternary_operation (code
, mode
, op0_mode
, XEXP (x
, 0),
5387 XEXP (x
, 1), XEXP (x
, 2));
5396 code
= GET_CODE (temp
);
5397 op0_mode
= VOIDmode
;
5398 mode
= GET_MODE (temp
);
5401 /* First see if we can apply the inverse distributive law. */
5402 if (code
== PLUS
|| code
== MINUS
5403 || code
== AND
|| code
== IOR
|| code
== XOR
)
5405 x
= apply_distributive_law (x
);
5406 code
= GET_CODE (x
);
5407 op0_mode
= VOIDmode
;
5410 /* If CODE is an associative operation not otherwise handled, see if we
5411 can associate some operands. This can win if they are constants or
5412 if they are logically related (i.e. (a & b) & a). */
5413 if ((code
== PLUS
|| code
== MINUS
|| code
== MULT
|| code
== DIV
5414 || code
== AND
|| code
== IOR
|| code
== XOR
5415 || code
== SMAX
|| code
== SMIN
|| code
== UMAX
|| code
== UMIN
)
5416 && ((INTEGRAL_MODE_P (mode
) && code
!= DIV
)
5417 || (flag_associative_math
&& FLOAT_MODE_P (mode
))))
5419 if (GET_CODE (XEXP (x
, 0)) == code
)
5421 rtx other
= XEXP (XEXP (x
, 0), 0);
5422 rtx inner_op0
= XEXP (XEXP (x
, 0), 1);
5423 rtx inner_op1
= XEXP (x
, 1);
5426 /* Make sure we pass the constant operand if any as the second
5427 one if this is a commutative operation. */
5428 if (CONSTANT_P (inner_op0
) && COMMUTATIVE_ARITH_P (x
))
5430 rtx tem
= inner_op0
;
5431 inner_op0
= inner_op1
;
5434 inner
= simplify_binary_operation (code
== MINUS
? PLUS
5435 : code
== DIV
? MULT
5437 mode
, inner_op0
, inner_op1
);
5439 /* For commutative operations, try the other pair if that one
5441 if (inner
== 0 && COMMUTATIVE_ARITH_P (x
))
5443 other
= XEXP (XEXP (x
, 0), 1);
5444 inner
= simplify_binary_operation (code
, mode
,
5445 XEXP (XEXP (x
, 0), 0),
5450 return simplify_gen_binary (code
, mode
, other
, inner
);
5454 /* A little bit of algebraic simplification here. */
5458 /* Ensure that our address has any ASHIFTs converted to MULT in case
5459 address-recognizing predicates are called later. */
5460 temp
= make_compound_operation (XEXP (x
, 0), MEM
);
5461 SUBST (XEXP (x
, 0), temp
);
5465 if (op0_mode
== VOIDmode
)
5466 op0_mode
= GET_MODE (SUBREG_REG (x
));
5468 /* See if this can be moved to simplify_subreg. */
5469 if (CONSTANT_P (SUBREG_REG (x
))
5470 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
5471 /* Don't call gen_lowpart if the inner mode
5472 is VOIDmode and we cannot simplify it, as SUBREG without
5473 inner mode is invalid. */
5474 && (GET_MODE (SUBREG_REG (x
)) != VOIDmode
5475 || gen_lowpart_common (mode
, SUBREG_REG (x
))))
5476 return gen_lowpart (mode
, SUBREG_REG (x
));
5478 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x
))) == MODE_CC
)
5482 temp
= simplify_subreg (mode
, SUBREG_REG (x
), op0_mode
,
5487 /* If op is known to have all lower bits zero, the result is zero. */
5489 && SCALAR_INT_MODE_P (mode
)
5490 && SCALAR_INT_MODE_P (op0_mode
)
5491 && GET_MODE_PRECISION (mode
) < GET_MODE_PRECISION (op0_mode
)
5492 && subreg_lowpart_offset (mode
, op0_mode
) == SUBREG_BYTE (x
)
5493 && HWI_COMPUTABLE_MODE_P (op0_mode
)
5494 && (nonzero_bits (SUBREG_REG (x
), op0_mode
)
5495 & GET_MODE_MASK (mode
)) == 0)
5496 return CONST0_RTX (mode
);
5499 /* Don't change the mode of the MEM if that would change the meaning
5501 if (MEM_P (SUBREG_REG (x
))
5502 && (MEM_VOLATILE_P (SUBREG_REG (x
))
5503 || mode_dependent_address_p (XEXP (SUBREG_REG (x
), 0),
5504 MEM_ADDR_SPACE (SUBREG_REG (x
)))))
5505 return gen_rtx_CLOBBER (mode
, const0_rtx
);
5507 /* Note that we cannot do any narrowing for non-constants since
5508 we might have been counting on using the fact that some bits were
5509 zero. We now do this in the SET. */
5514 temp
= expand_compound_operation (XEXP (x
, 0));
5516 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5517 replaced by (lshiftrt X C). This will convert
5518 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5520 if (GET_CODE (temp
) == ASHIFTRT
5521 && CONST_INT_P (XEXP (temp
, 1))
5522 && INTVAL (XEXP (temp
, 1)) == GET_MODE_PRECISION (mode
) - 1)
5523 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (temp
, 0),
5524 INTVAL (XEXP (temp
, 1)));
5526 /* If X has only a single bit that might be nonzero, say, bit I, convert
5527 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5528 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5529 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5530 or a SUBREG of one since we'd be making the expression more
5531 complex if it was just a register. */
5534 && ! (GET_CODE (temp
) == SUBREG
5535 && REG_P (SUBREG_REG (temp
)))
5536 && (i
= exact_log2 (nonzero_bits (temp
, mode
))) >= 0)
5538 rtx temp1
= simplify_shift_const
5539 (NULL_RTX
, ASHIFTRT
, mode
,
5540 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, temp
,
5541 GET_MODE_PRECISION (mode
) - 1 - i
),
5542 GET_MODE_PRECISION (mode
) - 1 - i
);
5544 /* If all we did was surround TEMP with the two shifts, we
5545 haven't improved anything, so don't use it. Otherwise,
5546 we are better off with TEMP1. */
5547 if (GET_CODE (temp1
) != ASHIFTRT
5548 || GET_CODE (XEXP (temp1
, 0)) != ASHIFT
5549 || XEXP (XEXP (temp1
, 0), 0) != temp
)
5555 /* We can't handle truncation to a partial integer mode here
5556 because we don't know the real bitsize of the partial
5558 if (GET_MODE_CLASS (mode
) == MODE_PARTIAL_INT
)
5561 if (HWI_COMPUTABLE_MODE_P (mode
))
5563 force_to_mode (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)),
5564 GET_MODE_MASK (mode
), 0));
5566 /* We can truncate a constant value and return it. */
5567 if (CONST_INT_P (XEXP (x
, 0)))
5568 return gen_int_mode (INTVAL (XEXP (x
, 0)), mode
);
5570 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5571 whose value is a comparison can be replaced with a subreg if
5572 STORE_FLAG_VALUE permits. */
5573 if (HWI_COMPUTABLE_MODE_P (mode
)
5574 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (mode
)) == 0
5575 && (temp
= get_last_value (XEXP (x
, 0)))
5576 && COMPARISON_P (temp
))
5577 return gen_lowpart (mode
, XEXP (x
, 0));
5581 /* (const (const X)) can become (const X). Do it this way rather than
5582 returning the inner CONST since CONST can be shared with a
5584 if (GET_CODE (XEXP (x
, 0)) == CONST
)
5585 SUBST (XEXP (x
, 0), XEXP (XEXP (x
, 0), 0));
5590 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5591 can add in an offset. find_split_point will split this address up
5592 again if it doesn't match. */
5593 if (GET_CODE (XEXP (x
, 0)) == HIGH
5594 && rtx_equal_p (XEXP (XEXP (x
, 0), 0), XEXP (x
, 1)))
5600 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5601 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5602 bit-field and can be replaced by either a sign_extend or a
5603 sign_extract. The `and' may be a zero_extend and the two
5604 <c>, -<c> constants may be reversed. */
5605 if (GET_CODE (XEXP (x
, 0)) == XOR
5606 && CONST_INT_P (XEXP (x
, 1))
5607 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
5608 && INTVAL (XEXP (x
, 1)) == -INTVAL (XEXP (XEXP (x
, 0), 1))
5609 && ((i
= exact_log2 (UINTVAL (XEXP (XEXP (x
, 0), 1)))) >= 0
5610 || (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
5611 && HWI_COMPUTABLE_MODE_P (mode
)
5612 && ((GET_CODE (XEXP (XEXP (x
, 0), 0)) == AND
5613 && CONST_INT_P (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5614 && (UINTVAL (XEXP (XEXP (XEXP (x
, 0), 0), 1))
5615 == ((unsigned HOST_WIDE_INT
) 1 << (i
+ 1)) - 1))
5616 || (GET_CODE (XEXP (XEXP (x
, 0), 0)) == ZERO_EXTEND
5617 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x
, 0), 0), 0)))
5618 == (unsigned int) i
+ 1))))
5619 return simplify_shift_const
5620 (NULL_RTX
, ASHIFTRT
, mode
,
5621 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5622 XEXP (XEXP (XEXP (x
, 0), 0), 0),
5623 GET_MODE_PRECISION (mode
) - (i
+ 1)),
5624 GET_MODE_PRECISION (mode
) - (i
+ 1));
5626 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
5627 can become (ashiftrt (ashift (xor x 1) C) C) where C is
5628 the bitsize of the mode - 1. This allows simplification of
5629 "a = (b & 8) == 0;" */
5630 if (XEXP (x
, 1) == constm1_rtx
5631 && !REG_P (XEXP (x
, 0))
5632 && ! (GET_CODE (XEXP (x
, 0)) == SUBREG
5633 && REG_P (SUBREG_REG (XEXP (x
, 0))))
5634 && nonzero_bits (XEXP (x
, 0), mode
) == 1)
5635 return simplify_shift_const (NULL_RTX
, ASHIFTRT
, mode
,
5636 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5637 gen_rtx_XOR (mode
, XEXP (x
, 0), const1_rtx
),
5638 GET_MODE_PRECISION (mode
) - 1),
5639 GET_MODE_PRECISION (mode
) - 1);
5641 /* If we are adding two things that have no bits in common, convert
5642 the addition into an IOR. This will often be further simplified,
5643 for example in cases like ((a & 1) + (a & 2)), which can
5646 if (HWI_COMPUTABLE_MODE_P (mode
)
5647 && (nonzero_bits (XEXP (x
, 0), mode
)
5648 & nonzero_bits (XEXP (x
, 1), mode
)) == 0)
5650 /* Try to simplify the expression further. */
5651 rtx tor
= simplify_gen_binary (IOR
, mode
, XEXP (x
, 0), XEXP (x
, 1));
5652 temp
= combine_simplify_rtx (tor
, VOIDmode
, in_dest
, 0);
5654 /* If we could, great. If not, do not go ahead with the IOR
5655 replacement, since PLUS appears in many special purpose
5656 address arithmetic instructions. */
5657 if (GET_CODE (temp
) != CLOBBER
5658 && (GET_CODE (temp
) != IOR
5659 || ((XEXP (temp
, 0) != XEXP (x
, 0)
5660 || XEXP (temp
, 1) != XEXP (x
, 1))
5661 && (XEXP (temp
, 0) != XEXP (x
, 1)
5662 || XEXP (temp
, 1) != XEXP (x
, 0)))))
5668 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
5669 (and <foo> (const_int pow2-1)) */
5670 if (GET_CODE (XEXP (x
, 1)) == AND
5671 && CONST_INT_P (XEXP (XEXP (x
, 1), 1))
5672 && exact_log2 (-UINTVAL (XEXP (XEXP (x
, 1), 1))) >= 0
5673 && rtx_equal_p (XEXP (XEXP (x
, 1), 0), XEXP (x
, 0)))
5674 return simplify_and_const_int (NULL_RTX
, mode
, XEXP (x
, 0),
5675 -INTVAL (XEXP (XEXP (x
, 1), 1)) - 1);
5679 /* If we have (mult (plus A B) C), apply the distributive law and then
5680 the inverse distributive law to see if things simplify. This
5681 occurs mostly in addresses, often when unrolling loops. */
5683 if (GET_CODE (XEXP (x
, 0)) == PLUS
)
5685 rtx result
= distribute_and_simplify_rtx (x
, 0);
5690 /* Try simplify a*(b/c) as (a*b)/c. */
5691 if (FLOAT_MODE_P (mode
) && flag_associative_math
5692 && GET_CODE (XEXP (x
, 0)) == DIV
)
5694 rtx tem
= simplify_binary_operation (MULT
, mode
,
5695 XEXP (XEXP (x
, 0), 0),
5698 return simplify_gen_binary (DIV
, mode
, tem
, XEXP (XEXP (x
, 0), 1));
5703 /* If this is a divide by a power of two, treat it as a shift if
5704 its first operand is a shift. */
5705 if (CONST_INT_P (XEXP (x
, 1))
5706 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0
5707 && (GET_CODE (XEXP (x
, 0)) == ASHIFT
5708 || GET_CODE (XEXP (x
, 0)) == LSHIFTRT
5709 || GET_CODE (XEXP (x
, 0)) == ASHIFTRT
5710 || GET_CODE (XEXP (x
, 0)) == ROTATE
5711 || GET_CODE (XEXP (x
, 0)) == ROTATERT
))
5712 return simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
, XEXP (x
, 0), i
);
5716 case GT
: case GTU
: case GE
: case GEU
:
5717 case LT
: case LTU
: case LE
: case LEU
:
5718 case UNEQ
: case LTGT
:
5719 case UNGT
: case UNGE
:
5720 case UNLT
: case UNLE
:
5721 case UNORDERED
: case ORDERED
:
5722 /* If the first operand is a condition code, we can't do anything
5724 if (GET_CODE (XEXP (x
, 0)) == COMPARE
5725 || (GET_MODE_CLASS (GET_MODE (XEXP (x
, 0))) != MODE_CC
5726 && ! CC0_P (XEXP (x
, 0))))
5728 rtx op0
= XEXP (x
, 0);
5729 rtx op1
= XEXP (x
, 1);
5730 enum rtx_code new_code
;
5732 if (GET_CODE (op0
) == COMPARE
)
5733 op1
= XEXP (op0
, 1), op0
= XEXP (op0
, 0);
5735 /* Simplify our comparison, if possible. */
5736 new_code
= simplify_comparison (code
, &op0
, &op1
);
5738 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5739 if only the low-order bit is possibly nonzero in X (such as when
5740 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5741 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5742 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5745 Remove any ZERO_EXTRACT we made when thinking this was a
5746 comparison. It may now be simpler to use, e.g., an AND. If a
5747 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5748 the call to make_compound_operation in the SET case.
5750 Don't apply these optimizations if the caller would
5751 prefer a comparison rather than a value.
5752 E.g., for the condition in an IF_THEN_ELSE most targets need
5753 an explicit comparison. */
5758 else if (STORE_FLAG_VALUE
== 1
5759 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5760 && op1
== const0_rtx
5761 && mode
== GET_MODE (op0
)
5762 && nonzero_bits (op0
, mode
) == 1)
5763 return gen_lowpart (mode
,
5764 expand_compound_operation (op0
));
5766 else if (STORE_FLAG_VALUE
== 1
5767 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5768 && op1
== const0_rtx
5769 && mode
== GET_MODE (op0
)
5770 && (num_sign_bit_copies (op0
, mode
)
5771 == GET_MODE_PRECISION (mode
)))
5773 op0
= expand_compound_operation (op0
);
5774 return simplify_gen_unary (NEG
, mode
,
5775 gen_lowpart (mode
, op0
),
5779 else if (STORE_FLAG_VALUE
== 1
5780 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5781 && op1
== const0_rtx
5782 && mode
== GET_MODE (op0
)
5783 && nonzero_bits (op0
, mode
) == 1)
5785 op0
= expand_compound_operation (op0
);
5786 return simplify_gen_binary (XOR
, mode
,
5787 gen_lowpart (mode
, op0
),
5791 else if (STORE_FLAG_VALUE
== 1
5792 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5793 && op1
== const0_rtx
5794 && mode
== GET_MODE (op0
)
5795 && (num_sign_bit_copies (op0
, mode
)
5796 == GET_MODE_PRECISION (mode
)))
5798 op0
= expand_compound_operation (op0
);
5799 return plus_constant (mode
, gen_lowpart (mode
, op0
), 1);
5802 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5807 else if (STORE_FLAG_VALUE
== -1
5808 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5809 && op1
== const0_rtx
5810 && mode
== GET_MODE (op0
)
5811 && (num_sign_bit_copies (op0
, mode
)
5812 == GET_MODE_PRECISION (mode
)))
5813 return gen_lowpart (mode
,
5814 expand_compound_operation (op0
));
5816 else if (STORE_FLAG_VALUE
== -1
5817 && new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5818 && op1
== const0_rtx
5819 && mode
== GET_MODE (op0
)
5820 && nonzero_bits (op0
, mode
) == 1)
5822 op0
= expand_compound_operation (op0
);
5823 return simplify_gen_unary (NEG
, mode
,
5824 gen_lowpart (mode
, op0
),
5828 else if (STORE_FLAG_VALUE
== -1
5829 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5830 && op1
== const0_rtx
5831 && mode
== GET_MODE (op0
)
5832 && (num_sign_bit_copies (op0
, mode
)
5833 == GET_MODE_PRECISION (mode
)))
5835 op0
= expand_compound_operation (op0
);
5836 return simplify_gen_unary (NOT
, mode
,
5837 gen_lowpart (mode
, op0
),
5841 /* If X is 0/1, (eq X 0) is X-1. */
5842 else if (STORE_FLAG_VALUE
== -1
5843 && new_code
== EQ
&& GET_MODE_CLASS (mode
) == MODE_INT
5844 && op1
== const0_rtx
5845 && mode
== GET_MODE (op0
)
5846 && nonzero_bits (op0
, mode
) == 1)
5848 op0
= expand_compound_operation (op0
);
5849 return plus_constant (mode
, gen_lowpart (mode
, op0
), -1);
5852 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5853 one bit that might be nonzero, we can convert (ne x 0) to
5854 (ashift x c) where C puts the bit in the sign bit. Remove any
5855 AND with STORE_FLAG_VALUE when we are done, since we are only
5856 going to test the sign bit. */
5857 if (new_code
== NE
&& GET_MODE_CLASS (mode
) == MODE_INT
5858 && HWI_COMPUTABLE_MODE_P (mode
)
5859 && val_signbit_p (mode
, STORE_FLAG_VALUE
)
5860 && op1
== const0_rtx
5861 && mode
== GET_MODE (op0
)
5862 && (i
= exact_log2 (nonzero_bits (op0
, mode
))) >= 0)
5864 x
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
5865 expand_compound_operation (op0
),
5866 GET_MODE_PRECISION (mode
) - 1 - i
);
5867 if (GET_CODE (x
) == AND
&& XEXP (x
, 1) == const_true_rtx
)
5873 /* If the code changed, return a whole new comparison.
5874 We also need to avoid using SUBST in cases where
5875 simplify_comparison has widened a comparison with a CONST_INT,
5876 since in that case the wider CONST_INT may fail the sanity
5877 checks in do_SUBST. */
5878 if (new_code
!= code
5879 || (CONST_INT_P (op1
)
5880 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 0))
5881 && GET_MODE (op0
) != GET_MODE (XEXP (x
, 1))))
5882 return gen_rtx_fmt_ee (new_code
, mode
, op0
, op1
);
5884 /* Otherwise, keep this operation, but maybe change its operands.
5885 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5886 SUBST (XEXP (x
, 0), op0
);
5887 SUBST (XEXP (x
, 1), op1
);
5892 return simplify_if_then_else (x
);
5898 /* If we are processing SET_DEST, we are done. */
5902 return expand_compound_operation (x
);
5905 return simplify_set (x
);
5909 return simplify_logical (x
);
5916 /* If this is a shift by a constant amount, simplify it. */
5917 if (CONST_INT_P (XEXP (x
, 1)))
5918 return simplify_shift_const (x
, code
, mode
, XEXP (x
, 0),
5919 INTVAL (XEXP (x
, 1)));
5921 else if (SHIFT_COUNT_TRUNCATED
&& !REG_P (XEXP (x
, 1)))
5923 force_to_mode (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)),
5924 ((unsigned HOST_WIDE_INT
) 1
5925 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x
))))
5937 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5940 simplify_if_then_else (rtx x
)
5942 machine_mode mode
= GET_MODE (x
);
5943 rtx cond
= XEXP (x
, 0);
5944 rtx true_rtx
= XEXP (x
, 1);
5945 rtx false_rtx
= XEXP (x
, 2);
5946 enum rtx_code true_code
= GET_CODE (cond
);
5947 int comparison_p
= COMPARISON_P (cond
);
5950 enum rtx_code false_code
;
5953 /* Simplify storing of the truth value. */
5954 if (comparison_p
&& true_rtx
== const_true_rtx
&& false_rtx
== const0_rtx
)
5955 return simplify_gen_relational (true_code
, mode
, VOIDmode
,
5956 XEXP (cond
, 0), XEXP (cond
, 1));
5958 /* Also when the truth value has to be reversed. */
5960 && true_rtx
== const0_rtx
&& false_rtx
== const_true_rtx
5961 && (reversed
= reversed_comparison (cond
, mode
)))
5964 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5965 in it is being compared against certain values. Get the true and false
5966 comparisons and see if that says anything about the value of each arm. */
5969 && ((false_code
= reversed_comparison_code (cond
, NULL
))
5971 && REG_P (XEXP (cond
, 0)))
5974 rtx from
= XEXP (cond
, 0);
5975 rtx true_val
= XEXP (cond
, 1);
5976 rtx false_val
= true_val
;
5979 /* If FALSE_CODE is EQ, swap the codes and arms. */
5981 if (false_code
== EQ
)
5983 swapped
= 1, true_code
= EQ
, false_code
= NE
;
5984 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
5987 /* If we are comparing against zero and the expression being tested has
5988 only a single bit that might be nonzero, that is its value when it is
5989 not equal to zero. Similarly if it is known to be -1 or 0. */
5991 if (true_code
== EQ
&& true_val
== const0_rtx
5992 && exact_log2 (nzb
= nonzero_bits (from
, GET_MODE (from
))) >= 0)
5995 false_val
= gen_int_mode (nzb
, GET_MODE (from
));
5997 else if (true_code
== EQ
&& true_val
== const0_rtx
5998 && (num_sign_bit_copies (from
, GET_MODE (from
))
5999 == GET_MODE_PRECISION (GET_MODE (from
))))
6002 false_val
= constm1_rtx
;
6005 /* Now simplify an arm if we know the value of the register in the
6006 branch and it is used in the arm. Be careful due to the potential
6007 of locally-shared RTL. */
6009 if (reg_mentioned_p (from
, true_rtx
))
6010 true_rtx
= subst (known_cond (copy_rtx (true_rtx
), true_code
,
6012 pc_rtx
, pc_rtx
, 0, 0, 0);
6013 if (reg_mentioned_p (from
, false_rtx
))
6014 false_rtx
= subst (known_cond (copy_rtx (false_rtx
), false_code
,
6016 pc_rtx
, pc_rtx
, 0, 0, 0);
6018 SUBST (XEXP (x
, 1), swapped
? false_rtx
: true_rtx
);
6019 SUBST (XEXP (x
, 2), swapped
? true_rtx
: false_rtx
);
6021 true_rtx
= XEXP (x
, 1);
6022 false_rtx
= XEXP (x
, 2);
6023 true_code
= GET_CODE (cond
);
6026 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6027 reversed, do so to avoid needing two sets of patterns for
6028 subtract-and-branch insns. Similarly if we have a constant in the true
6029 arm, the false arm is the same as the first operand of the comparison, or
6030 the false arm is more complicated than the true arm. */
6033 && reversed_comparison_code (cond
, NULL
) != UNKNOWN
6034 && (true_rtx
== pc_rtx
6035 || (CONSTANT_P (true_rtx
)
6036 && !CONST_INT_P (false_rtx
) && false_rtx
!= pc_rtx
)
6037 || true_rtx
== const0_rtx
6038 || (OBJECT_P (true_rtx
) && !OBJECT_P (false_rtx
))
6039 || (GET_CODE (true_rtx
) == SUBREG
&& OBJECT_P (SUBREG_REG (true_rtx
))
6040 && !OBJECT_P (false_rtx
))
6041 || reg_mentioned_p (true_rtx
, false_rtx
)
6042 || rtx_equal_p (false_rtx
, XEXP (cond
, 0))))
6044 true_code
= reversed_comparison_code (cond
, NULL
);
6045 SUBST (XEXP (x
, 0), reversed_comparison (cond
, GET_MODE (cond
)));
6046 SUBST (XEXP (x
, 1), false_rtx
);
6047 SUBST (XEXP (x
, 2), true_rtx
);
6049 temp
= true_rtx
, true_rtx
= false_rtx
, false_rtx
= temp
;
6052 /* It is possible that the conditional has been simplified out. */
6053 true_code
= GET_CODE (cond
);
6054 comparison_p
= COMPARISON_P (cond
);
6057 /* If the two arms are identical, we don't need the comparison. */
6059 if (rtx_equal_p (true_rtx
, false_rtx
) && ! side_effects_p (cond
))
6062 /* Convert a == b ? b : a to "a". */
6063 if (true_code
== EQ
&& ! side_effects_p (cond
)
6064 && !HONOR_NANS (mode
)
6065 && rtx_equal_p (XEXP (cond
, 0), false_rtx
)
6066 && rtx_equal_p (XEXP (cond
, 1), true_rtx
))
6068 else if (true_code
== NE
&& ! side_effects_p (cond
)
6069 && !HONOR_NANS (mode
)
6070 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6071 && rtx_equal_p (XEXP (cond
, 1), false_rtx
))
6074 /* Look for cases where we have (abs x) or (neg (abs X)). */
6076 if (GET_MODE_CLASS (mode
) == MODE_INT
6078 && XEXP (cond
, 1) == const0_rtx
6079 && GET_CODE (false_rtx
) == NEG
6080 && rtx_equal_p (true_rtx
, XEXP (false_rtx
, 0))
6081 && rtx_equal_p (true_rtx
, XEXP (cond
, 0))
6082 && ! side_effects_p (true_rtx
))
6087 return simplify_gen_unary (ABS
, mode
, true_rtx
, mode
);
6091 simplify_gen_unary (NEG
, mode
,
6092 simplify_gen_unary (ABS
, mode
, true_rtx
, mode
),
6098 /* Look for MIN or MAX. */
6100 if ((! FLOAT_MODE_P (mode
) || flag_unsafe_math_optimizations
)
6102 && rtx_equal_p (XEXP (cond
, 0), true_rtx
)
6103 && rtx_equal_p (XEXP (cond
, 1), false_rtx
)
6104 && ! side_effects_p (cond
))
6109 return simplify_gen_binary (SMAX
, mode
, true_rtx
, false_rtx
);
6112 return simplify_gen_binary (SMIN
, mode
, true_rtx
, false_rtx
);
6115 return simplify_gen_binary (UMAX
, mode
, true_rtx
, false_rtx
);
6118 return simplify_gen_binary (UMIN
, mode
, true_rtx
, false_rtx
);
6123 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6124 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6125 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6126 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6127 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6128 neither 1 or -1, but it isn't worth checking for. */
6130 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
6132 && GET_MODE_CLASS (mode
) == MODE_INT
6133 && ! side_effects_p (x
))
6135 rtx t
= make_compound_operation (true_rtx
, SET
);
6136 rtx f
= make_compound_operation (false_rtx
, SET
);
6137 rtx cond_op0
= XEXP (cond
, 0);
6138 rtx cond_op1
= XEXP (cond
, 1);
6139 enum rtx_code op
= UNKNOWN
, extend_op
= UNKNOWN
;
6140 machine_mode m
= mode
;
6141 rtx z
= 0, c1
= NULL_RTX
;
6143 if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == MINUS
6144 || GET_CODE (t
) == IOR
|| GET_CODE (t
) == XOR
6145 || GET_CODE (t
) == ASHIFT
6146 || GET_CODE (t
) == LSHIFTRT
|| GET_CODE (t
) == ASHIFTRT
)
6147 && rtx_equal_p (XEXP (t
, 0), f
))
6148 c1
= XEXP (t
, 1), op
= GET_CODE (t
), z
= f
;
6150 /* If an identity-zero op is commutative, check whether there
6151 would be a match if we swapped the operands. */
6152 else if ((GET_CODE (t
) == PLUS
|| GET_CODE (t
) == IOR
6153 || GET_CODE (t
) == XOR
)
6154 && rtx_equal_p (XEXP (t
, 1), f
))
6155 c1
= XEXP (t
, 0), op
= GET_CODE (t
), z
= f
;
6156 else if (GET_CODE (t
) == SIGN_EXTEND
6157 && (GET_CODE (XEXP (t
, 0)) == PLUS
6158 || GET_CODE (XEXP (t
, 0)) == MINUS
6159 || GET_CODE (XEXP (t
, 0)) == IOR
6160 || GET_CODE (XEXP (t
, 0)) == XOR
6161 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6162 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6163 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6164 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6165 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6166 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6167 && (num_sign_bit_copies (f
, GET_MODE (f
))
6169 (GET_MODE_PRECISION (mode
)
6170 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t
, 0), 0))))))
6172 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6173 extend_op
= SIGN_EXTEND
;
6174 m
= GET_MODE (XEXP (t
, 0));
6176 else if (GET_CODE (t
) == SIGN_EXTEND
6177 && (GET_CODE (XEXP (t
, 0)) == PLUS
6178 || GET_CODE (XEXP (t
, 0)) == IOR
6179 || GET_CODE (XEXP (t
, 0)) == XOR
)
6180 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6181 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6182 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6183 && (num_sign_bit_copies (f
, GET_MODE (f
))
6185 (GET_MODE_PRECISION (mode
)
6186 - GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (t
, 0), 1))))))
6188 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6189 extend_op
= SIGN_EXTEND
;
6190 m
= GET_MODE (XEXP (t
, 0));
6192 else if (GET_CODE (t
) == ZERO_EXTEND
6193 && (GET_CODE (XEXP (t
, 0)) == PLUS
6194 || GET_CODE (XEXP (t
, 0)) == MINUS
6195 || GET_CODE (XEXP (t
, 0)) == IOR
6196 || GET_CODE (XEXP (t
, 0)) == XOR
6197 || GET_CODE (XEXP (t
, 0)) == ASHIFT
6198 || GET_CODE (XEXP (t
, 0)) == LSHIFTRT
6199 || GET_CODE (XEXP (t
, 0)) == ASHIFTRT
)
6200 && GET_CODE (XEXP (XEXP (t
, 0), 0)) == SUBREG
6201 && HWI_COMPUTABLE_MODE_P (mode
)
6202 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 0))
6203 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 0)), f
)
6204 && ((nonzero_bits (f
, GET_MODE (f
))
6205 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 0))))
6208 c1
= XEXP (XEXP (t
, 0), 1); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6209 extend_op
= ZERO_EXTEND
;
6210 m
= GET_MODE (XEXP (t
, 0));
6212 else if (GET_CODE (t
) == ZERO_EXTEND
6213 && (GET_CODE (XEXP (t
, 0)) == PLUS
6214 || GET_CODE (XEXP (t
, 0)) == IOR
6215 || GET_CODE (XEXP (t
, 0)) == XOR
)
6216 && GET_CODE (XEXP (XEXP (t
, 0), 1)) == SUBREG
6217 && HWI_COMPUTABLE_MODE_P (mode
)
6218 && subreg_lowpart_p (XEXP (XEXP (t
, 0), 1))
6219 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t
, 0), 1)), f
)
6220 && ((nonzero_bits (f
, GET_MODE (f
))
6221 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t
, 0), 1))))
6224 c1
= XEXP (XEXP (t
, 0), 0); z
= f
; op
= GET_CODE (XEXP (t
, 0));
6225 extend_op
= ZERO_EXTEND
;
6226 m
= GET_MODE (XEXP (t
, 0));
6231 temp
= subst (simplify_gen_relational (true_code
, m
, VOIDmode
,
6232 cond_op0
, cond_op1
),
6233 pc_rtx
, pc_rtx
, 0, 0, 0);
6234 temp
= simplify_gen_binary (MULT
, m
, temp
,
6235 simplify_gen_binary (MULT
, m
, c1
,
6237 temp
= subst (temp
, pc_rtx
, pc_rtx
, 0, 0, 0);
6238 temp
= simplify_gen_binary (op
, m
, gen_lowpart (m
, z
), temp
);
6240 if (extend_op
!= UNKNOWN
)
6241 temp
= simplify_gen_unary (extend_op
, mode
, temp
, m
);
6247 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6248 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6249 negation of a single bit, we can convert this operation to a shift. We
6250 can actually do this more generally, but it doesn't seem worth it. */
6252 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6253 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6254 && ((1 == nonzero_bits (XEXP (cond
, 0), mode
)
6255 && (i
= exact_log2 (UINTVAL (true_rtx
))) >= 0)
6256 || ((num_sign_bit_copies (XEXP (cond
, 0), mode
)
6257 == GET_MODE_PRECISION (mode
))
6258 && (i
= exact_log2 (-UINTVAL (true_rtx
))) >= 0)))
6260 simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
6261 gen_lowpart (mode
, XEXP (cond
, 0)), i
);
6263 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
6264 if (true_code
== NE
&& XEXP (cond
, 1) == const0_rtx
6265 && false_rtx
== const0_rtx
&& CONST_INT_P (true_rtx
)
6266 && GET_MODE (XEXP (cond
, 0)) == mode
6267 && (UINTVAL (true_rtx
) & GET_MODE_MASK (mode
))
6268 == nonzero_bits (XEXP (cond
, 0), mode
)
6269 && (i
= exact_log2 (UINTVAL (true_rtx
) & GET_MODE_MASK (mode
))) >= 0)
6270 return XEXP (cond
, 0);
6275 /* Simplify X, a SET expression. Return the new expression. */
6278 simplify_set (rtx x
)
6280 rtx src
= SET_SRC (x
);
6281 rtx dest
= SET_DEST (x
);
6283 = GET_MODE (src
) != VOIDmode
? GET_MODE (src
) : GET_MODE (dest
);
6284 rtx_insn
*other_insn
;
6287 /* (set (pc) (return)) gets written as (return). */
6288 if (GET_CODE (dest
) == PC
&& ANY_RETURN_P (src
))
6291 /* Now that we know for sure which bits of SRC we are using, see if we can
6292 simplify the expression for the object knowing that we only need the
6295 if (GET_MODE_CLASS (mode
) == MODE_INT
&& HWI_COMPUTABLE_MODE_P (mode
))
6297 src
= force_to_mode (src
, mode
, ~(unsigned HOST_WIDE_INT
) 0, 0);
6298 SUBST (SET_SRC (x
), src
);
6301 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6302 the comparison result and try to simplify it unless we already have used
6303 undobuf.other_insn. */
6304 if ((GET_MODE_CLASS (mode
) == MODE_CC
6305 || GET_CODE (src
) == COMPARE
6307 && (cc_use
= find_single_use (dest
, subst_insn
, &other_insn
)) != 0
6308 && (undobuf
.other_insn
== 0 || other_insn
== undobuf
.other_insn
)
6309 && COMPARISON_P (*cc_use
)
6310 && rtx_equal_p (XEXP (*cc_use
, 0), dest
))
6312 enum rtx_code old_code
= GET_CODE (*cc_use
);
6313 enum rtx_code new_code
;
6315 int other_changed
= 0;
6316 rtx inner_compare
= NULL_RTX
;
6317 machine_mode compare_mode
= GET_MODE (dest
);
6319 if (GET_CODE (src
) == COMPARE
)
6321 op0
= XEXP (src
, 0), op1
= XEXP (src
, 1);
6322 if (GET_CODE (op0
) == COMPARE
&& op1
== const0_rtx
)
6324 inner_compare
= op0
;
6325 op0
= XEXP (inner_compare
, 0), op1
= XEXP (inner_compare
, 1);
6329 op0
= src
, op1
= CONST0_RTX (GET_MODE (src
));
6331 tmp
= simplify_relational_operation (old_code
, compare_mode
, VOIDmode
,
6334 new_code
= old_code
;
6335 else if (!CONSTANT_P (tmp
))
6337 new_code
= GET_CODE (tmp
);
6338 op0
= XEXP (tmp
, 0);
6339 op1
= XEXP (tmp
, 1);
6343 rtx pat
= PATTERN (other_insn
);
6344 undobuf
.other_insn
= other_insn
;
6345 SUBST (*cc_use
, tmp
);
6347 /* Attempt to simplify CC user. */
6348 if (GET_CODE (pat
) == SET
)
6350 rtx new_rtx
= simplify_rtx (SET_SRC (pat
));
6351 if (new_rtx
!= NULL_RTX
)
6352 SUBST (SET_SRC (pat
), new_rtx
);
6355 /* Convert X into a no-op move. */
6356 SUBST (SET_DEST (x
), pc_rtx
);
6357 SUBST (SET_SRC (x
), pc_rtx
);
6361 /* Simplify our comparison, if possible. */
6362 new_code
= simplify_comparison (new_code
, &op0
, &op1
);
6364 #ifdef SELECT_CC_MODE
6365 /* If this machine has CC modes other than CCmode, check to see if we
6366 need to use a different CC mode here. */
6367 if (GET_MODE_CLASS (GET_MODE (op0
)) == MODE_CC
)
6368 compare_mode
= GET_MODE (op0
);
6369 else if (inner_compare
6370 && GET_MODE_CLASS (GET_MODE (inner_compare
)) == MODE_CC
6371 && new_code
== old_code
6372 && op0
== XEXP (inner_compare
, 0)
6373 && op1
== XEXP (inner_compare
, 1))
6374 compare_mode
= GET_MODE (inner_compare
);
6376 compare_mode
= SELECT_CC_MODE (new_code
, op0
, op1
);
6379 /* If the mode changed, we have to change SET_DEST, the mode in the
6380 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6381 a hard register, just build new versions with the proper mode. If it
6382 is a pseudo, we lose unless it is only time we set the pseudo, in
6383 which case we can safely change its mode. */
6384 if (compare_mode
!= GET_MODE (dest
))
6386 if (can_change_dest_mode (dest
, 0, compare_mode
))
6388 unsigned int regno
= REGNO (dest
);
6391 if (regno
< FIRST_PSEUDO_REGISTER
)
6392 new_dest
= gen_rtx_REG (compare_mode
, regno
);
6395 SUBST_MODE (regno_reg_rtx
[regno
], compare_mode
);
6396 new_dest
= regno_reg_rtx
[regno
];
6399 SUBST (SET_DEST (x
), new_dest
);
6400 SUBST (XEXP (*cc_use
, 0), new_dest
);
6407 #endif /* SELECT_CC_MODE */
6409 /* If the code changed, we have to build a new comparison in
6410 undobuf.other_insn. */
6411 if (new_code
!= old_code
)
6413 int other_changed_previously
= other_changed
;
6414 unsigned HOST_WIDE_INT mask
;
6415 rtx old_cc_use
= *cc_use
;
6417 SUBST (*cc_use
, gen_rtx_fmt_ee (new_code
, GET_MODE (*cc_use
),
6421 /* If the only change we made was to change an EQ into an NE or
6422 vice versa, OP0 has only one bit that might be nonzero, and OP1
6423 is zero, check if changing the user of the condition code will
6424 produce a valid insn. If it won't, we can keep the original code
6425 in that insn by surrounding our operation with an XOR. */
6427 if (((old_code
== NE
&& new_code
== EQ
)
6428 || (old_code
== EQ
&& new_code
== NE
))
6429 && ! other_changed_previously
&& op1
== const0_rtx
6430 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
6431 && exact_log2 (mask
= nonzero_bits (op0
, GET_MODE (op0
))) >= 0)
6433 rtx pat
= PATTERN (other_insn
), note
= 0;
6435 if ((recog_for_combine (&pat
, other_insn
, ¬e
) < 0
6436 && ! check_asm_operands (pat
)))
6438 *cc_use
= old_cc_use
;
6441 op0
= simplify_gen_binary (XOR
, GET_MODE (op0
), op0
,
6449 undobuf
.other_insn
= other_insn
;
6451 /* Otherwise, if we didn't previously have a COMPARE in the
6452 correct mode, we need one. */
6453 if (GET_CODE (src
) != COMPARE
|| GET_MODE (src
) != compare_mode
)
6455 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6458 else if (GET_MODE (op0
) == compare_mode
&& op1
== const0_rtx
)
6460 SUBST (SET_SRC (x
), op0
);
6463 /* Otherwise, update the COMPARE if needed. */
6464 else if (XEXP (src
, 0) != op0
|| XEXP (src
, 1) != op1
)
6466 SUBST (SET_SRC (x
), gen_rtx_COMPARE (compare_mode
, op0
, op1
));
6472 /* Get SET_SRC in a form where we have placed back any
6473 compound expressions. Then do the checks below. */
6474 src
= make_compound_operation (src
, SET
);
6475 SUBST (SET_SRC (x
), src
);
6478 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6479 and X being a REG or (subreg (reg)), we may be able to convert this to
6480 (set (subreg:m2 x) (op)).
6482 We can always do this if M1 is narrower than M2 because that means that
6483 we only care about the low bits of the result.
6485 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6486 perform a narrower operation than requested since the high-order bits will
6487 be undefined. On machine where it is defined, this transformation is safe
6488 as long as M1 and M2 have the same number of words. */
6490 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6491 && !OBJECT_P (SUBREG_REG (src
))
6492 && (((GET_MODE_SIZE (GET_MODE (src
)) + (UNITS_PER_WORD
- 1))
6494 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
)))
6495 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
))
6496 #ifndef WORD_REGISTER_OPERATIONS
6497 && (GET_MODE_SIZE (GET_MODE (src
))
6498 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src
))))
6500 #ifdef CANNOT_CHANGE_MODE_CLASS
6501 && ! (REG_P (dest
) && REGNO (dest
) < FIRST_PSEUDO_REGISTER
6502 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest
),
6503 GET_MODE (SUBREG_REG (src
)),
6507 || (GET_CODE (dest
) == SUBREG
6508 && REG_P (SUBREG_REG (dest
)))))
6510 SUBST (SET_DEST (x
),
6511 gen_lowpart (GET_MODE (SUBREG_REG (src
)),
6513 SUBST (SET_SRC (x
), SUBREG_REG (src
));
6515 src
= SET_SRC (x
), dest
= SET_DEST (x
);
6519 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6522 && GET_CODE (src
) == SUBREG
6523 && subreg_lowpart_p (src
)
6524 && (GET_MODE_PRECISION (GET_MODE (src
))
6525 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (src
)))))
6527 rtx inner
= SUBREG_REG (src
);
6528 machine_mode inner_mode
= GET_MODE (inner
);
6530 /* Here we make sure that we don't have a sign bit on. */
6531 if (val_signbit_known_clear_p (GET_MODE (src
),
6532 nonzero_bits (inner
, inner_mode
)))
6534 SUBST (SET_SRC (x
), inner
);
6540 #ifdef LOAD_EXTEND_OP
6541 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6542 would require a paradoxical subreg. Replace the subreg with a
6543 zero_extend to avoid the reload that would otherwise be required. */
6545 if (GET_CODE (src
) == SUBREG
&& subreg_lowpart_p (src
)
6546 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src
)))
6547 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))) != UNKNOWN
6548 && SUBREG_BYTE (src
) == 0
6549 && paradoxical_subreg_p (src
)
6550 && MEM_P (SUBREG_REG (src
)))
6553 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src
))),
6554 GET_MODE (src
), SUBREG_REG (src
)));
6560 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6561 are comparing an item known to be 0 or -1 against 0, use a logical
6562 operation instead. Check for one of the arms being an IOR of the other
6563 arm with some value. We compute three terms to be IOR'ed together. In
6564 practice, at most two will be nonzero. Then we do the IOR's. */
6566 if (GET_CODE (dest
) != PC
6567 && GET_CODE (src
) == IF_THEN_ELSE
6568 && GET_MODE_CLASS (GET_MODE (src
)) == MODE_INT
6569 && (GET_CODE (XEXP (src
, 0)) == EQ
|| GET_CODE (XEXP (src
, 0)) == NE
)
6570 && XEXP (XEXP (src
, 0), 1) == const0_rtx
6571 && GET_MODE (src
) == GET_MODE (XEXP (XEXP (src
, 0), 0))
6572 #ifdef HAVE_conditional_move
6573 && ! can_conditionally_move_p (GET_MODE (src
))
6575 && (num_sign_bit_copies (XEXP (XEXP (src
, 0), 0),
6576 GET_MODE (XEXP (XEXP (src
, 0), 0)))
6577 == GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (src
, 0), 0))))
6578 && ! side_effects_p (src
))
6580 rtx true_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6581 ? XEXP (src
, 1) : XEXP (src
, 2));
6582 rtx false_rtx
= (GET_CODE (XEXP (src
, 0)) == NE
6583 ? XEXP (src
, 2) : XEXP (src
, 1));
6584 rtx term1
= const0_rtx
, term2
, term3
;
6586 if (GET_CODE (true_rtx
) == IOR
6587 && rtx_equal_p (XEXP (true_rtx
, 0), false_rtx
))
6588 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 1), false_rtx
= const0_rtx
;
6589 else if (GET_CODE (true_rtx
) == IOR
6590 && rtx_equal_p (XEXP (true_rtx
, 1), false_rtx
))
6591 term1
= false_rtx
, true_rtx
= XEXP (true_rtx
, 0), false_rtx
= const0_rtx
;
6592 else if (GET_CODE (false_rtx
) == IOR
6593 && rtx_equal_p (XEXP (false_rtx
, 0), true_rtx
))
6594 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 1), true_rtx
= const0_rtx
;
6595 else if (GET_CODE (false_rtx
) == IOR
6596 && rtx_equal_p (XEXP (false_rtx
, 1), true_rtx
))
6597 term1
= true_rtx
, false_rtx
= XEXP (false_rtx
, 0), true_rtx
= const0_rtx
;
6599 term2
= simplify_gen_binary (AND
, GET_MODE (src
),
6600 XEXP (XEXP (src
, 0), 0), true_rtx
);
6601 term3
= simplify_gen_binary (AND
, GET_MODE (src
),
6602 simplify_gen_unary (NOT
, GET_MODE (src
),
6603 XEXP (XEXP (src
, 0), 0),
6608 simplify_gen_binary (IOR
, GET_MODE (src
),
6609 simplify_gen_binary (IOR
, GET_MODE (src
),
6616 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
6617 whole thing fail. */
6618 if (GET_CODE (src
) == CLOBBER
&& XEXP (src
, 0) == const0_rtx
)
6620 else if (GET_CODE (dest
) == CLOBBER
&& XEXP (dest
, 0) == const0_rtx
)
6623 /* Convert this into a field assignment operation, if possible. */
6624 return make_field_assignment (x
);
6627 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
6631 simplify_logical (rtx x
)
6633 machine_mode mode
= GET_MODE (x
);
6634 rtx op0
= XEXP (x
, 0);
6635 rtx op1
= XEXP (x
, 1);
6637 switch (GET_CODE (x
))
6640 /* We can call simplify_and_const_int only if we don't lose
6641 any (sign) bits when converting INTVAL (op1) to
6642 "unsigned HOST_WIDE_INT". */
6643 if (CONST_INT_P (op1
)
6644 && (HWI_COMPUTABLE_MODE_P (mode
)
6645 || INTVAL (op1
) > 0))
6647 x
= simplify_and_const_int (x
, mode
, op0
, INTVAL (op1
));
6648 if (GET_CODE (x
) != AND
)
6655 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
6656 apply the distributive law and then the inverse distributive
6657 law to see if things simplify. */
6658 if (GET_CODE (op0
) == IOR
|| GET_CODE (op0
) == XOR
)
6660 rtx result
= distribute_and_simplify_rtx (x
, 0);
6664 if (GET_CODE (op1
) == IOR
|| GET_CODE (op1
) == XOR
)
6666 rtx result
= distribute_and_simplify_rtx (x
, 1);
6673 /* If we have (ior (and A B) C), apply the distributive law and then
6674 the inverse distributive law to see if things simplify. */
6676 if (GET_CODE (op0
) == AND
)
6678 rtx result
= distribute_and_simplify_rtx (x
, 0);
6683 if (GET_CODE (op1
) == AND
)
6685 rtx result
= distribute_and_simplify_rtx (x
, 1);
6698 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6699 operations" because they can be replaced with two more basic operations.
6700 ZERO_EXTEND is also considered "compound" because it can be replaced with
6701 an AND operation, which is simpler, though only one operation.
6703 The function expand_compound_operation is called with an rtx expression
6704 and will convert it to the appropriate shifts and AND operations,
6705 simplifying at each stage.
6707 The function make_compound_operation is called to convert an expression
6708 consisting of shifts and ANDs into the equivalent compound expression.
6709 It is the inverse of this function, loosely speaking. */
6712 expand_compound_operation (rtx x
)
6714 unsigned HOST_WIDE_INT pos
= 0, len
;
6716 unsigned int modewidth
;
6719 switch (GET_CODE (x
))
6724 /* We can't necessarily use a const_int for a multiword mode;
6725 it depends on implicitly extending the value.
6726 Since we don't know the right way to extend it,
6727 we can't tell whether the implicit way is right.
6729 Even for a mode that is no wider than a const_int,
6730 we can't win, because we need to sign extend one of its bits through
6731 the rest of it, and we don't know which bit. */
6732 if (CONST_INT_P (XEXP (x
, 0)))
6735 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6736 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6737 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6738 reloaded. If not for that, MEM's would very rarely be safe.
6740 Reject MODEs bigger than a word, because we might not be able
6741 to reference a two-register group starting with an arbitrary register
6742 (and currently gen_lowpart might crash for a SUBREG). */
6744 if (GET_MODE_SIZE (GET_MODE (XEXP (x
, 0))) > UNITS_PER_WORD
)
6747 /* Reject MODEs that aren't scalar integers because turning vector
6748 or complex modes into shifts causes problems. */
6750 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
6753 len
= GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)));
6754 /* If the inner object has VOIDmode (the only way this can happen
6755 is if it is an ASM_OPERANDS), we can't do anything since we don't
6756 know how much masking to do. */
6765 /* ... fall through ... */
6768 /* If the operand is a CLOBBER, just return it. */
6769 if (GET_CODE (XEXP (x
, 0)) == CLOBBER
)
6772 if (!CONST_INT_P (XEXP (x
, 1))
6773 || !CONST_INT_P (XEXP (x
, 2))
6774 || GET_MODE (XEXP (x
, 0)) == VOIDmode
)
6777 /* Reject MODEs that aren't scalar integers because turning vector
6778 or complex modes into shifts causes problems. */
6780 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x
, 0))))
6783 len
= INTVAL (XEXP (x
, 1));
6784 pos
= INTVAL (XEXP (x
, 2));
6786 /* This should stay within the object being extracted, fail otherwise. */
6787 if (len
+ pos
> GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0))))
6790 if (BITS_BIG_ENDIAN
)
6791 pos
= GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0))) - len
- pos
;
6798 /* Convert sign extension to zero extension, if we know that the high
6799 bit is not set, as this is easier to optimize. It will be converted
6800 back to cheaper alternative in make_extraction. */
6801 if (GET_CODE (x
) == SIGN_EXTEND
6802 && (HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6803 && ((nonzero_bits (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
6804 & ~(((unsigned HOST_WIDE_INT
)
6805 GET_MODE_MASK (GET_MODE (XEXP (x
, 0))))
6809 rtx temp
= gen_rtx_ZERO_EXTEND (GET_MODE (x
), XEXP (x
, 0));
6810 rtx temp2
= expand_compound_operation (temp
);
6812 /* Make sure this is a profitable operation. */
6813 if (set_src_cost (x
, optimize_this_for_speed_p
)
6814 > set_src_cost (temp2
, optimize_this_for_speed_p
))
6816 else if (set_src_cost (x
, optimize_this_for_speed_p
)
6817 > set_src_cost (temp
, optimize_this_for_speed_p
))
6823 /* We can optimize some special cases of ZERO_EXTEND. */
6824 if (GET_CODE (x
) == ZERO_EXTEND
)
6826 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6827 know that the last value didn't have any inappropriate bits
6829 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
6830 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
6831 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6832 && (nonzero_bits (XEXP (XEXP (x
, 0), 0), GET_MODE (x
))
6833 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6834 return XEXP (XEXP (x
, 0), 0);
6836 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6837 if (GET_CODE (XEXP (x
, 0)) == SUBREG
6838 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
6839 && subreg_lowpart_p (XEXP (x
, 0))
6840 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
))
6841 && (nonzero_bits (SUBREG_REG (XEXP (x
, 0)), GET_MODE (x
))
6842 & ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6843 return SUBREG_REG (XEXP (x
, 0));
6845 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6846 is a comparison and STORE_FLAG_VALUE permits. This is like
6847 the first case, but it works even when GET_MODE (x) is larger
6848 than HOST_WIDE_INT. */
6849 if (GET_CODE (XEXP (x
, 0)) == TRUNCATE
6850 && GET_MODE (XEXP (XEXP (x
, 0), 0)) == GET_MODE (x
)
6851 && COMPARISON_P (XEXP (XEXP (x
, 0), 0))
6852 && (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
6853 <= HOST_BITS_PER_WIDE_INT
)
6854 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6855 return XEXP (XEXP (x
, 0), 0);
6857 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6858 if (GET_CODE (XEXP (x
, 0)) == SUBREG
6859 && GET_MODE (SUBREG_REG (XEXP (x
, 0))) == GET_MODE (x
)
6860 && subreg_lowpart_p (XEXP (x
, 0))
6861 && COMPARISON_P (SUBREG_REG (XEXP (x
, 0)))
6862 && (GET_MODE_PRECISION (GET_MODE (XEXP (x
, 0)))
6863 <= HOST_BITS_PER_WIDE_INT
)
6864 && (STORE_FLAG_VALUE
& ~GET_MODE_MASK (GET_MODE (XEXP (x
, 0)))) == 0)
6865 return SUBREG_REG (XEXP (x
, 0));
6869 /* If we reach here, we want to return a pair of shifts. The inner
6870 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6871 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6872 logical depending on the value of UNSIGNEDP.
6874 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6875 converted into an AND of a shift.
6877 We must check for the case where the left shift would have a negative
6878 count. This can happen in a case like (x >> 31) & 255 on machines
6879 that can't shift by a constant. On those machines, we would first
6880 combine the shift with the AND to produce a variable-position
6881 extraction. Then the constant of 31 would be substituted in
6882 to produce such a position. */
6884 modewidth
= GET_MODE_PRECISION (GET_MODE (x
));
6885 if (modewidth
>= pos
+ len
)
6887 machine_mode mode
= GET_MODE (x
);
6888 tem
= gen_lowpart (mode
, XEXP (x
, 0));
6889 if (!tem
|| GET_CODE (tem
) == CLOBBER
)
6891 tem
= simplify_shift_const (NULL_RTX
, ASHIFT
, mode
,
6892 tem
, modewidth
- pos
- len
);
6893 tem
= simplify_shift_const (NULL_RTX
, unsignedp
? LSHIFTRT
: ASHIFTRT
,
6894 mode
, tem
, modewidth
- len
);
6896 else if (unsignedp
&& len
< HOST_BITS_PER_WIDE_INT
)
6897 tem
= simplify_and_const_int (NULL_RTX
, GET_MODE (x
),
6898 simplify_shift_const (NULL_RTX
, LSHIFTRT
,
6901 ((unsigned HOST_WIDE_INT
) 1 << len
) - 1);
6903 /* Any other cases we can't handle. */
6906 /* If we couldn't do this for some reason, return the original
6908 if (GET_CODE (tem
) == CLOBBER
)
6914 /* X is a SET which contains an assignment of one object into
6915 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6916 or certain SUBREGS). If possible, convert it into a series of
6919 We half-heartedly support variable positions, but do not at all
6920 support variable lengths. */
6923 expand_field_assignment (const_rtx x
)
6926 rtx pos
; /* Always counts from low bit. */
6928 rtx mask
, cleared
, masked
;
6929 machine_mode compute_mode
;
6931 /* Loop until we find something we can't simplify. */
6934 if (GET_CODE (SET_DEST (x
)) == STRICT_LOW_PART
6935 && GET_CODE (XEXP (SET_DEST (x
), 0)) == SUBREG
)
6937 inner
= SUBREG_REG (XEXP (SET_DEST (x
), 0));
6938 len
= GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x
), 0)));
6939 pos
= GEN_INT (subreg_lsb (XEXP (SET_DEST (x
), 0)));
6941 else if (GET_CODE (SET_DEST (x
)) == ZERO_EXTRACT
6942 && CONST_INT_P (XEXP (SET_DEST (x
), 1)))
6944 inner
= XEXP (SET_DEST (x
), 0);
6945 len
= INTVAL (XEXP (SET_DEST (x
), 1));
6946 pos
= XEXP (SET_DEST (x
), 2);
6948 /* A constant position should stay within the width of INNER. */
6949 if (CONST_INT_P (pos
)
6950 && INTVAL (pos
) + len
> GET_MODE_PRECISION (GET_MODE (inner
)))
6953 if (BITS_BIG_ENDIAN
)
6955 if (CONST_INT_P (pos
))
6956 pos
= GEN_INT (GET_MODE_PRECISION (GET_MODE (inner
)) - len
6958 else if (GET_CODE (pos
) == MINUS
6959 && CONST_INT_P (XEXP (pos
, 1))
6960 && (INTVAL (XEXP (pos
, 1))
6961 == GET_MODE_PRECISION (GET_MODE (inner
)) - len
))
6962 /* If position is ADJUST - X, new position is X. */
6963 pos
= XEXP (pos
, 0);
6966 HOST_WIDE_INT prec
= GET_MODE_PRECISION (GET_MODE (inner
));
6967 pos
= simplify_gen_binary (MINUS
, GET_MODE (pos
),
6968 gen_int_mode (prec
- len
,
6975 /* A SUBREG between two modes that occupy the same numbers of words
6976 can be done by moving the SUBREG to the source. */
6977 else if (GET_CODE (SET_DEST (x
)) == SUBREG
6978 /* We need SUBREGs to compute nonzero_bits properly. */
6979 && nonzero_sign_valid
6980 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x
)))
6981 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
6982 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x
))))
6983 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)))
6985 x
= gen_rtx_SET (VOIDmode
, SUBREG_REG (SET_DEST (x
)),
6987 (GET_MODE (SUBREG_REG (SET_DEST (x
))),
6994 while (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
6995 inner
= SUBREG_REG (inner
);
6997 compute_mode
= GET_MODE (inner
);
6999 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7000 if (! SCALAR_INT_MODE_P (compute_mode
))
7004 /* Don't do anything for vector or complex integral types. */
7005 if (! FLOAT_MODE_P (compute_mode
))
7008 /* Try to find an integral mode to pun with. */
7009 imode
= mode_for_size (GET_MODE_BITSIZE (compute_mode
), MODE_INT
, 0);
7010 if (imode
== BLKmode
)
7013 compute_mode
= imode
;
7014 inner
= gen_lowpart (imode
, inner
);
7017 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7018 if (len
>= HOST_BITS_PER_WIDE_INT
)
7021 /* Now compute the equivalent expression. Make a copy of INNER
7022 for the SET_DEST in case it is a MEM into which we will substitute;
7023 we don't want shared RTL in that case. */
7024 mask
= gen_int_mode (((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
7026 cleared
= simplify_gen_binary (AND
, compute_mode
,
7027 simplify_gen_unary (NOT
, compute_mode
,
7028 simplify_gen_binary (ASHIFT
,
7033 masked
= simplify_gen_binary (ASHIFT
, compute_mode
,
7034 simplify_gen_binary (
7036 gen_lowpart (compute_mode
, SET_SRC (x
)),
7040 x
= gen_rtx_SET (VOIDmode
, copy_rtx (inner
),
7041 simplify_gen_binary (IOR
, compute_mode
,
7048 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7049 it is an RTX that represents the (variable) starting position; otherwise,
7050 POS is the (constant) starting bit position. Both are counted from the LSB.
7052 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7054 IN_DEST is nonzero if this is a reference in the destination of a SET.
7055 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7056 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7059 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7060 ZERO_EXTRACT should be built even for bits starting at bit 0.
7062 MODE is the desired mode of the result (if IN_DEST == 0).
7064 The result is an RTX for the extraction or NULL_RTX if the target
7068 make_extraction (machine_mode mode
, rtx inner
, HOST_WIDE_INT pos
,
7069 rtx pos_rtx
, unsigned HOST_WIDE_INT len
, int unsignedp
,
7070 int in_dest
, int in_compare
)
7072 /* This mode describes the size of the storage area
7073 to fetch the overall value from. Within that, we
7074 ignore the POS lowest bits, etc. */
7075 machine_mode is_mode
= GET_MODE (inner
);
7076 machine_mode inner_mode
;
7077 machine_mode wanted_inner_mode
;
7078 machine_mode wanted_inner_reg_mode
= word_mode
;
7079 machine_mode pos_mode
= word_mode
;
7080 machine_mode extraction_mode
= word_mode
;
7081 machine_mode tmode
= mode_for_size (len
, MODE_INT
, 1);
7083 rtx orig_pos_rtx
= pos_rtx
;
7084 HOST_WIDE_INT orig_pos
;
7086 if (pos_rtx
&& CONST_INT_P (pos_rtx
))
7087 pos
= INTVAL (pos_rtx
), pos_rtx
= 0;
7089 if (GET_CODE (inner
) == SUBREG
&& subreg_lowpart_p (inner
))
7091 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7092 consider just the QI as the memory to extract from.
7093 The subreg adds or removes high bits; its mode is
7094 irrelevant to the meaning of this extraction,
7095 since POS and LEN count from the lsb. */
7096 if (MEM_P (SUBREG_REG (inner
)))
7097 is_mode
= GET_MODE (SUBREG_REG (inner
));
7098 inner
= SUBREG_REG (inner
);
7100 else if (GET_CODE (inner
) == ASHIFT
7101 && CONST_INT_P (XEXP (inner
, 1))
7102 && pos_rtx
== 0 && pos
== 0
7103 && len
> UINTVAL (XEXP (inner
, 1)))
7105 /* We're extracting the least significant bits of an rtx
7106 (ashift X (const_int C)), where LEN > C. Extract the
7107 least significant (LEN - C) bits of X, giving an rtx
7108 whose mode is MODE, then shift it left C times. */
7109 new_rtx
= make_extraction (mode
, XEXP (inner
, 0),
7110 0, 0, len
- INTVAL (XEXP (inner
, 1)),
7111 unsignedp
, in_dest
, in_compare
);
7113 return gen_rtx_ASHIFT (mode
, new_rtx
, XEXP (inner
, 1));
7115 else if (GET_CODE (inner
) == TRUNCATE
)
7116 inner
= XEXP (inner
, 0);
7118 inner_mode
= GET_MODE (inner
);
7120 /* See if this can be done without an extraction. We never can if the
7121 width of the field is not the same as that of some integer mode. For
7122 registers, we can only avoid the extraction if the position is at the
7123 low-order bit and this is either not in the destination or we have the
7124 appropriate STRICT_LOW_PART operation available.
7126 For MEM, we can avoid an extract if the field starts on an appropriate
7127 boundary and we can change the mode of the memory reference. */
7129 if (tmode
!= BLKmode
7130 && ((pos_rtx
== 0 && (pos
% BITS_PER_WORD
) == 0
7132 && (inner_mode
== tmode
7134 || TRULY_NOOP_TRUNCATION_MODES_P (tmode
, inner_mode
)
7135 || reg_truncated_to_mode (tmode
, inner
))
7138 && have_insn_for (STRICT_LOW_PART
, tmode
))))
7139 || (MEM_P (inner
) && pos_rtx
== 0
7141 % (STRICT_ALIGNMENT
? GET_MODE_ALIGNMENT (tmode
)
7142 : BITS_PER_UNIT
)) == 0
7143 /* We can't do this if we are widening INNER_MODE (it
7144 may not be aligned, for one thing). */
7145 && GET_MODE_PRECISION (inner_mode
) >= GET_MODE_PRECISION (tmode
)
7146 && (inner_mode
== tmode
7147 || (! mode_dependent_address_p (XEXP (inner
, 0),
7148 MEM_ADDR_SPACE (inner
))
7149 && ! MEM_VOLATILE_P (inner
))))))
7151 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7152 field. If the original and current mode are the same, we need not
7153 adjust the offset. Otherwise, we do if bytes big endian.
7155 If INNER is not a MEM, get a piece consisting of just the field
7156 of interest (in this case POS % BITS_PER_WORD must be 0). */
7160 HOST_WIDE_INT offset
;
7162 /* POS counts from lsb, but make OFFSET count in memory order. */
7163 if (BYTES_BIG_ENDIAN
)
7164 offset
= (GET_MODE_PRECISION (is_mode
) - len
- pos
) / BITS_PER_UNIT
;
7166 offset
= pos
/ BITS_PER_UNIT
;
7168 new_rtx
= adjust_address_nv (inner
, tmode
, offset
);
7170 else if (REG_P (inner
))
7172 if (tmode
!= inner_mode
)
7174 /* We can't call gen_lowpart in a DEST since we
7175 always want a SUBREG (see below) and it would sometimes
7176 return a new hard register. */
7179 HOST_WIDE_INT final_word
= pos
/ BITS_PER_WORD
;
7181 if (WORDS_BIG_ENDIAN
7182 && GET_MODE_SIZE (inner_mode
) > UNITS_PER_WORD
)
7183 final_word
= ((GET_MODE_SIZE (inner_mode
)
7184 - GET_MODE_SIZE (tmode
))
7185 / UNITS_PER_WORD
) - final_word
;
7187 final_word
*= UNITS_PER_WORD
;
7188 if (BYTES_BIG_ENDIAN
&&
7189 GET_MODE_SIZE (inner_mode
) > GET_MODE_SIZE (tmode
))
7190 final_word
+= (GET_MODE_SIZE (inner_mode
)
7191 - GET_MODE_SIZE (tmode
)) % UNITS_PER_WORD
;
7193 /* Avoid creating invalid subregs, for example when
7194 simplifying (x>>32)&255. */
7195 if (!validate_subreg (tmode
, inner_mode
, inner
, final_word
))
7198 new_rtx
= gen_rtx_SUBREG (tmode
, inner
, final_word
);
7201 new_rtx
= gen_lowpart (tmode
, inner
);
7207 new_rtx
= force_to_mode (inner
, tmode
,
7208 len
>= HOST_BITS_PER_WIDE_INT
7209 ? ~(unsigned HOST_WIDE_INT
) 0
7210 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
7213 /* If this extraction is going into the destination of a SET,
7214 make a STRICT_LOW_PART unless we made a MEM. */
7217 return (MEM_P (new_rtx
) ? new_rtx
7218 : (GET_CODE (new_rtx
) != SUBREG
7219 ? gen_rtx_CLOBBER (tmode
, const0_rtx
)
7220 : gen_rtx_STRICT_LOW_PART (VOIDmode
, new_rtx
)));
7225 if (CONST_SCALAR_INT_P (new_rtx
))
7226 return simplify_unary_operation (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7227 mode
, new_rtx
, tmode
);
7229 /* If we know that no extraneous bits are set, and that the high
7230 bit is not set, convert the extraction to the cheaper of
7231 sign and zero extension, that are equivalent in these cases. */
7232 if (flag_expensive_optimizations
7233 && (HWI_COMPUTABLE_MODE_P (tmode
)
7234 && ((nonzero_bits (new_rtx
, tmode
)
7235 & ~(((unsigned HOST_WIDE_INT
)GET_MODE_MASK (tmode
)) >> 1))
7238 rtx temp
= gen_rtx_ZERO_EXTEND (mode
, new_rtx
);
7239 rtx temp1
= gen_rtx_SIGN_EXTEND (mode
, new_rtx
);
7241 /* Prefer ZERO_EXTENSION, since it gives more information to
7243 if (set_src_cost (temp
, optimize_this_for_speed_p
)
7244 <= set_src_cost (temp1
, optimize_this_for_speed_p
))
7249 /* Otherwise, sign- or zero-extend unless we already are in the
7252 return (gen_rtx_fmt_e (unsignedp
? ZERO_EXTEND
: SIGN_EXTEND
,
7256 /* Unless this is a COMPARE or we have a funny memory reference,
7257 don't do anything with zero-extending field extracts starting at
7258 the low-order bit since they are simple AND operations. */
7259 if (pos_rtx
== 0 && pos
== 0 && ! in_dest
7260 && ! in_compare
&& unsignedp
)
7263 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7264 if the position is not a constant and the length is not 1. In all
7265 other cases, we would only be going outside our object in cases when
7266 an original shift would have been undefined. */
7268 && ((pos_rtx
== 0 && pos
+ len
> GET_MODE_PRECISION (is_mode
))
7269 || (pos_rtx
!= 0 && len
!= 1)))
7272 enum extraction_pattern pattern
= (in_dest
? EP_insv
7273 : unsignedp
? EP_extzv
: EP_extv
);
7275 /* If INNER is not from memory, we want it to have the mode of a register
7276 extraction pattern's structure operand, or word_mode if there is no
7277 such pattern. The same applies to extraction_mode and pos_mode
7278 and their respective operands.
7280 For memory, assume that the desired extraction_mode and pos_mode
7281 are the same as for a register operation, since at present we don't
7282 have named patterns for aligned memory structures. */
7283 struct extraction_insn insn
;
7284 if (get_best_reg_extraction_insn (&insn
, pattern
,
7285 GET_MODE_BITSIZE (inner_mode
), mode
))
7287 wanted_inner_reg_mode
= insn
.struct_mode
;
7288 pos_mode
= insn
.pos_mode
;
7289 extraction_mode
= insn
.field_mode
;
7292 /* Never narrow an object, since that might not be safe. */
7294 if (mode
!= VOIDmode
7295 && GET_MODE_SIZE (extraction_mode
) < GET_MODE_SIZE (mode
))
7296 extraction_mode
= mode
;
7299 wanted_inner_mode
= wanted_inner_reg_mode
;
7302 /* Be careful not to go beyond the extracted object and maintain the
7303 natural alignment of the memory. */
7304 wanted_inner_mode
= smallest_mode_for_size (len
, MODE_INT
);
7305 while (pos
% GET_MODE_BITSIZE (wanted_inner_mode
) + len
7306 > GET_MODE_BITSIZE (wanted_inner_mode
))
7308 wanted_inner_mode
= GET_MODE_WIDER_MODE (wanted_inner_mode
);
7309 gcc_assert (wanted_inner_mode
!= VOIDmode
);
7315 if (BITS_BIG_ENDIAN
)
7317 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7318 BITS_BIG_ENDIAN style. If position is constant, compute new
7319 position. Otherwise, build subtraction.
7320 Note that POS is relative to the mode of the original argument.
7321 If it's a MEM we need to recompute POS relative to that.
7322 However, if we're extracting from (or inserting into) a register,
7323 we want to recompute POS relative to wanted_inner_mode. */
7324 int width
= (MEM_P (inner
)
7325 ? GET_MODE_BITSIZE (is_mode
)
7326 : GET_MODE_BITSIZE (wanted_inner_mode
));
7329 pos
= width
- len
- pos
;
7332 = gen_rtx_MINUS (GET_MODE (pos_rtx
),
7333 gen_int_mode (width
- len
, GET_MODE (pos_rtx
)),
7335 /* POS may be less than 0 now, but we check for that below.
7336 Note that it can only be less than 0 if !MEM_P (inner). */
7339 /* If INNER has a wider mode, and this is a constant extraction, try to
7340 make it smaller and adjust the byte to point to the byte containing
7342 if (wanted_inner_mode
!= VOIDmode
7343 && inner_mode
!= wanted_inner_mode
7345 && GET_MODE_SIZE (wanted_inner_mode
) < GET_MODE_SIZE (is_mode
)
7347 && ! mode_dependent_address_p (XEXP (inner
, 0), MEM_ADDR_SPACE (inner
))
7348 && ! MEM_VOLATILE_P (inner
))
7352 /* The computations below will be correct if the machine is big
7353 endian in both bits and bytes or little endian in bits and bytes.
7354 If it is mixed, we must adjust. */
7356 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7357 adjust OFFSET to compensate. */
7358 if (BYTES_BIG_ENDIAN
7359 && GET_MODE_SIZE (inner_mode
) < GET_MODE_SIZE (is_mode
))
7360 offset
-= GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (inner_mode
);
7362 /* We can now move to the desired byte. */
7363 offset
+= (pos
/ GET_MODE_BITSIZE (wanted_inner_mode
))
7364 * GET_MODE_SIZE (wanted_inner_mode
);
7365 pos
%= GET_MODE_BITSIZE (wanted_inner_mode
);
7367 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
7368 && is_mode
!= wanted_inner_mode
)
7369 offset
= (GET_MODE_SIZE (is_mode
)
7370 - GET_MODE_SIZE (wanted_inner_mode
) - offset
);
7372 inner
= adjust_address_nv (inner
, wanted_inner_mode
, offset
);
7375 /* If INNER is not memory, get it into the proper mode. If we are changing
7376 its mode, POS must be a constant and smaller than the size of the new
7378 else if (!MEM_P (inner
))
7380 /* On the LHS, don't create paradoxical subregs implicitely truncating
7381 the register unless TRULY_NOOP_TRUNCATION. */
7383 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner
),
7387 if (GET_MODE (inner
) != wanted_inner_mode
7389 || orig_pos
+ len
> GET_MODE_BITSIZE (wanted_inner_mode
)))
7395 inner
= force_to_mode (inner
, wanted_inner_mode
,
7397 || len
+ orig_pos
>= HOST_BITS_PER_WIDE_INT
7398 ? ~(unsigned HOST_WIDE_INT
) 0
7399 : ((((unsigned HOST_WIDE_INT
) 1 << len
) - 1)
7404 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7405 have to zero extend. Otherwise, we can just use a SUBREG. */
7407 && GET_MODE_SIZE (pos_mode
) > GET_MODE_SIZE (GET_MODE (pos_rtx
)))
7409 rtx temp
= simplify_gen_unary (ZERO_EXTEND
, pos_mode
, pos_rtx
,
7410 GET_MODE (pos_rtx
));
7412 /* If we know that no extraneous bits are set, and that the high
7413 bit is not set, convert extraction to cheaper one - either
7414 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7416 if (flag_expensive_optimizations
7417 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx
))
7418 && ((nonzero_bits (pos_rtx
, GET_MODE (pos_rtx
))
7419 & ~(((unsigned HOST_WIDE_INT
)
7420 GET_MODE_MASK (GET_MODE (pos_rtx
)))
7424 rtx temp1
= simplify_gen_unary (SIGN_EXTEND
, pos_mode
, pos_rtx
,
7425 GET_MODE (pos_rtx
));
7427 /* Prefer ZERO_EXTENSION, since it gives more information to
7429 if (set_src_cost (temp1
, optimize_this_for_speed_p
)
7430 < set_src_cost (temp
, optimize_this_for_speed_p
))
7436 /* Make POS_RTX unless we already have it and it is correct. If we don't
7437 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7439 if (pos_rtx
== 0 && orig_pos_rtx
!= 0 && INTVAL (orig_pos_rtx
) == pos
)
7440 pos_rtx
= orig_pos_rtx
;
7442 else if (pos_rtx
== 0)
7443 pos_rtx
= GEN_INT (pos
);
7445 /* Make the required operation. See if we can use existing rtx. */
7446 new_rtx
= gen_rtx_fmt_eee (unsignedp
? ZERO_EXTRACT
: SIGN_EXTRACT
,
7447 extraction_mode
, inner
, GEN_INT (len
), pos_rtx
);
7449 new_rtx
= gen_lowpart (mode
, new_rtx
);
7454 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
7455 with any other operations in X. Return X without that shift if so. */
7458 extract_left_shift (rtx x
, int count
)
7460 enum rtx_code code
= GET_CODE (x
);
7461 machine_mode mode
= GET_MODE (x
);
7467 /* This is the shift itself. If it is wide enough, we will return
7468 either the value being shifted if the shift count is equal to
7469 COUNT or a shift for the difference. */
7470 if (CONST_INT_P (XEXP (x
, 1))
7471 && INTVAL (XEXP (x
, 1)) >= count
)
7472 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (x
, 0),
7473 INTVAL (XEXP (x
, 1)) - count
);
7477 if ((tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
7478 return simplify_gen_unary (code
, mode
, tem
, mode
);
7482 case PLUS
: case IOR
: case XOR
: case AND
:
7483 /* If we can safely shift this constant and we find the inner shift,
7484 make a new operation. */
7485 if (CONST_INT_P (XEXP (x
, 1))
7486 && (UINTVAL (XEXP (x
, 1))
7487 & ((((unsigned HOST_WIDE_INT
) 1 << count
)) - 1)) == 0
7488 && (tem
= extract_left_shift (XEXP (x
, 0), count
)) != 0)
7490 HOST_WIDE_INT val
= INTVAL (XEXP (x
, 1)) >> count
;
7491 return simplify_gen_binary (code
, mode
, tem
,
7492 gen_int_mode (val
, mode
));
7503 /* Look at the expression rooted at X. Look for expressions
7504 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
7505 Form these expressions.
7507 Return the new rtx, usually just X.
7509 Also, for machines like the VAX that don't have logical shift insns,
7510 try to convert logical to arithmetic shift operations in cases where
7511 they are equivalent. This undoes the canonicalizations to logical
7512 shifts done elsewhere.
7514 We try, as much as possible, to re-use rtl expressions to save memory.
7516 IN_CODE says what kind of expression we are processing. Normally, it is
7517 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
7518 being kludges), it is MEM. When processing the arguments of a comparison
7519 or a COMPARE against zero, it is COMPARE. */
7522 make_compound_operation (rtx x
, enum rtx_code in_code
)
7524 enum rtx_code code
= GET_CODE (x
);
7525 machine_mode mode
= GET_MODE (x
);
7526 int mode_width
= GET_MODE_PRECISION (mode
);
7528 enum rtx_code next_code
;
7534 /* Select the code to be used in recursive calls. Once we are inside an
7535 address, we stay there. If we have a comparison, set to COMPARE,
7536 but once inside, go back to our default of SET. */
7538 next_code
= (code
== MEM
? MEM
7539 : ((code
== PLUS
|| code
== MINUS
)
7540 && SCALAR_INT_MODE_P (mode
)) ? MEM
7541 : ((code
== COMPARE
|| COMPARISON_P (x
))
7542 && XEXP (x
, 1) == const0_rtx
) ? COMPARE
7543 : in_code
== COMPARE
? SET
: in_code
);
7545 /* Process depending on the code of this operation. If NEW is set
7546 nonzero, it will be returned. */
7551 /* Convert shifts by constants into multiplications if inside
7553 if (in_code
== MEM
&& CONST_INT_P (XEXP (x
, 1))
7554 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
7555 && INTVAL (XEXP (x
, 1)) >= 0
7556 && SCALAR_INT_MODE_P (mode
))
7558 HOST_WIDE_INT count
= INTVAL (XEXP (x
, 1));
7559 HOST_WIDE_INT multval
= (HOST_WIDE_INT
) 1 << count
;
7561 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7562 if (GET_CODE (new_rtx
) == NEG
)
7564 new_rtx
= XEXP (new_rtx
, 0);
7567 multval
= trunc_int_for_mode (multval
, mode
);
7568 new_rtx
= gen_rtx_MULT (mode
, new_rtx
, gen_int_mode (multval
, mode
));
7575 lhs
= make_compound_operation (lhs
, next_code
);
7576 rhs
= make_compound_operation (rhs
, next_code
);
7577 if (GET_CODE (lhs
) == MULT
&& GET_CODE (XEXP (lhs
, 0)) == NEG
7578 && SCALAR_INT_MODE_P (mode
))
7580 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (lhs
, 0), 0),
7582 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7584 else if (GET_CODE (lhs
) == MULT
7585 && (CONST_INT_P (XEXP (lhs
, 1)) && INTVAL (XEXP (lhs
, 1)) < 0))
7587 tem
= simplify_gen_binary (MULT
, mode
, XEXP (lhs
, 0),
7588 simplify_gen_unary (NEG
, mode
,
7591 new_rtx
= simplify_gen_binary (MINUS
, mode
, rhs
, tem
);
7595 SUBST (XEXP (x
, 0), lhs
);
7596 SUBST (XEXP (x
, 1), rhs
);
7599 x
= gen_lowpart (mode
, new_rtx
);
7605 lhs
= make_compound_operation (lhs
, next_code
);
7606 rhs
= make_compound_operation (rhs
, next_code
);
7607 if (GET_CODE (rhs
) == MULT
&& GET_CODE (XEXP (rhs
, 0)) == NEG
7608 && SCALAR_INT_MODE_P (mode
))
7610 tem
= simplify_gen_binary (MULT
, mode
, XEXP (XEXP (rhs
, 0), 0),
7612 new_rtx
= simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7614 else if (GET_CODE (rhs
) == MULT
7615 && (CONST_INT_P (XEXP (rhs
, 1)) && INTVAL (XEXP (rhs
, 1)) < 0))
7617 tem
= simplify_gen_binary (MULT
, mode
, XEXP (rhs
, 0),
7618 simplify_gen_unary (NEG
, mode
,
7621 new_rtx
= simplify_gen_binary (PLUS
, mode
, tem
, lhs
);
7625 SUBST (XEXP (x
, 0), lhs
);
7626 SUBST (XEXP (x
, 1), rhs
);
7629 return gen_lowpart (mode
, new_rtx
);
7632 /* If the second operand is not a constant, we can't do anything
7634 if (!CONST_INT_P (XEXP (x
, 1)))
7637 /* If the constant is a power of two minus one and the first operand
7638 is a logical right shift, make an extraction. */
7639 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7640 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7642 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
7643 new_rtx
= make_extraction (mode
, new_rtx
, 0, XEXP (XEXP (x
, 0), 1), i
, 1,
7644 0, in_code
== COMPARE
);
7647 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
7648 else if (GET_CODE (XEXP (x
, 0)) == SUBREG
7649 && subreg_lowpart_p (XEXP (x
, 0))
7650 && GET_CODE (SUBREG_REG (XEXP (x
, 0))) == LSHIFTRT
7651 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7653 new_rtx
= make_compound_operation (XEXP (SUBREG_REG (XEXP (x
, 0)), 0),
7655 new_rtx
= make_extraction (GET_MODE (SUBREG_REG (XEXP (x
, 0))), new_rtx
, 0,
7656 XEXP (SUBREG_REG (XEXP (x
, 0)), 1), i
, 1,
7657 0, in_code
== COMPARE
);
7659 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
7660 else if ((GET_CODE (XEXP (x
, 0)) == XOR
7661 || GET_CODE (XEXP (x
, 0)) == IOR
)
7662 && GET_CODE (XEXP (XEXP (x
, 0), 0)) == LSHIFTRT
7663 && GET_CODE (XEXP (XEXP (x
, 0), 1)) == LSHIFTRT
7664 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7666 /* Apply the distributive law, and then try to make extractions. */
7667 new_rtx
= gen_rtx_fmt_ee (GET_CODE (XEXP (x
, 0)), mode
,
7668 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 0),
7670 gen_rtx_AND (mode
, XEXP (XEXP (x
, 0), 1),
7672 new_rtx
= make_compound_operation (new_rtx
, in_code
);
7675 /* If we are have (and (rotate X C) M) and C is larger than the number
7676 of bits in M, this is an extraction. */
7678 else if (GET_CODE (XEXP (x
, 0)) == ROTATE
7679 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
7680 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0
7681 && i
<= INTVAL (XEXP (XEXP (x
, 0), 1)))
7683 new_rtx
= make_compound_operation (XEXP (XEXP (x
, 0), 0), next_code
);
7684 new_rtx
= make_extraction (mode
, new_rtx
,
7685 (GET_MODE_PRECISION (mode
)
7686 - INTVAL (XEXP (XEXP (x
, 0), 1))),
7687 NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
7690 /* On machines without logical shifts, if the operand of the AND is
7691 a logical shift and our mask turns off all the propagated sign
7692 bits, we can replace the logical shift with an arithmetic shift. */
7693 else if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
7694 && !have_insn_for (LSHIFTRT
, mode
)
7695 && have_insn_for (ASHIFTRT
, mode
)
7696 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
7697 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
7698 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
7699 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
7701 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
7703 mask
>>= INTVAL (XEXP (XEXP (x
, 0), 1));
7704 if ((INTVAL (XEXP (x
, 1)) & ~mask
) == 0)
7706 gen_rtx_ASHIFTRT (mode
,
7707 make_compound_operation
7708 (XEXP (XEXP (x
, 0), 0), next_code
),
7709 XEXP (XEXP (x
, 0), 1)));
7712 /* If the constant is one less than a power of two, this might be
7713 representable by an extraction even if no shift is present.
7714 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
7715 we are in a COMPARE. */
7716 else if ((i
= exact_log2 (UINTVAL (XEXP (x
, 1)) + 1)) >= 0)
7717 new_rtx
= make_extraction (mode
,
7718 make_compound_operation (XEXP (x
, 0),
7720 0, NULL_RTX
, i
, 1, 0, in_code
== COMPARE
);
7722 /* If we are in a comparison and this is an AND with a power of two,
7723 convert this into the appropriate bit extract. */
7724 else if (in_code
== COMPARE
7725 && (i
= exact_log2 (UINTVAL (XEXP (x
, 1)))) >= 0)
7726 new_rtx
= make_extraction (mode
,
7727 make_compound_operation (XEXP (x
, 0),
7729 i
, NULL_RTX
, 1, 1, 0, 1);
7734 /* If the sign bit is known to be zero, replace this with an
7735 arithmetic shift. */
7736 if (have_insn_for (ASHIFTRT
, mode
)
7737 && ! have_insn_for (LSHIFTRT
, mode
)
7738 && mode_width
<= HOST_BITS_PER_WIDE_INT
7739 && (nonzero_bits (XEXP (x
, 0), mode
) & (1 << (mode_width
- 1))) == 0)
7741 new_rtx
= gen_rtx_ASHIFTRT (mode
,
7742 make_compound_operation (XEXP (x
, 0),
7748 /* ... fall through ... */
7754 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7755 this is a SIGN_EXTRACT. */
7756 if (CONST_INT_P (rhs
)
7757 && GET_CODE (lhs
) == ASHIFT
7758 && CONST_INT_P (XEXP (lhs
, 1))
7759 && INTVAL (rhs
) >= INTVAL (XEXP (lhs
, 1))
7760 && INTVAL (XEXP (lhs
, 1)) >= 0
7761 && INTVAL (rhs
) < mode_width
)
7763 new_rtx
= make_compound_operation (XEXP (lhs
, 0), next_code
);
7764 new_rtx
= make_extraction (mode
, new_rtx
,
7765 INTVAL (rhs
) - INTVAL (XEXP (lhs
, 1)),
7766 NULL_RTX
, mode_width
- INTVAL (rhs
),
7767 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
7771 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7772 If so, try to merge the shifts into a SIGN_EXTEND. We could
7773 also do this for some cases of SIGN_EXTRACT, but it doesn't
7774 seem worth the effort; the case checked for occurs on Alpha. */
7777 && ! (GET_CODE (lhs
) == SUBREG
7778 && (OBJECT_P (SUBREG_REG (lhs
))))
7779 && CONST_INT_P (rhs
)
7780 && INTVAL (rhs
) < HOST_BITS_PER_WIDE_INT
7781 && INTVAL (rhs
) < mode_width
7782 && (new_rtx
= extract_left_shift (lhs
, INTVAL (rhs
))) != 0)
7783 new_rtx
= make_extraction (mode
, make_compound_operation (new_rtx
, next_code
),
7784 0, NULL_RTX
, mode_width
- INTVAL (rhs
),
7785 code
== LSHIFTRT
, 0, in_code
== COMPARE
);
7790 /* Call ourselves recursively on the inner expression. If we are
7791 narrowing the object and it has a different RTL code from
7792 what it originally did, do this SUBREG as a force_to_mode. */
7794 rtx inner
= SUBREG_REG (x
), simplified
;
7795 enum rtx_code subreg_code
= in_code
;
7797 /* If in_code is COMPARE, it isn't always safe to pass it through
7798 to the recursive make_compound_operation call. */
7799 if (subreg_code
== COMPARE
7800 && (!subreg_lowpart_p (x
)
7801 || GET_CODE (inner
) == SUBREG
7802 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
7803 is (const_int 0), rather than
7804 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0). */
7805 || (GET_CODE (inner
) == AND
7806 && CONST_INT_P (XEXP (inner
, 1))
7807 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (inner
))
7808 && exact_log2 (UINTVAL (XEXP (inner
, 1)))
7809 >= GET_MODE_BITSIZE (mode
))))
7812 tem
= make_compound_operation (inner
, subreg_code
);
7815 = simplify_subreg (mode
, tem
, GET_MODE (inner
), SUBREG_BYTE (x
));
7819 if (GET_CODE (tem
) != GET_CODE (inner
)
7820 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (inner
))
7821 && subreg_lowpart_p (x
))
7824 = force_to_mode (tem
, mode
, ~(unsigned HOST_WIDE_INT
) 0, 0);
7826 /* If we have something other than a SUBREG, we might have
7827 done an expansion, so rerun ourselves. */
7828 if (GET_CODE (newer
) != SUBREG
)
7829 newer
= make_compound_operation (newer
, in_code
);
7831 /* force_to_mode can expand compounds. If it just re-expanded the
7832 compound, use gen_lowpart to convert to the desired mode. */
7833 if (rtx_equal_p (newer
, x
)
7834 /* Likewise if it re-expanded the compound only partially.
7835 This happens for SUBREG of ZERO_EXTRACT if they extract
7836 the same number of bits. */
7837 || (GET_CODE (newer
) == SUBREG
7838 && (GET_CODE (SUBREG_REG (newer
)) == LSHIFTRT
7839 || GET_CODE (SUBREG_REG (newer
)) == ASHIFTRT
)
7840 && GET_CODE (inner
) == AND
7841 && rtx_equal_p (SUBREG_REG (newer
), XEXP (inner
, 0))))
7842 return gen_lowpart (GET_MODE (x
), tem
);
7858 x
= gen_lowpart (mode
, new_rtx
);
7859 code
= GET_CODE (x
);
7862 /* Now recursively process each operand of this operation. We need to
7863 handle ZERO_EXTEND specially so that we don't lose track of the
7865 if (GET_CODE (x
) == ZERO_EXTEND
)
7867 new_rtx
= make_compound_operation (XEXP (x
, 0), next_code
);
7868 tem
= simplify_const_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
7869 new_rtx
, GET_MODE (XEXP (x
, 0)));
7872 SUBST (XEXP (x
, 0), new_rtx
);
7876 fmt
= GET_RTX_FORMAT (code
);
7877 for (i
= 0; i
< GET_RTX_LENGTH (code
); i
++)
7880 new_rtx
= make_compound_operation (XEXP (x
, i
), next_code
);
7881 SUBST (XEXP (x
, i
), new_rtx
);
7883 else if (fmt
[i
] == 'E')
7884 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
7886 new_rtx
= make_compound_operation (XVECEXP (x
, i
, j
), next_code
);
7887 SUBST (XVECEXP (x
, i
, j
), new_rtx
);
7891 /* If this is a commutative operation, the changes to the operands
7892 may have made it noncanonical. */
7893 if (COMMUTATIVE_ARITH_P (x
)
7894 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
7897 SUBST (XEXP (x
, 0), XEXP (x
, 1));
7898 SUBST (XEXP (x
, 1), tem
);
7904 /* Given M see if it is a value that would select a field of bits
7905 within an item, but not the entire word. Return -1 if not.
7906 Otherwise, return the starting position of the field, where 0 is the
7909 *PLEN is set to the length of the field. */
7912 get_pos_from_mask (unsigned HOST_WIDE_INT m
, unsigned HOST_WIDE_INT
*plen
)
7914 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7915 int pos
= m
? ctz_hwi (m
) : -1;
7919 /* Now shift off the low-order zero bits and see if we have a
7920 power of two minus 1. */
7921 len
= exact_log2 ((m
>> pos
) + 1);
7930 /* If X refers to a register that equals REG in value, replace these
7931 references with REG. */
7933 canon_reg_for_combine (rtx x
, rtx reg
)
7940 enum rtx_code code
= GET_CODE (x
);
7941 switch (GET_RTX_CLASS (code
))
7944 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7945 if (op0
!= XEXP (x
, 0))
7946 return simplify_gen_unary (GET_CODE (x
), GET_MODE (x
), op0
,
7951 case RTX_COMM_ARITH
:
7952 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7953 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7954 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7955 return simplify_gen_binary (GET_CODE (x
), GET_MODE (x
), op0
, op1
);
7959 case RTX_COMM_COMPARE
:
7960 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7961 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7962 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
7963 return simplify_gen_relational (GET_CODE (x
), GET_MODE (x
),
7964 GET_MODE (op0
), op0
, op1
);
7968 case RTX_BITFIELD_OPS
:
7969 op0
= canon_reg_for_combine (XEXP (x
, 0), reg
);
7970 op1
= canon_reg_for_combine (XEXP (x
, 1), reg
);
7971 op2
= canon_reg_for_combine (XEXP (x
, 2), reg
);
7972 if (op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1) || op2
!= XEXP (x
, 2))
7973 return simplify_gen_ternary (GET_CODE (x
), GET_MODE (x
),
7974 GET_MODE (op0
), op0
, op1
, op2
);
7979 if (rtx_equal_p (get_last_value (reg
), x
)
7980 || rtx_equal_p (reg
, get_last_value (x
)))
7989 fmt
= GET_RTX_FORMAT (code
);
7991 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
7994 rtx op
= canon_reg_for_combine (XEXP (x
, i
), reg
);
7995 if (op
!= XEXP (x
, i
))
8005 else if (fmt
[i
] == 'E')
8008 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
8010 rtx op
= canon_reg_for_combine (XVECEXP (x
, i
, j
), reg
);
8011 if (op
!= XVECEXP (x
, i
, j
))
8018 XVECEXP (x
, i
, j
) = op
;
8029 /* Return X converted to MODE. If the value is already truncated to
8030 MODE we can just return a subreg even though in the general case we
8031 would need an explicit truncation. */
8034 gen_lowpart_or_truncate (machine_mode mode
, rtx x
)
8036 if (!CONST_INT_P (x
)
8037 && GET_MODE_SIZE (mode
) < GET_MODE_SIZE (GET_MODE (x
))
8038 && !TRULY_NOOP_TRUNCATION_MODES_P (mode
, GET_MODE (x
))
8039 && !(REG_P (x
) && reg_truncated_to_mode (mode
, x
)))
8041 /* Bit-cast X into an integer mode. */
8042 if (!SCALAR_INT_MODE_P (GET_MODE (x
)))
8043 x
= gen_lowpart (int_mode_for_mode (GET_MODE (x
)), x
);
8044 x
= simplify_gen_unary (TRUNCATE
, int_mode_for_mode (mode
),
8048 return gen_lowpart (mode
, x
);
8051 /* See if X can be simplified knowing that we will only refer to it in
8052 MODE and will only refer to those bits that are nonzero in MASK.
8053 If other bits are being computed or if masking operations are done
8054 that select a superset of the bits in MASK, they can sometimes be
8057 Return a possibly simplified expression, but always convert X to
8058 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8060 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8061 are all off in X. This is used when X will be complemented, by either
8062 NOT, NEG, or XOR. */
8065 force_to_mode (rtx x
, machine_mode mode
, unsigned HOST_WIDE_INT mask
,
8068 enum rtx_code code
= GET_CODE (x
);
8069 int next_select
= just_select
|| code
== XOR
|| code
== NOT
|| code
== NEG
;
8070 machine_mode op_mode
;
8071 unsigned HOST_WIDE_INT fuller_mask
, nonzero
;
8074 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8075 code below will do the wrong thing since the mode of such an
8076 expression is VOIDmode.
8078 Also do nothing if X is a CLOBBER; this can happen if X was
8079 the return value from a call to gen_lowpart. */
8080 if (code
== CALL
|| code
== ASM_OPERANDS
|| code
== CLOBBER
)
8083 /* We want to perform the operation in its present mode unless we know
8084 that the operation is valid in MODE, in which case we do the operation
8086 op_mode
= ((GET_MODE_CLASS (mode
) == GET_MODE_CLASS (GET_MODE (x
))
8087 && have_insn_for (code
, mode
))
8088 ? mode
: GET_MODE (x
));
8090 /* It is not valid to do a right-shift in a narrower mode
8091 than the one it came in with. */
8092 if ((code
== LSHIFTRT
|| code
== ASHIFTRT
)
8093 && GET_MODE_PRECISION (mode
) < GET_MODE_PRECISION (GET_MODE (x
)))
8094 op_mode
= GET_MODE (x
);
8096 /* Truncate MASK to fit OP_MODE. */
8098 mask
&= GET_MODE_MASK (op_mode
);
8100 /* When we have an arithmetic operation, or a shift whose count we
8101 do not know, we need to assume that all bits up to the highest-order
8102 bit in MASK will be needed. This is how we form such a mask. */
8103 if (mask
& ((unsigned HOST_WIDE_INT
) 1 << (HOST_BITS_PER_WIDE_INT
- 1)))
8104 fuller_mask
= ~(unsigned HOST_WIDE_INT
) 0;
8106 fuller_mask
= (((unsigned HOST_WIDE_INT
) 1 << (floor_log2 (mask
) + 1))
8109 /* Determine what bits of X are guaranteed to be (non)zero. */
8110 nonzero
= nonzero_bits (x
, mode
);
8112 /* If none of the bits in X are needed, return a zero. */
8113 if (!just_select
&& (nonzero
& mask
) == 0 && !side_effects_p (x
))
8116 /* If X is a CONST_INT, return a new one. Do this here since the
8117 test below will fail. */
8118 if (CONST_INT_P (x
))
8120 if (SCALAR_INT_MODE_P (mode
))
8121 return gen_int_mode (INTVAL (x
) & mask
, mode
);
8124 x
= GEN_INT (INTVAL (x
) & mask
);
8125 return gen_lowpart_common (mode
, x
);
8129 /* If X is narrower than MODE and we want all the bits in X's mode, just
8130 get X in the proper mode. */
8131 if (GET_MODE_SIZE (GET_MODE (x
)) < GET_MODE_SIZE (mode
)
8132 && (GET_MODE_MASK (GET_MODE (x
)) & ~mask
) == 0)
8133 return gen_lowpart (mode
, x
);
8135 /* We can ignore the effect of a SUBREG if it narrows the mode or
8136 if the constant masks to zero all the bits the mode doesn't have. */
8137 if (GET_CODE (x
) == SUBREG
8138 && subreg_lowpart_p (x
)
8139 && ((GET_MODE_SIZE (GET_MODE (x
))
8140 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x
))))
8142 & GET_MODE_MASK (GET_MODE (x
))
8143 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x
)))))))
8144 return force_to_mode (SUBREG_REG (x
), mode
, mask
, next_select
);
8146 /* The arithmetic simplifications here only work for scalar integer modes. */
8147 if (!SCALAR_INT_MODE_P (mode
) || !SCALAR_INT_MODE_P (GET_MODE (x
)))
8148 return gen_lowpart_or_truncate (mode
, x
);
8153 /* If X is a (clobber (const_int)), return it since we know we are
8154 generating something that won't match. */
8161 x
= expand_compound_operation (x
);
8162 if (GET_CODE (x
) != code
)
8163 return force_to_mode (x
, mode
, mask
, next_select
);
8167 /* Similarly for a truncate. */
8168 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8171 /* If this is an AND with a constant, convert it into an AND
8172 whose constant is the AND of that constant with MASK. If it
8173 remains an AND of MASK, delete it since it is redundant. */
8175 if (CONST_INT_P (XEXP (x
, 1)))
8177 x
= simplify_and_const_int (x
, op_mode
, XEXP (x
, 0),
8178 mask
& INTVAL (XEXP (x
, 1)));
8180 /* If X is still an AND, see if it is an AND with a mask that
8181 is just some low-order bits. If so, and it is MASK, we don't
8184 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8185 && ((INTVAL (XEXP (x
, 1)) & GET_MODE_MASK (GET_MODE (x
)))
8189 /* If it remains an AND, try making another AND with the bits
8190 in the mode mask that aren't in MASK turned on. If the
8191 constant in the AND is wide enough, this might make a
8192 cheaper constant. */
8194 if (GET_CODE (x
) == AND
&& CONST_INT_P (XEXP (x
, 1))
8195 && GET_MODE_MASK (GET_MODE (x
)) != mask
8196 && HWI_COMPUTABLE_MODE_P (GET_MODE (x
)))
8198 unsigned HOST_WIDE_INT cval
8199 = UINTVAL (XEXP (x
, 1))
8200 | (GET_MODE_MASK (GET_MODE (x
)) & ~mask
);
8203 y
= simplify_gen_binary (AND
, GET_MODE (x
), XEXP (x
, 0),
8204 gen_int_mode (cval
, GET_MODE (x
)));
8205 if (set_src_cost (y
, optimize_this_for_speed_p
)
8206 < set_src_cost (x
, optimize_this_for_speed_p
))
8216 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8217 low-order bits (as in an alignment operation) and FOO is already
8218 aligned to that boundary, mask C1 to that boundary as well.
8219 This may eliminate that PLUS and, later, the AND. */
8222 unsigned int width
= GET_MODE_PRECISION (mode
);
8223 unsigned HOST_WIDE_INT smask
= mask
;
8225 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8226 number, sign extend it. */
8228 if (width
< HOST_BITS_PER_WIDE_INT
8229 && (smask
& (HOST_WIDE_INT_1U
<< (width
- 1))) != 0)
8230 smask
|= HOST_WIDE_INT_M1U
<< width
;
8232 if (CONST_INT_P (XEXP (x
, 1))
8233 && exact_log2 (- smask
) >= 0
8234 && (nonzero_bits (XEXP (x
, 0), mode
) & ~smask
) == 0
8235 && (INTVAL (XEXP (x
, 1)) & ~smask
) != 0)
8236 return force_to_mode (plus_constant (GET_MODE (x
), XEXP (x
, 0),
8237 (INTVAL (XEXP (x
, 1)) & smask
)),
8238 mode
, smask
, next_select
);
8241 /* ... fall through ... */
8244 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8245 most significant bit in MASK since carries from those bits will
8246 affect the bits we are interested in. */
8251 /* If X is (minus C Y) where C's least set bit is larger than any bit
8252 in the mask, then we may replace with (neg Y). */
8253 if (CONST_INT_P (XEXP (x
, 0))
8254 && ((UINTVAL (XEXP (x
, 0)) & -UINTVAL (XEXP (x
, 0))) > mask
))
8256 x
= simplify_gen_unary (NEG
, GET_MODE (x
), XEXP (x
, 1),
8258 return force_to_mode (x
, mode
, mask
, next_select
);
8261 /* Similarly, if C contains every bit in the fuller_mask, then we may
8262 replace with (not Y). */
8263 if (CONST_INT_P (XEXP (x
, 0))
8264 && ((UINTVAL (XEXP (x
, 0)) | fuller_mask
) == UINTVAL (XEXP (x
, 0))))
8266 x
= simplify_gen_unary (NOT
, GET_MODE (x
),
8267 XEXP (x
, 1), GET_MODE (x
));
8268 return force_to_mode (x
, mode
, mask
, next_select
);
8276 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8277 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8278 operation which may be a bitfield extraction. Ensure that the
8279 constant we form is not wider than the mode of X. */
8281 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8282 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8283 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8284 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
8285 && CONST_INT_P (XEXP (x
, 1))
8286 && ((INTVAL (XEXP (XEXP (x
, 0), 1))
8287 + floor_log2 (INTVAL (XEXP (x
, 1))))
8288 < GET_MODE_PRECISION (GET_MODE (x
)))
8289 && (UINTVAL (XEXP (x
, 1))
8290 & ~nonzero_bits (XEXP (x
, 0), GET_MODE (x
))) == 0)
8292 temp
= gen_int_mode ((INTVAL (XEXP (x
, 1)) & mask
)
8293 << INTVAL (XEXP (XEXP (x
, 0), 1)),
8295 temp
= simplify_gen_binary (GET_CODE (x
), GET_MODE (x
),
8296 XEXP (XEXP (x
, 0), 0), temp
);
8297 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), temp
,
8298 XEXP (XEXP (x
, 0), 1));
8299 return force_to_mode (x
, mode
, mask
, next_select
);
8303 /* For most binary operations, just propagate into the operation and
8304 change the mode if we have an operation of that mode. */
8306 op0
= force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8307 op1
= force_to_mode (XEXP (x
, 1), mode
, mask
, next_select
);
8309 /* If we ended up truncating both operands, truncate the result of the
8310 operation instead. */
8311 if (GET_CODE (op0
) == TRUNCATE
8312 && GET_CODE (op1
) == TRUNCATE
)
8314 op0
= XEXP (op0
, 0);
8315 op1
= XEXP (op1
, 0);
8318 op0
= gen_lowpart_or_truncate (op_mode
, op0
);
8319 op1
= gen_lowpart_or_truncate (op_mode
, op1
);
8321 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0) || op1
!= XEXP (x
, 1))
8322 x
= simplify_gen_binary (code
, op_mode
, op0
, op1
);
8326 /* For left shifts, do the same, but just for the first operand.
8327 However, we cannot do anything with shifts where we cannot
8328 guarantee that the counts are smaller than the size of the mode
8329 because such a count will have a different meaning in a
8332 if (! (CONST_INT_P (XEXP (x
, 1))
8333 && INTVAL (XEXP (x
, 1)) >= 0
8334 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (mode
))
8335 && ! (GET_MODE (XEXP (x
, 1)) != VOIDmode
8336 && (nonzero_bits (XEXP (x
, 1), GET_MODE (XEXP (x
, 1)))
8337 < (unsigned HOST_WIDE_INT
) GET_MODE_PRECISION (mode
))))
8340 /* If the shift count is a constant and we can do arithmetic in
8341 the mode of the shift, refine which bits we need. Otherwise, use the
8342 conservative form of the mask. */
8343 if (CONST_INT_P (XEXP (x
, 1))
8344 && INTVAL (XEXP (x
, 1)) >= 0
8345 && INTVAL (XEXP (x
, 1)) < GET_MODE_PRECISION (op_mode
)
8346 && HWI_COMPUTABLE_MODE_P (op_mode
))
8347 mask
>>= INTVAL (XEXP (x
, 1));
8351 op0
= gen_lowpart_or_truncate (op_mode
,
8352 force_to_mode (XEXP (x
, 0), op_mode
,
8353 mask
, next_select
));
8355 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
8356 x
= simplify_gen_binary (code
, op_mode
, op0
, XEXP (x
, 1));
8360 /* Here we can only do something if the shift count is a constant,
8361 this shift constant is valid for the host, and we can do arithmetic
8364 if (CONST_INT_P (XEXP (x
, 1))
8365 && INTVAL (XEXP (x
, 1)) >= 0
8366 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
8367 && HWI_COMPUTABLE_MODE_P (op_mode
))
8369 rtx inner
= XEXP (x
, 0);
8370 unsigned HOST_WIDE_INT inner_mask
;
8372 /* Select the mask of the bits we need for the shift operand. */
8373 inner_mask
= mask
<< INTVAL (XEXP (x
, 1));
8375 /* We can only change the mode of the shift if we can do arithmetic
8376 in the mode of the shift and INNER_MASK is no wider than the
8377 width of X's mode. */
8378 if ((inner_mask
& ~GET_MODE_MASK (GET_MODE (x
))) != 0)
8379 op_mode
= GET_MODE (x
);
8381 inner
= force_to_mode (inner
, op_mode
, inner_mask
, next_select
);
8383 if (GET_MODE (x
) != op_mode
|| inner
!= XEXP (x
, 0))
8384 x
= simplify_gen_binary (LSHIFTRT
, op_mode
, inner
, XEXP (x
, 1));
8387 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8388 shift and AND produces only copies of the sign bit (C2 is one less
8389 than a power of two), we can do this with just a shift. */
8391 if (GET_CODE (x
) == LSHIFTRT
8392 && CONST_INT_P (XEXP (x
, 1))
8393 /* The shift puts one of the sign bit copies in the least significant
8395 && ((INTVAL (XEXP (x
, 1))
8396 + num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0))))
8397 >= GET_MODE_PRECISION (GET_MODE (x
)))
8398 && exact_log2 (mask
+ 1) >= 0
8399 /* Number of bits left after the shift must be more than the mask
8401 && ((INTVAL (XEXP (x
, 1)) + exact_log2 (mask
+ 1))
8402 <= GET_MODE_PRECISION (GET_MODE (x
)))
8403 /* Must be more sign bit copies than the mask needs. */
8404 && ((int) num_sign_bit_copies (XEXP (x
, 0), GET_MODE (XEXP (x
, 0)))
8405 >= exact_log2 (mask
+ 1)))
8406 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
8407 GEN_INT (GET_MODE_PRECISION (GET_MODE (x
))
8408 - exact_log2 (mask
+ 1)));
8413 /* If we are just looking for the sign bit, we don't need this shift at
8414 all, even if it has a variable count. */
8415 if (val_signbit_p (GET_MODE (x
), mask
))
8416 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8418 /* If this is a shift by a constant, get a mask that contains those bits
8419 that are not copies of the sign bit. We then have two cases: If
8420 MASK only includes those bits, this can be a logical shift, which may
8421 allow simplifications. If MASK is a single-bit field not within
8422 those bits, we are requesting a copy of the sign bit and hence can
8423 shift the sign bit to the appropriate location. */
8425 if (CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0
8426 && INTVAL (XEXP (x
, 1)) < HOST_BITS_PER_WIDE_INT
)
8430 /* If the considered data is wider than HOST_WIDE_INT, we can't
8431 represent a mask for all its bits in a single scalar.
8432 But we only care about the lower bits, so calculate these. */
8434 if (GET_MODE_PRECISION (GET_MODE (x
)) > HOST_BITS_PER_WIDE_INT
)
8436 nonzero
= ~(unsigned HOST_WIDE_INT
) 0;
8438 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8439 is the number of bits a full-width mask would have set.
8440 We need only shift if these are fewer than nonzero can
8441 hold. If not, we must keep all bits set in nonzero. */
8443 if (GET_MODE_PRECISION (GET_MODE (x
)) - INTVAL (XEXP (x
, 1))
8444 < HOST_BITS_PER_WIDE_INT
)
8445 nonzero
>>= INTVAL (XEXP (x
, 1))
8446 + HOST_BITS_PER_WIDE_INT
8447 - GET_MODE_PRECISION (GET_MODE (x
)) ;
8451 nonzero
= GET_MODE_MASK (GET_MODE (x
));
8452 nonzero
>>= INTVAL (XEXP (x
, 1));
8455 if ((mask
& ~nonzero
) == 0)
8457 x
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, GET_MODE (x
),
8458 XEXP (x
, 0), INTVAL (XEXP (x
, 1)));
8459 if (GET_CODE (x
) != ASHIFTRT
)
8460 return force_to_mode (x
, mode
, mask
, next_select
);
8463 else if ((i
= exact_log2 (mask
)) >= 0)
8465 x
= simplify_shift_const
8466 (NULL_RTX
, LSHIFTRT
, GET_MODE (x
), XEXP (x
, 0),
8467 GET_MODE_PRECISION (GET_MODE (x
)) - 1 - i
);
8469 if (GET_CODE (x
) != ASHIFTRT
)
8470 return force_to_mode (x
, mode
, mask
, next_select
);
8474 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
8475 even if the shift count isn't a constant. */
8477 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
8478 XEXP (x
, 0), XEXP (x
, 1));
8482 /* If this is a zero- or sign-extension operation that just affects bits
8483 we don't care about, remove it. Be sure the call above returned
8484 something that is still a shift. */
8486 if ((GET_CODE (x
) == LSHIFTRT
|| GET_CODE (x
) == ASHIFTRT
)
8487 && CONST_INT_P (XEXP (x
, 1))
8488 && INTVAL (XEXP (x
, 1)) >= 0
8489 && (INTVAL (XEXP (x
, 1))
8490 <= GET_MODE_PRECISION (GET_MODE (x
)) - (floor_log2 (mask
) + 1))
8491 && GET_CODE (XEXP (x
, 0)) == ASHIFT
8492 && XEXP (XEXP (x
, 0), 1) == XEXP (x
, 1))
8493 return force_to_mode (XEXP (XEXP (x
, 0), 0), mode
, mask
,
8500 /* If the shift count is constant and we can do computations
8501 in the mode of X, compute where the bits we care about are.
8502 Otherwise, we can't do anything. Don't change the mode of
8503 the shift or propagate MODE into the shift, though. */
8504 if (CONST_INT_P (XEXP (x
, 1))
8505 && INTVAL (XEXP (x
, 1)) >= 0)
8507 temp
= simplify_binary_operation (code
== ROTATE
? ROTATERT
: ROTATE
,
8509 gen_int_mode (mask
, GET_MODE (x
)),
8511 if (temp
&& CONST_INT_P (temp
))
8512 x
= simplify_gen_binary (code
, GET_MODE (x
),
8513 force_to_mode (XEXP (x
, 0), GET_MODE (x
),
8514 INTVAL (temp
), next_select
),
8520 /* If we just want the low-order bit, the NEG isn't needed since it
8521 won't change the low-order bit. */
8523 return force_to_mode (XEXP (x
, 0), mode
, mask
, just_select
);
8525 /* We need any bits less significant than the most significant bit in
8526 MASK since carries from those bits will affect the bits we are
8532 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
8533 same as the XOR case above. Ensure that the constant we form is not
8534 wider than the mode of X. */
8536 if (GET_CODE (XEXP (x
, 0)) == LSHIFTRT
8537 && CONST_INT_P (XEXP (XEXP (x
, 0), 1))
8538 && INTVAL (XEXP (XEXP (x
, 0), 1)) >= 0
8539 && (INTVAL (XEXP (XEXP (x
, 0), 1)) + floor_log2 (mask
)
8540 < GET_MODE_PRECISION (GET_MODE (x
)))
8541 && INTVAL (XEXP (XEXP (x
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
8543 temp
= gen_int_mode (mask
<< INTVAL (XEXP (XEXP (x
, 0), 1)),
8545 temp
= simplify_gen_binary (XOR
, GET_MODE (x
),
8546 XEXP (XEXP (x
, 0), 0), temp
);
8547 x
= simplify_gen_binary (LSHIFTRT
, GET_MODE (x
),
8548 temp
, XEXP (XEXP (x
, 0), 1));
8550 return force_to_mode (x
, mode
, mask
, next_select
);
8553 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
8554 use the full mask inside the NOT. */
8558 op0
= gen_lowpart_or_truncate (op_mode
,
8559 force_to_mode (XEXP (x
, 0), mode
, mask
,
8561 if (op_mode
!= GET_MODE (x
) || op0
!= XEXP (x
, 0))
8562 x
= simplify_gen_unary (code
, op_mode
, op0
, op_mode
);
8566 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
8567 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
8568 which is equal to STORE_FLAG_VALUE. */
8569 if ((mask
& ~STORE_FLAG_VALUE
) == 0
8570 && XEXP (x
, 1) == const0_rtx
8571 && GET_MODE (XEXP (x
, 0)) == mode
8572 && exact_log2 (nonzero_bits (XEXP (x
, 0), mode
)) >= 0
8573 && (nonzero_bits (XEXP (x
, 0), mode
)
8574 == (unsigned HOST_WIDE_INT
) STORE_FLAG_VALUE
))
8575 return force_to_mode (XEXP (x
, 0), mode
, mask
, next_select
);
8580 /* We have no way of knowing if the IF_THEN_ELSE can itself be
8581 written in a narrower mode. We play it safe and do not do so. */
8583 op0
= gen_lowpart_or_truncate (GET_MODE (x
),
8584 force_to_mode (XEXP (x
, 1), mode
,
8585 mask
, next_select
));
8586 op1
= gen_lowpart_or_truncate (GET_MODE (x
),
8587 force_to_mode (XEXP (x
, 2), mode
,
8588 mask
, next_select
));
8589 if (op0
!= XEXP (x
, 1) || op1
!= XEXP (x
, 2))
8590 x
= simplify_gen_ternary (IF_THEN_ELSE
, GET_MODE (x
),
8591 GET_MODE (XEXP (x
, 0)), XEXP (x
, 0),
8599 /* Ensure we return a value of the proper mode. */
8600 return gen_lowpart_or_truncate (mode
, x
);
8603 /* Return nonzero if X is an expression that has one of two values depending on
8604 whether some other value is zero or nonzero. In that case, we return the
8605 value that is being tested, *PTRUE is set to the value if the rtx being
8606 returned has a nonzero value, and *PFALSE is set to the other alternative.
8608 If we return zero, we set *PTRUE and *PFALSE to X. */
8611 if_then_else_cond (rtx x
, rtx
*ptrue
, rtx
*pfalse
)
8613 machine_mode mode
= GET_MODE (x
);
8614 enum rtx_code code
= GET_CODE (x
);
8615 rtx cond0
, cond1
, true0
, true1
, false0
, false1
;
8616 unsigned HOST_WIDE_INT nz
;
8618 /* If we are comparing a value against zero, we are done. */
8619 if ((code
== NE
|| code
== EQ
)
8620 && XEXP (x
, 1) == const0_rtx
)
8622 *ptrue
= (code
== NE
) ? const_true_rtx
: const0_rtx
;
8623 *pfalse
= (code
== NE
) ? const0_rtx
: const_true_rtx
;
8627 /* If this is a unary operation whose operand has one of two values, apply
8628 our opcode to compute those values. */
8629 else if (UNARY_P (x
)
8630 && (cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
)) != 0)
8632 *ptrue
= simplify_gen_unary (code
, mode
, true0
, GET_MODE (XEXP (x
, 0)));
8633 *pfalse
= simplify_gen_unary (code
, mode
, false0
,
8634 GET_MODE (XEXP (x
, 0)));
8638 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
8639 make can't possibly match and would suppress other optimizations. */
8640 else if (code
== COMPARE
)
8643 /* If this is a binary operation, see if either side has only one of two
8644 values. If either one does or if both do and they are conditional on
8645 the same value, compute the new true and false values. */
8646 else if (BINARY_P (x
))
8648 cond0
= if_then_else_cond (XEXP (x
, 0), &true0
, &false0
);
8649 cond1
= if_then_else_cond (XEXP (x
, 1), &true1
, &false1
);
8651 if ((cond0
!= 0 || cond1
!= 0)
8652 && ! (cond0
!= 0 && cond1
!= 0 && ! rtx_equal_p (cond0
, cond1
)))
8654 /* If if_then_else_cond returned zero, then true/false are the
8655 same rtl. We must copy one of them to prevent invalid rtl
8658 true0
= copy_rtx (true0
);
8659 else if (cond1
== 0)
8660 true1
= copy_rtx (true1
);
8662 if (COMPARISON_P (x
))
8664 *ptrue
= simplify_gen_relational (code
, mode
, VOIDmode
,
8666 *pfalse
= simplify_gen_relational (code
, mode
, VOIDmode
,
8671 *ptrue
= simplify_gen_binary (code
, mode
, true0
, true1
);
8672 *pfalse
= simplify_gen_binary (code
, mode
, false0
, false1
);
8675 return cond0
? cond0
: cond1
;
8678 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
8679 operands is zero when the other is nonzero, and vice-versa,
8680 and STORE_FLAG_VALUE is 1 or -1. */
8682 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
8683 && (code
== PLUS
|| code
== IOR
|| code
== XOR
|| code
== MINUS
8685 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
8687 rtx op0
= XEXP (XEXP (x
, 0), 1);
8688 rtx op1
= XEXP (XEXP (x
, 1), 1);
8690 cond0
= XEXP (XEXP (x
, 0), 0);
8691 cond1
= XEXP (XEXP (x
, 1), 0);
8693 if (COMPARISON_P (cond0
)
8694 && COMPARISON_P (cond1
)
8695 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
8696 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
8697 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
8698 || ((swap_condition (GET_CODE (cond0
))
8699 == reversed_comparison_code (cond1
, NULL
))
8700 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
8701 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
8702 && ! side_effects_p (x
))
8704 *ptrue
= simplify_gen_binary (MULT
, mode
, op0
, const_true_rtx
);
8705 *pfalse
= simplify_gen_binary (MULT
, mode
,
8707 ? simplify_gen_unary (NEG
, mode
,
8715 /* Similarly for MULT, AND and UMIN, except that for these the result
8717 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
8718 && (code
== MULT
|| code
== AND
|| code
== UMIN
)
8719 && GET_CODE (XEXP (x
, 0)) == MULT
&& GET_CODE (XEXP (x
, 1)) == MULT
)
8721 cond0
= XEXP (XEXP (x
, 0), 0);
8722 cond1
= XEXP (XEXP (x
, 1), 0);
8724 if (COMPARISON_P (cond0
)
8725 && COMPARISON_P (cond1
)
8726 && ((GET_CODE (cond0
) == reversed_comparison_code (cond1
, NULL
)
8727 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 0))
8728 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 1)))
8729 || ((swap_condition (GET_CODE (cond0
))
8730 == reversed_comparison_code (cond1
, NULL
))
8731 && rtx_equal_p (XEXP (cond0
, 0), XEXP (cond1
, 1))
8732 && rtx_equal_p (XEXP (cond0
, 1), XEXP (cond1
, 0))))
8733 && ! side_effects_p (x
))
8735 *ptrue
= *pfalse
= const0_rtx
;
8741 else if (code
== IF_THEN_ELSE
)
8743 /* If we have IF_THEN_ELSE already, extract the condition and
8744 canonicalize it if it is NE or EQ. */
8745 cond0
= XEXP (x
, 0);
8746 *ptrue
= XEXP (x
, 1), *pfalse
= XEXP (x
, 2);
8747 if (GET_CODE (cond0
) == NE
&& XEXP (cond0
, 1) == const0_rtx
)
8748 return XEXP (cond0
, 0);
8749 else if (GET_CODE (cond0
) == EQ
&& XEXP (cond0
, 1) == const0_rtx
)
8751 *ptrue
= XEXP (x
, 2), *pfalse
= XEXP (x
, 1);
8752 return XEXP (cond0
, 0);
8758 /* If X is a SUBREG, we can narrow both the true and false values
8759 if the inner expression, if there is a condition. */
8760 else if (code
== SUBREG
8761 && 0 != (cond0
= if_then_else_cond (SUBREG_REG (x
),
8764 true0
= simplify_gen_subreg (mode
, true0
,
8765 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
8766 false0
= simplify_gen_subreg (mode
, false0
,
8767 GET_MODE (SUBREG_REG (x
)), SUBREG_BYTE (x
));
8768 if (true0
&& false0
)
8776 /* If X is a constant, this isn't special and will cause confusions
8777 if we treat it as such. Likewise if it is equivalent to a constant. */
8778 else if (CONSTANT_P (x
)
8779 || ((cond0
= get_last_value (x
)) != 0 && CONSTANT_P (cond0
)))
8782 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
8783 will be least confusing to the rest of the compiler. */
8784 else if (mode
== BImode
)
8786 *ptrue
= GEN_INT (STORE_FLAG_VALUE
), *pfalse
= const0_rtx
;
8790 /* If X is known to be either 0 or -1, those are the true and
8791 false values when testing X. */
8792 else if (x
== constm1_rtx
|| x
== const0_rtx
8793 || (mode
!= VOIDmode
8794 && num_sign_bit_copies (x
, mode
) == GET_MODE_PRECISION (mode
)))
8796 *ptrue
= constm1_rtx
, *pfalse
= const0_rtx
;
8800 /* Likewise for 0 or a single bit. */
8801 else if (HWI_COMPUTABLE_MODE_P (mode
)
8802 && exact_log2 (nz
= nonzero_bits (x
, mode
)) >= 0)
8804 *ptrue
= gen_int_mode (nz
, mode
), *pfalse
= const0_rtx
;
8808 /* Otherwise fail; show no condition with true and false values the same. */
8809 *ptrue
= *pfalse
= x
;
8813 /* Return the value of expression X given the fact that condition COND
8814 is known to be true when applied to REG as its first operand and VAL
8815 as its second. X is known to not be shared and so can be modified in
8818 We only handle the simplest cases, and specifically those cases that
8819 arise with IF_THEN_ELSE expressions. */
8822 known_cond (rtx x
, enum rtx_code cond
, rtx reg
, rtx val
)
8824 enum rtx_code code
= GET_CODE (x
);
8829 if (side_effects_p (x
))
8832 /* If either operand of the condition is a floating point value,
8833 then we have to avoid collapsing an EQ comparison. */
8835 && rtx_equal_p (x
, reg
)
8836 && ! FLOAT_MODE_P (GET_MODE (x
))
8837 && ! FLOAT_MODE_P (GET_MODE (val
)))
8840 if (cond
== UNEQ
&& rtx_equal_p (x
, reg
))
8843 /* If X is (abs REG) and we know something about REG's relationship
8844 with zero, we may be able to simplify this. */
8846 if (code
== ABS
&& rtx_equal_p (XEXP (x
, 0), reg
) && val
== const0_rtx
)
8849 case GE
: case GT
: case EQ
:
8852 return simplify_gen_unary (NEG
, GET_MODE (XEXP (x
, 0)),
8854 GET_MODE (XEXP (x
, 0)));
8859 /* The only other cases we handle are MIN, MAX, and comparisons if the
8860 operands are the same as REG and VAL. */
8862 else if (COMPARISON_P (x
) || COMMUTATIVE_ARITH_P (x
))
8864 if (rtx_equal_p (XEXP (x
, 0), val
))
8865 cond
= swap_condition (cond
), temp
= val
, val
= reg
, reg
= temp
;
8867 if (rtx_equal_p (XEXP (x
, 0), reg
) && rtx_equal_p (XEXP (x
, 1), val
))
8869 if (COMPARISON_P (x
))
8871 if (comparison_dominates_p (cond
, code
))
8872 return const_true_rtx
;
8874 code
= reversed_comparison_code (x
, NULL
);
8876 && comparison_dominates_p (cond
, code
))
8881 else if (code
== SMAX
|| code
== SMIN
8882 || code
== UMIN
|| code
== UMAX
)
8884 int unsignedp
= (code
== UMIN
|| code
== UMAX
);
8886 /* Do not reverse the condition when it is NE or EQ.
8887 This is because we cannot conclude anything about
8888 the value of 'SMAX (x, y)' when x is not equal to y,
8889 but we can when x equals y. */
8890 if ((code
== SMAX
|| code
== UMAX
)
8891 && ! (cond
== EQ
|| cond
== NE
))
8892 cond
= reverse_condition (cond
);
8897 return unsignedp
? x
: XEXP (x
, 1);
8899 return unsignedp
? x
: XEXP (x
, 0);
8901 return unsignedp
? XEXP (x
, 1) : x
;
8903 return unsignedp
? XEXP (x
, 0) : x
;
8910 else if (code
== SUBREG
)
8912 machine_mode inner_mode
= GET_MODE (SUBREG_REG (x
));
8913 rtx new_rtx
, r
= known_cond (SUBREG_REG (x
), cond
, reg
, val
);
8915 if (SUBREG_REG (x
) != r
)
8917 /* We must simplify subreg here, before we lose track of the
8918 original inner_mode. */
8919 new_rtx
= simplify_subreg (GET_MODE (x
), r
,
8920 inner_mode
, SUBREG_BYTE (x
));
8924 SUBST (SUBREG_REG (x
), r
);
8929 /* We don't have to handle SIGN_EXTEND here, because even in the
8930 case of replacing something with a modeless CONST_INT, a
8931 CONST_INT is already (supposed to be) a valid sign extension for
8932 its narrower mode, which implies it's already properly
8933 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8934 story is different. */
8935 else if (code
== ZERO_EXTEND
)
8937 machine_mode inner_mode
= GET_MODE (XEXP (x
, 0));
8938 rtx new_rtx
, r
= known_cond (XEXP (x
, 0), cond
, reg
, val
);
8940 if (XEXP (x
, 0) != r
)
8942 /* We must simplify the zero_extend here, before we lose
8943 track of the original inner_mode. */
8944 new_rtx
= simplify_unary_operation (ZERO_EXTEND
, GET_MODE (x
),
8949 SUBST (XEXP (x
, 0), r
);
8955 fmt
= GET_RTX_FORMAT (code
);
8956 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
8959 SUBST (XEXP (x
, i
), known_cond (XEXP (x
, i
), cond
, reg
, val
));
8960 else if (fmt
[i
] == 'E')
8961 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
8962 SUBST (XVECEXP (x
, i
, j
), known_cond (XVECEXP (x
, i
, j
),
8969 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8970 assignment as a field assignment. */
8973 rtx_equal_for_field_assignment_p (rtx x
, rtx y
)
8975 if (x
== y
|| rtx_equal_p (x
, y
))
8978 if (x
== 0 || y
== 0 || GET_MODE (x
) != GET_MODE (y
))
8981 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8982 Note that all SUBREGs of MEM are paradoxical; otherwise they
8983 would have been rewritten. */
8984 if (MEM_P (x
) && GET_CODE (y
) == SUBREG
8985 && MEM_P (SUBREG_REG (y
))
8986 && rtx_equal_p (SUBREG_REG (y
),
8987 gen_lowpart (GET_MODE (SUBREG_REG (y
)), x
)))
8990 if (MEM_P (y
) && GET_CODE (x
) == SUBREG
8991 && MEM_P (SUBREG_REG (x
))
8992 && rtx_equal_p (SUBREG_REG (x
),
8993 gen_lowpart (GET_MODE (SUBREG_REG (x
)), y
)))
8996 /* We used to see if get_last_value of X and Y were the same but that's
8997 not correct. In one direction, we'll cause the assignment to have
8998 the wrong destination and in the case, we'll import a register into this
8999 insn that might have already have been dead. So fail if none of the
9000 above cases are true. */
9004 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9005 Return that assignment if so.
9007 We only handle the most common cases. */
9010 make_field_assignment (rtx x
)
9012 rtx dest
= SET_DEST (x
);
9013 rtx src
= SET_SRC (x
);
9018 unsigned HOST_WIDE_INT len
;
9022 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9023 a clear of a one-bit field. We will have changed it to
9024 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9027 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == ROTATE
9028 && CONST_INT_P (XEXP (XEXP (src
, 0), 0))
9029 && INTVAL (XEXP (XEXP (src
, 0), 0)) == -2
9030 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9032 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9035 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
9039 if (GET_CODE (src
) == AND
&& GET_CODE (XEXP (src
, 0)) == SUBREG
9040 && subreg_lowpart_p (XEXP (src
, 0))
9041 && (GET_MODE_SIZE (GET_MODE (XEXP (src
, 0)))
9042 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src
, 0)))))
9043 && GET_CODE (SUBREG_REG (XEXP (src
, 0))) == ROTATE
9044 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src
, 0)), 0))
9045 && INTVAL (XEXP (SUBREG_REG (XEXP (src
, 0)), 0)) == -2
9046 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9048 assign
= make_extraction (VOIDmode
, dest
, 0,
9049 XEXP (SUBREG_REG (XEXP (src
, 0)), 1),
9052 return gen_rtx_SET (VOIDmode
, assign
, const0_rtx
);
9056 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9058 if (GET_CODE (src
) == IOR
&& GET_CODE (XEXP (src
, 0)) == ASHIFT
9059 && XEXP (XEXP (src
, 0), 0) == const1_rtx
9060 && rtx_equal_for_field_assignment_p (dest
, XEXP (src
, 1)))
9062 assign
= make_extraction (VOIDmode
, dest
, 0, XEXP (XEXP (src
, 0), 1),
9065 return gen_rtx_SET (VOIDmode
, assign
, const1_rtx
);
9069 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9070 SRC is an AND with all bits of that field set, then we can discard
9072 if (GET_CODE (dest
) == ZERO_EXTRACT
9073 && CONST_INT_P (XEXP (dest
, 1))
9074 && GET_CODE (src
) == AND
9075 && CONST_INT_P (XEXP (src
, 1)))
9077 HOST_WIDE_INT width
= INTVAL (XEXP (dest
, 1));
9078 unsigned HOST_WIDE_INT and_mask
= INTVAL (XEXP (src
, 1));
9079 unsigned HOST_WIDE_INT ze_mask
;
9081 if (width
>= HOST_BITS_PER_WIDE_INT
)
9084 ze_mask
= ((unsigned HOST_WIDE_INT
)1 << width
) - 1;
9086 /* Complete overlap. We can remove the source AND. */
9087 if ((and_mask
& ze_mask
) == ze_mask
)
9088 return gen_rtx_SET (VOIDmode
, dest
, XEXP (src
, 0));
9090 /* Partial overlap. We can reduce the source AND. */
9091 if ((and_mask
& ze_mask
) != and_mask
)
9093 mode
= GET_MODE (src
);
9094 src
= gen_rtx_AND (mode
, XEXP (src
, 0),
9095 gen_int_mode (and_mask
& ze_mask
, mode
));
9096 return gen_rtx_SET (VOIDmode
, dest
, src
);
9100 /* The other case we handle is assignments into a constant-position
9101 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9102 a mask that has all one bits except for a group of zero bits and
9103 OTHER is known to have zeros where C1 has ones, this is such an
9104 assignment. Compute the position and length from C1. Shift OTHER
9105 to the appropriate position, force it to the required mode, and
9106 make the extraction. Check for the AND in both operands. */
9108 if (GET_CODE (src
) != IOR
&& GET_CODE (src
) != XOR
)
9111 rhs
= expand_compound_operation (XEXP (src
, 0));
9112 lhs
= expand_compound_operation (XEXP (src
, 1));
9114 if (GET_CODE (rhs
) == AND
9115 && CONST_INT_P (XEXP (rhs
, 1))
9116 && rtx_equal_for_field_assignment_p (XEXP (rhs
, 0), dest
))
9117 c1
= INTVAL (XEXP (rhs
, 1)), other
= lhs
;
9118 else if (GET_CODE (lhs
) == AND
9119 && CONST_INT_P (XEXP (lhs
, 1))
9120 && rtx_equal_for_field_assignment_p (XEXP (lhs
, 0), dest
))
9121 c1
= INTVAL (XEXP (lhs
, 1)), other
= rhs
;
9125 pos
= get_pos_from_mask ((~c1
) & GET_MODE_MASK (GET_MODE (dest
)), &len
);
9126 if (pos
< 0 || pos
+ len
> GET_MODE_PRECISION (GET_MODE (dest
))
9127 || GET_MODE_PRECISION (GET_MODE (dest
)) > HOST_BITS_PER_WIDE_INT
9128 || (c1
& nonzero_bits (other
, GET_MODE (dest
))) != 0)
9131 assign
= make_extraction (VOIDmode
, dest
, pos
, NULL_RTX
, len
, 1, 1, 0);
9135 /* The mode to use for the source is the mode of the assignment, or of
9136 what is inside a possible STRICT_LOW_PART. */
9137 mode
= (GET_CODE (assign
) == STRICT_LOW_PART
9138 ? GET_MODE (XEXP (assign
, 0)) : GET_MODE (assign
));
9140 /* Shift OTHER right POS places and make it the source, restricting it
9141 to the proper length and mode. */
9143 src
= canon_reg_for_combine (simplify_shift_const (NULL_RTX
, LSHIFTRT
,
9147 src
= force_to_mode (src
, mode
,
9148 GET_MODE_PRECISION (mode
) >= HOST_BITS_PER_WIDE_INT
9149 ? ~(unsigned HOST_WIDE_INT
) 0
9150 : ((unsigned HOST_WIDE_INT
) 1 << len
) - 1,
9153 /* If SRC is masked by an AND that does not make a difference in
9154 the value being stored, strip it. */
9155 if (GET_CODE (assign
) == ZERO_EXTRACT
9156 && CONST_INT_P (XEXP (assign
, 1))
9157 && INTVAL (XEXP (assign
, 1)) < HOST_BITS_PER_WIDE_INT
9158 && GET_CODE (src
) == AND
9159 && CONST_INT_P (XEXP (src
, 1))
9160 && UINTVAL (XEXP (src
, 1))
9161 == ((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (assign
, 1))) - 1)
9162 src
= XEXP (src
, 0);
9164 return gen_rtx_SET (VOIDmode
, assign
, src
);
9167 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9171 apply_distributive_law (rtx x
)
9173 enum rtx_code code
= GET_CODE (x
);
9174 enum rtx_code inner_code
;
9175 rtx lhs
, rhs
, other
;
9178 /* Distributivity is not true for floating point as it can change the
9179 value. So we don't do it unless -funsafe-math-optimizations. */
9180 if (FLOAT_MODE_P (GET_MODE (x
))
9181 && ! flag_unsafe_math_optimizations
)
9184 /* The outer operation can only be one of the following: */
9185 if (code
!= IOR
&& code
!= AND
&& code
!= XOR
9186 && code
!= PLUS
&& code
!= MINUS
)
9192 /* If either operand is a primitive we can't do anything, so get out
9194 if (OBJECT_P (lhs
) || OBJECT_P (rhs
))
9197 lhs
= expand_compound_operation (lhs
);
9198 rhs
= expand_compound_operation (rhs
);
9199 inner_code
= GET_CODE (lhs
);
9200 if (inner_code
!= GET_CODE (rhs
))
9203 /* See if the inner and outer operations distribute. */
9210 /* These all distribute except over PLUS. */
9211 if (code
== PLUS
|| code
== MINUS
)
9216 if (code
!= PLUS
&& code
!= MINUS
)
9221 /* This is also a multiply, so it distributes over everything. */
9224 /* This used to handle SUBREG, but this turned out to be counter-
9225 productive, since (subreg (op ...)) usually is not handled by
9226 insn patterns, and this "optimization" therefore transformed
9227 recognizable patterns into unrecognizable ones. Therefore the
9228 SUBREG case was removed from here.
9230 It is possible that distributing SUBREG over arithmetic operations
9231 leads to an intermediate result than can then be optimized further,
9232 e.g. by moving the outer SUBREG to the other side of a SET as done
9233 in simplify_set. This seems to have been the original intent of
9234 handling SUBREGs here.
9236 However, with current GCC this does not appear to actually happen,
9237 at least on major platforms. If some case is found where removing
9238 the SUBREG case here prevents follow-on optimizations, distributing
9239 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9245 /* Set LHS and RHS to the inner operands (A and B in the example
9246 above) and set OTHER to the common operand (C in the example).
9247 There is only one way to do this unless the inner operation is
9249 if (COMMUTATIVE_ARITH_P (lhs
)
9250 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 0)))
9251 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 1);
9252 else if (COMMUTATIVE_ARITH_P (lhs
)
9253 && rtx_equal_p (XEXP (lhs
, 0), XEXP (rhs
, 1)))
9254 other
= XEXP (lhs
, 0), lhs
= XEXP (lhs
, 1), rhs
= XEXP (rhs
, 0);
9255 else if (COMMUTATIVE_ARITH_P (lhs
)
9256 && rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 0)))
9257 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 1);
9258 else if (rtx_equal_p (XEXP (lhs
, 1), XEXP (rhs
, 1)))
9259 other
= XEXP (lhs
, 1), lhs
= XEXP (lhs
, 0), rhs
= XEXP (rhs
, 0);
9263 /* Form the new inner operation, seeing if it simplifies first. */
9264 tem
= simplify_gen_binary (code
, GET_MODE (x
), lhs
, rhs
);
9266 /* There is one exception to the general way of distributing:
9267 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9268 if (code
== XOR
&& inner_code
== IOR
)
9271 other
= simplify_gen_unary (NOT
, GET_MODE (x
), other
, GET_MODE (x
));
9274 /* We may be able to continuing distributing the result, so call
9275 ourselves recursively on the inner operation before forming the
9276 outer operation, which we return. */
9277 return simplify_gen_binary (inner_code
, GET_MODE (x
),
9278 apply_distributive_law (tem
), other
);
9281 /* See if X is of the form (* (+ A B) C), and if so convert to
9282 (+ (* A C) (* B C)) and try to simplify.
9284 Most of the time, this results in no change. However, if some of
9285 the operands are the same or inverses of each other, simplifications
9288 For example, (and (ior A B) (not B)) can occur as the result of
9289 expanding a bit field assignment. When we apply the distributive
9290 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9291 which then simplifies to (and (A (not B))).
9293 Note that no checks happen on the validity of applying the inverse
9294 distributive law. This is pointless since we can do it in the
9295 few places where this routine is called.
9297 N is the index of the term that is decomposed (the arithmetic operation,
9298 i.e. (+ A B) in the first example above). !N is the index of the term that
9299 is distributed, i.e. of C in the first example above. */
9301 distribute_and_simplify_rtx (rtx x
, int n
)
9304 enum rtx_code outer_code
, inner_code
;
9305 rtx decomposed
, distributed
, inner_op0
, inner_op1
, new_op0
, new_op1
, tmp
;
9307 /* Distributivity is not true for floating point as it can change the
9308 value. So we don't do it unless -funsafe-math-optimizations. */
9309 if (FLOAT_MODE_P (GET_MODE (x
))
9310 && ! flag_unsafe_math_optimizations
)
9313 decomposed
= XEXP (x
, n
);
9314 if (!ARITHMETIC_P (decomposed
))
9317 mode
= GET_MODE (x
);
9318 outer_code
= GET_CODE (x
);
9319 distributed
= XEXP (x
, !n
);
9321 inner_code
= GET_CODE (decomposed
);
9322 inner_op0
= XEXP (decomposed
, 0);
9323 inner_op1
= XEXP (decomposed
, 1);
9325 /* Special case (and (xor B C) (not A)), which is equivalent to
9326 (xor (ior A B) (ior A C)) */
9327 if (outer_code
== AND
&& inner_code
== XOR
&& GET_CODE (distributed
) == NOT
)
9329 distributed
= XEXP (distributed
, 0);
9335 /* Distribute the second term. */
9336 new_op0
= simplify_gen_binary (outer_code
, mode
, inner_op0
, distributed
);
9337 new_op1
= simplify_gen_binary (outer_code
, mode
, inner_op1
, distributed
);
9341 /* Distribute the first term. */
9342 new_op0
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op0
);
9343 new_op1
= simplify_gen_binary (outer_code
, mode
, distributed
, inner_op1
);
9346 tmp
= apply_distributive_law (simplify_gen_binary (inner_code
, mode
,
9348 if (GET_CODE (tmp
) != outer_code
9349 && (set_src_cost (tmp
, optimize_this_for_speed_p
)
9350 < set_src_cost (x
, optimize_this_for_speed_p
)))
9356 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9357 in MODE. Return an equivalent form, if different from (and VAROP
9358 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9361 simplify_and_const_int_1 (machine_mode mode
, rtx varop
,
9362 unsigned HOST_WIDE_INT constop
)
9364 unsigned HOST_WIDE_INT nonzero
;
9365 unsigned HOST_WIDE_INT orig_constop
;
9370 orig_constop
= constop
;
9371 if (GET_CODE (varop
) == CLOBBER
)
9374 /* Simplify VAROP knowing that we will be only looking at some of the
9377 Note by passing in CONSTOP, we guarantee that the bits not set in
9378 CONSTOP are not significant and will never be examined. We must
9379 ensure that is the case by explicitly masking out those bits
9380 before returning. */
9381 varop
= force_to_mode (varop
, mode
, constop
, 0);
9383 /* If VAROP is a CLOBBER, we will fail so return it. */
9384 if (GET_CODE (varop
) == CLOBBER
)
9387 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9388 to VAROP and return the new constant. */
9389 if (CONST_INT_P (varop
))
9390 return gen_int_mode (INTVAL (varop
) & constop
, mode
);
9392 /* See what bits may be nonzero in VAROP. Unlike the general case of
9393 a call to nonzero_bits, here we don't care about bits outside
9396 nonzero
= nonzero_bits (varop
, mode
) & GET_MODE_MASK (mode
);
9398 /* Turn off all bits in the constant that are known to already be zero.
9399 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
9400 which is tested below. */
9404 /* If we don't have any bits left, return zero. */
9408 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
9409 a power of two, we can replace this with an ASHIFT. */
9410 if (GET_CODE (varop
) == NEG
&& nonzero_bits (XEXP (varop
, 0), mode
) == 1
9411 && (i
= exact_log2 (constop
)) >= 0)
9412 return simplify_shift_const (NULL_RTX
, ASHIFT
, mode
, XEXP (varop
, 0), i
);
9414 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
9415 or XOR, then try to apply the distributive law. This may eliminate
9416 operations if either branch can be simplified because of the AND.
9417 It may also make some cases more complex, but those cases probably
9418 won't match a pattern either with or without this. */
9420 if (GET_CODE (varop
) == IOR
|| GET_CODE (varop
) == XOR
)
9424 apply_distributive_law
9425 (simplify_gen_binary (GET_CODE (varop
), GET_MODE (varop
),
9426 simplify_and_const_int (NULL_RTX
,
9430 simplify_and_const_int (NULL_RTX
,
9435 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
9436 the AND and see if one of the operands simplifies to zero. If so, we
9437 may eliminate it. */
9439 if (GET_CODE (varop
) == PLUS
9440 && exact_log2 (constop
+ 1) >= 0)
9444 o0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 0), constop
);
9445 o1
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (varop
, 1), constop
);
9446 if (o0
== const0_rtx
)
9448 if (o1
== const0_rtx
)
9452 /* Make a SUBREG if necessary. If we can't make it, fail. */
9453 varop
= gen_lowpart (mode
, varop
);
9454 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
9457 /* If we are only masking insignificant bits, return VAROP. */
9458 if (constop
== nonzero
)
9461 if (varop
== orig_varop
&& constop
== orig_constop
)
9464 /* Otherwise, return an AND. */
9465 return simplify_gen_binary (AND
, mode
, varop
, gen_int_mode (constop
, mode
));
9469 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
9472 Return an equivalent form, if different from X. Otherwise, return X. If
9473 X is zero, we are to always construct the equivalent form. */
9476 simplify_and_const_int (rtx x
, machine_mode mode
, rtx varop
,
9477 unsigned HOST_WIDE_INT constop
)
9479 rtx tem
= simplify_and_const_int_1 (mode
, varop
, constop
);
9484 x
= simplify_gen_binary (AND
, GET_MODE (varop
), varop
,
9485 gen_int_mode (constop
, mode
));
9486 if (GET_MODE (x
) != mode
)
9487 x
= gen_lowpart (mode
, x
);
9491 /* Given a REG, X, compute which bits in X can be nonzero.
9492 We don't care about bits outside of those defined in MODE.
9494 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
9495 a shift, AND, or zero_extract, we can do better. */
9498 reg_nonzero_bits_for_combine (const_rtx x
, machine_mode mode
,
9499 const_rtx known_x ATTRIBUTE_UNUSED
,
9500 machine_mode known_mode ATTRIBUTE_UNUSED
,
9501 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED
,
9502 unsigned HOST_WIDE_INT
*nonzero
)
9507 /* If X is a register whose nonzero bits value is current, use it.
9508 Otherwise, if X is a register whose value we can find, use that
9509 value. Otherwise, use the previously-computed global nonzero bits
9510 for this register. */
9512 rsp
= ®_stat
[REGNO (x
)];
9513 if (rsp
->last_set_value
!= 0
9514 && (rsp
->last_set_mode
== mode
9515 || (GET_MODE_CLASS (rsp
->last_set_mode
) == MODE_INT
9516 && GET_MODE_CLASS (mode
) == MODE_INT
))
9517 && ((rsp
->last_set_label
>= label_tick_ebb_start
9518 && rsp
->last_set_label
< label_tick
)
9519 || (rsp
->last_set_label
== label_tick
9520 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
9521 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
9522 && REG_N_SETS (REGNO (x
)) == 1
9524 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
9527 unsigned HOST_WIDE_INT mask
= rsp
->last_set_nonzero_bits
;
9529 if (GET_MODE_PRECISION (rsp
->last_set_mode
) < GET_MODE_PRECISION (mode
))
9530 /* We don't know anything about the upper bits. */
9531 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (rsp
->last_set_mode
);
9537 tem
= get_last_value (x
);
9541 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
9542 /* If X is narrower than MODE and TEM is a non-negative
9543 constant that would appear negative in the mode of X,
9544 sign-extend it for use in reg_nonzero_bits because some
9545 machines (maybe most) will actually do the sign-extension
9546 and this is the conservative approach.
9548 ??? For 2.5, try to tighten up the MD files in this regard
9549 instead of this kludge. */
9551 if (GET_MODE_PRECISION (GET_MODE (x
)) < GET_MODE_PRECISION (mode
)
9552 && CONST_INT_P (tem
)
9554 && val_signbit_known_set_p (GET_MODE (x
), INTVAL (tem
)))
9555 tem
= GEN_INT (INTVAL (tem
) | ~GET_MODE_MASK (GET_MODE (x
)));
9559 else if (nonzero_sign_valid
&& rsp
->nonzero_bits
)
9561 unsigned HOST_WIDE_INT mask
= rsp
->nonzero_bits
;
9563 if (GET_MODE_PRECISION (GET_MODE (x
)) < GET_MODE_PRECISION (mode
))
9564 /* We don't know anything about the upper bits. */
9565 mask
|= GET_MODE_MASK (mode
) ^ GET_MODE_MASK (GET_MODE (x
));
9573 /* Return the number of bits at the high-order end of X that are known to
9574 be equal to the sign bit. X will be used in mode MODE; if MODE is
9575 VOIDmode, X will be used in its own mode. The returned value will always
9576 be between 1 and the number of bits in MODE. */
9579 reg_num_sign_bit_copies_for_combine (const_rtx x
, machine_mode mode
,
9580 const_rtx known_x ATTRIBUTE_UNUSED
,
9581 machine_mode known_mode
9583 unsigned int known_ret ATTRIBUTE_UNUSED
,
9584 unsigned int *result
)
9589 rsp
= ®_stat
[REGNO (x
)];
9590 if (rsp
->last_set_value
!= 0
9591 && rsp
->last_set_mode
== mode
9592 && ((rsp
->last_set_label
>= label_tick_ebb_start
9593 && rsp
->last_set_label
< label_tick
)
9594 || (rsp
->last_set_label
== label_tick
9595 && DF_INSN_LUID (rsp
->last_set
) < subst_low_luid
)
9596 || (REGNO (x
) >= FIRST_PSEUDO_REGISTER
9597 && REG_N_SETS (REGNO (x
)) == 1
9599 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
9602 *result
= rsp
->last_set_sign_bit_copies
;
9606 tem
= get_last_value (x
);
9610 if (nonzero_sign_valid
&& rsp
->sign_bit_copies
!= 0
9611 && GET_MODE_PRECISION (GET_MODE (x
)) == GET_MODE_PRECISION (mode
))
9612 *result
= rsp
->sign_bit_copies
;
9617 /* Return the number of "extended" bits there are in X, when interpreted
9618 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
9619 unsigned quantities, this is the number of high-order zero bits.
9620 For signed quantities, this is the number of copies of the sign bit
9621 minus 1. In both case, this function returns the number of "spare"
9622 bits. For example, if two quantities for which this function returns
9623 at least 1 are added, the addition is known not to overflow.
9625 This function will always return 0 unless called during combine, which
9626 implies that it must be called from a define_split. */
9629 extended_count (const_rtx x
, machine_mode mode
, int unsignedp
)
9631 if (nonzero_sign_valid
== 0)
9635 ? (HWI_COMPUTABLE_MODE_P (mode
)
9636 ? (unsigned int) (GET_MODE_PRECISION (mode
) - 1
9637 - floor_log2 (nonzero_bits (x
, mode
)))
9639 : num_sign_bit_copies (x
, mode
) - 1);
9642 /* This function is called from `simplify_shift_const' to merge two
9643 outer operations. Specifically, we have already found that we need
9644 to perform operation *POP0 with constant *PCONST0 at the outermost
9645 position. We would now like to also perform OP1 with constant CONST1
9646 (with *POP0 being done last).
9648 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
9649 the resulting operation. *PCOMP_P is set to 1 if we would need to
9650 complement the innermost operand, otherwise it is unchanged.
9652 MODE is the mode in which the operation will be done. No bits outside
9653 the width of this mode matter. It is assumed that the width of this mode
9654 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
9656 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
9657 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
9658 result is simply *PCONST0.
9660 If the resulting operation cannot be expressed as one operation, we
9661 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
9664 merge_outer_ops (enum rtx_code
*pop0
, HOST_WIDE_INT
*pconst0
, enum rtx_code op1
, HOST_WIDE_INT const1
, machine_mode mode
, int *pcomp_p
)
9666 enum rtx_code op0
= *pop0
;
9667 HOST_WIDE_INT const0
= *pconst0
;
9669 const0
&= GET_MODE_MASK (mode
);
9670 const1
&= GET_MODE_MASK (mode
);
9672 /* If OP0 is an AND, clear unimportant bits in CONST1. */
9676 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
9679 if (op1
== UNKNOWN
|| op0
== SET
)
9682 else if (op0
== UNKNOWN
)
9683 op0
= op1
, const0
= const1
;
9685 else if (op0
== op1
)
9709 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
9710 else if (op0
== PLUS
|| op1
== PLUS
|| op0
== NEG
|| op1
== NEG
)
9713 /* If the two constants aren't the same, we can't do anything. The
9714 remaining six cases can all be done. */
9715 else if (const0
!= const1
)
9723 /* (a & b) | b == b */
9725 else /* op1 == XOR */
9726 /* (a ^ b) | b == a | b */
9732 /* (a & b) ^ b == (~a) & b */
9733 op0
= AND
, *pcomp_p
= 1;
9734 else /* op1 == IOR */
9735 /* (a | b) ^ b == a & ~b */
9736 op0
= AND
, const0
= ~const0
;
9741 /* (a | b) & b == b */
9743 else /* op1 == XOR */
9744 /* (a ^ b) & b) == (~a) & b */
9751 /* Check for NO-OP cases. */
9752 const0
&= GET_MODE_MASK (mode
);
9754 && (op0
== IOR
|| op0
== XOR
|| op0
== PLUS
))
9756 else if (const0
== 0 && op0
== AND
)
9758 else if ((unsigned HOST_WIDE_INT
) const0
== GET_MODE_MASK (mode
)
9764 /* ??? Slightly redundant with the above mask, but not entirely.
9765 Moving this above means we'd have to sign-extend the mode mask
9766 for the final test. */
9767 if (op0
!= UNKNOWN
&& op0
!= NEG
)
9768 *pconst0
= trunc_int_for_mode (const0
, mode
);
9773 /* A helper to simplify_shift_const_1 to determine the mode we can perform
9774 the shift in. The original shift operation CODE is performed on OP in
9775 ORIG_MODE. Return the wider mode MODE if we can perform the operation
9776 in that mode. Return ORIG_MODE otherwise. We can also assume that the
9777 result of the shift is subject to operation OUTER_CODE with operand
9781 try_widen_shift_mode (enum rtx_code code
, rtx op
, int count
,
9782 machine_mode orig_mode
, machine_mode mode
,
9783 enum rtx_code outer_code
, HOST_WIDE_INT outer_const
)
9785 if (orig_mode
== mode
)
9787 gcc_assert (GET_MODE_PRECISION (mode
) > GET_MODE_PRECISION (orig_mode
));
9789 /* In general we can't perform in wider mode for right shift and rotate. */
9793 /* We can still widen if the bits brought in from the left are identical
9794 to the sign bit of ORIG_MODE. */
9795 if (num_sign_bit_copies (op
, mode
)
9796 > (unsigned) (GET_MODE_PRECISION (mode
)
9797 - GET_MODE_PRECISION (orig_mode
)))
9802 /* Similarly here but with zero bits. */
9803 if (HWI_COMPUTABLE_MODE_P (mode
)
9804 && (nonzero_bits (op
, mode
) & ~GET_MODE_MASK (orig_mode
)) == 0)
9807 /* We can also widen if the bits brought in will be masked off. This
9808 operation is performed in ORIG_MODE. */
9809 if (outer_code
== AND
)
9811 int care_bits
= low_bitmask_len (orig_mode
, outer_const
);
9814 && GET_MODE_PRECISION (orig_mode
) - care_bits
>= count
)
9830 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
9831 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
9832 if we cannot simplify it. Otherwise, return a simplified value.
9834 The shift is normally computed in the widest mode we find in VAROP, as
9835 long as it isn't a different number of words than RESULT_MODE. Exceptions
9836 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9839 simplify_shift_const_1 (enum rtx_code code
, machine_mode result_mode
,
9840 rtx varop
, int orig_count
)
9842 enum rtx_code orig_code
= code
;
9843 rtx orig_varop
= varop
;
9845 machine_mode mode
= result_mode
;
9846 machine_mode shift_mode
, tmode
;
9847 unsigned int mode_words
9848 = (GET_MODE_SIZE (mode
) + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
;
9849 /* We form (outer_op (code varop count) (outer_const)). */
9850 enum rtx_code outer_op
= UNKNOWN
;
9851 HOST_WIDE_INT outer_const
= 0;
9852 int complement_p
= 0;
9855 /* Make sure and truncate the "natural" shift on the way in. We don't
9856 want to do this inside the loop as it makes it more difficult to
9858 if (SHIFT_COUNT_TRUNCATED
)
9859 orig_count
&= GET_MODE_BITSIZE (mode
) - 1;
9861 /* If we were given an invalid count, don't do anything except exactly
9862 what was requested. */
9864 if (orig_count
< 0 || orig_count
>= (int) GET_MODE_PRECISION (mode
))
9869 /* Unless one of the branches of the `if' in this loop does a `continue',
9870 we will `break' the loop after the `if'. */
9874 /* If we have an operand of (clobber (const_int 0)), fail. */
9875 if (GET_CODE (varop
) == CLOBBER
)
9878 /* Convert ROTATERT to ROTATE. */
9879 if (code
== ROTATERT
)
9881 unsigned int bitsize
= GET_MODE_PRECISION (result_mode
);
9883 if (VECTOR_MODE_P (result_mode
))
9884 count
= bitsize
/ GET_MODE_NUNITS (result_mode
) - count
;
9886 count
= bitsize
- count
;
9889 shift_mode
= try_widen_shift_mode (code
, varop
, count
, result_mode
,
9890 mode
, outer_op
, outer_const
);
9892 /* Handle cases where the count is greater than the size of the mode
9893 minus 1. For ASHIFT, use the size minus one as the count (this can
9894 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9895 take the count modulo the size. For other shifts, the result is
9898 Since these shifts are being produced by the compiler by combining
9899 multiple operations, each of which are defined, we know what the
9900 result is supposed to be. */
9902 if (count
> (GET_MODE_PRECISION (shift_mode
) - 1))
9904 if (code
== ASHIFTRT
)
9905 count
= GET_MODE_PRECISION (shift_mode
) - 1;
9906 else if (code
== ROTATE
|| code
== ROTATERT
)
9907 count
%= GET_MODE_PRECISION (shift_mode
);
9910 /* We can't simply return zero because there may be an
9918 /* If we discovered we had to complement VAROP, leave. Making a NOT
9919 here would cause an infinite loop. */
9923 /* An arithmetic right shift of a quantity known to be -1 or 0
9925 if (code
== ASHIFTRT
9926 && (num_sign_bit_copies (varop
, shift_mode
)
9927 == GET_MODE_PRECISION (shift_mode
)))
9933 /* If we are doing an arithmetic right shift and discarding all but
9934 the sign bit copies, this is equivalent to doing a shift by the
9935 bitsize minus one. Convert it into that shift because it will often
9936 allow other simplifications. */
9938 if (code
== ASHIFTRT
9939 && (count
+ num_sign_bit_copies (varop
, shift_mode
)
9940 >= GET_MODE_PRECISION (shift_mode
)))
9941 count
= GET_MODE_PRECISION (shift_mode
) - 1;
9943 /* We simplify the tests below and elsewhere by converting
9944 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9945 `make_compound_operation' will convert it to an ASHIFTRT for
9946 those machines (such as VAX) that don't have an LSHIFTRT. */
9947 if (code
== ASHIFTRT
9948 && val_signbit_known_clear_p (shift_mode
,
9949 nonzero_bits (varop
, shift_mode
)))
9952 if (((code
== LSHIFTRT
9953 && HWI_COMPUTABLE_MODE_P (shift_mode
)
9954 && !(nonzero_bits (varop
, shift_mode
) >> count
))
9956 && HWI_COMPUTABLE_MODE_P (shift_mode
)
9957 && !((nonzero_bits (varop
, shift_mode
) << count
)
9958 & GET_MODE_MASK (shift_mode
))))
9959 && !side_effects_p (varop
))
9962 switch (GET_CODE (varop
))
9968 new_rtx
= expand_compound_operation (varop
);
9969 if (new_rtx
!= varop
)
9977 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9978 minus the width of a smaller mode, we can do this with a
9979 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9980 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
9981 && ! mode_dependent_address_p (XEXP (varop
, 0),
9982 MEM_ADDR_SPACE (varop
))
9983 && ! MEM_VOLATILE_P (varop
)
9984 && (tmode
= mode_for_size (GET_MODE_BITSIZE (mode
) - count
,
9985 MODE_INT
, 1)) != BLKmode
)
9987 new_rtx
= adjust_address_nv (varop
, tmode
,
9988 BYTES_BIG_ENDIAN
? 0
9989 : count
/ BITS_PER_UNIT
);
9991 varop
= gen_rtx_fmt_e (code
== ASHIFTRT
? SIGN_EXTEND
9992 : ZERO_EXTEND
, mode
, new_rtx
);
9999 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10000 the same number of words as what we've seen so far. Then store
10001 the widest mode in MODE. */
10002 if (subreg_lowpart_p (varop
)
10003 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
10004 > GET_MODE_SIZE (GET_MODE (varop
)))
10005 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop
)))
10006 + (UNITS_PER_WORD
- 1)) / UNITS_PER_WORD
)
10008 && GET_MODE_CLASS (GET_MODE (varop
)) == MODE_INT
10009 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (varop
))) == MODE_INT
)
10011 varop
= SUBREG_REG (varop
);
10012 if (GET_MODE_SIZE (GET_MODE (varop
)) > GET_MODE_SIZE (mode
))
10013 mode
= GET_MODE (varop
);
10019 /* Some machines use MULT instead of ASHIFT because MULT
10020 is cheaper. But it is still better on those machines to
10021 merge two shifts into one. */
10022 if (CONST_INT_P (XEXP (varop
, 1))
10023 && exact_log2 (UINTVAL (XEXP (varop
, 1))) >= 0)
10026 = simplify_gen_binary (ASHIFT
, GET_MODE (varop
),
10028 GEN_INT (exact_log2 (
10029 UINTVAL (XEXP (varop
, 1)))));
10035 /* Similar, for when divides are cheaper. */
10036 if (CONST_INT_P (XEXP (varop
, 1))
10037 && exact_log2 (UINTVAL (XEXP (varop
, 1))) >= 0)
10040 = simplify_gen_binary (LSHIFTRT
, GET_MODE (varop
),
10042 GEN_INT (exact_log2 (
10043 UINTVAL (XEXP (varop
, 1)))));
10049 /* If we are extracting just the sign bit of an arithmetic
10050 right shift, that shift is not needed. However, the sign
10051 bit of a wider mode may be different from what would be
10052 interpreted as the sign bit in a narrower mode, so, if
10053 the result is narrower, don't discard the shift. */
10054 if (code
== LSHIFTRT
10055 && count
== (GET_MODE_BITSIZE (result_mode
) - 1)
10056 && (GET_MODE_BITSIZE (result_mode
)
10057 >= GET_MODE_BITSIZE (GET_MODE (varop
))))
10059 varop
= XEXP (varop
, 0);
10063 /* ... fall through ... */
10068 /* Here we have two nested shifts. The result is usually the
10069 AND of a new shift with a mask. We compute the result below. */
10070 if (CONST_INT_P (XEXP (varop
, 1))
10071 && INTVAL (XEXP (varop
, 1)) >= 0
10072 && INTVAL (XEXP (varop
, 1)) < GET_MODE_PRECISION (GET_MODE (varop
))
10073 && HWI_COMPUTABLE_MODE_P (result_mode
)
10074 && HWI_COMPUTABLE_MODE_P (mode
)
10075 && !VECTOR_MODE_P (result_mode
))
10077 enum rtx_code first_code
= GET_CODE (varop
);
10078 unsigned int first_count
= INTVAL (XEXP (varop
, 1));
10079 unsigned HOST_WIDE_INT mask
;
10082 /* We have one common special case. We can't do any merging if
10083 the inner code is an ASHIFTRT of a smaller mode. However, if
10084 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10085 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10086 we can convert it to
10087 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10088 This simplifies certain SIGN_EXTEND operations. */
10089 if (code
== ASHIFT
&& first_code
== ASHIFTRT
10090 && count
== (GET_MODE_PRECISION (result_mode
)
10091 - GET_MODE_PRECISION (GET_MODE (varop
))))
10093 /* C3 has the low-order C1 bits zero. */
10095 mask
= GET_MODE_MASK (mode
)
10096 & ~(((unsigned HOST_WIDE_INT
) 1 << first_count
) - 1);
10098 varop
= simplify_and_const_int (NULL_RTX
, result_mode
,
10099 XEXP (varop
, 0), mask
);
10100 varop
= simplify_shift_const (NULL_RTX
, ASHIFT
, result_mode
,
10102 count
= first_count
;
10107 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10108 than C1 high-order bits equal to the sign bit, we can convert
10109 this to either an ASHIFT or an ASHIFTRT depending on the
10112 We cannot do this if VAROP's mode is not SHIFT_MODE. */
10114 if (code
== ASHIFTRT
&& first_code
== ASHIFT
10115 && GET_MODE (varop
) == shift_mode
10116 && (num_sign_bit_copies (XEXP (varop
, 0), shift_mode
)
10119 varop
= XEXP (varop
, 0);
10120 count
-= first_count
;
10130 /* There are some cases we can't do. If CODE is ASHIFTRT,
10131 we can only do this if FIRST_CODE is also ASHIFTRT.
10133 We can't do the case when CODE is ROTATE and FIRST_CODE is
10136 If the mode of this shift is not the mode of the outer shift,
10137 we can't do this if either shift is a right shift or ROTATE.
10139 Finally, we can't do any of these if the mode is too wide
10140 unless the codes are the same.
10142 Handle the case where the shift codes are the same
10145 if (code
== first_code
)
10147 if (GET_MODE (varop
) != result_mode
10148 && (code
== ASHIFTRT
|| code
== LSHIFTRT
10149 || code
== ROTATE
))
10152 count
+= first_count
;
10153 varop
= XEXP (varop
, 0);
10157 if (code
== ASHIFTRT
10158 || (code
== ROTATE
&& first_code
== ASHIFTRT
)
10159 || GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
10160 || (GET_MODE (varop
) != result_mode
10161 && (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
10162 || first_code
== ROTATE
10163 || code
== ROTATE
)))
10166 /* To compute the mask to apply after the shift, shift the
10167 nonzero bits of the inner shift the same way the
10168 outer shift will. */
10170 mask_rtx
= gen_int_mode (nonzero_bits (varop
, GET_MODE (varop
)),
10174 = simplify_const_binary_operation (code
, result_mode
, mask_rtx
,
10177 /* Give up if we can't compute an outer operation to use. */
10179 || !CONST_INT_P (mask_rtx
)
10180 || ! merge_outer_ops (&outer_op
, &outer_const
, AND
,
10182 result_mode
, &complement_p
))
10185 /* If the shifts are in the same direction, we add the
10186 counts. Otherwise, we subtract them. */
10187 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10188 == (first_code
== ASHIFTRT
|| first_code
== LSHIFTRT
))
10189 count
+= first_count
;
10191 count
-= first_count
;
10193 /* If COUNT is positive, the new shift is usually CODE,
10194 except for the two exceptions below, in which case it is
10195 FIRST_CODE. If the count is negative, FIRST_CODE should
10198 && ((first_code
== ROTATE
&& code
== ASHIFT
)
10199 || (first_code
== ASHIFTRT
&& code
== LSHIFTRT
)))
10201 else if (count
< 0)
10202 code
= first_code
, count
= -count
;
10204 varop
= XEXP (varop
, 0);
10208 /* If we have (A << B << C) for any shift, we can convert this to
10209 (A << C << B). This wins if A is a constant. Only try this if
10210 B is not a constant. */
10212 else if (GET_CODE (varop
) == code
10213 && CONST_INT_P (XEXP (varop
, 0))
10214 && !CONST_INT_P (XEXP (varop
, 1)))
10216 rtx new_rtx
= simplify_const_binary_operation (code
, mode
,
10219 varop
= gen_rtx_fmt_ee (code
, mode
, new_rtx
, XEXP (varop
, 1));
10226 if (VECTOR_MODE_P (mode
))
10229 /* Make this fit the case below. */
10230 varop
= gen_rtx_XOR (mode
, XEXP (varop
, 0), constm1_rtx
);
10236 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10237 with C the size of VAROP - 1 and the shift is logical if
10238 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10239 we have an (le X 0) operation. If we have an arithmetic shift
10240 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10241 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10243 if (GET_CODE (varop
) == IOR
&& GET_CODE (XEXP (varop
, 0)) == PLUS
10244 && XEXP (XEXP (varop
, 0), 1) == constm1_rtx
10245 && (STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10246 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10247 && count
== (GET_MODE_PRECISION (GET_MODE (varop
)) - 1)
10248 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10251 varop
= gen_rtx_LE (GET_MODE (varop
), XEXP (varop
, 1),
10254 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10255 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
10260 /* If we have (shift (logical)), move the logical to the outside
10261 to allow it to possibly combine with another logical and the
10262 shift to combine with another shift. This also canonicalizes to
10263 what a ZERO_EXTRACT looks like. Also, some machines have
10264 (and (shift)) insns. */
10266 if (CONST_INT_P (XEXP (varop
, 1))
10267 /* We can't do this if we have (ashiftrt (xor)) and the
10268 constant has its sign bit set in shift_mode with shift_mode
10269 wider than result_mode. */
10270 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10271 && result_mode
!= shift_mode
10272 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10274 && (new_rtx
= simplify_const_binary_operation
10275 (code
, result_mode
,
10276 gen_int_mode (INTVAL (XEXP (varop
, 1)), result_mode
),
10277 GEN_INT (count
))) != 0
10278 && CONST_INT_P (new_rtx
)
10279 && merge_outer_ops (&outer_op
, &outer_const
, GET_CODE (varop
),
10280 INTVAL (new_rtx
), result_mode
, &complement_p
))
10282 varop
= XEXP (varop
, 0);
10286 /* If we can't do that, try to simplify the shift in each arm of the
10287 logical expression, make a new logical expression, and apply
10288 the inverse distributive law. This also can't be done for
10289 (ashiftrt (xor)) where we've widened the shift and the constant
10290 changes the sign bit. */
10291 if (CONST_INT_P (XEXP (varop
, 1))
10292 && !(code
== ASHIFTRT
&& GET_CODE (varop
) == XOR
10293 && result_mode
!= shift_mode
10294 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop
, 1)),
10297 rtx lhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
10298 XEXP (varop
, 0), count
);
10299 rtx rhs
= simplify_shift_const (NULL_RTX
, code
, shift_mode
,
10300 XEXP (varop
, 1), count
);
10302 varop
= simplify_gen_binary (GET_CODE (varop
), shift_mode
,
10304 varop
= apply_distributive_law (varop
);
10312 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10313 says that the sign bit can be tested, FOO has mode MODE, C is
10314 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10315 that may be nonzero. */
10316 if (code
== LSHIFTRT
10317 && XEXP (varop
, 1) == const0_rtx
10318 && GET_MODE (XEXP (varop
, 0)) == result_mode
10319 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10320 && HWI_COMPUTABLE_MODE_P (result_mode
)
10321 && STORE_FLAG_VALUE
== -1
10322 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
10323 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1, result_mode
,
10326 varop
= XEXP (varop
, 0);
10333 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10334 than the number of bits in the mode is equivalent to A. */
10335 if (code
== LSHIFTRT
10336 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10337 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1)
10339 varop
= XEXP (varop
, 0);
10344 /* NEG commutes with ASHIFT since it is multiplication. Move the
10345 NEG outside to allow shifts to combine. */
10347 && merge_outer_ops (&outer_op
, &outer_const
, NEG
, 0, result_mode
,
10350 varop
= XEXP (varop
, 0);
10356 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
10357 is one less than the number of bits in the mode is
10358 equivalent to (xor A 1). */
10359 if (code
== LSHIFTRT
10360 && count
== (GET_MODE_PRECISION (result_mode
) - 1)
10361 && XEXP (varop
, 1) == constm1_rtx
10362 && nonzero_bits (XEXP (varop
, 0), result_mode
) == 1
10363 && merge_outer_ops (&outer_op
, &outer_const
, XOR
, 1, result_mode
,
10367 varop
= XEXP (varop
, 0);
10371 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
10372 that might be nonzero in BAR are those being shifted out and those
10373 bits are known zero in FOO, we can replace the PLUS with FOO.
10374 Similarly in the other operand order. This code occurs when
10375 we are computing the size of a variable-size array. */
10377 if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10378 && count
< HOST_BITS_PER_WIDE_INT
10379 && nonzero_bits (XEXP (varop
, 1), result_mode
) >> count
== 0
10380 && (nonzero_bits (XEXP (varop
, 1), result_mode
)
10381 & nonzero_bits (XEXP (varop
, 0), result_mode
)) == 0)
10383 varop
= XEXP (varop
, 0);
10386 else if ((code
== ASHIFTRT
|| code
== LSHIFTRT
)
10387 && count
< HOST_BITS_PER_WIDE_INT
10388 && HWI_COMPUTABLE_MODE_P (result_mode
)
10389 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
10391 && 0 == (nonzero_bits (XEXP (varop
, 0), result_mode
)
10392 & nonzero_bits (XEXP (varop
, 1),
10395 varop
= XEXP (varop
, 1);
10399 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
10401 && CONST_INT_P (XEXP (varop
, 1))
10402 && (new_rtx
= simplify_const_binary_operation
10403 (ASHIFT
, result_mode
,
10404 gen_int_mode (INTVAL (XEXP (varop
, 1)), result_mode
),
10405 GEN_INT (count
))) != 0
10406 && CONST_INT_P (new_rtx
)
10407 && merge_outer_ops (&outer_op
, &outer_const
, PLUS
,
10408 INTVAL (new_rtx
), result_mode
, &complement_p
))
10410 varop
= XEXP (varop
, 0);
10414 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
10415 signbit', and attempt to change the PLUS to an XOR and move it to
10416 the outer operation as is done above in the AND/IOR/XOR case
10417 leg for shift(logical). See details in logical handling above
10418 for reasoning in doing so. */
10419 if (code
== LSHIFTRT
10420 && CONST_INT_P (XEXP (varop
, 1))
10421 && mode_signbit_p (result_mode
, XEXP (varop
, 1))
10422 && (new_rtx
= simplify_const_binary_operation
10423 (code
, result_mode
,
10424 gen_int_mode (INTVAL (XEXP (varop
, 1)), result_mode
),
10425 GEN_INT (count
))) != 0
10426 && CONST_INT_P (new_rtx
)
10427 && merge_outer_ops (&outer_op
, &outer_const
, XOR
,
10428 INTVAL (new_rtx
), result_mode
, &complement_p
))
10430 varop
= XEXP (varop
, 0);
10437 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
10438 with C the size of VAROP - 1 and the shift is logical if
10439 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10440 we have a (gt X 0) operation. If the shift is arithmetic with
10441 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
10442 we have a (neg (gt X 0)) operation. */
10444 if ((STORE_FLAG_VALUE
== 1 || STORE_FLAG_VALUE
== -1)
10445 && GET_CODE (XEXP (varop
, 0)) == ASHIFTRT
10446 && count
== (GET_MODE_PRECISION (GET_MODE (varop
)) - 1)
10447 && (code
== LSHIFTRT
|| code
== ASHIFTRT
)
10448 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
10449 && INTVAL (XEXP (XEXP (varop
, 0), 1)) == count
10450 && rtx_equal_p (XEXP (XEXP (varop
, 0), 0), XEXP (varop
, 1)))
10453 varop
= gen_rtx_GT (GET_MODE (varop
), XEXP (varop
, 1),
10456 if (STORE_FLAG_VALUE
== 1 ? code
== ASHIFTRT
: code
== LSHIFTRT
)
10457 varop
= gen_rtx_NEG (GET_MODE (varop
), varop
);
10464 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
10465 if the truncate does not affect the value. */
10466 if (code
== LSHIFTRT
10467 && GET_CODE (XEXP (varop
, 0)) == LSHIFTRT
10468 && CONST_INT_P (XEXP (XEXP (varop
, 0), 1))
10469 && (INTVAL (XEXP (XEXP (varop
, 0), 1))
10470 >= (GET_MODE_PRECISION (GET_MODE (XEXP (varop
, 0)))
10471 - GET_MODE_PRECISION (GET_MODE (varop
)))))
10473 rtx varop_inner
= XEXP (varop
, 0);
10476 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner
),
10477 XEXP (varop_inner
, 0),
10479 (count
+ INTVAL (XEXP (varop_inner
, 1))));
10480 varop
= gen_rtx_TRUNCATE (GET_MODE (varop
), varop_inner
);
10493 shift_mode
= try_widen_shift_mode (code
, varop
, count
, result_mode
, mode
,
10494 outer_op
, outer_const
);
10496 /* We have now finished analyzing the shift. The result should be
10497 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
10498 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
10499 to the result of the shift. OUTER_CONST is the relevant constant,
10500 but we must turn off all bits turned off in the shift. */
10502 if (outer_op
== UNKNOWN
10503 && orig_code
== code
&& orig_count
== count
10504 && varop
== orig_varop
10505 && shift_mode
== GET_MODE (varop
))
10508 /* Make a SUBREG if necessary. If we can't make it, fail. */
10509 varop
= gen_lowpart (shift_mode
, varop
);
10510 if (varop
== NULL_RTX
|| GET_CODE (varop
) == CLOBBER
)
10513 /* If we have an outer operation and we just made a shift, it is
10514 possible that we could have simplified the shift were it not
10515 for the outer operation. So try to do the simplification
10518 if (outer_op
!= UNKNOWN
)
10519 x
= simplify_shift_const_1 (code
, shift_mode
, varop
, count
);
10524 x
= simplify_gen_binary (code
, shift_mode
, varop
, GEN_INT (count
));
10526 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
10527 turn off all the bits that the shift would have turned off. */
10528 if (orig_code
== LSHIFTRT
&& result_mode
!= shift_mode
)
10529 x
= simplify_and_const_int (NULL_RTX
, shift_mode
, x
,
10530 GET_MODE_MASK (result_mode
) >> orig_count
);
10532 /* Do the remainder of the processing in RESULT_MODE. */
10533 x
= gen_lowpart_or_truncate (result_mode
, x
);
10535 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
10538 x
= simplify_gen_unary (NOT
, result_mode
, x
, result_mode
);
10540 if (outer_op
!= UNKNOWN
)
10542 if (GET_RTX_CLASS (outer_op
) != RTX_UNARY
10543 && GET_MODE_PRECISION (result_mode
) < HOST_BITS_PER_WIDE_INT
)
10544 outer_const
= trunc_int_for_mode (outer_const
, result_mode
);
10546 if (outer_op
== AND
)
10547 x
= simplify_and_const_int (NULL_RTX
, result_mode
, x
, outer_const
);
10548 else if (outer_op
== SET
)
10550 /* This means that we have determined that the result is
10551 equivalent to a constant. This should be rare. */
10552 if (!side_effects_p (x
))
10553 x
= GEN_INT (outer_const
);
10555 else if (GET_RTX_CLASS (outer_op
) == RTX_UNARY
)
10556 x
= simplify_gen_unary (outer_op
, result_mode
, x
, result_mode
);
10558 x
= simplify_gen_binary (outer_op
, result_mode
, x
,
10559 GEN_INT (outer_const
));
10565 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
10566 The result of the shift is RESULT_MODE. If we cannot simplify it,
10567 return X or, if it is NULL, synthesize the expression with
10568 simplify_gen_binary. Otherwise, return a simplified value.
10570 The shift is normally computed in the widest mode we find in VAROP, as
10571 long as it isn't a different number of words than RESULT_MODE. Exceptions
10572 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10575 simplify_shift_const (rtx x
, enum rtx_code code
, machine_mode result_mode
,
10576 rtx varop
, int count
)
10578 rtx tem
= simplify_shift_const_1 (code
, result_mode
, varop
, count
);
10583 x
= simplify_gen_binary (code
, GET_MODE (varop
), varop
, GEN_INT (count
));
10584 if (GET_MODE (x
) != result_mode
)
10585 x
= gen_lowpart (result_mode
, x
);
10590 /* Like recog, but we receive the address of a pointer to a new pattern.
10591 We try to match the rtx that the pointer points to.
10592 If that fails, we may try to modify or replace the pattern,
10593 storing the replacement into the same pointer object.
10595 Modifications include deletion or addition of CLOBBERs.
10597 PNOTES is a pointer to a location where any REG_UNUSED notes added for
10598 the CLOBBERs are placed.
10600 The value is the final insn code from the pattern ultimately matched,
10604 recog_for_combine (rtx
*pnewpat
, rtx_insn
*insn
, rtx
*pnotes
)
10606 rtx pat
= *pnewpat
;
10607 rtx pat_without_clobbers
;
10608 int insn_code_number
;
10609 int num_clobbers_to_add
= 0;
10611 rtx notes
= NULL_RTX
;
10612 rtx old_notes
, old_pat
;
10615 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
10616 we use to indicate that something didn't match. If we find such a
10617 thing, force rejection. */
10618 if (GET_CODE (pat
) == PARALLEL
)
10619 for (i
= XVECLEN (pat
, 0) - 1; i
>= 0; i
--)
10620 if (GET_CODE (XVECEXP (pat
, 0, i
)) == CLOBBER
10621 && XEXP (XVECEXP (pat
, 0, i
), 0) == const0_rtx
)
10624 old_pat
= PATTERN (insn
);
10625 old_notes
= REG_NOTES (insn
);
10626 PATTERN (insn
) = pat
;
10627 REG_NOTES (insn
) = NULL_RTX
;
10629 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
10630 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10632 if (insn_code_number
< 0)
10633 fputs ("Failed to match this instruction:\n", dump_file
);
10635 fputs ("Successfully matched this instruction:\n", dump_file
);
10636 print_rtl_single (dump_file
, pat
);
10639 /* If it isn't, there is the possibility that we previously had an insn
10640 that clobbered some register as a side effect, but the combined
10641 insn doesn't need to do that. So try once more without the clobbers
10642 unless this represents an ASM insn. */
10644 if (insn_code_number
< 0 && ! check_asm_operands (pat
)
10645 && GET_CODE (pat
) == PARALLEL
)
10649 for (pos
= 0, i
= 0; i
< XVECLEN (pat
, 0); i
++)
10650 if (GET_CODE (XVECEXP (pat
, 0, i
)) != CLOBBER
)
10653 SUBST (XVECEXP (pat
, 0, pos
), XVECEXP (pat
, 0, i
));
10657 SUBST_INT (XVECLEN (pat
, 0), pos
);
10660 pat
= XVECEXP (pat
, 0, 0);
10662 PATTERN (insn
) = pat
;
10663 insn_code_number
= recog (pat
, insn
, &num_clobbers_to_add
);
10664 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10666 if (insn_code_number
< 0)
10667 fputs ("Failed to match this instruction:\n", dump_file
);
10669 fputs ("Successfully matched this instruction:\n", dump_file
);
10670 print_rtl_single (dump_file
, pat
);
10674 pat_without_clobbers
= pat
;
10676 PATTERN (insn
) = old_pat
;
10677 REG_NOTES (insn
) = old_notes
;
10679 /* Recognize all noop sets, these will be killed by followup pass. */
10680 if (insn_code_number
< 0 && GET_CODE (pat
) == SET
&& set_noop_p (pat
))
10681 insn_code_number
= NOOP_MOVE_INSN_CODE
, num_clobbers_to_add
= 0;
10683 /* If we had any clobbers to add, make a new pattern than contains
10684 them. Then check to make sure that all of them are dead. */
10685 if (num_clobbers_to_add
)
10687 rtx newpat
= gen_rtx_PARALLEL (VOIDmode
,
10688 rtvec_alloc (GET_CODE (pat
) == PARALLEL
10689 ? (XVECLEN (pat
, 0)
10690 + num_clobbers_to_add
)
10691 : num_clobbers_to_add
+ 1));
10693 if (GET_CODE (pat
) == PARALLEL
)
10694 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
10695 XVECEXP (newpat
, 0, i
) = XVECEXP (pat
, 0, i
);
10697 XVECEXP (newpat
, 0, 0) = pat
;
10699 add_clobbers (newpat
, insn_code_number
);
10701 for (i
= XVECLEN (newpat
, 0) - num_clobbers_to_add
;
10702 i
< XVECLEN (newpat
, 0); i
++)
10704 if (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0))
10705 && ! reg_dead_at_p (XEXP (XVECEXP (newpat
, 0, i
), 0), insn
))
10707 if (GET_CODE (XEXP (XVECEXP (newpat
, 0, i
), 0)) != SCRATCH
)
10709 gcc_assert (REG_P (XEXP (XVECEXP (newpat
, 0, i
), 0)));
10710 notes
= alloc_reg_note (REG_UNUSED
,
10711 XEXP (XVECEXP (newpat
, 0, i
), 0), notes
);
10717 if (insn_code_number
>= 0
10718 && insn_code_number
!= NOOP_MOVE_INSN_CODE
)
10720 old_pat
= PATTERN (insn
);
10721 old_notes
= REG_NOTES (insn
);
10722 old_icode
= INSN_CODE (insn
);
10723 PATTERN (insn
) = pat
;
10724 REG_NOTES (insn
) = notes
;
10726 /* Allow targets to reject combined insn. */
10727 if (!targetm
.legitimate_combined_insn (insn
))
10729 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
10730 fputs ("Instruction not appropriate for target.",
10733 /* Callers expect recog_for_combine to strip
10734 clobbers from the pattern on failure. */
10735 pat
= pat_without_clobbers
;
10738 insn_code_number
= -1;
10741 PATTERN (insn
) = old_pat
;
10742 REG_NOTES (insn
) = old_notes
;
10743 INSN_CODE (insn
) = old_icode
;
10749 return insn_code_number
;
10752 /* Like gen_lowpart_general but for use by combine. In combine it
10753 is not possible to create any new pseudoregs. However, it is
10754 safe to create invalid memory addresses, because combine will
10755 try to recognize them and all they will do is make the combine
10758 If for some reason this cannot do its job, an rtx
10759 (clobber (const_int 0)) is returned.
10760 An insn containing that will not be recognized. */
10763 gen_lowpart_for_combine (machine_mode omode
, rtx x
)
10765 machine_mode imode
= GET_MODE (x
);
10766 unsigned int osize
= GET_MODE_SIZE (omode
);
10767 unsigned int isize
= GET_MODE_SIZE (imode
);
10770 if (omode
== imode
)
10773 /* We can only support MODE being wider than a word if X is a
10774 constant integer or has a mode the same size. */
10775 if (GET_MODE_SIZE (omode
) > UNITS_PER_WORD
10776 && ! (CONST_SCALAR_INT_P (x
) || isize
== osize
))
10779 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
10780 won't know what to do. So we will strip off the SUBREG here and
10781 process normally. */
10782 if (GET_CODE (x
) == SUBREG
&& MEM_P (SUBREG_REG (x
)))
10784 x
= SUBREG_REG (x
);
10786 /* For use in case we fall down into the address adjustments
10787 further below, we need to adjust the known mode and size of
10788 x; imode and isize, since we just adjusted x. */
10789 imode
= GET_MODE (x
);
10791 if (imode
== omode
)
10794 isize
= GET_MODE_SIZE (imode
);
10797 result
= gen_lowpart_common (omode
, x
);
10806 /* Refuse to work on a volatile memory ref or one with a mode-dependent
10808 if (MEM_VOLATILE_P (x
)
10809 || mode_dependent_address_p (XEXP (x
, 0), MEM_ADDR_SPACE (x
)))
10812 /* If we want to refer to something bigger than the original memref,
10813 generate a paradoxical subreg instead. That will force a reload
10814 of the original memref X. */
10816 return gen_rtx_SUBREG (omode
, x
, 0);
10818 if (WORDS_BIG_ENDIAN
)
10819 offset
= MAX (isize
, UNITS_PER_WORD
) - MAX (osize
, UNITS_PER_WORD
);
10821 /* Adjust the address so that the address-after-the-data is
10823 if (BYTES_BIG_ENDIAN
)
10824 offset
-= MIN (UNITS_PER_WORD
, osize
) - MIN (UNITS_PER_WORD
, isize
);
10826 return adjust_address_nv (x
, omode
, offset
);
10829 /* If X is a comparison operator, rewrite it in a new mode. This
10830 probably won't match, but may allow further simplifications. */
10831 else if (COMPARISON_P (x
))
10832 return gen_rtx_fmt_ee (GET_CODE (x
), omode
, XEXP (x
, 0), XEXP (x
, 1));
10834 /* If we couldn't simplify X any other way, just enclose it in a
10835 SUBREG. Normally, this SUBREG won't match, but some patterns may
10836 include an explicit SUBREG or we may simplify it further in combine. */
10842 offset
= subreg_lowpart_offset (omode
, imode
);
10843 if (imode
== VOIDmode
)
10845 imode
= int_mode_for_mode (omode
);
10846 x
= gen_lowpart_common (imode
, x
);
10850 res
= simplify_gen_subreg (omode
, x
, imode
, offset
);
10856 return gen_rtx_CLOBBER (omode
, const0_rtx
);
10859 /* Try to simplify a comparison between OP0 and a constant OP1,
10860 where CODE is the comparison code that will be tested, into a
10861 (CODE OP0 const0_rtx) form.
10863 The result is a possibly different comparison code to use.
10864 *POP1 may be updated. */
10866 static enum rtx_code
10867 simplify_compare_const (enum rtx_code code
, machine_mode mode
,
10868 rtx op0
, rtx
*pop1
)
10870 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
10871 HOST_WIDE_INT const_op
= INTVAL (*pop1
);
10873 /* Get the constant we are comparing against and turn off all bits
10874 not on in our mode. */
10875 if (mode
!= VOIDmode
)
10876 const_op
= trunc_int_for_mode (const_op
, mode
);
10878 /* If we are comparing against a constant power of two and the value
10879 being compared can only have that single bit nonzero (e.g., it was
10880 `and'ed with that bit), we can replace this with a comparison
10883 && (code
== EQ
|| code
== NE
|| code
== GE
|| code
== GEU
10884 || code
== LT
|| code
== LTU
)
10885 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10886 && exact_log2 (const_op
& GET_MODE_MASK (mode
)) >= 0
10887 && (nonzero_bits (op0
, mode
)
10888 == (unsigned HOST_WIDE_INT
) (const_op
& GET_MODE_MASK (mode
))))
10890 code
= (code
== EQ
|| code
== GE
|| code
== GEU
? NE
: EQ
);
10894 /* Similarly, if we are comparing a value known to be either -1 or
10895 0 with -1, change it to the opposite comparison against zero. */
10897 && (code
== EQ
|| code
== NE
|| code
== GT
|| code
== LE
10898 || code
== GEU
|| code
== LTU
)
10899 && num_sign_bit_copies (op0
, mode
) == mode_width
)
10901 code
= (code
== EQ
|| code
== LE
|| code
== GEU
? NE
: EQ
);
10905 /* Do some canonicalizations based on the comparison code. We prefer
10906 comparisons against zero and then prefer equality comparisons.
10907 If we can reduce the size of a constant, we will do that too. */
10911 /* < C is equivalent to <= (C - 1) */
10916 /* ... fall through to LE case below. */
10922 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10929 /* If we are doing a <= 0 comparison on a value known to have
10930 a zero sign bit, we can replace this with == 0. */
10931 else if (const_op
== 0
10932 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10933 && (nonzero_bits (op0
, mode
)
10934 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10940 /* >= C is equivalent to > (C - 1). */
10945 /* ... fall through to GT below. */
10951 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10958 /* If we are doing a > 0 comparison on a value known to have
10959 a zero sign bit, we can replace this with != 0. */
10960 else if (const_op
== 0
10961 && mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10962 && (nonzero_bits (op0
, mode
)
10963 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
10969 /* < C is equivalent to <= (C - 1). */
10974 /* ... fall through ... */
10976 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10977 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10978 && (unsigned HOST_WIDE_INT
) const_op
10979 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1))
10989 /* unsigned <= 0 is equivalent to == 0 */
10992 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10993 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
10994 && (unsigned HOST_WIDE_INT
) const_op
10995 == ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1)
11003 /* >= C is equivalent to > (C - 1). */
11008 /* ... fall through ... */
11011 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11012 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11013 && (unsigned HOST_WIDE_INT
) const_op
11014 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1))
11024 /* unsigned > 0 is equivalent to != 0 */
11027 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11028 else if (mode_width
- 1 < HOST_BITS_PER_WIDE_INT
11029 && (unsigned HOST_WIDE_INT
) const_op
11030 == ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)) - 1)
11041 *pop1
= GEN_INT (const_op
);
11045 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11046 comparison code that will be tested.
11048 The result is a possibly different comparison code to use. *POP0 and
11049 *POP1 may be updated.
11051 It is possible that we might detect that a comparison is either always
11052 true or always false. However, we do not perform general constant
11053 folding in combine, so this knowledge isn't useful. Such tautologies
11054 should have been detected earlier. Hence we ignore all such cases. */
11056 static enum rtx_code
11057 simplify_comparison (enum rtx_code code
, rtx
*pop0
, rtx
*pop1
)
11063 machine_mode mode
, tmode
;
11065 /* Try a few ways of applying the same transformation to both operands. */
11068 #ifndef WORD_REGISTER_OPERATIONS
11069 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11070 so check specially. */
11071 if (code
!= GTU
&& code
!= GEU
&& code
!= LTU
&& code
!= LEU
11072 && GET_CODE (op0
) == ASHIFTRT
&& GET_CODE (op1
) == ASHIFTRT
11073 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11074 && GET_CODE (XEXP (op1
, 0)) == ASHIFT
11075 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == SUBREG
11076 && GET_CODE (XEXP (XEXP (op1
, 0), 0)) == SUBREG
11077 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0)))
11078 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1
, 0), 0))))
11079 && CONST_INT_P (XEXP (op0
, 1))
11080 && XEXP (op0
, 1) == XEXP (op1
, 1)
11081 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11082 && XEXP (op0
, 1) == XEXP (XEXP (op1
, 0), 1)
11083 && (INTVAL (XEXP (op0
, 1))
11084 == (GET_MODE_PRECISION (GET_MODE (op0
))
11085 - (GET_MODE_PRECISION
11086 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0
, 0), 0))))))))
11088 op0
= SUBREG_REG (XEXP (XEXP (op0
, 0), 0));
11089 op1
= SUBREG_REG (XEXP (XEXP (op1
, 0), 0));
11093 /* If both operands are the same constant shift, see if we can ignore the
11094 shift. We can if the shift is a rotate or if the bits shifted out of
11095 this shift are known to be zero for both inputs and if the type of
11096 comparison is compatible with the shift. */
11097 if (GET_CODE (op0
) == GET_CODE (op1
)
11098 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0
))
11099 && ((GET_CODE (op0
) == ROTATE
&& (code
== NE
|| code
== EQ
))
11100 || ((GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFT
)
11101 && (code
!= GT
&& code
!= LT
&& code
!= GE
&& code
!= LE
))
11102 || (GET_CODE (op0
) == ASHIFTRT
11103 && (code
!= GTU
&& code
!= LTU
11104 && code
!= GEU
&& code
!= LEU
)))
11105 && CONST_INT_P (XEXP (op0
, 1))
11106 && INTVAL (XEXP (op0
, 1)) >= 0
11107 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11108 && XEXP (op0
, 1) == XEXP (op1
, 1))
11110 machine_mode mode
= GET_MODE (op0
);
11111 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11112 int shift_count
= INTVAL (XEXP (op0
, 1));
11114 if (GET_CODE (op0
) == LSHIFTRT
|| GET_CODE (op0
) == ASHIFTRT
)
11115 mask
&= (mask
>> shift_count
) << shift_count
;
11116 else if (GET_CODE (op0
) == ASHIFT
)
11117 mask
= (mask
& (mask
<< shift_count
)) >> shift_count
;
11119 if ((nonzero_bits (XEXP (op0
, 0), mode
) & ~mask
) == 0
11120 && (nonzero_bits (XEXP (op1
, 0), mode
) & ~mask
) == 0)
11121 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0);
11126 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11127 SUBREGs are of the same mode, and, in both cases, the AND would
11128 be redundant if the comparison was done in the narrower mode,
11129 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11130 and the operand's possibly nonzero bits are 0xffffff01; in that case
11131 if we only care about QImode, we don't need the AND). This case
11132 occurs if the output mode of an scc insn is not SImode and
11133 STORE_FLAG_VALUE == 1 (e.g., the 386).
11135 Similarly, check for a case where the AND's are ZERO_EXTEND
11136 operations from some narrower mode even though a SUBREG is not
11139 else if (GET_CODE (op0
) == AND
&& GET_CODE (op1
) == AND
11140 && CONST_INT_P (XEXP (op0
, 1))
11141 && CONST_INT_P (XEXP (op1
, 1)))
11143 rtx inner_op0
= XEXP (op0
, 0);
11144 rtx inner_op1
= XEXP (op1
, 0);
11145 HOST_WIDE_INT c0
= INTVAL (XEXP (op0
, 1));
11146 HOST_WIDE_INT c1
= INTVAL (XEXP (op1
, 1));
11149 if (paradoxical_subreg_p (inner_op0
)
11150 && GET_CODE (inner_op1
) == SUBREG
11151 && (GET_MODE (SUBREG_REG (inner_op0
))
11152 == GET_MODE (SUBREG_REG (inner_op1
)))
11153 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (inner_op0
)))
11154 <= HOST_BITS_PER_WIDE_INT
)
11155 && (0 == ((~c0
) & nonzero_bits (SUBREG_REG (inner_op0
),
11156 GET_MODE (SUBREG_REG (inner_op0
)))))
11157 && (0 == ((~c1
) & nonzero_bits (SUBREG_REG (inner_op1
),
11158 GET_MODE (SUBREG_REG (inner_op1
))))))
11160 op0
= SUBREG_REG (inner_op0
);
11161 op1
= SUBREG_REG (inner_op1
);
11163 /* The resulting comparison is always unsigned since we masked
11164 off the original sign bit. */
11165 code
= unsigned_condition (code
);
11171 for (tmode
= GET_CLASS_NARROWEST_MODE
11172 (GET_MODE_CLASS (GET_MODE (op0
)));
11173 tmode
!= GET_MODE (op0
); tmode
= GET_MODE_WIDER_MODE (tmode
))
11174 if ((unsigned HOST_WIDE_INT
) c0
== GET_MODE_MASK (tmode
))
11176 op0
= gen_lowpart (tmode
, inner_op0
);
11177 op1
= gen_lowpart (tmode
, inner_op1
);
11178 code
= unsigned_condition (code
);
11187 /* If both operands are NOT, we can strip off the outer operation
11188 and adjust the comparison code for swapped operands; similarly for
11189 NEG, except that this must be an equality comparison. */
11190 else if ((GET_CODE (op0
) == NOT
&& GET_CODE (op1
) == NOT
)
11191 || (GET_CODE (op0
) == NEG
&& GET_CODE (op1
) == NEG
11192 && (code
== EQ
|| code
== NE
)))
11193 op0
= XEXP (op0
, 0), op1
= XEXP (op1
, 0), code
= swap_condition (code
);
11199 /* If the first operand is a constant, swap the operands and adjust the
11200 comparison code appropriately, but don't do this if the second operand
11201 is already a constant integer. */
11202 if (swap_commutative_operands_p (op0
, op1
))
11204 tem
= op0
, op0
= op1
, op1
= tem
;
11205 code
= swap_condition (code
);
11208 /* We now enter a loop during which we will try to simplify the comparison.
11209 For the most part, we only are concerned with comparisons with zero,
11210 but some things may really be comparisons with zero but not start
11211 out looking that way. */
11213 while (CONST_INT_P (op1
))
11215 machine_mode mode
= GET_MODE (op0
);
11216 unsigned int mode_width
= GET_MODE_PRECISION (mode
);
11217 unsigned HOST_WIDE_INT mask
= GET_MODE_MASK (mode
);
11218 int equality_comparison_p
;
11219 int sign_bit_comparison_p
;
11220 int unsigned_comparison_p
;
11221 HOST_WIDE_INT const_op
;
11223 /* We only want to handle integral modes. This catches VOIDmode,
11224 CCmode, and the floating-point modes. An exception is that we
11225 can handle VOIDmode if OP0 is a COMPARE or a comparison
11228 if (GET_MODE_CLASS (mode
) != MODE_INT
11229 && ! (mode
== VOIDmode
11230 && (GET_CODE (op0
) == COMPARE
|| COMPARISON_P (op0
))))
11233 /* Try to simplify the compare to constant, possibly changing the
11234 comparison op, and/or changing op1 to zero. */
11235 code
= simplify_compare_const (code
, mode
, op0
, &op1
);
11236 const_op
= INTVAL (op1
);
11238 /* Compute some predicates to simplify code below. */
11240 equality_comparison_p
= (code
== EQ
|| code
== NE
);
11241 sign_bit_comparison_p
= ((code
== LT
|| code
== GE
) && const_op
== 0);
11242 unsigned_comparison_p
= (code
== LTU
|| code
== LEU
|| code
== GTU
11245 /* If this is a sign bit comparison and we can do arithmetic in
11246 MODE, say that we will only be needing the sign bit of OP0. */
11247 if (sign_bit_comparison_p
&& HWI_COMPUTABLE_MODE_P (mode
))
11248 op0
= force_to_mode (op0
, mode
,
11249 (unsigned HOST_WIDE_INT
) 1
11250 << (GET_MODE_PRECISION (mode
) - 1),
11253 /* Now try cases based on the opcode of OP0. If none of the cases
11254 does a "continue", we exit this loop immediately after the
11257 switch (GET_CODE (op0
))
11260 /* If we are extracting a single bit from a variable position in
11261 a constant that has only a single bit set and are comparing it
11262 with zero, we can convert this into an equality comparison
11263 between the position and the location of the single bit. */
11264 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
11265 have already reduced the shift count modulo the word size. */
11266 if (!SHIFT_COUNT_TRUNCATED
11267 && CONST_INT_P (XEXP (op0
, 0))
11268 && XEXP (op0
, 1) == const1_rtx
11269 && equality_comparison_p
&& const_op
== 0
11270 && (i
= exact_log2 (UINTVAL (XEXP (op0
, 0)))) >= 0)
11272 if (BITS_BIG_ENDIAN
)
11273 i
= BITS_PER_WORD
- 1 - i
;
11275 op0
= XEXP (op0
, 2);
11279 /* Result is nonzero iff shift count is equal to I. */
11280 code
= reverse_condition (code
);
11284 /* ... fall through ... */
11287 tem
= expand_compound_operation (op0
);
11296 /* If testing for equality, we can take the NOT of the constant. */
11297 if (equality_comparison_p
11298 && (tem
= simplify_unary_operation (NOT
, mode
, op1
, mode
)) != 0)
11300 op0
= XEXP (op0
, 0);
11305 /* If just looking at the sign bit, reverse the sense of the
11307 if (sign_bit_comparison_p
)
11309 op0
= XEXP (op0
, 0);
11310 code
= (code
== GE
? LT
: GE
);
11316 /* If testing for equality, we can take the NEG of the constant. */
11317 if (equality_comparison_p
11318 && (tem
= simplify_unary_operation (NEG
, mode
, op1
, mode
)) != 0)
11320 op0
= XEXP (op0
, 0);
11325 /* The remaining cases only apply to comparisons with zero. */
11329 /* When X is ABS or is known positive,
11330 (neg X) is < 0 if and only if X != 0. */
11332 if (sign_bit_comparison_p
11333 && (GET_CODE (XEXP (op0
, 0)) == ABS
11334 || (mode_width
<= HOST_BITS_PER_WIDE_INT
11335 && (nonzero_bits (XEXP (op0
, 0), mode
)
11336 & ((unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
11339 op0
= XEXP (op0
, 0);
11340 code
= (code
== LT
? NE
: EQ
);
11344 /* If we have NEG of something whose two high-order bits are the
11345 same, we know that "(-a) < 0" is equivalent to "a > 0". */
11346 if (num_sign_bit_copies (op0
, mode
) >= 2)
11348 op0
= XEXP (op0
, 0);
11349 code
= swap_condition (code
);
11355 /* If we are testing equality and our count is a constant, we
11356 can perform the inverse operation on our RHS. */
11357 if (equality_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
11358 && (tem
= simplify_binary_operation (ROTATERT
, mode
,
11359 op1
, XEXP (op0
, 1))) != 0)
11361 op0
= XEXP (op0
, 0);
11366 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
11367 a particular bit. Convert it to an AND of a constant of that
11368 bit. This will be converted into a ZERO_EXTRACT. */
11369 if (const_op
== 0 && sign_bit_comparison_p
11370 && CONST_INT_P (XEXP (op0
, 1))
11371 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
11373 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
11374 ((unsigned HOST_WIDE_INT
) 1
11376 - INTVAL (XEXP (op0
, 1)))));
11377 code
= (code
== LT
? NE
: EQ
);
11381 /* Fall through. */
11384 /* ABS is ignorable inside an equality comparison with zero. */
11385 if (const_op
== 0 && equality_comparison_p
)
11387 op0
= XEXP (op0
, 0);
11393 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
11394 (compare FOO CONST) if CONST fits in FOO's mode and we
11395 are either testing inequality or have an unsigned
11396 comparison with ZERO_EXTEND or a signed comparison with
11397 SIGN_EXTEND. But don't do it if we don't have a compare
11398 insn of the given mode, since we'd have to revert it
11399 later on, and then we wouldn't know whether to sign- or
11401 mode
= GET_MODE (XEXP (op0
, 0));
11402 if (GET_MODE_CLASS (mode
) == MODE_INT
11403 && ! unsigned_comparison_p
11404 && HWI_COMPUTABLE_MODE_P (mode
)
11405 && trunc_int_for_mode (const_op
, mode
) == const_op
11406 && have_insn_for (COMPARE
, mode
))
11408 op0
= XEXP (op0
, 0);
11414 /* Check for the case where we are comparing A - C1 with C2, that is
11416 (subreg:MODE (plus (A) (-C1))) op (C2)
11418 with C1 a constant, and try to lift the SUBREG, i.e. to do the
11419 comparison in the wider mode. One of the following two conditions
11420 must be true in order for this to be valid:
11422 1. The mode extension results in the same bit pattern being added
11423 on both sides and the comparison is equality or unsigned. As
11424 C2 has been truncated to fit in MODE, the pattern can only be
11427 2. The mode extension results in the sign bit being copied on
11430 The difficulty here is that we have predicates for A but not for
11431 (A - C1) so we need to check that C1 is within proper bounds so
11432 as to perturbate A as little as possible. */
11434 if (mode_width
<= HOST_BITS_PER_WIDE_INT
11435 && subreg_lowpart_p (op0
)
11436 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
))) > mode_width
11437 && GET_CODE (SUBREG_REG (op0
)) == PLUS
11438 && CONST_INT_P (XEXP (SUBREG_REG (op0
), 1)))
11440 machine_mode inner_mode
= GET_MODE (SUBREG_REG (op0
));
11441 rtx a
= XEXP (SUBREG_REG (op0
), 0);
11442 HOST_WIDE_INT c1
= -INTVAL (XEXP (SUBREG_REG (op0
), 1));
11445 && (unsigned HOST_WIDE_INT
) c1
11446 < (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)
11447 && (equality_comparison_p
|| unsigned_comparison_p
)
11448 /* (A - C1) zero-extends if it is positive and sign-extends
11449 if it is negative, C2 both zero- and sign-extends. */
11450 && ((0 == (nonzero_bits (a
, inner_mode
)
11451 & ~GET_MODE_MASK (mode
))
11453 /* (A - C1) sign-extends if it is positive and 1-extends
11454 if it is negative, C2 both sign- and 1-extends. */
11455 || (num_sign_bit_copies (a
, inner_mode
)
11456 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
11459 || ((unsigned HOST_WIDE_INT
) c1
11460 < (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 2)
11461 /* (A - C1) always sign-extends, like C2. */
11462 && num_sign_bit_copies (a
, inner_mode
)
11463 > (unsigned int) (GET_MODE_PRECISION (inner_mode
)
11464 - (mode_width
- 1))))
11466 op0
= SUBREG_REG (op0
);
11471 /* If the inner mode is narrower and we are extracting the low part,
11472 we can treat the SUBREG as if it were a ZERO_EXTEND. */
11473 if (subreg_lowpart_p (op0
)
11474 && GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
))) < mode_width
)
11475 /* Fall through */ ;
11479 /* ... fall through ... */
11482 mode
= GET_MODE (XEXP (op0
, 0));
11483 if (GET_MODE_CLASS (mode
) == MODE_INT
11484 && (unsigned_comparison_p
|| equality_comparison_p
)
11485 && HWI_COMPUTABLE_MODE_P (mode
)
11486 && (unsigned HOST_WIDE_INT
) const_op
<= GET_MODE_MASK (mode
)
11488 && have_insn_for (COMPARE
, mode
))
11490 op0
= XEXP (op0
, 0);
11496 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
11497 this for equality comparisons due to pathological cases involving
11499 if (equality_comparison_p
11500 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
11501 op1
, XEXP (op0
, 1))))
11503 op0
= XEXP (op0
, 0);
11508 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
11509 if (const_op
== 0 && XEXP (op0
, 1) == constm1_rtx
11510 && GET_CODE (XEXP (op0
, 0)) == ABS
&& sign_bit_comparison_p
)
11512 op0
= XEXP (XEXP (op0
, 0), 0);
11513 code
= (code
== LT
? EQ
: NE
);
11519 /* We used to optimize signed comparisons against zero, but that
11520 was incorrect. Unsigned comparisons against zero (GTU, LEU)
11521 arrive here as equality comparisons, or (GEU, LTU) are
11522 optimized away. No need to special-case them. */
11524 /* (eq (minus A B) C) -> (eq A (plus B C)) or
11525 (eq B (minus A C)), whichever simplifies. We can only do
11526 this for equality comparisons due to pathological cases involving
11528 if (equality_comparison_p
11529 && 0 != (tem
= simplify_binary_operation (PLUS
, mode
,
11530 XEXP (op0
, 1), op1
)))
11532 op0
= XEXP (op0
, 0);
11537 if (equality_comparison_p
11538 && 0 != (tem
= simplify_binary_operation (MINUS
, mode
,
11539 XEXP (op0
, 0), op1
)))
11541 op0
= XEXP (op0
, 1);
11546 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
11547 of bits in X minus 1, is one iff X > 0. */
11548 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == ASHIFTRT
11549 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11550 && UINTVAL (XEXP (XEXP (op0
, 0), 1)) == mode_width
- 1
11551 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
11553 op0
= XEXP (op0
, 1);
11554 code
= (code
== GE
? LE
: GT
);
11560 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
11561 if C is zero or B is a constant. */
11562 if (equality_comparison_p
11563 && 0 != (tem
= simplify_binary_operation (XOR
, mode
,
11564 XEXP (op0
, 1), op1
)))
11566 op0
= XEXP (op0
, 0);
11573 case UNEQ
: case LTGT
:
11574 case LT
: case LTU
: case UNLT
: case LE
: case LEU
: case UNLE
:
11575 case GT
: case GTU
: case UNGT
: case GE
: case GEU
: case UNGE
:
11576 case UNORDERED
: case ORDERED
:
11577 /* We can't do anything if OP0 is a condition code value, rather
11578 than an actual data value. */
11580 || CC0_P (XEXP (op0
, 0))
11581 || GET_MODE_CLASS (GET_MODE (XEXP (op0
, 0))) == MODE_CC
)
11584 /* Get the two operands being compared. */
11585 if (GET_CODE (XEXP (op0
, 0)) == COMPARE
)
11586 tem
= XEXP (XEXP (op0
, 0), 0), tem1
= XEXP (XEXP (op0
, 0), 1);
11588 tem
= XEXP (op0
, 0), tem1
= XEXP (op0
, 1);
11590 /* Check for the cases where we simply want the result of the
11591 earlier test or the opposite of that result. */
11592 if (code
== NE
|| code
== EQ
11593 || (val_signbit_known_set_p (GET_MODE (op0
), STORE_FLAG_VALUE
)
11594 && (code
== LT
|| code
== GE
)))
11596 enum rtx_code new_code
;
11597 if (code
== LT
|| code
== NE
)
11598 new_code
= GET_CODE (op0
);
11600 new_code
= reversed_comparison_code (op0
, NULL
);
11602 if (new_code
!= UNKNOWN
)
11613 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
11615 if (sign_bit_comparison_p
&& GET_CODE (XEXP (op0
, 0)) == PLUS
11616 && XEXP (XEXP (op0
, 0), 1) == constm1_rtx
11617 && rtx_equal_p (XEXP (XEXP (op0
, 0), 0), XEXP (op0
, 1)))
11619 op0
= XEXP (op0
, 1);
11620 code
= (code
== GE
? GT
: LE
);
11626 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
11627 will be converted to a ZERO_EXTRACT later. */
11628 if (const_op
== 0 && equality_comparison_p
11629 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11630 && XEXP (XEXP (op0
, 0), 0) == const1_rtx
)
11632 op0
= gen_rtx_LSHIFTRT (mode
, XEXP (op0
, 1),
11633 XEXP (XEXP (op0
, 0), 1));
11634 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
11638 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
11639 zero and X is a comparison and C1 and C2 describe only bits set
11640 in STORE_FLAG_VALUE, we can compare with X. */
11641 if (const_op
== 0 && equality_comparison_p
11642 && mode_width
<= HOST_BITS_PER_WIDE_INT
11643 && CONST_INT_P (XEXP (op0
, 1))
11644 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
11645 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11646 && INTVAL (XEXP (XEXP (op0
, 0), 1)) >= 0
11647 && INTVAL (XEXP (XEXP (op0
, 0), 1)) < HOST_BITS_PER_WIDE_INT
)
11649 mask
= ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
11650 << INTVAL (XEXP (XEXP (op0
, 0), 1)));
11651 if ((~STORE_FLAG_VALUE
& mask
) == 0
11652 && (COMPARISON_P (XEXP (XEXP (op0
, 0), 0))
11653 || ((tem
= get_last_value (XEXP (XEXP (op0
, 0), 0))) != 0
11654 && COMPARISON_P (tem
))))
11656 op0
= XEXP (XEXP (op0
, 0), 0);
11661 /* If we are doing an equality comparison of an AND of a bit equal
11662 to the sign bit, replace this with a LT or GE comparison of
11663 the underlying value. */
11664 if (equality_comparison_p
11666 && CONST_INT_P (XEXP (op0
, 1))
11667 && mode_width
<= HOST_BITS_PER_WIDE_INT
11668 && ((INTVAL (XEXP (op0
, 1)) & GET_MODE_MASK (mode
))
11669 == (unsigned HOST_WIDE_INT
) 1 << (mode_width
- 1)))
11671 op0
= XEXP (op0
, 0);
11672 code
= (code
== EQ
? GE
: LT
);
11676 /* If this AND operation is really a ZERO_EXTEND from a narrower
11677 mode, the constant fits within that mode, and this is either an
11678 equality or unsigned comparison, try to do this comparison in
11683 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
11684 -> (ne:DI (reg:SI 4) (const_int 0))
11686 unless TRULY_NOOP_TRUNCATION allows it or the register is
11687 known to hold a value of the required mode the
11688 transformation is invalid. */
11689 if ((equality_comparison_p
|| unsigned_comparison_p
)
11690 && CONST_INT_P (XEXP (op0
, 1))
11691 && (i
= exact_log2 ((UINTVAL (XEXP (op0
, 1))
11692 & GET_MODE_MASK (mode
))
11694 && const_op
>> i
== 0
11695 && (tmode
= mode_for_size (i
, MODE_INT
, 1)) != BLKmode
11696 && (TRULY_NOOP_TRUNCATION_MODES_P (tmode
, GET_MODE (op0
))
11697 || (REG_P (XEXP (op0
, 0))
11698 && reg_truncated_to_mode (tmode
, XEXP (op0
, 0)))))
11700 op0
= gen_lowpart (tmode
, XEXP (op0
, 0));
11704 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
11705 fits in both M1 and M2 and the SUBREG is either paradoxical
11706 or represents the low part, permute the SUBREG and the AND
11708 if (GET_CODE (XEXP (op0
, 0)) == SUBREG
)
11710 unsigned HOST_WIDE_INT c1
;
11711 tmode
= GET_MODE (SUBREG_REG (XEXP (op0
, 0)));
11712 /* Require an integral mode, to avoid creating something like
11714 if (SCALAR_INT_MODE_P (tmode
)
11715 /* It is unsafe to commute the AND into the SUBREG if the
11716 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
11717 not defined. As originally written the upper bits
11718 have a defined value due to the AND operation.
11719 However, if we commute the AND inside the SUBREG then
11720 they no longer have defined values and the meaning of
11721 the code has been changed. */
11723 #ifdef WORD_REGISTER_OPERATIONS
11724 || (mode_width
> GET_MODE_PRECISION (tmode
)
11725 && mode_width
<= BITS_PER_WORD
)
11727 || (mode_width
<= GET_MODE_PRECISION (tmode
)
11728 && subreg_lowpart_p (XEXP (op0
, 0))))
11729 && CONST_INT_P (XEXP (op0
, 1))
11730 && mode_width
<= HOST_BITS_PER_WIDE_INT
11731 && HWI_COMPUTABLE_MODE_P (tmode
)
11732 && ((c1
= INTVAL (XEXP (op0
, 1))) & ~mask
) == 0
11733 && (c1
& ~GET_MODE_MASK (tmode
)) == 0
11735 && c1
!= GET_MODE_MASK (tmode
))
11737 op0
= simplify_gen_binary (AND
, tmode
,
11738 SUBREG_REG (XEXP (op0
, 0)),
11739 gen_int_mode (c1
, tmode
));
11740 op0
= gen_lowpart (mode
, op0
);
11745 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
11746 if (const_op
== 0 && equality_comparison_p
11747 && XEXP (op0
, 1) == const1_rtx
11748 && GET_CODE (XEXP (op0
, 0)) == NOT
)
11750 op0
= simplify_and_const_int (NULL_RTX
, mode
,
11751 XEXP (XEXP (op0
, 0), 0), 1);
11752 code
= (code
== NE
? EQ
: NE
);
11756 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
11757 (eq (and (lshiftrt X) 1) 0).
11758 Also handle the case where (not X) is expressed using xor. */
11759 if (const_op
== 0 && equality_comparison_p
11760 && XEXP (op0
, 1) == const1_rtx
11761 && GET_CODE (XEXP (op0
, 0)) == LSHIFTRT
)
11763 rtx shift_op
= XEXP (XEXP (op0
, 0), 0);
11764 rtx shift_count
= XEXP (XEXP (op0
, 0), 1);
11766 if (GET_CODE (shift_op
) == NOT
11767 || (GET_CODE (shift_op
) == XOR
11768 && CONST_INT_P (XEXP (shift_op
, 1))
11769 && CONST_INT_P (shift_count
)
11770 && HWI_COMPUTABLE_MODE_P (mode
)
11771 && (UINTVAL (XEXP (shift_op
, 1))
11772 == (unsigned HOST_WIDE_INT
) 1
11773 << INTVAL (shift_count
))))
11776 = gen_rtx_LSHIFTRT (mode
, XEXP (shift_op
, 0), shift_count
);
11777 op0
= simplify_and_const_int (NULL_RTX
, mode
, op0
, 1);
11778 code
= (code
== NE
? EQ
: NE
);
11785 /* If we have (compare (ashift FOO N) (const_int C)) and
11786 the high order N bits of FOO (N+1 if an inequality comparison)
11787 are known to be zero, we can do this by comparing FOO with C
11788 shifted right N bits so long as the low-order N bits of C are
11790 if (CONST_INT_P (XEXP (op0
, 1))
11791 && INTVAL (XEXP (op0
, 1)) >= 0
11792 && ((INTVAL (XEXP (op0
, 1)) + ! equality_comparison_p
)
11793 < HOST_BITS_PER_WIDE_INT
)
11794 && (((unsigned HOST_WIDE_INT
) const_op
11795 & (((unsigned HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1)))
11797 && mode_width
<= HOST_BITS_PER_WIDE_INT
11798 && (nonzero_bits (XEXP (op0
, 0), mode
)
11799 & ~(mask
>> (INTVAL (XEXP (op0
, 1))
11800 + ! equality_comparison_p
))) == 0)
11802 /* We must perform a logical shift, not an arithmetic one,
11803 as we want the top N bits of C to be zero. */
11804 unsigned HOST_WIDE_INT temp
= const_op
& GET_MODE_MASK (mode
);
11806 temp
>>= INTVAL (XEXP (op0
, 1));
11807 op1
= gen_int_mode (temp
, mode
);
11808 op0
= XEXP (op0
, 0);
11812 /* If we are doing a sign bit comparison, it means we are testing
11813 a particular bit. Convert it to the appropriate AND. */
11814 if (sign_bit_comparison_p
&& CONST_INT_P (XEXP (op0
, 1))
11815 && mode_width
<= HOST_BITS_PER_WIDE_INT
)
11817 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0),
11818 ((unsigned HOST_WIDE_INT
) 1
11820 - INTVAL (XEXP (op0
, 1)))));
11821 code
= (code
== LT
? NE
: EQ
);
11825 /* If this an equality comparison with zero and we are shifting
11826 the low bit to the sign bit, we can convert this to an AND of the
11828 if (const_op
== 0 && equality_comparison_p
11829 && CONST_INT_P (XEXP (op0
, 1))
11830 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
11832 op0
= simplify_and_const_int (NULL_RTX
, mode
, XEXP (op0
, 0), 1);
11838 /* If this is an equality comparison with zero, we can do this
11839 as a logical shift, which might be much simpler. */
11840 if (equality_comparison_p
&& const_op
== 0
11841 && CONST_INT_P (XEXP (op0
, 1)))
11843 op0
= simplify_shift_const (NULL_RTX
, LSHIFTRT
, mode
,
11845 INTVAL (XEXP (op0
, 1)));
11849 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
11850 do the comparison in a narrower mode. */
11851 if (! unsigned_comparison_p
11852 && CONST_INT_P (XEXP (op0
, 1))
11853 && GET_CODE (XEXP (op0
, 0)) == ASHIFT
11854 && XEXP (op0
, 1) == XEXP (XEXP (op0
, 0), 1)
11855 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
11856 MODE_INT
, 1)) != BLKmode
11857 && (((unsigned HOST_WIDE_INT
) const_op
11858 + (GET_MODE_MASK (tmode
) >> 1) + 1)
11859 <= GET_MODE_MASK (tmode
)))
11861 op0
= gen_lowpart (tmode
, XEXP (XEXP (op0
, 0), 0));
11865 /* Likewise if OP0 is a PLUS of a sign extension with a
11866 constant, which is usually represented with the PLUS
11867 between the shifts. */
11868 if (! unsigned_comparison_p
11869 && CONST_INT_P (XEXP (op0
, 1))
11870 && GET_CODE (XEXP (op0
, 0)) == PLUS
11871 && CONST_INT_P (XEXP (XEXP (op0
, 0), 1))
11872 && GET_CODE (XEXP (XEXP (op0
, 0), 0)) == ASHIFT
11873 && XEXP (op0
, 1) == XEXP (XEXP (XEXP (op0
, 0), 0), 1)
11874 && (tmode
= mode_for_size (mode_width
- INTVAL (XEXP (op0
, 1)),
11875 MODE_INT
, 1)) != BLKmode
11876 && (((unsigned HOST_WIDE_INT
) const_op
11877 + (GET_MODE_MASK (tmode
) >> 1) + 1)
11878 <= GET_MODE_MASK (tmode
)))
11880 rtx inner
= XEXP (XEXP (XEXP (op0
, 0), 0), 0);
11881 rtx add_const
= XEXP (XEXP (op0
, 0), 1);
11882 rtx new_const
= simplify_gen_binary (ASHIFTRT
, GET_MODE (op0
),
11883 add_const
, XEXP (op0
, 1));
11885 op0
= simplify_gen_binary (PLUS
, tmode
,
11886 gen_lowpart (tmode
, inner
),
11891 /* ... fall through ... */
11893 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11894 the low order N bits of FOO are known to be zero, we can do this
11895 by comparing FOO with C shifted left N bits so long as no
11896 overflow occurs. Even if the low order N bits of FOO aren't known
11897 to be zero, if the comparison is >= or < we can use the same
11898 optimization and for > or <= by setting all the low
11899 order N bits in the comparison constant. */
11900 if (CONST_INT_P (XEXP (op0
, 1))
11901 && INTVAL (XEXP (op0
, 1)) > 0
11902 && INTVAL (XEXP (op0
, 1)) < HOST_BITS_PER_WIDE_INT
11903 && mode_width
<= HOST_BITS_PER_WIDE_INT
11904 && (((unsigned HOST_WIDE_INT
) const_op
11905 + (GET_CODE (op0
) != LSHIFTRT
11906 ? ((GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1)) >> 1)
11909 <= GET_MODE_MASK (mode
) >> INTVAL (XEXP (op0
, 1))))
11911 unsigned HOST_WIDE_INT low_bits
11912 = (nonzero_bits (XEXP (op0
, 0), mode
)
11913 & (((unsigned HOST_WIDE_INT
) 1
11914 << INTVAL (XEXP (op0
, 1))) - 1));
11915 if (low_bits
== 0 || !equality_comparison_p
)
11917 /* If the shift was logical, then we must make the condition
11919 if (GET_CODE (op0
) == LSHIFTRT
)
11920 code
= unsigned_condition (code
);
11922 const_op
<<= INTVAL (XEXP (op0
, 1));
11924 && (code
== GT
|| code
== GTU
11925 || code
== LE
|| code
== LEU
))
11927 |= (((HOST_WIDE_INT
) 1 << INTVAL (XEXP (op0
, 1))) - 1);
11928 op1
= GEN_INT (const_op
);
11929 op0
= XEXP (op0
, 0);
11934 /* If we are using this shift to extract just the sign bit, we
11935 can replace this with an LT or GE comparison. */
11937 && (equality_comparison_p
|| sign_bit_comparison_p
)
11938 && CONST_INT_P (XEXP (op0
, 1))
11939 && UINTVAL (XEXP (op0
, 1)) == mode_width
- 1)
11941 op0
= XEXP (op0
, 0);
11942 code
= (code
== NE
|| code
== GT
? LT
: GE
);
11954 /* Now make any compound operations involved in this comparison. Then,
11955 check for an outmost SUBREG on OP0 that is not doing anything or is
11956 paradoxical. The latter transformation must only be performed when
11957 it is known that the "extra" bits will be the same in op0 and op1 or
11958 that they don't matter. There are three cases to consider:
11960 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11961 care bits and we can assume they have any convenient value. So
11962 making the transformation is safe.
11964 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11965 In this case the upper bits of op0 are undefined. We should not make
11966 the simplification in that case as we do not know the contents of
11969 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11970 UNKNOWN. In that case we know those bits are zeros or ones. We must
11971 also be sure that they are the same as the upper bits of op1.
11973 We can never remove a SUBREG for a non-equality comparison because
11974 the sign bit is in a different place in the underlying object. */
11976 op0
= make_compound_operation (op0
, op1
== const0_rtx
? COMPARE
: SET
);
11977 op1
= make_compound_operation (op1
, SET
);
11979 if (GET_CODE (op0
) == SUBREG
&& subreg_lowpart_p (op0
)
11980 && GET_MODE_CLASS (GET_MODE (op0
)) == MODE_INT
11981 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0
))) == MODE_INT
11982 && (code
== NE
|| code
== EQ
))
11984 if (paradoxical_subreg_p (op0
))
11986 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11988 if (REG_P (SUBREG_REG (op0
)))
11990 op0
= SUBREG_REG (op0
);
11991 op1
= gen_lowpart (GET_MODE (op0
), op1
);
11994 else if ((GET_MODE_PRECISION (GET_MODE (SUBREG_REG (op0
)))
11995 <= HOST_BITS_PER_WIDE_INT
)
11996 && (nonzero_bits (SUBREG_REG (op0
),
11997 GET_MODE (SUBREG_REG (op0
)))
11998 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
12000 tem
= gen_lowpart (GET_MODE (SUBREG_REG (op0
)), op1
);
12002 if ((nonzero_bits (tem
, GET_MODE (SUBREG_REG (op0
)))
12003 & ~GET_MODE_MASK (GET_MODE (op0
))) == 0)
12004 op0
= SUBREG_REG (op0
), op1
= tem
;
12008 /* We now do the opposite procedure: Some machines don't have compare
12009 insns in all modes. If OP0's mode is an integer mode smaller than a
12010 word and we can't do a compare in that mode, see if there is a larger
12011 mode for which we can do the compare. There are a number of cases in
12012 which we can use the wider mode. */
12014 mode
= GET_MODE (op0
);
12015 if (mode
!= VOIDmode
&& GET_MODE_CLASS (mode
) == MODE_INT
12016 && GET_MODE_SIZE (mode
) < UNITS_PER_WORD
12017 && ! have_insn_for (COMPARE
, mode
))
12018 for (tmode
= GET_MODE_WIDER_MODE (mode
);
12019 (tmode
!= VOIDmode
&& HWI_COMPUTABLE_MODE_P (tmode
));
12020 tmode
= GET_MODE_WIDER_MODE (tmode
))
12021 if (have_insn_for (COMPARE
, tmode
))
12025 /* If this is a test for negative, we can make an explicit
12026 test of the sign bit. Test this first so we can use
12027 a paradoxical subreg to extend OP0. */
12029 if (op1
== const0_rtx
&& (code
== LT
|| code
== GE
)
12030 && HWI_COMPUTABLE_MODE_P (mode
))
12032 unsigned HOST_WIDE_INT sign
12033 = (unsigned HOST_WIDE_INT
) 1 << (GET_MODE_BITSIZE (mode
) - 1);
12034 op0
= simplify_gen_binary (AND
, tmode
,
12035 gen_lowpart (tmode
, op0
),
12036 gen_int_mode (sign
, tmode
));
12037 code
= (code
== LT
) ? NE
: EQ
;
12041 /* If the only nonzero bits in OP0 and OP1 are those in the
12042 narrower mode and this is an equality or unsigned comparison,
12043 we can use the wider mode. Similarly for sign-extended
12044 values, in which case it is true for all comparisons. */
12045 zero_extended
= ((code
== EQ
|| code
== NE
12046 || code
== GEU
|| code
== GTU
12047 || code
== LEU
|| code
== LTU
)
12048 && (nonzero_bits (op0
, tmode
)
12049 & ~GET_MODE_MASK (mode
)) == 0
12050 && ((CONST_INT_P (op1
)
12051 || (nonzero_bits (op1
, tmode
)
12052 & ~GET_MODE_MASK (mode
)) == 0)));
12055 || ((num_sign_bit_copies (op0
, tmode
)
12056 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12057 - GET_MODE_PRECISION (mode
)))
12058 && (num_sign_bit_copies (op1
, tmode
)
12059 > (unsigned int) (GET_MODE_PRECISION (tmode
)
12060 - GET_MODE_PRECISION (mode
)))))
12062 /* If OP0 is an AND and we don't have an AND in MODE either,
12063 make a new AND in the proper mode. */
12064 if (GET_CODE (op0
) == AND
12065 && !have_insn_for (AND
, mode
))
12066 op0
= simplify_gen_binary (AND
, tmode
,
12067 gen_lowpart (tmode
,
12069 gen_lowpart (tmode
,
12075 op0
= simplify_gen_unary (ZERO_EXTEND
, tmode
, op0
, mode
);
12076 op1
= simplify_gen_unary (ZERO_EXTEND
, tmode
, op1
, mode
);
12080 op0
= simplify_gen_unary (SIGN_EXTEND
, tmode
, op0
, mode
);
12081 op1
= simplify_gen_unary (SIGN_EXTEND
, tmode
, op1
, mode
);
12088 /* We may have changed the comparison operands. Re-canonicalize. */
12089 if (swap_commutative_operands_p (op0
, op1
))
12091 tem
= op0
, op0
= op1
, op1
= tem
;
12092 code
= swap_condition (code
);
12095 /* If this machine only supports a subset of valid comparisons, see if we
12096 can convert an unsupported one into a supported one. */
12097 target_canonicalize_comparison (&code
, &op0
, &op1
, 0);
12105 /* Utility function for record_value_for_reg. Count number of
12110 enum rtx_code code
= GET_CODE (x
);
12114 if (GET_RTX_CLASS (code
) == RTX_BIN_ARITH
12115 || GET_RTX_CLASS (code
) == RTX_COMM_ARITH
)
12117 rtx x0
= XEXP (x
, 0);
12118 rtx x1
= XEXP (x
, 1);
12121 return 1 + 2 * count_rtxs (x0
);
12123 if ((GET_RTX_CLASS (GET_CODE (x1
)) == RTX_BIN_ARITH
12124 || GET_RTX_CLASS (GET_CODE (x1
)) == RTX_COMM_ARITH
)
12125 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12126 return 2 + 2 * count_rtxs (x0
)
12127 + count_rtxs (x
== XEXP (x1
, 0)
12128 ? XEXP (x1
, 1) : XEXP (x1
, 0));
12130 if ((GET_RTX_CLASS (GET_CODE (x0
)) == RTX_BIN_ARITH
12131 || GET_RTX_CLASS (GET_CODE (x0
)) == RTX_COMM_ARITH
)
12132 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12133 return 2 + 2 * count_rtxs (x1
)
12134 + count_rtxs (x
== XEXP (x0
, 0)
12135 ? XEXP (x0
, 1) : XEXP (x0
, 0));
12138 fmt
= GET_RTX_FORMAT (code
);
12139 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12141 ret
+= count_rtxs (XEXP (x
, i
));
12142 else if (fmt
[i
] == 'E')
12143 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12144 ret
+= count_rtxs (XVECEXP (x
, i
, j
));
12149 /* Utility function for following routine. Called when X is part of a value
12150 being stored into last_set_value. Sets last_set_table_tick
12151 for each register mentioned. Similar to mention_regs in cse.c */
12154 update_table_tick (rtx x
)
12156 enum rtx_code code
= GET_CODE (x
);
12157 const char *fmt
= GET_RTX_FORMAT (code
);
12162 unsigned int regno
= REGNO (x
);
12163 unsigned int endregno
= END_REGNO (x
);
12166 for (r
= regno
; r
< endregno
; r
++)
12168 reg_stat_type
*rsp
= ®_stat
[r
];
12169 rsp
->last_set_table_tick
= label_tick
;
12175 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12178 /* Check for identical subexpressions. If x contains
12179 identical subexpression we only have to traverse one of
12181 if (i
== 0 && ARITHMETIC_P (x
))
12183 /* Note that at this point x1 has already been
12185 rtx x0
= XEXP (x
, 0);
12186 rtx x1
= XEXP (x
, 1);
12188 /* If x0 and x1 are identical then there is no need to
12193 /* If x0 is identical to a subexpression of x1 then while
12194 processing x1, x0 has already been processed. Thus we
12195 are done with x. */
12196 if (ARITHMETIC_P (x1
)
12197 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12200 /* If x1 is identical to a subexpression of x0 then we
12201 still have to process the rest of x0. */
12202 if (ARITHMETIC_P (x0
)
12203 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12205 update_table_tick (XEXP (x0
, x1
== XEXP (x0
, 0) ? 1 : 0));
12210 update_table_tick (XEXP (x
, i
));
12212 else if (fmt
[i
] == 'E')
12213 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12214 update_table_tick (XVECEXP (x
, i
, j
));
12217 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
12218 are saying that the register is clobbered and we no longer know its
12219 value. If INSN is zero, don't update reg_stat[].last_set; this is
12220 only permitted with VALUE also zero and is used to invalidate the
12224 record_value_for_reg (rtx reg
, rtx_insn
*insn
, rtx value
)
12226 unsigned int regno
= REGNO (reg
);
12227 unsigned int endregno
= END_REGNO (reg
);
12229 reg_stat_type
*rsp
;
12231 /* If VALUE contains REG and we have a previous value for REG, substitute
12232 the previous value. */
12233 if (value
&& insn
&& reg_overlap_mentioned_p (reg
, value
))
12237 /* Set things up so get_last_value is allowed to see anything set up to
12239 subst_low_luid
= DF_INSN_LUID (insn
);
12240 tem
= get_last_value (reg
);
12242 /* If TEM is simply a binary operation with two CLOBBERs as operands,
12243 it isn't going to be useful and will take a lot of time to process,
12244 so just use the CLOBBER. */
12248 if (ARITHMETIC_P (tem
)
12249 && GET_CODE (XEXP (tem
, 0)) == CLOBBER
12250 && GET_CODE (XEXP (tem
, 1)) == CLOBBER
)
12251 tem
= XEXP (tem
, 0);
12252 else if (count_occurrences (value
, reg
, 1) >= 2)
12254 /* If there are two or more occurrences of REG in VALUE,
12255 prevent the value from growing too much. */
12256 if (count_rtxs (tem
) > MAX_LAST_VALUE_RTL
)
12257 tem
= gen_rtx_CLOBBER (GET_MODE (tem
), const0_rtx
);
12260 value
= replace_rtx (copy_rtx (value
), reg
, tem
);
12264 /* For each register modified, show we don't know its value, that
12265 we don't know about its bitwise content, that its value has been
12266 updated, and that we don't know the location of the death of the
12268 for (i
= regno
; i
< endregno
; i
++)
12270 rsp
= ®_stat
[i
];
12273 rsp
->last_set
= insn
;
12275 rsp
->last_set_value
= 0;
12276 rsp
->last_set_mode
= VOIDmode
;
12277 rsp
->last_set_nonzero_bits
= 0;
12278 rsp
->last_set_sign_bit_copies
= 0;
12279 rsp
->last_death
= 0;
12280 rsp
->truncated_to_mode
= VOIDmode
;
12283 /* Mark registers that are being referenced in this value. */
12285 update_table_tick (value
);
12287 /* Now update the status of each register being set.
12288 If someone is using this register in this block, set this register
12289 to invalid since we will get confused between the two lives in this
12290 basic block. This makes using this register always invalid. In cse, we
12291 scan the table to invalidate all entries using this register, but this
12292 is too much work for us. */
12294 for (i
= regno
; i
< endregno
; i
++)
12296 rsp
= ®_stat
[i
];
12297 rsp
->last_set_label
= label_tick
;
12299 || (value
&& rsp
->last_set_table_tick
>= label_tick_ebb_start
))
12300 rsp
->last_set_invalid
= 1;
12302 rsp
->last_set_invalid
= 0;
12305 /* The value being assigned might refer to X (like in "x++;"). In that
12306 case, we must replace it with (clobber (const_int 0)) to prevent
12308 rsp
= ®_stat
[regno
];
12309 if (value
&& !get_last_value_validate (&value
, insn
, label_tick
, 0))
12311 value
= copy_rtx (value
);
12312 if (!get_last_value_validate (&value
, insn
, label_tick
, 1))
12316 /* For the main register being modified, update the value, the mode, the
12317 nonzero bits, and the number of sign bit copies. */
12319 rsp
->last_set_value
= value
;
12323 machine_mode mode
= GET_MODE (reg
);
12324 subst_low_luid
= DF_INSN_LUID (insn
);
12325 rsp
->last_set_mode
= mode
;
12326 if (GET_MODE_CLASS (mode
) == MODE_INT
12327 && HWI_COMPUTABLE_MODE_P (mode
))
12328 mode
= nonzero_bits_mode
;
12329 rsp
->last_set_nonzero_bits
= nonzero_bits (value
, mode
);
12330 rsp
->last_set_sign_bit_copies
12331 = num_sign_bit_copies (value
, GET_MODE (reg
));
12335 /* Called via note_stores from record_dead_and_set_regs to handle one
12336 SET or CLOBBER in an insn. DATA is the instruction in which the
12337 set is occurring. */
12340 record_dead_and_set_regs_1 (rtx dest
, const_rtx setter
, void *data
)
12342 rtx_insn
*record_dead_insn
= (rtx_insn
*) data
;
12344 if (GET_CODE (dest
) == SUBREG
)
12345 dest
= SUBREG_REG (dest
);
12347 if (!record_dead_insn
)
12350 record_value_for_reg (dest
, NULL
, NULL_RTX
);
12356 /* If we are setting the whole register, we know its value. Otherwise
12357 show that we don't know the value. We can handle SUBREG in
12359 if (GET_CODE (setter
) == SET
&& dest
== SET_DEST (setter
))
12360 record_value_for_reg (dest
, record_dead_insn
, SET_SRC (setter
));
12361 else if (GET_CODE (setter
) == SET
12362 && GET_CODE (SET_DEST (setter
)) == SUBREG
12363 && SUBREG_REG (SET_DEST (setter
)) == dest
12364 && GET_MODE_PRECISION (GET_MODE (dest
)) <= BITS_PER_WORD
12365 && subreg_lowpart_p (SET_DEST (setter
)))
12366 record_value_for_reg (dest
, record_dead_insn
,
12367 gen_lowpart (GET_MODE (dest
),
12368 SET_SRC (setter
)));
12370 record_value_for_reg (dest
, record_dead_insn
, NULL_RTX
);
12372 else if (MEM_P (dest
)
12373 /* Ignore pushes, they clobber nothing. */
12374 && ! push_operand (dest
, GET_MODE (dest
)))
12375 mem_last_set
= DF_INSN_LUID (record_dead_insn
);
12378 /* Update the records of when each REG was most recently set or killed
12379 for the things done by INSN. This is the last thing done in processing
12380 INSN in the combiner loop.
12382 We update reg_stat[], in particular fields last_set, last_set_value,
12383 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
12384 last_death, and also the similar information mem_last_set (which insn
12385 most recently modified memory) and last_call_luid (which insn was the
12386 most recent subroutine call). */
12389 record_dead_and_set_regs (rtx_insn
*insn
)
12394 for (link
= REG_NOTES (insn
); link
; link
= XEXP (link
, 1))
12396 if (REG_NOTE_KIND (link
) == REG_DEAD
12397 && REG_P (XEXP (link
, 0)))
12399 unsigned int regno
= REGNO (XEXP (link
, 0));
12400 unsigned int endregno
= END_REGNO (XEXP (link
, 0));
12402 for (i
= regno
; i
< endregno
; i
++)
12404 reg_stat_type
*rsp
;
12406 rsp
= ®_stat
[i
];
12407 rsp
->last_death
= insn
;
12410 else if (REG_NOTE_KIND (link
) == REG_INC
)
12411 record_value_for_reg (XEXP (link
, 0), insn
, NULL_RTX
);
12416 hard_reg_set_iterator hrsi
;
12417 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call
, 0, i
, hrsi
)
12419 reg_stat_type
*rsp
;
12421 rsp
= ®_stat
[i
];
12422 rsp
->last_set_invalid
= 1;
12423 rsp
->last_set
= insn
;
12424 rsp
->last_set_value
= 0;
12425 rsp
->last_set_mode
= VOIDmode
;
12426 rsp
->last_set_nonzero_bits
= 0;
12427 rsp
->last_set_sign_bit_copies
= 0;
12428 rsp
->last_death
= 0;
12429 rsp
->truncated_to_mode
= VOIDmode
;
12432 last_call_luid
= mem_last_set
= DF_INSN_LUID (insn
);
12434 /* We can't combine into a call pattern. Remember, though, that
12435 the return value register is set at this LUID. We could
12436 still replace a register with the return value from the
12437 wrong subroutine call! */
12438 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, NULL_RTX
);
12441 note_stores (PATTERN (insn
), record_dead_and_set_regs_1
, insn
);
12444 /* If a SUBREG has the promoted bit set, it is in fact a property of the
12445 register present in the SUBREG, so for each such SUBREG go back and
12446 adjust nonzero and sign bit information of the registers that are
12447 known to have some zero/sign bits set.
12449 This is needed because when combine blows the SUBREGs away, the
12450 information on zero/sign bits is lost and further combines can be
12451 missed because of that. */
12454 record_promoted_value (rtx_insn
*insn
, rtx subreg
)
12456 struct insn_link
*links
;
12458 unsigned int regno
= REGNO (SUBREG_REG (subreg
));
12459 machine_mode mode
= GET_MODE (subreg
);
12461 if (GET_MODE_PRECISION (mode
) > HOST_BITS_PER_WIDE_INT
)
12464 for (links
= LOG_LINKS (insn
); links
;)
12466 reg_stat_type
*rsp
;
12468 insn
= links
->insn
;
12469 set
= single_set (insn
);
12471 if (! set
|| !REG_P (SET_DEST (set
))
12472 || REGNO (SET_DEST (set
)) != regno
12473 || GET_MODE (SET_DEST (set
)) != GET_MODE (SUBREG_REG (subreg
)))
12475 links
= links
->next
;
12479 rsp
= ®_stat
[regno
];
12480 if (rsp
->last_set
== insn
)
12482 if (SUBREG_PROMOTED_UNSIGNED_P (subreg
))
12483 rsp
->last_set_nonzero_bits
&= GET_MODE_MASK (mode
);
12486 if (REG_P (SET_SRC (set
)))
12488 regno
= REGNO (SET_SRC (set
));
12489 links
= LOG_LINKS (insn
);
12496 /* Check if X, a register, is known to contain a value already
12497 truncated to MODE. In this case we can use a subreg to refer to
12498 the truncated value even though in the generic case we would need
12499 an explicit truncation. */
12502 reg_truncated_to_mode (machine_mode mode
, const_rtx x
)
12504 reg_stat_type
*rsp
= ®_stat
[REGNO (x
)];
12505 machine_mode truncated
= rsp
->truncated_to_mode
;
12508 || rsp
->truncation_label
< label_tick_ebb_start
)
12510 if (GET_MODE_SIZE (truncated
) <= GET_MODE_SIZE (mode
))
12512 if (TRULY_NOOP_TRUNCATION_MODES_P (mode
, truncated
))
12517 /* If X is a hard reg or a subreg record the mode that the register is
12518 accessed in. For non-TRULY_NOOP_TRUNCATION targets we might be able
12519 to turn a truncate into a subreg using this information. Return true
12520 if traversing X is complete. */
12523 record_truncated_value (rtx x
)
12525 machine_mode truncated_mode
;
12526 reg_stat_type
*rsp
;
12528 if (GET_CODE (x
) == SUBREG
&& REG_P (SUBREG_REG (x
)))
12530 machine_mode original_mode
= GET_MODE (SUBREG_REG (x
));
12531 truncated_mode
= GET_MODE (x
);
12533 if (GET_MODE_SIZE (original_mode
) <= GET_MODE_SIZE (truncated_mode
))
12536 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode
, original_mode
))
12539 x
= SUBREG_REG (x
);
12541 /* ??? For hard-regs we now record everything. We might be able to
12542 optimize this using last_set_mode. */
12543 else if (REG_P (x
) && REGNO (x
) < FIRST_PSEUDO_REGISTER
)
12544 truncated_mode
= GET_MODE (x
);
12548 rsp
= ®_stat
[REGNO (x
)];
12549 if (rsp
->truncated_to_mode
== 0
12550 || rsp
->truncation_label
< label_tick_ebb_start
12551 || (GET_MODE_SIZE (truncated_mode
)
12552 < GET_MODE_SIZE (rsp
->truncated_to_mode
)))
12554 rsp
->truncated_to_mode
= truncated_mode
;
12555 rsp
->truncation_label
= label_tick
;
12561 /* Callback for note_uses. Find hardregs and subregs of pseudos and
12562 the modes they are used in. This can help truning TRUNCATEs into
12566 record_truncated_values (rtx
*loc
, void *data ATTRIBUTE_UNUSED
)
12568 subrtx_var_iterator::array_type array
;
12569 FOR_EACH_SUBRTX_VAR (iter
, array
, *loc
, NONCONST
)
12570 if (record_truncated_value (*iter
))
12571 iter
.skip_subrtxes ();
12574 /* Scan X for promoted SUBREGs. For each one found,
12575 note what it implies to the registers used in it. */
12578 check_promoted_subreg (rtx_insn
*insn
, rtx x
)
12580 if (GET_CODE (x
) == SUBREG
12581 && SUBREG_PROMOTED_VAR_P (x
)
12582 && REG_P (SUBREG_REG (x
)))
12583 record_promoted_value (insn
, x
);
12586 const char *format
= GET_RTX_FORMAT (GET_CODE (x
));
12589 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (x
)); i
++)
12593 check_promoted_subreg (insn
, XEXP (x
, i
));
12597 if (XVEC (x
, i
) != 0)
12598 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12599 check_promoted_subreg (insn
, XVECEXP (x
, i
, j
));
12605 /* Verify that all the registers and memory references mentioned in *LOC are
12606 still valid. *LOC was part of a value set in INSN when label_tick was
12607 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
12608 the invalid references with (clobber (const_int 0)) and return 1. This
12609 replacement is useful because we often can get useful information about
12610 the form of a value (e.g., if it was produced by a shift that always
12611 produces -1 or 0) even though we don't know exactly what registers it
12612 was produced from. */
12615 get_last_value_validate (rtx
*loc
, rtx_insn
*insn
, int tick
, int replace
)
12618 const char *fmt
= GET_RTX_FORMAT (GET_CODE (x
));
12619 int len
= GET_RTX_LENGTH (GET_CODE (x
));
12624 unsigned int regno
= REGNO (x
);
12625 unsigned int endregno
= END_REGNO (x
);
12628 for (j
= regno
; j
< endregno
; j
++)
12630 reg_stat_type
*rsp
= ®_stat
[j
];
12631 if (rsp
->last_set_invalid
12632 /* If this is a pseudo-register that was only set once and not
12633 live at the beginning of the function, it is always valid. */
12634 || (! (regno
>= FIRST_PSEUDO_REGISTER
12635 && REG_N_SETS (regno
) == 1
12636 && (!REGNO_REG_SET_P
12637 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
),
12639 && rsp
->last_set_label
> tick
))
12642 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
12649 /* If this is a memory reference, make sure that there were no stores after
12650 it that might have clobbered the value. We don't have alias info, so we
12651 assume any store invalidates it. Moreover, we only have local UIDs, so
12652 we also assume that there were stores in the intervening basic blocks. */
12653 else if (MEM_P (x
) && !MEM_READONLY_P (x
)
12654 && (tick
!= label_tick
|| DF_INSN_LUID (insn
) <= mem_last_set
))
12657 *loc
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
12661 for (i
= 0; i
< len
; i
++)
12665 /* Check for identical subexpressions. If x contains
12666 identical subexpression we only have to traverse one of
12668 if (i
== 1 && ARITHMETIC_P (x
))
12670 /* Note that at this point x0 has already been checked
12671 and found valid. */
12672 rtx x0
= XEXP (x
, 0);
12673 rtx x1
= XEXP (x
, 1);
12675 /* If x0 and x1 are identical then x is also valid. */
12679 /* If x1 is identical to a subexpression of x0 then
12680 while checking x0, x1 has already been checked. Thus
12681 it is valid and so as x. */
12682 if (ARITHMETIC_P (x0
)
12683 && (x1
== XEXP (x0
, 0) || x1
== XEXP (x0
, 1)))
12686 /* If x0 is identical to a subexpression of x1 then x is
12687 valid iff the rest of x1 is valid. */
12688 if (ARITHMETIC_P (x1
)
12689 && (x0
== XEXP (x1
, 0) || x0
== XEXP (x1
, 1)))
12691 get_last_value_validate (&XEXP (x1
,
12692 x0
== XEXP (x1
, 0) ? 1 : 0),
12693 insn
, tick
, replace
);
12696 if (get_last_value_validate (&XEXP (x
, i
), insn
, tick
,
12700 else if (fmt
[i
] == 'E')
12701 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
12702 if (get_last_value_validate (&XVECEXP (x
, i
, j
),
12703 insn
, tick
, replace
) == 0)
12707 /* If we haven't found a reason for it to be invalid, it is valid. */
12711 /* Get the last value assigned to X, if known. Some registers
12712 in the value may be replaced with (clobber (const_int 0)) if their value
12713 is known longer known reliably. */
12716 get_last_value (const_rtx x
)
12718 unsigned int regno
;
12720 reg_stat_type
*rsp
;
12722 /* If this is a non-paradoxical SUBREG, get the value of its operand and
12723 then convert it to the desired mode. If this is a paradoxical SUBREG,
12724 we cannot predict what values the "extra" bits might have. */
12725 if (GET_CODE (x
) == SUBREG
12726 && subreg_lowpart_p (x
)
12727 && !paradoxical_subreg_p (x
)
12728 && (value
= get_last_value (SUBREG_REG (x
))) != 0)
12729 return gen_lowpart (GET_MODE (x
), value
);
12735 rsp
= ®_stat
[regno
];
12736 value
= rsp
->last_set_value
;
12738 /* If we don't have a value, or if it isn't for this basic block and
12739 it's either a hard register, set more than once, or it's a live
12740 at the beginning of the function, return 0.
12742 Because if it's not live at the beginning of the function then the reg
12743 is always set before being used (is never used without being set).
12744 And, if it's set only once, and it's always set before use, then all
12745 uses must have the same last value, even if it's not from this basic
12749 || (rsp
->last_set_label
< label_tick_ebb_start
12750 && (regno
< FIRST_PSEUDO_REGISTER
12751 || REG_N_SETS (regno
) != 1
12753 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
), regno
))))
12756 /* If the value was set in a later insn than the ones we are processing,
12757 we can't use it even if the register was only set once. */
12758 if (rsp
->last_set_label
== label_tick
12759 && DF_INSN_LUID (rsp
->last_set
) >= subst_low_luid
)
12762 /* If the value has all its registers valid, return it. */
12763 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 0))
12766 /* Otherwise, make a copy and replace any invalid register with
12767 (clobber (const_int 0)). If that fails for some reason, return 0. */
12769 value
= copy_rtx (value
);
12770 if (get_last_value_validate (&value
, rsp
->last_set
, rsp
->last_set_label
, 1))
12776 /* Return nonzero if expression X refers to a REG or to memory
12777 that is set in an instruction more recent than FROM_LUID. */
12780 use_crosses_set_p (const_rtx x
, int from_luid
)
12784 enum rtx_code code
= GET_CODE (x
);
12788 unsigned int regno
= REGNO (x
);
12789 unsigned endreg
= END_REGNO (x
);
12791 #ifdef PUSH_ROUNDING
12792 /* Don't allow uses of the stack pointer to be moved,
12793 because we don't know whether the move crosses a push insn. */
12794 if (regno
== STACK_POINTER_REGNUM
&& PUSH_ARGS
)
12797 for (; regno
< endreg
; regno
++)
12799 reg_stat_type
*rsp
= ®_stat
[regno
];
12801 && rsp
->last_set_label
== label_tick
12802 && DF_INSN_LUID (rsp
->last_set
) > from_luid
)
12808 if (code
== MEM
&& mem_last_set
> from_luid
)
12811 fmt
= GET_RTX_FORMAT (code
);
12813 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12818 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
12819 if (use_crosses_set_p (XVECEXP (x
, i
, j
), from_luid
))
12822 else if (fmt
[i
] == 'e'
12823 && use_crosses_set_p (XEXP (x
, i
), from_luid
))
12829 /* Define three variables used for communication between the following
12832 static unsigned int reg_dead_regno
, reg_dead_endregno
;
12833 static int reg_dead_flag
;
12835 /* Function called via note_stores from reg_dead_at_p.
12837 If DEST is within [reg_dead_regno, reg_dead_endregno), set
12838 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
12841 reg_dead_at_p_1 (rtx dest
, const_rtx x
, void *data ATTRIBUTE_UNUSED
)
12843 unsigned int regno
, endregno
;
12848 regno
= REGNO (dest
);
12849 endregno
= END_REGNO (dest
);
12850 if (reg_dead_endregno
> regno
&& reg_dead_regno
< endregno
)
12851 reg_dead_flag
= (GET_CODE (x
) == CLOBBER
) ? 1 : -1;
12854 /* Return nonzero if REG is known to be dead at INSN.
12856 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
12857 referencing REG, it is dead. If we hit a SET referencing REG, it is
12858 live. Otherwise, see if it is live or dead at the start of the basic
12859 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
12860 must be assumed to be always live. */
12863 reg_dead_at_p (rtx reg
, rtx_insn
*insn
)
12868 /* Set variables for reg_dead_at_p_1. */
12869 reg_dead_regno
= REGNO (reg
);
12870 reg_dead_endregno
= END_REGNO (reg
);
12874 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
12875 we allow the machine description to decide whether use-and-clobber
12876 patterns are OK. */
12877 if (reg_dead_regno
< FIRST_PSEUDO_REGISTER
)
12879 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
12880 if (!fixed_regs
[i
] && TEST_HARD_REG_BIT (newpat_used_regs
, i
))
12884 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
12885 beginning of basic block. */
12886 block
= BLOCK_FOR_INSN (insn
);
12891 note_stores (PATTERN (insn
), reg_dead_at_p_1
, NULL
);
12893 return reg_dead_flag
== 1 ? 1 : 0;
12895 if (find_regno_note (insn
, REG_DEAD
, reg_dead_regno
))
12899 if (insn
== BB_HEAD (block
))
12902 insn
= PREV_INSN (insn
);
12905 /* Look at live-in sets for the basic block that we were in. */
12906 for (i
= reg_dead_regno
; i
< reg_dead_endregno
; i
++)
12907 if (REGNO_REG_SET_P (df_get_live_in (block
), i
))
12913 /* Note hard registers in X that are used. */
12916 mark_used_regs_combine (rtx x
)
12918 RTX_CODE code
= GET_CODE (x
);
12919 unsigned int regno
;
12930 case ADDR_DIFF_VEC
:
12933 /* CC0 must die in the insn after it is set, so we don't need to take
12934 special note of it here. */
12940 /* If we are clobbering a MEM, mark any hard registers inside the
12941 address as used. */
12942 if (MEM_P (XEXP (x
, 0)))
12943 mark_used_regs_combine (XEXP (XEXP (x
, 0), 0));
12948 /* A hard reg in a wide mode may really be multiple registers.
12949 If so, mark all of them just like the first. */
12950 if (regno
< FIRST_PSEUDO_REGISTER
)
12952 /* None of this applies to the stack, frame or arg pointers. */
12953 if (regno
== STACK_POINTER_REGNUM
12954 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
12955 || regno
== HARD_FRAME_POINTER_REGNUM
12957 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12958 || (regno
== ARG_POINTER_REGNUM
&& fixed_regs
[regno
])
12960 || regno
== FRAME_POINTER_REGNUM
)
12963 add_to_hard_reg_set (&newpat_used_regs
, GET_MODE (x
), regno
);
12969 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12971 rtx testreg
= SET_DEST (x
);
12973 while (GET_CODE (testreg
) == SUBREG
12974 || GET_CODE (testreg
) == ZERO_EXTRACT
12975 || GET_CODE (testreg
) == STRICT_LOW_PART
)
12976 testreg
= XEXP (testreg
, 0);
12978 if (MEM_P (testreg
))
12979 mark_used_regs_combine (XEXP (testreg
, 0));
12981 mark_used_regs_combine (SET_SRC (x
));
12989 /* Recursively scan the operands of this expression. */
12992 const char *fmt
= GET_RTX_FORMAT (code
);
12994 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
12997 mark_used_regs_combine (XEXP (x
, i
));
12998 else if (fmt
[i
] == 'E')
13002 for (j
= 0; j
< XVECLEN (x
, i
); j
++)
13003 mark_used_regs_combine (XVECEXP (x
, i
, j
));
13009 /* Remove register number REGNO from the dead registers list of INSN.
13011 Return the note used to record the death, if there was one. */
13014 remove_death (unsigned int regno
, rtx_insn
*insn
)
13016 rtx note
= find_regno_note (insn
, REG_DEAD
, regno
);
13019 remove_note (insn
, note
);
13024 /* For each register (hardware or pseudo) used within expression X, if its
13025 death is in an instruction with luid between FROM_LUID (inclusive) and
13026 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13027 list headed by PNOTES.
13029 That said, don't move registers killed by maybe_kill_insn.
13031 This is done when X is being merged by combination into TO_INSN. These
13032 notes will then be distributed as needed. */
13035 move_deaths (rtx x
, rtx maybe_kill_insn
, int from_luid
, rtx_insn
*to_insn
,
13040 enum rtx_code code
= GET_CODE (x
);
13044 unsigned int regno
= REGNO (x
);
13045 rtx_insn
*where_dead
= reg_stat
[regno
].last_death
;
13047 /* Don't move the register if it gets killed in between from and to. */
13048 if (maybe_kill_insn
&& reg_set_p (x
, maybe_kill_insn
)
13049 && ! reg_referenced_p (x
, maybe_kill_insn
))
13053 && BLOCK_FOR_INSN (where_dead
) == BLOCK_FOR_INSN (to_insn
)
13054 && DF_INSN_LUID (where_dead
) >= from_luid
13055 && DF_INSN_LUID (where_dead
) < DF_INSN_LUID (to_insn
))
13057 rtx note
= remove_death (regno
, where_dead
);
13059 /* It is possible for the call above to return 0. This can occur
13060 when last_death points to I2 or I1 that we combined with.
13061 In that case make a new note.
13063 We must also check for the case where X is a hard register
13064 and NOTE is a death note for a range of hard registers
13065 including X. In that case, we must put REG_DEAD notes for
13066 the remaining registers in place of NOTE. */
13068 if (note
!= 0 && regno
< FIRST_PSEUDO_REGISTER
13069 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
13070 > GET_MODE_SIZE (GET_MODE (x
))))
13072 unsigned int deadregno
= REGNO (XEXP (note
, 0));
13073 unsigned int deadend
= END_HARD_REGNO (XEXP (note
, 0));
13074 unsigned int ourend
= END_HARD_REGNO (x
);
13077 for (i
= deadregno
; i
< deadend
; i
++)
13078 if (i
< regno
|| i
>= ourend
)
13079 add_reg_note (where_dead
, REG_DEAD
, regno_reg_rtx
[i
]);
13082 /* If we didn't find any note, or if we found a REG_DEAD note that
13083 covers only part of the given reg, and we have a multi-reg hard
13084 register, then to be safe we must check for REG_DEAD notes
13085 for each register other than the first. They could have
13086 their own REG_DEAD notes lying around. */
13087 else if ((note
== 0
13089 && (GET_MODE_SIZE (GET_MODE (XEXP (note
, 0)))
13090 < GET_MODE_SIZE (GET_MODE (x
)))))
13091 && regno
< FIRST_PSEUDO_REGISTER
13092 && hard_regno_nregs
[regno
][GET_MODE (x
)] > 1)
13094 unsigned int ourend
= END_HARD_REGNO (x
);
13095 unsigned int i
, offset
;
13099 offset
= hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))];
13103 for (i
= regno
+ offset
; i
< ourend
; i
++)
13104 move_deaths (regno_reg_rtx
[i
],
13105 maybe_kill_insn
, from_luid
, to_insn
, &oldnotes
);
13108 if (note
!= 0 && GET_MODE (XEXP (note
, 0)) == GET_MODE (x
))
13110 XEXP (note
, 1) = *pnotes
;
13114 *pnotes
= alloc_reg_note (REG_DEAD
, x
, *pnotes
);
13120 else if (GET_CODE (x
) == SET
)
13122 rtx dest
= SET_DEST (x
);
13124 move_deaths (SET_SRC (x
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13126 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
13127 that accesses one word of a multi-word item, some
13128 piece of everything register in the expression is used by
13129 this insn, so remove any old death. */
13130 /* ??? So why do we test for equality of the sizes? */
13132 if (GET_CODE (dest
) == ZERO_EXTRACT
13133 || GET_CODE (dest
) == STRICT_LOW_PART
13134 || (GET_CODE (dest
) == SUBREG
13135 && (((GET_MODE_SIZE (GET_MODE (dest
))
13136 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
)
13137 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest
)))
13138 + UNITS_PER_WORD
- 1) / UNITS_PER_WORD
))))
13140 move_deaths (dest
, maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13144 /* If this is some other SUBREG, we know it replaces the entire
13145 value, so use that as the destination. */
13146 if (GET_CODE (dest
) == SUBREG
)
13147 dest
= SUBREG_REG (dest
);
13149 /* If this is a MEM, adjust deaths of anything used in the address.
13150 For a REG (the only other possibility), the entire value is
13151 being replaced so the old value is not used in this insn. */
13154 move_deaths (XEXP (dest
, 0), maybe_kill_insn
, from_luid
,
13159 else if (GET_CODE (x
) == CLOBBER
)
13162 len
= GET_RTX_LENGTH (code
);
13163 fmt
= GET_RTX_FORMAT (code
);
13165 for (i
= 0; i
< len
; i
++)
13170 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
13171 move_deaths (XVECEXP (x
, i
, j
), maybe_kill_insn
, from_luid
,
13174 else if (fmt
[i
] == 'e')
13175 move_deaths (XEXP (x
, i
), maybe_kill_insn
, from_luid
, to_insn
, pnotes
);
13179 /* Return 1 if X is the target of a bit-field assignment in BODY, the
13180 pattern of an insn. X must be a REG. */
13183 reg_bitfield_target_p (rtx x
, rtx body
)
13187 if (GET_CODE (body
) == SET
)
13189 rtx dest
= SET_DEST (body
);
13191 unsigned int regno
, tregno
, endregno
, endtregno
;
13193 if (GET_CODE (dest
) == ZERO_EXTRACT
)
13194 target
= XEXP (dest
, 0);
13195 else if (GET_CODE (dest
) == STRICT_LOW_PART
)
13196 target
= SUBREG_REG (XEXP (dest
, 0));
13200 if (GET_CODE (target
) == SUBREG
)
13201 target
= SUBREG_REG (target
);
13203 if (!REG_P (target
))
13206 tregno
= REGNO (target
), regno
= REGNO (x
);
13207 if (tregno
>= FIRST_PSEUDO_REGISTER
|| regno
>= FIRST_PSEUDO_REGISTER
)
13208 return target
== x
;
13210 endtregno
= end_hard_regno (GET_MODE (target
), tregno
);
13211 endregno
= end_hard_regno (GET_MODE (x
), regno
);
13213 return endregno
> tregno
&& regno
< endtregno
;
13216 else if (GET_CODE (body
) == PARALLEL
)
13217 for (i
= XVECLEN (body
, 0) - 1; i
>= 0; i
--)
13218 if (reg_bitfield_target_p (x
, XVECEXP (body
, 0, i
)))
13224 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
13225 as appropriate. I3 and I2 are the insns resulting from the combination
13226 insns including FROM (I2 may be zero).
13228 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
13229 not need REG_DEAD notes because they are being substituted for. This
13230 saves searching in the most common cases.
13232 Each note in the list is either ignored or placed on some insns, depending
13233 on the type of note. */
13236 distribute_notes (rtx notes
, rtx_insn
*from_insn
, rtx_insn
*i3
, rtx_insn
*i2
,
13237 rtx elim_i2
, rtx elim_i1
, rtx elim_i0
)
13239 rtx note
, next_note
;
13241 rtx_insn
*tem_insn
;
13243 for (note
= notes
; note
; note
= next_note
)
13245 rtx_insn
*place
= 0, *place2
= 0;
13247 next_note
= XEXP (note
, 1);
13248 switch (REG_NOTE_KIND (note
))
13252 /* Doesn't matter much where we put this, as long as it's somewhere.
13253 It is preferable to keep these notes on branches, which is most
13254 likely to be i3. */
13258 case REG_NON_LOCAL_GOTO
:
13263 gcc_assert (i2
&& JUMP_P (i2
));
13268 case REG_EH_REGION
:
13269 /* These notes must remain with the call or trapping instruction. */
13272 else if (i2
&& CALL_P (i2
))
13276 gcc_assert (cfun
->can_throw_non_call_exceptions
);
13277 if (may_trap_p (i3
))
13279 else if (i2
&& may_trap_p (i2
))
13281 /* ??? Otherwise assume we've combined things such that we
13282 can now prove that the instructions can't trap. Drop the
13283 note in this case. */
13287 case REG_ARGS_SIZE
:
13288 /* ??? How to distribute between i3-i1. Assume i3 contains the
13289 entire adjustment. Assert i3 contains at least some adjust. */
13290 if (!noop_move_p (i3
))
13292 int old_size
, args_size
= INTVAL (XEXP (note
, 0));
13293 /* fixup_args_size_notes looks at REG_NORETURN note,
13294 so ensure the note is placed there first. */
13298 for (np
= &next_note
; *np
; np
= &XEXP (*np
, 1))
13299 if (REG_NOTE_KIND (*np
) == REG_NORETURN
)
13303 XEXP (n
, 1) = REG_NOTES (i3
);
13304 REG_NOTES (i3
) = n
;
13308 old_size
= fixup_args_size_notes (PREV_INSN (i3
), i3
, args_size
);
13309 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
13310 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
13311 gcc_assert (old_size
!= args_size
13313 && !ACCUMULATE_OUTGOING_ARGS
13314 && find_reg_note (i3
, REG_NORETURN
, NULL_RTX
)));
13321 case REG_CALL_DECL
:
13322 /* These notes must remain with the call. It should not be
13323 possible for both I2 and I3 to be a call. */
13328 gcc_assert (i2
&& CALL_P (i2
));
13334 /* Any clobbers for i3 may still exist, and so we must process
13335 REG_UNUSED notes from that insn.
13337 Any clobbers from i2 or i1 can only exist if they were added by
13338 recog_for_combine. In that case, recog_for_combine created the
13339 necessary REG_UNUSED notes. Trying to keep any original
13340 REG_UNUSED notes from these insns can cause incorrect output
13341 if it is for the same register as the original i3 dest.
13342 In that case, we will notice that the register is set in i3,
13343 and then add a REG_UNUSED note for the destination of i3, which
13344 is wrong. However, it is possible to have REG_UNUSED notes from
13345 i2 or i1 for register which were both used and clobbered, so
13346 we keep notes from i2 or i1 if they will turn into REG_DEAD
13349 /* If this register is set or clobbered in I3, put the note there
13350 unless there is one already. */
13351 if (reg_set_p (XEXP (note
, 0), PATTERN (i3
)))
13353 if (from_insn
!= i3
)
13356 if (! (REG_P (XEXP (note
, 0))
13357 ? find_regno_note (i3
, REG_UNUSED
, REGNO (XEXP (note
, 0)))
13358 : find_reg_note (i3
, REG_UNUSED
, XEXP (note
, 0))))
13361 /* Otherwise, if this register is used by I3, then this register
13362 now dies here, so we must put a REG_DEAD note here unless there
13364 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
))
13365 && ! (REG_P (XEXP (note
, 0))
13366 ? find_regno_note (i3
, REG_DEAD
,
13367 REGNO (XEXP (note
, 0)))
13368 : find_reg_note (i3
, REG_DEAD
, XEXP (note
, 0))))
13370 PUT_REG_NOTE_KIND (note
, REG_DEAD
);
13378 /* These notes say something about results of an insn. We can
13379 only support them if they used to be on I3 in which case they
13380 remain on I3. Otherwise they are ignored.
13382 If the note refers to an expression that is not a constant, we
13383 must also ignore the note since we cannot tell whether the
13384 equivalence is still true. It might be possible to do
13385 slightly better than this (we only have a problem if I2DEST
13386 or I1DEST is present in the expression), but it doesn't
13387 seem worth the trouble. */
13389 if (from_insn
== i3
13390 && (XEXP (note
, 0) == 0 || CONSTANT_P (XEXP (note
, 0))))
13395 /* These notes say something about how a register is used. They must
13396 be present on any use of the register in I2 or I3. */
13397 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
)))
13400 if (i2
&& reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
)))
13409 case REG_LABEL_TARGET
:
13410 case REG_LABEL_OPERAND
:
13411 /* This can show up in several ways -- either directly in the
13412 pattern, or hidden off in the constant pool with (or without?)
13413 a REG_EQUAL note. */
13414 /* ??? Ignore the without-reg_equal-note problem for now. */
13415 if (reg_mentioned_p (XEXP (note
, 0), PATTERN (i3
))
13416 || ((tem_note
= find_reg_note (i3
, REG_EQUAL
, NULL_RTX
))
13417 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
13418 && LABEL_REF_LABEL (XEXP (tem_note
, 0)) == XEXP (note
, 0)))
13422 && (reg_mentioned_p (XEXP (note
, 0), PATTERN (i2
))
13423 || ((tem_note
= find_reg_note (i2
, REG_EQUAL
, NULL_RTX
))
13424 && GET_CODE (XEXP (tem_note
, 0)) == LABEL_REF
13425 && LABEL_REF_LABEL (XEXP (tem_note
, 0)) == XEXP (note
, 0))))
13433 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
13434 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
13436 if (place
&& JUMP_P (place
)
13437 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
13438 && (JUMP_LABEL (place
) == NULL
13439 || JUMP_LABEL (place
) == XEXP (note
, 0)))
13441 rtx label
= JUMP_LABEL (place
);
13444 JUMP_LABEL (place
) = XEXP (note
, 0);
13445 else if (LABEL_P (label
))
13446 LABEL_NUSES (label
)--;
13449 if (place2
&& JUMP_P (place2
)
13450 && REG_NOTE_KIND (note
) == REG_LABEL_TARGET
13451 && (JUMP_LABEL (place2
) == NULL
13452 || JUMP_LABEL (place2
) == XEXP (note
, 0)))
13454 rtx label
= JUMP_LABEL (place2
);
13457 JUMP_LABEL (place2
) = XEXP (note
, 0);
13458 else if (LABEL_P (label
))
13459 LABEL_NUSES (label
)--;
13465 /* This note says something about the value of a register prior
13466 to the execution of an insn. It is too much trouble to see
13467 if the note is still correct in all situations. It is better
13468 to simply delete it. */
13472 /* If we replaced the right hand side of FROM_INSN with a
13473 REG_EQUAL note, the original use of the dying register
13474 will not have been combined into I3 and I2. In such cases,
13475 FROM_INSN is guaranteed to be the first of the combined
13476 instructions, so we simply need to search back before
13477 FROM_INSN for the previous use or set of this register,
13478 then alter the notes there appropriately.
13480 If the register is used as an input in I3, it dies there.
13481 Similarly for I2, if it is nonzero and adjacent to I3.
13483 If the register is not used as an input in either I3 or I2
13484 and it is not one of the registers we were supposed to eliminate,
13485 there are two possibilities. We might have a non-adjacent I2
13486 or we might have somehow eliminated an additional register
13487 from a computation. For example, we might have had A & B where
13488 we discover that B will always be zero. In this case we will
13489 eliminate the reference to A.
13491 In both cases, we must search to see if we can find a previous
13492 use of A and put the death note there. */
13495 && from_insn
== i2mod
13496 && !reg_overlap_mentioned_p (XEXP (note
, 0), i2mod_new_rhs
))
13497 tem_insn
= from_insn
;
13501 && CALL_P (from_insn
)
13502 && find_reg_fusage (from_insn
, USE
, XEXP (note
, 0)))
13504 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (i3
)))
13506 else if (i2
!= 0 && next_nonnote_nondebug_insn (i2
) == i3
13507 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
13509 else if ((rtx_equal_p (XEXP (note
, 0), elim_i2
)
13511 && reg_overlap_mentioned_p (XEXP (note
, 0),
13513 || rtx_equal_p (XEXP (note
, 0), elim_i1
)
13514 || rtx_equal_p (XEXP (note
, 0), elim_i0
))
13521 basic_block bb
= this_basic_block
;
13523 for (tem_insn
= PREV_INSN (tem_insn
); place
== 0; tem_insn
= PREV_INSN (tem_insn
))
13525 if (!NONDEBUG_INSN_P (tem_insn
))
13527 if (tem_insn
== BB_HEAD (bb
))
13532 /* If the register is being set at TEM_INSN, see if that is all
13533 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
13534 into a REG_UNUSED note instead. Don't delete sets to
13535 global register vars. */
13536 if ((REGNO (XEXP (note
, 0)) >= FIRST_PSEUDO_REGISTER
13537 || !global_regs
[REGNO (XEXP (note
, 0))])
13538 && reg_set_p (XEXP (note
, 0), PATTERN (tem_insn
)))
13540 rtx set
= single_set (tem_insn
);
13541 rtx inner_dest
= 0;
13543 rtx_insn
*cc0_setter
= NULL
;
13547 for (inner_dest
= SET_DEST (set
);
13548 (GET_CODE (inner_dest
) == STRICT_LOW_PART
13549 || GET_CODE (inner_dest
) == SUBREG
13550 || GET_CODE (inner_dest
) == ZERO_EXTRACT
);
13551 inner_dest
= XEXP (inner_dest
, 0))
13554 /* Verify that it was the set, and not a clobber that
13555 modified the register.
13557 CC0 targets must be careful to maintain setter/user
13558 pairs. If we cannot delete the setter due to side
13559 effects, mark the user with an UNUSED note instead
13562 if (set
!= 0 && ! side_effects_p (SET_SRC (set
))
13563 && rtx_equal_p (XEXP (note
, 0), inner_dest
)
13565 && (! reg_mentioned_p (cc0_rtx
, SET_SRC (set
))
13566 || ((cc0_setter
= prev_cc0_setter (tem_insn
)) != NULL
13567 && sets_cc0_p (PATTERN (cc0_setter
)) > 0))
13571 /* Move the notes and links of TEM_INSN elsewhere.
13572 This might delete other dead insns recursively.
13573 First set the pattern to something that won't use
13575 rtx old_notes
= REG_NOTES (tem_insn
);
13577 PATTERN (tem_insn
) = pc_rtx
;
13578 REG_NOTES (tem_insn
) = NULL
;
13580 distribute_notes (old_notes
, tem_insn
, tem_insn
, NULL
,
13581 NULL_RTX
, NULL_RTX
, NULL_RTX
);
13582 distribute_links (LOG_LINKS (tem_insn
));
13584 SET_INSN_DELETED (tem_insn
);
13585 if (tem_insn
== i2
)
13589 /* Delete the setter too. */
13592 PATTERN (cc0_setter
) = pc_rtx
;
13593 old_notes
= REG_NOTES (cc0_setter
);
13594 REG_NOTES (cc0_setter
) = NULL
;
13596 distribute_notes (old_notes
, cc0_setter
,
13598 NULL_RTX
, NULL_RTX
, NULL_RTX
);
13599 distribute_links (LOG_LINKS (cc0_setter
));
13601 SET_INSN_DELETED (cc0_setter
);
13602 if (cc0_setter
== i2
)
13609 PUT_REG_NOTE_KIND (note
, REG_UNUSED
);
13611 /* If there isn't already a REG_UNUSED note, put one
13612 here. Do not place a REG_DEAD note, even if
13613 the register is also used here; that would not
13614 match the algorithm used in lifetime analysis
13615 and can cause the consistency check in the
13616 scheduler to fail. */
13617 if (! find_regno_note (tem_insn
, REG_UNUSED
,
13618 REGNO (XEXP (note
, 0))))
13623 else if (reg_referenced_p (XEXP (note
, 0), PATTERN (tem_insn
))
13624 || (CALL_P (tem_insn
)
13625 && find_reg_fusage (tem_insn
, USE
, XEXP (note
, 0))))
13629 /* If we are doing a 3->2 combination, and we have a
13630 register which formerly died in i3 and was not used
13631 by i2, which now no longer dies in i3 and is used in
13632 i2 but does not die in i2, and place is between i2
13633 and i3, then we may need to move a link from place to
13635 if (i2
&& DF_INSN_LUID (place
) > DF_INSN_LUID (i2
)
13637 && DF_INSN_LUID (from_insn
) > DF_INSN_LUID (i2
)
13638 && reg_referenced_p (XEXP (note
, 0), PATTERN (i2
)))
13640 struct insn_link
*links
= LOG_LINKS (place
);
13641 LOG_LINKS (place
) = NULL
;
13642 distribute_links (links
);
13647 if (tem_insn
== BB_HEAD (bb
))
13653 /* If the register is set or already dead at PLACE, we needn't do
13654 anything with this note if it is still a REG_DEAD note.
13655 We check here if it is set at all, not if is it totally replaced,
13656 which is what `dead_or_set_p' checks, so also check for it being
13659 if (place
&& REG_NOTE_KIND (note
) == REG_DEAD
)
13661 unsigned int regno
= REGNO (XEXP (note
, 0));
13662 reg_stat_type
*rsp
= ®_stat
[regno
];
13664 if (dead_or_set_p (place
, XEXP (note
, 0))
13665 || reg_bitfield_target_p (XEXP (note
, 0), PATTERN (place
)))
13667 /* Unless the register previously died in PLACE, clear
13668 last_death. [I no longer understand why this is
13670 if (rsp
->last_death
!= place
)
13671 rsp
->last_death
= 0;
13675 rsp
->last_death
= place
;
13677 /* If this is a death note for a hard reg that is occupying
13678 multiple registers, ensure that we are still using all
13679 parts of the object. If we find a piece of the object
13680 that is unused, we must arrange for an appropriate REG_DEAD
13681 note to be added for it. However, we can't just emit a USE
13682 and tag the note to it, since the register might actually
13683 be dead; so we recourse, and the recursive call then finds
13684 the previous insn that used this register. */
13686 if (place
&& regno
< FIRST_PSEUDO_REGISTER
13687 && hard_regno_nregs
[regno
][GET_MODE (XEXP (note
, 0))] > 1)
13689 unsigned int endregno
= END_HARD_REGNO (XEXP (note
, 0));
13690 bool all_used
= true;
13693 for (i
= regno
; i
< endregno
; i
++)
13694 if ((! refers_to_regno_p (i
, i
+ 1, PATTERN (place
), 0)
13695 && ! find_regno_fusage (place
, USE
, i
))
13696 || dead_or_set_regno_p (place
, i
))
13704 /* Put only REG_DEAD notes for pieces that are
13705 not already dead or set. */
13707 for (i
= regno
; i
< endregno
;
13708 i
+= hard_regno_nregs
[i
][reg_raw_mode
[i
]])
13710 rtx piece
= regno_reg_rtx
[i
];
13711 basic_block bb
= this_basic_block
;
13713 if (! dead_or_set_p (place
, piece
)
13714 && ! reg_bitfield_target_p (piece
,
13717 rtx new_note
= alloc_reg_note (REG_DEAD
, piece
,
13720 distribute_notes (new_note
, place
, place
,
13721 NULL
, NULL_RTX
, NULL_RTX
,
13724 else if (! refers_to_regno_p (i
, i
+ 1,
13725 PATTERN (place
), 0)
13726 && ! find_regno_fusage (place
, USE
, i
))
13727 for (tem_insn
= PREV_INSN (place
); ;
13728 tem_insn
= PREV_INSN (tem_insn
))
13730 if (!NONDEBUG_INSN_P (tem_insn
))
13732 if (tem_insn
== BB_HEAD (bb
))
13736 if (dead_or_set_p (tem_insn
, piece
)
13737 || reg_bitfield_target_p (piece
,
13738 PATTERN (tem_insn
)))
13740 add_reg_note (tem_insn
, REG_UNUSED
, piece
);
13753 /* Any other notes should not be present at this point in the
13755 gcc_unreachable ();
13760 XEXP (note
, 1) = REG_NOTES (place
);
13761 REG_NOTES (place
) = note
;
13765 add_shallow_copy_of_reg_note (place2
, note
);
13769 /* Similarly to above, distribute the LOG_LINKS that used to be present on
13770 I3, I2, and I1 to new locations. This is also called to add a link
13771 pointing at I3 when I3's destination is changed. */
13774 distribute_links (struct insn_link
*links
)
13776 struct insn_link
*link
, *next_link
;
13778 for (link
= links
; link
; link
= next_link
)
13780 rtx_insn
*place
= 0;
13784 next_link
= link
->next
;
13786 /* If the insn that this link points to is a NOTE or isn't a single
13787 set, ignore it. In the latter case, it isn't clear what we
13788 can do other than ignore the link, since we can't tell which
13789 register it was for. Such links wouldn't be used by combine
13792 It is not possible for the destination of the target of the link to
13793 have been changed by combine. The only potential of this is if we
13794 replace I3, I2, and I1 by I3 and I2. But in that case the
13795 destination of I2 also remains unchanged. */
13797 if (NOTE_P (link
->insn
)
13798 || (set
= single_set (link
->insn
)) == 0)
13801 reg
= SET_DEST (set
);
13802 while (GET_CODE (reg
) == SUBREG
|| GET_CODE (reg
) == ZERO_EXTRACT
13803 || GET_CODE (reg
) == STRICT_LOW_PART
)
13804 reg
= XEXP (reg
, 0);
13806 /* A LOG_LINK is defined as being placed on the first insn that uses
13807 a register and points to the insn that sets the register. Start
13808 searching at the next insn after the target of the link and stop
13809 when we reach a set of the register or the end of the basic block.
13811 Note that this correctly handles the link that used to point from
13812 I3 to I2. Also note that not much searching is typically done here
13813 since most links don't point very far away. */
13815 for (insn
= NEXT_INSN (link
->insn
);
13816 (insn
&& (this_basic_block
->next_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
)
13817 || BB_HEAD (this_basic_block
->next_bb
) != insn
));
13818 insn
= NEXT_INSN (insn
))
13819 if (DEBUG_INSN_P (insn
))
13821 else if (INSN_P (insn
) && reg_overlap_mentioned_p (reg
, PATTERN (insn
)))
13823 if (reg_referenced_p (reg
, PATTERN (insn
)))
13827 else if (CALL_P (insn
)
13828 && find_reg_fusage (insn
, USE
, reg
))
13833 else if (INSN_P (insn
) && reg_set_p (reg
, insn
))
13836 /* If we found a place to put the link, place it there unless there
13837 is already a link to the same insn as LINK at that point. */
13841 struct insn_link
*link2
;
13843 FOR_EACH_LOG_LINK (link2
, place
)
13844 if (link2
->insn
== link
->insn
)
13849 link
->next
= LOG_LINKS (place
);
13850 LOG_LINKS (place
) = link
;
13852 /* Set added_links_insn to the earliest insn we added a
13854 if (added_links_insn
== 0
13855 || DF_INSN_LUID (added_links_insn
) > DF_INSN_LUID (place
))
13856 added_links_insn
= place
;
13862 /* Check for any register or memory mentioned in EQUIV that is not
13863 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
13864 of EXPR where some registers may have been replaced by constants. */
13867 unmentioned_reg_p (rtx equiv
, rtx expr
)
13869 subrtx_iterator::array_type array
;
13870 FOR_EACH_SUBRTX (iter
, array
, equiv
, NONCONST
)
13872 const_rtx x
= *iter
;
13873 if ((REG_P (x
) || MEM_P (x
))
13874 && !reg_mentioned_p (x
, expr
))
13880 DEBUG_FUNCTION
void
13881 dump_combine_stats (FILE *file
)
13885 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
13886 combine_attempts
, combine_merges
, combine_extras
, combine_successes
);
13890 dump_combine_total_stats (FILE *file
)
13894 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
13895 total_attempts
, total_merges
, total_extras
, total_successes
);
13898 /* Try combining insns through substitution. */
13899 static unsigned int
13900 rest_of_handle_combine (void)
13902 int rebuild_jump_labels_after_combine
;
13904 df_set_flags (DF_LR_RUN_DCE
+ DF_DEFER_INSN_RESCAN
);
13905 df_note_add_problem ();
13908 regstat_init_n_sets_and_refs ();
13910 rebuild_jump_labels_after_combine
13911 = combine_instructions (get_insns (), max_reg_num ());
13913 /* Combining insns may have turned an indirect jump into a
13914 direct jump. Rebuild the JUMP_LABEL fields of jumping
13916 if (rebuild_jump_labels_after_combine
)
13918 timevar_push (TV_JUMP
);
13919 rebuild_jump_labels (get_insns ());
13921 timevar_pop (TV_JUMP
);
13924 regstat_free_n_sets_and_refs ();
13930 const pass_data pass_data_combine
=
13932 RTL_PASS
, /* type */
13933 "combine", /* name */
13934 OPTGROUP_NONE
, /* optinfo_flags */
13935 TV_COMBINE
, /* tv_id */
13936 PROP_cfglayout
, /* properties_required */
13937 0, /* properties_provided */
13938 0, /* properties_destroyed */
13939 0, /* todo_flags_start */
13940 TODO_df_finish
, /* todo_flags_finish */
13943 class pass_combine
: public rtl_opt_pass
13946 pass_combine (gcc::context
*ctxt
)
13947 : rtl_opt_pass (pass_data_combine
, ctxt
)
13950 /* opt_pass methods: */
13951 virtual bool gate (function
*) { return (optimize
> 0); }
13952 virtual unsigned int execute (function
*)
13954 return rest_of_handle_combine ();
13957 }; // class pass_combine
13959 } // anon namespace
13962 make_pass_combine (gcc::context
*ctxt
)
13964 return new pass_combine (ctxt
);