1 ------------------------------------------------------------------------------
3 -- GNAT COMPILER COMPONENTS --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 ------------------------------------------------------------------------------
26 with Atree
; use Atree
;
27 with Checks
; use Checks
;
28 with Debug
; use Debug
;
29 with Einfo
; use Einfo
;
30 with Elists
; use Elists
;
31 with Errout
; use Errout
;
32 with Exp_Aggr
; use Exp_Aggr
;
33 with Exp_Atag
; use Exp_Atag
;
34 with Exp_Ch2
; use Exp_Ch2
;
35 with Exp_Ch3
; use Exp_Ch3
;
36 with Exp_Ch6
; use Exp_Ch6
;
37 with Exp_Ch7
; use Exp_Ch7
;
38 with Exp_Ch9
; use Exp_Ch9
;
39 with Exp_Disp
; use Exp_Disp
;
40 with Exp_Fixd
; use Exp_Fixd
;
41 with Exp_Intr
; use Exp_Intr
;
42 with Exp_Pakd
; use Exp_Pakd
;
43 with Exp_Tss
; use Exp_Tss
;
44 with Exp_Util
; use Exp_Util
;
45 with Freeze
; use Freeze
;
46 with Inline
; use Inline
;
48 with Namet
; use Namet
;
49 with Nlists
; use Nlists
;
50 with Nmake
; use Nmake
;
52 with Par_SCO
; use Par_SCO
;
53 with Restrict
; use Restrict
;
54 with Rident
; use Rident
;
55 with Rtsfind
; use Rtsfind
;
57 with Sem_Aux
; use Sem_Aux
;
58 with Sem_Cat
; use Sem_Cat
;
59 with Sem_Ch3
; use Sem_Ch3
;
60 with Sem_Ch8
; use Sem_Ch8
;
61 with Sem_Ch13
; use Sem_Ch13
;
62 with Sem_Eval
; use Sem_Eval
;
63 with Sem_Res
; use Sem_Res
;
64 with Sem_Type
; use Sem_Type
;
65 with Sem_Util
; use Sem_Util
;
66 with Sem_Warn
; use Sem_Warn
;
67 with Sinfo
; use Sinfo
;
68 with Snames
; use Snames
;
69 with Stand
; use Stand
;
70 with SCIL_LL
; use SCIL_LL
;
71 with Targparm
; use Targparm
;
72 with Tbuild
; use Tbuild
;
73 with Ttypes
; use Ttypes
;
74 with Uintp
; use Uintp
;
75 with Urealp
; use Urealp
;
76 with Validsw
; use Validsw
;
78 package body Exp_Ch4
is
80 -----------------------
81 -- Local Subprograms --
82 -----------------------
84 procedure Binary_Op_Validity_Checks
(N
: Node_Id
);
85 pragma Inline
(Binary_Op_Validity_Checks
);
86 -- Performs validity checks for a binary operator
88 procedure Build_Boolean_Array_Proc_Call
92 -- If a boolean array assignment can be done in place, build call to
93 -- corresponding library procedure.
95 function Current_Anonymous_Master
return Entity_Id
;
96 -- Return the entity of the heterogeneous finalization master belonging to
97 -- the current unit (either function, package or procedure). This master
98 -- services all anonymous access-to-controlled types. If the current unit
99 -- does not have such master, create one.
101 procedure Displace_Allocator_Pointer
(N
: Node_Id
);
102 -- Ada 2005 (AI-251): Subsidiary procedure to Expand_N_Allocator and
103 -- Expand_Allocator_Expression. Allocating class-wide interface objects
104 -- this routine displaces the pointer to the allocated object to reference
105 -- the component referencing the corresponding secondary dispatch table.
107 procedure Expand_Allocator_Expression
(N
: Node_Id
);
108 -- Subsidiary to Expand_N_Allocator, for the case when the expression
109 -- is a qualified expression or an aggregate.
111 procedure Expand_Array_Comparison
(N
: Node_Id
);
112 -- This routine handles expansion of the comparison operators (N_Op_Lt,
113 -- N_Op_Le, N_Op_Gt, N_Op_Ge) when operating on an array type. The basic
114 -- code for these operators is similar, differing only in the details of
115 -- the actual comparison call that is made. Special processing (call a
118 function Expand_Array_Equality
123 Typ
: Entity_Id
) return Node_Id
;
124 -- Expand an array equality into a call to a function implementing this
125 -- equality, and a call to it. Loc is the location for the generated nodes.
126 -- Lhs and Rhs are the array expressions to be compared. Bodies is a list
127 -- on which to attach bodies of local functions that are created in the
128 -- process. It is the responsibility of the caller to insert those bodies
129 -- at the right place. Nod provides the Sloc value for the generated code.
130 -- Normally the types used for the generated equality routine are taken
131 -- from Lhs and Rhs. However, in some situations of generated code, the
132 -- Etype fields of Lhs and Rhs are not set yet. In such cases, Typ supplies
133 -- the type to be used for the formal parameters.
135 procedure Expand_Boolean_Operator
(N
: Node_Id
);
136 -- Common expansion processing for Boolean operators (And, Or, Xor) for the
137 -- case of array type arguments.
139 procedure Expand_Short_Circuit_Operator
(N
: Node_Id
);
140 -- Common expansion processing for short-circuit boolean operators
142 procedure Expand_Compare_Minimize_Eliminate_Overflow
(N
: Node_Id
);
143 -- Deal with comparison in MINIMIZED/ELIMINATED overflow mode. This is
144 -- where we allow comparison of "out of range" values.
146 function Expand_Composite_Equality
151 Bodies
: List_Id
) return Node_Id
;
152 -- Local recursive function used to expand equality for nested composite
153 -- types. Used by Expand_Record/Array_Equality, Bodies is a list on which
154 -- to attach bodies of local functions that are created in the process. It
155 -- is the responsibility of the caller to insert those bodies at the right
156 -- place. Nod provides the Sloc value for generated code. Lhs and Rhs are
157 -- the left and right sides for the comparison, and Typ is the type of the
158 -- objects to compare.
160 procedure Expand_Concatenate
(Cnode
: Node_Id
; Opnds
: List_Id
);
161 -- Routine to expand concatenation of a sequence of two or more operands
162 -- (in the list Operands) and replace node Cnode with the result of the
163 -- concatenation. The operands can be of any appropriate type, and can
164 -- include both arrays and singleton elements.
166 procedure Expand_Membership_Minimize_Eliminate_Overflow
(N
: Node_Id
);
167 -- N is an N_In membership test mode, with the overflow check mode set to
168 -- MINIMIZED or ELIMINATED, and the type of the left operand is a signed
169 -- integer type. This is a case where top level processing is required to
170 -- handle overflow checks in subtrees.
172 procedure Fixup_Universal_Fixed_Operation
(N
: Node_Id
);
173 -- N is a N_Op_Divide or N_Op_Multiply node whose result is universal
174 -- fixed. We do not have such a type at runtime, so the purpose of this
175 -- routine is to find the real type by looking up the tree. We also
176 -- determine if the operation must be rounded.
178 function Has_Inferable_Discriminants
(N
: Node_Id
) return Boolean;
179 -- Ada 2005 (AI-216): A view of an Unchecked_Union object has inferable
180 -- discriminants if it has a constrained nominal type, unless the object
181 -- is a component of an enclosing Unchecked_Union object that is subject
182 -- to a per-object constraint and the enclosing object lacks inferable
185 -- An expression of an Unchecked_Union type has inferable discriminants
186 -- if it is either a name of an object with inferable discriminants or a
187 -- qualified expression whose subtype mark denotes a constrained subtype.
189 procedure Insert_Dereference_Action
(N
: Node_Id
);
190 -- N is an expression whose type is an access. When the type of the
191 -- associated storage pool is derived from Checked_Pool, generate a
192 -- call to the 'Dereference' primitive operation.
194 function Make_Array_Comparison_Op
196 Nod
: Node_Id
) return Node_Id
;
197 -- Comparisons between arrays are expanded in line. This function produces
198 -- the body of the implementation of (a > b), where a and b are one-
199 -- dimensional arrays of some discrete type. The original node is then
200 -- expanded into the appropriate call to this function. Nod provides the
201 -- Sloc value for the generated code.
203 function Make_Boolean_Array_Op
205 N
: Node_Id
) return Node_Id
;
206 -- Boolean operations on boolean arrays are expanded in line. This function
207 -- produce the body for the node N, which is (a and b), (a or b), or (a xor
208 -- b). It is used only the normal case and not the packed case. The type
209 -- involved, Typ, is the Boolean array type, and the logical operations in
210 -- the body are simple boolean operations. Note that Typ is always a
211 -- constrained type (the caller has ensured this by using
212 -- Convert_To_Actual_Subtype if necessary).
214 function Minimized_Eliminated_Overflow_Check
(N
: Node_Id
) return Boolean;
215 -- For signed arithmetic operations when the current overflow mode is
216 -- MINIMIZED or ELIMINATED, we must call Apply_Arithmetic_Overflow_Checks
217 -- as the first thing we do. We then return. We count on the recursive
218 -- apparatus for overflow checks to call us back with an equivalent
219 -- operation that is in CHECKED mode, avoiding a recursive entry into this
220 -- routine, and that is when we will proceed with the expansion of the
221 -- operator (e.g. converting X+0 to X, or X**2 to X*X). We cannot do
222 -- these optimizations without first making this check, since there may be
223 -- operands further down the tree that are relying on the recursive calls
224 -- triggered by the top level nodes to properly process overflow checking
225 -- and remaining expansion on these nodes. Note that this call back may be
226 -- skipped if the operation is done in Bignum mode but that's fine, since
227 -- the Bignum call takes care of everything.
229 procedure Optimize_Length_Comparison
(N
: Node_Id
);
230 -- Given an expression, if it is of the form X'Length op N (or the other
231 -- way round), where N is known at compile time to be 0 or 1, and X is a
232 -- simple entity, and op is a comparison operator, optimizes it into a
233 -- comparison of First and Last.
235 procedure Process_Transient_Object
238 -- Subsidiary routine to the expansion of expression_with_actions and if
239 -- expressions. Generate all the necessary code to finalize a transient
240 -- controlled object when the enclosing context is elaborated or evaluated.
241 -- Decl denotes the declaration of the transient controlled object which is
242 -- usually the result of a controlled function call. Rel_Node denotes the
243 -- context, either an expression_with_actions or an if expression.
245 procedure Rewrite_Comparison
(N
: Node_Id
);
246 -- If N is the node for a comparison whose outcome can be determined at
247 -- compile time, then the node N can be rewritten with True or False. If
248 -- the outcome cannot be determined at compile time, the call has no
249 -- effect. If N is a type conversion, then this processing is applied to
250 -- its expression. If N is neither comparison nor a type conversion, the
251 -- call has no effect.
253 procedure Tagged_Membership
255 SCIL_Node
: out Node_Id
;
256 Result
: out Node_Id
);
257 -- Construct the expression corresponding to the tagged membership test.
258 -- Deals with a second operand being (or not) a class-wide type.
260 function Safe_In_Place_Array_Op
263 Op2
: Node_Id
) return Boolean;
264 -- In the context of an assignment, where the right-hand side is a boolean
265 -- operation on arrays, check whether operation can be performed in place.
267 procedure Unary_Op_Validity_Checks
(N
: Node_Id
);
268 pragma Inline
(Unary_Op_Validity_Checks
);
269 -- Performs validity checks for a unary operator
271 -------------------------------
272 -- Binary_Op_Validity_Checks --
273 -------------------------------
275 procedure Binary_Op_Validity_Checks
(N
: Node_Id
) is
277 if Validity_Checks_On
and Validity_Check_Operands
then
278 Ensure_Valid
(Left_Opnd
(N
));
279 Ensure_Valid
(Right_Opnd
(N
));
281 end Binary_Op_Validity_Checks
;
283 ------------------------------------
284 -- Build_Boolean_Array_Proc_Call --
285 ------------------------------------
287 procedure Build_Boolean_Array_Proc_Call
292 Loc
: constant Source_Ptr
:= Sloc
(N
);
293 Kind
: constant Node_Kind
:= Nkind
(Expression
(N
));
294 Target
: constant Node_Id
:=
295 Make_Attribute_Reference
(Loc
,
297 Attribute_Name
=> Name_Address
);
299 Arg1
: Node_Id
:= Op1
;
300 Arg2
: Node_Id
:= Op2
;
302 Proc_Name
: Entity_Id
;
305 if Kind
= N_Op_Not
then
306 if Nkind
(Op1
) in N_Binary_Op
then
308 -- Use negated version of the binary operators
310 if Nkind
(Op1
) = N_Op_And
then
311 Proc_Name
:= RTE
(RE_Vector_Nand
);
313 elsif Nkind
(Op1
) = N_Op_Or
then
314 Proc_Name
:= RTE
(RE_Vector_Nor
);
316 else pragma Assert
(Nkind
(Op1
) = N_Op_Xor
);
317 Proc_Name
:= RTE
(RE_Vector_Xor
);
321 Make_Procedure_Call_Statement
(Loc
,
322 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
324 Parameter_Associations
=> New_List
(
326 Make_Attribute_Reference
(Loc
,
327 Prefix
=> Left_Opnd
(Op1
),
328 Attribute_Name
=> Name_Address
),
330 Make_Attribute_Reference
(Loc
,
331 Prefix
=> Right_Opnd
(Op1
),
332 Attribute_Name
=> Name_Address
),
334 Make_Attribute_Reference
(Loc
,
335 Prefix
=> Left_Opnd
(Op1
),
336 Attribute_Name
=> Name_Length
)));
339 Proc_Name
:= RTE
(RE_Vector_Not
);
342 Make_Procedure_Call_Statement
(Loc
,
343 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
344 Parameter_Associations
=> New_List
(
347 Make_Attribute_Reference
(Loc
,
349 Attribute_Name
=> Name_Address
),
351 Make_Attribute_Reference
(Loc
,
353 Attribute_Name
=> Name_Length
)));
357 -- We use the following equivalences:
359 -- (not X) or (not Y) = not (X and Y) = Nand (X, Y)
360 -- (not X) and (not Y) = not (X or Y) = Nor (X, Y)
361 -- (not X) xor (not Y) = X xor Y
362 -- X xor (not Y) = not (X xor Y) = Nxor (X, Y)
364 if Nkind
(Op1
) = N_Op_Not
then
365 Arg1
:= Right_Opnd
(Op1
);
366 Arg2
:= Right_Opnd
(Op2
);
368 if Kind
= N_Op_And
then
369 Proc_Name
:= RTE
(RE_Vector_Nor
);
370 elsif Kind
= N_Op_Or
then
371 Proc_Name
:= RTE
(RE_Vector_Nand
);
373 Proc_Name
:= RTE
(RE_Vector_Xor
);
377 if Kind
= N_Op_And
then
378 Proc_Name
:= RTE
(RE_Vector_And
);
379 elsif Kind
= N_Op_Or
then
380 Proc_Name
:= RTE
(RE_Vector_Or
);
381 elsif Nkind
(Op2
) = N_Op_Not
then
382 Proc_Name
:= RTE
(RE_Vector_Nxor
);
383 Arg2
:= Right_Opnd
(Op2
);
385 Proc_Name
:= RTE
(RE_Vector_Xor
);
390 Make_Procedure_Call_Statement
(Loc
,
391 Name
=> New_Occurrence_Of
(Proc_Name
, Loc
),
392 Parameter_Associations
=> New_List
(
394 Make_Attribute_Reference
(Loc
,
396 Attribute_Name
=> Name_Address
),
397 Make_Attribute_Reference
(Loc
,
399 Attribute_Name
=> Name_Address
),
400 Make_Attribute_Reference
(Loc
,
402 Attribute_Name
=> Name_Length
)));
405 Rewrite
(N
, Call_Node
);
409 when RE_Not_Available
=>
411 end Build_Boolean_Array_Proc_Call
;
413 ------------------------------
414 -- Current_Anonymous_Master --
415 ------------------------------
417 function Current_Anonymous_Master
return Entity_Id
is
425 Unit_Id
:= Cunit_Entity
(Current_Sem_Unit
);
427 -- Find the entity of the current unit
429 if Ekind
(Unit_Id
) = E_Subprogram_Body
then
431 -- When processing subprogram bodies, the proper scope is always that
434 Subp_Body
:= Unit_Id
;
435 while Present
(Subp_Body
)
436 and then Nkind
(Subp_Body
) /= N_Subprogram_Body
438 Subp_Body
:= Parent
(Subp_Body
);
441 Unit_Id
:= Corresponding_Spec
(Subp_Body
);
444 Loc
:= Sloc
(Unit_Id
);
445 Unit_Decl
:= Unit
(Cunit
(Current_Sem_Unit
));
447 -- Find the declarations list of the current unit
449 if Nkind
(Unit_Decl
) = N_Package_Declaration
then
450 Unit_Decl
:= Specification
(Unit_Decl
);
451 Decls
:= Visible_Declarations
(Unit_Decl
);
454 Decls
:= New_List
(Make_Null_Statement
(Loc
));
455 Set_Visible_Declarations
(Unit_Decl
, Decls
);
457 elsif Is_Empty_List
(Decls
) then
458 Append_To
(Decls
, Make_Null_Statement
(Loc
));
462 Decls
:= Declarations
(Unit_Decl
);
465 Decls
:= New_List
(Make_Null_Statement
(Loc
));
466 Set_Declarations
(Unit_Decl
, Decls
);
468 elsif Is_Empty_List
(Decls
) then
469 Append_To
(Decls
, Make_Null_Statement
(Loc
));
473 -- The current unit has an existing anonymous master, traverse its
474 -- declarations and locate the entity.
476 if Has_Anonymous_Master
(Unit_Id
) then
479 Fin_Mas_Id
: Entity_Id
;
482 Decl
:= First
(Decls
);
483 while Present
(Decl
) loop
485 -- Look for the first variable in the declarations whole type
486 -- is Finalization_Master.
488 if Nkind
(Decl
) = N_Object_Declaration
then
489 Fin_Mas_Id
:= Defining_Identifier
(Decl
);
491 if Ekind
(Fin_Mas_Id
) = E_Variable
492 and then Etype
(Fin_Mas_Id
) = RTE
(RE_Finalization_Master
)
501 -- The master was not found even though the unit was labeled as
507 -- Create a new anonymous master
511 First_Decl
: constant Node_Id
:= First
(Decls
);
513 Fin_Mas_Id
: Entity_Id
;
516 -- Since the master and its associated initialization is inserted
517 -- at top level, use the scope of the unit when analyzing.
519 Push_Scope
(Unit_Id
);
521 -- Create the finalization master
524 Make_Defining_Identifier
(Loc
,
525 Chars
=> New_External_Name
(Chars
(Unit_Id
), "AM"));
528 -- <Fin_Mas_Id> : Finalization_Master;
531 Make_Object_Declaration
(Loc
,
532 Defining_Identifier
=> Fin_Mas_Id
,
534 New_Occurrence_Of
(RTE
(RE_Finalization_Master
), Loc
));
536 Insert_Before_And_Analyze
(First_Decl
, Action
);
538 -- Mark the unit to prevent the generation of multiple masters
540 Set_Has_Anonymous_Master
(Unit_Id
);
542 -- Do not set the base pool and mode of operation on .NET/JVM
543 -- since those targets do not support pools and all VM masters
544 -- are heterogeneous by default.
546 if VM_Target
= No_VM
then
550 -- (<Fin_Mas_Id>, Global_Pool_Object'Unrestricted_Access);
553 Make_Procedure_Call_Statement
(Loc
,
555 New_Occurrence_Of
(RTE
(RE_Set_Base_Pool
), Loc
),
557 Parameter_Associations
=> New_List
(
558 New_Occurrence_Of
(Fin_Mas_Id
, Loc
),
559 Make_Attribute_Reference
(Loc
,
561 New_Occurrence_Of
(RTE
(RE_Global_Pool_Object
), Loc
),
562 Attribute_Name
=> Name_Unrestricted_Access
)));
564 Insert_Before_And_Analyze
(First_Decl
, Action
);
567 -- Set_Is_Heterogeneous (<Fin_Mas_Id>);
570 Make_Procedure_Call_Statement
(Loc
,
572 New_Occurrence_Of
(RTE
(RE_Set_Is_Heterogeneous
), Loc
),
573 Parameter_Associations
=> New_List
(
574 New_Occurrence_Of
(Fin_Mas_Id
, Loc
)));
576 Insert_Before_And_Analyze
(First_Decl
, Action
);
579 -- Restore the original state of the scope stack
586 end Current_Anonymous_Master
;
588 --------------------------------
589 -- Displace_Allocator_Pointer --
590 --------------------------------
592 procedure Displace_Allocator_Pointer
(N
: Node_Id
) is
593 Loc
: constant Source_Ptr
:= Sloc
(N
);
594 Orig_Node
: constant Node_Id
:= Original_Node
(N
);
600 -- Do nothing in case of VM targets: the virtual machine will handle
601 -- interfaces directly.
603 if not Tagged_Type_Expansion
then
607 pragma Assert
(Nkind
(N
) = N_Identifier
608 and then Nkind
(Orig_Node
) = N_Allocator
);
610 PtrT
:= Etype
(Orig_Node
);
611 Dtyp
:= Available_View
(Designated_Type
(PtrT
));
612 Etyp
:= Etype
(Expression
(Orig_Node
));
614 if Is_Class_Wide_Type
(Dtyp
) and then Is_Interface
(Dtyp
) then
616 -- If the type of the allocator expression is not an interface type
617 -- we can generate code to reference the record component containing
618 -- the pointer to the secondary dispatch table.
620 if not Is_Interface
(Etyp
) then
622 Saved_Typ
: constant Entity_Id
:= Etype
(Orig_Node
);
625 -- 1) Get access to the allocated object
628 Make_Explicit_Dereference
(Loc
, Relocate_Node
(N
)));
632 -- 2) Add the conversion to displace the pointer to reference
633 -- the secondary dispatch table.
635 Rewrite
(N
, Convert_To
(Dtyp
, Relocate_Node
(N
)));
636 Analyze_And_Resolve
(N
, Dtyp
);
638 -- 3) The 'access to the secondary dispatch table will be used
639 -- as the value returned by the allocator.
642 Make_Attribute_Reference
(Loc
,
643 Prefix
=> Relocate_Node
(N
),
644 Attribute_Name
=> Name_Access
));
645 Set_Etype
(N
, Saved_Typ
);
649 -- If the type of the allocator expression is an interface type we
650 -- generate a run-time call to displace "this" to reference the
651 -- component containing the pointer to the secondary dispatch table
652 -- or else raise Constraint_Error if the actual object does not
653 -- implement the target interface. This case corresponds to the
654 -- following example:
656 -- function Op (Obj : Iface_1'Class) return access Iface_2'Class is
658 -- return new Iface_2'Class'(Obj);
663 Unchecked_Convert_To
(PtrT
,
664 Make_Function_Call
(Loc
,
665 Name
=> New_Occurrence_Of
(RTE
(RE_Displace
), Loc
),
666 Parameter_Associations
=> New_List
(
667 Unchecked_Convert_To
(RTE
(RE_Address
),
673 (Access_Disp_Table
(Etype
(Base_Type
(Dtyp
))))),
675 Analyze_And_Resolve
(N
, PtrT
);
678 end Displace_Allocator_Pointer
;
680 ---------------------------------
681 -- Expand_Allocator_Expression --
682 ---------------------------------
684 procedure Expand_Allocator_Expression
(N
: Node_Id
) is
685 Loc
: constant Source_Ptr
:= Sloc
(N
);
686 Exp
: constant Node_Id
:= Expression
(Expression
(N
));
687 PtrT
: constant Entity_Id
:= Etype
(N
);
688 DesigT
: constant Entity_Id
:= Designated_Type
(PtrT
);
690 procedure Apply_Accessibility_Check
692 Built_In_Place
: Boolean := False);
693 -- Ada 2005 (AI-344): For an allocator with a class-wide designated
694 -- type, generate an accessibility check to verify that the level of the
695 -- type of the created object is not deeper than the level of the access
696 -- type. If the type of the qualified expression is class-wide, then
697 -- always generate the check (except in the case where it is known to be
698 -- unnecessary, see comment below). Otherwise, only generate the check
699 -- if the level of the qualified expression type is statically deeper
700 -- than the access type.
702 -- Although the static accessibility will generally have been performed
703 -- as a legality check, it won't have been done in cases where the
704 -- allocator appears in generic body, so a run-time check is needed in
705 -- general. One special case is when the access type is declared in the
706 -- same scope as the class-wide allocator, in which case the check can
707 -- never fail, so it need not be generated.
709 -- As an open issue, there seem to be cases where the static level
710 -- associated with the class-wide object's underlying type is not
711 -- sufficient to perform the proper accessibility check, such as for
712 -- allocators in nested subprograms or accept statements initialized by
713 -- class-wide formals when the actual originates outside at a deeper
714 -- static level. The nested subprogram case might require passing
715 -- accessibility levels along with class-wide parameters, and the task
716 -- case seems to be an actual gap in the language rules that needs to
717 -- be fixed by the ARG. ???
719 -------------------------------
720 -- Apply_Accessibility_Check --
721 -------------------------------
723 procedure Apply_Accessibility_Check
725 Built_In_Place
: Boolean := False)
727 Pool_Id
: constant Entity_Id
:= Associated_Storage_Pool
(PtrT
);
735 if Ada_Version
>= Ada_2005
736 and then Is_Class_Wide_Type
(DesigT
)
737 and then (Tagged_Type_Expansion
or else VM_Target
/= No_VM
)
738 and then not Scope_Suppress
.Suppress
(Accessibility_Check
)
740 (Type_Access_Level
(Etype
(Exp
)) > Type_Access_Level
(PtrT
)
742 (Is_Class_Wide_Type
(Etype
(Exp
))
743 and then Scope
(PtrT
) /= Current_Scope
))
745 -- If the allocator was built in place, Ref is already a reference
746 -- to the access object initialized to the result of the allocator
747 -- (see Exp_Ch6.Make_Build_In_Place_Call_In_Allocator). We call
748 -- Remove_Side_Effects for cases where the build-in-place call may
749 -- still be the prefix of the reference (to avoid generating
750 -- duplicate calls). Otherwise, it is the entity associated with
751 -- the object containing the address of the allocated object.
753 if Built_In_Place
then
754 Remove_Side_Effects
(Ref
);
755 Obj_Ref
:= New_Copy_Tree
(Ref
);
757 Obj_Ref
:= New_Occurrence_Of
(Ref
, Loc
);
760 -- For access to interface types we must generate code to displace
761 -- the pointer to the base of the object since the subsequent code
762 -- references components located in the TSD of the object (which
763 -- is associated with the primary dispatch table --see a-tags.ads)
764 -- and also generates code invoking Free, which requires also a
765 -- reference to the base of the unallocated object.
767 if Is_Interface
(DesigT
) and then Tagged_Type_Expansion
then
769 Unchecked_Convert_To
(Etype
(Obj_Ref
),
770 Make_Function_Call
(Loc
,
772 New_Occurrence_Of
(RTE
(RE_Base_Address
), Loc
),
773 Parameter_Associations
=> New_List
(
774 Unchecked_Convert_To
(RTE
(RE_Address
),
775 New_Copy_Tree
(Obj_Ref
)))));
778 -- Step 1: Create the object clean up code
782 -- Deallocate the object if the accessibility check fails. This
783 -- is done only on targets or profiles that support deallocation.
787 if RTE_Available
(RE_Free
) then
788 Free_Stmt
:= Make_Free_Statement
(Loc
, New_Copy_Tree
(Obj_Ref
));
789 Set_Storage_Pool
(Free_Stmt
, Pool_Id
);
791 Append_To
(Stmts
, Free_Stmt
);
793 -- The target or profile cannot deallocate objects
799 -- Finalize the object if applicable. Generate:
801 -- [Deep_]Finalize (Obj_Ref.all);
803 if Needs_Finalization
(DesigT
) then
807 Make_Explicit_Dereference
(Loc
, New_Copy
(Obj_Ref
)),
810 -- When the target or profile supports deallocation, wrap the
811 -- finalization call in a block to ensure proper deallocation
812 -- even if finalization fails. Generate:
822 if Present
(Free_Stmt
) then
824 Make_Block_Statement
(Loc
,
825 Handled_Statement_Sequence
=>
826 Make_Handled_Sequence_Of_Statements
(Loc
,
827 Statements
=> New_List
(Fin_Call
),
829 Exception_Handlers
=> New_List
(
830 Make_Exception_Handler
(Loc
,
831 Exception_Choices
=> New_List
(
832 Make_Others_Choice
(Loc
)),
834 Statements
=> New_List
(
835 New_Copy_Tree
(Free_Stmt
),
836 Make_Raise_Statement
(Loc
))))));
839 Prepend_To
(Stmts
, Fin_Call
);
842 -- Signal the accessibility failure through a Program_Error
845 Make_Raise_Program_Error
(Loc
,
846 Condition
=> New_Occurrence_Of
(Standard_True
, Loc
),
847 Reason
=> PE_Accessibility_Check_Failed
));
849 -- Step 2: Create the accessibility comparison
855 Make_Attribute_Reference
(Loc
,
857 Attribute_Name
=> Name_Tag
);
859 -- For tagged types, determine the accessibility level by looking
860 -- at the type specific data of the dispatch table. Generate:
862 -- Type_Specific_Data (Address (Ref'Tag)).Access_Level
864 if Tagged_Type_Expansion
then
865 Cond
:= Build_Get_Access_Level
(Loc
, Obj_Ref
);
867 -- Use a runtime call to determine the accessibility level when
868 -- compiling on virtual machine targets. Generate:
870 -- Get_Access_Level (Ref'Tag)
874 Make_Function_Call
(Loc
,
876 New_Occurrence_Of
(RTE
(RE_Get_Access_Level
), Loc
),
877 Parameter_Associations
=> New_List
(Obj_Ref
));
884 Make_Integer_Literal
(Loc
, Type_Access_Level
(PtrT
)));
886 -- Due to the complexity and side effects of the check, utilize an
887 -- if statement instead of the regular Program_Error circuitry.
890 Make_Implicit_If_Statement
(N
,
892 Then_Statements
=> Stmts
));
894 end Apply_Accessibility_Check
;
898 Aggr_In_Place
: constant Boolean := Is_Delayed_Aggregate
(Exp
);
899 Indic
: constant Node_Id
:= Subtype_Mark
(Expression
(N
));
900 T
: constant Entity_Id
:= Entity
(Indic
);
902 Tag_Assign
: Node_Id
;
906 TagT
: Entity_Id
:= Empty
;
907 -- Type used as source for tag assignment
909 TagR
: Node_Id
:= Empty
;
910 -- Target reference for tag assignment
912 -- Start of processing for Expand_Allocator_Expression
915 -- Handle call to C++ constructor
917 if Is_CPP_Constructor_Call
(Exp
) then
918 Make_CPP_Constructor_Call_In_Allocator
920 Function_Call
=> Exp
);
924 -- In the case of an Ada 2012 allocator whose initial value comes from a
925 -- function call, pass "the accessibility level determined by the point
926 -- of call" (AI05-0234) to the function. Conceptually, this belongs in
927 -- Expand_Call but it couldn't be done there (because the Etype of the
928 -- allocator wasn't set then) so we generate the parameter here. See
929 -- the Boolean variable Defer in (a block within) Expand_Call.
931 if Ada_Version
>= Ada_2012
and then Nkind
(Exp
) = N_Function_Call
then
936 if Nkind
(Name
(Exp
)) = N_Explicit_Dereference
then
937 Subp
:= Designated_Type
(Etype
(Prefix
(Name
(Exp
))));
939 Subp
:= Entity
(Name
(Exp
));
942 Subp
:= Ultimate_Alias
(Subp
);
944 if Present
(Extra_Accessibility_Of_Result
(Subp
)) then
945 Add_Extra_Actual_To_Call
946 (Subprogram_Call
=> Exp
,
947 Extra_Formal
=> Extra_Accessibility_Of_Result
(Subp
),
948 Extra_Actual
=> Dynamic_Accessibility_Level
(PtrT
));
953 -- Case of tagged type or type requiring finalization
955 if Is_Tagged_Type
(T
) or else Needs_Finalization
(T
) then
957 -- Ada 2005 (AI-318-02): If the initialization expression is a call
958 -- to a build-in-place function, then access to the allocated object
959 -- must be passed to the function. Currently we limit such functions
960 -- to those with constrained limited result subtypes, but eventually
961 -- we plan to expand the allowed forms of functions that are treated
962 -- as build-in-place.
964 if Ada_Version
>= Ada_2005
965 and then Is_Build_In_Place_Function_Call
(Exp
)
967 Make_Build_In_Place_Call_In_Allocator
(N
, Exp
);
968 Apply_Accessibility_Check
(N
, Built_In_Place
=> True);
972 -- Actions inserted before:
973 -- Temp : constant ptr_T := new T'(Expression);
974 -- Temp._tag = T'tag; -- when not class-wide
975 -- [Deep_]Adjust (Temp.all);
977 -- We analyze by hand the new internal allocator to avoid any
978 -- recursion and inappropriate call to Initialize.
980 -- We don't want to remove side effects when the expression must be
981 -- built in place. In the case of a build-in-place function call,
982 -- that could lead to a duplication of the call, which was already
983 -- substituted for the allocator.
985 if not Aggr_In_Place
then
986 Remove_Side_Effects
(Exp
);
989 Temp
:= Make_Temporary
(Loc
, 'P', N
);
991 -- For a class wide allocation generate the following code:
993 -- type Equiv_Record is record ... end record;
994 -- implicit subtype CW is <Class_Wide_Subytpe>;
995 -- temp : PtrT := new CW'(CW!(expr));
997 if Is_Class_Wide_Type
(T
) then
998 Expand_Subtype_From_Expr
(Empty
, T
, Indic
, Exp
);
1000 -- Ada 2005 (AI-251): If the expression is a class-wide interface
1001 -- object we generate code to move up "this" to reference the
1002 -- base of the object before allocating the new object.
1004 -- Note that Exp'Address is recursively expanded into a call
1005 -- to Base_Address (Exp.Tag)
1007 if Is_Class_Wide_Type
(Etype
(Exp
))
1008 and then Is_Interface
(Etype
(Exp
))
1009 and then Tagged_Type_Expansion
1013 Unchecked_Convert_To
(Entity
(Indic
),
1014 Make_Explicit_Dereference
(Loc
,
1015 Unchecked_Convert_To
(RTE
(RE_Tag_Ptr
),
1016 Make_Attribute_Reference
(Loc
,
1018 Attribute_Name
=> Name_Address
)))));
1022 Unchecked_Convert_To
(Entity
(Indic
), Exp
));
1025 Analyze_And_Resolve
(Expression
(N
), Entity
(Indic
));
1028 -- Processing for allocators returning non-interface types
1030 if not Is_Interface
(Directly_Designated_Type
(PtrT
)) then
1031 if Aggr_In_Place
then
1033 Make_Object_Declaration
(Loc
,
1034 Defining_Identifier
=> Temp
,
1035 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1037 Make_Allocator
(Loc
,
1039 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1041 -- Copy the Comes_From_Source flag for the allocator we just
1042 -- built, since logically this allocator is a replacement of
1043 -- the original allocator node. This is for proper handling of
1044 -- restriction No_Implicit_Heap_Allocations.
1046 Set_Comes_From_Source
1047 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1049 Set_No_Initialization
(Expression
(Temp_Decl
));
1050 Insert_Action
(N
, Temp_Decl
);
1052 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1053 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1055 -- Attach the object to the associated finalization master.
1056 -- This is done manually on .NET/JVM since those compilers do
1057 -- no support pools and can't benefit from internally generated
1058 -- Allocate / Deallocate procedures.
1060 if VM_Target
/= No_VM
1061 and then Is_Controlled
(DesigT
)
1062 and then Present
(Finalization_Master
(PtrT
))
1066 (Obj_Ref
=> New_Occurrence_Of
(Temp
, Loc
),
1071 Node
:= Relocate_Node
(N
);
1072 Set_Analyzed
(Node
);
1075 Make_Object_Declaration
(Loc
,
1076 Defining_Identifier
=> Temp
,
1077 Constant_Present
=> True,
1078 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1079 Expression
=> Node
);
1081 Insert_Action
(N
, Temp_Decl
);
1082 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1084 -- Attach the object to the associated finalization master.
1085 -- This is done manually on .NET/JVM since those compilers do
1086 -- no support pools and can't benefit from internally generated
1087 -- Allocate / Deallocate procedures.
1089 if VM_Target
/= No_VM
1090 and then Is_Controlled
(DesigT
)
1091 and then Present
(Finalization_Master
(PtrT
))
1095 (Obj_Ref
=> New_Occurrence_Of
(Temp
, Loc
),
1100 -- Ada 2005 (AI-251): Handle allocators whose designated type is an
1101 -- interface type. In this case we use the type of the qualified
1102 -- expression to allocate the object.
1106 Def_Id
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T');
1111 Make_Full_Type_Declaration
(Loc
,
1112 Defining_Identifier
=> Def_Id
,
1114 Make_Access_To_Object_Definition
(Loc
,
1115 All_Present
=> True,
1116 Null_Exclusion_Present
=> False,
1118 Is_Access_Constant
(Etype
(N
)),
1119 Subtype_Indication
=>
1120 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1122 Insert_Action
(N
, New_Decl
);
1124 -- Inherit the allocation-related attributes from the original
1127 Set_Finalization_Master
1128 (Def_Id
, Finalization_Master
(PtrT
));
1130 Set_Associated_Storage_Pool
1131 (Def_Id
, Associated_Storage_Pool
(PtrT
));
1133 -- Declare the object using the previous type declaration
1135 if Aggr_In_Place
then
1137 Make_Object_Declaration
(Loc
,
1138 Defining_Identifier
=> Temp
,
1139 Object_Definition
=> New_Occurrence_Of
(Def_Id
, Loc
),
1141 Make_Allocator
(Loc
,
1142 New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1144 -- Copy the Comes_From_Source flag for the allocator we just
1145 -- built, since logically this allocator is a replacement of
1146 -- the original allocator node. This is for proper handling
1147 -- of restriction No_Implicit_Heap_Allocations.
1149 Set_Comes_From_Source
1150 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1152 Set_No_Initialization
(Expression
(Temp_Decl
));
1153 Insert_Action
(N
, Temp_Decl
);
1155 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1156 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1159 Node
:= Relocate_Node
(N
);
1160 Set_Analyzed
(Node
);
1163 Make_Object_Declaration
(Loc
,
1164 Defining_Identifier
=> Temp
,
1165 Constant_Present
=> True,
1166 Object_Definition
=> New_Occurrence_Of
(Def_Id
, Loc
),
1167 Expression
=> Node
);
1169 Insert_Action
(N
, Temp_Decl
);
1170 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1173 -- Generate an additional object containing the address of the
1174 -- returned object. The type of this second object declaration
1175 -- is the correct type required for the common processing that
1176 -- is still performed by this subprogram. The displacement of
1177 -- this pointer to reference the component associated with the
1178 -- interface type will be done at the end of common processing.
1181 Make_Object_Declaration
(Loc
,
1182 Defining_Identifier
=> Make_Temporary
(Loc
, 'P'),
1183 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1185 Unchecked_Convert_To
(PtrT
,
1186 New_Occurrence_Of
(Temp
, Loc
)));
1188 Insert_Action
(N
, New_Decl
);
1190 Temp_Decl
:= New_Decl
;
1191 Temp
:= Defining_Identifier
(New_Decl
);
1195 Apply_Accessibility_Check
(Temp
);
1197 -- Generate the tag assignment
1199 -- Suppress the tag assignment when VM_Target because VM tags are
1200 -- represented implicitly in objects.
1202 if not Tagged_Type_Expansion
then
1205 -- Ada 2005 (AI-251): Suppress the tag assignment with class-wide
1206 -- interface objects because in this case the tag does not change.
1208 elsif Is_Interface
(Directly_Designated_Type
(Etype
(N
))) then
1209 pragma Assert
(Is_Class_Wide_Type
1210 (Directly_Designated_Type
(Etype
(N
))));
1213 elsif Is_Tagged_Type
(T
) and then not Is_Class_Wide_Type
(T
) then
1215 TagR
:= New_Occurrence_Of
(Temp
, Loc
);
1217 elsif Is_Private_Type
(T
)
1218 and then Is_Tagged_Type
(Underlying_Type
(T
))
1220 TagT
:= Underlying_Type
(T
);
1222 Unchecked_Convert_To
(Underlying_Type
(T
),
1223 Make_Explicit_Dereference
(Loc
,
1224 Prefix
=> New_Occurrence_Of
(Temp
, Loc
)));
1227 if Present
(TagT
) then
1229 Full_T
: constant Entity_Id
:= Underlying_Type
(TagT
);
1233 Make_Assignment_Statement
(Loc
,
1235 Make_Selected_Component
(Loc
,
1239 (First_Tag_Component
(Full_T
), Loc
)),
1242 Unchecked_Convert_To
(RTE
(RE_Tag
),
1245 (First_Elmt
(Access_Disp_Table
(Full_T
))), Loc
)));
1248 -- The previous assignment has to be done in any case
1250 Set_Assignment_OK
(Name
(Tag_Assign
));
1251 Insert_Action
(N
, Tag_Assign
);
1254 if Needs_Finalization
(DesigT
) and then Needs_Finalization
(T
) then
1256 -- Generate an Adjust call if the object will be moved. In Ada
1257 -- 2005, the object may be inherently limited, in which case
1258 -- there is no Adjust procedure, and the object is built in
1259 -- place. In Ada 95, the object can be limited but not
1260 -- inherently limited if this allocator came from a return
1261 -- statement (we're allocating the result on the secondary
1262 -- stack). In that case, the object will be moved, so we _do_
1265 if not Aggr_In_Place
1266 and then not Is_Limited_View
(T
)
1270 -- An unchecked conversion is needed in the classwide case
1271 -- because the designated type can be an ancestor of the
1272 -- subtype mark of the allocator.
1276 Unchecked_Convert_To
(T
,
1277 Make_Explicit_Dereference
(Loc
,
1278 Prefix
=> New_Occurrence_Of
(Temp
, Loc
))),
1283 -- Set_Finalize_Address (<PtrT>FM, <T>FD'Unrestricted_Access);
1285 -- Do not generate this call in the following cases:
1287 -- * .NET/JVM - these targets do not support address arithmetic
1288 -- and unchecked conversion, key elements of Finalize_Address.
1290 -- * CodePeer mode - TSS primitive Finalize_Address is not
1291 -- created in this mode.
1293 if VM_Target
= No_VM
1294 and then not CodePeer_Mode
1295 and then Present
(Finalization_Master
(PtrT
))
1296 and then Present
(Temp_Decl
)
1297 and then Nkind
(Expression
(Temp_Decl
)) = N_Allocator
1300 Make_Set_Finalize_Address_Call
1307 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
1308 Analyze_And_Resolve
(N
, PtrT
);
1310 -- Ada 2005 (AI-251): Displace the pointer to reference the record
1311 -- component containing the secondary dispatch table of the interface
1314 if Is_Interface
(Directly_Designated_Type
(PtrT
)) then
1315 Displace_Allocator_Pointer
(N
);
1318 elsif Aggr_In_Place
then
1319 Temp
:= Make_Temporary
(Loc
, 'P', N
);
1321 Make_Object_Declaration
(Loc
,
1322 Defining_Identifier
=> Temp
,
1323 Object_Definition
=> New_Occurrence_Of
(PtrT
, Loc
),
1325 Make_Allocator
(Loc
,
1326 Expression
=> New_Occurrence_Of
(Etype
(Exp
), Loc
)));
1328 -- Copy the Comes_From_Source flag for the allocator we just built,
1329 -- since logically this allocator is a replacement of the original
1330 -- allocator node. This is for proper handling of restriction
1331 -- No_Implicit_Heap_Allocations.
1333 Set_Comes_From_Source
1334 (Expression
(Temp_Decl
), Comes_From_Source
(N
));
1336 Set_No_Initialization
(Expression
(Temp_Decl
));
1337 Insert_Action
(N
, Temp_Decl
);
1339 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
1340 Convert_Aggr_In_Allocator
(N
, Temp_Decl
, Exp
);
1342 -- Attach the object to the associated finalization master. Thisis
1343 -- done manually on .NET/JVM since those compilers do no support
1344 -- pools and cannot benefit from internally generated Allocate and
1345 -- Deallocate procedures.
1347 if VM_Target
/= No_VM
1348 and then Is_Controlled
(DesigT
)
1349 and then Present
(Finalization_Master
(PtrT
))
1353 (Obj_Ref
=> New_Occurrence_Of
(Temp
, Loc
),
1357 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
1358 Analyze_And_Resolve
(N
, PtrT
);
1360 elsif Is_Access_Type
(T
) and then Can_Never_Be_Null
(T
) then
1361 Install_Null_Excluding_Check
(Exp
);
1363 elsif Is_Access_Type
(DesigT
)
1364 and then Nkind
(Exp
) = N_Allocator
1365 and then Nkind
(Expression
(Exp
)) /= N_Qualified_Expression
1367 -- Apply constraint to designated subtype indication
1369 Apply_Constraint_Check
1370 (Expression
(Exp
), Designated_Type
(DesigT
), No_Sliding
=> True);
1372 if Nkind
(Expression
(Exp
)) = N_Raise_Constraint_Error
then
1374 -- Propagate constraint_error to enclosing allocator
1376 Rewrite
(Exp
, New_Copy
(Expression
(Exp
)));
1380 Build_Allocate_Deallocate_Proc
(N
, True);
1383 -- type A is access T1;
1384 -- X : A := new T2'(...);
1385 -- T1 and T2 can be different subtypes, and we might need to check
1386 -- both constraints. First check against the type of the qualified
1389 Apply_Constraint_Check
(Exp
, T
, No_Sliding
=> True);
1391 if Do_Range_Check
(Exp
) then
1392 Generate_Range_Check
(Exp
, DesigT
, CE_Range_Check_Failed
);
1395 -- A check is also needed in cases where the designated subtype is
1396 -- constrained and differs from the subtype given in the qualified
1397 -- expression. Note that the check on the qualified expression does
1398 -- not allow sliding, but this check does (a relaxation from Ada 83).
1400 if Is_Constrained
(DesigT
)
1401 and then not Subtypes_Statically_Match
(T
, DesigT
)
1403 Apply_Constraint_Check
1404 (Exp
, DesigT
, No_Sliding
=> False);
1406 if Do_Range_Check
(Exp
) then
1407 Generate_Range_Check
(Exp
, DesigT
, CE_Range_Check_Failed
);
1411 -- For an access to unconstrained packed array, GIGI needs to see an
1412 -- expression with a constrained subtype in order to compute the
1413 -- proper size for the allocator.
1415 if Is_Array_Type
(T
)
1416 and then not Is_Constrained
(T
)
1417 and then Is_Packed
(T
)
1420 ConstrT
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
1421 Internal_Exp
: constant Node_Id
:= Relocate_Node
(Exp
);
1424 Make_Subtype_Declaration
(Loc
,
1425 Defining_Identifier
=> ConstrT
,
1426 Subtype_Indication
=>
1427 Make_Subtype_From_Expr
(Internal_Exp
, T
)));
1428 Freeze_Itype
(ConstrT
, Exp
);
1429 Rewrite
(Exp
, OK_Convert_To
(ConstrT
, Internal_Exp
));
1433 -- Ada 2005 (AI-318-02): If the initialization expression is a call
1434 -- to a build-in-place function, then access to the allocated object
1435 -- must be passed to the function. Currently we limit such functions
1436 -- to those with constrained limited result subtypes, but eventually
1437 -- we plan to expand the allowed forms of functions that are treated
1438 -- as build-in-place.
1440 if Ada_Version
>= Ada_2005
1441 and then Is_Build_In_Place_Function_Call
(Exp
)
1443 Make_Build_In_Place_Call_In_Allocator
(N
, Exp
);
1448 when RE_Not_Available
=>
1450 end Expand_Allocator_Expression
;
1452 -----------------------------
1453 -- Expand_Array_Comparison --
1454 -----------------------------
1456 -- Expansion is only required in the case of array types. For the unpacked
1457 -- case, an appropriate runtime routine is called. For packed cases, and
1458 -- also in some other cases where a runtime routine cannot be called, the
1459 -- form of the expansion is:
1461 -- [body for greater_nn; boolean_expression]
1463 -- The body is built by Make_Array_Comparison_Op, and the form of the
1464 -- Boolean expression depends on the operator involved.
1466 procedure Expand_Array_Comparison
(N
: Node_Id
) is
1467 Loc
: constant Source_Ptr
:= Sloc
(N
);
1468 Op1
: Node_Id
:= Left_Opnd
(N
);
1469 Op2
: Node_Id
:= Right_Opnd
(N
);
1470 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
1471 Ctyp
: constant Entity_Id
:= Component_Type
(Typ1
);
1474 Func_Body
: Node_Id
;
1475 Func_Name
: Entity_Id
;
1479 Byte_Addressable
: constant Boolean := System_Storage_Unit
= Byte
'Size;
1480 -- True for byte addressable target
1482 function Length_Less_Than_4
(Opnd
: Node_Id
) return Boolean;
1483 -- Returns True if the length of the given operand is known to be less
1484 -- than 4. Returns False if this length is known to be four or greater
1485 -- or is not known at compile time.
1487 ------------------------
1488 -- Length_Less_Than_4 --
1489 ------------------------
1491 function Length_Less_Than_4
(Opnd
: Node_Id
) return Boolean is
1492 Otyp
: constant Entity_Id
:= Etype
(Opnd
);
1495 if Ekind
(Otyp
) = E_String_Literal_Subtype
then
1496 return String_Literal_Length
(Otyp
) < 4;
1500 Ityp
: constant Entity_Id
:= Etype
(First_Index
(Otyp
));
1501 Lo
: constant Node_Id
:= Type_Low_Bound
(Ityp
);
1502 Hi
: constant Node_Id
:= Type_High_Bound
(Ityp
);
1507 if Compile_Time_Known_Value
(Lo
) then
1508 Lov
:= Expr_Value
(Lo
);
1513 if Compile_Time_Known_Value
(Hi
) then
1514 Hiv
:= Expr_Value
(Hi
);
1519 return Hiv
< Lov
+ 3;
1522 end Length_Less_Than_4
;
1524 -- Start of processing for Expand_Array_Comparison
1527 -- Deal first with unpacked case, where we can call a runtime routine
1528 -- except that we avoid this for targets for which are not addressable
1529 -- by bytes, and for the JVM/CIL, since they do not support direct
1530 -- addressing of array components.
1532 if not Is_Bit_Packed_Array
(Typ1
)
1533 and then Byte_Addressable
1534 and then VM_Target
= No_VM
1536 -- The call we generate is:
1538 -- Compare_Array_xn[_Unaligned]
1539 -- (left'address, right'address, left'length, right'length) <op> 0
1541 -- x = U for unsigned, S for signed
1542 -- n = 8,16,32,64 for component size
1543 -- Add _Unaligned if length < 4 and component size is 8.
1544 -- <op> is the standard comparison operator
1546 if Component_Size
(Typ1
) = 8 then
1547 if Length_Less_Than_4
(Op1
)
1549 Length_Less_Than_4
(Op2
)
1551 if Is_Unsigned_Type
(Ctyp
) then
1552 Comp
:= RE_Compare_Array_U8_Unaligned
;
1554 Comp
:= RE_Compare_Array_S8_Unaligned
;
1558 if Is_Unsigned_Type
(Ctyp
) then
1559 Comp
:= RE_Compare_Array_U8
;
1561 Comp
:= RE_Compare_Array_S8
;
1565 elsif Component_Size
(Typ1
) = 16 then
1566 if Is_Unsigned_Type
(Ctyp
) then
1567 Comp
:= RE_Compare_Array_U16
;
1569 Comp
:= RE_Compare_Array_S16
;
1572 elsif Component_Size
(Typ1
) = 32 then
1573 if Is_Unsigned_Type
(Ctyp
) then
1574 Comp
:= RE_Compare_Array_U32
;
1576 Comp
:= RE_Compare_Array_S32
;
1579 else pragma Assert
(Component_Size
(Typ1
) = 64);
1580 if Is_Unsigned_Type
(Ctyp
) then
1581 Comp
:= RE_Compare_Array_U64
;
1583 Comp
:= RE_Compare_Array_S64
;
1587 Remove_Side_Effects
(Op1
, Name_Req
=> True);
1588 Remove_Side_Effects
(Op2
, Name_Req
=> True);
1591 Make_Function_Call
(Sloc
(Op1
),
1592 Name
=> New_Occurrence_Of
(RTE
(Comp
), Loc
),
1594 Parameter_Associations
=> New_List
(
1595 Make_Attribute_Reference
(Loc
,
1596 Prefix
=> Relocate_Node
(Op1
),
1597 Attribute_Name
=> Name_Address
),
1599 Make_Attribute_Reference
(Loc
,
1600 Prefix
=> Relocate_Node
(Op2
),
1601 Attribute_Name
=> Name_Address
),
1603 Make_Attribute_Reference
(Loc
,
1604 Prefix
=> Relocate_Node
(Op1
),
1605 Attribute_Name
=> Name_Length
),
1607 Make_Attribute_Reference
(Loc
,
1608 Prefix
=> Relocate_Node
(Op2
),
1609 Attribute_Name
=> Name_Length
))));
1612 Make_Integer_Literal
(Sloc
(Op2
),
1615 Analyze_And_Resolve
(Op1
, Standard_Integer
);
1616 Analyze_And_Resolve
(Op2
, Standard_Integer
);
1620 -- Cases where we cannot make runtime call
1622 -- For (a <= b) we convert to not (a > b)
1624 if Chars
(N
) = Name_Op_Le
then
1630 Right_Opnd
=> Op2
)));
1631 Analyze_And_Resolve
(N
, Standard_Boolean
);
1634 -- For < the Boolean expression is
1635 -- greater__nn (op2, op1)
1637 elsif Chars
(N
) = Name_Op_Lt
then
1638 Func_Body
:= Make_Array_Comparison_Op
(Typ1
, N
);
1642 Op1
:= Right_Opnd
(N
);
1643 Op2
:= Left_Opnd
(N
);
1645 -- For (a >= b) we convert to not (a < b)
1647 elsif Chars
(N
) = Name_Op_Ge
then
1653 Right_Opnd
=> Op2
)));
1654 Analyze_And_Resolve
(N
, Standard_Boolean
);
1657 -- For > the Boolean expression is
1658 -- greater__nn (op1, op2)
1661 pragma Assert
(Chars
(N
) = Name_Op_Gt
);
1662 Func_Body
:= Make_Array_Comparison_Op
(Typ1
, N
);
1665 Func_Name
:= Defining_Unit_Name
(Specification
(Func_Body
));
1667 Make_Function_Call
(Loc
,
1668 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
1669 Parameter_Associations
=> New_List
(Op1
, Op2
));
1671 Insert_Action
(N
, Func_Body
);
1673 Analyze_And_Resolve
(N
, Standard_Boolean
);
1676 when RE_Not_Available
=>
1678 end Expand_Array_Comparison
;
1680 ---------------------------
1681 -- Expand_Array_Equality --
1682 ---------------------------
1684 -- Expand an equality function for multi-dimensional arrays. Here is an
1685 -- example of such a function for Nb_Dimension = 2
1687 -- function Enn (A : atyp; B : btyp) return boolean is
1689 -- if (A'length (1) = 0 or else A'length (2) = 0)
1691 -- (B'length (1) = 0 or else B'length (2) = 0)
1693 -- return True; -- RM 4.5.2(22)
1696 -- if A'length (1) /= B'length (1)
1698 -- A'length (2) /= B'length (2)
1700 -- return False; -- RM 4.5.2(23)
1704 -- A1 : Index_T1 := A'first (1);
1705 -- B1 : Index_T1 := B'first (1);
1709 -- A2 : Index_T2 := A'first (2);
1710 -- B2 : Index_T2 := B'first (2);
1713 -- if A (A1, A2) /= B (B1, B2) then
1717 -- exit when A2 = A'last (2);
1718 -- A2 := Index_T2'succ (A2);
1719 -- B2 := Index_T2'succ (B2);
1723 -- exit when A1 = A'last (1);
1724 -- A1 := Index_T1'succ (A1);
1725 -- B1 := Index_T1'succ (B1);
1732 -- Note on the formal types used (atyp and btyp). If either of the arrays
1733 -- is of a private type, we use the underlying type, and do an unchecked
1734 -- conversion of the actual. If either of the arrays has a bound depending
1735 -- on a discriminant, then we use the base type since otherwise we have an
1736 -- escaped discriminant in the function.
1738 -- If both arrays are constrained and have the same bounds, we can generate
1739 -- a loop with an explicit iteration scheme using a 'Range attribute over
1742 function Expand_Array_Equality
1747 Typ
: Entity_Id
) return Node_Id
1749 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
1750 Decls
: constant List_Id
:= New_List
;
1751 Index_List1
: constant List_Id
:= New_List
;
1752 Index_List2
: constant List_Id
:= New_List
;
1756 Func_Name
: Entity_Id
;
1757 Func_Body
: Node_Id
;
1759 A
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uA
);
1760 B
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uB
);
1764 -- The parameter types to be used for the formals
1769 Num
: Int
) return Node_Id
;
1770 -- This builds the attribute reference Arr'Nam (Expr)
1772 function Component_Equality
(Typ
: Entity_Id
) return Node_Id
;
1773 -- Create one statement to compare corresponding components, designated
1774 -- by a full set of indexes.
1776 function Get_Arg_Type
(N
: Node_Id
) return Entity_Id
;
1777 -- Given one of the arguments, computes the appropriate type to be used
1778 -- for that argument in the corresponding function formal
1780 function Handle_One_Dimension
1782 Index
: Node_Id
) return Node_Id
;
1783 -- This procedure returns the following code
1786 -- Bn : Index_T := B'First (N);
1790 -- exit when An = A'Last (N);
1791 -- An := Index_T'Succ (An)
1792 -- Bn := Index_T'Succ (Bn)
1796 -- If both indexes are constrained and identical, the procedure
1797 -- returns a simpler loop:
1799 -- for An in A'Range (N) loop
1803 -- N is the dimension for which we are generating a loop. Index is the
1804 -- N'th index node, whose Etype is Index_Type_n in the above code. The
1805 -- xxx statement is either the loop or declare for the next dimension
1806 -- or if this is the last dimension the comparison of corresponding
1807 -- components of the arrays.
1809 -- The actual way the code works is to return the comparison of
1810 -- corresponding components for the N+1 call. That's neater.
1812 function Test_Empty_Arrays
return Node_Id
;
1813 -- This function constructs the test for both arrays being empty
1814 -- (A'length (1) = 0 or else A'length (2) = 0 or else ...)
1816 -- (B'length (1) = 0 or else B'length (2) = 0 or else ...)
1818 function Test_Lengths_Correspond
return Node_Id
;
1819 -- This function constructs the test for arrays having different lengths
1820 -- in at least one index position, in which case the resulting code is:
1822 -- A'length (1) /= B'length (1)
1824 -- A'length (2) /= B'length (2)
1835 Num
: Int
) return Node_Id
1839 Make_Attribute_Reference
(Loc
,
1840 Attribute_Name
=> Nam
,
1841 Prefix
=> New_Occurrence_Of
(Arr
, Loc
),
1842 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, Num
)));
1845 ------------------------
1846 -- Component_Equality --
1847 ------------------------
1849 function Component_Equality
(Typ
: Entity_Id
) return Node_Id
is
1854 -- if a(i1...) /= b(j1...) then return false; end if;
1857 Make_Indexed_Component
(Loc
,
1858 Prefix
=> Make_Identifier
(Loc
, Chars
(A
)),
1859 Expressions
=> Index_List1
);
1862 Make_Indexed_Component
(Loc
,
1863 Prefix
=> Make_Identifier
(Loc
, Chars
(B
)),
1864 Expressions
=> Index_List2
);
1866 Test
:= Expand_Composite_Equality
1867 (Nod
, Component_Type
(Typ
), L
, R
, Decls
);
1869 -- If some (sub)component is an unchecked_union, the whole operation
1870 -- will raise program error.
1872 if Nkind
(Test
) = N_Raise_Program_Error
then
1874 -- This node is going to be inserted at a location where a
1875 -- statement is expected: clear its Etype so analysis will set
1876 -- it to the expected Standard_Void_Type.
1878 Set_Etype
(Test
, Empty
);
1883 Make_Implicit_If_Statement
(Nod
,
1884 Condition
=> Make_Op_Not
(Loc
, Right_Opnd
=> Test
),
1885 Then_Statements
=> New_List
(
1886 Make_Simple_Return_Statement
(Loc
,
1887 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))));
1889 end Component_Equality
;
1895 function Get_Arg_Type
(N
: Node_Id
) return Entity_Id
is
1906 T
:= Underlying_Type
(T
);
1908 X
:= First_Index
(T
);
1909 while Present
(X
) loop
1910 if Denotes_Discriminant
(Type_Low_Bound
(Etype
(X
)))
1912 Denotes_Discriminant
(Type_High_Bound
(Etype
(X
)))
1925 --------------------------
1926 -- Handle_One_Dimension --
1927 ---------------------------
1929 function Handle_One_Dimension
1931 Index
: Node_Id
) return Node_Id
1933 Need_Separate_Indexes
: constant Boolean :=
1934 Ltyp
/= Rtyp
or else not Is_Constrained
(Ltyp
);
1935 -- If the index types are identical, and we are working with
1936 -- constrained types, then we can use the same index for both
1939 An
: constant Entity_Id
:= Make_Temporary
(Loc
, 'A');
1942 Index_T
: Entity_Id
;
1947 if N
> Number_Dimensions
(Ltyp
) then
1948 return Component_Equality
(Ltyp
);
1951 -- Case where we generate a loop
1953 Index_T
:= Base_Type
(Etype
(Index
));
1955 if Need_Separate_Indexes
then
1956 Bn
:= Make_Temporary
(Loc
, 'B');
1961 Append
(New_Occurrence_Of
(An
, Loc
), Index_List1
);
1962 Append
(New_Occurrence_Of
(Bn
, Loc
), Index_List2
);
1964 Stm_List
:= New_List
(
1965 Handle_One_Dimension
(N
+ 1, Next_Index
(Index
)));
1967 if Need_Separate_Indexes
then
1969 -- Generate guard for loop, followed by increments of indexes
1971 Append_To
(Stm_List
,
1972 Make_Exit_Statement
(Loc
,
1975 Left_Opnd
=> New_Occurrence_Of
(An
, Loc
),
1976 Right_Opnd
=> Arr_Attr
(A
, Name_Last
, N
))));
1978 Append_To
(Stm_List
,
1979 Make_Assignment_Statement
(Loc
,
1980 Name
=> New_Occurrence_Of
(An
, Loc
),
1982 Make_Attribute_Reference
(Loc
,
1983 Prefix
=> New_Occurrence_Of
(Index_T
, Loc
),
1984 Attribute_Name
=> Name_Succ
,
1985 Expressions
=> New_List
(
1986 New_Occurrence_Of
(An
, Loc
)))));
1988 Append_To
(Stm_List
,
1989 Make_Assignment_Statement
(Loc
,
1990 Name
=> New_Occurrence_Of
(Bn
, Loc
),
1992 Make_Attribute_Reference
(Loc
,
1993 Prefix
=> New_Occurrence_Of
(Index_T
, Loc
),
1994 Attribute_Name
=> Name_Succ
,
1995 Expressions
=> New_List
(
1996 New_Occurrence_Of
(Bn
, Loc
)))));
1999 -- If separate indexes, we need a declare block for An and Bn, and a
2000 -- loop without an iteration scheme.
2002 if Need_Separate_Indexes
then
2004 Make_Implicit_Loop_Statement
(Nod
, Statements
=> Stm_List
);
2007 Make_Block_Statement
(Loc
,
2008 Declarations
=> New_List
(
2009 Make_Object_Declaration
(Loc
,
2010 Defining_Identifier
=> An
,
2011 Object_Definition
=> New_Occurrence_Of
(Index_T
, Loc
),
2012 Expression
=> Arr_Attr
(A
, Name_First
, N
)),
2014 Make_Object_Declaration
(Loc
,
2015 Defining_Identifier
=> Bn
,
2016 Object_Definition
=> New_Occurrence_Of
(Index_T
, Loc
),
2017 Expression
=> Arr_Attr
(B
, Name_First
, N
))),
2019 Handled_Statement_Sequence
=>
2020 Make_Handled_Sequence_Of_Statements
(Loc
,
2021 Statements
=> New_List
(Loop_Stm
)));
2023 -- If no separate indexes, return loop statement with explicit
2024 -- iteration scheme on its own
2028 Make_Implicit_Loop_Statement
(Nod
,
2029 Statements
=> Stm_List
,
2031 Make_Iteration_Scheme
(Loc
,
2032 Loop_Parameter_Specification
=>
2033 Make_Loop_Parameter_Specification
(Loc
,
2034 Defining_Identifier
=> An
,
2035 Discrete_Subtype_Definition
=>
2036 Arr_Attr
(A
, Name_Range
, N
))));
2039 end Handle_One_Dimension
;
2041 -----------------------
2042 -- Test_Empty_Arrays --
2043 -----------------------
2045 function Test_Empty_Arrays
return Node_Id
is
2055 for J
in 1 .. Number_Dimensions
(Ltyp
) loop
2058 Left_Opnd
=> Arr_Attr
(A
, Name_Length
, J
),
2059 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
2063 Left_Opnd
=> Arr_Attr
(B
, Name_Length
, J
),
2064 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
2073 Left_Opnd
=> Relocate_Node
(Alist
),
2074 Right_Opnd
=> Atest
);
2078 Left_Opnd
=> Relocate_Node
(Blist
),
2079 Right_Opnd
=> Btest
);
2086 Right_Opnd
=> Blist
);
2087 end Test_Empty_Arrays
;
2089 -----------------------------
2090 -- Test_Lengths_Correspond --
2091 -----------------------------
2093 function Test_Lengths_Correspond
return Node_Id
is
2099 for J
in 1 .. Number_Dimensions
(Ltyp
) loop
2102 Left_Opnd
=> Arr_Attr
(A
, Name_Length
, J
),
2103 Right_Opnd
=> Arr_Attr
(B
, Name_Length
, J
));
2110 Left_Opnd
=> Relocate_Node
(Result
),
2111 Right_Opnd
=> Rtest
);
2116 end Test_Lengths_Correspond
;
2118 -- Start of processing for Expand_Array_Equality
2121 Ltyp
:= Get_Arg_Type
(Lhs
);
2122 Rtyp
:= Get_Arg_Type
(Rhs
);
2124 -- For now, if the argument types are not the same, go to the base type,
2125 -- since the code assumes that the formals have the same type. This is
2126 -- fixable in future ???
2128 if Ltyp
/= Rtyp
then
2129 Ltyp
:= Base_Type
(Ltyp
);
2130 Rtyp
:= Base_Type
(Rtyp
);
2131 pragma Assert
(Ltyp
= Rtyp
);
2134 -- Build list of formals for function
2136 Formals
:= New_List
(
2137 Make_Parameter_Specification
(Loc
,
2138 Defining_Identifier
=> A
,
2139 Parameter_Type
=> New_Occurrence_Of
(Ltyp
, Loc
)),
2141 Make_Parameter_Specification
(Loc
,
2142 Defining_Identifier
=> B
,
2143 Parameter_Type
=> New_Occurrence_Of
(Rtyp
, Loc
)));
2145 Func_Name
:= Make_Temporary
(Loc
, 'E');
2147 -- Build statement sequence for function
2150 Make_Subprogram_Body
(Loc
,
2152 Make_Function_Specification
(Loc
,
2153 Defining_Unit_Name
=> Func_Name
,
2154 Parameter_Specifications
=> Formals
,
2155 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
2157 Declarations
=> Decls
,
2159 Handled_Statement_Sequence
=>
2160 Make_Handled_Sequence_Of_Statements
(Loc
,
2161 Statements
=> New_List
(
2163 Make_Implicit_If_Statement
(Nod
,
2164 Condition
=> Test_Empty_Arrays
,
2165 Then_Statements
=> New_List
(
2166 Make_Simple_Return_Statement
(Loc
,
2168 New_Occurrence_Of
(Standard_True
, Loc
)))),
2170 Make_Implicit_If_Statement
(Nod
,
2171 Condition
=> Test_Lengths_Correspond
,
2172 Then_Statements
=> New_List
(
2173 Make_Simple_Return_Statement
(Loc
,
2174 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
)))),
2176 Handle_One_Dimension
(1, First_Index
(Ltyp
)),
2178 Make_Simple_Return_Statement
(Loc
,
2179 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
)))));
2181 Set_Has_Completion
(Func_Name
, True);
2182 Set_Is_Inlined
(Func_Name
);
2184 -- If the array type is distinct from the type of the arguments, it
2185 -- is the full view of a private type. Apply an unchecked conversion
2186 -- to insure that analysis of the call succeeds.
2196 or else Base_Type
(Etype
(Lhs
)) /= Base_Type
(Ltyp
)
2198 L
:= OK_Convert_To
(Ltyp
, Lhs
);
2202 or else Base_Type
(Etype
(Rhs
)) /= Base_Type
(Rtyp
)
2204 R
:= OK_Convert_To
(Rtyp
, Rhs
);
2207 Actuals
:= New_List
(L
, R
);
2210 Append_To
(Bodies
, Func_Body
);
2213 Make_Function_Call
(Loc
,
2214 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
2215 Parameter_Associations
=> Actuals
);
2216 end Expand_Array_Equality
;
2218 -----------------------------
2219 -- Expand_Boolean_Operator --
2220 -----------------------------
2222 -- Note that we first get the actual subtypes of the operands, since we
2223 -- always want to deal with types that have bounds.
2225 procedure Expand_Boolean_Operator
(N
: Node_Id
) is
2226 Typ
: constant Entity_Id
:= Etype
(N
);
2229 -- Special case of bit packed array where both operands are known to be
2230 -- properly aligned. In this case we use an efficient run time routine
2231 -- to carry out the operation (see System.Bit_Ops).
2233 if Is_Bit_Packed_Array
(Typ
)
2234 and then not Is_Possibly_Unaligned_Object
(Left_Opnd
(N
))
2235 and then not Is_Possibly_Unaligned_Object
(Right_Opnd
(N
))
2237 Expand_Packed_Boolean_Operator
(N
);
2241 -- For the normal non-packed case, the general expansion is to build
2242 -- function for carrying out the comparison (use Make_Boolean_Array_Op)
2243 -- and then inserting it into the tree. The original operator node is
2244 -- then rewritten as a call to this function. We also use this in the
2245 -- packed case if either operand is a possibly unaligned object.
2248 Loc
: constant Source_Ptr
:= Sloc
(N
);
2249 L
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
2250 R
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
2251 Func_Body
: Node_Id
;
2252 Func_Name
: Entity_Id
;
2255 Convert_To_Actual_Subtype
(L
);
2256 Convert_To_Actual_Subtype
(R
);
2257 Ensure_Defined
(Etype
(L
), N
);
2258 Ensure_Defined
(Etype
(R
), N
);
2259 Apply_Length_Check
(R
, Etype
(L
));
2261 if Nkind
(N
) = N_Op_Xor
then
2262 Silly_Boolean_Array_Xor_Test
(N
, Etype
(L
));
2265 if Nkind
(Parent
(N
)) = N_Assignment_Statement
2266 and then Safe_In_Place_Array_Op
(Name
(Parent
(N
)), L
, R
)
2268 Build_Boolean_Array_Proc_Call
(Parent
(N
), L
, R
);
2270 elsif Nkind
(Parent
(N
)) = N_Op_Not
2271 and then Nkind
(N
) = N_Op_And
2272 and then Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
2273 and then Safe_In_Place_Array_Op
(Name
(Parent
(Parent
(N
))), L
, R
)
2278 Func_Body
:= Make_Boolean_Array_Op
(Etype
(L
), N
);
2279 Func_Name
:= Defining_Unit_Name
(Specification
(Func_Body
));
2280 Insert_Action
(N
, Func_Body
);
2282 -- Now rewrite the expression with a call
2285 Make_Function_Call
(Loc
,
2286 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
2287 Parameter_Associations
=>
2290 Make_Type_Conversion
2291 (Loc
, New_Occurrence_Of
(Etype
(L
), Loc
), R
))));
2293 Analyze_And_Resolve
(N
, Typ
);
2296 end Expand_Boolean_Operator
;
2298 ------------------------------------------------
2299 -- Expand_Compare_Minimize_Eliminate_Overflow --
2300 ------------------------------------------------
2302 procedure Expand_Compare_Minimize_Eliminate_Overflow
(N
: Node_Id
) is
2303 Loc
: constant Source_Ptr
:= Sloc
(N
);
2305 Result_Type
: constant Entity_Id
:= Etype
(N
);
2306 -- Capture result type (could be a derived boolean type)
2311 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
2312 -- Entity for Long_Long_Integer'Base
2314 Check
: constant Overflow_Mode_Type
:= Overflow_Check_Mode
;
2315 -- Current overflow checking mode
2318 procedure Set_False
;
2319 -- These procedures rewrite N with an occurrence of Standard_True or
2320 -- Standard_False, and then makes a call to Warn_On_Known_Condition.
2326 procedure Set_False
is
2328 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
2329 Warn_On_Known_Condition
(N
);
2336 procedure Set_True
is
2338 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
2339 Warn_On_Known_Condition
(N
);
2342 -- Start of processing for Expand_Compare_Minimize_Eliminate_Overflow
2345 -- Nothing to do unless we have a comparison operator with operands
2346 -- that are signed integer types, and we are operating in either
2347 -- MINIMIZED or ELIMINATED overflow checking mode.
2349 if Nkind
(N
) not in N_Op_Compare
2350 or else Check
not in Minimized_Or_Eliminated
2351 or else not Is_Signed_Integer_Type
(Etype
(Left_Opnd
(N
)))
2356 -- OK, this is the case we are interested in. First step is to process
2357 -- our operands using the Minimize_Eliminate circuitry which applies
2358 -- this processing to the two operand subtrees.
2360 Minimize_Eliminate_Overflows
2361 (Left_Opnd
(N
), Llo
, Lhi
, Top_Level
=> False);
2362 Minimize_Eliminate_Overflows
2363 (Right_Opnd
(N
), Rlo
, Rhi
, Top_Level
=> False);
2365 -- See if the range information decides the result of the comparison.
2366 -- We can only do this if we in fact have full range information (which
2367 -- won't be the case if either operand is bignum at this stage).
2369 if Llo
/= No_Uint
and then Rlo
/= No_Uint
then
2370 case N_Op_Compare
(Nkind
(N
)) is
2372 if Llo
= Lhi
and then Rlo
= Rhi
and then Llo
= Rlo
then
2374 elsif Llo
> Rhi
or else Lhi
< Rlo
then
2381 elsif Lhi
< Rlo
then
2388 elsif Lhi
<= Rlo
then
2395 elsif Lhi
<= Rlo
then
2402 elsif Lhi
< Rlo
then
2407 if Llo
= Lhi
and then Rlo
= Rhi
and then Llo
= Rlo
then
2409 elsif Llo
> Rhi
or else Lhi
< Rlo
then
2414 -- All done if we did the rewrite
2416 if Nkind
(N
) not in N_Op_Compare
then
2421 -- Otherwise, time to do the comparison
2424 Ltype
: constant Entity_Id
:= Etype
(Left_Opnd
(N
));
2425 Rtype
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
2428 -- If the two operands have the same signed integer type we are
2429 -- all set, nothing more to do. This is the case where either
2430 -- both operands were unchanged, or we rewrote both of them to
2431 -- be Long_Long_Integer.
2433 -- Note: Entity for the comparison may be wrong, but it's not worth
2434 -- the effort to change it, since the back end does not use it.
2436 if Is_Signed_Integer_Type
(Ltype
)
2437 and then Base_Type
(Ltype
) = Base_Type
(Rtype
)
2441 -- Here if bignums are involved (can only happen in ELIMINATED mode)
2443 elsif Is_RTE
(Ltype
, RE_Bignum
) or else Is_RTE
(Rtype
, RE_Bignum
) then
2445 Left
: Node_Id
:= Left_Opnd
(N
);
2446 Right
: Node_Id
:= Right_Opnd
(N
);
2447 -- Bignum references for left and right operands
2450 if not Is_RTE
(Ltype
, RE_Bignum
) then
2451 Left
:= Convert_To_Bignum
(Left
);
2452 elsif not Is_RTE
(Rtype
, RE_Bignum
) then
2453 Right
:= Convert_To_Bignum
(Right
);
2456 -- We rewrite our node with:
2459 -- Bnn : Result_Type;
2461 -- M : Mark_Id := SS_Mark;
2463 -- Bnn := Big_xx (Left, Right); (xx = EQ, NT etc)
2471 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
2472 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
2476 case N_Op_Compare
(Nkind
(N
)) is
2477 when N_Op_Eq
=> Ent
:= RE_Big_EQ
;
2478 when N_Op_Ge
=> Ent
:= RE_Big_GE
;
2479 when N_Op_Gt
=> Ent
:= RE_Big_GT
;
2480 when N_Op_Le
=> Ent
:= RE_Big_LE
;
2481 when N_Op_Lt
=> Ent
:= RE_Big_LT
;
2482 when N_Op_Ne
=> Ent
:= RE_Big_NE
;
2485 -- Insert assignment to Bnn into the bignum block
2488 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
2489 Make_Assignment_Statement
(Loc
,
2490 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
2492 Make_Function_Call
(Loc
,
2494 New_Occurrence_Of
(RTE
(Ent
), Loc
),
2495 Parameter_Associations
=> New_List
(Left
, Right
))));
2497 -- Now do the rewrite with expression actions
2500 Make_Expression_With_Actions
(Loc
,
2501 Actions
=> New_List
(
2502 Make_Object_Declaration
(Loc
,
2503 Defining_Identifier
=> Bnn
,
2504 Object_Definition
=>
2505 New_Occurrence_Of
(Result_Type
, Loc
)),
2507 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
2508 Analyze_And_Resolve
(N
, Result_Type
);
2512 -- No bignums involved, but types are different, so we must have
2513 -- rewritten one of the operands as a Long_Long_Integer but not
2516 -- If left operand is Long_Long_Integer, convert right operand
2517 -- and we are done (with a comparison of two Long_Long_Integers).
2519 elsif Ltype
= LLIB
then
2520 Convert_To_And_Rewrite
(LLIB
, Right_Opnd
(N
));
2521 Analyze_And_Resolve
(Right_Opnd
(N
), LLIB
, Suppress
=> All_Checks
);
2524 -- If right operand is Long_Long_Integer, convert left operand
2525 -- and we are done (with a comparison of two Long_Long_Integers).
2527 -- This is the only remaining possibility
2529 else pragma Assert
(Rtype
= LLIB
);
2530 Convert_To_And_Rewrite
(LLIB
, Left_Opnd
(N
));
2531 Analyze_And_Resolve
(Left_Opnd
(N
), LLIB
, Suppress
=> All_Checks
);
2535 end Expand_Compare_Minimize_Eliminate_Overflow
;
2537 -------------------------------
2538 -- Expand_Composite_Equality --
2539 -------------------------------
2541 -- This function is only called for comparing internal fields of composite
2542 -- types when these fields are themselves composites. This is a special
2543 -- case because it is not possible to respect normal Ada visibility rules.
2545 function Expand_Composite_Equality
2550 Bodies
: List_Id
) return Node_Id
2552 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
2553 Full_Type
: Entity_Id
;
2557 function Find_Primitive_Eq
return Node_Id
;
2558 -- AI05-0123: Locate primitive equality for type if it exists, and
2559 -- build the corresponding call. If operation is abstract, replace
2560 -- call with an explicit raise. Return Empty if there is no primitive.
2562 -----------------------
2563 -- Find_Primitive_Eq --
2564 -----------------------
2566 function Find_Primitive_Eq
return Node_Id
is
2571 Prim_E
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
2572 while Present
(Prim_E
) loop
2573 Prim
:= Node
(Prim_E
);
2575 -- Locate primitive equality with the right signature
2577 if Chars
(Prim
) = Name_Op_Eq
2578 and then Etype
(First_Formal
(Prim
)) =
2579 Etype
(Next_Formal
(First_Formal
(Prim
)))
2580 and then Etype
(Prim
) = Standard_Boolean
2582 if Is_Abstract_Subprogram
(Prim
) then
2584 Make_Raise_Program_Error
(Loc
,
2585 Reason
=> PE_Explicit_Raise
);
2589 Make_Function_Call
(Loc
,
2590 Name
=> New_Occurrence_Of
(Prim
, Loc
),
2591 Parameter_Associations
=> New_List
(Lhs
, Rhs
));
2598 -- If not found, predefined operation will be used
2601 end Find_Primitive_Eq
;
2603 -- Start of processing for Expand_Composite_Equality
2606 if Is_Private_Type
(Typ
) then
2607 Full_Type
:= Underlying_Type
(Typ
);
2612 -- If the private type has no completion the context may be the
2613 -- expansion of a composite equality for a composite type with some
2614 -- still incomplete components. The expression will not be analyzed
2615 -- until the enclosing type is completed, at which point this will be
2616 -- properly expanded, unless there is a bona fide completion error.
2618 if No
(Full_Type
) then
2619 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2622 Full_Type
:= Base_Type
(Full_Type
);
2624 -- When the base type itself is private, use the full view to expand
2625 -- the composite equality.
2627 if Is_Private_Type
(Full_Type
) then
2628 Full_Type
:= Underlying_Type
(Full_Type
);
2631 -- Case of array types
2633 if Is_Array_Type
(Full_Type
) then
2635 -- If the operand is an elementary type other than a floating-point
2636 -- type, then we can simply use the built-in block bitwise equality,
2637 -- since the predefined equality operators always apply and bitwise
2638 -- equality is fine for all these cases.
2640 if Is_Elementary_Type
(Component_Type
(Full_Type
))
2641 and then not Is_Floating_Point_Type
(Component_Type
(Full_Type
))
2643 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2645 -- For composite component types, and floating-point types, use the
2646 -- expansion. This deals with tagged component types (where we use
2647 -- the applicable equality routine) and floating-point, (where we
2648 -- need to worry about negative zeroes), and also the case of any
2649 -- composite type recursively containing such fields.
2652 return Expand_Array_Equality
(Nod
, Lhs
, Rhs
, Bodies
, Full_Type
);
2655 -- Case of tagged record types
2657 elsif Is_Tagged_Type
(Full_Type
) then
2659 -- Call the primitive operation "=" of this type
2661 if Is_Class_Wide_Type
(Full_Type
) then
2662 Full_Type
:= Root_Type
(Full_Type
);
2665 -- If this is derived from an untagged private type completed with a
2666 -- tagged type, it does not have a full view, so we use the primitive
2667 -- operations of the private type. This check should no longer be
2668 -- necessary when these types receive their full views ???
2670 if Is_Private_Type
(Typ
)
2671 and then not Is_Tagged_Type
(Typ
)
2672 and then not Is_Controlled
(Typ
)
2673 and then Is_Derived_Type
(Typ
)
2674 and then No
(Full_View
(Typ
))
2676 Prim
:= First_Elmt
(Collect_Primitive_Operations
(Typ
));
2678 Prim
:= First_Elmt
(Primitive_Operations
(Full_Type
));
2682 Eq_Op
:= Node
(Prim
);
2683 exit when Chars
(Eq_Op
) = Name_Op_Eq
2684 and then Etype
(First_Formal
(Eq_Op
)) =
2685 Etype
(Next_Formal
(First_Formal
(Eq_Op
)))
2686 and then Base_Type
(Etype
(Eq_Op
)) = Standard_Boolean
;
2688 pragma Assert
(Present
(Prim
));
2691 Eq_Op
:= Node
(Prim
);
2694 Make_Function_Call
(Loc
,
2695 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2696 Parameter_Associations
=>
2698 (Unchecked_Convert_To
(Etype
(First_Formal
(Eq_Op
)), Lhs
),
2699 Unchecked_Convert_To
(Etype
(First_Formal
(Eq_Op
)), Rhs
)));
2701 -- Case of untagged record types
2703 elsif Is_Record_Type
(Full_Type
) then
2704 Eq_Op
:= TSS
(Full_Type
, TSS_Composite_Equality
);
2706 if Present
(Eq_Op
) then
2707 if Etype
(First_Formal
(Eq_Op
)) /= Full_Type
then
2709 -- Inherited equality from parent type. Convert the actuals to
2710 -- match signature of operation.
2713 T
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
2717 Make_Function_Call
(Loc
,
2718 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2719 Parameter_Associations
=> New_List
(
2720 OK_Convert_To
(T
, Lhs
),
2721 OK_Convert_To
(T
, Rhs
)));
2725 -- Comparison between Unchecked_Union components
2727 if Is_Unchecked_Union
(Full_Type
) then
2729 Lhs_Type
: Node_Id
:= Full_Type
;
2730 Rhs_Type
: Node_Id
:= Full_Type
;
2731 Lhs_Discr_Val
: Node_Id
;
2732 Rhs_Discr_Val
: Node_Id
;
2737 if Nkind
(Lhs
) = N_Selected_Component
then
2738 Lhs_Type
:= Etype
(Entity
(Selector_Name
(Lhs
)));
2743 if Nkind
(Rhs
) = N_Selected_Component
then
2744 Rhs_Type
:= Etype
(Entity
(Selector_Name
(Rhs
)));
2747 -- Lhs of the composite equality
2749 if Is_Constrained
(Lhs_Type
) then
2751 -- Since the enclosing record type can never be an
2752 -- Unchecked_Union (this code is executed for records
2753 -- that do not have variants), we may reference its
2756 if Nkind
(Lhs
) = N_Selected_Component
2757 and then Has_Per_Object_Constraint
2758 (Entity
(Selector_Name
(Lhs
)))
2761 Make_Selected_Component
(Loc
,
2762 Prefix
=> Prefix
(Lhs
),
2765 (Get_Discriminant_Value
2766 (First_Discriminant
(Lhs_Type
),
2768 Stored_Constraint
(Lhs_Type
))));
2773 (Get_Discriminant_Value
2774 (First_Discriminant
(Lhs_Type
),
2776 Stored_Constraint
(Lhs_Type
)));
2780 -- It is not possible to infer the discriminant since
2781 -- the subtype is not constrained.
2784 Make_Raise_Program_Error
(Loc
,
2785 Reason
=> PE_Unchecked_Union_Restriction
);
2788 -- Rhs of the composite equality
2790 if Is_Constrained
(Rhs_Type
) then
2791 if Nkind
(Rhs
) = N_Selected_Component
2792 and then Has_Per_Object_Constraint
2793 (Entity
(Selector_Name
(Rhs
)))
2796 Make_Selected_Component
(Loc
,
2797 Prefix
=> Prefix
(Rhs
),
2800 (Get_Discriminant_Value
2801 (First_Discriminant
(Rhs_Type
),
2803 Stored_Constraint
(Rhs_Type
))));
2808 (Get_Discriminant_Value
2809 (First_Discriminant
(Rhs_Type
),
2811 Stored_Constraint
(Rhs_Type
)));
2816 Make_Raise_Program_Error
(Loc
,
2817 Reason
=> PE_Unchecked_Union_Restriction
);
2820 -- Call the TSS equality function with the inferred
2821 -- discriminant values.
2824 Make_Function_Call
(Loc
,
2825 Name
=> New_Occurrence_Of
(Eq_Op
, Loc
),
2826 Parameter_Associations
=> New_List
(
2833 -- All cases other than comparing Unchecked_Union types
2837 T
: constant Entity_Id
:= Etype
(First_Formal
(Eq_Op
));
2840 Make_Function_Call
(Loc
,
2842 New_Occurrence_Of
(Eq_Op
, Loc
),
2843 Parameter_Associations
=> New_List
(
2844 OK_Convert_To
(T
, Lhs
),
2845 OK_Convert_To
(T
, Rhs
)));
2850 -- Equality composes in Ada 2012 for untagged record types. It also
2851 -- composes for bounded strings, because they are part of the
2852 -- predefined environment. We could make it compose for bounded
2853 -- strings by making them tagged, or by making sure all subcomponents
2854 -- are set to the same value, even when not used. Instead, we have
2855 -- this special case in the compiler, because it's more efficient.
2857 elsif Ada_Version
>= Ada_2012
or else Is_Bounded_String
(Typ
) then
2859 -- If no TSS has been created for the type, check whether there is
2860 -- a primitive equality declared for it.
2863 Op
: constant Node_Id
:= Find_Primitive_Eq
;
2866 -- Use user-defined primitive if it exists, otherwise use
2867 -- predefined equality.
2869 if Present
(Op
) then
2872 return Make_Op_Eq
(Loc
, Lhs
, Rhs
);
2877 return Expand_Record_Equality
(Nod
, Full_Type
, Lhs
, Rhs
, Bodies
);
2880 -- Non-composite types (always use predefined equality)
2883 return Make_Op_Eq
(Loc
, Left_Opnd
=> Lhs
, Right_Opnd
=> Rhs
);
2885 end Expand_Composite_Equality
;
2887 ------------------------
2888 -- Expand_Concatenate --
2889 ------------------------
2891 procedure Expand_Concatenate
(Cnode
: Node_Id
; Opnds
: List_Id
) is
2892 Loc
: constant Source_Ptr
:= Sloc
(Cnode
);
2894 Atyp
: constant Entity_Id
:= Base_Type
(Etype
(Cnode
));
2895 -- Result type of concatenation
2897 Ctyp
: constant Entity_Id
:= Base_Type
(Component_Type
(Etype
(Cnode
)));
2898 -- Component type. Elements of this component type can appear as one
2899 -- of the operands of concatenation as well as arrays.
2901 Istyp
: constant Entity_Id
:= Etype
(First_Index
(Atyp
));
2904 Ityp
: constant Entity_Id
:= Base_Type
(Istyp
);
2905 -- Index type. This is the base type of the index subtype, and is used
2906 -- for all computed bounds (which may be out of range of Istyp in the
2907 -- case of null ranges).
2910 -- This is the type we use to do arithmetic to compute the bounds and
2911 -- lengths of operands. The choice of this type is a little subtle and
2912 -- is discussed in a separate section at the start of the body code.
2914 Concatenation_Error
: exception;
2915 -- Raised if concatenation is sure to raise a CE
2917 Result_May_Be_Null
: Boolean := True;
2918 -- Reset to False if at least one operand is encountered which is known
2919 -- at compile time to be non-null. Used for handling the special case
2920 -- of setting the high bound to the last operand high bound for a null
2921 -- result, thus ensuring a proper high bound in the super-flat case.
2923 N
: constant Nat
:= List_Length
(Opnds
);
2924 -- Number of concatenation operands including possibly null operands
2927 -- Number of operands excluding any known to be null, except that the
2928 -- last operand is always retained, in case it provides the bounds for
2932 -- Current operand being processed in the loop through operands. After
2933 -- this loop is complete, always contains the last operand (which is not
2934 -- the same as Operands (NN), since null operands are skipped).
2936 -- Arrays describing the operands, only the first NN entries of each
2937 -- array are set (NN < N when we exclude known null operands).
2939 Is_Fixed_Length
: array (1 .. N
) of Boolean;
2940 -- True if length of corresponding operand known at compile time
2942 Operands
: array (1 .. N
) of Node_Id
;
2943 -- Set to the corresponding entry in the Opnds list (but note that null
2944 -- operands are excluded, so not all entries in the list are stored).
2946 Fixed_Length
: array (1 .. N
) of Uint
;
2947 -- Set to length of operand. Entries in this array are set only if the
2948 -- corresponding entry in Is_Fixed_Length is True.
2950 Opnd_Low_Bound
: array (1 .. N
) of Node_Id
;
2951 -- Set to lower bound of operand. Either an integer literal in the case
2952 -- where the bound is known at compile time, else actual lower bound.
2953 -- The operand low bound is of type Ityp.
2955 Var_Length
: array (1 .. N
) of Entity_Id
;
2956 -- Set to an entity of type Natural that contains the length of an
2957 -- operand whose length is not known at compile time. Entries in this
2958 -- array are set only if the corresponding entry in Is_Fixed_Length
2959 -- is False. The entity is of type Artyp.
2961 Aggr_Length
: array (0 .. N
) of Node_Id
;
2962 -- The J'th entry in an expression node that represents the total length
2963 -- of operands 1 through J. It is either an integer literal node, or a
2964 -- reference to a constant entity with the right value, so it is fine
2965 -- to just do a Copy_Node to get an appropriate copy. The extra zero'th
2966 -- entry always is set to zero. The length is of type Artyp.
2968 Low_Bound
: Node_Id
;
2969 -- A tree node representing the low bound of the result (of type Ityp).
2970 -- This is either an integer literal node, or an identifier reference to
2971 -- a constant entity initialized to the appropriate value.
2973 Last_Opnd_Low_Bound
: Node_Id
;
2974 -- A tree node representing the low bound of the last operand. This
2975 -- need only be set if the result could be null. It is used for the
2976 -- special case of setting the right low bound for a null result.
2977 -- This is of type Ityp.
2979 Last_Opnd_High_Bound
: Node_Id
;
2980 -- A tree node representing the high bound of the last operand. This
2981 -- need only be set if the result could be null. It is used for the
2982 -- special case of setting the right high bound for a null result.
2983 -- This is of type Ityp.
2985 High_Bound
: Node_Id
;
2986 -- A tree node representing the high bound of the result (of type Ityp)
2989 -- Result of the concatenation (of type Ityp)
2991 Actions
: constant List_Id
:= New_List
;
2992 -- Collect actions to be inserted
2994 Known_Non_Null_Operand_Seen
: Boolean;
2995 -- Set True during generation of the assignments of operands into
2996 -- result once an operand known to be non-null has been seen.
2998 function Make_Artyp_Literal
(Val
: Nat
) return Node_Id
;
2999 -- This function makes an N_Integer_Literal node that is returned in
3000 -- analyzed form with the type set to Artyp. Importantly this literal
3001 -- is not flagged as static, so that if we do computations with it that
3002 -- result in statically detected out of range conditions, we will not
3003 -- generate error messages but instead warning messages.
3005 function To_Artyp
(X
: Node_Id
) return Node_Id
;
3006 -- Given a node of type Ityp, returns the corresponding value of type
3007 -- Artyp. For non-enumeration types, this is a plain integer conversion.
3008 -- For enum types, the Pos of the value is returned.
3010 function To_Ityp
(X
: Node_Id
) return Node_Id
;
3011 -- The inverse function (uses Val in the case of enumeration types)
3013 ------------------------
3014 -- Make_Artyp_Literal --
3015 ------------------------
3017 function Make_Artyp_Literal
(Val
: Nat
) return Node_Id
is
3018 Result
: constant Node_Id
:= Make_Integer_Literal
(Loc
, Val
);
3020 Set_Etype
(Result
, Artyp
);
3021 Set_Analyzed
(Result
, True);
3022 Set_Is_Static_Expression
(Result
, False);
3024 end Make_Artyp_Literal
;
3030 function To_Artyp
(X
: Node_Id
) return Node_Id
is
3032 if Ityp
= Base_Type
(Artyp
) then
3035 elsif Is_Enumeration_Type
(Ityp
) then
3037 Make_Attribute_Reference
(Loc
,
3038 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
3039 Attribute_Name
=> Name_Pos
,
3040 Expressions
=> New_List
(X
));
3043 return Convert_To
(Artyp
, X
);
3051 function To_Ityp
(X
: Node_Id
) return Node_Id
is
3053 if Is_Enumeration_Type
(Ityp
) then
3055 Make_Attribute_Reference
(Loc
,
3056 Prefix
=> New_Occurrence_Of
(Ityp
, Loc
),
3057 Attribute_Name
=> Name_Val
,
3058 Expressions
=> New_List
(X
));
3060 -- Case where we will do a type conversion
3063 if Ityp
= Base_Type
(Artyp
) then
3066 return Convert_To
(Ityp
, X
);
3071 -- Local Declarations
3073 Lib_Level_Target
: constant Boolean :=
3074 Nkind
(Parent
(Cnode
)) = N_Object_Declaration
3076 Is_Library_Level_Entity
(Defining_Identifier
(Parent
(Cnode
)));
3078 -- If the concatenation declares a library level entity, we call the
3079 -- built-in concatenation routines to prevent code bloat, regardless
3080 -- of optimization level. This is space-efficient, and prevent linking
3081 -- problems when units are compiled with different optimizations.
3083 Opnd_Typ
: Entity_Id
;
3090 -- Start of processing for Expand_Concatenate
3093 -- Choose an appropriate computational type
3095 -- We will be doing calculations of lengths and bounds in this routine
3096 -- and computing one from the other in some cases, e.g. getting the high
3097 -- bound by adding the length-1 to the low bound.
3099 -- We can't just use the index type, or even its base type for this
3100 -- purpose for two reasons. First it might be an enumeration type which
3101 -- is not suitable for computations of any kind, and second it may
3102 -- simply not have enough range. For example if the index type is
3103 -- -128..+127 then lengths can be up to 256, which is out of range of
3106 -- For enumeration types, we can simply use Standard_Integer, this is
3107 -- sufficient since the actual number of enumeration literals cannot
3108 -- possibly exceed the range of integer (remember we will be doing the
3109 -- arithmetic with POS values, not representation values).
3111 if Is_Enumeration_Type
(Ityp
) then
3112 Artyp
:= Standard_Integer
;
3114 -- If index type is Positive, we use the standard unsigned type, to give
3115 -- more room on the top of the range, obviating the need for an overflow
3116 -- check when creating the upper bound. This is needed to avoid junk
3117 -- overflow checks in the common case of String types.
3119 -- ??? Disabled for now
3121 -- elsif Istyp = Standard_Positive then
3122 -- Artyp := Standard_Unsigned;
3124 -- For modular types, we use a 32-bit modular type for types whose size
3125 -- is in the range 1-31 bits. For 32-bit unsigned types, we use the
3126 -- identity type, and for larger unsigned types we use 64-bits.
3128 elsif Is_Modular_Integer_Type
(Ityp
) then
3129 if RM_Size
(Ityp
) < RM_Size
(Standard_Unsigned
) then
3130 Artyp
:= Standard_Unsigned
;
3131 elsif RM_Size
(Ityp
) = RM_Size
(Standard_Unsigned
) then
3134 Artyp
:= RTE
(RE_Long_Long_Unsigned
);
3137 -- Similar treatment for signed types
3140 if RM_Size
(Ityp
) < RM_Size
(Standard_Integer
) then
3141 Artyp
:= Standard_Integer
;
3142 elsif RM_Size
(Ityp
) = RM_Size
(Standard_Integer
) then
3145 Artyp
:= Standard_Long_Long_Integer
;
3149 -- Supply dummy entry at start of length array
3151 Aggr_Length
(0) := Make_Artyp_Literal
(0);
3153 -- Go through operands setting up the above arrays
3157 Opnd
:= Remove_Head
(Opnds
);
3158 Opnd_Typ
:= Etype
(Opnd
);
3160 -- The parent got messed up when we put the operands in a list,
3161 -- so now put back the proper parent for the saved operand, that
3162 -- is to say the concatenation node, to make sure that each operand
3163 -- is seen as a subexpression, e.g. if actions must be inserted.
3165 Set_Parent
(Opnd
, Cnode
);
3167 -- Set will be True when we have setup one entry in the array
3171 -- Singleton element (or character literal) case
3173 if Base_Type
(Opnd_Typ
) = Ctyp
then
3175 Operands
(NN
) := Opnd
;
3176 Is_Fixed_Length
(NN
) := True;
3177 Fixed_Length
(NN
) := Uint_1
;
3178 Result_May_Be_Null
:= False;
3180 -- Set low bound of operand (no need to set Last_Opnd_High_Bound
3181 -- since we know that the result cannot be null).
3183 Opnd_Low_Bound
(NN
) :=
3184 Make_Attribute_Reference
(Loc
,
3185 Prefix
=> New_Occurrence_Of
(Istyp
, Loc
),
3186 Attribute_Name
=> Name_First
);
3190 -- String literal case (can only occur for strings of course)
3192 elsif Nkind
(Opnd
) = N_String_Literal
then
3193 Len
:= String_Literal_Length
(Opnd_Typ
);
3196 Result_May_Be_Null
:= False;
3199 -- Capture last operand low and high bound if result could be null
3201 if J
= N
and then Result_May_Be_Null
then
3202 Last_Opnd_Low_Bound
:=
3203 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
));
3205 Last_Opnd_High_Bound
:=
3206 Make_Op_Subtract
(Loc
,
3208 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
)),
3209 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1));
3212 -- Skip null string literal
3214 if J
< N
and then Len
= 0 then
3219 Operands
(NN
) := Opnd
;
3220 Is_Fixed_Length
(NN
) := True;
3222 -- Set length and bounds
3224 Fixed_Length
(NN
) := Len
;
3226 Opnd_Low_Bound
(NN
) :=
3227 New_Copy_Tree
(String_Literal_Low_Bound
(Opnd_Typ
));
3234 -- Check constrained case with known bounds
3236 if Is_Constrained
(Opnd_Typ
) then
3238 Index
: constant Node_Id
:= First_Index
(Opnd_Typ
);
3239 Indx_Typ
: constant Entity_Id
:= Etype
(Index
);
3240 Lo
: constant Node_Id
:= Type_Low_Bound
(Indx_Typ
);
3241 Hi
: constant Node_Id
:= Type_High_Bound
(Indx_Typ
);
3244 -- Fixed length constrained array type with known at compile
3245 -- time bounds is last case of fixed length operand.
3247 if Compile_Time_Known_Value
(Lo
)
3249 Compile_Time_Known_Value
(Hi
)
3252 Loval
: constant Uint
:= Expr_Value
(Lo
);
3253 Hival
: constant Uint
:= Expr_Value
(Hi
);
3254 Len
: constant Uint
:=
3255 UI_Max
(Hival
- Loval
+ 1, Uint_0
);
3259 Result_May_Be_Null
:= False;
3262 -- Capture last operand bounds if result could be null
3264 if J
= N
and then Result_May_Be_Null
then
3265 Last_Opnd_Low_Bound
:=
3267 Make_Integer_Literal
(Loc
, Expr_Value
(Lo
)));
3269 Last_Opnd_High_Bound
:=
3271 Make_Integer_Literal
(Loc
, Expr_Value
(Hi
)));
3274 -- Exclude null length case unless last operand
3276 if J
< N
and then Len
= 0 then
3281 Operands
(NN
) := Opnd
;
3282 Is_Fixed_Length
(NN
) := True;
3283 Fixed_Length
(NN
) := Len
;
3285 Opnd_Low_Bound
(NN
) :=
3287 (Make_Integer_Literal
(Loc
, Expr_Value
(Lo
)));
3294 -- All cases where the length is not known at compile time, or the
3295 -- special case of an operand which is known to be null but has a
3296 -- lower bound other than 1 or is other than a string type.
3301 -- Capture operand bounds
3303 Opnd_Low_Bound
(NN
) :=
3304 Make_Attribute_Reference
(Loc
,
3306 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3307 Attribute_Name
=> Name_First
);
3309 -- Capture last operand bounds if result could be null
3311 if J
= N
and Result_May_Be_Null
then
3312 Last_Opnd_Low_Bound
:=
3314 Make_Attribute_Reference
(Loc
,
3316 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3317 Attribute_Name
=> Name_First
));
3319 Last_Opnd_High_Bound
:=
3321 Make_Attribute_Reference
(Loc
,
3323 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3324 Attribute_Name
=> Name_Last
));
3327 -- Capture length of operand in entity
3329 Operands
(NN
) := Opnd
;
3330 Is_Fixed_Length
(NN
) := False;
3332 Var_Length
(NN
) := Make_Temporary
(Loc
, 'L');
3335 Make_Object_Declaration
(Loc
,
3336 Defining_Identifier
=> Var_Length
(NN
),
3337 Constant_Present
=> True,
3338 Object_Definition
=> New_Occurrence_Of
(Artyp
, Loc
),
3340 Make_Attribute_Reference
(Loc
,
3342 Duplicate_Subexpr
(Opnd
, Name_Req
=> True),
3343 Attribute_Name
=> Name_Length
)));
3347 -- Set next entry in aggregate length array
3349 -- For first entry, make either integer literal for fixed length
3350 -- or a reference to the saved length for variable length.
3353 if Is_Fixed_Length
(1) then
3354 Aggr_Length
(1) := Make_Integer_Literal
(Loc
, Fixed_Length
(1));
3356 Aggr_Length
(1) := New_Occurrence_Of
(Var_Length
(1), Loc
);
3359 -- If entry is fixed length and only fixed lengths so far, make
3360 -- appropriate new integer literal adding new length.
3362 elsif Is_Fixed_Length
(NN
)
3363 and then Nkind
(Aggr_Length
(NN
- 1)) = N_Integer_Literal
3366 Make_Integer_Literal
(Loc
,
3367 Intval
=> Fixed_Length
(NN
) + Intval
(Aggr_Length
(NN
- 1)));
3369 -- All other cases, construct an addition node for the length and
3370 -- create an entity initialized to this length.
3373 Ent
:= Make_Temporary
(Loc
, 'L');
3375 if Is_Fixed_Length
(NN
) then
3376 Clen
:= Make_Integer_Literal
(Loc
, Fixed_Length
(NN
));
3378 Clen
:= New_Occurrence_Of
(Var_Length
(NN
), Loc
);
3382 Make_Object_Declaration
(Loc
,
3383 Defining_Identifier
=> Ent
,
3384 Constant_Present
=> True,
3385 Object_Definition
=> New_Occurrence_Of
(Artyp
, Loc
),
3388 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
- 1)),
3389 Right_Opnd
=> Clen
)));
3391 Aggr_Length
(NN
) := Make_Identifier
(Loc
, Chars
=> Chars
(Ent
));
3398 -- If we have only skipped null operands, return the last operand
3405 -- If we have only one non-null operand, return it and we are done.
3406 -- There is one case in which this cannot be done, and that is when
3407 -- the sole operand is of the element type, in which case it must be
3408 -- converted to an array, and the easiest way of doing that is to go
3409 -- through the normal general circuit.
3411 if NN
= 1 and then Base_Type
(Etype
(Operands
(1))) /= Ctyp
then
3412 Result
:= Operands
(1);
3416 -- Cases where we have a real concatenation
3418 -- Next step is to find the low bound for the result array that we
3419 -- will allocate. The rules for this are in (RM 4.5.6(5-7)).
3421 -- If the ultimate ancestor of the index subtype is a constrained array
3422 -- definition, then the lower bound is that of the index subtype as
3423 -- specified by (RM 4.5.3(6)).
3425 -- The right test here is to go to the root type, and then the ultimate
3426 -- ancestor is the first subtype of this root type.
3428 if Is_Constrained
(First_Subtype
(Root_Type
(Atyp
))) then
3430 Make_Attribute_Reference
(Loc
,
3432 New_Occurrence_Of
(First_Subtype
(Root_Type
(Atyp
)), Loc
),
3433 Attribute_Name
=> Name_First
);
3435 -- If the first operand in the list has known length we know that
3436 -- the lower bound of the result is the lower bound of this operand.
3438 elsif Is_Fixed_Length
(1) then
3439 Low_Bound
:= Opnd_Low_Bound
(1);
3441 -- OK, we don't know the lower bound, we have to build a horrible
3442 -- if expression node of the form
3444 -- if Cond1'Length /= 0 then
3447 -- if Opnd2'Length /= 0 then
3452 -- The nesting ends either when we hit an operand whose length is known
3453 -- at compile time, or on reaching the last operand, whose low bound we
3454 -- take unconditionally whether or not it is null. It's easiest to do
3455 -- this with a recursive procedure:
3459 function Get_Known_Bound
(J
: Nat
) return Node_Id
;
3460 -- Returns the lower bound determined by operands J .. NN
3462 ---------------------
3463 -- Get_Known_Bound --
3464 ---------------------
3466 function Get_Known_Bound
(J
: Nat
) return Node_Id
is
3468 if Is_Fixed_Length
(J
) or else J
= NN
then
3469 return New_Copy
(Opnd_Low_Bound
(J
));
3473 Make_If_Expression
(Loc
,
3474 Expressions
=> New_List
(
3478 New_Occurrence_Of
(Var_Length
(J
), Loc
),
3480 Make_Integer_Literal
(Loc
, 0)),
3482 New_Copy
(Opnd_Low_Bound
(J
)),
3483 Get_Known_Bound
(J
+ 1)));
3485 end Get_Known_Bound
;
3488 Ent
:= Make_Temporary
(Loc
, 'L');
3491 Make_Object_Declaration
(Loc
,
3492 Defining_Identifier
=> Ent
,
3493 Constant_Present
=> True,
3494 Object_Definition
=> New_Occurrence_Of
(Ityp
, Loc
),
3495 Expression
=> Get_Known_Bound
(1)));
3497 Low_Bound
:= New_Occurrence_Of
(Ent
, Loc
);
3501 -- Now we can safely compute the upper bound, normally
3502 -- Low_Bound + Length - 1.
3507 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3509 Make_Op_Subtract
(Loc
,
3510 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3511 Right_Opnd
=> Make_Artyp_Literal
(1))));
3513 -- Note that calculation of the high bound may cause overflow in some
3514 -- very weird cases, so in the general case we need an overflow check on
3515 -- the high bound. We can avoid this for the common case of string types
3516 -- and other types whose index is Positive, since we chose a wider range
3517 -- for the arithmetic type.
3519 if Istyp
/= Standard_Positive
then
3520 Activate_Overflow_Check
(High_Bound
);
3523 -- Handle the exceptional case where the result is null, in which case
3524 -- case the bounds come from the last operand (so that we get the proper
3525 -- bounds if the last operand is super-flat).
3527 if Result_May_Be_Null
then
3529 Make_If_Expression
(Loc
,
3530 Expressions
=> New_List
(
3532 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3533 Right_Opnd
=> Make_Artyp_Literal
(0)),
3534 Last_Opnd_Low_Bound
,
3538 Make_If_Expression
(Loc
,
3539 Expressions
=> New_List
(
3541 Left_Opnd
=> New_Copy
(Aggr_Length
(NN
)),
3542 Right_Opnd
=> Make_Artyp_Literal
(0)),
3543 Last_Opnd_High_Bound
,
3547 -- Here is where we insert the saved up actions
3549 Insert_Actions
(Cnode
, Actions
, Suppress
=> All_Checks
);
3551 -- Now we construct an array object with appropriate bounds. We mark
3552 -- the target as internal to prevent useless initialization when
3553 -- Initialize_Scalars is enabled. Also since this is the actual result
3554 -- entity, we make sure we have debug information for the result.
3556 Ent
:= Make_Temporary
(Loc
, 'S');
3557 Set_Is_Internal
(Ent
);
3558 Set_Needs_Debug_Info
(Ent
);
3560 -- If the bound is statically known to be out of range, we do not want
3561 -- to abort, we want a warning and a runtime constraint error. Note that
3562 -- we have arranged that the result will not be treated as a static
3563 -- constant, so we won't get an illegality during this insertion.
3565 Insert_Action
(Cnode
,
3566 Make_Object_Declaration
(Loc
,
3567 Defining_Identifier
=> Ent
,
3568 Object_Definition
=>
3569 Make_Subtype_Indication
(Loc
,
3570 Subtype_Mark
=> New_Occurrence_Of
(Atyp
, Loc
),
3572 Make_Index_Or_Discriminant_Constraint
(Loc
,
3573 Constraints
=> New_List
(
3575 Low_Bound
=> Low_Bound
,
3576 High_Bound
=> High_Bound
))))),
3577 Suppress
=> All_Checks
);
3579 -- If the result of the concatenation appears as the initializing
3580 -- expression of an object declaration, we can just rename the
3581 -- result, rather than copying it.
3583 Set_OK_To_Rename
(Ent
);
3585 -- Catch the static out of range case now
3587 if Raises_Constraint_Error
(High_Bound
) then
3588 raise Concatenation_Error
;
3591 -- Now we will generate the assignments to do the actual concatenation
3593 -- There is one case in which we will not do this, namely when all the
3594 -- following conditions are met:
3596 -- The result type is Standard.String
3598 -- There are nine or fewer retained (non-null) operands
3600 -- The optimization level is -O0
3602 -- The corresponding System.Concat_n.Str_Concat_n routine is
3603 -- available in the run time.
3605 -- The debug flag gnatd.c is not set
3607 -- If all these conditions are met then we generate a call to the
3608 -- relevant concatenation routine. The purpose of this is to avoid
3609 -- undesirable code bloat at -O0.
3611 if Atyp
= Standard_String
3612 and then NN
in 2 .. 9
3613 and then (Lib_Level_Target
3614 or else ((Optimization_Level
= 0 or else Debug_Flag_Dot_CC
)
3615 and then not Debug_Flag_Dot_C
))
3618 RR
: constant array (Nat
range 2 .. 9) of RE_Id
:=
3629 if RTE_Available
(RR
(NN
)) then
3631 Opnds
: constant List_Id
:=
3632 New_List
(New_Occurrence_Of
(Ent
, Loc
));
3635 for J
in 1 .. NN
loop
3636 if Is_List_Member
(Operands
(J
)) then
3637 Remove
(Operands
(J
));
3640 if Base_Type
(Etype
(Operands
(J
))) = Ctyp
then
3642 Make_Aggregate
(Loc
,
3643 Component_Associations
=> New_List
(
3644 Make_Component_Association
(Loc
,
3645 Choices
=> New_List
(
3646 Make_Integer_Literal
(Loc
, 1)),
3647 Expression
=> Operands
(J
)))));
3650 Append_To
(Opnds
, Operands
(J
));
3654 Insert_Action
(Cnode
,
3655 Make_Procedure_Call_Statement
(Loc
,
3656 Name
=> New_Occurrence_Of
(RTE
(RR
(NN
)), Loc
),
3657 Parameter_Associations
=> Opnds
));
3659 Result
:= New_Occurrence_Of
(Ent
, Loc
);
3666 -- Not special case so generate the assignments
3668 Known_Non_Null_Operand_Seen
:= False;
3670 for J
in 1 .. NN
loop
3672 Lo
: constant Node_Id
:=
3674 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3675 Right_Opnd
=> Aggr_Length
(J
- 1));
3677 Hi
: constant Node_Id
:=
3679 Left_Opnd
=> To_Artyp
(New_Copy
(Low_Bound
)),
3681 Make_Op_Subtract
(Loc
,
3682 Left_Opnd
=> Aggr_Length
(J
),
3683 Right_Opnd
=> Make_Artyp_Literal
(1)));
3686 -- Singleton case, simple assignment
3688 if Base_Type
(Etype
(Operands
(J
))) = Ctyp
then
3689 Known_Non_Null_Operand_Seen
:= True;
3690 Insert_Action
(Cnode
,
3691 Make_Assignment_Statement
(Loc
,
3693 Make_Indexed_Component
(Loc
,
3694 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
3695 Expressions
=> New_List
(To_Ityp
(Lo
))),
3696 Expression
=> Operands
(J
)),
3697 Suppress
=> All_Checks
);
3699 -- Array case, slice assignment, skipped when argument is fixed
3700 -- length and known to be null.
3702 elsif (not Is_Fixed_Length
(J
)) or else (Fixed_Length
(J
) > 0) then
3705 Make_Assignment_Statement
(Loc
,
3709 New_Occurrence_Of
(Ent
, Loc
),
3712 Low_Bound
=> To_Ityp
(Lo
),
3713 High_Bound
=> To_Ityp
(Hi
))),
3714 Expression
=> Operands
(J
));
3716 if Is_Fixed_Length
(J
) then
3717 Known_Non_Null_Operand_Seen
:= True;
3719 elsif not Known_Non_Null_Operand_Seen
then
3721 -- Here if operand length is not statically known and no
3722 -- operand known to be non-null has been processed yet.
3723 -- If operand length is 0, we do not need to perform the
3724 -- assignment, and we must avoid the evaluation of the
3725 -- high bound of the slice, since it may underflow if the
3726 -- low bound is Ityp'First.
3729 Make_Implicit_If_Statement
(Cnode
,
3733 New_Occurrence_Of
(Var_Length
(J
), Loc
),
3734 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
3735 Then_Statements
=> New_List
(Assign
));
3738 Insert_Action
(Cnode
, Assign
, Suppress
=> All_Checks
);
3744 -- Finally we build the result, which is a reference to the array object
3746 Result
:= New_Occurrence_Of
(Ent
, Loc
);
3749 Rewrite
(Cnode
, Result
);
3750 Analyze_And_Resolve
(Cnode
, Atyp
);
3753 when Concatenation_Error
=>
3755 -- Kill warning generated for the declaration of the static out of
3756 -- range high bound, and instead generate a Constraint_Error with
3757 -- an appropriate specific message.
3759 Kill_Dead_Code
(Declaration_Node
(Entity
(High_Bound
)));
3760 Apply_Compile_Time_Constraint_Error
3762 Msg
=> "concatenation result upper bound out of range??",
3763 Reason
=> CE_Range_Check_Failed
);
3764 end Expand_Concatenate
;
3766 ---------------------------------------------------
3767 -- Expand_Membership_Minimize_Eliminate_Overflow --
3768 ---------------------------------------------------
3770 procedure Expand_Membership_Minimize_Eliminate_Overflow
(N
: Node_Id
) is
3771 pragma Assert
(Nkind
(N
) = N_In
);
3772 -- Despite the name, this routine applies only to N_In, not to
3773 -- N_Not_In. The latter is always rewritten as not (X in Y).
3775 Result_Type
: constant Entity_Id
:= Etype
(N
);
3776 -- Capture result type, may be a derived boolean type
3778 Loc
: constant Source_Ptr
:= Sloc
(N
);
3779 Lop
: constant Node_Id
:= Left_Opnd
(N
);
3780 Rop
: constant Node_Id
:= Right_Opnd
(N
);
3782 -- Note: there are many referencs to Etype (Lop) and Etype (Rop). It
3783 -- is thus tempting to capture these values, but due to the rewrites
3784 -- that occur as a result of overflow checking, these values change
3785 -- as we go along, and it is safe just to always use Etype explicitly.
3787 Restype
: constant Entity_Id
:= Etype
(N
);
3791 -- Bounds in Minimize calls, not used currently
3793 LLIB
: constant Entity_Id
:= Base_Type
(Standard_Long_Long_Integer
);
3794 -- Entity for Long_Long_Integer'Base (Standard should export this???)
3797 Minimize_Eliminate_Overflows
(Lop
, Lo
, Hi
, Top_Level
=> False);
3799 -- If right operand is a subtype name, and the subtype name has no
3800 -- predicate, then we can just replace the right operand with an
3801 -- explicit range T'First .. T'Last, and use the explicit range code.
3803 if Nkind
(Rop
) /= N_Range
3804 and then No
(Predicate_Function
(Etype
(Rop
)))
3807 Rtyp
: constant Entity_Id
:= Etype
(Rop
);
3812 Make_Attribute_Reference
(Loc
,
3813 Attribute_Name
=> Name_First
,
3814 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
)),
3816 Make_Attribute_Reference
(Loc
,
3817 Attribute_Name
=> Name_Last
,
3818 Prefix
=> New_Occurrence_Of
(Rtyp
, Loc
))));
3819 Analyze_And_Resolve
(Rop
, Rtyp
, Suppress
=> All_Checks
);
3823 -- Here for the explicit range case. Note that the bounds of the range
3824 -- have not been processed for minimized or eliminated checks.
3826 if Nkind
(Rop
) = N_Range
then
3827 Minimize_Eliminate_Overflows
3828 (Low_Bound
(Rop
), Lo
, Hi
, Top_Level
=> False);
3829 Minimize_Eliminate_Overflows
3830 (High_Bound
(Rop
), Lo
, Hi
, Top_Level
=> False);
3832 -- We have A in B .. C, treated as A >= B and then A <= C
3836 if Is_RTE
(Etype
(Lop
), RE_Bignum
)
3837 or else Is_RTE
(Etype
(Low_Bound
(Rop
)), RE_Bignum
)
3838 or else Is_RTE
(Etype
(High_Bound
(Rop
)), RE_Bignum
)
3841 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
3842 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
3843 L
: constant Entity_Id
:=
3844 Make_Defining_Identifier
(Loc
, Name_uL
);
3845 Lopnd
: constant Node_Id
:= Convert_To_Bignum
(Lop
);
3846 Lbound
: constant Node_Id
:=
3847 Convert_To_Bignum
(Low_Bound
(Rop
));
3848 Hbound
: constant Node_Id
:=
3849 Convert_To_Bignum
(High_Bound
(Rop
));
3851 -- Now we rewrite the membership test node to look like
3854 -- Bnn : Result_Type;
3856 -- M : Mark_Id := SS_Mark;
3857 -- L : Bignum := Lopnd;
3859 -- Bnn := Big_GE (L, Lbound) and then Big_LE (L, Hbound)
3867 -- Insert declaration of L into declarations of bignum block
3870 (Last
(Declarations
(Blk
)),
3871 Make_Object_Declaration
(Loc
,
3872 Defining_Identifier
=> L
,
3873 Object_Definition
=>
3874 New_Occurrence_Of
(RTE
(RE_Bignum
), Loc
),
3875 Expression
=> Lopnd
));
3877 -- Insert assignment to Bnn into expressions of bignum block
3880 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
3881 Make_Assignment_Statement
(Loc
,
3882 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
3886 Make_Function_Call
(Loc
,
3888 New_Occurrence_Of
(RTE
(RE_Big_GE
), Loc
),
3889 Parameter_Associations
=> New_List
(
3890 New_Occurrence_Of
(L
, Loc
),
3894 Make_Function_Call
(Loc
,
3896 New_Occurrence_Of
(RTE
(RE_Big_LE
), Loc
),
3897 Parameter_Associations
=> New_List
(
3898 New_Occurrence_Of
(L
, Loc
),
3901 -- Now rewrite the node
3904 Make_Expression_With_Actions
(Loc
,
3905 Actions
=> New_List
(
3906 Make_Object_Declaration
(Loc
,
3907 Defining_Identifier
=> Bnn
,
3908 Object_Definition
=>
3909 New_Occurrence_Of
(Result_Type
, Loc
)),
3911 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
3912 Analyze_And_Resolve
(N
, Result_Type
);
3916 -- Here if no bignums around
3919 -- Case where types are all the same
3921 if Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(Low_Bound
(Rop
)))
3923 Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(High_Bound
(Rop
)))
3927 -- If types are not all the same, it means that we have rewritten
3928 -- at least one of them to be of type Long_Long_Integer, and we
3929 -- will convert the other operands to Long_Long_Integer.
3932 Convert_To_And_Rewrite
(LLIB
, Lop
);
3933 Set_Analyzed
(Lop
, False);
3934 Analyze_And_Resolve
(Lop
, LLIB
);
3936 -- For the right operand, avoid unnecessary recursion into
3937 -- this routine, we know that overflow is not possible.
3939 Convert_To_And_Rewrite
(LLIB
, Low_Bound
(Rop
));
3940 Convert_To_And_Rewrite
(LLIB
, High_Bound
(Rop
));
3941 Set_Analyzed
(Rop
, False);
3942 Analyze_And_Resolve
(Rop
, LLIB
, Suppress
=> Overflow_Check
);
3945 -- Now the three operands are of the same signed integer type,
3946 -- so we can use the normal expansion routine for membership,
3947 -- setting the flag to prevent recursion into this procedure.
3949 Set_No_Minimize_Eliminate
(N
);
3953 -- Right operand is a subtype name and the subtype has a predicate. We
3954 -- have to make sure the predicate is checked, and for that we need to
3955 -- use the standard N_In circuitry with appropriate types.
3958 pragma Assert
(Present
(Predicate_Function
(Etype
(Rop
))));
3960 -- If types are "right", just call Expand_N_In preventing recursion
3962 if Base_Type
(Etype
(Lop
)) = Base_Type
(Etype
(Rop
)) then
3963 Set_No_Minimize_Eliminate
(N
);
3968 elsif Is_RTE
(Etype
(Lop
), RE_Bignum
) then
3970 -- For X in T, we want to rewrite our node as
3973 -- Bnn : Result_Type;
3976 -- M : Mark_Id := SS_Mark;
3977 -- Lnn : Long_Long_Integer'Base
3983 -- if not Bignum_In_LLI_Range (Nnn) then
3986 -- Lnn := From_Bignum (Nnn);
3988 -- Lnn in LLIB (T'Base'First) .. LLIB (T'Base'Last)
3989 -- and then T'Base (Lnn) in T;
3998 -- A bit gruesome, but there doesn't seem to be a simpler way
4001 Blk
: constant Node_Id
:= Make_Bignum_Block
(Loc
);
4002 Bnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'B', N
);
4003 Lnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'L', N
);
4004 Nnn
: constant Entity_Id
:= Make_Temporary
(Loc
, 'N', N
);
4005 T
: constant Entity_Id
:= Etype
(Rop
);
4006 TB
: constant Entity_Id
:= Base_Type
(T
);
4010 -- Mark the last membership operation to prevent recursion
4014 Left_Opnd
=> Convert_To
(TB
, New_Occurrence_Of
(Lnn
, Loc
)),
4015 Right_Opnd
=> New_Occurrence_Of
(T
, Loc
));
4016 Set_No_Minimize_Eliminate
(Nin
);
4018 -- Now decorate the block
4021 (Last
(Declarations
(Blk
)),
4022 Make_Object_Declaration
(Loc
,
4023 Defining_Identifier
=> Lnn
,
4024 Object_Definition
=> New_Occurrence_Of
(LLIB
, Loc
)));
4027 (Last
(Declarations
(Blk
)),
4028 Make_Object_Declaration
(Loc
,
4029 Defining_Identifier
=> Nnn
,
4030 Object_Definition
=>
4031 New_Occurrence_Of
(RTE
(RE_Bignum
), Loc
)));
4034 (First
(Statements
(Handled_Statement_Sequence
(Blk
))),
4036 Make_Assignment_Statement
(Loc
,
4037 Name
=> New_Occurrence_Of
(Nnn
, Loc
),
4038 Expression
=> Relocate_Node
(Lop
)),
4040 Make_Implicit_If_Statement
(N
,
4044 Make_Function_Call
(Loc
,
4047 (RTE
(RE_Bignum_In_LLI_Range
), Loc
),
4048 Parameter_Associations
=> New_List
(
4049 New_Occurrence_Of
(Nnn
, Loc
)))),
4051 Then_Statements
=> New_List
(
4052 Make_Assignment_Statement
(Loc
,
4053 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
4055 New_Occurrence_Of
(Standard_False
, Loc
))),
4057 Else_Statements
=> New_List
(
4058 Make_Assignment_Statement
(Loc
,
4059 Name
=> New_Occurrence_Of
(Lnn
, Loc
),
4061 Make_Function_Call
(Loc
,
4063 New_Occurrence_Of
(RTE
(RE_From_Bignum
), Loc
),
4064 Parameter_Associations
=> New_List
(
4065 New_Occurrence_Of
(Nnn
, Loc
)))),
4067 Make_Assignment_Statement
(Loc
,
4068 Name
=> New_Occurrence_Of
(Bnn
, Loc
),
4073 Left_Opnd
=> New_Occurrence_Of
(Lnn
, Loc
),
4078 Make_Attribute_Reference
(Loc
,
4079 Attribute_Name
=> Name_First
,
4081 New_Occurrence_Of
(TB
, Loc
))),
4085 Make_Attribute_Reference
(Loc
,
4086 Attribute_Name
=> Name_Last
,
4088 New_Occurrence_Of
(TB
, Loc
))))),
4090 Right_Opnd
=> Nin
))))));
4092 -- Now we can do the rewrite
4095 Make_Expression_With_Actions
(Loc
,
4096 Actions
=> New_List
(
4097 Make_Object_Declaration
(Loc
,
4098 Defining_Identifier
=> Bnn
,
4099 Object_Definition
=>
4100 New_Occurrence_Of
(Result_Type
, Loc
)),
4102 Expression
=> New_Occurrence_Of
(Bnn
, Loc
)));
4103 Analyze_And_Resolve
(N
, Result_Type
);
4107 -- Not bignum case, but types don't match (this means we rewrote the
4108 -- left operand to be Long_Long_Integer).
4111 pragma Assert
(Base_Type
(Etype
(Lop
)) = LLIB
);
4113 -- We rewrite the membership test as (where T is the type with
4114 -- the predicate, i.e. the type of the right operand)
4116 -- Lop in LLIB (T'Base'First) .. LLIB (T'Base'Last)
4117 -- and then T'Base (Lop) in T
4120 T
: constant Entity_Id
:= Etype
(Rop
);
4121 TB
: constant Entity_Id
:= Base_Type
(T
);
4125 -- The last membership test is marked to prevent recursion
4129 Left_Opnd
=> Convert_To
(TB
, Duplicate_Subexpr
(Lop
)),
4130 Right_Opnd
=> New_Occurrence_Of
(T
, Loc
));
4131 Set_No_Minimize_Eliminate
(Nin
);
4133 -- Now do the rewrite
4144 Make_Attribute_Reference
(Loc
,
4145 Attribute_Name
=> Name_First
,
4147 New_Occurrence_Of
(TB
, Loc
))),
4150 Make_Attribute_Reference
(Loc
,
4151 Attribute_Name
=> Name_Last
,
4153 New_Occurrence_Of
(TB
, Loc
))))),
4154 Right_Opnd
=> Nin
));
4155 Set_Analyzed
(N
, False);
4156 Analyze_And_Resolve
(N
, Restype
);
4160 end Expand_Membership_Minimize_Eliminate_Overflow
;
4162 ------------------------
4163 -- Expand_N_Allocator --
4164 ------------------------
4166 procedure Expand_N_Allocator
(N
: Node_Id
) is
4167 Etyp
: constant Entity_Id
:= Etype
(Expression
(N
));
4168 Loc
: constant Source_Ptr
:= Sloc
(N
);
4169 PtrT
: constant Entity_Id
:= Etype
(N
);
4171 procedure Rewrite_Coextension
(N
: Node_Id
);
4172 -- Static coextensions have the same lifetime as the entity they
4173 -- constrain. Such occurrences can be rewritten as aliased objects
4174 -- and their unrestricted access used instead of the coextension.
4176 function Size_In_Storage_Elements
(E
: Entity_Id
) return Node_Id
;
4177 -- Given a constrained array type E, returns a node representing the
4178 -- code to compute the size in storage elements for the given type.
4179 -- This is done without using the attribute (which malfunctions for
4182 -------------------------
4183 -- Rewrite_Coextension --
4184 -------------------------
4186 procedure Rewrite_Coextension
(N
: Node_Id
) is
4187 Temp_Id
: constant Node_Id
:= Make_Temporary
(Loc
, 'C');
4188 Temp_Decl
: Node_Id
;
4192 -- Cnn : aliased Etyp;
4195 Make_Object_Declaration
(Loc
,
4196 Defining_Identifier
=> Temp_Id
,
4197 Aliased_Present
=> True,
4198 Object_Definition
=> New_Occurrence_Of
(Etyp
, Loc
));
4200 if Nkind
(Expression
(N
)) = N_Qualified_Expression
then
4201 Set_Expression
(Temp_Decl
, Expression
(Expression
(N
)));
4204 Insert_Action
(N
, Temp_Decl
);
4206 Make_Attribute_Reference
(Loc
,
4207 Prefix
=> New_Occurrence_Of
(Temp_Id
, Loc
),
4208 Attribute_Name
=> Name_Unrestricted_Access
));
4210 Analyze_And_Resolve
(N
, PtrT
);
4211 end Rewrite_Coextension
;
4213 ------------------------------
4214 -- Size_In_Storage_Elements --
4215 ------------------------------
4217 function Size_In_Storage_Elements
(E
: Entity_Id
) return Node_Id
is
4219 -- Logically this just returns E'Max_Size_In_Storage_Elements.
4220 -- However, the reason for the existence of this function is
4221 -- to construct a test for sizes too large, which means near the
4222 -- 32-bit limit on a 32-bit machine, and precisely the trouble
4223 -- is that we get overflows when sizes are greater than 2**31.
4225 -- So what we end up doing for array types is to use the expression:
4227 -- number-of-elements * component_type'Max_Size_In_Storage_Elements
4229 -- which avoids this problem. All this is a bit bogus, but it does
4230 -- mean we catch common cases of trying to allocate arrays that
4231 -- are too large, and which in the absence of a check results in
4232 -- undetected chaos ???
4234 -- Note in particular that this is a pessimistic estimate in the
4235 -- case of packed array types, where an array element might occupy
4236 -- just a fraction of a storage element???
4243 for J
in 1 .. Number_Dimensions
(E
) loop
4245 Make_Attribute_Reference
(Loc
,
4246 Prefix
=> New_Occurrence_Of
(E
, Loc
),
4247 Attribute_Name
=> Name_Length
,
4248 Expressions
=> New_List
(Make_Integer_Literal
(Loc
, J
)));
4255 Make_Op_Multiply
(Loc
,
4262 Make_Op_Multiply
(Loc
,
4265 Make_Attribute_Reference
(Loc
,
4266 Prefix
=> New_Occurrence_Of
(Component_Type
(E
), Loc
),
4267 Attribute_Name
=> Name_Max_Size_In_Storage_Elements
));
4269 end Size_In_Storage_Elements
;
4273 Dtyp
: constant Entity_Id
:= Available_View
(Designated_Type
(PtrT
));
4277 Rel_Typ
: Entity_Id
;
4280 -- Start of processing for Expand_N_Allocator
4283 -- RM E.2.3(22). We enforce that the expected type of an allocator
4284 -- shall not be a remote access-to-class-wide-limited-private type
4286 -- Why is this being done at expansion time, seems clearly wrong ???
4288 Validate_Remote_Access_To_Class_Wide_Type
(N
);
4290 -- Processing for anonymous access-to-controlled types. These access
4291 -- types receive a special finalization master which appears in the
4292 -- declarations of the enclosing semantic unit. This expansion is done
4293 -- now to ensure that any additional types generated by this routine or
4294 -- Expand_Allocator_Expression inherit the proper type attributes.
4296 if (Ekind
(PtrT
) = E_Anonymous_Access_Type
4297 or else (Is_Itype
(PtrT
) and then No
(Finalization_Master
(PtrT
))))
4298 and then Needs_Finalization
(Dtyp
)
4300 -- Detect the allocation of an anonymous controlled object where the
4301 -- type of the context is named. For example:
4303 -- procedure Proc (Ptr : Named_Access_Typ);
4304 -- Proc (new Designated_Typ);
4306 -- Regardless of the anonymous-to-named access type conversion, the
4307 -- lifetime of the object must be associated with the named access
4308 -- type. Use the finalization-related attributes of this type.
4310 if Nkind_In
(Parent
(N
), N_Type_Conversion
,
4311 N_Unchecked_Type_Conversion
)
4312 and then Ekind_In
(Etype
(Parent
(N
)), E_Access_Subtype
,
4314 E_General_Access_Type
)
4316 Rel_Typ
:= Etype
(Parent
(N
));
4321 -- Anonymous access-to-controlled types allocate on the global pool.
4322 -- Do not set this attribute on .NET/JVM since those targets do not
4323 -- support pools. Note that this is a "root type only" attribute.
4325 if No
(Associated_Storage_Pool
(PtrT
)) and then VM_Target
= No_VM
then
4326 if Present
(Rel_Typ
) then
4327 Set_Associated_Storage_Pool
4328 (Root_Type
(PtrT
), Associated_Storage_Pool
(Rel_Typ
));
4330 Set_Associated_Storage_Pool
4331 (Root_Type
(PtrT
), RTE
(RE_Global_Pool_Object
));
4335 -- The finalization master must be inserted and analyzed as part of
4336 -- the current semantic unit. Note that the master is updated when
4337 -- analysis changes current units. Note that this is a "root type
4340 if Present
(Rel_Typ
) then
4341 Set_Finalization_Master
4342 (Root_Type
(PtrT
), Finalization_Master
(Rel_Typ
));
4344 Set_Finalization_Master
4345 (Root_Type
(PtrT
), Current_Anonymous_Master
);
4349 -- Set the storage pool and find the appropriate version of Allocate to
4350 -- call. Do not overwrite the storage pool if it is already set, which
4351 -- can happen for build-in-place function returns (see
4352 -- Exp_Ch4.Expand_N_Extended_Return_Statement).
4354 if No
(Storage_Pool
(N
)) then
4355 Pool
:= Associated_Storage_Pool
(Root_Type
(PtrT
));
4357 if Present
(Pool
) then
4358 Set_Storage_Pool
(N
, Pool
);
4360 if Is_RTE
(Pool
, RE_SS_Pool
) then
4361 if VM_Target
= No_VM
then
4362 Set_Procedure_To_Call
(N
, RTE
(RE_SS_Allocate
));
4365 -- In the case of an allocator for a simple storage pool, locate
4366 -- and save a reference to the pool type's Allocate routine.
4368 elsif Present
(Get_Rep_Pragma
4369 (Etype
(Pool
), Name_Simple_Storage_Pool_Type
))
4372 Pool_Type
: constant Entity_Id
:= Base_Type
(Etype
(Pool
));
4373 Alloc_Op
: Entity_Id
;
4375 Alloc_Op
:= Get_Name_Entity_Id
(Name_Allocate
);
4376 while Present
(Alloc_Op
) loop
4377 if Scope
(Alloc_Op
) = Scope
(Pool_Type
)
4378 and then Present
(First_Formal
(Alloc_Op
))
4379 and then Etype
(First_Formal
(Alloc_Op
)) = Pool_Type
4381 Set_Procedure_To_Call
(N
, Alloc_Op
);
4384 Alloc_Op
:= Homonym
(Alloc_Op
);
4389 elsif Is_Class_Wide_Type
(Etype
(Pool
)) then
4390 Set_Procedure_To_Call
(N
, RTE
(RE_Allocate_Any
));
4393 Set_Procedure_To_Call
(N
,
4394 Find_Prim_Op
(Etype
(Pool
), Name_Allocate
));
4399 -- Under certain circumstances we can replace an allocator by an access
4400 -- to statically allocated storage. The conditions, as noted in AARM
4401 -- 3.10 (10c) are as follows:
4403 -- Size and initial value is known at compile time
4404 -- Access type is access-to-constant
4406 -- The allocator is not part of a constraint on a record component,
4407 -- because in that case the inserted actions are delayed until the
4408 -- record declaration is fully analyzed, which is too late for the
4409 -- analysis of the rewritten allocator.
4411 if Is_Access_Constant
(PtrT
)
4412 and then Nkind
(Expression
(N
)) = N_Qualified_Expression
4413 and then Compile_Time_Known_Value
(Expression
(Expression
(N
)))
4414 and then Size_Known_At_Compile_Time
4415 (Etype
(Expression
(Expression
(N
))))
4416 and then not Is_Record_Type
(Current_Scope
)
4418 -- Here we can do the optimization. For the allocator
4422 -- We insert an object declaration
4424 -- Tnn : aliased x := y;
4426 -- and replace the allocator by Tnn'Unrestricted_Access. Tnn is
4427 -- marked as requiring static allocation.
4429 Temp
:= Make_Temporary
(Loc
, 'T', Expression
(Expression
(N
)));
4430 Desig
:= Subtype_Mark
(Expression
(N
));
4432 -- If context is constrained, use constrained subtype directly,
4433 -- so that the constant is not labelled as having a nominally
4434 -- unconstrained subtype.
4436 if Entity
(Desig
) = Base_Type
(Dtyp
) then
4437 Desig
:= New_Occurrence_Of
(Dtyp
, Loc
);
4441 Make_Object_Declaration
(Loc
,
4442 Defining_Identifier
=> Temp
,
4443 Aliased_Present
=> True,
4444 Constant_Present
=> Is_Access_Constant
(PtrT
),
4445 Object_Definition
=> Desig
,
4446 Expression
=> Expression
(Expression
(N
))));
4449 Make_Attribute_Reference
(Loc
,
4450 Prefix
=> New_Occurrence_Of
(Temp
, Loc
),
4451 Attribute_Name
=> Name_Unrestricted_Access
));
4453 Analyze_And_Resolve
(N
, PtrT
);
4455 -- We set the variable as statically allocated, since we don't want
4456 -- it going on the stack of the current procedure.
4458 Set_Is_Statically_Allocated
(Temp
);
4462 -- Same if the allocator is an access discriminant for a local object:
4463 -- instead of an allocator we create a local value and constrain the
4464 -- enclosing object with the corresponding access attribute.
4466 if Is_Static_Coextension
(N
) then
4467 Rewrite_Coextension
(N
);
4471 -- Check for size too large, we do this because the back end misses
4472 -- proper checks here and can generate rubbish allocation calls when
4473 -- we are near the limit. We only do this for the 32-bit address case
4474 -- since that is from a practical point of view where we see a problem.
4476 if System_Address_Size
= 32
4477 and then not Storage_Checks_Suppressed
(PtrT
)
4478 and then not Storage_Checks_Suppressed
(Dtyp
)
4479 and then not Storage_Checks_Suppressed
(Etyp
)
4481 -- The check we want to generate should look like
4483 -- if Etyp'Max_Size_In_Storage_Elements > 3.5 gigabytes then
4484 -- raise Storage_Error;
4487 -- where 3.5 gigabytes is a constant large enough to accommodate any
4488 -- reasonable request for. But we can't do it this way because at
4489 -- least at the moment we don't compute this attribute right, and
4490 -- can silently give wrong results when the result gets large. Since
4491 -- this is all about large results, that's bad, so instead we only
4492 -- apply the check for constrained arrays, and manually compute the
4493 -- value of the attribute ???
4495 if Is_Array_Type
(Etyp
) and then Is_Constrained
(Etyp
) then
4497 Make_Raise_Storage_Error
(Loc
,
4500 Left_Opnd
=> Size_In_Storage_Elements
(Etyp
),
4502 Make_Integer_Literal
(Loc
, Uint_7
* (Uint_2
** 29))),
4503 Reason
=> SE_Object_Too_Large
));
4507 -- If no storage pool has been specified and we have the restriction
4508 -- No_Standard_Allocators_After_Elaboration is present, then generate
4509 -- a call to Elaboration_Allocators.Check_Standard_Allocator.
4511 if Nkind
(N
) = N_Allocator
4512 and then No
(Storage_Pool
(N
))
4513 and then Restriction_Active
(No_Standard_Allocators_After_Elaboration
)
4516 Make_Procedure_Call_Statement
(Loc
,
4518 New_Occurrence_Of
(RTE
(RE_Check_Standard_Allocator
), Loc
)));
4521 -- Handle case of qualified expression (other than optimization above)
4522 -- First apply constraint checks, because the bounds or discriminants
4523 -- in the aggregate might not match the subtype mark in the allocator.
4525 if Nkind
(Expression
(N
)) = N_Qualified_Expression
then
4526 Apply_Constraint_Check
4527 (Expression
(Expression
(N
)), Etype
(Expression
(N
)));
4529 Expand_Allocator_Expression
(N
);
4533 -- If the allocator is for a type which requires initialization, and
4534 -- there is no initial value (i.e. operand is a subtype indication
4535 -- rather than a qualified expression), then we must generate a call to
4536 -- the initialization routine using an expressions action node:
4538 -- [Pnnn : constant ptr_T := new (T); Init (Pnnn.all,...); Pnnn]
4540 -- Here ptr_T is the pointer type for the allocator, and T is the
4541 -- subtype of the allocator. A special case arises if the designated
4542 -- type of the access type is a task or contains tasks. In this case
4543 -- the call to Init (Temp.all ...) is replaced by code that ensures
4544 -- that tasks get activated (see Exp_Ch9.Build_Task_Allocate_Block
4545 -- for details). In addition, if the type T is a task type, then the
4546 -- first argument to Init must be converted to the task record type.
4549 T
: constant Entity_Id
:= Entity
(Expression
(N
));
4555 Init_Arg1
: Node_Id
;
4556 Temp_Decl
: Node_Id
;
4557 Temp_Type
: Entity_Id
;
4560 if No_Initialization
(N
) then
4562 -- Even though this might be a simple allocation, create a custom
4563 -- Allocate if the context requires it. Since .NET/JVM compilers
4564 -- do not support pools, this step is skipped.
4566 if VM_Target
= No_VM
4567 and then Present
(Finalization_Master
(PtrT
))
4569 Build_Allocate_Deallocate_Proc
4571 Is_Allocate
=> True);
4574 -- Case of no initialization procedure present
4576 elsif not Has_Non_Null_Base_Init_Proc
(T
) then
4578 -- Case of simple initialization required
4580 if Needs_Simple_Initialization
(T
) then
4581 Check_Restriction
(No_Default_Initialization
, N
);
4582 Rewrite
(Expression
(N
),
4583 Make_Qualified_Expression
(Loc
,
4584 Subtype_Mark
=> New_Occurrence_Of
(T
, Loc
),
4585 Expression
=> Get_Simple_Init_Val
(T
, N
)));
4587 Analyze_And_Resolve
(Expression
(Expression
(N
)), T
);
4588 Analyze_And_Resolve
(Expression
(N
), T
);
4589 Set_Paren_Count
(Expression
(Expression
(N
)), 1);
4590 Expand_N_Allocator
(N
);
4592 -- No initialization required
4598 -- Case of initialization procedure present, must be called
4601 Check_Restriction
(No_Default_Initialization
, N
);
4603 if not Restriction_Active
(No_Default_Initialization
) then
4604 Init
:= Base_Init_Proc
(T
);
4606 Temp
:= Make_Temporary
(Loc
, 'P');
4608 -- Construct argument list for the initialization routine call
4611 Make_Explicit_Dereference
(Loc
,
4613 New_Occurrence_Of
(Temp
, Loc
));
4615 Set_Assignment_OK
(Init_Arg1
);
4618 -- The initialization procedure expects a specific type. if the
4619 -- context is access to class wide, indicate that the object
4620 -- being allocated has the right specific type.
4622 if Is_Class_Wide_Type
(Dtyp
) then
4623 Init_Arg1
:= Unchecked_Convert_To
(T
, Init_Arg1
);
4626 -- If designated type is a concurrent type or if it is private
4627 -- type whose definition is a concurrent type, the first
4628 -- argument in the Init routine has to be unchecked conversion
4629 -- to the corresponding record type. If the designated type is
4630 -- a derived type, also convert the argument to its root type.
4632 if Is_Concurrent_Type
(T
) then
4634 Unchecked_Convert_To
(
4635 Corresponding_Record_Type
(T
), Init_Arg1
);
4637 elsif Is_Private_Type
(T
)
4638 and then Present
(Full_View
(T
))
4639 and then Is_Concurrent_Type
(Full_View
(T
))
4642 Unchecked_Convert_To
4643 (Corresponding_Record_Type
(Full_View
(T
)), Init_Arg1
);
4645 elsif Etype
(First_Formal
(Init
)) /= Base_Type
(T
) then
4647 Ftyp
: constant Entity_Id
:= Etype
(First_Formal
(Init
));
4650 Init_Arg1
:= OK_Convert_To
(Etype
(Ftyp
), Init_Arg1
);
4651 Set_Etype
(Init_Arg1
, Ftyp
);
4655 Args
:= New_List
(Init_Arg1
);
4657 -- For the task case, pass the Master_Id of the access type as
4658 -- the value of the _Master parameter, and _Chain as the value
4659 -- of the _Chain parameter (_Chain will be defined as part of
4660 -- the generated code for the allocator).
4662 -- In Ada 2005, the context may be a function that returns an
4663 -- anonymous access type. In that case the Master_Id has been
4664 -- created when expanding the function declaration.
4666 if Has_Task
(T
) then
4667 if No
(Master_Id
(Base_Type
(PtrT
))) then
4669 -- The designated type was an incomplete type, and the
4670 -- access type did not get expanded. Salvage it now.
4672 if not Restriction_Active
(No_Task_Hierarchy
) then
4673 if Present
(Parent
(Base_Type
(PtrT
))) then
4674 Expand_N_Full_Type_Declaration
4675 (Parent
(Base_Type
(PtrT
)));
4677 -- The only other possibility is an itype. For this
4678 -- case, the master must exist in the context. This is
4679 -- the case when the allocator initializes an access
4680 -- component in an init-proc.
4683 pragma Assert
(Is_Itype
(PtrT
));
4684 Build_Master_Renaming
(PtrT
, N
);
4689 -- If the context of the allocator is a declaration or an
4690 -- assignment, we can generate a meaningful image for it,
4691 -- even though subsequent assignments might remove the
4692 -- connection between task and entity. We build this image
4693 -- when the left-hand side is a simple variable, a simple
4694 -- indexed assignment or a simple selected component.
4696 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
4698 Nam
: constant Node_Id
:= Name
(Parent
(N
));
4701 if Is_Entity_Name
(Nam
) then
4703 Build_Task_Image_Decls
4706 (Entity
(Nam
), Sloc
(Nam
)), T
);
4708 elsif Nkind_In
(Nam
, N_Indexed_Component
,
4709 N_Selected_Component
)
4710 and then Is_Entity_Name
(Prefix
(Nam
))
4713 Build_Task_Image_Decls
4714 (Loc
, Nam
, Etype
(Prefix
(Nam
)));
4716 Decls
:= Build_Task_Image_Decls
(Loc
, T
, T
);
4720 elsif Nkind
(Parent
(N
)) = N_Object_Declaration
then
4722 Build_Task_Image_Decls
4723 (Loc
, Defining_Identifier
(Parent
(N
)), T
);
4726 Decls
:= Build_Task_Image_Decls
(Loc
, T
, T
);
4729 if Restriction_Active
(No_Task_Hierarchy
) then
4731 New_Occurrence_Of
(RTE
(RE_Library_Task_Level
), Loc
));
4735 (Master_Id
(Base_Type
(Root_Type
(PtrT
))), Loc
));
4738 Append_To
(Args
, Make_Identifier
(Loc
, Name_uChain
));
4740 Decl
:= Last
(Decls
);
4742 New_Occurrence_Of
(Defining_Identifier
(Decl
), Loc
));
4744 -- Has_Task is false, Decls not used
4750 -- Add discriminants if discriminated type
4753 Dis
: Boolean := False;
4757 if Has_Discriminants
(T
) then
4761 elsif Is_Private_Type
(T
)
4762 and then Present
(Full_View
(T
))
4763 and then Has_Discriminants
(Full_View
(T
))
4766 Typ
:= Full_View
(T
);
4771 -- If the allocated object will be constrained by the
4772 -- default values for discriminants, then build a subtype
4773 -- with those defaults, and change the allocated subtype
4774 -- to that. Note that this happens in fewer cases in Ada
4777 if not Is_Constrained
(Typ
)
4778 and then Present
(Discriminant_Default_Value
4779 (First_Discriminant
(Typ
)))
4780 and then (Ada_Version
< Ada_2005
4782 Object_Type_Has_Constrained_Partial_View
4783 (Typ
, Current_Scope
))
4785 Typ
:= Build_Default_Subtype
(Typ
, N
);
4786 Set_Expression
(N
, New_Occurrence_Of
(Typ
, Loc
));
4789 Discr
:= First_Elmt
(Discriminant_Constraint
(Typ
));
4790 while Present
(Discr
) loop
4791 Nod
:= Node
(Discr
);
4792 Append
(New_Copy_Tree
(Node
(Discr
)), Args
);
4794 -- AI-416: when the discriminant constraint is an
4795 -- anonymous access type make sure an accessibility
4796 -- check is inserted if necessary (3.10.2(22.q/2))
4798 if Ada_Version
>= Ada_2005
4800 Ekind
(Etype
(Nod
)) = E_Anonymous_Access_Type
4802 Apply_Accessibility_Check
4803 (Nod
, Typ
, Insert_Node
=> Nod
);
4811 -- We set the allocator as analyzed so that when we analyze
4812 -- the if expression node, we do not get an unwanted recursive
4813 -- expansion of the allocator expression.
4815 Set_Analyzed
(N
, True);
4816 Nod
:= Relocate_Node
(N
);
4818 -- Here is the transformation:
4819 -- input: new Ctrl_Typ
4820 -- output: Temp : constant Ctrl_Typ_Ptr := new Ctrl_Typ;
4821 -- Ctrl_TypIP (Temp.all, ...);
4822 -- [Deep_]Initialize (Temp.all);
4824 -- Here Ctrl_Typ_Ptr is the pointer type for the allocator, and
4825 -- is the subtype of the allocator.
4828 Make_Object_Declaration
(Loc
,
4829 Defining_Identifier
=> Temp
,
4830 Constant_Present
=> True,
4831 Object_Definition
=> New_Occurrence_Of
(Temp_Type
, Loc
),
4834 Set_Assignment_OK
(Temp_Decl
);
4835 Insert_Action
(N
, Temp_Decl
, Suppress
=> All_Checks
);
4837 Build_Allocate_Deallocate_Proc
(Temp_Decl
, True);
4839 -- If the designated type is a task type or contains tasks,
4840 -- create block to activate created tasks, and insert
4841 -- declaration for Task_Image variable ahead of call.
4843 if Has_Task
(T
) then
4845 L
: constant List_Id
:= New_List
;
4848 Build_Task_Allocate_Block
(L
, Nod
, Args
);
4850 Insert_List_Before
(First
(Declarations
(Blk
)), Decls
);
4851 Insert_Actions
(N
, L
);
4856 Make_Procedure_Call_Statement
(Loc
,
4857 Name
=> New_Occurrence_Of
(Init
, Loc
),
4858 Parameter_Associations
=> Args
));
4861 if Needs_Finalization
(T
) then
4864 -- [Deep_]Initialize (Init_Arg1);
4868 (Obj_Ref
=> New_Copy_Tree
(Init_Arg1
),
4871 if Present
(Finalization_Master
(PtrT
)) then
4873 -- Special processing for .NET/JVM, the allocated object
4874 -- is attached to the finalization master. Generate:
4876 -- Attach (<PtrT>FM, Root_Controlled_Ptr (Init_Arg1));
4878 -- Types derived from [Limited_]Controlled are the only
4879 -- ones considered since they have fields Prev and Next.
4881 if VM_Target
/= No_VM
then
4882 if Is_Controlled
(T
) then
4885 (Obj_Ref
=> New_Copy_Tree
(Init_Arg1
),
4889 -- Default case, generate:
4891 -- Set_Finalize_Address
4892 -- (<PtrT>FM, <T>FD'Unrestricted_Access);
4894 -- Do not generate this call in CodePeer mode, as TSS
4895 -- primitive Finalize_Address is not created in this
4898 elsif not CodePeer_Mode
then
4900 Make_Set_Finalize_Address_Call
4908 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
4909 Analyze_And_Resolve
(N
, PtrT
);
4914 -- Ada 2005 (AI-251): If the allocator is for a class-wide interface
4915 -- object that has been rewritten as a reference, we displace "this"
4916 -- to reference properly its secondary dispatch table.
4918 if Nkind
(N
) = N_Identifier
and then Is_Interface
(Dtyp
) then
4919 Displace_Allocator_Pointer
(N
);
4923 when RE_Not_Available
=>
4925 end Expand_N_Allocator
;
4927 -----------------------
4928 -- Expand_N_And_Then --
4929 -----------------------
4931 procedure Expand_N_And_Then
(N
: Node_Id
)
4932 renames Expand_Short_Circuit_Operator
;
4934 ------------------------------
4935 -- Expand_N_Case_Expression --
4936 ------------------------------
4938 procedure Expand_N_Case_Expression
(N
: Node_Id
) is
4939 Loc
: constant Source_Ptr
:= Sloc
(N
);
4940 Typ
: constant Entity_Id
:= Etype
(N
);
4951 -- Check for MINIMIZED/ELIMINATED overflow mode
4953 if Minimized_Eliminated_Overflow_Check
(N
) then
4954 Apply_Arithmetic_Overflow_Check
(N
);
4958 -- If the case expression is a predicate specification, do not
4959 -- expand, because it will be converted to the proper predicate
4960 -- form when building the predicate function.
4962 if Ekind_In
(Current_Scope
, E_Function
, E_Procedure
)
4963 and then Is_Predicate_Function
(Current_Scope
)
4970 -- case X is when A => AX, when B => BX ...
4985 -- However, this expansion is wrong for limited types, and also
4986 -- wrong for unconstrained types (since the bounds may not be the
4987 -- same in all branches). Furthermore it involves an extra copy
4988 -- for large objects. So we take care of this by using the following
4989 -- modified expansion for non-elementary types:
4992 -- type Pnn is access all typ;
4996 -- T := AX'Unrestricted_Access;
4998 -- T := BX'Unrestricted_Access;
5004 Make_Case_Statement
(Loc
,
5005 Expression
=> Expression
(N
),
5006 Alternatives
=> New_List
);
5008 -- Preserve the original context for which the case statement is being
5009 -- generated. This is needed by the finalization machinery to prevent
5010 -- the premature finalization of controlled objects found within the
5013 Set_From_Conditional_Expression
(Cstmt
);
5015 Actions
:= New_List
;
5019 if Is_Elementary_Type
(Typ
) then
5023 Pnn
:= Make_Temporary
(Loc
, 'P');
5025 Make_Full_Type_Declaration
(Loc
,
5026 Defining_Identifier
=> Pnn
,
5028 Make_Access_To_Object_Definition
(Loc
,
5029 All_Present
=> True,
5030 Subtype_Indication
=> New_Occurrence_Of
(Typ
, Loc
))));
5034 Tnn
:= Make_Temporary
(Loc
, 'T');
5036 -- Create declaration for target of expression, and indicate that it
5037 -- does not require initialization.
5040 Make_Object_Declaration
(Loc
,
5041 Defining_Identifier
=> Tnn
,
5042 Object_Definition
=> New_Occurrence_Of
(Ttyp
, Loc
));
5043 Set_No_Initialization
(Decl
);
5044 Append_To
(Actions
, Decl
);
5046 -- Now process the alternatives
5048 Alt
:= First
(Alternatives
(N
));
5049 while Present
(Alt
) loop
5051 Aexp
: Node_Id
:= Expression
(Alt
);
5052 Aloc
: constant Source_Ptr
:= Sloc
(Aexp
);
5056 -- As described above, take Unrestricted_Access for case of non-
5057 -- scalar types, to avoid big copies, and special cases.
5059 if not Is_Elementary_Type
(Typ
) then
5061 Make_Attribute_Reference
(Aloc
,
5062 Prefix
=> Relocate_Node
(Aexp
),
5063 Attribute_Name
=> Name_Unrestricted_Access
);
5067 Make_Assignment_Statement
(Aloc
,
5068 Name
=> New_Occurrence_Of
(Tnn
, Loc
),
5069 Expression
=> Aexp
));
5071 -- Propagate declarations inserted in the node by Insert_Actions
5072 -- (for example, temporaries generated to remove side effects).
5073 -- These actions must remain attached to the alternative, given
5074 -- that they are generated by the corresponding expression.
5076 if Present
(Sinfo
.Actions
(Alt
)) then
5077 Prepend_List
(Sinfo
.Actions
(Alt
), Stats
);
5081 (Alternatives
(Cstmt
),
5082 Make_Case_Statement_Alternative
(Sloc
(Alt
),
5083 Discrete_Choices
=> Discrete_Choices
(Alt
),
5084 Statements
=> Stats
));
5090 Append_To
(Actions
, Cstmt
);
5092 -- Construct and return final expression with actions
5094 if Is_Elementary_Type
(Typ
) then
5095 Fexp
:= New_Occurrence_Of
(Tnn
, Loc
);
5098 Make_Explicit_Dereference
(Loc
,
5099 Prefix
=> New_Occurrence_Of
(Tnn
, Loc
));
5103 Make_Expression_With_Actions
(Loc
,
5105 Actions
=> Actions
));
5107 Analyze_And_Resolve
(N
, Typ
);
5108 end Expand_N_Case_Expression
;
5110 -----------------------------------
5111 -- Expand_N_Explicit_Dereference --
5112 -----------------------------------
5114 procedure Expand_N_Explicit_Dereference
(N
: Node_Id
) is
5116 -- Insert explicit dereference call for the checked storage pool case
5118 Insert_Dereference_Action
(Prefix
(N
));
5120 -- If the type is an Atomic type for which Atomic_Sync is enabled, then
5121 -- we set the atomic sync flag.
5123 if Is_Atomic
(Etype
(N
))
5124 and then not Atomic_Synchronization_Disabled
(Etype
(N
))
5126 Activate_Atomic_Synchronization
(N
);
5128 end Expand_N_Explicit_Dereference
;
5130 --------------------------------------
5131 -- Expand_N_Expression_With_Actions --
5132 --------------------------------------
5134 procedure Expand_N_Expression_With_Actions
(N
: Node_Id
) is
5136 function Process_Action
(Act
: Node_Id
) return Traverse_Result
;
5137 -- Inspect and process a single action of an expression_with_actions for
5138 -- transient controlled objects. If such objects are found, the routine
5139 -- generates code to clean them up when the context of the expression is
5140 -- evaluated or elaborated.
5142 --------------------
5143 -- Process_Action --
5144 --------------------
5146 function Process_Action
(Act
: Node_Id
) return Traverse_Result
is
5148 if Nkind
(Act
) = N_Object_Declaration
5149 and then Is_Finalizable_Transient
(Act
, N
)
5151 Process_Transient_Object
(Act
, N
);
5154 -- Avoid processing temporary function results multiple times when
5155 -- dealing with nested expression_with_actions.
5157 elsif Nkind
(Act
) = N_Expression_With_Actions
then
5160 -- Do not process temporary function results in loops. This is done
5161 -- by Expand_N_Loop_Statement and Build_Finalizer.
5163 elsif Nkind
(Act
) = N_Loop_Statement
then
5170 procedure Process_Single_Action
is new Traverse_Proc
(Process_Action
);
5176 -- Start of processing for Expand_N_Expression_With_Actions
5179 -- Process the actions as described above
5181 Act
:= First
(Actions
(N
));
5182 while Present
(Act
) loop
5183 Process_Single_Action
(Act
);
5187 -- Deal with case where there are no actions. In this case we simply
5188 -- rewrite the node with its expression since we don't need the actions
5189 -- and the specification of this node does not allow a null action list.
5191 -- Note: we use Rewrite instead of Replace, because Codepeer is using
5192 -- the expanded tree and relying on being able to retrieve the original
5193 -- tree in cases like this. This raises a whole lot of issues of whether
5194 -- we have problems elsewhere, which will be addressed in the future???
5196 if Is_Empty_List
(Actions
(N
)) then
5197 Rewrite
(N
, Relocate_Node
(Expression
(N
)));
5199 end Expand_N_Expression_With_Actions
;
5201 ----------------------------
5202 -- Expand_N_If_Expression --
5203 ----------------------------
5205 -- Deal with limited types and condition actions
5207 procedure Expand_N_If_Expression
(N
: Node_Id
) is
5208 procedure Process_Actions
(Actions
: List_Id
);
5209 -- Inspect and process a single action list of an if expression for
5210 -- transient controlled objects. If such objects are found, the routine
5211 -- generates code to clean them up when the context of the expression is
5212 -- evaluated or elaborated.
5214 ---------------------
5215 -- Process_Actions --
5216 ---------------------
5218 procedure Process_Actions
(Actions
: List_Id
) is
5222 Act
:= First
(Actions
);
5223 while Present
(Act
) loop
5224 if Nkind
(Act
) = N_Object_Declaration
5225 and then Is_Finalizable_Transient
(Act
, N
)
5227 Process_Transient_Object
(Act
, N
);
5232 end Process_Actions
;
5236 Loc
: constant Source_Ptr
:= Sloc
(N
);
5237 Cond
: constant Node_Id
:= First
(Expressions
(N
));
5238 Thenx
: constant Node_Id
:= Next
(Cond
);
5239 Elsex
: constant Node_Id
:= Next
(Thenx
);
5240 Typ
: constant Entity_Id
:= Etype
(N
);
5248 Ptr_Typ
: Entity_Id
;
5250 -- Start of processing for Expand_N_If_Expression
5253 -- Check for MINIMIZED/ELIMINATED overflow mode
5255 if Minimized_Eliminated_Overflow_Check
(N
) then
5256 Apply_Arithmetic_Overflow_Check
(N
);
5260 -- Fold at compile time if condition known. We have already folded
5261 -- static if expressions, but it is possible to fold any case in which
5262 -- the condition is known at compile time, even though the result is
5265 -- Note that we don't do the fold of such cases in Sem_Elab because
5266 -- it can cause infinite loops with the expander adding a conditional
5267 -- expression, and Sem_Elab circuitry removing it repeatedly.
5269 if Compile_Time_Known_Value
(Cond
) then
5270 if Is_True
(Expr_Value
(Cond
)) then
5272 Actions
:= Then_Actions
(N
);
5275 Actions
:= Else_Actions
(N
);
5280 if Present
(Actions
) then
5282 Make_Expression_With_Actions
(Loc
,
5283 Expression
=> Relocate_Node
(Expr
),
5284 Actions
=> Actions
));
5285 Analyze_And_Resolve
(N
, Typ
);
5287 Rewrite
(N
, Relocate_Node
(Expr
));
5290 -- Note that the result is never static (legitimate cases of static
5291 -- if expressions were folded in Sem_Eval).
5293 Set_Is_Static_Expression
(N
, False);
5297 -- If the type is limited, and the back end does not handle limited
5298 -- types, then we expand as follows to avoid the possibility of
5299 -- improper copying.
5301 -- type Ptr is access all Typ;
5305 -- Cnn := then-expr'Unrestricted_Access;
5308 -- Cnn := else-expr'Unrestricted_Access;
5311 -- and replace the if expression by a reference to Cnn.all.
5313 -- This special case can be skipped if the back end handles limited
5314 -- types properly and ensures that no incorrect copies are made.
5316 if Is_By_Reference_Type
(Typ
)
5317 and then not Back_End_Handles_Limited_Types
5319 -- When the "then" or "else" expressions involve controlled function
5320 -- calls, generated temporaries are chained on the corresponding list
5321 -- of actions. These temporaries need to be finalized after the if
5322 -- expression is evaluated.
5324 Process_Actions
(Then_Actions
(N
));
5325 Process_Actions
(Else_Actions
(N
));
5328 -- type Ann is access all Typ;
5330 Ptr_Typ
:= Make_Temporary
(Loc
, 'A');
5333 Make_Full_Type_Declaration
(Loc
,
5334 Defining_Identifier
=> Ptr_Typ
,
5336 Make_Access_To_Object_Definition
(Loc
,
5337 All_Present
=> True,
5338 Subtype_Indication
=> New_Occurrence_Of
(Typ
, Loc
))));
5343 Cnn
:= Make_Temporary
(Loc
, 'C', N
);
5346 Make_Object_Declaration
(Loc
,
5347 Defining_Identifier
=> Cnn
,
5348 Object_Definition
=> New_Occurrence_Of
(Ptr_Typ
, Loc
));
5352 -- Cnn := <Thenx>'Unrestricted_Access;
5354 -- Cnn := <Elsex>'Unrestricted_Access;
5358 Make_Implicit_If_Statement
(N
,
5359 Condition
=> Relocate_Node
(Cond
),
5360 Then_Statements
=> New_List
(
5361 Make_Assignment_Statement
(Sloc
(Thenx
),
5362 Name
=> New_Occurrence_Of
(Cnn
, Sloc
(Thenx
)),
5364 Make_Attribute_Reference
(Loc
,
5365 Prefix
=> Relocate_Node
(Thenx
),
5366 Attribute_Name
=> Name_Unrestricted_Access
))),
5368 Else_Statements
=> New_List
(
5369 Make_Assignment_Statement
(Sloc
(Elsex
),
5370 Name
=> New_Occurrence_Of
(Cnn
, Sloc
(Elsex
)),
5372 Make_Attribute_Reference
(Loc
,
5373 Prefix
=> Relocate_Node
(Elsex
),
5374 Attribute_Name
=> Name_Unrestricted_Access
))));
5376 -- Preserve the original context for which the if statement is being
5377 -- generated. This is needed by the finalization machinery to prevent
5378 -- the premature finalization of controlled objects found within the
5381 Set_From_Conditional_Expression
(New_If
);
5384 Make_Explicit_Dereference
(Loc
,
5385 Prefix
=> New_Occurrence_Of
(Cnn
, Loc
));
5387 -- If the result is an unconstrained array and the if expression is in a
5388 -- context other than the initializing expression of the declaration of
5389 -- an object, then we pull out the if expression as follows:
5391 -- Cnn : constant typ := if-expression
5393 -- and then replace the if expression with an occurrence of Cnn. This
5394 -- avoids the need in the back end to create on-the-fly variable length
5395 -- temporaries (which it cannot do!)
5397 -- Note that the test for being in an object declaration avoids doing an
5398 -- unnecessary expansion, and also avoids infinite recursion.
5400 elsif Is_Array_Type
(Typ
) and then not Is_Constrained
(Typ
)
5401 and then (Nkind
(Parent
(N
)) /= N_Object_Declaration
5402 or else Expression
(Parent
(N
)) /= N
)
5405 Cnn
: constant Node_Id
:= Make_Temporary
(Loc
, 'C', N
);
5408 Make_Object_Declaration
(Loc
,
5409 Defining_Identifier
=> Cnn
,
5410 Constant_Present
=> True,
5411 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
5412 Expression
=> Relocate_Node
(N
),
5413 Has_Init_Expression
=> True));
5415 Rewrite
(N
, New_Occurrence_Of
(Cnn
, Loc
));
5419 -- For other types, we only need to expand if there are other actions
5420 -- associated with either branch.
5422 elsif Present
(Then_Actions
(N
)) or else Present
(Else_Actions
(N
)) then
5424 -- We now wrap the actions into the appropriate expression
5426 if Present
(Then_Actions
(N
)) then
5428 Make_Expression_With_Actions
(Sloc
(Thenx
),
5429 Actions
=> Then_Actions
(N
),
5430 Expression
=> Relocate_Node
(Thenx
)));
5432 Set_Then_Actions
(N
, No_List
);
5433 Analyze_And_Resolve
(Thenx
, Typ
);
5436 if Present
(Else_Actions
(N
)) then
5438 Make_Expression_With_Actions
(Sloc
(Elsex
),
5439 Actions
=> Else_Actions
(N
),
5440 Expression
=> Relocate_Node
(Elsex
)));
5442 Set_Else_Actions
(N
, No_List
);
5443 Analyze_And_Resolve
(Elsex
, Typ
);
5448 -- If no actions then no expansion needed, gigi will handle it using the
5449 -- same approach as a C conditional expression.
5455 -- Fall through here for either the limited expansion, or the case of
5456 -- inserting actions for non-limited types. In both these cases, we must
5457 -- move the SLOC of the parent If statement to the newly created one and
5458 -- change it to the SLOC of the expression which, after expansion, will
5459 -- correspond to what is being evaluated.
5461 if Present
(Parent
(N
)) and then Nkind
(Parent
(N
)) = N_If_Statement
then
5462 Set_Sloc
(New_If
, Sloc
(Parent
(N
)));
5463 Set_Sloc
(Parent
(N
), Loc
);
5466 -- Make sure Then_Actions and Else_Actions are appropriately moved
5467 -- to the new if statement.
5469 if Present
(Then_Actions
(N
)) then
5471 (First
(Then_Statements
(New_If
)), Then_Actions
(N
));
5474 if Present
(Else_Actions
(N
)) then
5476 (First
(Else_Statements
(New_If
)), Else_Actions
(N
));
5479 Insert_Action
(N
, Decl
);
5480 Insert_Action
(N
, New_If
);
5482 Analyze_And_Resolve
(N
, Typ
);
5483 end Expand_N_If_Expression
;
5489 procedure Expand_N_In
(N
: Node_Id
) is
5490 Loc
: constant Source_Ptr
:= Sloc
(N
);
5491 Restyp
: constant Entity_Id
:= Etype
(N
);
5492 Lop
: constant Node_Id
:= Left_Opnd
(N
);
5493 Rop
: constant Node_Id
:= Right_Opnd
(N
);
5494 Static
: constant Boolean := Is_OK_Static_Expression
(N
);
5499 procedure Substitute_Valid_Check
;
5500 -- Replaces node N by Lop'Valid. This is done when we have an explicit
5501 -- test for the left operand being in range of its subtype.
5503 ----------------------------
5504 -- Substitute_Valid_Check --
5505 ----------------------------
5507 procedure Substitute_Valid_Check
is
5510 Make_Attribute_Reference
(Loc
,
5511 Prefix
=> Relocate_Node
(Lop
),
5512 Attribute_Name
=> Name_Valid
));
5514 Analyze_And_Resolve
(N
, Restyp
);
5516 -- Give warning unless overflow checking is MINIMIZED or ELIMINATED,
5517 -- in which case, this usage makes sense, and in any case, we have
5518 -- actually eliminated the danger of optimization above.
5520 if Overflow_Check_Mode
not in Minimized_Or_Eliminated
then
5522 ("??explicit membership test may be optimized away", N
);
5523 Error_Msg_N
-- CODEFIX
5524 ("\??use ''Valid attribute instead", N
);
5528 end Substitute_Valid_Check
;
5530 -- Start of processing for Expand_N_In
5533 -- If set membership case, expand with separate procedure
5535 if Present
(Alternatives
(N
)) then
5536 Expand_Set_Membership
(N
);
5540 -- Not set membership, proceed with expansion
5542 Ltyp
:= Etype
(Left_Opnd
(N
));
5543 Rtyp
:= Etype
(Right_Opnd
(N
));
5545 -- If MINIMIZED/ELIMINATED overflow mode and type is a signed integer
5546 -- type, then expand with a separate procedure. Note the use of the
5547 -- flag No_Minimize_Eliminate to prevent infinite recursion.
5549 if Overflow_Check_Mode
in Minimized_Or_Eliminated
5550 and then Is_Signed_Integer_Type
(Ltyp
)
5551 and then not No_Minimize_Eliminate
(N
)
5553 Expand_Membership_Minimize_Eliminate_Overflow
(N
);
5557 -- Check case of explicit test for an expression in range of its
5558 -- subtype. This is suspicious usage and we replace it with a 'Valid
5559 -- test and give a warning for scalar types.
5561 if Is_Scalar_Type
(Ltyp
)
5563 -- Only relevant for source comparisons
5565 and then Comes_From_Source
(N
)
5567 -- In floating-point this is a standard way to check for finite values
5568 -- and using 'Valid would typically be a pessimization.
5570 and then not Is_Floating_Point_Type
(Ltyp
)
5572 -- Don't give the message unless right operand is a type entity and
5573 -- the type of the left operand matches this type. Note that this
5574 -- eliminates the cases where MINIMIZED/ELIMINATED mode overflow
5575 -- checks have changed the type of the left operand.
5577 and then Nkind
(Rop
) in N_Has_Entity
5578 and then Ltyp
= Entity
(Rop
)
5580 -- Skip in VM mode, where we have no sense of invalid values. The
5581 -- warning still seems relevant, but not important enough to worry.
5583 and then VM_Target
= No_VM
5585 -- Skip this for predicated types, where such expressions are a
5586 -- reasonable way of testing if something meets the predicate.
5588 and then not Present
(Predicate_Function
(Ltyp
))
5590 Substitute_Valid_Check
;
5594 -- Do validity check on operands
5596 if Validity_Checks_On
and Validity_Check_Operands
then
5597 Ensure_Valid
(Left_Opnd
(N
));
5598 Validity_Check_Range
(Right_Opnd
(N
));
5601 -- Case of explicit range
5603 if Nkind
(Rop
) = N_Range
then
5605 Lo
: constant Node_Id
:= Low_Bound
(Rop
);
5606 Hi
: constant Node_Id
:= High_Bound
(Rop
);
5608 Lo_Orig
: constant Node_Id
:= Original_Node
(Lo
);
5609 Hi_Orig
: constant Node_Id
:= Original_Node
(Hi
);
5611 Lcheck
: Compare_Result
;
5612 Ucheck
: Compare_Result
;
5614 Warn1
: constant Boolean :=
5615 Constant_Condition_Warnings
5616 and then Comes_From_Source
(N
)
5617 and then not In_Instance
;
5618 -- This must be true for any of the optimization warnings, we
5619 -- clearly want to give them only for source with the flag on. We
5620 -- also skip these warnings in an instance since it may be the
5621 -- case that different instantiations have different ranges.
5623 Warn2
: constant Boolean :=
5625 and then Nkind
(Original_Node
(Rop
)) = N_Range
5626 and then Is_Integer_Type
(Etype
(Lo
));
5627 -- For the case where only one bound warning is elided, we also
5628 -- insist on an explicit range and an integer type. The reason is
5629 -- that the use of enumeration ranges including an end point is
5630 -- common, as is the use of a subtype name, one of whose bounds is
5631 -- the same as the type of the expression.
5634 -- If test is explicit x'First .. x'Last, replace by valid check
5636 -- Could use some individual comments for this complex test ???
5638 if Is_Scalar_Type
(Ltyp
)
5640 -- And left operand is X'First where X matches left operand
5641 -- type (this eliminates cases of type mismatch, including
5642 -- the cases where ELIMINATED/MINIMIZED mode has changed the
5643 -- type of the left operand.
5645 and then Nkind
(Lo_Orig
) = N_Attribute_Reference
5646 and then Attribute_Name
(Lo_Orig
) = Name_First
5647 and then Nkind
(Prefix
(Lo_Orig
)) in N_Has_Entity
5648 and then Entity
(Prefix
(Lo_Orig
)) = Ltyp
5650 -- Same tests for right operand
5652 and then Nkind
(Hi_Orig
) = N_Attribute_Reference
5653 and then Attribute_Name
(Hi_Orig
) = Name_Last
5654 and then Nkind
(Prefix
(Hi_Orig
)) in N_Has_Entity
5655 and then Entity
(Prefix
(Hi_Orig
)) = Ltyp
5657 -- Relevant only for source cases
5659 and then Comes_From_Source
(N
)
5661 -- Omit for VM cases, where we don't have invalid values
5663 and then VM_Target
= No_VM
5665 Substitute_Valid_Check
;
5669 -- If bounds of type are known at compile time, and the end points
5670 -- are known at compile time and identical, this is another case
5671 -- for substituting a valid test. We only do this for discrete
5672 -- types, since it won't arise in practice for float types.
5674 if Comes_From_Source
(N
)
5675 and then Is_Discrete_Type
(Ltyp
)
5676 and then Compile_Time_Known_Value
(Type_High_Bound
(Ltyp
))
5677 and then Compile_Time_Known_Value
(Type_Low_Bound
(Ltyp
))
5678 and then Compile_Time_Known_Value
(Lo
)
5679 and then Compile_Time_Known_Value
(Hi
)
5680 and then Expr_Value
(Type_High_Bound
(Ltyp
)) = Expr_Value
(Hi
)
5681 and then Expr_Value
(Type_Low_Bound
(Ltyp
)) = Expr_Value
(Lo
)
5683 -- Kill warnings in instances, since they may be cases where we
5684 -- have a test in the generic that makes sense with some types
5685 -- and not with other types.
5687 and then not In_Instance
5689 Substitute_Valid_Check
;
5693 -- If we have an explicit range, do a bit of optimization based on
5694 -- range analysis (we may be able to kill one or both checks).
5696 Lcheck
:= Compile_Time_Compare
(Lop
, Lo
, Assume_Valid
=> False);
5697 Ucheck
:= Compile_Time_Compare
(Lop
, Hi
, Assume_Valid
=> False);
5699 -- If either check is known to fail, replace result by False since
5700 -- the other check does not matter. Preserve the static flag for
5701 -- legality checks, because we are constant-folding beyond RM 4.9.
5703 if Lcheck
= LT
or else Ucheck
= GT
then
5705 Error_Msg_N
("?c?range test optimized away", N
);
5706 Error_Msg_N
("\?c?value is known to be out of range", N
);
5709 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
5710 Analyze_And_Resolve
(N
, Restyp
);
5711 Set_Is_Static_Expression
(N
, Static
);
5714 -- If both checks are known to succeed, replace result by True,
5715 -- since we know we are in range.
5717 elsif Lcheck
in Compare_GE
and then Ucheck
in Compare_LE
then
5719 Error_Msg_N
("?c?range test optimized away", N
);
5720 Error_Msg_N
("\?c?value is known to be in range", N
);
5723 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
5724 Analyze_And_Resolve
(N
, Restyp
);
5725 Set_Is_Static_Expression
(N
, Static
);
5728 -- If lower bound check succeeds and upper bound check is not
5729 -- known to succeed or fail, then replace the range check with
5730 -- a comparison against the upper bound.
5732 elsif Lcheck
in Compare_GE
then
5733 if Warn2
and then not In_Instance
then
5734 Error_Msg_N
("??lower bound test optimized away", Lo
);
5735 Error_Msg_N
("\??value is known to be in range", Lo
);
5741 Right_Opnd
=> High_Bound
(Rop
)));
5742 Analyze_And_Resolve
(N
, Restyp
);
5745 -- If upper bound check succeeds and lower bound check is not
5746 -- known to succeed or fail, then replace the range check with
5747 -- a comparison against the lower bound.
5749 elsif Ucheck
in Compare_LE
then
5750 if Warn2
and then not In_Instance
then
5751 Error_Msg_N
("??upper bound test optimized away", Hi
);
5752 Error_Msg_N
("\??value is known to be in range", Hi
);
5758 Right_Opnd
=> Low_Bound
(Rop
)));
5759 Analyze_And_Resolve
(N
, Restyp
);
5763 -- We couldn't optimize away the range check, but there is one
5764 -- more issue. If we are checking constant conditionals, then we
5765 -- see if we can determine the outcome assuming everything is
5766 -- valid, and if so give an appropriate warning.
5768 if Warn1
and then not Assume_No_Invalid_Values
then
5769 Lcheck
:= Compile_Time_Compare
(Lop
, Lo
, Assume_Valid
=> True);
5770 Ucheck
:= Compile_Time_Compare
(Lop
, Hi
, Assume_Valid
=> True);
5772 -- Result is out of range for valid value
5774 if Lcheck
= LT
or else Ucheck
= GT
then
5776 ("?c?value can only be in range if it is invalid", N
);
5778 -- Result is in range for valid value
5780 elsif Lcheck
in Compare_GE
and then Ucheck
in Compare_LE
then
5782 ("?c?value can only be out of range if it is invalid", N
);
5784 -- Lower bound check succeeds if value is valid
5786 elsif Warn2
and then Lcheck
in Compare_GE
then
5788 ("?c?lower bound check only fails if it is invalid", Lo
);
5790 -- Upper bound check succeeds if value is valid
5792 elsif Warn2
and then Ucheck
in Compare_LE
then
5794 ("?c?upper bound check only fails for invalid values", Hi
);
5799 -- For all other cases of an explicit range, nothing to be done
5803 -- Here right operand is a subtype mark
5807 Typ
: Entity_Id
:= Etype
(Rop
);
5808 Is_Acc
: constant Boolean := Is_Access_Type
(Typ
);
5809 Cond
: Node_Id
:= Empty
;
5811 Obj
: Node_Id
:= Lop
;
5812 SCIL_Node
: Node_Id
;
5815 Remove_Side_Effects
(Obj
);
5817 -- For tagged type, do tagged membership operation
5819 if Is_Tagged_Type
(Typ
) then
5821 -- No expansion will be performed when VM_Target, as the VM
5822 -- back-ends will handle the membership tests directly (tags
5823 -- are not explicitly represented in Java objects, so the
5824 -- normal tagged membership expansion is not what we want).
5826 if Tagged_Type_Expansion
then
5827 Tagged_Membership
(N
, SCIL_Node
, New_N
);
5829 Analyze_And_Resolve
(N
, Restyp
);
5831 -- Update decoration of relocated node referenced by the
5834 if Generate_SCIL
and then Present
(SCIL_Node
) then
5835 Set_SCIL_Node
(N
, SCIL_Node
);
5841 -- If type is scalar type, rewrite as x in t'First .. t'Last.
5842 -- This reason we do this is that the bounds may have the wrong
5843 -- type if they come from the original type definition. Also this
5844 -- way we get all the processing above for an explicit range.
5846 -- Don't do this for predicated types, since in this case we
5847 -- want to check the predicate.
5849 elsif Is_Scalar_Type
(Typ
) then
5850 if No
(Predicate_Function
(Typ
)) then
5854 Make_Attribute_Reference
(Loc
,
5855 Attribute_Name
=> Name_First
,
5856 Prefix
=> New_Occurrence_Of
(Typ
, Loc
)),
5859 Make_Attribute_Reference
(Loc
,
5860 Attribute_Name
=> Name_Last
,
5861 Prefix
=> New_Occurrence_Of
(Typ
, Loc
))));
5862 Analyze_And_Resolve
(N
, Restyp
);
5867 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
5868 -- a membership test if the subtype mark denotes a constrained
5869 -- Unchecked_Union subtype and the expression lacks inferable
5872 elsif Is_Unchecked_Union
(Base_Type
(Typ
))
5873 and then Is_Constrained
(Typ
)
5874 and then not Has_Inferable_Discriminants
(Lop
)
5877 Make_Raise_Program_Error
(Loc
,
5878 Reason
=> PE_Unchecked_Union_Restriction
));
5880 -- Prevent Gigi from generating incorrect code by rewriting the
5881 -- test as False. What is this undocumented thing about ???
5883 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
5887 -- Here we have a non-scalar type
5890 Typ
:= Designated_Type
(Typ
);
5893 if not Is_Constrained
(Typ
) then
5894 Rewrite
(N
, New_Occurrence_Of
(Standard_True
, Loc
));
5895 Analyze_And_Resolve
(N
, Restyp
);
5897 -- For the constrained array case, we have to check the subscripts
5898 -- for an exact match if the lengths are non-zero (the lengths
5899 -- must match in any case).
5901 elsif Is_Array_Type
(Typ
) then
5902 Check_Subscripts
: declare
5903 function Build_Attribute_Reference
5906 Dim
: Nat
) return Node_Id
;
5907 -- Build attribute reference E'Nam (Dim)
5909 -------------------------------
5910 -- Build_Attribute_Reference --
5911 -------------------------------
5913 function Build_Attribute_Reference
5916 Dim
: Nat
) return Node_Id
5920 Make_Attribute_Reference
(Loc
,
5922 Attribute_Name
=> Nam
,
5923 Expressions
=> New_List
(
5924 Make_Integer_Literal
(Loc
, Dim
)));
5925 end Build_Attribute_Reference
;
5927 -- Start of processing for Check_Subscripts
5930 for J
in 1 .. Number_Dimensions
(Typ
) loop
5931 Evolve_And_Then
(Cond
,
5934 Build_Attribute_Reference
5935 (Duplicate_Subexpr_No_Checks
(Obj
),
5938 Build_Attribute_Reference
5939 (New_Occurrence_Of
(Typ
, Loc
), Name_First
, J
)));
5941 Evolve_And_Then
(Cond
,
5944 Build_Attribute_Reference
5945 (Duplicate_Subexpr_No_Checks
(Obj
),
5948 Build_Attribute_Reference
5949 (New_Occurrence_Of
(Typ
, Loc
), Name_Last
, J
)));
5958 Right_Opnd
=> Make_Null
(Loc
)),
5959 Right_Opnd
=> Cond
);
5963 Analyze_And_Resolve
(N
, Restyp
);
5964 end Check_Subscripts
;
5966 -- These are the cases where constraint checks may be required,
5967 -- e.g. records with possible discriminants
5970 -- Expand the test into a series of discriminant comparisons.
5971 -- The expression that is built is the negation of the one that
5972 -- is used for checking discriminant constraints.
5974 Obj
:= Relocate_Node
(Left_Opnd
(N
));
5976 if Has_Discriminants
(Typ
) then
5977 Cond
:= Make_Op_Not
(Loc
,
5978 Right_Opnd
=> Build_Discriminant_Checks
(Obj
, Typ
));
5981 Cond
:= Make_Or_Else
(Loc
,
5985 Right_Opnd
=> Make_Null
(Loc
)),
5986 Right_Opnd
=> Cond
);
5990 Cond
:= New_Occurrence_Of
(Standard_True
, Loc
);
5994 Analyze_And_Resolve
(N
, Restyp
);
5997 -- Ada 2012 (AI05-0149): Handle membership tests applied to an
5998 -- expression of an anonymous access type. This can involve an
5999 -- accessibility test and a tagged type membership test in the
6000 -- case of tagged designated types.
6002 if Ada_Version
>= Ada_2012
6004 and then Ekind
(Ltyp
) = E_Anonymous_Access_Type
6007 Expr_Entity
: Entity_Id
:= Empty
;
6009 Param_Level
: Node_Id
;
6010 Type_Level
: Node_Id
;
6013 if Is_Entity_Name
(Lop
) then
6014 Expr_Entity
:= Param_Entity
(Lop
);
6016 if not Present
(Expr_Entity
) then
6017 Expr_Entity
:= Entity
(Lop
);
6021 -- If a conversion of the anonymous access value to the
6022 -- tested type would be illegal, then the result is False.
6024 if not Valid_Conversion
6025 (Lop
, Rtyp
, Lop
, Report_Errs
=> False)
6027 Rewrite
(N
, New_Occurrence_Of
(Standard_False
, Loc
));
6028 Analyze_And_Resolve
(N
, Restyp
);
6030 -- Apply an accessibility check if the access object has an
6031 -- associated access level and when the level of the type is
6032 -- less deep than the level of the access parameter. This
6033 -- only occur for access parameters and stand-alone objects
6034 -- of an anonymous access type.
6037 if Present
(Expr_Entity
)
6040 (Effective_Extra_Accessibility
(Expr_Entity
))
6041 and then UI_Gt
(Object_Access_Level
(Lop
),
6042 Type_Access_Level
(Rtyp
))
6046 (Effective_Extra_Accessibility
(Expr_Entity
), Loc
);
6049 Make_Integer_Literal
(Loc
, Type_Access_Level
(Rtyp
));
6051 -- Return True only if the accessibility level of the
6052 -- expression entity is not deeper than the level of
6053 -- the tested access type.
6057 Left_Opnd
=> Relocate_Node
(N
),
6058 Right_Opnd
=> Make_Op_Le
(Loc
,
6059 Left_Opnd
=> Param_Level
,
6060 Right_Opnd
=> Type_Level
)));
6062 Analyze_And_Resolve
(N
);
6065 -- If the designated type is tagged, do tagged membership
6068 -- *** NOTE: we have to check not null before doing the
6069 -- tagged membership test (but maybe that can be done
6070 -- inside Tagged_Membership?).
6072 if Is_Tagged_Type
(Typ
) then
6075 Left_Opnd
=> Relocate_Node
(N
),
6079 Right_Opnd
=> Make_Null
(Loc
))));
6081 -- No expansion will be performed when VM_Target, as
6082 -- the VM back-ends will handle the membership tests
6083 -- directly (tags are not explicitly represented in
6084 -- Java objects, so the normal tagged membership
6085 -- expansion is not what we want).
6087 if Tagged_Type_Expansion
then
6089 -- Note that we have to pass Original_Node, because
6090 -- the membership test might already have been
6091 -- rewritten by earlier parts of membership test.
6094 (Original_Node
(N
), SCIL_Node
, New_N
);
6096 -- Update decoration of relocated node referenced
6097 -- by the SCIL node.
6099 if Generate_SCIL
and then Present
(SCIL_Node
) then
6100 Set_SCIL_Node
(New_N
, SCIL_Node
);
6105 Left_Opnd
=> Relocate_Node
(N
),
6106 Right_Opnd
=> New_N
));
6108 Analyze_And_Resolve
(N
, Restyp
);
6117 -- At this point, we have done the processing required for the basic
6118 -- membership test, but not yet dealt with the predicate.
6122 -- If a predicate is present, then we do the predicate test, but we
6123 -- most certainly want to omit this if we are within the predicate
6124 -- function itself, since otherwise we have an infinite recursion.
6125 -- The check should also not be emitted when testing against a range
6126 -- (the check is only done when the right operand is a subtype; see
6127 -- RM12-4.5.2 (28.1/3-30/3)).
6130 PFunc
: constant Entity_Id
:= Predicate_Function
(Rtyp
);
6134 and then Current_Scope
/= PFunc
6135 and then Nkind
(Rop
) /= N_Range
6139 Left_Opnd
=> Relocate_Node
(N
),
6140 Right_Opnd
=> Make_Predicate_Call
(Rtyp
, Lop
, Mem
=> True)));
6142 -- Analyze new expression, mark left operand as analyzed to
6143 -- avoid infinite recursion adding predicate calls. Similarly,
6144 -- suppress further range checks on the call.
6146 Set_Analyzed
(Left_Opnd
(N
));
6147 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
6149 -- All done, skip attempt at compile time determination of result
6156 --------------------------------
6157 -- Expand_N_Indexed_Component --
6158 --------------------------------
6160 procedure Expand_N_Indexed_Component
(N
: Node_Id
) is
6161 Loc
: constant Source_Ptr
:= Sloc
(N
);
6162 Typ
: constant Entity_Id
:= Etype
(N
);
6163 P
: constant Node_Id
:= Prefix
(N
);
6164 T
: constant Entity_Id
:= Etype
(P
);
6168 -- A special optimization, if we have an indexed component that is
6169 -- selecting from a slice, then we can eliminate the slice, since, for
6170 -- example, x (i .. j)(k) is identical to x(k). The only difference is
6171 -- the range check required by the slice. The range check for the slice
6172 -- itself has already been generated. The range check for the
6173 -- subscripting operation is ensured by converting the subject to
6174 -- the subtype of the slice.
6176 -- This optimization not only generates better code, avoiding slice
6177 -- messing especially in the packed case, but more importantly bypasses
6178 -- some problems in handling this peculiar case, for example, the issue
6179 -- of dealing specially with object renamings.
6181 if Nkind
(P
) = N_Slice
6183 -- This optimization is disabled for CodePeer because it can transform
6184 -- an index-check constraint_error into a range-check constraint_error
6185 -- and CodePeer cares about that distinction.
6187 and then not CodePeer_Mode
6190 Make_Indexed_Component
(Loc
,
6191 Prefix
=> Prefix
(P
),
6192 Expressions
=> New_List
(
6194 (Etype
(First_Index
(Etype
(P
))),
6195 First
(Expressions
(N
))))));
6196 Analyze_And_Resolve
(N
, Typ
);
6200 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
6201 -- function, then additional actuals must be passed.
6203 if Ada_Version
>= Ada_2005
6204 and then Is_Build_In_Place_Function_Call
(P
)
6206 Make_Build_In_Place_Call_In_Anonymous_Context
(P
);
6209 -- If the prefix is an access type, then we unconditionally rewrite if
6210 -- as an explicit dereference. This simplifies processing for several
6211 -- cases, including packed array cases and certain cases in which checks
6212 -- must be generated. We used to try to do this only when it was
6213 -- necessary, but it cleans up the code to do it all the time.
6215 if Is_Access_Type
(T
) then
6216 Insert_Explicit_Dereference
(P
);
6217 Analyze_And_Resolve
(P
, Designated_Type
(T
));
6218 Atp
:= Designated_Type
(T
);
6223 -- Generate index and validity checks
6225 Generate_Index_Checks
(N
);
6227 if Validity_Checks_On
and then Validity_Check_Subscripts
then
6228 Apply_Subscript_Validity_Checks
(N
);
6231 -- If selecting from an array with atomic components, and atomic sync
6232 -- is not suppressed for this array type, set atomic sync flag.
6234 if (Has_Atomic_Components
(Atp
)
6235 and then not Atomic_Synchronization_Disabled
(Atp
))
6236 or else (Is_Atomic
(Typ
)
6237 and then not Atomic_Synchronization_Disabled
(Typ
))
6239 Activate_Atomic_Synchronization
(N
);
6242 -- All done for the non-packed case
6244 if not Is_Packed
(Etype
(Prefix
(N
))) then
6248 -- For packed arrays that are not bit-packed (i.e. the case of an array
6249 -- with one or more index types with a non-contiguous enumeration type),
6250 -- we can always use the normal packed element get circuit.
6252 if not Is_Bit_Packed_Array
(Etype
(Prefix
(N
))) then
6253 Expand_Packed_Element_Reference
(N
);
6257 -- For a reference to a component of a bit packed array, we convert it
6258 -- to a reference to the corresponding Packed_Array_Impl_Type. We only
6259 -- want to do this for simple references, and not for:
6261 -- Left side of assignment, or prefix of left side of assignment, or
6262 -- prefix of the prefix, to handle packed arrays of packed arrays,
6263 -- This case is handled in Exp_Ch5.Expand_N_Assignment_Statement
6265 -- Renaming objects in renaming associations
6266 -- This case is handled when a use of the renamed variable occurs
6268 -- Actual parameters for a procedure call
6269 -- This case is handled in Exp_Ch6.Expand_Actuals
6271 -- The second expression in a 'Read attribute reference
6273 -- The prefix of an address or bit or size attribute reference
6275 -- The following circuit detects these exceptions
6278 Child
: Node_Id
:= N
;
6279 Parnt
: Node_Id
:= Parent
(N
);
6283 if Nkind
(Parnt
) = N_Unchecked_Expression
then
6286 elsif Nkind_In
(Parnt
, N_Object_Renaming_Declaration
,
6287 N_Procedure_Call_Statement
)
6288 or else (Nkind
(Parnt
) = N_Parameter_Association
6290 Nkind
(Parent
(Parnt
)) = N_Procedure_Call_Statement
)
6294 elsif Nkind
(Parnt
) = N_Attribute_Reference
6295 and then Nam_In
(Attribute_Name
(Parnt
), Name_Address
,
6298 and then Prefix
(Parnt
) = Child
6302 elsif Nkind
(Parnt
) = N_Assignment_Statement
6303 and then Name
(Parnt
) = Child
6307 -- If the expression is an index of an indexed component, it must
6308 -- be expanded regardless of context.
6310 elsif Nkind
(Parnt
) = N_Indexed_Component
6311 and then Child
/= Prefix
(Parnt
)
6313 Expand_Packed_Element_Reference
(N
);
6316 elsif Nkind
(Parent
(Parnt
)) = N_Assignment_Statement
6317 and then Name
(Parent
(Parnt
)) = Parnt
6321 elsif Nkind
(Parnt
) = N_Attribute_Reference
6322 and then Attribute_Name
(Parnt
) = Name_Read
6323 and then Next
(First
(Expressions
(Parnt
))) = Child
6327 elsif Nkind_In
(Parnt
, N_Indexed_Component
, N_Selected_Component
)
6328 and then Prefix
(Parnt
) = Child
6333 Expand_Packed_Element_Reference
(N
);
6337 -- Keep looking up tree for unchecked expression, or if we are the
6338 -- prefix of a possible assignment left side.
6341 Parnt
:= Parent
(Child
);
6344 end Expand_N_Indexed_Component
;
6346 ---------------------
6347 -- Expand_N_Not_In --
6348 ---------------------
6350 -- Replace a not in b by not (a in b) so that the expansions for (a in b)
6351 -- can be done. This avoids needing to duplicate this expansion code.
6353 procedure Expand_N_Not_In
(N
: Node_Id
) is
6354 Loc
: constant Source_Ptr
:= Sloc
(N
);
6355 Typ
: constant Entity_Id
:= Etype
(N
);
6356 Cfs
: constant Boolean := Comes_From_Source
(N
);
6363 Left_Opnd
=> Left_Opnd
(N
),
6364 Right_Opnd
=> Right_Opnd
(N
))));
6366 -- If this is a set membership, preserve list of alternatives
6368 Set_Alternatives
(Right_Opnd
(N
), Alternatives
(Original_Node
(N
)));
6370 -- We want this to appear as coming from source if original does (see
6371 -- transformations in Expand_N_In).
6373 Set_Comes_From_Source
(N
, Cfs
);
6374 Set_Comes_From_Source
(Right_Opnd
(N
), Cfs
);
6376 -- Now analyze transformed node
6378 Analyze_And_Resolve
(N
, Typ
);
6379 end Expand_N_Not_In
;
6385 -- The only replacement required is for the case of a null of a type that
6386 -- is an access to protected subprogram, or a subtype thereof. We represent
6387 -- such access values as a record, and so we must replace the occurrence of
6388 -- null by the equivalent record (with a null address and a null pointer in
6389 -- it), so that the backend creates the proper value.
6391 procedure Expand_N_Null
(N
: Node_Id
) is
6392 Loc
: constant Source_Ptr
:= Sloc
(N
);
6393 Typ
: constant Entity_Id
:= Base_Type
(Etype
(N
));
6397 if Is_Access_Protected_Subprogram_Type
(Typ
) then
6399 Make_Aggregate
(Loc
,
6400 Expressions
=> New_List
(
6401 New_Occurrence_Of
(RTE
(RE_Null_Address
), Loc
),
6405 Analyze_And_Resolve
(N
, Equivalent_Type
(Typ
));
6407 -- For subsequent semantic analysis, the node must retain its type.
6408 -- Gigi in any case replaces this type by the corresponding record
6409 -- type before processing the node.
6415 when RE_Not_Available
=>
6419 ---------------------
6420 -- Expand_N_Op_Abs --
6421 ---------------------
6423 procedure Expand_N_Op_Abs
(N
: Node_Id
) is
6424 Loc
: constant Source_Ptr
:= Sloc
(N
);
6425 Expr
: constant Node_Id
:= Right_Opnd
(N
);
6428 Unary_Op_Validity_Checks
(N
);
6430 -- Check for MINIMIZED/ELIMINATED overflow mode
6432 if Minimized_Eliminated_Overflow_Check
(N
) then
6433 Apply_Arithmetic_Overflow_Check
(N
);
6437 -- Deal with software overflow checking
6439 if not Backend_Overflow_Checks_On_Target
6440 and then Is_Signed_Integer_Type
(Etype
(N
))
6441 and then Do_Overflow_Check
(N
)
6443 -- The only case to worry about is when the argument is equal to the
6444 -- largest negative number, so what we do is to insert the check:
6446 -- [constraint_error when Expr = typ'Base'First]
6448 -- with the usual Duplicate_Subexpr use coding for expr
6451 Make_Raise_Constraint_Error
(Loc
,
6454 Left_Opnd
=> Duplicate_Subexpr
(Expr
),
6456 Make_Attribute_Reference
(Loc
,
6458 New_Occurrence_Of
(Base_Type
(Etype
(Expr
)), Loc
),
6459 Attribute_Name
=> Name_First
)),
6460 Reason
=> CE_Overflow_Check_Failed
));
6462 end Expand_N_Op_Abs
;
6464 ---------------------
6465 -- Expand_N_Op_Add --
6466 ---------------------
6468 procedure Expand_N_Op_Add
(N
: Node_Id
) is
6469 Typ
: constant Entity_Id
:= Etype
(N
);
6472 Binary_Op_Validity_Checks
(N
);
6474 -- Check for MINIMIZED/ELIMINATED overflow mode
6476 if Minimized_Eliminated_Overflow_Check
(N
) then
6477 Apply_Arithmetic_Overflow_Check
(N
);
6481 -- N + 0 = 0 + N = N for integer types
6483 if Is_Integer_Type
(Typ
) then
6484 if Compile_Time_Known_Value
(Right_Opnd
(N
))
6485 and then Expr_Value
(Right_Opnd
(N
)) = Uint_0
6487 Rewrite
(N
, Left_Opnd
(N
));
6490 elsif Compile_Time_Known_Value
(Left_Opnd
(N
))
6491 and then Expr_Value
(Left_Opnd
(N
)) = Uint_0
6493 Rewrite
(N
, Right_Opnd
(N
));
6498 -- Arithmetic overflow checks for signed integer/fixed point types
6500 if Is_Signed_Integer_Type
(Typ
) or else Is_Fixed_Point_Type
(Typ
) then
6501 Apply_Arithmetic_Overflow_Check
(N
);
6505 -- Overflow checks for floating-point if -gnateF mode active
6507 Check_Float_Op_Overflow
(N
);
6508 end Expand_N_Op_Add
;
6510 ---------------------
6511 -- Expand_N_Op_And --
6512 ---------------------
6514 procedure Expand_N_Op_And
(N
: Node_Id
) is
6515 Typ
: constant Entity_Id
:= Etype
(N
);
6518 Binary_Op_Validity_Checks
(N
);
6520 if Is_Array_Type
(Etype
(N
)) then
6521 Expand_Boolean_Operator
(N
);
6523 elsif Is_Boolean_Type
(Etype
(N
)) then
6524 Adjust_Condition
(Left_Opnd
(N
));
6525 Adjust_Condition
(Right_Opnd
(N
));
6526 Set_Etype
(N
, Standard_Boolean
);
6527 Adjust_Result_Type
(N
, Typ
);
6529 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
6530 Expand_Intrinsic_Call
(N
, Entity
(N
));
6533 end Expand_N_Op_And
;
6535 ------------------------
6536 -- Expand_N_Op_Concat --
6537 ------------------------
6539 procedure Expand_N_Op_Concat
(N
: Node_Id
) is
6541 -- List of operands to be concatenated
6544 -- Node which is to be replaced by the result of concatenating the nodes
6545 -- in the list Opnds.
6548 -- Ensure validity of both operands
6550 Binary_Op_Validity_Checks
(N
);
6552 -- If we are the left operand of a concatenation higher up the tree,
6553 -- then do nothing for now, since we want to deal with a series of
6554 -- concatenations as a unit.
6556 if Nkind
(Parent
(N
)) = N_Op_Concat
6557 and then N
= Left_Opnd
(Parent
(N
))
6562 -- We get here with a concatenation whose left operand may be a
6563 -- concatenation itself with a consistent type. We need to process
6564 -- these concatenation operands from left to right, which means
6565 -- from the deepest node in the tree to the highest node.
6568 while Nkind
(Left_Opnd
(Cnode
)) = N_Op_Concat
loop
6569 Cnode
:= Left_Opnd
(Cnode
);
6572 -- Now Cnode is the deepest concatenation, and its parents are the
6573 -- concatenation nodes above, so now we process bottom up, doing the
6576 -- The outer loop runs more than once if more than one concatenation
6577 -- type is involved.
6580 Opnds
:= New_List
(Left_Opnd
(Cnode
), Right_Opnd
(Cnode
));
6581 Set_Parent
(Opnds
, N
);
6583 -- The inner loop gathers concatenation operands
6585 Inner
: while Cnode
/= N
6586 and then Base_Type
(Etype
(Cnode
)) =
6587 Base_Type
(Etype
(Parent
(Cnode
)))
6589 Cnode
:= Parent
(Cnode
);
6590 Append
(Right_Opnd
(Cnode
), Opnds
);
6593 -- Note: The following code is a temporary workaround for N731-034
6594 -- and N829-028 and will be kept until the general issue of internal
6595 -- symbol serialization is addressed. The workaround is kept under a
6596 -- debug switch to avoid permiating into the general case.
6598 -- Wrap the node to concatenate into an expression actions node to
6599 -- keep it nicely packaged. This is useful in the case of an assert
6600 -- pragma with a concatenation where we want to be able to delete
6601 -- the concatenation and all its expansion stuff.
6603 if Debug_Flag_Dot_H
then
6605 Cnod
: constant Node_Id
:= Relocate_Node
(Cnode
);
6606 Typ
: constant Entity_Id
:= Base_Type
(Etype
(Cnode
));
6609 -- Note: use Rewrite rather than Replace here, so that for
6610 -- example Why_Not_Static can find the original concatenation
6614 Make_Expression_With_Actions
(Sloc
(Cnode
),
6615 Actions
=> New_List
(Make_Null_Statement
(Sloc
(Cnode
))),
6616 Expression
=> Cnod
));
6618 Expand_Concatenate
(Cnod
, Opnds
);
6619 Analyze_And_Resolve
(Cnode
, Typ
);
6625 Expand_Concatenate
(Cnode
, Opnds
);
6628 exit Outer
when Cnode
= N
;
6629 Cnode
:= Parent
(Cnode
);
6631 end Expand_N_Op_Concat
;
6633 ------------------------
6634 -- Expand_N_Op_Divide --
6635 ------------------------
6637 procedure Expand_N_Op_Divide
(N
: Node_Id
) is
6638 Loc
: constant Source_Ptr
:= Sloc
(N
);
6639 Lopnd
: constant Node_Id
:= Left_Opnd
(N
);
6640 Ropnd
: constant Node_Id
:= Right_Opnd
(N
);
6641 Ltyp
: constant Entity_Id
:= Etype
(Lopnd
);
6642 Rtyp
: constant Entity_Id
:= Etype
(Ropnd
);
6643 Typ
: Entity_Id
:= Etype
(N
);
6644 Rknow
: constant Boolean := Is_Integer_Type
(Typ
)
6646 Compile_Time_Known_Value
(Ropnd
);
6650 Binary_Op_Validity_Checks
(N
);
6652 -- Check for MINIMIZED/ELIMINATED overflow mode
6654 if Minimized_Eliminated_Overflow_Check
(N
) then
6655 Apply_Arithmetic_Overflow_Check
(N
);
6659 -- Otherwise proceed with expansion of division
6662 Rval
:= Expr_Value
(Ropnd
);
6665 -- N / 1 = N for integer types
6667 if Rknow
and then Rval
= Uint_1
then
6672 -- Convert x / 2 ** y to Shift_Right (x, y). Note that the fact that
6673 -- Is_Power_Of_2_For_Shift is set means that we know that our left
6674 -- operand is an unsigned integer, as required for this to work.
6676 if Nkind
(Ropnd
) = N_Op_Expon
6677 and then Is_Power_Of_2_For_Shift
(Ropnd
)
6679 -- We cannot do this transformation in configurable run time mode if we
6680 -- have 64-bit integers and long shifts are not available.
6682 and then (Esize
(Ltyp
) <= 32 or else Support_Long_Shifts_On_Target
)
6685 Make_Op_Shift_Right
(Loc
,
6688 Convert_To
(Standard_Natural
, Right_Opnd
(Ropnd
))));
6689 Analyze_And_Resolve
(N
, Typ
);
6693 -- Do required fixup of universal fixed operation
6695 if Typ
= Universal_Fixed
then
6696 Fixup_Universal_Fixed_Operation
(N
);
6700 -- Divisions with fixed-point results
6702 if Is_Fixed_Point_Type
(Typ
) then
6704 -- No special processing if Treat_Fixed_As_Integer is set, since
6705 -- from a semantic point of view such operations are simply integer
6706 -- operations and will be treated that way.
6708 if not Treat_Fixed_As_Integer
(N
) then
6709 if Is_Integer_Type
(Rtyp
) then
6710 Expand_Divide_Fixed_By_Integer_Giving_Fixed
(N
);
6712 Expand_Divide_Fixed_By_Fixed_Giving_Fixed
(N
);
6716 -- Other cases of division of fixed-point operands. Again we exclude the
6717 -- case where Treat_Fixed_As_Integer is set.
6719 elsif (Is_Fixed_Point_Type
(Ltyp
) or else Is_Fixed_Point_Type
(Rtyp
))
6720 and then not Treat_Fixed_As_Integer
(N
)
6722 if Is_Integer_Type
(Typ
) then
6723 Expand_Divide_Fixed_By_Fixed_Giving_Integer
(N
);
6725 pragma Assert
(Is_Floating_Point_Type
(Typ
));
6726 Expand_Divide_Fixed_By_Fixed_Giving_Float
(N
);
6729 -- Mixed-mode operations can appear in a non-static universal context,
6730 -- in which case the integer argument must be converted explicitly.
6732 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Rtyp
) then
6734 Convert_To
(Universal_Real
, Relocate_Node
(Ropnd
)));
6736 Analyze_And_Resolve
(Ropnd
, Universal_Real
);
6738 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Ltyp
) then
6740 Convert_To
(Universal_Real
, Relocate_Node
(Lopnd
)));
6742 Analyze_And_Resolve
(Lopnd
, Universal_Real
);
6744 -- Non-fixed point cases, do integer zero divide and overflow checks
6746 elsif Is_Integer_Type
(Typ
) then
6747 Apply_Divide_Checks
(N
);
6750 -- Overflow checks for floating-point if -gnateF mode active
6752 Check_Float_Op_Overflow
(N
);
6753 end Expand_N_Op_Divide
;
6755 --------------------
6756 -- Expand_N_Op_Eq --
6757 --------------------
6759 procedure Expand_N_Op_Eq
(N
: Node_Id
) is
6760 Loc
: constant Source_Ptr
:= Sloc
(N
);
6761 Typ
: constant Entity_Id
:= Etype
(N
);
6762 Lhs
: constant Node_Id
:= Left_Opnd
(N
);
6763 Rhs
: constant Node_Id
:= Right_Opnd
(N
);
6764 Bodies
: constant List_Id
:= New_List
;
6765 A_Typ
: constant Entity_Id
:= Etype
(Lhs
);
6767 Typl
: Entity_Id
:= A_Typ
;
6768 Op_Name
: Entity_Id
;
6771 procedure Build_Equality_Call
(Eq
: Entity_Id
);
6772 -- If a constructed equality exists for the type or for its parent,
6773 -- build and analyze call, adding conversions if the operation is
6776 function Has_Unconstrained_UU_Component
(Typ
: Node_Id
) return Boolean;
6777 -- Determines whether a type has a subcomponent of an unconstrained
6778 -- Unchecked_Union subtype. Typ is a record type.
6780 -------------------------
6781 -- Build_Equality_Call --
6782 -------------------------
6784 procedure Build_Equality_Call
(Eq
: Entity_Id
) is
6785 Op_Type
: constant Entity_Id
:= Etype
(First_Formal
(Eq
));
6786 L_Exp
: Node_Id
:= Relocate_Node
(Lhs
);
6787 R_Exp
: Node_Id
:= Relocate_Node
(Rhs
);
6790 -- Adjust operands if necessary to comparison type
6792 if Base_Type
(Op_Type
) /= Base_Type
(A_Typ
)
6793 and then not Is_Class_Wide_Type
(A_Typ
)
6795 L_Exp
:= OK_Convert_To
(Op_Type
, L_Exp
);
6796 R_Exp
:= OK_Convert_To
(Op_Type
, R_Exp
);
6799 -- If we have an Unchecked_Union, we need to add the inferred
6800 -- discriminant values as actuals in the function call. At this
6801 -- point, the expansion has determined that both operands have
6802 -- inferable discriminants.
6804 if Is_Unchecked_Union
(Op_Type
) then
6806 Lhs_Type
: constant Node_Id
:= Etype
(L_Exp
);
6807 Rhs_Type
: constant Node_Id
:= Etype
(R_Exp
);
6809 Lhs_Discr_Vals
: Elist_Id
;
6810 -- List of inferred discriminant values for left operand.
6812 Rhs_Discr_Vals
: Elist_Id
;
6813 -- List of inferred discriminant values for right operand.
6818 Lhs_Discr_Vals
:= New_Elmt_List
;
6819 Rhs_Discr_Vals
:= New_Elmt_List
;
6821 -- Per-object constrained selected components require special
6822 -- attention. If the enclosing scope of the component is an
6823 -- Unchecked_Union, we cannot reference its discriminants
6824 -- directly. This is why we use the extra parameters of the
6825 -- equality function of the enclosing Unchecked_Union.
6827 -- type UU_Type (Discr : Integer := 0) is
6830 -- pragma Unchecked_Union (UU_Type);
6832 -- 1. Unchecked_Union enclosing record:
6834 -- type Enclosing_UU_Type (Discr : Integer := 0) is record
6836 -- Comp : UU_Type (Discr);
6838 -- end Enclosing_UU_Type;
6839 -- pragma Unchecked_Union (Enclosing_UU_Type);
6841 -- Obj1 : Enclosing_UU_Type;
6842 -- Obj2 : Enclosing_UU_Type (1);
6844 -- [. . .] Obj1 = Obj2 [. . .]
6848 -- if not (uu_typeEQ (obj1.comp, obj2.comp, a, b)) then
6850 -- A and B are the formal parameters of the equality function
6851 -- of Enclosing_UU_Type. The function always has two extra
6852 -- formals to capture the inferred discriminant values for
6853 -- each discriminant of the type.
6855 -- 2. Non-Unchecked_Union enclosing record:
6858 -- Enclosing_Non_UU_Type (Discr : Integer := 0)
6861 -- Comp : UU_Type (Discr);
6863 -- end Enclosing_Non_UU_Type;
6865 -- Obj1 : Enclosing_Non_UU_Type;
6866 -- Obj2 : Enclosing_Non_UU_Type (1);
6868 -- ... Obj1 = Obj2 ...
6872 -- if not (uu_typeEQ (obj1.comp, obj2.comp,
6873 -- obj1.discr, obj2.discr)) then
6875 -- In this case we can directly reference the discriminants of
6876 -- the enclosing record.
6878 -- Process left operand of equality
6880 if Nkind
(Lhs
) = N_Selected_Component
6882 Has_Per_Object_Constraint
(Entity
(Selector_Name
(Lhs
)))
6884 -- If enclosing record is an Unchecked_Union, use formals
6885 -- corresponding to each discriminant. The name of the
6886 -- formal is that of the discriminant, with added suffix,
6887 -- see Exp_Ch3.Build_Record_Equality for details.
6889 if Is_Unchecked_Union
(Scope
(Entity
(Selector_Name
(Lhs
))))
6893 (Scope
(Entity
(Selector_Name
(Lhs
))));
6894 while Present
(Discr
) loop
6896 (Make_Identifier
(Loc
,
6897 Chars
=> New_External_Name
(Chars
(Discr
), 'A')),
6898 To
=> Lhs_Discr_Vals
);
6899 Next_Discriminant
(Discr
);
6902 -- If enclosing record is of a non-Unchecked_Union type, it
6903 -- is possible to reference its discriminants directly.
6906 Discr
:= First_Discriminant
(Lhs_Type
);
6907 while Present
(Discr
) loop
6909 (Make_Selected_Component
(Loc
,
6910 Prefix
=> Prefix
(Lhs
),
6913 (Get_Discriminant_Value
(Discr
,
6915 Stored_Constraint
(Lhs_Type
)))),
6916 To
=> Lhs_Discr_Vals
);
6917 Next_Discriminant
(Discr
);
6921 -- Otherwise operand is on object with a constrained type.
6922 -- Infer the discriminant values from the constraint.
6926 Discr
:= First_Discriminant
(Lhs_Type
);
6927 while Present
(Discr
) loop
6930 (Get_Discriminant_Value
(Discr
,
6932 Stored_Constraint
(Lhs_Type
))),
6933 To
=> Lhs_Discr_Vals
);
6934 Next_Discriminant
(Discr
);
6938 -- Similar processing for right operand of equality
6940 if Nkind
(Rhs
) = N_Selected_Component
6942 Has_Per_Object_Constraint
(Entity
(Selector_Name
(Rhs
)))
6944 if Is_Unchecked_Union
6945 (Scope
(Entity
(Selector_Name
(Rhs
))))
6949 (Scope
(Entity
(Selector_Name
(Rhs
))));
6950 while Present
(Discr
) loop
6952 (Make_Identifier
(Loc
,
6953 Chars
=> New_External_Name
(Chars
(Discr
), 'B')),
6954 To
=> Rhs_Discr_Vals
);
6955 Next_Discriminant
(Discr
);
6959 Discr
:= First_Discriminant
(Rhs_Type
);
6960 while Present
(Discr
) loop
6962 (Make_Selected_Component
(Loc
,
6963 Prefix
=> Prefix
(Rhs
),
6965 New_Copy
(Get_Discriminant_Value
6968 Stored_Constraint
(Rhs_Type
)))),
6969 To
=> Rhs_Discr_Vals
);
6970 Next_Discriminant
(Discr
);
6975 Discr
:= First_Discriminant
(Rhs_Type
);
6976 while Present
(Discr
) loop
6978 (New_Copy
(Get_Discriminant_Value
6981 Stored_Constraint
(Rhs_Type
))),
6982 To
=> Rhs_Discr_Vals
);
6983 Next_Discriminant
(Discr
);
6987 -- Now merge the list of discriminant values so that values
6988 -- of corresponding discriminants are adjacent.
6996 Params
:= New_List
(L_Exp
, R_Exp
);
6997 L_Elmt
:= First_Elmt
(Lhs_Discr_Vals
);
6998 R_Elmt
:= First_Elmt
(Rhs_Discr_Vals
);
6999 while Present
(L_Elmt
) loop
7000 Append_To
(Params
, Node
(L_Elmt
));
7001 Append_To
(Params
, Node
(R_Elmt
));
7007 Make_Function_Call
(Loc
,
7008 Name
=> New_Occurrence_Of
(Eq
, Loc
),
7009 Parameter_Associations
=> Params
));
7013 -- Normal case, not an unchecked union
7017 Make_Function_Call
(Loc
,
7018 Name
=> New_Occurrence_Of
(Eq
, Loc
),
7019 Parameter_Associations
=> New_List
(L_Exp
, R_Exp
)));
7022 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7023 end Build_Equality_Call
;
7025 ------------------------------------
7026 -- Has_Unconstrained_UU_Component --
7027 ------------------------------------
7029 function Has_Unconstrained_UU_Component
7030 (Typ
: Node_Id
) return Boolean
7032 Tdef
: constant Node_Id
:=
7033 Type_Definition
(Declaration_Node
(Base_Type
(Typ
)));
7037 function Component_Is_Unconstrained_UU
7038 (Comp
: Node_Id
) return Boolean;
7039 -- Determines whether the subtype of the component is an
7040 -- unconstrained Unchecked_Union.
7042 function Variant_Is_Unconstrained_UU
7043 (Variant
: Node_Id
) return Boolean;
7044 -- Determines whether a component of the variant has an unconstrained
7045 -- Unchecked_Union subtype.
7047 -----------------------------------
7048 -- Component_Is_Unconstrained_UU --
7049 -----------------------------------
7051 function Component_Is_Unconstrained_UU
7052 (Comp
: Node_Id
) return Boolean
7055 if Nkind
(Comp
) /= N_Component_Declaration
then
7060 Sindic
: constant Node_Id
:=
7061 Subtype_Indication
(Component_Definition
(Comp
));
7064 -- Unconstrained nominal type. In the case of a constraint
7065 -- present, the node kind would have been N_Subtype_Indication.
7067 if Nkind
(Sindic
) = N_Identifier
then
7068 return Is_Unchecked_Union
(Base_Type
(Etype
(Sindic
)));
7073 end Component_Is_Unconstrained_UU
;
7075 ---------------------------------
7076 -- Variant_Is_Unconstrained_UU --
7077 ---------------------------------
7079 function Variant_Is_Unconstrained_UU
7080 (Variant
: Node_Id
) return Boolean
7082 Clist
: constant Node_Id
:= Component_List
(Variant
);
7085 if Is_Empty_List
(Component_Items
(Clist
)) then
7089 -- We only need to test one component
7092 Comp
: Node_Id
:= First
(Component_Items
(Clist
));
7095 while Present
(Comp
) loop
7096 if Component_Is_Unconstrained_UU
(Comp
) then
7104 -- None of the components withing the variant were of
7105 -- unconstrained Unchecked_Union type.
7108 end Variant_Is_Unconstrained_UU
;
7110 -- Start of processing for Has_Unconstrained_UU_Component
7113 if Null_Present
(Tdef
) then
7117 Clist
:= Component_List
(Tdef
);
7118 Vpart
:= Variant_Part
(Clist
);
7120 -- Inspect available components
7122 if Present
(Component_Items
(Clist
)) then
7124 Comp
: Node_Id
:= First
(Component_Items
(Clist
));
7127 while Present
(Comp
) loop
7129 -- One component is sufficient
7131 if Component_Is_Unconstrained_UU
(Comp
) then
7140 -- Inspect available components withing variants
7142 if Present
(Vpart
) then
7144 Variant
: Node_Id
:= First
(Variants
(Vpart
));
7147 while Present
(Variant
) loop
7149 -- One component within a variant is sufficient
7151 if Variant_Is_Unconstrained_UU
(Variant
) then
7160 -- Neither the available components, nor the components inside the
7161 -- variant parts were of an unconstrained Unchecked_Union subtype.
7164 end Has_Unconstrained_UU_Component
;
7166 -- Start of processing for Expand_N_Op_Eq
7169 Binary_Op_Validity_Checks
(N
);
7171 -- Deal with private types
7173 if Ekind
(Typl
) = E_Private_Type
then
7174 Typl
:= Underlying_Type
(Typl
);
7175 elsif Ekind
(Typl
) = E_Private_Subtype
then
7176 Typl
:= Underlying_Type
(Base_Type
(Typl
));
7181 -- It may happen in error situations that the underlying type is not
7182 -- set. The error will be detected later, here we just defend the
7189 -- Now get the implementation base type (note that plain Base_Type here
7190 -- might lead us back to the private type, which is not what we want!)
7192 Typl
:= Implementation_Base_Type
(Typl
);
7194 -- Equality between variant records results in a call to a routine
7195 -- that has conditional tests of the discriminant value(s), and hence
7196 -- violates the No_Implicit_Conditionals restriction.
7198 if Has_Variant_Part
(Typl
) then
7203 Check_Restriction
(Msg
, No_Implicit_Conditionals
, N
);
7207 ("\comparison of variant records tests discriminants", N
);
7213 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7214 -- means we no longer have a comparison operation, we are all done.
7216 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7218 if Nkind
(N
) /= N_Op_Eq
then
7222 -- Boolean types (requiring handling of non-standard case)
7224 if Is_Boolean_Type
(Typl
) then
7225 Adjust_Condition
(Left_Opnd
(N
));
7226 Adjust_Condition
(Right_Opnd
(N
));
7227 Set_Etype
(N
, Standard_Boolean
);
7228 Adjust_Result_Type
(N
, Typ
);
7232 elsif Is_Array_Type
(Typl
) then
7234 -- If we are doing full validity checking, and it is possible for the
7235 -- array elements to be invalid then expand out array comparisons to
7236 -- make sure that we check the array elements.
7238 if Validity_Check_Operands
7239 and then not Is_Known_Valid
(Component_Type
(Typl
))
7242 Save_Force_Validity_Checks
: constant Boolean :=
7243 Force_Validity_Checks
;
7245 Force_Validity_Checks
:= True;
7247 Expand_Array_Equality
7249 Relocate_Node
(Lhs
),
7250 Relocate_Node
(Rhs
),
7253 Insert_Actions
(N
, Bodies
);
7254 Analyze_And_Resolve
(N
, Standard_Boolean
);
7255 Force_Validity_Checks
:= Save_Force_Validity_Checks
;
7258 -- Packed case where both operands are known aligned
7260 elsif Is_Bit_Packed_Array
(Typl
)
7261 and then not Is_Possibly_Unaligned_Object
(Lhs
)
7262 and then not Is_Possibly_Unaligned_Object
(Rhs
)
7264 Expand_Packed_Eq
(N
);
7266 -- Where the component type is elementary we can use a block bit
7267 -- comparison (if supported on the target) exception in the case
7268 -- of floating-point (negative zero issues require element by
7269 -- element comparison), and atomic types (where we must be sure
7270 -- to load elements independently) and possibly unaligned arrays.
7272 elsif Is_Elementary_Type
(Component_Type
(Typl
))
7273 and then not Is_Floating_Point_Type
(Component_Type
(Typl
))
7274 and then not Is_Atomic
(Component_Type
(Typl
))
7275 and then not Is_Possibly_Unaligned_Object
(Lhs
)
7276 and then not Is_Possibly_Unaligned_Object
(Rhs
)
7277 and then Support_Composite_Compare_On_Target
7281 -- For composite and floating-point cases, expand equality loop to
7282 -- make sure of using proper comparisons for tagged types, and
7283 -- correctly handling the floating-point case.
7287 Expand_Array_Equality
7289 Relocate_Node
(Lhs
),
7290 Relocate_Node
(Rhs
),
7293 Insert_Actions
(N
, Bodies
, Suppress
=> All_Checks
);
7294 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7299 elsif Is_Record_Type
(Typl
) then
7301 -- For tagged types, use the primitive "="
7303 if Is_Tagged_Type
(Typl
) then
7305 -- No need to do anything else compiling under restriction
7306 -- No_Dispatching_Calls. During the semantic analysis we
7307 -- already notified such violation.
7309 if Restriction_Active
(No_Dispatching_Calls
) then
7313 -- If this is derived from an untagged private type completed with
7314 -- a tagged type, it does not have a full view, so we use the
7315 -- primitive operations of the private type. This check should no
7316 -- longer be necessary when these types get their full views???
7318 if Is_Private_Type
(A_Typ
)
7319 and then not Is_Tagged_Type
(A_Typ
)
7320 and then Is_Derived_Type
(A_Typ
)
7321 and then No
(Full_View
(A_Typ
))
7323 -- Search for equality operation, checking that the operands
7324 -- have the same type. Note that we must find a matching entry,
7325 -- or something is very wrong.
7327 Prim
:= First_Elmt
(Collect_Primitive_Operations
(A_Typ
));
7329 while Present
(Prim
) loop
7330 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7331 and then Etype
(First_Formal
(Node
(Prim
))) =
7332 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7334 Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7339 pragma Assert
(Present
(Prim
));
7340 Op_Name
:= Node
(Prim
);
7342 -- Find the type's predefined equality or an overriding
7343 -- user-defined equality. The reason for not simply calling
7344 -- Find_Prim_Op here is that there may be a user-defined
7345 -- overloaded equality op that precedes the equality that we
7346 -- want, so we have to explicitly search (e.g., there could be
7347 -- an equality with two different parameter types).
7350 if Is_Class_Wide_Type
(Typl
) then
7351 Typl
:= Find_Specific_Type
(Typl
);
7354 Prim
:= First_Elmt
(Primitive_Operations
(Typl
));
7355 while Present
(Prim
) loop
7356 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7357 and then Etype
(First_Formal
(Node
(Prim
))) =
7358 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7360 Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7365 pragma Assert
(Present
(Prim
));
7366 Op_Name
:= Node
(Prim
);
7369 Build_Equality_Call
(Op_Name
);
7371 -- Ada 2005 (AI-216): Program_Error is raised when evaluating the
7372 -- predefined equality operator for a type which has a subcomponent
7373 -- of an Unchecked_Union type whose nominal subtype is unconstrained.
7375 elsif Has_Unconstrained_UU_Component
(Typl
) then
7377 Make_Raise_Program_Error
(Loc
,
7378 Reason
=> PE_Unchecked_Union_Restriction
));
7380 -- Prevent Gigi from generating incorrect code by rewriting the
7381 -- equality as a standard False. (is this documented somewhere???)
7384 New_Occurrence_Of
(Standard_False
, Loc
));
7386 elsif Is_Unchecked_Union
(Typl
) then
7388 -- If we can infer the discriminants of the operands, we make a
7389 -- call to the TSS equality function.
7391 if Has_Inferable_Discriminants
(Lhs
)
7393 Has_Inferable_Discriminants
(Rhs
)
7396 (TSS
(Root_Type
(Typl
), TSS_Composite_Equality
));
7399 -- Ada 2005 (AI-216): Program_Error is raised when evaluating
7400 -- the predefined equality operator for an Unchecked_Union type
7401 -- if either of the operands lack inferable discriminants.
7404 Make_Raise_Program_Error
(Loc
,
7405 Reason
=> PE_Unchecked_Union_Restriction
));
7407 -- Emit a warning on source equalities only, otherwise the
7408 -- message may appear out of place due to internal use. The
7409 -- warning is unconditional because it is required by the
7412 if Comes_From_Source
(N
) then
7414 ("Unchecked_Union discriminants cannot be determined??",
7417 ("\Program_Error will be raised for equality operation??",
7421 -- Prevent Gigi from generating incorrect code by rewriting
7422 -- the equality as a standard False (documented where???).
7425 New_Occurrence_Of
(Standard_False
, Loc
));
7428 -- If a type support function is present (for complex cases), use it
7430 elsif Present
(TSS
(Root_Type
(Typl
), TSS_Composite_Equality
)) then
7432 (TSS
(Root_Type
(Typl
), TSS_Composite_Equality
));
7434 -- When comparing two Bounded_Strings, use the primitive equality of
7435 -- the root Super_String type.
7437 elsif Is_Bounded_String
(Typl
) then
7439 First_Elmt
(Collect_Primitive_Operations
(Root_Type
(Typl
)));
7441 while Present
(Prim
) loop
7442 exit when Chars
(Node
(Prim
)) = Name_Op_Eq
7443 and then Etype
(First_Formal
(Node
(Prim
))) =
7444 Etype
(Next_Formal
(First_Formal
(Node
(Prim
))))
7445 and then Base_Type
(Etype
(Node
(Prim
))) = Standard_Boolean
;
7450 -- A Super_String type should always have a primitive equality
7452 pragma Assert
(Present
(Prim
));
7453 Build_Equality_Call
(Node
(Prim
));
7455 -- Otherwise expand the component by component equality. Note that
7456 -- we never use block-bit comparisons for records, because of the
7457 -- problems with gaps. The backend will often be able to recombine
7458 -- the separate comparisons that we generate here.
7461 Remove_Side_Effects
(Lhs
);
7462 Remove_Side_Effects
(Rhs
);
7464 Expand_Record_Equality
(N
, Typl
, Lhs
, Rhs
, Bodies
));
7466 Insert_Actions
(N
, Bodies
, Suppress
=> All_Checks
);
7467 Analyze_And_Resolve
(N
, Standard_Boolean
, Suppress
=> All_Checks
);
7471 -- Test if result is known at compile time
7473 Rewrite_Comparison
(N
);
7475 Optimize_Length_Comparison
(N
);
7478 -----------------------
7479 -- Expand_N_Op_Expon --
7480 -----------------------
7482 procedure Expand_N_Op_Expon
(N
: Node_Id
) is
7483 Loc
: constant Source_Ptr
:= Sloc
(N
);
7484 Typ
: constant Entity_Id
:= Etype
(N
);
7485 Rtyp
: constant Entity_Id
:= Root_Type
(Typ
);
7486 Base
: constant Node_Id
:= Relocate_Node
(Left_Opnd
(N
));
7487 Bastyp
: constant Node_Id
:= Etype
(Base
);
7488 Exp
: constant Node_Id
:= Relocate_Node
(Right_Opnd
(N
));
7489 Exptyp
: constant Entity_Id
:= Etype
(Exp
);
7490 Ovflo
: constant Boolean := Do_Overflow_Check
(N
);
7499 Binary_Op_Validity_Checks
(N
);
7501 -- CodePeer wants to see the unexpanded N_Op_Expon node
7503 if CodePeer_Mode
then
7507 -- If either operand is of a private type, then we have the use of an
7508 -- intrinsic operator, and we get rid of the privateness, by using root
7509 -- types of underlying types for the actual operation. Otherwise the
7510 -- private types will cause trouble if we expand multiplications or
7511 -- shifts etc. We also do this transformation if the result type is
7512 -- different from the base type.
7514 if Is_Private_Type
(Etype
(Base
))
7515 or else Is_Private_Type
(Typ
)
7516 or else Is_Private_Type
(Exptyp
)
7517 or else Rtyp
/= Root_Type
(Bastyp
)
7520 Bt
: constant Entity_Id
:= Root_Type
(Underlying_Type
(Bastyp
));
7521 Et
: constant Entity_Id
:= Root_Type
(Underlying_Type
(Exptyp
));
7524 Unchecked_Convert_To
(Typ
,
7526 Left_Opnd
=> Unchecked_Convert_To
(Bt
, Base
),
7527 Right_Opnd
=> Unchecked_Convert_To
(Et
, Exp
))));
7528 Analyze_And_Resolve
(N
, Typ
);
7533 -- Check for MINIMIZED/ELIMINATED overflow mode
7535 if Minimized_Eliminated_Overflow_Check
(N
) then
7536 Apply_Arithmetic_Overflow_Check
(N
);
7540 -- Test for case of known right argument where we can replace the
7541 -- exponentiation by an equivalent expression using multiplication.
7543 -- Note: use CRT_Safe version of Compile_Time_Known_Value because in
7544 -- configurable run-time mode, we may not have the exponentiation
7545 -- routine available, and we don't want the legality of the program
7546 -- to depend on how clever the compiler is in knowing values.
7548 if CRT_Safe_Compile_Time_Known_Value
(Exp
) then
7549 Expv
:= Expr_Value
(Exp
);
7551 -- We only fold small non-negative exponents. You might think we
7552 -- could fold small negative exponents for the real case, but we
7553 -- can't because we are required to raise Constraint_Error for
7554 -- the case of 0.0 ** (negative) even if Machine_Overflows = False.
7555 -- See ACVC test C4A012B.
7557 if Expv
>= 0 and then Expv
<= 4 then
7559 -- X ** 0 = 1 (or 1.0)
7563 -- Call Remove_Side_Effects to ensure that any side effects
7564 -- in the ignored left operand (in particular function calls
7565 -- to user defined functions) are properly executed.
7567 Remove_Side_Effects
(Base
);
7569 if Ekind
(Typ
) in Integer_Kind
then
7570 Xnode
:= Make_Integer_Literal
(Loc
, Intval
=> 1);
7572 Xnode
:= Make_Real_Literal
(Loc
, Ureal_1
);
7584 Make_Op_Multiply
(Loc
,
7585 Left_Opnd
=> Duplicate_Subexpr
(Base
),
7586 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
));
7588 -- X ** 3 = X * X * X
7592 Make_Op_Multiply
(Loc
,
7594 Make_Op_Multiply
(Loc
,
7595 Left_Opnd
=> Duplicate_Subexpr
(Base
),
7596 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
)),
7597 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Base
));
7602 -- En : constant base'type := base * base;
7607 pragma Assert
(Expv
= 4);
7608 Temp
:= Make_Temporary
(Loc
, 'E', Base
);
7611 Make_Expression_With_Actions
(Loc
,
7612 Actions
=> New_List
(
7613 Make_Object_Declaration
(Loc
,
7614 Defining_Identifier
=> Temp
,
7615 Constant_Present
=> True,
7616 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
7618 Make_Op_Multiply
(Loc
,
7620 Duplicate_Subexpr
(Base
),
7622 Duplicate_Subexpr_No_Checks
(Base
)))),
7625 Make_Op_Multiply
(Loc
,
7626 Left_Opnd
=> New_Occurrence_Of
(Temp
, Loc
),
7627 Right_Opnd
=> New_Occurrence_Of
(Temp
, Loc
)));
7631 Analyze_And_Resolve
(N
, Typ
);
7636 -- Case of (2 ** expression) appearing as an argument of an integer
7637 -- multiplication, or as the right argument of a division of a non-
7638 -- negative integer. In such cases we leave the node untouched, setting
7639 -- the flag Is_Natural_Power_Of_2_for_Shift set, then the expansion
7640 -- of the higher level node converts it into a shift.
7642 -- Another case is 2 ** N in any other context. We simply convert
7643 -- this to 1 * 2 ** N, and then the above transformation applies.
7645 -- Note: this transformation is not applicable for a modular type with
7646 -- a non-binary modulus in the multiplication case, since we get a wrong
7647 -- result if the shift causes an overflow before the modular reduction.
7649 -- Note: we used to check that Exptyp was an unsigned type. But that is
7650 -- an unnecessary check, since if Exp is negative, we have a run-time
7651 -- error that is either caught (so we get the right result) or we have
7652 -- suppressed the check, in which case the code is erroneous anyway.
7654 if Nkind
(Base
) = N_Integer_Literal
7655 and then CRT_Safe_Compile_Time_Known_Value
(Base
)
7656 and then Expr_Value
(Base
) = Uint_2
7657 and then Is_Integer_Type
(Root_Type
(Exptyp
))
7658 and then Esize
(Root_Type
(Exptyp
)) <= Esize
(Standard_Integer
)
7661 -- First the multiply and divide cases
7663 if Nkind_In
(Parent
(N
), N_Op_Divide
, N_Op_Multiply
) then
7665 P
: constant Node_Id
:= Parent
(N
);
7666 L
: constant Node_Id
:= Left_Opnd
(P
);
7667 R
: constant Node_Id
:= Right_Opnd
(P
);
7670 if (Nkind
(P
) = N_Op_Multiply
7671 and then not Non_Binary_Modulus
(Typ
)
7673 ((Is_Integer_Type
(Etype
(L
)) and then R
= N
)
7675 (Is_Integer_Type
(Etype
(R
)) and then L
= N
))
7676 and then not Do_Overflow_Check
(P
))
7678 (Nkind
(P
) = N_Op_Divide
7679 and then Is_Integer_Type
(Etype
(L
))
7680 and then Is_Unsigned_Type
(Etype
(L
))
7682 and then not Do_Overflow_Check
(P
))
7684 Set_Is_Power_Of_2_For_Shift
(N
);
7689 -- Now the other cases
7691 elsif not Non_Binary_Modulus
(Typ
) then
7693 Make_Op_Multiply
(Loc
,
7694 Left_Opnd
=> Make_Integer_Literal
(Loc
, 1),
7695 Right_Opnd
=> Relocate_Node
(N
)));
7696 Analyze_And_Resolve
(N
, Typ
);
7701 -- Fall through if exponentiation must be done using a runtime routine
7703 -- First deal with modular case
7705 if Is_Modular_Integer_Type
(Rtyp
) then
7707 -- Non-binary case, we call the special exponentiation routine for
7708 -- the non-binary case, converting the argument to Long_Long_Integer
7709 -- and passing the modulus value. Then the result is converted back
7710 -- to the base type.
7712 if Non_Binary_Modulus
(Rtyp
) then
7715 Make_Function_Call
(Loc
,
7717 New_Occurrence_Of
(RTE
(RE_Exp_Modular
), Loc
),
7718 Parameter_Associations
=> New_List
(
7719 Convert_To
(RTE
(RE_Unsigned
), Base
),
7720 Make_Integer_Literal
(Loc
, Modulus
(Rtyp
)),
7723 -- Binary case, in this case, we call one of two routines, either the
7724 -- unsigned integer case, or the unsigned long long integer case,
7725 -- with a final "and" operation to do the required mod.
7728 if UI_To_Int
(Esize
(Rtyp
)) <= Standard_Integer_Size
then
7729 Ent
:= RTE
(RE_Exp_Unsigned
);
7731 Ent
:= RTE
(RE_Exp_Long_Long_Unsigned
);
7738 Make_Function_Call
(Loc
,
7739 Name
=> New_Occurrence_Of
(Ent
, Loc
),
7740 Parameter_Associations
=> New_List
(
7741 Convert_To
(Etype
(First_Formal
(Ent
)), Base
),
7744 Make_Integer_Literal
(Loc
, Modulus
(Rtyp
) - 1))));
7748 -- Common exit point for modular type case
7750 Analyze_And_Resolve
(N
, Typ
);
7753 -- Signed integer cases, done using either Integer or Long_Long_Integer.
7754 -- It is not worth having routines for Short_[Short_]Integer, since for
7755 -- most machines it would not help, and it would generate more code that
7756 -- might need certification when a certified run time is required.
7758 -- In the integer cases, we have two routines, one for when overflow
7759 -- checks are required, and one when they are not required, since there
7760 -- is a real gain in omitting checks on many machines.
7762 elsif Rtyp
= Base_Type
(Standard_Long_Long_Integer
)
7763 or else (Rtyp
= Base_Type
(Standard_Long_Integer
)
7765 Esize
(Standard_Long_Integer
) > Esize
(Standard_Integer
))
7766 or else Rtyp
= Universal_Integer
7768 Etyp
:= Standard_Long_Long_Integer
;
7770 -- Overflow checking is the only choice on the AAMP target, where
7771 -- arithmetic instructions check overflow automatically, so only
7772 -- one version of the exponentiation unit is needed.
7774 if Ovflo
or AAMP_On_Target
then
7775 Rent
:= RE_Exp_Long_Long_Integer
;
7777 Rent
:= RE_Exn_Long_Long_Integer
;
7780 elsif Is_Signed_Integer_Type
(Rtyp
) then
7781 Etyp
:= Standard_Integer
;
7783 -- Overflow checking is the only choice on the AAMP target, where
7784 -- arithmetic instructions check overflow automatically, so only
7785 -- one version of the exponentiation unit is needed.
7787 if Ovflo
or AAMP_On_Target
then
7788 Rent
:= RE_Exp_Integer
;
7790 Rent
:= RE_Exn_Integer
;
7793 -- Floating-point cases, always done using Long_Long_Float. We do not
7794 -- need separate routines for the overflow case here, since in the case
7795 -- of floating-point, we generate infinities anyway as a rule (either
7796 -- that or we automatically trap overflow), and if there is an infinity
7797 -- generated and a range check is required, the check will fail anyway.
7800 pragma Assert
(Is_Floating_Point_Type
(Rtyp
));
7801 Etyp
:= Standard_Long_Long_Float
;
7802 Rent
:= RE_Exn_Long_Long_Float
;
7805 -- Common processing for integer cases and floating-point cases.
7806 -- If we are in the right type, we can call runtime routine directly
7809 and then Rtyp
/= Universal_Integer
7810 and then Rtyp
/= Universal_Real
7813 Make_Function_Call
(Loc
,
7814 Name
=> New_Occurrence_Of
(RTE
(Rent
), Loc
),
7815 Parameter_Associations
=> New_List
(Base
, Exp
)));
7817 -- Otherwise we have to introduce conversions (conversions are also
7818 -- required in the universal cases, since the runtime routine is
7819 -- typed using one of the standard types).
7824 Make_Function_Call
(Loc
,
7825 Name
=> New_Occurrence_Of
(RTE
(Rent
), Loc
),
7826 Parameter_Associations
=> New_List
(
7827 Convert_To
(Etyp
, Base
),
7831 Analyze_And_Resolve
(N
, Typ
);
7835 when RE_Not_Available
=>
7837 end Expand_N_Op_Expon
;
7839 --------------------
7840 -- Expand_N_Op_Ge --
7841 --------------------
7843 procedure Expand_N_Op_Ge
(N
: Node_Id
) is
7844 Typ
: constant Entity_Id
:= Etype
(N
);
7845 Op1
: constant Node_Id
:= Left_Opnd
(N
);
7846 Op2
: constant Node_Id
:= Right_Opnd
(N
);
7847 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
7850 Binary_Op_Validity_Checks
(N
);
7852 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7853 -- means we no longer have a comparison operation, we are all done.
7855 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7857 if Nkind
(N
) /= N_Op_Ge
then
7863 if Is_Array_Type
(Typ1
) then
7864 Expand_Array_Comparison
(N
);
7868 -- Deal with boolean operands
7870 if Is_Boolean_Type
(Typ1
) then
7871 Adjust_Condition
(Op1
);
7872 Adjust_Condition
(Op2
);
7873 Set_Etype
(N
, Standard_Boolean
);
7874 Adjust_Result_Type
(N
, Typ
);
7877 Rewrite_Comparison
(N
);
7879 Optimize_Length_Comparison
(N
);
7882 --------------------
7883 -- Expand_N_Op_Gt --
7884 --------------------
7886 procedure Expand_N_Op_Gt
(N
: Node_Id
) is
7887 Typ
: constant Entity_Id
:= Etype
(N
);
7888 Op1
: constant Node_Id
:= Left_Opnd
(N
);
7889 Op2
: constant Node_Id
:= Right_Opnd
(N
);
7890 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
7893 Binary_Op_Validity_Checks
(N
);
7895 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7896 -- means we no longer have a comparison operation, we are all done.
7898 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7900 if Nkind
(N
) /= N_Op_Gt
then
7904 -- Deal with array type operands
7906 if Is_Array_Type
(Typ1
) then
7907 Expand_Array_Comparison
(N
);
7911 -- Deal with boolean type operands
7913 if Is_Boolean_Type
(Typ1
) then
7914 Adjust_Condition
(Op1
);
7915 Adjust_Condition
(Op2
);
7916 Set_Etype
(N
, Standard_Boolean
);
7917 Adjust_Result_Type
(N
, Typ
);
7920 Rewrite_Comparison
(N
);
7922 Optimize_Length_Comparison
(N
);
7925 --------------------
7926 -- Expand_N_Op_Le --
7927 --------------------
7929 procedure Expand_N_Op_Le
(N
: Node_Id
) is
7930 Typ
: constant Entity_Id
:= Etype
(N
);
7931 Op1
: constant Node_Id
:= Left_Opnd
(N
);
7932 Op2
: constant Node_Id
:= Right_Opnd
(N
);
7933 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
7936 Binary_Op_Validity_Checks
(N
);
7938 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7939 -- means we no longer have a comparison operation, we are all done.
7941 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7943 if Nkind
(N
) /= N_Op_Le
then
7947 -- Deal with array type operands
7949 if Is_Array_Type
(Typ1
) then
7950 Expand_Array_Comparison
(N
);
7954 -- Deal with Boolean type operands
7956 if Is_Boolean_Type
(Typ1
) then
7957 Adjust_Condition
(Op1
);
7958 Adjust_Condition
(Op2
);
7959 Set_Etype
(N
, Standard_Boolean
);
7960 Adjust_Result_Type
(N
, Typ
);
7963 Rewrite_Comparison
(N
);
7965 Optimize_Length_Comparison
(N
);
7968 --------------------
7969 -- Expand_N_Op_Lt --
7970 --------------------
7972 procedure Expand_N_Op_Lt
(N
: Node_Id
) is
7973 Typ
: constant Entity_Id
:= Etype
(N
);
7974 Op1
: constant Node_Id
:= Left_Opnd
(N
);
7975 Op2
: constant Node_Id
:= Right_Opnd
(N
);
7976 Typ1
: constant Entity_Id
:= Base_Type
(Etype
(Op1
));
7979 Binary_Op_Validity_Checks
(N
);
7981 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if that
7982 -- means we no longer have a comparison operation, we are all done.
7984 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
7986 if Nkind
(N
) /= N_Op_Lt
then
7990 -- Deal with array type operands
7992 if Is_Array_Type
(Typ1
) then
7993 Expand_Array_Comparison
(N
);
7997 -- Deal with Boolean type operands
7999 if Is_Boolean_Type
(Typ1
) then
8000 Adjust_Condition
(Op1
);
8001 Adjust_Condition
(Op2
);
8002 Set_Etype
(N
, Standard_Boolean
);
8003 Adjust_Result_Type
(N
, Typ
);
8006 Rewrite_Comparison
(N
);
8008 Optimize_Length_Comparison
(N
);
8011 -----------------------
8012 -- Expand_N_Op_Minus --
8013 -----------------------
8015 procedure Expand_N_Op_Minus
(N
: Node_Id
) is
8016 Loc
: constant Source_Ptr
:= Sloc
(N
);
8017 Typ
: constant Entity_Id
:= Etype
(N
);
8020 Unary_Op_Validity_Checks
(N
);
8022 -- Check for MINIMIZED/ELIMINATED overflow mode
8024 if Minimized_Eliminated_Overflow_Check
(N
) then
8025 Apply_Arithmetic_Overflow_Check
(N
);
8029 if not Backend_Overflow_Checks_On_Target
8030 and then Is_Signed_Integer_Type
(Etype
(N
))
8031 and then Do_Overflow_Check
(N
)
8033 -- Software overflow checking expands -expr into (0 - expr)
8036 Make_Op_Subtract
(Loc
,
8037 Left_Opnd
=> Make_Integer_Literal
(Loc
, 0),
8038 Right_Opnd
=> Right_Opnd
(N
)));
8040 Analyze_And_Resolve
(N
, Typ
);
8042 end Expand_N_Op_Minus
;
8044 ---------------------
8045 -- Expand_N_Op_Mod --
8046 ---------------------
8048 procedure Expand_N_Op_Mod
(N
: Node_Id
) is
8049 Loc
: constant Source_Ptr
:= Sloc
(N
);
8050 Typ
: constant Entity_Id
:= Etype
(N
);
8051 DDC
: constant Boolean := Do_Division_Check
(N
);
8064 pragma Warnings
(Off
, Lhi
);
8067 Binary_Op_Validity_Checks
(N
);
8069 -- Check for MINIMIZED/ELIMINATED overflow mode
8071 if Minimized_Eliminated_Overflow_Check
(N
) then
8072 Apply_Arithmetic_Overflow_Check
(N
);
8076 if Is_Integer_Type
(Etype
(N
)) then
8077 Apply_Divide_Checks
(N
);
8079 -- All done if we don't have a MOD any more, which can happen as a
8080 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8082 if Nkind
(N
) /= N_Op_Mod
then
8087 -- Proceed with expansion of mod operator
8089 Left
:= Left_Opnd
(N
);
8090 Right
:= Right_Opnd
(N
);
8092 Determine_Range
(Right
, ROK
, Rlo
, Rhi
, Assume_Valid
=> True);
8093 Determine_Range
(Left
, LOK
, Llo
, Lhi
, Assume_Valid
=> True);
8095 -- Convert mod to rem if operands are both known to be non-negative, or
8096 -- both known to be non-positive (these are the cases in which rem and
8097 -- mod are the same, see (RM 4.5.5(28-30)). We do this since it is quite
8098 -- likely that this will improve the quality of code, (the operation now
8099 -- corresponds to the hardware remainder), and it does not seem likely
8100 -- that it could be harmful. It also avoids some cases of the elaborate
8101 -- expansion in Modify_Tree_For_C mode below (since Ada rem = C %).
8104 and then ((Llo
>= 0 and then Rlo
>= 0)
8106 (Lhi
<= 0 and then Rhi
<= 0))
8109 Make_Op_Rem
(Sloc
(N
),
8110 Left_Opnd
=> Left_Opnd
(N
),
8111 Right_Opnd
=> Right_Opnd
(N
)));
8113 -- Instead of reanalyzing the node we do the analysis manually. This
8114 -- avoids anomalies when the replacement is done in an instance and
8115 -- is epsilon more efficient.
8117 Set_Entity
(N
, Standard_Entity
(S_Op_Rem
));
8119 Set_Do_Division_Check
(N
, DDC
);
8120 Expand_N_Op_Rem
(N
);
8124 -- Otherwise, normal mod processing
8127 -- Apply optimization x mod 1 = 0. We don't really need that with
8128 -- gcc, but it is useful with other back ends (e.g. AAMP), and is
8129 -- certainly harmless.
8131 if Is_Integer_Type
(Etype
(N
))
8132 and then Compile_Time_Known_Value
(Right
)
8133 and then Expr_Value
(Right
) = Uint_1
8135 -- Call Remove_Side_Effects to ensure that any side effects in
8136 -- the ignored left operand (in particular function calls to
8137 -- user defined functions) are properly executed.
8139 Remove_Side_Effects
(Left
);
8141 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
8142 Analyze_And_Resolve
(N
, Typ
);
8146 -- If we still have a mod operator and we are in Modify_Tree_For_C
8147 -- mode, and we have a signed integer type, then here is where we do
8148 -- the rewrite in terms of Rem. Note this rewrite bypasses the need
8149 -- for the special handling of the annoying case of largest negative
8150 -- number mod minus one.
8152 if Nkind
(N
) = N_Op_Mod
8153 and then Is_Signed_Integer_Type
(Typ
)
8154 and then Modify_Tree_For_C
8156 -- In the general case, we expand A mod B as
8158 -- Tnn : constant typ := A rem B;
8160 -- (if (A >= 0) = (B >= 0) then Tnn
8161 -- elsif Tnn = 0 then 0
8164 -- The comparison can be written simply as A >= 0 if we know that
8165 -- B >= 0 which is a very common case.
8167 -- An important optimization is when B is known at compile time
8168 -- to be 2**K for some constant. In this case we can simply AND
8169 -- the left operand with the bit string 2**K-1 (i.e. K 1-bits)
8170 -- and that works for both the positive and negative cases.
8173 P2
: constant Nat
:= Power_Of_Two
(Right
);
8178 Unchecked_Convert_To
(Typ
,
8181 Unchecked_Convert_To
8182 (Corresponding_Unsigned_Type
(Typ
), Left
),
8184 Make_Integer_Literal
(Loc
, 2 ** P2
- 1))));
8185 Analyze_And_Resolve
(N
, Typ
);
8190 -- Here for the full rewrite
8193 Tnn
: constant Entity_Id
:= Make_Temporary
(Sloc
(N
), 'T', N
);
8199 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left
),
8200 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0));
8202 if not LOK
or else Rlo
< 0 then
8208 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Right
),
8209 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)));
8213 Make_Object_Declaration
(Loc
,
8214 Defining_Identifier
=> Tnn
,
8215 Constant_Present
=> True,
8216 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
),
8220 Right_Opnd
=> Right
)));
8223 Make_If_Expression
(Loc
,
8224 Expressions
=> New_List
(
8226 New_Occurrence_Of
(Tnn
, Loc
),
8227 Make_If_Expression
(Loc
,
8229 Expressions
=> New_List
(
8231 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
8232 Right_Opnd
=> Make_Integer_Literal
(Loc
, 0)),
8233 Make_Integer_Literal
(Loc
, 0),
8235 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
8237 Duplicate_Subexpr_No_Checks
(Right
)))))));
8239 Analyze_And_Resolve
(N
, Typ
);
8244 -- Deal with annoying case of largest negative number mod minus one.
8245 -- Gigi may not handle this case correctly, because on some targets,
8246 -- the mod value is computed using a divide instruction which gives
8247 -- an overflow trap for this case.
8249 -- It would be a bit more efficient to figure out which targets
8250 -- this is really needed for, but in practice it is reasonable
8251 -- to do the following special check in all cases, since it means
8252 -- we get a clearer message, and also the overhead is minimal given
8253 -- that division is expensive in any case.
8255 -- In fact the check is quite easy, if the right operand is -1, then
8256 -- the mod value is always 0, and we can just ignore the left operand
8257 -- completely in this case.
8259 -- This only applies if we still have a mod operator. Skip if we
8260 -- have already rewritten this (e.g. in the case of eliminated
8261 -- overflow checks which have driven us into bignum mode).
8263 if Nkind
(N
) = N_Op_Mod
then
8265 -- The operand type may be private (e.g. in the expansion of an
8266 -- intrinsic operation) so we must use the underlying type to get
8267 -- the bounds, and convert the literals explicitly.
8271 (Type_Low_Bound
(Base_Type
(Underlying_Type
(Etype
(Left
)))));
8273 if ((not ROK
) or else (Rlo
<= (-1) and then (-1) <= Rhi
))
8274 and then ((not LOK
) or else (Llo
= LLB
))
8277 Make_If_Expression
(Loc
,
8278 Expressions
=> New_List
(
8280 Left_Opnd
=> Duplicate_Subexpr
(Right
),
8282 Unchecked_Convert_To
(Typ
,
8283 Make_Integer_Literal
(Loc
, -1))),
8284 Unchecked_Convert_To
(Typ
,
8285 Make_Integer_Literal
(Loc
, Uint_0
)),
8286 Relocate_Node
(N
))));
8288 Set_Analyzed
(Next
(Next
(First
(Expressions
(N
)))));
8289 Analyze_And_Resolve
(N
, Typ
);
8293 end Expand_N_Op_Mod
;
8295 --------------------------
8296 -- Expand_N_Op_Multiply --
8297 --------------------------
8299 procedure Expand_N_Op_Multiply
(N
: Node_Id
) is
8300 Loc
: constant Source_Ptr
:= Sloc
(N
);
8301 Lop
: constant Node_Id
:= Left_Opnd
(N
);
8302 Rop
: constant Node_Id
:= Right_Opnd
(N
);
8304 Lp2
: constant Boolean :=
8305 Nkind
(Lop
) = N_Op_Expon
and then Is_Power_Of_2_For_Shift
(Lop
);
8306 Rp2
: constant Boolean :=
8307 Nkind
(Rop
) = N_Op_Expon
and then Is_Power_Of_2_For_Shift
(Rop
);
8309 Ltyp
: constant Entity_Id
:= Etype
(Lop
);
8310 Rtyp
: constant Entity_Id
:= Etype
(Rop
);
8311 Typ
: Entity_Id
:= Etype
(N
);
8314 Binary_Op_Validity_Checks
(N
);
8316 -- Check for MINIMIZED/ELIMINATED overflow mode
8318 if Minimized_Eliminated_Overflow_Check
(N
) then
8319 Apply_Arithmetic_Overflow_Check
(N
);
8323 -- Special optimizations for integer types
8325 if Is_Integer_Type
(Typ
) then
8327 -- N * 0 = 0 for integer types
8329 if Compile_Time_Known_Value
(Rop
)
8330 and then Expr_Value
(Rop
) = Uint_0
8332 -- Call Remove_Side_Effects to ensure that any side effects in
8333 -- the ignored left operand (in particular function calls to
8334 -- user defined functions) are properly executed.
8336 Remove_Side_Effects
(Lop
);
8338 Rewrite
(N
, Make_Integer_Literal
(Loc
, Uint_0
));
8339 Analyze_And_Resolve
(N
, Typ
);
8343 -- Similar handling for 0 * N = 0
8345 if Compile_Time_Known_Value
(Lop
)
8346 and then Expr_Value
(Lop
) = Uint_0
8348 Remove_Side_Effects
(Rop
);
8349 Rewrite
(N
, Make_Integer_Literal
(Loc
, Uint_0
));
8350 Analyze_And_Resolve
(N
, Typ
);
8354 -- N * 1 = 1 * N = N for integer types
8356 -- This optimisation is not done if we are going to
8357 -- rewrite the product 1 * 2 ** N to a shift.
8359 if Compile_Time_Known_Value
(Rop
)
8360 and then Expr_Value
(Rop
) = Uint_1
8366 elsif Compile_Time_Known_Value
(Lop
)
8367 and then Expr_Value
(Lop
) = Uint_1
8375 -- Convert x * 2 ** y to Shift_Left (x, y). Note that the fact that
8376 -- Is_Power_Of_2_For_Shift is set means that we know that our left
8377 -- operand is an integer, as required for this to work.
8382 -- Convert 2 ** A * 2 ** B into 2 ** (A + B)
8386 Left_Opnd
=> Make_Integer_Literal
(Loc
, 2),
8389 Left_Opnd
=> Right_Opnd
(Lop
),
8390 Right_Opnd
=> Right_Opnd
(Rop
))));
8391 Analyze_And_Resolve
(N
, Typ
);
8395 -- If the result is modular, perform the reduction of the result
8398 if Is_Modular_Integer_Type
(Typ
)
8399 and then not Non_Binary_Modulus
(Typ
)
8404 Make_Op_Shift_Left
(Loc
,
8407 Convert_To
(Standard_Natural
, Right_Opnd
(Rop
))),
8409 Make_Integer_Literal
(Loc
, Modulus
(Typ
) - 1)));
8413 Make_Op_Shift_Left
(Loc
,
8416 Convert_To
(Standard_Natural
, Right_Opnd
(Rop
))));
8419 Analyze_And_Resolve
(N
, Typ
);
8423 -- Same processing for the operands the other way round
8426 if Is_Modular_Integer_Type
(Typ
)
8427 and then not Non_Binary_Modulus
(Typ
)
8432 Make_Op_Shift_Left
(Loc
,
8435 Convert_To
(Standard_Natural
, Right_Opnd
(Lop
))),
8437 Make_Integer_Literal
(Loc
, Modulus
(Typ
) - 1)));
8441 Make_Op_Shift_Left
(Loc
,
8444 Convert_To
(Standard_Natural
, Right_Opnd
(Lop
))));
8447 Analyze_And_Resolve
(N
, Typ
);
8451 -- Do required fixup of universal fixed operation
8453 if Typ
= Universal_Fixed
then
8454 Fixup_Universal_Fixed_Operation
(N
);
8458 -- Multiplications with fixed-point results
8460 if Is_Fixed_Point_Type
(Typ
) then
8462 -- No special processing if Treat_Fixed_As_Integer is set, since from
8463 -- a semantic point of view such operations are simply integer
8464 -- operations and will be treated that way.
8466 if not Treat_Fixed_As_Integer
(N
) then
8468 -- Case of fixed * integer => fixed
8470 if Is_Integer_Type
(Rtyp
) then
8471 Expand_Multiply_Fixed_By_Integer_Giving_Fixed
(N
);
8473 -- Case of integer * fixed => fixed
8475 elsif Is_Integer_Type
(Ltyp
) then
8476 Expand_Multiply_Integer_By_Fixed_Giving_Fixed
(N
);
8478 -- Case of fixed * fixed => fixed
8481 Expand_Multiply_Fixed_By_Fixed_Giving_Fixed
(N
);
8485 -- Other cases of multiplication of fixed-point operands. Again we
8486 -- exclude the cases where Treat_Fixed_As_Integer flag is set.
8488 elsif (Is_Fixed_Point_Type
(Ltyp
) or else Is_Fixed_Point_Type
(Rtyp
))
8489 and then not Treat_Fixed_As_Integer
(N
)
8491 if Is_Integer_Type
(Typ
) then
8492 Expand_Multiply_Fixed_By_Fixed_Giving_Integer
(N
);
8494 pragma Assert
(Is_Floating_Point_Type
(Typ
));
8495 Expand_Multiply_Fixed_By_Fixed_Giving_Float
(N
);
8498 -- Mixed-mode operations can appear in a non-static universal context,
8499 -- in which case the integer argument must be converted explicitly.
8501 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Rtyp
) then
8502 Rewrite
(Rop
, Convert_To
(Universal_Real
, Relocate_Node
(Rop
)));
8503 Analyze_And_Resolve
(Rop
, Universal_Real
);
8505 elsif Typ
= Universal_Real
and then Is_Integer_Type
(Ltyp
) then
8506 Rewrite
(Lop
, Convert_To
(Universal_Real
, Relocate_Node
(Lop
)));
8507 Analyze_And_Resolve
(Lop
, Universal_Real
);
8509 -- Non-fixed point cases, check software overflow checking required
8511 elsif Is_Signed_Integer_Type
(Etype
(N
)) then
8512 Apply_Arithmetic_Overflow_Check
(N
);
8515 -- Overflow checks for floating-point if -gnateF mode active
8517 Check_Float_Op_Overflow
(N
);
8518 end Expand_N_Op_Multiply
;
8520 --------------------
8521 -- Expand_N_Op_Ne --
8522 --------------------
8524 procedure Expand_N_Op_Ne
(N
: Node_Id
) is
8525 Typ
: constant Entity_Id
:= Etype
(Left_Opnd
(N
));
8528 -- Case of elementary type with standard operator
8530 if Is_Elementary_Type
(Typ
)
8531 and then Sloc
(Entity
(N
)) = Standard_Location
8533 Binary_Op_Validity_Checks
(N
);
8535 -- Deal with overflow checks in MINIMIZED/ELIMINATED mode and if
8536 -- means we no longer have a /= operation, we are all done.
8538 Expand_Compare_Minimize_Eliminate_Overflow
(N
);
8540 if Nkind
(N
) /= N_Op_Ne
then
8544 -- Boolean types (requiring handling of non-standard case)
8546 if Is_Boolean_Type
(Typ
) then
8547 Adjust_Condition
(Left_Opnd
(N
));
8548 Adjust_Condition
(Right_Opnd
(N
));
8549 Set_Etype
(N
, Standard_Boolean
);
8550 Adjust_Result_Type
(N
, Typ
);
8553 Rewrite_Comparison
(N
);
8555 -- For all cases other than elementary types, we rewrite node as the
8556 -- negation of an equality operation, and reanalyze. The equality to be
8557 -- used is defined in the same scope and has the same signature. This
8558 -- signature must be set explicitly since in an instance it may not have
8559 -- the same visibility as in the generic unit. This avoids duplicating
8560 -- or factoring the complex code for record/array equality tests etc.
8564 Loc
: constant Source_Ptr
:= Sloc
(N
);
8566 Ne
: constant Entity_Id
:= Entity
(N
);
8569 Binary_Op_Validity_Checks
(N
);
8575 Left_Opnd
=> Left_Opnd
(N
),
8576 Right_Opnd
=> Right_Opnd
(N
)));
8577 Set_Paren_Count
(Right_Opnd
(Neg
), 1);
8579 if Scope
(Ne
) /= Standard_Standard
then
8580 Set_Entity
(Right_Opnd
(Neg
), Corresponding_Equality
(Ne
));
8583 -- For navigation purposes, we want to treat the inequality as an
8584 -- implicit reference to the corresponding equality. Preserve the
8585 -- Comes_From_ source flag to generate proper Xref entries.
8587 Preserve_Comes_From_Source
(Neg
, N
);
8588 Preserve_Comes_From_Source
(Right_Opnd
(Neg
), N
);
8590 Analyze_And_Resolve
(N
, Standard_Boolean
);
8594 Optimize_Length_Comparison
(N
);
8597 ---------------------
8598 -- Expand_N_Op_Not --
8599 ---------------------
8601 -- If the argument is other than a Boolean array type, there is no special
8602 -- expansion required, except for dealing with validity checks, and non-
8603 -- standard boolean representations.
8605 -- For the packed array case, we call the special routine in Exp_Pakd,
8606 -- except that if the component size is greater than one, we use the
8607 -- standard routine generating a gruesome loop (it is so peculiar to have
8608 -- packed arrays with non-standard Boolean representations anyway, so it
8609 -- does not matter that we do not handle this case efficiently).
8611 -- For the unpacked array case (and for the special packed case where we
8612 -- have non standard Booleans, as discussed above), we generate and insert
8613 -- into the tree the following function definition:
8615 -- function Nnnn (A : arr) is
8618 -- for J in a'range loop
8619 -- B (J) := not A (J);
8624 -- Here arr is the actual subtype of the parameter (and hence always
8625 -- constrained). Then we replace the not with a call to this function.
8627 procedure Expand_N_Op_Not
(N
: Node_Id
) is
8628 Loc
: constant Source_Ptr
:= Sloc
(N
);
8629 Typ
: constant Entity_Id
:= Etype
(N
);
8638 Func_Name
: Entity_Id
;
8639 Loop_Statement
: Node_Id
;
8642 Unary_Op_Validity_Checks
(N
);
8644 -- For boolean operand, deal with non-standard booleans
8646 if Is_Boolean_Type
(Typ
) then
8647 Adjust_Condition
(Right_Opnd
(N
));
8648 Set_Etype
(N
, Standard_Boolean
);
8649 Adjust_Result_Type
(N
, Typ
);
8653 -- Only array types need any other processing
8655 if not Is_Array_Type
(Typ
) then
8659 -- Case of array operand. If bit packed with a component size of 1,
8660 -- handle it in Exp_Pakd if the operand is known to be aligned.
8662 if Is_Bit_Packed_Array
(Typ
)
8663 and then Component_Size
(Typ
) = 1
8664 and then not Is_Possibly_Unaligned_Object
(Right_Opnd
(N
))
8666 Expand_Packed_Not
(N
);
8670 -- Case of array operand which is not bit-packed. If the context is
8671 -- a safe assignment, call in-place operation, If context is a larger
8672 -- boolean expression in the context of a safe assignment, expansion is
8673 -- done by enclosing operation.
8675 Opnd
:= Relocate_Node
(Right_Opnd
(N
));
8676 Convert_To_Actual_Subtype
(Opnd
);
8677 Arr
:= Etype
(Opnd
);
8678 Ensure_Defined
(Arr
, N
);
8679 Silly_Boolean_Array_Not_Test
(N
, Arr
);
8681 if Nkind
(Parent
(N
)) = N_Assignment_Statement
then
8682 if Safe_In_Place_Array_Op
(Name
(Parent
(N
)), N
, Empty
) then
8683 Build_Boolean_Array_Proc_Call
(Parent
(N
), Opnd
, Empty
);
8686 -- Special case the negation of a binary operation
8688 elsif Nkind_In
(Opnd
, N_Op_And
, N_Op_Or
, N_Op_Xor
)
8689 and then Safe_In_Place_Array_Op
8690 (Name
(Parent
(N
)), Left_Opnd
(Opnd
), Right_Opnd
(Opnd
))
8692 Build_Boolean_Array_Proc_Call
(Parent
(N
), Opnd
, Empty
);
8696 elsif Nkind
(Parent
(N
)) in N_Binary_Op
8697 and then Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
8700 Op1
: constant Node_Id
:= Left_Opnd
(Parent
(N
));
8701 Op2
: constant Node_Id
:= Right_Opnd
(Parent
(N
));
8702 Lhs
: constant Node_Id
:= Name
(Parent
(Parent
(N
)));
8705 if Safe_In_Place_Array_Op
(Lhs
, Op1
, Op2
) then
8707 -- (not A) op (not B) can be reduced to a single call
8709 if N
= Op1
and then Nkind
(Op2
) = N_Op_Not
then
8712 elsif N
= Op2
and then Nkind
(Op1
) = N_Op_Not
then
8715 -- A xor (not B) can also be special-cased
8717 elsif N
= Op2
and then Nkind
(Parent
(N
)) = N_Op_Xor
then
8724 A
:= Make_Defining_Identifier
(Loc
, Name_uA
);
8725 B
:= Make_Defining_Identifier
(Loc
, Name_uB
);
8726 J
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
8729 Make_Indexed_Component
(Loc
,
8730 Prefix
=> New_Occurrence_Of
(A
, Loc
),
8731 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
8734 Make_Indexed_Component
(Loc
,
8735 Prefix
=> New_Occurrence_Of
(B
, Loc
),
8736 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
8739 Make_Implicit_Loop_Statement
(N
,
8740 Identifier
=> Empty
,
8743 Make_Iteration_Scheme
(Loc
,
8744 Loop_Parameter_Specification
=>
8745 Make_Loop_Parameter_Specification
(Loc
,
8746 Defining_Identifier
=> J
,
8747 Discrete_Subtype_Definition
=>
8748 Make_Attribute_Reference
(Loc
,
8749 Prefix
=> Make_Identifier
(Loc
, Chars
(A
)),
8750 Attribute_Name
=> Name_Range
))),
8752 Statements
=> New_List
(
8753 Make_Assignment_Statement
(Loc
,
8755 Expression
=> Make_Op_Not
(Loc
, A_J
))));
8757 Func_Name
:= Make_Temporary
(Loc
, 'N');
8758 Set_Is_Inlined
(Func_Name
);
8761 Make_Subprogram_Body
(Loc
,
8763 Make_Function_Specification
(Loc
,
8764 Defining_Unit_Name
=> Func_Name
,
8765 Parameter_Specifications
=> New_List
(
8766 Make_Parameter_Specification
(Loc
,
8767 Defining_Identifier
=> A
,
8768 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
))),
8769 Result_Definition
=> New_Occurrence_Of
(Typ
, Loc
)),
8771 Declarations
=> New_List
(
8772 Make_Object_Declaration
(Loc
,
8773 Defining_Identifier
=> B
,
8774 Object_Definition
=> New_Occurrence_Of
(Arr
, Loc
))),
8776 Handled_Statement_Sequence
=>
8777 Make_Handled_Sequence_Of_Statements
(Loc
,
8778 Statements
=> New_List
(
8780 Make_Simple_Return_Statement
(Loc
,
8781 Expression
=> Make_Identifier
(Loc
, Chars
(B
)))))));
8784 Make_Function_Call
(Loc
,
8785 Name
=> New_Occurrence_Of
(Func_Name
, Loc
),
8786 Parameter_Associations
=> New_List
(Opnd
)));
8788 Analyze_And_Resolve
(N
, Typ
);
8789 end Expand_N_Op_Not
;
8791 --------------------
8792 -- Expand_N_Op_Or --
8793 --------------------
8795 procedure Expand_N_Op_Or
(N
: Node_Id
) is
8796 Typ
: constant Entity_Id
:= Etype
(N
);
8799 Binary_Op_Validity_Checks
(N
);
8801 if Is_Array_Type
(Etype
(N
)) then
8802 Expand_Boolean_Operator
(N
);
8804 elsif Is_Boolean_Type
(Etype
(N
)) then
8805 Adjust_Condition
(Left_Opnd
(N
));
8806 Adjust_Condition
(Right_Opnd
(N
));
8807 Set_Etype
(N
, Standard_Boolean
);
8808 Adjust_Result_Type
(N
, Typ
);
8810 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
8811 Expand_Intrinsic_Call
(N
, Entity
(N
));
8816 ----------------------
8817 -- Expand_N_Op_Plus --
8818 ----------------------
8820 procedure Expand_N_Op_Plus
(N
: Node_Id
) is
8822 Unary_Op_Validity_Checks
(N
);
8824 -- Check for MINIMIZED/ELIMINATED overflow mode
8826 if Minimized_Eliminated_Overflow_Check
(N
) then
8827 Apply_Arithmetic_Overflow_Check
(N
);
8830 end Expand_N_Op_Plus
;
8832 ---------------------
8833 -- Expand_N_Op_Rem --
8834 ---------------------
8836 procedure Expand_N_Op_Rem
(N
: Node_Id
) is
8837 Loc
: constant Source_Ptr
:= Sloc
(N
);
8838 Typ
: constant Entity_Id
:= Etype
(N
);
8849 -- Set if corresponding operand can be negative
8851 pragma Unreferenced
(Hi
);
8854 Binary_Op_Validity_Checks
(N
);
8856 -- Check for MINIMIZED/ELIMINATED overflow mode
8858 if Minimized_Eliminated_Overflow_Check
(N
) then
8859 Apply_Arithmetic_Overflow_Check
(N
);
8863 if Is_Integer_Type
(Etype
(N
)) then
8864 Apply_Divide_Checks
(N
);
8866 -- All done if we don't have a REM any more, which can happen as a
8867 -- result of overflow expansion in MINIMIZED or ELIMINATED modes.
8869 if Nkind
(N
) /= N_Op_Rem
then
8874 -- Proceed with expansion of REM
8876 Left
:= Left_Opnd
(N
);
8877 Right
:= Right_Opnd
(N
);
8879 -- Apply optimization x rem 1 = 0. We don't really need that with gcc,
8880 -- but it is useful with other back ends (e.g. AAMP), and is certainly
8883 if Is_Integer_Type
(Etype
(N
))
8884 and then Compile_Time_Known_Value
(Right
)
8885 and then Expr_Value
(Right
) = Uint_1
8887 -- Call Remove_Side_Effects to ensure that any side effects in the
8888 -- ignored left operand (in particular function calls to user defined
8889 -- functions) are properly executed.
8891 Remove_Side_Effects
(Left
);
8893 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
8894 Analyze_And_Resolve
(N
, Typ
);
8898 -- Deal with annoying case of largest negative number remainder minus
8899 -- one. Gigi may not handle this case correctly, because on some
8900 -- targets, the mod value is computed using a divide instruction
8901 -- which gives an overflow trap for this case.
8903 -- It would be a bit more efficient to figure out which targets this
8904 -- is really needed for, but in practice it is reasonable to do the
8905 -- following special check in all cases, since it means we get a clearer
8906 -- message, and also the overhead is minimal given that division is
8907 -- expensive in any case.
8909 -- In fact the check is quite easy, if the right operand is -1, then
8910 -- the remainder is always 0, and we can just ignore the left operand
8911 -- completely in this case.
8913 Determine_Range
(Right
, OK
, Lo
, Hi
, Assume_Valid
=> True);
8914 Lneg
:= (not OK
) or else Lo
< 0;
8916 Determine_Range
(Left
, OK
, Lo
, Hi
, Assume_Valid
=> True);
8917 Rneg
:= (not OK
) or else Lo
< 0;
8919 -- We won't mess with trying to find out if the left operand can really
8920 -- be the largest negative number (that's a pain in the case of private
8921 -- types and this is really marginal). We will just assume that we need
8922 -- the test if the left operand can be negative at all.
8924 if Lneg
and Rneg
then
8926 Make_If_Expression
(Loc
,
8927 Expressions
=> New_List
(
8929 Left_Opnd
=> Duplicate_Subexpr
(Right
),
8931 Unchecked_Convert_To
(Typ
, Make_Integer_Literal
(Loc
, -1))),
8933 Unchecked_Convert_To
(Typ
,
8934 Make_Integer_Literal
(Loc
, Uint_0
)),
8936 Relocate_Node
(N
))));
8938 Set_Analyzed
(Next
(Next
(First
(Expressions
(N
)))));
8939 Analyze_And_Resolve
(N
, Typ
);
8941 end Expand_N_Op_Rem
;
8943 -----------------------------
8944 -- Expand_N_Op_Rotate_Left --
8945 -----------------------------
8947 procedure Expand_N_Op_Rotate_Left
(N
: Node_Id
) is
8949 Binary_Op_Validity_Checks
(N
);
8951 -- If we are in Modify_Tree_For_C mode, there is no rotate left in C,
8952 -- so we rewrite in terms of logical shifts
8954 -- Shift_Left (Num, Bits) or Shift_Right (num, Esize - Bits)
8956 -- where Bits is the shift count mod Esize (the mod operation here
8957 -- deals with ludicrous large shift counts, which are apparently OK).
8959 -- What about non-binary modulus ???
8962 Loc
: constant Source_Ptr
:= Sloc
(N
);
8963 Rtp
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
8964 Typ
: constant Entity_Id
:= Etype
(N
);
8967 if Modify_Tree_For_C
then
8968 Rewrite
(Right_Opnd
(N
),
8970 Left_Opnd
=> Relocate_Node
(Right_Opnd
(N
)),
8971 Right_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
))));
8973 Analyze_And_Resolve
(Right_Opnd
(N
), Rtp
);
8978 Make_Op_Shift_Left
(Loc
,
8979 Left_Opnd
=> Left_Opnd
(N
),
8980 Right_Opnd
=> Right_Opnd
(N
)),
8983 Make_Op_Shift_Right
(Loc
,
8984 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left_Opnd
(N
)),
8986 Make_Op_Subtract
(Loc
,
8987 Left_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
)),
8989 Duplicate_Subexpr_No_Checks
(Right_Opnd
(N
))))));
8991 Analyze_And_Resolve
(N
, Typ
);
8994 end Expand_N_Op_Rotate_Left
;
8996 ------------------------------
8997 -- Expand_N_Op_Rotate_Right --
8998 ------------------------------
9000 procedure Expand_N_Op_Rotate_Right
(N
: Node_Id
) is
9002 Binary_Op_Validity_Checks
(N
);
9004 -- If we are in Modify_Tree_For_C mode, there is no rotate right in C,
9005 -- so we rewrite in terms of logical shifts
9007 -- Shift_Right (Num, Bits) or Shift_Left (num, Esize - Bits)
9009 -- where Bits is the shift count mod Esize (the mod operation here
9010 -- deals with ludicrous large shift counts, which are apparently OK).
9012 -- What about non-binary modulus ???
9015 Loc
: constant Source_Ptr
:= Sloc
(N
);
9016 Rtp
: constant Entity_Id
:= Etype
(Right_Opnd
(N
));
9017 Typ
: constant Entity_Id
:= Etype
(N
);
9020 Rewrite
(Right_Opnd
(N
),
9022 Left_Opnd
=> Relocate_Node
(Right_Opnd
(N
)),
9023 Right_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
))));
9025 Analyze_And_Resolve
(Right_Opnd
(N
), Rtp
);
9027 if Modify_Tree_For_C
then
9031 Make_Op_Shift_Right
(Loc
,
9032 Left_Opnd
=> Left_Opnd
(N
),
9033 Right_Opnd
=> Right_Opnd
(N
)),
9036 Make_Op_Shift_Left
(Loc
,
9037 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left_Opnd
(N
)),
9039 Make_Op_Subtract
(Loc
,
9040 Left_Opnd
=> Make_Integer_Literal
(Loc
, Esize
(Typ
)),
9042 Duplicate_Subexpr_No_Checks
(Right_Opnd
(N
))))));
9044 Analyze_And_Resolve
(N
, Typ
);
9047 end Expand_N_Op_Rotate_Right
;
9049 ----------------------------
9050 -- Expand_N_Op_Shift_Left --
9051 ----------------------------
9053 -- Note: nothing in this routine depends on left as opposed to right shifts
9054 -- so we share the routine for expanding shift right operations.
9056 procedure Expand_N_Op_Shift_Left
(N
: Node_Id
) is
9058 Binary_Op_Validity_Checks
(N
);
9060 -- If we are in Modify_Tree_For_C mode, then ensure that the right
9061 -- operand is not greater than the word size (since that would not
9062 -- be defined properly by the corresponding C shift operator).
9064 if Modify_Tree_For_C
then
9066 Right
: constant Node_Id
:= Right_Opnd
(N
);
9067 Loc
: constant Source_Ptr
:= Sloc
(Right
);
9068 Typ
: constant Entity_Id
:= Etype
(N
);
9069 Siz
: constant Uint
:= Esize
(Typ
);
9076 if Compile_Time_Known_Value
(Right
) then
9077 if Expr_Value
(Right
) >= Siz
then
9078 Rewrite
(N
, Make_Integer_Literal
(Loc
, 0));
9079 Analyze_And_Resolve
(N
, Typ
);
9082 -- Not compile time known, find range
9085 Determine_Range
(Right
, OK
, Lo
, Hi
, Assume_Valid
=> True);
9087 -- Nothing to do if known to be OK range, otherwise expand
9089 if not OK
or else Hi
>= Siz
then
9091 -- Prevent recursion on copy of shift node
9093 Orig
:= Relocate_Node
(N
);
9094 Set_Analyzed
(Orig
);
9096 -- Now do the rewrite
9099 Make_If_Expression
(Loc
,
9100 Expressions
=> New_List
(
9102 Left_Opnd
=> Duplicate_Subexpr_Move_Checks
(Right
),
9103 Right_Opnd
=> Make_Integer_Literal
(Loc
, Siz
)),
9104 Make_Integer_Literal
(Loc
, 0),
9106 Analyze_And_Resolve
(N
, Typ
);
9111 end Expand_N_Op_Shift_Left
;
9113 -----------------------------
9114 -- Expand_N_Op_Shift_Right --
9115 -----------------------------
9117 procedure Expand_N_Op_Shift_Right
(N
: Node_Id
) is
9119 -- Share shift left circuit
9121 Expand_N_Op_Shift_Left
(N
);
9122 end Expand_N_Op_Shift_Right
;
9124 ----------------------------------------
9125 -- Expand_N_Op_Shift_Right_Arithmetic --
9126 ----------------------------------------
9128 procedure Expand_N_Op_Shift_Right_Arithmetic
(N
: Node_Id
) is
9130 Binary_Op_Validity_Checks
(N
);
9132 -- If we are in Modify_Tree_For_C mode, there is no shift right
9133 -- arithmetic in C, so we rewrite in terms of logical shifts.
9135 -- Shift_Right (Num, Bits) or
9137 -- then not (Shift_Right (Mask, bits))
9140 -- Here Mask is all 1 bits (2**size - 1), and Sign is 2**(size - 1)
9142 -- Note: in almost all C compilers it would work to just shift a
9143 -- signed integer right, but it's undefined and we cannot rely on it.
9145 -- Note: the above works fine for shift counts greater than or equal
9146 -- to the word size, since in this case (not (Shift_Right (Mask, bits)))
9147 -- generates all 1'bits.
9149 -- What about non-binary modulus ???
9152 Loc
: constant Source_Ptr
:= Sloc
(N
);
9153 Typ
: constant Entity_Id
:= Etype
(N
);
9154 Sign
: constant Uint
:= 2 ** (Esize
(Typ
) - 1);
9155 Mask
: constant Uint
:= (2 ** Esize
(Typ
)) - 1;
9156 Left
: constant Node_Id
:= Left_Opnd
(N
);
9157 Right
: constant Node_Id
:= Right_Opnd
(N
);
9161 if Modify_Tree_For_C
then
9163 -- Here if not (Shift_Right (Mask, bits)) can be computed at
9164 -- compile time as a single constant.
9166 if Compile_Time_Known_Value
(Right
) then
9168 Val
: constant Uint
:= Expr_Value
(Right
);
9171 if Val
>= Esize
(Typ
) then
9172 Maskx
:= Make_Integer_Literal
(Loc
, Mask
);
9176 Make_Integer_Literal
(Loc
,
9177 Intval
=> Mask
- (Mask
/ (2 ** Expr_Value
(Right
))));
9185 Make_Op_Shift_Right
(Loc
,
9186 Left_Opnd
=> Make_Integer_Literal
(Loc
, Mask
),
9187 Right_Opnd
=> Duplicate_Subexpr_No_Checks
(Right
)));
9190 -- Now do the rewrite
9195 Make_Op_Shift_Right
(Loc
,
9197 Right_Opnd
=> Right
),
9199 Make_If_Expression
(Loc
,
9200 Expressions
=> New_List
(
9202 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Left
),
9203 Right_Opnd
=> Make_Integer_Literal
(Loc
, Sign
)),
9205 Make_Integer_Literal
(Loc
, 0)))));
9206 Analyze_And_Resolve
(N
, Typ
);
9209 end Expand_N_Op_Shift_Right_Arithmetic
;
9211 --------------------------
9212 -- Expand_N_Op_Subtract --
9213 --------------------------
9215 procedure Expand_N_Op_Subtract
(N
: Node_Id
) is
9216 Typ
: constant Entity_Id
:= Etype
(N
);
9219 Binary_Op_Validity_Checks
(N
);
9221 -- Check for MINIMIZED/ELIMINATED overflow mode
9223 if Minimized_Eliminated_Overflow_Check
(N
) then
9224 Apply_Arithmetic_Overflow_Check
(N
);
9228 -- N - 0 = N for integer types
9230 if Is_Integer_Type
(Typ
)
9231 and then Compile_Time_Known_Value
(Right_Opnd
(N
))
9232 and then Expr_Value
(Right_Opnd
(N
)) = 0
9234 Rewrite
(N
, Left_Opnd
(N
));
9238 -- Arithmetic overflow checks for signed integer/fixed point types
9240 if Is_Signed_Integer_Type
(Typ
) or else Is_Fixed_Point_Type
(Typ
) then
9241 Apply_Arithmetic_Overflow_Check
(N
);
9244 -- Overflow checks for floating-point if -gnateF mode active
9246 Check_Float_Op_Overflow
(N
);
9247 end Expand_N_Op_Subtract
;
9249 ---------------------
9250 -- Expand_N_Op_Xor --
9251 ---------------------
9253 procedure Expand_N_Op_Xor
(N
: Node_Id
) is
9254 Typ
: constant Entity_Id
:= Etype
(N
);
9257 Binary_Op_Validity_Checks
(N
);
9259 if Is_Array_Type
(Etype
(N
)) then
9260 Expand_Boolean_Operator
(N
);
9262 elsif Is_Boolean_Type
(Etype
(N
)) then
9263 Adjust_Condition
(Left_Opnd
(N
));
9264 Adjust_Condition
(Right_Opnd
(N
));
9265 Set_Etype
(N
, Standard_Boolean
);
9266 Adjust_Result_Type
(N
, Typ
);
9268 elsif Is_Intrinsic_Subprogram
(Entity
(N
)) then
9269 Expand_Intrinsic_Call
(N
, Entity
(N
));
9272 end Expand_N_Op_Xor
;
9274 ----------------------
9275 -- Expand_N_Or_Else --
9276 ----------------------
9278 procedure Expand_N_Or_Else
(N
: Node_Id
)
9279 renames Expand_Short_Circuit_Operator
;
9281 -----------------------------------
9282 -- Expand_N_Qualified_Expression --
9283 -----------------------------------
9285 procedure Expand_N_Qualified_Expression
(N
: Node_Id
) is
9286 Operand
: constant Node_Id
:= Expression
(N
);
9287 Target_Type
: constant Entity_Id
:= Entity
(Subtype_Mark
(N
));
9290 -- Do validity check if validity checking operands
9292 if Validity_Checks_On
and Validity_Check_Operands
then
9293 Ensure_Valid
(Operand
);
9296 -- Apply possible constraint check
9298 Apply_Constraint_Check
(Operand
, Target_Type
, No_Sliding
=> True);
9300 if Do_Range_Check
(Operand
) then
9301 Set_Do_Range_Check
(Operand
, False);
9302 Generate_Range_Check
(Operand
, Target_Type
, CE_Range_Check_Failed
);
9304 end Expand_N_Qualified_Expression
;
9306 ------------------------------------
9307 -- Expand_N_Quantified_Expression --
9308 ------------------------------------
9312 -- for all X in range => Cond
9317 -- for X in range loop
9324 -- Similarly, an existentially quantified expression:
9326 -- for some X in range => Cond
9331 -- for X in range loop
9338 -- In both cases, the iteration may be over a container in which case it is
9339 -- given by an iterator specification, not a loop parameter specification.
9341 procedure Expand_N_Quantified_Expression
(N
: Node_Id
) is
9342 Actions
: constant List_Id
:= New_List
;
9343 For_All
: constant Boolean := All_Present
(N
);
9344 Iter_Spec
: constant Node_Id
:= Iterator_Specification
(N
);
9345 Loc
: constant Source_Ptr
:= Sloc
(N
);
9346 Loop_Spec
: constant Node_Id
:= Loop_Parameter_Specification
(N
);
9353 -- Create the declaration of the flag which tracks the status of the
9354 -- quantified expression. Generate:
9356 -- Flag : Boolean := (True | False);
9358 Flag
:= Make_Temporary
(Loc
, 'T', N
);
9361 Make_Object_Declaration
(Loc
,
9362 Defining_Identifier
=> Flag
,
9363 Object_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
),
9365 New_Occurrence_Of
(Boolean_Literals
(For_All
), Loc
)));
9367 -- Construct the circuitry which tracks the status of the quantified
9368 -- expression. Generate:
9370 -- if [not] Cond then
9371 -- Flag := (False | True);
9375 Cond
:= Relocate_Node
(Condition
(N
));
9378 Cond
:= Make_Op_Not
(Loc
, Cond
);
9382 Make_Implicit_If_Statement
(N
,
9384 Then_Statements
=> New_List
(
9385 Make_Assignment_Statement
(Loc
,
9386 Name
=> New_Occurrence_Of
(Flag
, Loc
),
9388 New_Occurrence_Of
(Boolean_Literals
(not For_All
), Loc
)),
9389 Make_Exit_Statement
(Loc
))));
9391 -- Build the loop equivalent of the quantified expression
9393 if Present
(Iter_Spec
) then
9395 Make_Iteration_Scheme
(Loc
,
9396 Iterator_Specification
=> Iter_Spec
);
9399 Make_Iteration_Scheme
(Loc
,
9400 Loop_Parameter_Specification
=> Loop_Spec
);
9404 Make_Loop_Statement
(Loc
,
9405 Iteration_Scheme
=> Scheme
,
9406 Statements
=> Stmts
,
9407 End_Label
=> Empty
));
9409 -- Transform the quantified expression
9412 Make_Expression_With_Actions
(Loc
,
9413 Expression
=> New_Occurrence_Of
(Flag
, Loc
),
9414 Actions
=> Actions
));
9415 Analyze_And_Resolve
(N
, Standard_Boolean
);
9416 end Expand_N_Quantified_Expression
;
9418 ---------------------------------
9419 -- Expand_N_Selected_Component --
9420 ---------------------------------
9422 procedure Expand_N_Selected_Component
(N
: Node_Id
) is
9423 Loc
: constant Source_Ptr
:= Sloc
(N
);
9424 Par
: constant Node_Id
:= Parent
(N
);
9425 P
: constant Node_Id
:= Prefix
(N
);
9426 S
: constant Node_Id
:= Selector_Name
(N
);
9427 Ptyp
: Entity_Id
:= Underlying_Type
(Etype
(P
));
9433 function In_Left_Hand_Side
(Comp
: Node_Id
) return Boolean;
9434 -- Gigi needs a temporary for prefixes that depend on a discriminant,
9435 -- unless the context of an assignment can provide size information.
9436 -- Don't we have a general routine that does this???
9438 function Is_Subtype_Declaration
return Boolean;
9439 -- The replacement of a discriminant reference by its value is required
9440 -- if this is part of the initialization of an temporary generated by a
9441 -- change of representation. This shows up as the construction of a
9442 -- discriminant constraint for a subtype declared at the same point as
9443 -- the entity in the prefix of the selected component. We recognize this
9444 -- case when the context of the reference is:
9445 -- subtype ST is T(Obj.D);
9446 -- where the entity for Obj comes from source, and ST has the same sloc.
9448 -----------------------
9449 -- In_Left_Hand_Side --
9450 -----------------------
9452 function In_Left_Hand_Side
(Comp
: Node_Id
) return Boolean is
9454 return (Nkind
(Parent
(Comp
)) = N_Assignment_Statement
9455 and then Comp
= Name
(Parent
(Comp
)))
9456 or else (Present
(Parent
(Comp
))
9457 and then Nkind
(Parent
(Comp
)) in N_Subexpr
9458 and then In_Left_Hand_Side
(Parent
(Comp
)));
9459 end In_Left_Hand_Side
;
9461 -----------------------------
9462 -- Is_Subtype_Declaration --
9463 -----------------------------
9465 function Is_Subtype_Declaration
return Boolean is
9466 Par
: constant Node_Id
:= Parent
(N
);
9469 Nkind
(Par
) = N_Index_Or_Discriminant_Constraint
9470 and then Nkind
(Parent
(Parent
(Par
))) = N_Subtype_Declaration
9471 and then Comes_From_Source
(Entity
(Prefix
(N
)))
9472 and then Sloc
(Par
) = Sloc
(Entity
(Prefix
(N
)));
9473 end Is_Subtype_Declaration
;
9475 -- Start of processing for Expand_N_Selected_Component
9478 -- Insert explicit dereference if required
9480 if Is_Access_Type
(Ptyp
) then
9482 -- First set prefix type to proper access type, in case it currently
9483 -- has a private (non-access) view of this type.
9485 Set_Etype
(P
, Ptyp
);
9487 Insert_Explicit_Dereference
(P
);
9488 Analyze_And_Resolve
(P
, Designated_Type
(Ptyp
));
9490 if Ekind
(Etype
(P
)) = E_Private_Subtype
9491 and then Is_For_Access_Subtype
(Etype
(P
))
9493 Set_Etype
(P
, Base_Type
(Etype
(P
)));
9499 -- Deal with discriminant check required
9501 if Do_Discriminant_Check
(N
) then
9502 if Present
(Discriminant_Checking_Func
9503 (Original_Record_Component
(Entity
(S
))))
9505 -- Present the discriminant checking function to the backend, so
9506 -- that it can inline the call to the function.
9509 (Discriminant_Checking_Func
9510 (Original_Record_Component
(Entity
(S
))));
9512 -- Now reset the flag and generate the call
9514 Set_Do_Discriminant_Check
(N
, False);
9515 Generate_Discriminant_Check
(N
);
9517 -- In the case of Unchecked_Union, no discriminant checking is
9518 -- actually performed.
9521 Set_Do_Discriminant_Check
(N
, False);
9525 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9526 -- function, then additional actuals must be passed.
9528 if Ada_Version
>= Ada_2005
9529 and then Is_Build_In_Place_Function_Call
(P
)
9531 Make_Build_In_Place_Call_In_Anonymous_Context
(P
);
9534 -- Gigi cannot handle unchecked conversions that are the prefix of a
9535 -- selected component with discriminants. This must be checked during
9536 -- expansion, because during analysis the type of the selector is not
9537 -- known at the point the prefix is analyzed. If the conversion is the
9538 -- target of an assignment, then we cannot force the evaluation.
9540 if Nkind
(Prefix
(N
)) = N_Unchecked_Type_Conversion
9541 and then Has_Discriminants
(Etype
(N
))
9542 and then not In_Left_Hand_Side
(N
)
9544 Force_Evaluation
(Prefix
(N
));
9547 -- Remaining processing applies only if selector is a discriminant
9549 if Ekind
(Entity
(Selector_Name
(N
))) = E_Discriminant
then
9551 -- If the selector is a discriminant of a constrained record type,
9552 -- we may be able to rewrite the expression with the actual value
9553 -- of the discriminant, a useful optimization in some cases.
9555 if Is_Record_Type
(Ptyp
)
9556 and then Has_Discriminants
(Ptyp
)
9557 and then Is_Constrained
(Ptyp
)
9559 -- Do this optimization for discrete types only, and not for
9560 -- access types (access discriminants get us into trouble).
9562 if not Is_Discrete_Type
(Etype
(N
)) then
9565 -- Don't do this on the left hand of an assignment statement.
9566 -- Normally one would think that references like this would not
9567 -- occur, but they do in generated code, and mean that we really
9568 -- do want to assign the discriminant.
9570 elsif Nkind
(Par
) = N_Assignment_Statement
9571 and then Name
(Par
) = N
9575 -- Don't do this optimization for the prefix of an attribute or
9576 -- the name of an object renaming declaration since these are
9577 -- contexts where we do not want the value anyway.
9579 elsif (Nkind
(Par
) = N_Attribute_Reference
9580 and then Prefix
(Par
) = N
)
9581 or else Is_Renamed_Object
(N
)
9585 -- Don't do this optimization if we are within the code for a
9586 -- discriminant check, since the whole point of such a check may
9587 -- be to verify the condition on which the code below depends.
9589 elsif Is_In_Discriminant_Check
(N
) then
9592 -- Green light to see if we can do the optimization. There is
9593 -- still one condition that inhibits the optimization below but
9594 -- now is the time to check the particular discriminant.
9597 -- Loop through discriminants to find the matching discriminant
9598 -- constraint to see if we can copy it.
9600 Disc
:= First_Discriminant
(Ptyp
);
9601 Dcon
:= First_Elmt
(Discriminant_Constraint
(Ptyp
));
9602 Discr_Loop
: while Present
(Dcon
) loop
9603 Dval
:= Node
(Dcon
);
9605 -- Check if this is the matching discriminant and if the
9606 -- discriminant value is simple enough to make sense to
9607 -- copy. We don't want to copy complex expressions, and
9608 -- indeed to do so can cause trouble (before we put in
9609 -- this guard, a discriminant expression containing an
9610 -- AND THEN was copied, causing problems for coverage
9613 -- However, if the reference is part of the initialization
9614 -- code generated for an object declaration, we must use
9615 -- the discriminant value from the subtype constraint,
9616 -- because the selected component may be a reference to the
9617 -- object being initialized, whose discriminant is not yet
9618 -- set. This only happens in complex cases involving changes
9619 -- or representation.
9621 if Disc
= Entity
(Selector_Name
(N
))
9622 and then (Is_Entity_Name
(Dval
)
9623 or else Compile_Time_Known_Value
(Dval
)
9624 or else Is_Subtype_Declaration
)
9626 -- Here we have the matching discriminant. Check for
9627 -- the case of a discriminant of a component that is
9628 -- constrained by an outer discriminant, which cannot
9629 -- be optimized away.
9631 if Denotes_Discriminant
9632 (Dval
, Check_Concurrent
=> True)
9636 elsif Nkind
(Original_Node
(Dval
)) = N_Selected_Component
9638 Denotes_Discriminant
9639 (Selector_Name
(Original_Node
(Dval
)), True)
9643 -- Do not retrieve value if constraint is not static. It
9644 -- is generally not useful, and the constraint may be a
9645 -- rewritten outer discriminant in which case it is in
9648 elsif Is_Entity_Name
(Dval
)
9650 Nkind
(Parent
(Entity
(Dval
))) = N_Object_Declaration
9651 and then Present
(Expression
(Parent
(Entity
(Dval
))))
9653 Is_OK_Static_Expression
9654 (Expression
(Parent
(Entity
(Dval
))))
9658 -- In the context of a case statement, the expression may
9659 -- have the base type of the discriminant, and we need to
9660 -- preserve the constraint to avoid spurious errors on
9663 elsif Nkind
(Parent
(N
)) = N_Case_Statement
9664 and then Etype
(Dval
) /= Etype
(Disc
)
9667 Make_Qualified_Expression
(Loc
,
9669 New_Occurrence_Of
(Etype
(Disc
), Loc
),
9671 New_Copy_Tree
(Dval
)));
9672 Analyze_And_Resolve
(N
, Etype
(Disc
));
9674 -- In case that comes out as a static expression,
9675 -- reset it (a selected component is never static).
9677 Set_Is_Static_Expression
(N
, False);
9680 -- Otherwise we can just copy the constraint, but the
9681 -- result is certainly not static. In some cases the
9682 -- discriminant constraint has been analyzed in the
9683 -- context of the original subtype indication, but for
9684 -- itypes the constraint might not have been analyzed
9685 -- yet, and this must be done now.
9688 Rewrite
(N
, New_Copy_Tree
(Dval
));
9689 Analyze_And_Resolve
(N
);
9690 Set_Is_Static_Expression
(N
, False);
9696 Next_Discriminant
(Disc
);
9697 end loop Discr_Loop
;
9699 -- Note: the above loop should always find a matching
9700 -- discriminant, but if it does not, we just missed an
9701 -- optimization due to some glitch (perhaps a previous
9702 -- error), so ignore.
9707 -- The only remaining processing is in the case of a discriminant of
9708 -- a concurrent object, where we rewrite the prefix to denote the
9709 -- corresponding record type. If the type is derived and has renamed
9710 -- discriminants, use corresponding discriminant, which is the one
9711 -- that appears in the corresponding record.
9713 if not Is_Concurrent_Type
(Ptyp
) then
9717 Disc
:= Entity
(Selector_Name
(N
));
9719 if Is_Derived_Type
(Ptyp
)
9720 and then Present
(Corresponding_Discriminant
(Disc
))
9722 Disc
:= Corresponding_Discriminant
(Disc
);
9726 Make_Selected_Component
(Loc
,
9728 Unchecked_Convert_To
(Corresponding_Record_Type
(Ptyp
),
9730 Selector_Name
=> Make_Identifier
(Loc
, Chars
(Disc
)));
9736 -- Set Atomic_Sync_Required if necessary for atomic component
9738 if Nkind
(N
) = N_Selected_Component
then
9740 E
: constant Entity_Id
:= Entity
(Selector_Name
(N
));
9744 -- If component is atomic, but type is not, setting depends on
9745 -- disable/enable state for the component.
9747 if Is_Atomic
(E
) and then not Is_Atomic
(Etype
(E
)) then
9748 Set
:= not Atomic_Synchronization_Disabled
(E
);
9750 -- If component is not atomic, but its type is atomic, setting
9751 -- depends on disable/enable state for the type.
9753 elsif not Is_Atomic
(E
) and then Is_Atomic
(Etype
(E
)) then
9754 Set
:= not Atomic_Synchronization_Disabled
(Etype
(E
));
9756 -- If both component and type are atomic, we disable if either
9757 -- component or its type have sync disabled.
9759 elsif Is_Atomic
(E
) and then Is_Atomic
(Etype
(E
)) then
9760 Set
:= (not Atomic_Synchronization_Disabled
(E
))
9762 (not Atomic_Synchronization_Disabled
(Etype
(E
)));
9768 -- Set flag if required
9771 Activate_Atomic_Synchronization
(N
);
9775 end Expand_N_Selected_Component
;
9777 --------------------
9778 -- Expand_N_Slice --
9779 --------------------
9781 procedure Expand_N_Slice
(N
: Node_Id
) is
9782 Loc
: constant Source_Ptr
:= Sloc
(N
);
9783 Typ
: constant Entity_Id
:= Etype
(N
);
9785 function Is_Procedure_Actual
(N
: Node_Id
) return Boolean;
9786 -- Check whether the argument is an actual for a procedure call, in
9787 -- which case the expansion of a bit-packed slice is deferred until the
9788 -- call itself is expanded. The reason this is required is that we might
9789 -- have an IN OUT or OUT parameter, and the copy out is essential, and
9790 -- that copy out would be missed if we created a temporary here in
9791 -- Expand_N_Slice. Note that we don't bother to test specifically for an
9792 -- IN OUT or OUT mode parameter, since it is a bit tricky to do, and it
9793 -- is harmless to defer expansion in the IN case, since the call
9794 -- processing will still generate the appropriate copy in operation,
9795 -- which will take care of the slice.
9797 procedure Make_Temporary_For_Slice
;
9798 -- Create a named variable for the value of the slice, in cases where
9799 -- the back-end cannot handle it properly, e.g. when packed types or
9800 -- unaligned slices are involved.
9802 -------------------------
9803 -- Is_Procedure_Actual --
9804 -------------------------
9806 function Is_Procedure_Actual
(N
: Node_Id
) return Boolean is
9807 Par
: Node_Id
:= Parent
(N
);
9811 -- If our parent is a procedure call we can return
9813 if Nkind
(Par
) = N_Procedure_Call_Statement
then
9816 -- If our parent is a type conversion, keep climbing the tree,
9817 -- since a type conversion can be a procedure actual. Also keep
9818 -- climbing if parameter association or a qualified expression,
9819 -- since these are additional cases that do can appear on
9820 -- procedure actuals.
9822 elsif Nkind_In
(Par
, N_Type_Conversion
,
9823 N_Parameter_Association
,
9824 N_Qualified_Expression
)
9826 Par
:= Parent
(Par
);
9828 -- Any other case is not what we are looking for
9834 end Is_Procedure_Actual
;
9836 ------------------------------
9837 -- Make_Temporary_For_Slice --
9838 ------------------------------
9840 procedure Make_Temporary_For_Slice
is
9841 Ent
: constant Entity_Id
:= Make_Temporary
(Loc
, 'T', N
);
9846 Make_Object_Declaration
(Loc
,
9847 Defining_Identifier
=> Ent
,
9848 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
));
9850 Set_No_Initialization
(Decl
);
9852 Insert_Actions
(N
, New_List
(
9854 Make_Assignment_Statement
(Loc
,
9855 Name
=> New_Occurrence_Of
(Ent
, Loc
),
9856 Expression
=> Relocate_Node
(N
))));
9858 Rewrite
(N
, New_Occurrence_Of
(Ent
, Loc
));
9859 Analyze_And_Resolve
(N
, Typ
);
9860 end Make_Temporary_For_Slice
;
9864 Pref
: constant Node_Id
:= Prefix
(N
);
9865 Pref_Typ
: Entity_Id
:= Etype
(Pref
);
9867 -- Start of processing for Expand_N_Slice
9870 -- Special handling for access types
9872 if Is_Access_Type
(Pref_Typ
) then
9873 Pref_Typ
:= Designated_Type
(Pref_Typ
);
9876 Make_Explicit_Dereference
(Sloc
(N
),
9877 Prefix
=> Relocate_Node
(Pref
)));
9879 Analyze_And_Resolve
(Pref
, Pref_Typ
);
9882 -- Ada 2005 (AI-318-02): If the prefix is a call to a build-in-place
9883 -- function, then additional actuals must be passed.
9885 if Ada_Version
>= Ada_2005
9886 and then Is_Build_In_Place_Function_Call
(Pref
)
9888 Make_Build_In_Place_Call_In_Anonymous_Context
(Pref
);
9891 -- The remaining case to be handled is packed slices. We can leave
9892 -- packed slices as they are in the following situations:
9894 -- 1. Right or left side of an assignment (we can handle this
9895 -- situation correctly in the assignment statement expansion).
9897 -- 2. Prefix of indexed component (the slide is optimized away in this
9898 -- case, see the start of Expand_N_Slice.)
9900 -- 3. Object renaming declaration, since we want the name of the
9901 -- slice, not the value.
9903 -- 4. Argument to procedure call, since copy-in/copy-out handling may
9904 -- be required, and this is handled in the expansion of call
9907 -- 5. Prefix of an address attribute (this is an error which is caught
9908 -- elsewhere, and the expansion would interfere with generating the
9911 if not Is_Packed
(Typ
) then
9913 -- Apply transformation for actuals of a function call, where
9914 -- Expand_Actuals is not used.
9916 if Nkind
(Parent
(N
)) = N_Function_Call
9917 and then Is_Possibly_Unaligned_Slice
(N
)
9919 Make_Temporary_For_Slice
;
9922 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
9923 or else (Nkind
(Parent
(Parent
(N
))) = N_Assignment_Statement
9924 and then Parent
(N
) = Name
(Parent
(Parent
(N
))))
9928 elsif Nkind
(Parent
(N
)) = N_Indexed_Component
9929 or else Is_Renamed_Object
(N
)
9930 or else Is_Procedure_Actual
(N
)
9934 elsif Nkind
(Parent
(N
)) = N_Attribute_Reference
9935 and then Attribute_Name
(Parent
(N
)) = Name_Address
9940 Make_Temporary_For_Slice
;
9944 ------------------------------
9945 -- Expand_N_Type_Conversion --
9946 ------------------------------
9948 procedure Expand_N_Type_Conversion
(N
: Node_Id
) is
9949 Loc
: constant Source_Ptr
:= Sloc
(N
);
9950 Operand
: constant Node_Id
:= Expression
(N
);
9951 Target_Type
: constant Entity_Id
:= Etype
(N
);
9952 Operand_Type
: Entity_Id
:= Etype
(Operand
);
9954 procedure Handle_Changed_Representation
;
9955 -- This is called in the case of record and array type conversions to
9956 -- see if there is a change of representation to be handled. Change of
9957 -- representation is actually handled at the assignment statement level,
9958 -- and what this procedure does is rewrite node N conversion as an
9959 -- assignment to temporary. If there is no change of representation,
9960 -- then the conversion node is unchanged.
9962 procedure Raise_Accessibility_Error
;
9963 -- Called when we know that an accessibility check will fail. Rewrites
9964 -- node N to an appropriate raise statement and outputs warning msgs.
9965 -- The Etype of the raise node is set to Target_Type.
9967 procedure Real_Range_Check
;
9968 -- Handles generation of range check for real target value
9970 function Has_Extra_Accessibility
(Id
: Entity_Id
) return Boolean;
9971 -- True iff Present (Effective_Extra_Accessibility (Id)) successfully
9972 -- evaluates to True.
9974 -----------------------------------
9975 -- Handle_Changed_Representation --
9976 -----------------------------------
9978 procedure Handle_Changed_Representation
is
9987 -- Nothing else to do if no change of representation
9989 if Same_Representation
(Operand_Type
, Target_Type
) then
9992 -- The real change of representation work is done by the assignment
9993 -- statement processing. So if this type conversion is appearing as
9994 -- the expression of an assignment statement, nothing needs to be
9995 -- done to the conversion.
9997 elsif Nkind
(Parent
(N
)) = N_Assignment_Statement
then
10000 -- Otherwise we need to generate a temporary variable, and do the
10001 -- change of representation assignment into that temporary variable.
10002 -- The conversion is then replaced by a reference to this variable.
10007 -- If type is unconstrained we have to add a constraint, copied
10008 -- from the actual value of the left hand side.
10010 if not Is_Constrained
(Target_Type
) then
10011 if Has_Discriminants
(Operand_Type
) then
10012 Disc
:= First_Discriminant
(Operand_Type
);
10014 if Disc
/= First_Stored_Discriminant
(Operand_Type
) then
10015 Disc
:= First_Stored_Discriminant
(Operand_Type
);
10019 while Present
(Disc
) loop
10021 Make_Selected_Component
(Loc
,
10023 Duplicate_Subexpr_Move_Checks
(Operand
),
10025 Make_Identifier
(Loc
, Chars
(Disc
))));
10026 Next_Discriminant
(Disc
);
10029 elsif Is_Array_Type
(Operand_Type
) then
10030 N_Ix
:= First_Index
(Target_Type
);
10033 for J
in 1 .. Number_Dimensions
(Operand_Type
) loop
10035 -- We convert the bounds explicitly. We use an unchecked
10036 -- conversion because bounds checks are done elsewhere.
10041 Unchecked_Convert_To
(Etype
(N_Ix
),
10042 Make_Attribute_Reference
(Loc
,
10044 Duplicate_Subexpr_No_Checks
10045 (Operand
, Name_Req
=> True),
10046 Attribute_Name
=> Name_First
,
10047 Expressions
=> New_List
(
10048 Make_Integer_Literal
(Loc
, J
)))),
10051 Unchecked_Convert_To
(Etype
(N_Ix
),
10052 Make_Attribute_Reference
(Loc
,
10054 Duplicate_Subexpr_No_Checks
10055 (Operand
, Name_Req
=> True),
10056 Attribute_Name
=> Name_Last
,
10057 Expressions
=> New_List
(
10058 Make_Integer_Literal
(Loc
, J
))))));
10065 Odef
:= New_Occurrence_Of
(Target_Type
, Loc
);
10067 if Present
(Cons
) then
10069 Make_Subtype_Indication
(Loc
,
10070 Subtype_Mark
=> Odef
,
10072 Make_Index_Or_Discriminant_Constraint
(Loc
,
10073 Constraints
=> Cons
));
10076 Temp
:= Make_Temporary
(Loc
, 'C');
10078 Make_Object_Declaration
(Loc
,
10079 Defining_Identifier
=> Temp
,
10080 Object_Definition
=> Odef
);
10082 Set_No_Initialization
(Decl
, True);
10084 -- Insert required actions. It is essential to suppress checks
10085 -- since we have suppressed default initialization, which means
10086 -- that the variable we create may have no discriminants.
10091 Make_Assignment_Statement
(Loc
,
10092 Name
=> New_Occurrence_Of
(Temp
, Loc
),
10093 Expression
=> Relocate_Node
(N
))),
10094 Suppress
=> All_Checks
);
10096 Rewrite
(N
, New_Occurrence_Of
(Temp
, Loc
));
10099 end Handle_Changed_Representation
;
10101 -------------------------------
10102 -- Raise_Accessibility_Error --
10103 -------------------------------
10105 procedure Raise_Accessibility_Error
is
10107 Error_Msg_Warn
:= SPARK_Mode
/= On
;
10109 Make_Raise_Program_Error
(Sloc
(N
),
10110 Reason
=> PE_Accessibility_Check_Failed
));
10111 Set_Etype
(N
, Target_Type
);
10113 Error_Msg_N
("<<accessibility check failure", N
);
10114 Error_Msg_NE
("\<<& [", N
, Standard_Program_Error
);
10115 end Raise_Accessibility_Error
;
10117 ----------------------
10118 -- Real_Range_Check --
10119 ----------------------
10121 -- Case of conversions to floating-point or fixed-point. If range checks
10122 -- are enabled and the target type has a range constraint, we convert:
10128 -- Tnn : typ'Base := typ'Base (x);
10129 -- [constraint_error when Tnn < typ'First or else Tnn > typ'Last]
10132 -- This is necessary when there is a conversion of integer to float or
10133 -- to fixed-point to ensure that the correct checks are made. It is not
10134 -- necessary for float to float where it is enough to simply set the
10135 -- Do_Range_Check flag.
10137 procedure Real_Range_Check
is
10138 Btyp
: constant Entity_Id
:= Base_Type
(Target_Type
);
10139 Lo
: constant Node_Id
:= Type_Low_Bound
(Target_Type
);
10140 Hi
: constant Node_Id
:= Type_High_Bound
(Target_Type
);
10141 Xtyp
: constant Entity_Id
:= Etype
(Operand
);
10146 -- Nothing to do if conversion was rewritten
10148 if Nkind
(N
) /= N_Type_Conversion
then
10152 -- Nothing to do if range checks suppressed, or target has the same
10153 -- range as the base type (or is the base type).
10155 if Range_Checks_Suppressed
(Target_Type
)
10156 or else (Lo
= Type_Low_Bound
(Btyp
)
10158 Hi
= Type_High_Bound
(Btyp
))
10163 -- Nothing to do if expression is an entity on which checks have been
10166 if Is_Entity_Name
(Operand
)
10167 and then Range_Checks_Suppressed
(Entity
(Operand
))
10172 -- Nothing to do if bounds are all static and we can tell that the
10173 -- expression is within the bounds of the target. Note that if the
10174 -- operand is of an unconstrained floating-point type, then we do
10175 -- not trust it to be in range (might be infinite)
10178 S_Lo
: constant Node_Id
:= Type_Low_Bound
(Xtyp
);
10179 S_Hi
: constant Node_Id
:= Type_High_Bound
(Xtyp
);
10182 if (not Is_Floating_Point_Type
(Xtyp
)
10183 or else Is_Constrained
(Xtyp
))
10184 and then Compile_Time_Known_Value
(S_Lo
)
10185 and then Compile_Time_Known_Value
(S_Hi
)
10186 and then Compile_Time_Known_Value
(Hi
)
10187 and then Compile_Time_Known_Value
(Lo
)
10190 D_Lov
: constant Ureal
:= Expr_Value_R
(Lo
);
10191 D_Hiv
: constant Ureal
:= Expr_Value_R
(Hi
);
10196 if Is_Real_Type
(Xtyp
) then
10197 S_Lov
:= Expr_Value_R
(S_Lo
);
10198 S_Hiv
:= Expr_Value_R
(S_Hi
);
10200 S_Lov
:= UR_From_Uint
(Expr_Value
(S_Lo
));
10201 S_Hiv
:= UR_From_Uint
(Expr_Value
(S_Hi
));
10205 and then S_Lov
>= D_Lov
10206 and then S_Hiv
<= D_Hiv
10208 -- Unset the range check flag on the current value of
10209 -- Expression (N), since the captured Operand may have
10210 -- been rewritten (such as for the case of a conversion
10211 -- to a fixed-point type).
10213 Set_Do_Range_Check
(Expression
(N
), False);
10221 -- For float to float conversions, we are done
10223 if Is_Floating_Point_Type
(Xtyp
)
10225 Is_Floating_Point_Type
(Btyp
)
10230 -- Otherwise rewrite the conversion as described above
10232 Conv
:= Relocate_Node
(N
);
10233 Rewrite
(Subtype_Mark
(Conv
), New_Occurrence_Of
(Btyp
, Loc
));
10234 Set_Etype
(Conv
, Btyp
);
10236 -- Enable overflow except for case of integer to float conversions,
10237 -- where it is never required, since we can never have overflow in
10240 if not Is_Integer_Type
(Etype
(Operand
)) then
10241 Enable_Overflow_Check
(Conv
);
10244 Tnn
:= Make_Temporary
(Loc
, 'T', Conv
);
10246 Insert_Actions
(N
, New_List
(
10247 Make_Object_Declaration
(Loc
,
10248 Defining_Identifier
=> Tnn
,
10249 Object_Definition
=> New_Occurrence_Of
(Btyp
, Loc
),
10250 Constant_Present
=> True,
10251 Expression
=> Conv
),
10253 Make_Raise_Constraint_Error
(Loc
,
10258 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
10260 Make_Attribute_Reference
(Loc
,
10261 Attribute_Name
=> Name_First
,
10263 New_Occurrence_Of
(Target_Type
, Loc
))),
10267 Left_Opnd
=> New_Occurrence_Of
(Tnn
, Loc
),
10269 Make_Attribute_Reference
(Loc
,
10270 Attribute_Name
=> Name_Last
,
10272 New_Occurrence_Of
(Target_Type
, Loc
)))),
10273 Reason
=> CE_Range_Check_Failed
)));
10275 Rewrite
(N
, New_Occurrence_Of
(Tnn
, Loc
));
10276 Analyze_And_Resolve
(N
, Btyp
);
10277 end Real_Range_Check
;
10279 -----------------------------
10280 -- Has_Extra_Accessibility --
10281 -----------------------------
10283 -- Returns true for a formal of an anonymous access type or for
10284 -- an Ada 2012-style stand-alone object of an anonymous access type.
10286 function Has_Extra_Accessibility
(Id
: Entity_Id
) return Boolean is
10288 if Is_Formal
(Id
) or else Ekind_In
(Id
, E_Constant
, E_Variable
) then
10289 return Present
(Effective_Extra_Accessibility
(Id
));
10293 end Has_Extra_Accessibility
;
10295 -- Start of processing for Expand_N_Type_Conversion
10298 -- First remove check marks put by the semantic analysis on the type
10299 -- conversion between array types. We need these checks, and they will
10300 -- be generated by this expansion routine, but we do not depend on these
10301 -- flags being set, and since we do intend to expand the checks in the
10302 -- front end, we don't want them on the tree passed to the back end.
10304 if Is_Array_Type
(Target_Type
) then
10305 if Is_Constrained
(Target_Type
) then
10306 Set_Do_Length_Check
(N
, False);
10308 Set_Do_Range_Check
(Operand
, False);
10312 -- Nothing at all to do if conversion is to the identical type so remove
10313 -- the conversion completely, it is useless, except that it may carry
10314 -- an Assignment_OK attribute, which must be propagated to the operand.
10316 if Operand_Type
= Target_Type
then
10317 if Assignment_OK
(N
) then
10318 Set_Assignment_OK
(Operand
);
10321 Rewrite
(N
, Relocate_Node
(Operand
));
10325 -- Nothing to do if this is the second argument of read. This is a
10326 -- "backwards" conversion that will be handled by the specialized code
10327 -- in attribute processing.
10329 if Nkind
(Parent
(N
)) = N_Attribute_Reference
10330 and then Attribute_Name
(Parent
(N
)) = Name_Read
10331 and then Next
(First
(Expressions
(Parent
(N
)))) = N
10336 -- Check for case of converting to a type that has an invariant
10337 -- associated with it. This required an invariant check. We convert
10343 -- do invariant_check (typ (expr)) in typ (expr);
10345 -- using Duplicate_Subexpr to avoid multiple side effects
10347 -- Note: the Comes_From_Source check, and then the resetting of this
10348 -- flag prevents what would otherwise be an infinite recursion.
10350 if Has_Invariants
(Target_Type
)
10351 and then Present
(Invariant_Procedure
(Target_Type
))
10352 and then Comes_From_Source
(N
)
10354 Set_Comes_From_Source
(N
, False);
10356 Make_Expression_With_Actions
(Loc
,
10357 Actions
=> New_List
(
10358 Make_Invariant_Call
(Duplicate_Subexpr
(N
))),
10359 Expression
=> Duplicate_Subexpr_No_Checks
(N
)));
10360 Analyze_And_Resolve
(N
, Target_Type
);
10364 -- Here if we may need to expand conversion
10366 -- If the operand of the type conversion is an arithmetic operation on
10367 -- signed integers, and the based type of the signed integer type in
10368 -- question is smaller than Standard.Integer, we promote both of the
10369 -- operands to type Integer.
10371 -- For example, if we have
10373 -- target-type (opnd1 + opnd2)
10375 -- and opnd1 and opnd2 are of type short integer, then we rewrite
10378 -- target-type (integer(opnd1) + integer(opnd2))
10380 -- We do this because we are always allowed to compute in a larger type
10381 -- if we do the right thing with the result, and in this case we are
10382 -- going to do a conversion which will do an appropriate check to make
10383 -- sure that things are in range of the target type in any case. This
10384 -- avoids some unnecessary intermediate overflows.
10386 -- We might consider a similar transformation in the case where the
10387 -- target is a real type or a 64-bit integer type, and the operand
10388 -- is an arithmetic operation using a 32-bit integer type. However,
10389 -- we do not bother with this case, because it could cause significant
10390 -- inefficiencies on 32-bit machines. On a 64-bit machine it would be
10391 -- much cheaper, but we don't want different behavior on 32-bit and
10392 -- 64-bit machines. Note that the exclusion of the 64-bit case also
10393 -- handles the configurable run-time cases where 64-bit arithmetic
10394 -- may simply be unavailable.
10396 -- Note: this circuit is partially redundant with respect to the circuit
10397 -- in Checks.Apply_Arithmetic_Overflow_Check, but we catch more cases in
10398 -- the processing here. Also we still need the Checks circuit, since we
10399 -- have to be sure not to generate junk overflow checks in the first
10400 -- place, since it would be trick to remove them here.
10402 if Integer_Promotion_Possible
(N
) then
10404 -- All conditions met, go ahead with transformation
10412 Make_Type_Conversion
(Loc
,
10413 Subtype_Mark
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
10414 Expression
=> Relocate_Node
(Right_Opnd
(Operand
)));
10416 Opnd
:= New_Op_Node
(Nkind
(Operand
), Loc
);
10417 Set_Right_Opnd
(Opnd
, R
);
10419 if Nkind
(Operand
) in N_Binary_Op
then
10421 Make_Type_Conversion
(Loc
,
10422 Subtype_Mark
=> New_Occurrence_Of
(Standard_Integer
, Loc
),
10423 Expression
=> Relocate_Node
(Left_Opnd
(Operand
)));
10425 Set_Left_Opnd
(Opnd
, L
);
10429 Make_Type_Conversion
(Loc
,
10430 Subtype_Mark
=> Relocate_Node
(Subtype_Mark
(N
)),
10431 Expression
=> Opnd
));
10433 Analyze_And_Resolve
(N
, Target_Type
);
10438 -- Do validity check if validity checking operands
10440 if Validity_Checks_On
and Validity_Check_Operands
then
10441 Ensure_Valid
(Operand
);
10444 -- Special case of converting from non-standard boolean type
10446 if Is_Boolean_Type
(Operand_Type
)
10447 and then (Nonzero_Is_True
(Operand_Type
))
10449 Adjust_Condition
(Operand
);
10450 Set_Etype
(Operand
, Standard_Boolean
);
10451 Operand_Type
:= Standard_Boolean
;
10454 -- Case of converting to an access type
10456 if Is_Access_Type
(Target_Type
) then
10458 -- Apply an accessibility check when the conversion operand is an
10459 -- access parameter (or a renaming thereof), unless conversion was
10460 -- expanded from an Unchecked_ or Unrestricted_Access attribute.
10461 -- Note that other checks may still need to be applied below (such
10462 -- as tagged type checks).
10464 if Is_Entity_Name
(Operand
)
10465 and then Has_Extra_Accessibility
(Entity
(Operand
))
10466 and then Ekind
(Etype
(Operand
)) = E_Anonymous_Access_Type
10467 and then (Nkind
(Original_Node
(N
)) /= N_Attribute_Reference
10468 or else Attribute_Name
(Original_Node
(N
)) = Name_Access
)
10470 Apply_Accessibility_Check
10471 (Operand
, Target_Type
, Insert_Node
=> Operand
);
10473 -- If the level of the operand type is statically deeper than the
10474 -- level of the target type, then force Program_Error. Note that this
10475 -- can only occur for cases where the attribute is within the body of
10476 -- an instantiation, otherwise the conversion will already have been
10477 -- rejected as illegal.
10479 -- Note: warnings are issued by the analyzer for the instance cases
10481 elsif In_Instance_Body
10483 -- The case where the target type is an anonymous access type of
10484 -- a discriminant is excluded, because the level of such a type
10485 -- depends on the context and currently the level returned for such
10486 -- types is zero, resulting in warnings about about check failures
10487 -- in certain legal cases involving class-wide interfaces as the
10488 -- designated type (some cases, such as return statements, are
10489 -- checked at run time, but not clear if these are handled right
10490 -- in general, see 3.10.2(12/2-12.5/3) ???).
10493 not (Ekind
(Target_Type
) = E_Anonymous_Access_Type
10494 and then Present
(Associated_Node_For_Itype
(Target_Type
))
10495 and then Nkind
(Associated_Node_For_Itype
(Target_Type
)) =
10496 N_Discriminant_Specification
)
10498 Type_Access_Level
(Operand_Type
) > Type_Access_Level
(Target_Type
)
10500 Raise_Accessibility_Error
;
10502 -- When the operand is a selected access discriminant the check needs
10503 -- to be made against the level of the object denoted by the prefix
10504 -- of the selected name. Force Program_Error for this case as well
10505 -- (this accessibility violation can only happen if within the body
10506 -- of an instantiation).
10508 elsif In_Instance_Body
10509 and then Ekind
(Operand_Type
) = E_Anonymous_Access_Type
10510 and then Nkind
(Operand
) = N_Selected_Component
10511 and then Object_Access_Level
(Operand
) >
10512 Type_Access_Level
(Target_Type
)
10514 Raise_Accessibility_Error
;
10519 -- Case of conversions of tagged types and access to tagged types
10521 -- When needed, that is to say when the expression is class-wide, Add
10522 -- runtime a tag check for (strict) downward conversion by using the
10523 -- membership test, generating:
10525 -- [constraint_error when Operand not in Target_Type'Class]
10527 -- or in the access type case
10529 -- [constraint_error
10530 -- when Operand /= null
10531 -- and then Operand.all not in
10532 -- Designated_Type (Target_Type)'Class]
10534 if (Is_Access_Type
(Target_Type
)
10535 and then Is_Tagged_Type
(Designated_Type
(Target_Type
)))
10536 or else Is_Tagged_Type
(Target_Type
)
10538 -- Do not do any expansion in the access type case if the parent is a
10539 -- renaming, since this is an error situation which will be caught by
10540 -- Sem_Ch8, and the expansion can interfere with this error check.
10542 if Is_Access_Type
(Target_Type
) and then Is_Renamed_Object
(N
) then
10546 -- Otherwise, proceed with processing tagged conversion
10548 Tagged_Conversion
: declare
10549 Actual_Op_Typ
: Entity_Id
;
10550 Actual_Targ_Typ
: Entity_Id
;
10551 Make_Conversion
: Boolean := False;
10552 Root_Op_Typ
: Entity_Id
;
10554 procedure Make_Tag_Check
(Targ_Typ
: Entity_Id
);
10555 -- Create a membership check to test whether Operand is a member
10556 -- of Targ_Typ. If the original Target_Type is an access, include
10557 -- a test for null value. The check is inserted at N.
10559 --------------------
10560 -- Make_Tag_Check --
10561 --------------------
10563 procedure Make_Tag_Check
(Targ_Typ
: Entity_Id
) is
10568 -- [Constraint_Error
10569 -- when Operand /= null
10570 -- and then Operand.all not in Targ_Typ]
10572 if Is_Access_Type
(Target_Type
) then
10574 Make_And_Then
(Loc
,
10577 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Operand
),
10578 Right_Opnd
=> Make_Null
(Loc
)),
10583 Make_Explicit_Dereference
(Loc
,
10584 Prefix
=> Duplicate_Subexpr_No_Checks
(Operand
)),
10585 Right_Opnd
=> New_Occurrence_Of
(Targ_Typ
, Loc
)));
10588 -- [Constraint_Error when Operand not in Targ_Typ]
10593 Left_Opnd
=> Duplicate_Subexpr_No_Checks
(Operand
),
10594 Right_Opnd
=> New_Occurrence_Of
(Targ_Typ
, Loc
));
10598 Make_Raise_Constraint_Error
(Loc
,
10600 Reason
=> CE_Tag_Check_Failed
));
10601 end Make_Tag_Check
;
10603 -- Start of processing for Tagged_Conversion
10606 -- Handle entities from the limited view
10608 if Is_Access_Type
(Operand_Type
) then
10610 Available_View
(Designated_Type
(Operand_Type
));
10612 Actual_Op_Typ
:= Operand_Type
;
10615 if Is_Access_Type
(Target_Type
) then
10617 Available_View
(Designated_Type
(Target_Type
));
10619 Actual_Targ_Typ
:= Target_Type
;
10622 Root_Op_Typ
:= Root_Type
(Actual_Op_Typ
);
10624 -- Ada 2005 (AI-251): Handle interface type conversion
10626 if Is_Interface
(Actual_Op_Typ
)
10628 Is_Interface
(Actual_Targ_Typ
)
10630 Expand_Interface_Conversion
(N
);
10634 if not Tag_Checks_Suppressed
(Actual_Targ_Typ
) then
10636 -- Create a runtime tag check for a downward class-wide type
10639 if Is_Class_Wide_Type
(Actual_Op_Typ
)
10640 and then Actual_Op_Typ
/= Actual_Targ_Typ
10641 and then Root_Op_Typ
/= Actual_Targ_Typ
10642 and then Is_Ancestor
(Root_Op_Typ
, Actual_Targ_Typ
,
10643 Use_Full_View
=> True)
10645 Make_Tag_Check
(Class_Wide_Type
(Actual_Targ_Typ
));
10646 Make_Conversion
:= True;
10649 -- AI05-0073: If the result subtype of the function is defined
10650 -- by an access_definition designating a specific tagged type
10651 -- T, a check is made that the result value is null or the tag
10652 -- of the object designated by the result value identifies T.
10653 -- Constraint_Error is raised if this check fails.
10655 if Nkind
(Parent
(N
)) = N_Simple_Return_Statement
then
10658 Func_Typ
: Entity_Id
;
10661 -- Climb scope stack looking for the enclosing function
10663 Func
:= Current_Scope
;
10664 while Present
(Func
)
10665 and then Ekind
(Func
) /= E_Function
10667 Func
:= Scope
(Func
);
10670 -- The function's return subtype must be defined using
10671 -- an access definition.
10673 if Nkind
(Result_Definition
(Parent
(Func
))) =
10674 N_Access_Definition
10676 Func_Typ
:= Directly_Designated_Type
(Etype
(Func
));
10678 -- The return subtype denotes a specific tagged type,
10679 -- in other words, a non class-wide type.
10681 if Is_Tagged_Type
(Func_Typ
)
10682 and then not Is_Class_Wide_Type
(Func_Typ
)
10684 Make_Tag_Check
(Actual_Targ_Typ
);
10685 Make_Conversion
:= True;
10691 -- We have generated a tag check for either a class-wide type
10692 -- conversion or for AI05-0073.
10694 if Make_Conversion
then
10699 Make_Unchecked_Type_Conversion
(Loc
,
10700 Subtype_Mark
=> New_Occurrence_Of
(Target_Type
, Loc
),
10701 Expression
=> Relocate_Node
(Expression
(N
)));
10703 Analyze_And_Resolve
(N
, Target_Type
);
10707 end Tagged_Conversion
;
10709 -- Case of other access type conversions
10711 elsif Is_Access_Type
(Target_Type
) then
10712 Apply_Constraint_Check
(Operand
, Target_Type
);
10714 -- Case of conversions from a fixed-point type
10716 -- These conversions require special expansion and processing, found in
10717 -- the Exp_Fixd package. We ignore cases where Conversion_OK is set,
10718 -- since from a semantic point of view, these are simple integer
10719 -- conversions, which do not need further processing.
10721 elsif Is_Fixed_Point_Type
(Operand_Type
)
10722 and then not Conversion_OK
(N
)
10724 -- We should never see universal fixed at this case, since the
10725 -- expansion of the constituent divide or multiply should have
10726 -- eliminated the explicit mention of universal fixed.
10728 pragma Assert
(Operand_Type
/= Universal_Fixed
);
10730 -- Check for special case of the conversion to universal real that
10731 -- occurs as a result of the use of a round attribute. In this case,
10732 -- the real type for the conversion is taken from the target type of
10733 -- the Round attribute and the result must be marked as rounded.
10735 if Target_Type
= Universal_Real
10736 and then Nkind
(Parent
(N
)) = N_Attribute_Reference
10737 and then Attribute_Name
(Parent
(N
)) = Name_Round
10739 Set_Rounded_Result
(N
);
10740 Set_Etype
(N
, Etype
(Parent
(N
)));
10743 -- Otherwise do correct fixed-conversion, but skip these if the
10744 -- Conversion_OK flag is set, because from a semantic point of view
10745 -- these are simple integer conversions needing no further processing
10746 -- (the backend will simply treat them as integers).
10748 if not Conversion_OK
(N
) then
10749 if Is_Fixed_Point_Type
(Etype
(N
)) then
10750 Expand_Convert_Fixed_To_Fixed
(N
);
10753 elsif Is_Integer_Type
(Etype
(N
)) then
10754 Expand_Convert_Fixed_To_Integer
(N
);
10757 pragma Assert
(Is_Floating_Point_Type
(Etype
(N
)));
10758 Expand_Convert_Fixed_To_Float
(N
);
10763 -- Case of conversions to a fixed-point type
10765 -- These conversions require special expansion and processing, found in
10766 -- the Exp_Fixd package. Again, ignore cases where Conversion_OK is set,
10767 -- since from a semantic point of view, these are simple integer
10768 -- conversions, which do not need further processing.
10770 elsif Is_Fixed_Point_Type
(Target_Type
)
10771 and then not Conversion_OK
(N
)
10773 if Is_Integer_Type
(Operand_Type
) then
10774 Expand_Convert_Integer_To_Fixed
(N
);
10777 pragma Assert
(Is_Floating_Point_Type
(Operand_Type
));
10778 Expand_Convert_Float_To_Fixed
(N
);
10782 -- Case of float-to-integer conversions
10784 -- We also handle float-to-fixed conversions with Conversion_OK set
10785 -- since semantically the fixed-point target is treated as though it
10786 -- were an integer in such cases.
10788 elsif Is_Floating_Point_Type
(Operand_Type
)
10790 (Is_Integer_Type
(Target_Type
)
10792 (Is_Fixed_Point_Type
(Target_Type
) and then Conversion_OK
(N
)))
10794 -- One more check here, gcc is still not able to do conversions of
10795 -- this type with proper overflow checking, and so gigi is doing an
10796 -- approximation of what is required by doing floating-point compares
10797 -- with the end-point. But that can lose precision in some cases, and
10798 -- give a wrong result. Converting the operand to Universal_Real is
10799 -- helpful, but still does not catch all cases with 64-bit integers
10800 -- on targets with only 64-bit floats.
10802 -- The above comment seems obsoleted by Apply_Float_Conversion_Check
10803 -- Can this code be removed ???
10805 if Do_Range_Check
(Operand
) then
10807 Make_Type_Conversion
(Loc
,
10809 New_Occurrence_Of
(Universal_Real
, Loc
),
10811 Relocate_Node
(Operand
)));
10813 Set_Etype
(Operand
, Universal_Real
);
10814 Enable_Range_Check
(Operand
);
10815 Set_Do_Range_Check
(Expression
(Operand
), False);
10818 -- Case of array conversions
10820 -- Expansion of array conversions, add required length/range checks but
10821 -- only do this if there is no change of representation. For handling of
10822 -- this case, see Handle_Changed_Representation.
10824 elsif Is_Array_Type
(Target_Type
) then
10825 if Is_Constrained
(Target_Type
) then
10826 Apply_Length_Check
(Operand
, Target_Type
);
10828 Apply_Range_Check
(Operand
, Target_Type
);
10831 Handle_Changed_Representation
;
10833 -- Case of conversions of discriminated types
10835 -- Add required discriminant checks if target is constrained. Again this
10836 -- change is skipped if we have a change of representation.
10838 elsif Has_Discriminants
(Target_Type
)
10839 and then Is_Constrained
(Target_Type
)
10841 Apply_Discriminant_Check
(Operand
, Target_Type
);
10842 Handle_Changed_Representation
;
10844 -- Case of all other record conversions. The only processing required
10845 -- is to check for a change of representation requiring the special
10846 -- assignment processing.
10848 elsif Is_Record_Type
(Target_Type
) then
10850 -- Ada 2005 (AI-216): Program_Error is raised when converting from
10851 -- a derived Unchecked_Union type to an unconstrained type that is
10852 -- not Unchecked_Union if the operand lacks inferable discriminants.
10854 if Is_Derived_Type
(Operand_Type
)
10855 and then Is_Unchecked_Union
(Base_Type
(Operand_Type
))
10856 and then not Is_Constrained
(Target_Type
)
10857 and then not Is_Unchecked_Union
(Base_Type
(Target_Type
))
10858 and then not Has_Inferable_Discriminants
(Operand
)
10860 -- To prevent Gigi from generating illegal code, we generate a
10861 -- Program_Error node, but we give it the target type of the
10862 -- conversion (is this requirement documented somewhere ???)
10865 PE
: constant Node_Id
:= Make_Raise_Program_Error
(Loc
,
10866 Reason
=> PE_Unchecked_Union_Restriction
);
10869 Set_Etype
(PE
, Target_Type
);
10874 Handle_Changed_Representation
;
10877 -- Case of conversions of enumeration types
10879 elsif Is_Enumeration_Type
(Target_Type
) then
10881 -- Special processing is required if there is a change of
10882 -- representation (from enumeration representation clauses).
10884 if not Same_Representation
(Target_Type
, Operand_Type
) then
10886 -- Convert: x(y) to x'val (ytyp'val (y))
10889 Make_Attribute_Reference
(Loc
,
10890 Prefix
=> New_Occurrence_Of
(Target_Type
, Loc
),
10891 Attribute_Name
=> Name_Val
,
10892 Expressions
=> New_List
(
10893 Make_Attribute_Reference
(Loc
,
10894 Prefix
=> New_Occurrence_Of
(Operand_Type
, Loc
),
10895 Attribute_Name
=> Name_Pos
,
10896 Expressions
=> New_List
(Operand
)))));
10898 Analyze_And_Resolve
(N
, Target_Type
);
10901 -- Case of conversions to floating-point
10903 elsif Is_Floating_Point_Type
(Target_Type
) then
10907 -- At this stage, either the conversion node has been transformed into
10908 -- some other equivalent expression, or left as a conversion that can be
10909 -- handled by Gigi, in the following cases:
10911 -- Conversions with no change of representation or type
10913 -- Numeric conversions involving integer, floating- and fixed-point
10914 -- values. Fixed-point values are allowed only if Conversion_OK is
10915 -- set, i.e. if the fixed-point values are to be treated as integers.
10917 -- No other conversions should be passed to Gigi
10919 -- Check: are these rules stated in sinfo??? if so, why restate here???
10921 -- The only remaining step is to generate a range check if we still have
10922 -- a type conversion at this stage and Do_Range_Check is set. For now we
10923 -- do this only for conversions of discrete types and for float-to-float
10926 if Nkind
(N
) = N_Type_Conversion
then
10928 -- For now we only support floating-point cases where both source
10929 -- and target are floating-point types. Conversions where the source
10930 -- and target involve integer or fixed-point types are still TBD,
10931 -- though not clear whether those can even happen at this point, due
10932 -- to transformations above. ???
10934 if Is_Floating_Point_Type
(Etype
(N
))
10935 and then Is_Floating_Point_Type
(Etype
(Expression
(N
)))
10937 if Do_Range_Check
(Expression
(N
))
10938 and then Is_Floating_Point_Type
(Target_Type
)
10940 Generate_Range_Check
10941 (Expression
(N
), Target_Type
, CE_Range_Check_Failed
);
10944 -- Discrete-to-discrete conversions
10946 elsif Is_Discrete_Type
(Etype
(N
)) then
10948 Expr
: constant Node_Id
:= Expression
(N
);
10953 if Do_Range_Check
(Expr
)
10954 and then Is_Discrete_Type
(Etype
(Expr
))
10956 Set_Do_Range_Check
(Expr
, False);
10958 -- Before we do a range check, we have to deal with treating
10959 -- a fixed-point operand as an integer. The way we do this
10960 -- is simply to do an unchecked conversion to an appropriate
10961 -- integer type large enough to hold the result.
10963 -- This code is not active yet, because we are only dealing
10964 -- with discrete types so far ???
10966 if Nkind
(Expr
) in N_Has_Treat_Fixed_As_Integer
10967 and then Treat_Fixed_As_Integer
(Expr
)
10969 Ftyp
:= Base_Type
(Etype
(Expr
));
10971 if Esize
(Ftyp
) >= Esize
(Standard_Integer
) then
10972 Ityp
:= Standard_Long_Long_Integer
;
10974 Ityp
:= Standard_Integer
;
10977 Rewrite
(Expr
, Unchecked_Convert_To
(Ityp
, Expr
));
10980 -- Reset overflow flag, since the range check will include
10981 -- dealing with possible overflow, and generate the check.
10982 -- If Address is either a source type or target type,
10983 -- suppress range check to avoid typing anomalies when
10984 -- it is a visible integer type.
10986 Set_Do_Overflow_Check
(N
, False);
10988 if not Is_Descendent_Of_Address
(Etype
(Expr
))
10989 and then not Is_Descendent_Of_Address
(Target_Type
)
10991 Generate_Range_Check
10992 (Expr
, Target_Type
, CE_Range_Check_Failed
);
10999 -- Here at end of processing
11002 -- Apply predicate check if required. Note that we can't just call
11003 -- Apply_Predicate_Check here, because the type looks right after
11004 -- the conversion and it would omit the check. The Comes_From_Source
11005 -- guard is necessary to prevent infinite recursions when we generate
11006 -- internal conversions for the purpose of checking predicates.
11008 if Present
(Predicate_Function
(Target_Type
))
11009 and then Target_Type
/= Operand_Type
11010 and then Comes_From_Source
(N
)
11013 New_Expr
: constant Node_Id
:= Duplicate_Subexpr
(N
);
11016 -- Avoid infinite recursion on the subsequent expansion of
11017 -- of the copy of the original type conversion.
11019 Set_Comes_From_Source
(New_Expr
, False);
11020 Insert_Action
(N
, Make_Predicate_Check
(Target_Type
, New_Expr
));
11023 end Expand_N_Type_Conversion
;
11025 -----------------------------------
11026 -- Expand_N_Unchecked_Expression --
11027 -----------------------------------
11029 -- Remove the unchecked expression node from the tree. Its job was simply
11030 -- to make sure that its constituent expression was handled with checks
11031 -- off, and now that that is done, we can remove it from the tree, and
11032 -- indeed must, since Gigi does not expect to see these nodes.
11034 procedure Expand_N_Unchecked_Expression
(N
: Node_Id
) is
11035 Exp
: constant Node_Id
:= Expression
(N
);
11037 Set_Assignment_OK
(Exp
, Assignment_OK
(N
) or else Assignment_OK
(Exp
));
11039 end Expand_N_Unchecked_Expression
;
11041 ----------------------------------------
11042 -- Expand_N_Unchecked_Type_Conversion --
11043 ----------------------------------------
11045 -- If this cannot be handled by Gigi and we haven't already made a
11046 -- temporary for it, do it now.
11048 procedure Expand_N_Unchecked_Type_Conversion
(N
: Node_Id
) is
11049 Target_Type
: constant Entity_Id
:= Etype
(N
);
11050 Operand
: constant Node_Id
:= Expression
(N
);
11051 Operand_Type
: constant Entity_Id
:= Etype
(Operand
);
11054 -- Nothing at all to do if conversion is to the identical type so remove
11055 -- the conversion completely, it is useless, except that it may carry
11056 -- an Assignment_OK indication which must be propagated to the operand.
11058 if Operand_Type
= Target_Type
then
11060 -- Code duplicates Expand_N_Unchecked_Expression above, factor???
11062 if Assignment_OK
(N
) then
11063 Set_Assignment_OK
(Operand
);
11066 Rewrite
(N
, Relocate_Node
(Operand
));
11070 -- If we have a conversion of a compile time known value to a target
11071 -- type and the value is in range of the target type, then we can simply
11072 -- replace the construct by an integer literal of the correct type. We
11073 -- only apply this to integer types being converted. Possibly it may
11074 -- apply in other cases, but it is too much trouble to worry about.
11076 -- Note that we do not do this transformation if the Kill_Range_Check
11077 -- flag is set, since then the value may be outside the expected range.
11078 -- This happens in the Normalize_Scalars case.
11080 -- We also skip this if either the target or operand type is biased
11081 -- because in this case, the unchecked conversion is supposed to
11082 -- preserve the bit pattern, not the integer value.
11084 if Is_Integer_Type
(Target_Type
)
11085 and then not Has_Biased_Representation
(Target_Type
)
11086 and then Is_Integer_Type
(Operand_Type
)
11087 and then not Has_Biased_Representation
(Operand_Type
)
11088 and then Compile_Time_Known_Value
(Operand
)
11089 and then not Kill_Range_Check
(N
)
11092 Val
: constant Uint
:= Expr_Value
(Operand
);
11095 if Compile_Time_Known_Value
(Type_Low_Bound
(Target_Type
))
11097 Compile_Time_Known_Value
(Type_High_Bound
(Target_Type
))
11099 Val
>= Expr_Value
(Type_Low_Bound
(Target_Type
))
11101 Val
<= Expr_Value
(Type_High_Bound
(Target_Type
))
11103 Rewrite
(N
, Make_Integer_Literal
(Sloc
(N
), Val
));
11105 -- If Address is the target type, just set the type to avoid a
11106 -- spurious type error on the literal when Address is a visible
11109 if Is_Descendent_Of_Address
(Target_Type
) then
11110 Set_Etype
(N
, Target_Type
);
11112 Analyze_And_Resolve
(N
, Target_Type
);
11120 -- Nothing to do if conversion is safe
11122 if Safe_Unchecked_Type_Conversion
(N
) then
11126 -- Otherwise force evaluation unless Assignment_OK flag is set (this
11127 -- flag indicates ??? More comments needed here)
11129 if Assignment_OK
(N
) then
11132 Force_Evaluation
(N
);
11134 end Expand_N_Unchecked_Type_Conversion
;
11136 ----------------------------
11137 -- Expand_Record_Equality --
11138 ----------------------------
11140 -- For non-variant records, Equality is expanded when needed into:
11142 -- and then Lhs.Discr1 = Rhs.Discr1
11144 -- and then Lhs.Discrn = Rhs.Discrn
11145 -- and then Lhs.Cmp1 = Rhs.Cmp1
11147 -- and then Lhs.Cmpn = Rhs.Cmpn
11149 -- The expression is folded by the back-end for adjacent fields. This
11150 -- function is called for tagged record in only one occasion: for imple-
11151 -- menting predefined primitive equality (see Predefined_Primitives_Bodies)
11152 -- otherwise the primitive "=" is used directly.
11154 function Expand_Record_Equality
11159 Bodies
: List_Id
) return Node_Id
11161 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
11166 First_Time
: Boolean := True;
11168 function Element_To_Compare
(C
: Entity_Id
) return Entity_Id
;
11169 -- Return the next discriminant or component to compare, starting with
11170 -- C, skipping inherited components.
11172 ------------------------
11173 -- Element_To_Compare --
11174 ------------------------
11176 function Element_To_Compare
(C
: Entity_Id
) return Entity_Id
is
11182 -- Exit loop when the next element to be compared is found, or
11183 -- there is no more such element.
11185 exit when No
(Comp
);
11187 exit when Ekind_In
(Comp
, E_Discriminant
, E_Component
)
11190 -- Skip inherited components
11192 -- Note: for a tagged type, we always generate the "=" primitive
11193 -- for the base type (not on the first subtype), so the test for
11194 -- Comp /= Original_Record_Component (Comp) is True for
11195 -- inherited components only.
11197 (Is_Tagged_Type
(Typ
)
11198 and then Comp
/= Original_Record_Component
(Comp
))
11202 or else Chars
(Comp
) = Name_uTag
11204 -- The .NET/JVM version of type Root_Controlled contains two
11205 -- fields which should not be considered part of the object. To
11206 -- achieve proper equiality between two controlled objects on
11207 -- .NET/JVM, skip _Parent whenever it has type Root_Controlled.
11209 or else (Chars
(Comp
) = Name_uParent
11210 and then VM_Target
/= No_VM
11211 and then Etype
(Comp
) = RTE
(RE_Root_Controlled
))
11213 -- Skip interface elements (secondary tags???)
11215 or else Is_Interface
(Etype
(Comp
)));
11217 Next_Entity
(Comp
);
11221 end Element_To_Compare
;
11223 -- Start of processing for Expand_Record_Equality
11226 -- Generates the following code: (assuming that Typ has one Discr and
11227 -- component C2 is also a record)
11230 -- and then Lhs.Discr1 = Rhs.Discr1
11231 -- and then Lhs.C1 = Rhs.C1
11232 -- and then Lhs.C2.C1=Rhs.C2.C1 and then ... Lhs.C2.Cn=Rhs.C2.Cn
11234 -- and then Lhs.Cmpn = Rhs.Cmpn
11236 Result
:= New_Occurrence_Of
(Standard_True
, Loc
);
11237 C
:= Element_To_Compare
(First_Entity
(Typ
));
11238 while Present
(C
) loop
11246 First_Time
:= False;
11250 New_Lhs
:= New_Copy_Tree
(Lhs
);
11251 New_Rhs
:= New_Copy_Tree
(Rhs
);
11255 Expand_Composite_Equality
(Nod
, Etype
(C
),
11257 Make_Selected_Component
(Loc
,
11259 Selector_Name
=> New_Occurrence_Of
(C
, Loc
)),
11261 Make_Selected_Component
(Loc
,
11263 Selector_Name
=> New_Occurrence_Of
(C
, Loc
)),
11266 -- If some (sub)component is an unchecked_union, the whole
11267 -- operation will raise program error.
11269 if Nkind
(Check
) = N_Raise_Program_Error
then
11271 Set_Etype
(Result
, Standard_Boolean
);
11275 Make_And_Then
(Loc
,
11276 Left_Opnd
=> Result
,
11277 Right_Opnd
=> Check
);
11281 C
:= Element_To_Compare
(Next_Entity
(C
));
11285 end Expand_Record_Equality
;
11287 ---------------------------
11288 -- Expand_Set_Membership --
11289 ---------------------------
11291 procedure Expand_Set_Membership
(N
: Node_Id
) is
11292 Lop
: constant Node_Id
:= Left_Opnd
(N
);
11296 function Make_Cond
(Alt
: Node_Id
) return Node_Id
;
11297 -- If the alternative is a subtype mark, create a simple membership
11298 -- test. Otherwise create an equality test for it.
11304 function Make_Cond
(Alt
: Node_Id
) return Node_Id
is
11306 L
: constant Node_Id
:= New_Copy
(Lop
);
11307 R
: constant Node_Id
:= Relocate_Node
(Alt
);
11310 if (Is_Entity_Name
(Alt
) and then Is_Type
(Entity
(Alt
)))
11311 or else Nkind
(Alt
) = N_Range
11314 Make_In
(Sloc
(Alt
),
11319 Make_Op_Eq
(Sloc
(Alt
),
11327 -- Start of processing for Expand_Set_Membership
11330 Remove_Side_Effects
(Lop
);
11332 Alt
:= Last
(Alternatives
(N
));
11333 Res
:= Make_Cond
(Alt
);
11336 while Present
(Alt
) loop
11338 Make_Or_Else
(Sloc
(Alt
),
11339 Left_Opnd
=> Make_Cond
(Alt
),
11340 Right_Opnd
=> Res
);
11345 Analyze_And_Resolve
(N
, Standard_Boolean
);
11346 end Expand_Set_Membership
;
11348 -----------------------------------
11349 -- Expand_Short_Circuit_Operator --
11350 -----------------------------------
11352 -- Deal with special expansion if actions are present for the right operand
11353 -- and deal with optimizing case of arguments being True or False. We also
11354 -- deal with the special case of non-standard boolean values.
11356 procedure Expand_Short_Circuit_Operator
(N
: Node_Id
) is
11357 Loc
: constant Source_Ptr
:= Sloc
(N
);
11358 Typ
: constant Entity_Id
:= Etype
(N
);
11359 Left
: constant Node_Id
:= Left_Opnd
(N
);
11360 Right
: constant Node_Id
:= Right_Opnd
(N
);
11361 LocR
: constant Source_Ptr
:= Sloc
(Right
);
11364 Shortcut_Value
: constant Boolean := Nkind
(N
) = N_Or_Else
;
11365 Shortcut_Ent
: constant Entity_Id
:= Boolean_Literals
(Shortcut_Value
);
11366 -- If Left = Shortcut_Value then Right need not be evaluated
11369 -- Deal with non-standard booleans
11371 if Is_Boolean_Type
(Typ
) then
11372 Adjust_Condition
(Left
);
11373 Adjust_Condition
(Right
);
11374 Set_Etype
(N
, Standard_Boolean
);
11377 -- Check for cases where left argument is known to be True or False
11379 if Compile_Time_Known_Value
(Left
) then
11381 -- Mark SCO for left condition as compile time known
11383 if Generate_SCO
and then Comes_From_Source
(Left
) then
11384 Set_SCO_Condition
(Left
, Expr_Value_E
(Left
) = Standard_True
);
11387 -- Rewrite True AND THEN Right / False OR ELSE Right to Right.
11388 -- Any actions associated with Right will be executed unconditionally
11389 -- and can thus be inserted into the tree unconditionally.
11391 if Expr_Value_E
(Left
) /= Shortcut_Ent
then
11392 if Present
(Actions
(N
)) then
11393 Insert_Actions
(N
, Actions
(N
));
11396 Rewrite
(N
, Right
);
11398 -- Rewrite False AND THEN Right / True OR ELSE Right to Left.
11399 -- In this case we can forget the actions associated with Right,
11400 -- since they will never be executed.
11403 Kill_Dead_Code
(Right
);
11404 Kill_Dead_Code
(Actions
(N
));
11405 Rewrite
(N
, New_Occurrence_Of
(Shortcut_Ent
, Loc
));
11408 Adjust_Result_Type
(N
, Typ
);
11412 -- If Actions are present for the right operand, we have to do some
11413 -- special processing. We can't just let these actions filter back into
11414 -- code preceding the short circuit (which is what would have happened
11415 -- if we had not trapped them in the short-circuit form), since they
11416 -- must only be executed if the right operand of the short circuit is
11417 -- executed and not otherwise.
11419 if Present
(Actions
(N
)) then
11420 Actlist
:= Actions
(N
);
11422 -- We now use an Expression_With_Actions node for the right operand
11423 -- of the short-circuit form. Note that this solves the traceability
11424 -- problems for coverage analysis.
11427 Make_Expression_With_Actions
(LocR
,
11428 Expression
=> Relocate_Node
(Right
),
11429 Actions
=> Actlist
));
11430 Set_Actions
(N
, No_List
);
11431 Analyze_And_Resolve
(Right
, Standard_Boolean
);
11433 Adjust_Result_Type
(N
, Typ
);
11437 -- No actions present, check for cases of right argument True/False
11439 if Compile_Time_Known_Value
(Right
) then
11441 -- Mark SCO for left condition as compile time known
11443 if Generate_SCO
and then Comes_From_Source
(Right
) then
11444 Set_SCO_Condition
(Right
, Expr_Value_E
(Right
) = Standard_True
);
11447 -- Change (Left and then True), (Left or else False) to Left.
11448 -- Note that we know there are no actions associated with the right
11449 -- operand, since we just checked for this case above.
11451 if Expr_Value_E
(Right
) /= Shortcut_Ent
then
11454 -- Change (Left and then False), (Left or else True) to Right,
11455 -- making sure to preserve any side effects associated with the Left
11459 Remove_Side_Effects
(Left
);
11460 Rewrite
(N
, New_Occurrence_Of
(Shortcut_Ent
, Loc
));
11464 Adjust_Result_Type
(N
, Typ
);
11465 end Expand_Short_Circuit_Operator
;
11467 -------------------------------------
11468 -- Fixup_Universal_Fixed_Operation --
11469 -------------------------------------
11471 procedure Fixup_Universal_Fixed_Operation
(N
: Node_Id
) is
11472 Conv
: constant Node_Id
:= Parent
(N
);
11475 -- We must have a type conversion immediately above us
11477 pragma Assert
(Nkind
(Conv
) = N_Type_Conversion
);
11479 -- Normally the type conversion gives our target type. The exception
11480 -- occurs in the case of the Round attribute, where the conversion
11481 -- will be to universal real, and our real type comes from the Round
11482 -- attribute (as well as an indication that we must round the result)
11484 if Nkind
(Parent
(Conv
)) = N_Attribute_Reference
11485 and then Attribute_Name
(Parent
(Conv
)) = Name_Round
11487 Set_Etype
(N
, Etype
(Parent
(Conv
)));
11488 Set_Rounded_Result
(N
);
11490 -- Normal case where type comes from conversion above us
11493 Set_Etype
(N
, Etype
(Conv
));
11495 end Fixup_Universal_Fixed_Operation
;
11497 ---------------------------------
11498 -- Has_Inferable_Discriminants --
11499 ---------------------------------
11501 function Has_Inferable_Discriminants
(N
: Node_Id
) return Boolean is
11503 function Prefix_Is_Formal_Parameter
(N
: Node_Id
) return Boolean;
11504 -- Determines whether the left-most prefix of a selected component is a
11505 -- formal parameter in a subprogram. Assumes N is a selected component.
11507 --------------------------------
11508 -- Prefix_Is_Formal_Parameter --
11509 --------------------------------
11511 function Prefix_Is_Formal_Parameter
(N
: Node_Id
) return Boolean is
11512 Sel_Comp
: Node_Id
;
11515 -- Move to the left-most prefix by climbing up the tree
11518 while Present
(Parent
(Sel_Comp
))
11519 and then Nkind
(Parent
(Sel_Comp
)) = N_Selected_Component
11521 Sel_Comp
:= Parent
(Sel_Comp
);
11524 return Ekind
(Entity
(Prefix
(Sel_Comp
))) in Formal_Kind
;
11525 end Prefix_Is_Formal_Parameter
;
11527 -- Start of processing for Has_Inferable_Discriminants
11530 -- For selected components, the subtype of the selector must be a
11531 -- constrained Unchecked_Union. If the component is subject to a
11532 -- per-object constraint, then the enclosing object must have inferable
11535 if Nkind
(N
) = N_Selected_Component
then
11536 if Has_Per_Object_Constraint
(Entity
(Selector_Name
(N
))) then
11538 -- A small hack. If we have a per-object constrained selected
11539 -- component of a formal parameter, return True since we do not
11540 -- know the actual parameter association yet.
11542 if Prefix_Is_Formal_Parameter
(N
) then
11545 -- Otherwise, check the enclosing object and the selector
11548 return Has_Inferable_Discriminants
(Prefix
(N
))
11549 and then Has_Inferable_Discriminants
(Selector_Name
(N
));
11552 -- The call to Has_Inferable_Discriminants will determine whether
11553 -- the selector has a constrained Unchecked_Union nominal type.
11556 return Has_Inferable_Discriminants
(Selector_Name
(N
));
11559 -- A qualified expression has inferable discriminants if its subtype
11560 -- mark is a constrained Unchecked_Union subtype.
11562 elsif Nkind
(N
) = N_Qualified_Expression
then
11563 return Is_Unchecked_Union
(Etype
(Subtype_Mark
(N
)))
11564 and then Is_Constrained
(Etype
(Subtype_Mark
(N
)));
11566 -- For all other names, it is sufficient to have a constrained
11567 -- Unchecked_Union nominal subtype.
11570 return Is_Unchecked_Union
(Base_Type
(Etype
(N
)))
11571 and then Is_Constrained
(Etype
(N
));
11573 end Has_Inferable_Discriminants
;
11575 -------------------------------
11576 -- Insert_Dereference_Action --
11577 -------------------------------
11579 procedure Insert_Dereference_Action
(N
: Node_Id
) is
11581 function Is_Checked_Storage_Pool
(P
: Entity_Id
) return Boolean;
11582 -- Return true if type of P is derived from Checked_Pool;
11584 -----------------------------
11585 -- Is_Checked_Storage_Pool --
11586 -----------------------------
11588 function Is_Checked_Storage_Pool
(P
: Entity_Id
) return Boolean is
11597 while T
/= Etype
(T
) loop
11598 if Is_RTE
(T
, RE_Checked_Pool
) then
11606 end Is_Checked_Storage_Pool
;
11610 Typ
: constant Entity_Id
:= Etype
(N
);
11611 Desig
: constant Entity_Id
:= Available_View
(Designated_Type
(Typ
));
11612 Loc
: constant Source_Ptr
:= Sloc
(N
);
11613 Pool
: constant Entity_Id
:= Associated_Storage_Pool
(Typ
);
11614 Pnod
: constant Node_Id
:= Parent
(N
);
11620 Size_Bits
: Node_Id
;
11623 -- Start of processing for Insert_Dereference_Action
11626 pragma Assert
(Nkind
(Pnod
) = N_Explicit_Dereference
);
11628 -- Do not re-expand a dereference which has already been processed by
11631 if Has_Dereference_Action
(Pnod
) then
11634 -- Do not perform this type of expansion for internally-generated
11637 elsif not Comes_From_Source
(Original_Node
(Pnod
)) then
11640 -- A dereference action is only applicable to objects which have been
11641 -- allocated on a checked pool.
11643 elsif not Is_Checked_Storage_Pool
(Pool
) then
11647 -- Extract the address of the dereferenced object. Generate:
11649 -- Addr : System.Address := <N>'Pool_Address;
11651 Addr
:= Make_Temporary
(Loc
, 'P');
11654 Make_Object_Declaration
(Loc
,
11655 Defining_Identifier
=> Addr
,
11656 Object_Definition
=>
11657 New_Occurrence_Of
(RTE
(RE_Address
), Loc
),
11659 Make_Attribute_Reference
(Loc
,
11660 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
),
11661 Attribute_Name
=> Name_Pool_Address
)));
11663 -- Calculate the size of the dereferenced object. Generate:
11665 -- Size : Storage_Count := <N>.all'Size / Storage_Unit;
11668 Make_Explicit_Dereference
(Loc
,
11669 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
11670 Set_Has_Dereference_Action
(Deref
);
11673 Make_Attribute_Reference
(Loc
,
11675 Attribute_Name
=> Name_Size
);
11677 -- Special case of an unconstrained array: need to add descriptor size
11679 if Is_Array_Type
(Desig
)
11680 and then not Is_Constrained
(First_Subtype
(Desig
))
11685 Make_Attribute_Reference
(Loc
,
11687 New_Occurrence_Of
(First_Subtype
(Desig
), Loc
),
11688 Attribute_Name
=> Name_Descriptor_Size
),
11689 Right_Opnd
=> Size_Bits
);
11692 Size
:= Make_Temporary
(Loc
, 'S');
11694 Make_Object_Declaration
(Loc
,
11695 Defining_Identifier
=> Size
,
11696 Object_Definition
=>
11697 New_Occurrence_Of
(RTE
(RE_Storage_Count
), Loc
),
11699 Make_Op_Divide
(Loc
,
11700 Left_Opnd
=> Size_Bits
,
11701 Right_Opnd
=> Make_Integer_Literal
(Loc
, System_Storage_Unit
))));
11703 -- Calculate the alignment of the dereferenced object. Generate:
11704 -- Alig : constant Storage_Count := <N>.all'Alignment;
11707 Make_Explicit_Dereference
(Loc
,
11708 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
11709 Set_Has_Dereference_Action
(Deref
);
11711 Alig
:= Make_Temporary
(Loc
, 'A');
11713 Make_Object_Declaration
(Loc
,
11714 Defining_Identifier
=> Alig
,
11715 Object_Definition
=>
11716 New_Occurrence_Of
(RTE
(RE_Storage_Count
), Loc
),
11718 Make_Attribute_Reference
(Loc
,
11720 Attribute_Name
=> Name_Alignment
)));
11722 -- A dereference of a controlled object requires special processing. The
11723 -- finalization machinery requests additional space from the underlying
11724 -- pool to allocate and hide two pointers. As a result, a checked pool
11725 -- may mark the wrong memory as valid. Since checked pools do not have
11726 -- knowledge of hidden pointers, we have to bring the two pointers back
11727 -- in view in order to restore the original state of the object.
11729 if Needs_Finalization
(Desig
) then
11731 -- Adjust the address and size of the dereferenced object. Generate:
11732 -- Adjust_Controlled_Dereference (Addr, Size, Alig);
11735 Make_Procedure_Call_Statement
(Loc
,
11737 New_Occurrence_Of
(RTE
(RE_Adjust_Controlled_Dereference
), Loc
),
11738 Parameter_Associations
=> New_List
(
11739 New_Occurrence_Of
(Addr
, Loc
),
11740 New_Occurrence_Of
(Size
, Loc
),
11741 New_Occurrence_Of
(Alig
, Loc
)));
11743 -- Class-wide types complicate things because we cannot determine
11744 -- statically whether the actual object is truly controlled. We must
11745 -- generate a runtime check to detect this property. Generate:
11747 -- if Needs_Finalization (<N>.all'Tag) then
11751 if Is_Class_Wide_Type
(Desig
) then
11753 Make_Explicit_Dereference
(Loc
,
11754 Prefix
=> Duplicate_Subexpr_Move_Checks
(N
));
11755 Set_Has_Dereference_Action
(Deref
);
11758 Make_Implicit_If_Statement
(N
,
11760 Make_Function_Call
(Loc
,
11762 New_Occurrence_Of
(RTE
(RE_Needs_Finalization
), Loc
),
11763 Parameter_Associations
=> New_List
(
11764 Make_Attribute_Reference
(Loc
,
11766 Attribute_Name
=> Name_Tag
))),
11767 Then_Statements
=> New_List
(Stmt
));
11770 Insert_Action
(N
, Stmt
);
11774 -- Dereference (Pool, Addr, Size, Alig);
11777 Make_Procedure_Call_Statement
(Loc
,
11780 (Find_Prim_Op
(Etype
(Pool
), Name_Dereference
), Loc
),
11781 Parameter_Associations
=> New_List
(
11782 New_Occurrence_Of
(Pool
, Loc
),
11783 New_Occurrence_Of
(Addr
, Loc
),
11784 New_Occurrence_Of
(Size
, Loc
),
11785 New_Occurrence_Of
(Alig
, Loc
))));
11787 -- Mark the explicit dereference as processed to avoid potential
11788 -- infinite expansion.
11790 Set_Has_Dereference_Action
(Pnod
);
11793 when RE_Not_Available
=>
11795 end Insert_Dereference_Action
;
11797 --------------------------------
11798 -- Integer_Promotion_Possible --
11799 --------------------------------
11801 function Integer_Promotion_Possible
(N
: Node_Id
) return Boolean is
11802 Operand
: constant Node_Id
:= Expression
(N
);
11803 Operand_Type
: constant Entity_Id
:= Etype
(Operand
);
11804 Root_Operand_Type
: constant Entity_Id
:= Root_Type
(Operand_Type
);
11807 pragma Assert
(Nkind
(N
) = N_Type_Conversion
);
11811 -- We only do the transformation for source constructs. We assume
11812 -- that the expander knows what it is doing when it generates code.
11814 Comes_From_Source
(N
)
11816 -- If the operand type is Short_Integer or Short_Short_Integer,
11817 -- then we will promote to Integer, which is available on all
11818 -- targets, and is sufficient to ensure no intermediate overflow.
11819 -- Furthermore it is likely to be as efficient or more efficient
11820 -- than using the smaller type for the computation so we do this
11821 -- unconditionally.
11824 (Root_Operand_Type
= Base_Type
(Standard_Short_Integer
)
11826 Root_Operand_Type
= Base_Type
(Standard_Short_Short_Integer
))
11828 -- Test for interesting operation, which includes addition,
11829 -- division, exponentiation, multiplication, subtraction, absolute
11830 -- value and unary negation. Unary "+" is omitted since it is a
11831 -- no-op and thus can't overflow.
11833 and then Nkind_In
(Operand
, N_Op_Abs
,
11840 end Integer_Promotion_Possible
;
11842 ------------------------------
11843 -- Make_Array_Comparison_Op --
11844 ------------------------------
11846 -- This is a hand-coded expansion of the following generic function:
11849 -- type elem is (<>);
11850 -- type index is (<>);
11851 -- type a is array (index range <>) of elem;
11853 -- function Gnnn (X : a; Y: a) return boolean is
11854 -- J : index := Y'first;
11857 -- if X'length = 0 then
11860 -- elsif Y'length = 0 then
11864 -- for I in X'range loop
11865 -- if X (I) = Y (J) then
11866 -- if J = Y'last then
11869 -- J := index'succ (J);
11873 -- return X (I) > Y (J);
11877 -- return X'length > Y'length;
11881 -- Note that since we are essentially doing this expansion by hand, we
11882 -- do not need to generate an actual or formal generic part, just the
11883 -- instantiated function itself.
11885 -- Perhaps we could have the actual generic available in the run-time,
11886 -- obtained by rtsfind, and actually expand a real instantiation ???
11888 function Make_Array_Comparison_Op
11890 Nod
: Node_Id
) return Node_Id
11892 Loc
: constant Source_Ptr
:= Sloc
(Nod
);
11894 X
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uX
);
11895 Y
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uY
);
11896 I
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uI
);
11897 J
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
11899 Index
: constant Entity_Id
:= Base_Type
(Etype
(First_Index
(Typ
)));
11901 Loop_Statement
: Node_Id
;
11902 Loop_Body
: Node_Id
;
11904 Inner_If
: Node_Id
;
11905 Final_Expr
: Node_Id
;
11906 Func_Body
: Node_Id
;
11907 Func_Name
: Entity_Id
;
11913 -- if J = Y'last then
11916 -- J := index'succ (J);
11920 Make_Implicit_If_Statement
(Nod
,
11923 Left_Opnd
=> New_Occurrence_Of
(J
, Loc
),
11925 Make_Attribute_Reference
(Loc
,
11926 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
11927 Attribute_Name
=> Name_Last
)),
11929 Then_Statements
=> New_List
(
11930 Make_Exit_Statement
(Loc
)),
11934 Make_Assignment_Statement
(Loc
,
11935 Name
=> New_Occurrence_Of
(J
, Loc
),
11937 Make_Attribute_Reference
(Loc
,
11938 Prefix
=> New_Occurrence_Of
(Index
, Loc
),
11939 Attribute_Name
=> Name_Succ
,
11940 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
))))));
11942 -- if X (I) = Y (J) then
11945 -- return X (I) > Y (J);
11949 Make_Implicit_If_Statement
(Nod
,
11953 Make_Indexed_Component
(Loc
,
11954 Prefix
=> New_Occurrence_Of
(X
, Loc
),
11955 Expressions
=> New_List
(New_Occurrence_Of
(I
, Loc
))),
11958 Make_Indexed_Component
(Loc
,
11959 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
11960 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)))),
11962 Then_Statements
=> New_List
(Inner_If
),
11964 Else_Statements
=> New_List
(
11965 Make_Simple_Return_Statement
(Loc
,
11969 Make_Indexed_Component
(Loc
,
11970 Prefix
=> New_Occurrence_Of
(X
, Loc
),
11971 Expressions
=> New_List
(New_Occurrence_Of
(I
, Loc
))),
11974 Make_Indexed_Component
(Loc
,
11975 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
11976 Expressions
=> New_List
(
11977 New_Occurrence_Of
(J
, Loc
)))))));
11979 -- for I in X'range loop
11984 Make_Implicit_Loop_Statement
(Nod
,
11985 Identifier
=> Empty
,
11987 Iteration_Scheme
=>
11988 Make_Iteration_Scheme
(Loc
,
11989 Loop_Parameter_Specification
=>
11990 Make_Loop_Parameter_Specification
(Loc
,
11991 Defining_Identifier
=> I
,
11992 Discrete_Subtype_Definition
=>
11993 Make_Attribute_Reference
(Loc
,
11994 Prefix
=> New_Occurrence_Of
(X
, Loc
),
11995 Attribute_Name
=> Name_Range
))),
11997 Statements
=> New_List
(Loop_Body
));
11999 -- if X'length = 0 then
12001 -- elsif Y'length = 0 then
12004 -- for ... loop ... end loop;
12005 -- return X'length > Y'length;
12009 Make_Attribute_Reference
(Loc
,
12010 Prefix
=> New_Occurrence_Of
(X
, Loc
),
12011 Attribute_Name
=> Name_Length
);
12014 Make_Attribute_Reference
(Loc
,
12015 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12016 Attribute_Name
=> Name_Length
);
12020 Left_Opnd
=> Length1
,
12021 Right_Opnd
=> Length2
);
12024 Make_Implicit_If_Statement
(Nod
,
12028 Make_Attribute_Reference
(Loc
,
12029 Prefix
=> New_Occurrence_Of
(X
, Loc
),
12030 Attribute_Name
=> Name_Length
),
12032 Make_Integer_Literal
(Loc
, 0)),
12036 Make_Simple_Return_Statement
(Loc
,
12037 Expression
=> New_Occurrence_Of
(Standard_False
, Loc
))),
12039 Elsif_Parts
=> New_List
(
12040 Make_Elsif_Part
(Loc
,
12044 Make_Attribute_Reference
(Loc
,
12045 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12046 Attribute_Name
=> Name_Length
),
12048 Make_Integer_Literal
(Loc
, 0)),
12052 Make_Simple_Return_Statement
(Loc
,
12053 Expression
=> New_Occurrence_Of
(Standard_True
, Loc
))))),
12055 Else_Statements
=> New_List
(
12057 Make_Simple_Return_Statement
(Loc
,
12058 Expression
=> Final_Expr
)));
12062 Formals
:= New_List
(
12063 Make_Parameter_Specification
(Loc
,
12064 Defining_Identifier
=> X
,
12065 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
12067 Make_Parameter_Specification
(Loc
,
12068 Defining_Identifier
=> Y
,
12069 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
12071 -- function Gnnn (...) return boolean is
12072 -- J : index := Y'first;
12077 Func_Name
:= Make_Temporary
(Loc
, 'G');
12080 Make_Subprogram_Body
(Loc
,
12082 Make_Function_Specification
(Loc
,
12083 Defining_Unit_Name
=> Func_Name
,
12084 Parameter_Specifications
=> Formals
,
12085 Result_Definition
=> New_Occurrence_Of
(Standard_Boolean
, Loc
)),
12087 Declarations
=> New_List
(
12088 Make_Object_Declaration
(Loc
,
12089 Defining_Identifier
=> J
,
12090 Object_Definition
=> New_Occurrence_Of
(Index
, Loc
),
12092 Make_Attribute_Reference
(Loc
,
12093 Prefix
=> New_Occurrence_Of
(Y
, Loc
),
12094 Attribute_Name
=> Name_First
))),
12096 Handled_Statement_Sequence
=>
12097 Make_Handled_Sequence_Of_Statements
(Loc
,
12098 Statements
=> New_List
(If_Stat
)));
12101 end Make_Array_Comparison_Op
;
12103 ---------------------------
12104 -- Make_Boolean_Array_Op --
12105 ---------------------------
12107 -- For logical operations on boolean arrays, expand in line the following,
12108 -- replacing 'and' with 'or' or 'xor' where needed:
12110 -- function Annn (A : typ; B: typ) return typ is
12113 -- for J in A'range loop
12114 -- C (J) := A (J) op B (J);
12119 -- Here typ is the boolean array type
12121 function Make_Boolean_Array_Op
12123 N
: Node_Id
) return Node_Id
12125 Loc
: constant Source_Ptr
:= Sloc
(N
);
12127 A
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uA
);
12128 B
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uB
);
12129 C
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uC
);
12130 J
: constant Entity_Id
:= Make_Defining_Identifier
(Loc
, Name_uJ
);
12138 Func_Name
: Entity_Id
;
12139 Func_Body
: Node_Id
;
12140 Loop_Statement
: Node_Id
;
12144 Make_Indexed_Component
(Loc
,
12145 Prefix
=> New_Occurrence_Of
(A
, Loc
),
12146 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
12149 Make_Indexed_Component
(Loc
,
12150 Prefix
=> New_Occurrence_Of
(B
, Loc
),
12151 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
12154 Make_Indexed_Component
(Loc
,
12155 Prefix
=> New_Occurrence_Of
(C
, Loc
),
12156 Expressions
=> New_List
(New_Occurrence_Of
(J
, Loc
)));
12158 if Nkind
(N
) = N_Op_And
then
12162 Right_Opnd
=> B_J
);
12164 elsif Nkind
(N
) = N_Op_Or
then
12168 Right_Opnd
=> B_J
);
12174 Right_Opnd
=> B_J
);
12178 Make_Implicit_Loop_Statement
(N
,
12179 Identifier
=> Empty
,
12181 Iteration_Scheme
=>
12182 Make_Iteration_Scheme
(Loc
,
12183 Loop_Parameter_Specification
=>
12184 Make_Loop_Parameter_Specification
(Loc
,
12185 Defining_Identifier
=> J
,
12186 Discrete_Subtype_Definition
=>
12187 Make_Attribute_Reference
(Loc
,
12188 Prefix
=> New_Occurrence_Of
(A
, Loc
),
12189 Attribute_Name
=> Name_Range
))),
12191 Statements
=> New_List
(
12192 Make_Assignment_Statement
(Loc
,
12194 Expression
=> Op
)));
12196 Formals
:= New_List
(
12197 Make_Parameter_Specification
(Loc
,
12198 Defining_Identifier
=> A
,
12199 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)),
12201 Make_Parameter_Specification
(Loc
,
12202 Defining_Identifier
=> B
,
12203 Parameter_Type
=> New_Occurrence_Of
(Typ
, Loc
)));
12205 Func_Name
:= Make_Temporary
(Loc
, 'A');
12206 Set_Is_Inlined
(Func_Name
);
12209 Make_Subprogram_Body
(Loc
,
12211 Make_Function_Specification
(Loc
,
12212 Defining_Unit_Name
=> Func_Name
,
12213 Parameter_Specifications
=> Formals
,
12214 Result_Definition
=> New_Occurrence_Of
(Typ
, Loc
)),
12216 Declarations
=> New_List
(
12217 Make_Object_Declaration
(Loc
,
12218 Defining_Identifier
=> C
,
12219 Object_Definition
=> New_Occurrence_Of
(Typ
, Loc
))),
12221 Handled_Statement_Sequence
=>
12222 Make_Handled_Sequence_Of_Statements
(Loc
,
12223 Statements
=> New_List
(
12225 Make_Simple_Return_Statement
(Loc
,
12226 Expression
=> New_Occurrence_Of
(C
, Loc
)))));
12229 end Make_Boolean_Array_Op
;
12231 -----------------------------------------
12232 -- Minimized_Eliminated_Overflow_Check --
12233 -----------------------------------------
12235 function Minimized_Eliminated_Overflow_Check
(N
: Node_Id
) return Boolean is
12238 Is_Signed_Integer_Type
(Etype
(N
))
12239 and then Overflow_Check_Mode
in Minimized_Or_Eliminated
;
12240 end Minimized_Eliminated_Overflow_Check
;
12242 --------------------------------
12243 -- Optimize_Length_Comparison --
12244 --------------------------------
12246 procedure Optimize_Length_Comparison
(N
: Node_Id
) is
12247 Loc
: constant Source_Ptr
:= Sloc
(N
);
12248 Typ
: constant Entity_Id
:= Etype
(N
);
12253 -- First and Last attribute reference nodes, which end up as left and
12254 -- right operands of the optimized result.
12257 -- True for comparison operand of zero
12260 -- Comparison operand, set only if Is_Zero is false
12263 -- Entity whose length is being compared
12266 -- Integer_Literal node for length attribute expression, or Empty
12267 -- if there is no such expression present.
12270 -- Type of array index to which 'Length is applied
12272 Op
: Node_Kind
:= Nkind
(N
);
12273 -- Kind of comparison operator, gets flipped if operands backwards
12275 function Is_Optimizable
(N
: Node_Id
) return Boolean;
12276 -- Tests N to see if it is an optimizable comparison value (defined as
12277 -- constant zero or one, or something else where the value is known to
12278 -- be positive and in the range of 32-bits, and where the corresponding
12279 -- Length value is also known to be 32-bits. If result is true, sets
12280 -- Is_Zero, Ityp, and Comp accordingly.
12282 function Is_Entity_Length
(N
: Node_Id
) return Boolean;
12283 -- Tests if N is a length attribute applied to a simple entity. If so,
12284 -- returns True, and sets Ent to the entity, and Index to the integer
12285 -- literal provided as an attribute expression, or to Empty if none.
12286 -- Also returns True if the expression is a generated type conversion
12287 -- whose expression is of the desired form. This latter case arises
12288 -- when Apply_Universal_Integer_Attribute_Check installs a conversion
12289 -- to check for being in range, which is not needed in this context.
12290 -- Returns False if neither condition holds.
12292 function Prepare_64
(N
: Node_Id
) return Node_Id
;
12293 -- Given a discrete expression, returns a Long_Long_Integer typed
12294 -- expression representing the underlying value of the expression.
12295 -- This is done with an unchecked conversion to the result type. We
12296 -- use unchecked conversion to handle the enumeration type case.
12298 ----------------------
12299 -- Is_Entity_Length --
12300 ----------------------
12302 function Is_Entity_Length
(N
: Node_Id
) return Boolean is
12304 if Nkind
(N
) = N_Attribute_Reference
12305 and then Attribute_Name
(N
) = Name_Length
12306 and then Is_Entity_Name
(Prefix
(N
))
12308 Ent
:= Entity
(Prefix
(N
));
12310 if Present
(Expressions
(N
)) then
12311 Index
:= First
(Expressions
(N
));
12318 elsif Nkind
(N
) = N_Type_Conversion
12319 and then not Comes_From_Source
(N
)
12321 return Is_Entity_Length
(Expression
(N
));
12326 end Is_Entity_Length
;
12328 --------------------
12329 -- Is_Optimizable --
12330 --------------------
12332 function Is_Optimizable
(N
: Node_Id
) return Boolean is
12340 if Compile_Time_Known_Value
(N
) then
12341 Val
:= Expr_Value
(N
);
12343 if Val
= Uint_0
then
12348 elsif Val
= Uint_1
then
12355 -- Here we have to make sure of being within 32-bits
12357 Determine_Range
(N
, OK
, Lo
, Hi
, Assume_Valid
=> True);
12360 or else Lo
< Uint_1
12361 or else Hi
> UI_From_Int
(Int
'Last)
12366 -- Comparison value was within range, so now we must check the index
12367 -- value to make sure it is also within 32-bits.
12369 Indx
:= First_Index
(Etype
(Ent
));
12371 if Present
(Index
) then
12372 for J
in 2 .. UI_To_Int
(Intval
(Index
)) loop
12377 Ityp
:= Etype
(Indx
);
12379 if Esize
(Ityp
) > 32 then
12386 end Is_Optimizable
;
12392 function Prepare_64
(N
: Node_Id
) return Node_Id
is
12394 return Unchecked_Convert_To
(Standard_Long_Long_Integer
, N
);
12397 -- Start of processing for Optimize_Length_Comparison
12400 -- Nothing to do if not a comparison
12402 if Op
not in N_Op_Compare
then
12406 -- Nothing to do if special -gnatd.P debug flag set
12408 if Debug_Flag_Dot_PP
then
12412 -- Ent'Length op 0/1
12414 if Is_Entity_Length
(Left_Opnd
(N
))
12415 and then Is_Optimizable
(Right_Opnd
(N
))
12419 -- 0/1 op Ent'Length
12421 elsif Is_Entity_Length
(Right_Opnd
(N
))
12422 and then Is_Optimizable
(Left_Opnd
(N
))
12424 -- Flip comparison to opposite sense
12427 when N_Op_Lt
=> Op
:= N_Op_Gt
;
12428 when N_Op_Le
=> Op
:= N_Op_Ge
;
12429 when N_Op_Gt
=> Op
:= N_Op_Lt
;
12430 when N_Op_Ge
=> Op
:= N_Op_Le
;
12431 when others => null;
12434 -- Else optimization not possible
12440 -- Fall through if we will do the optimization
12442 -- Cases to handle:
12444 -- X'Length = 0 => X'First > X'Last
12445 -- X'Length = 1 => X'First = X'Last
12446 -- X'Length = n => X'First + (n - 1) = X'Last
12448 -- X'Length /= 0 => X'First <= X'Last
12449 -- X'Length /= 1 => X'First /= X'Last
12450 -- X'Length /= n => X'First + (n - 1) /= X'Last
12452 -- X'Length >= 0 => always true, warn
12453 -- X'Length >= 1 => X'First <= X'Last
12454 -- X'Length >= n => X'First + (n - 1) <= X'Last
12456 -- X'Length > 0 => X'First <= X'Last
12457 -- X'Length > 1 => X'First < X'Last
12458 -- X'Length > n => X'First + (n - 1) < X'Last
12460 -- X'Length <= 0 => X'First > X'Last (warn, could be =)
12461 -- X'Length <= 1 => X'First >= X'Last
12462 -- X'Length <= n => X'First + (n - 1) >= X'Last
12464 -- X'Length < 0 => always false (warn)
12465 -- X'Length < 1 => X'First > X'Last
12466 -- X'Length < n => X'First + (n - 1) > X'Last
12468 -- Note: for the cases of n (not constant 0,1), we require that the
12469 -- corresponding index type be integer or shorter (i.e. not 64-bit),
12470 -- and the same for the comparison value. Then we do the comparison
12471 -- using 64-bit arithmetic (actually long long integer), so that we
12472 -- cannot have overflow intefering with the result.
12474 -- First deal with warning cases
12483 Convert_To
(Typ
, New_Occurrence_Of
(Standard_True
, Loc
)));
12484 Analyze_And_Resolve
(N
, Typ
);
12485 Warn_On_Known_Condition
(N
);
12492 Convert_To
(Typ
, New_Occurrence_Of
(Standard_False
, Loc
)));
12493 Analyze_And_Resolve
(N
, Typ
);
12494 Warn_On_Known_Condition
(N
);
12498 if Constant_Condition_Warnings
12499 and then Comes_From_Source
(Original_Node
(N
))
12501 Error_Msg_N
("could replace by ""'=""?c?", N
);
12511 -- Build the First reference we will use
12514 Make_Attribute_Reference
(Loc
,
12515 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
12516 Attribute_Name
=> Name_First
);
12518 if Present
(Index
) then
12519 Set_Expressions
(Left
, New_List
(New_Copy
(Index
)));
12522 -- If general value case, then do the addition of (n - 1), and
12523 -- also add the needed conversions to type Long_Long_Integer.
12525 if Present
(Comp
) then
12528 Left_Opnd
=> Prepare_64
(Left
),
12530 Make_Op_Subtract
(Loc
,
12531 Left_Opnd
=> Prepare_64
(Comp
),
12532 Right_Opnd
=> Make_Integer_Literal
(Loc
, 1)));
12535 -- Build the Last reference we will use
12538 Make_Attribute_Reference
(Loc
,
12539 Prefix
=> New_Occurrence_Of
(Ent
, Loc
),
12540 Attribute_Name
=> Name_Last
);
12542 if Present
(Index
) then
12543 Set_Expressions
(Right
, New_List
(New_Copy
(Index
)));
12546 -- If general operand, convert Last reference to Long_Long_Integer
12548 if Present
(Comp
) then
12549 Right
:= Prepare_64
(Right
);
12552 -- Check for cases to optimize
12554 -- X'Length = 0 => X'First > X'Last
12555 -- X'Length < 1 => X'First > X'Last
12556 -- X'Length < n => X'First + (n - 1) > X'Last
12558 if (Is_Zero
and then Op
= N_Op_Eq
)
12559 or else (not Is_Zero
and then Op
= N_Op_Lt
)
12564 Right_Opnd
=> Right
);
12566 -- X'Length = 1 => X'First = X'Last
12567 -- X'Length = n => X'First + (n - 1) = X'Last
12569 elsif not Is_Zero
and then Op
= N_Op_Eq
then
12573 Right_Opnd
=> Right
);
12575 -- X'Length /= 0 => X'First <= X'Last
12576 -- X'Length > 0 => X'First <= X'Last
12578 elsif Is_Zero
and (Op
= N_Op_Ne
or else Op
= N_Op_Gt
) then
12582 Right_Opnd
=> Right
);
12584 -- X'Length /= 1 => X'First /= X'Last
12585 -- X'Length /= n => X'First + (n - 1) /= X'Last
12587 elsif not Is_Zero
and then Op
= N_Op_Ne
then
12591 Right_Opnd
=> Right
);
12593 -- X'Length >= 1 => X'First <= X'Last
12594 -- X'Length >= n => X'First + (n - 1) <= X'Last
12596 elsif not Is_Zero
and then Op
= N_Op_Ge
then
12600 Right_Opnd
=> Right
);
12602 -- X'Length > 1 => X'First < X'Last
12603 -- X'Length > n => X'First + (n = 1) < X'Last
12605 elsif not Is_Zero
and then Op
= N_Op_Gt
then
12609 Right_Opnd
=> Right
);
12611 -- X'Length <= 1 => X'First >= X'Last
12612 -- X'Length <= n => X'First + (n - 1) >= X'Last
12614 elsif not Is_Zero
and then Op
= N_Op_Le
then
12618 Right_Opnd
=> Right
);
12620 -- Should not happen at this stage
12623 raise Program_Error
;
12626 -- Rewrite and finish up
12628 Rewrite
(N
, Result
);
12629 Analyze_And_Resolve
(N
, Typ
);
12631 end Optimize_Length_Comparison
;
12633 ------------------------------
12634 -- Process_Transient_Object --
12635 ------------------------------
12637 procedure Process_Transient_Object
12639 Rel_Node
: Node_Id
)
12641 Loc
: constant Source_Ptr
:= Sloc
(Decl
);
12642 Obj_Id
: constant Entity_Id
:= Defining_Identifier
(Decl
);
12643 Obj_Typ
: constant Node_Id
:= Etype
(Obj_Id
);
12644 Desig_Typ
: Entity_Id
;
12646 Fin_Stmts
: List_Id
;
12647 Ptr_Id
: Entity_Id
;
12648 Temp_Id
: Entity_Id
;
12649 Temp_Ins
: Node_Id
;
12651 Hook_Context
: constant Node_Id
:= Find_Hook_Context
(Rel_Node
);
12652 -- Node on which to insert the hook pointer (as an action): the
12653 -- innermost enclosing non-transient scope.
12655 Finalization_Context
: Node_Id
;
12656 -- Node after which to insert finalization actions
12658 Finalize_Always
: Boolean;
12659 -- If False, call to finalizer includes a test of whether the hook
12660 -- pointer is null.
12663 -- Step 0: determine where to attach finalization actions in the tree
12665 -- Special case for Boolean EWAs: capture expression in a temporary,
12666 -- whose declaration will serve as the context around which to insert
12667 -- finalization code. The finalization thus remains local to the
12668 -- specific condition being evaluated.
12670 if Is_Boolean_Type
(Etype
(Rel_Node
)) then
12672 -- In this case, the finalization context is chosen so that we know
12673 -- at finalization point that the hook pointer is never null, so no
12674 -- need for a test, we can call the finalizer unconditionally, except
12675 -- in the case where the object is created in a specific branch of a
12676 -- conditional expression.
12679 not Within_Case_Or_If_Expression
(Rel_Node
)
12680 and then not Nkind_In
12681 (Original_Node
(Rel_Node
), N_Case_Expression
,
12685 Loc
: constant Source_Ptr
:= Sloc
(Rel_Node
);
12686 Temp
: constant Entity_Id
:= Make_Temporary
(Loc
, 'E', Rel_Node
);
12689 Append_To
(Actions
(Rel_Node
),
12690 Make_Object_Declaration
(Loc
,
12691 Defining_Identifier
=> Temp
,
12692 Constant_Present
=> True,
12693 Object_Definition
=>
12694 New_Occurrence_Of
(Etype
(Rel_Node
), Loc
),
12695 Expression
=> Expression
(Rel_Node
)));
12696 Finalization_Context
:= Last
(Actions
(Rel_Node
));
12698 Analyze
(Last
(Actions
(Rel_Node
)));
12700 Set_Expression
(Rel_Node
, New_Occurrence_Of
(Temp
, Loc
));
12701 Analyze
(Expression
(Rel_Node
));
12705 Finalize_Always
:= False;
12706 Finalization_Context
:= Hook_Context
;
12709 -- Step 1: Create the access type which provides a reference to the
12710 -- transient controlled object.
12712 if Is_Access_Type
(Obj_Typ
) then
12713 Desig_Typ
:= Directly_Designated_Type
(Obj_Typ
);
12715 Desig_Typ
:= Obj_Typ
;
12718 Desig_Typ
:= Base_Type
(Desig_Typ
);
12721 -- Ann : access [all] <Desig_Typ>;
12723 Ptr_Id
:= Make_Temporary
(Loc
, 'A');
12725 Insert_Action
(Hook_Context
,
12726 Make_Full_Type_Declaration
(Loc
,
12727 Defining_Identifier
=> Ptr_Id
,
12729 Make_Access_To_Object_Definition
(Loc
,
12730 All_Present
=> Ekind
(Obj_Typ
) = E_General_Access_Type
,
12731 Subtype_Indication
=> New_Occurrence_Of
(Desig_Typ
, Loc
))));
12733 -- Step 2: Create a temporary which acts as a hook to the transient
12734 -- controlled object. Generate:
12736 -- Temp : Ptr_Id := null;
12738 Temp_Id
:= Make_Temporary
(Loc
, 'T');
12740 Insert_Action
(Hook_Context
,
12741 Make_Object_Declaration
(Loc
,
12742 Defining_Identifier
=> Temp_Id
,
12743 Object_Definition
=> New_Occurrence_Of
(Ptr_Id
, Loc
)));
12745 -- Mark the temporary as created for the purposes of exporting the
12746 -- transient controlled object out of the expression_with_action or if
12747 -- expression. This signals the machinery in Build_Finalizer to treat
12748 -- this case specially.
12750 Set_Status_Flag_Or_Transient_Decl
(Temp_Id
, Decl
);
12752 -- Step 3: Hook the transient object to the temporary
12754 -- This must be inserted right after the object declaration, so that
12755 -- the assignment is executed if, and only if, the object is actually
12756 -- created (whereas the declaration of the hook pointer, and the
12757 -- finalization call, may be inserted at an outer level, and may
12758 -- remain unused for some executions, if the actual creation of
12759 -- the object is conditional).
12761 -- The use of unchecked conversion / unrestricted access is needed to
12762 -- avoid an accessibility violation. Note that the finalization code is
12763 -- structured in such a way that the "hook" is processed only when it
12764 -- points to an existing object.
12766 if Is_Access_Type
(Obj_Typ
) then
12768 Unchecked_Convert_To
(Ptr_Id
, New_Occurrence_Of
(Obj_Id
, Loc
));
12771 Make_Attribute_Reference
(Loc
,
12772 Prefix
=> New_Occurrence_Of
(Obj_Id
, Loc
),
12773 Attribute_Name
=> Name_Unrestricted_Access
);
12777 -- Temp := Ptr_Id (Obj_Id);
12779 -- Temp := Obj_Id'Unrestricted_Access;
12781 -- When the transient object is initialized by an aggregate, the hook
12782 -- must capture the object after the last component assignment takes
12783 -- place. Only then is the object fully initialized.
12785 if Ekind
(Obj_Id
) = E_Variable
12786 and then Present
(Last_Aggregate_Assignment
(Obj_Id
))
12788 Temp_Ins
:= Last_Aggregate_Assignment
(Obj_Id
);
12790 -- Otherwise the hook seizes the related object immediately
12796 Insert_After_And_Analyze
(Temp_Ins
,
12797 Make_Assignment_Statement
(Loc
,
12798 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
12799 Expression
=> Expr
));
12801 -- Step 4: Finalize the transient controlled object after the context
12802 -- has been evaluated/elaborated. Generate:
12804 -- if Temp /= null then
12805 -- [Deep_]Finalize (Temp.all);
12809 -- When the node is part of a return statement, there is no need to
12810 -- insert a finalization call, as the general finalization mechanism
12811 -- (see Build_Finalizer) would take care of the transient controlled
12812 -- object on subprogram exit. Note that it would also be impossible to
12813 -- insert the finalization code after the return statement as this will
12814 -- render it unreachable.
12816 if Nkind
(Finalization_Context
) /= N_Simple_Return_Statement
then
12817 Fin_Stmts
:= New_List
(
12820 Make_Explicit_Dereference
(Loc
,
12821 Prefix
=> New_Occurrence_Of
(Temp_Id
, Loc
)),
12824 Make_Assignment_Statement
(Loc
,
12825 Name
=> New_Occurrence_Of
(Temp_Id
, Loc
),
12826 Expression
=> Make_Null
(Loc
)));
12828 if not Finalize_Always
then
12829 Fin_Stmts
:= New_List
(
12830 Make_Implicit_If_Statement
(Decl
,
12833 Left_Opnd
=> New_Occurrence_Of
(Temp_Id
, Loc
),
12834 Right_Opnd
=> Make_Null
(Loc
)),
12835 Then_Statements
=> Fin_Stmts
));
12838 Insert_Actions_After
(Finalization_Context
, Fin_Stmts
);
12840 end Process_Transient_Object
;
12842 ------------------------
12843 -- Rewrite_Comparison --
12844 ------------------------
12846 procedure Rewrite_Comparison
(N
: Node_Id
) is
12847 Warning_Generated
: Boolean := False;
12848 -- Set to True if first pass with Assume_Valid generates a warning in
12849 -- which case we skip the second pass to avoid warning overloaded.
12852 -- Set to Standard_True or Standard_False
12855 if Nkind
(N
) = N_Type_Conversion
then
12856 Rewrite_Comparison
(Expression
(N
));
12859 elsif Nkind
(N
) not in N_Op_Compare
then
12863 -- Now start looking at the comparison in detail. We potentially go
12864 -- through this loop twice. The first time, Assume_Valid is set False
12865 -- in the call to Compile_Time_Compare. If this call results in a
12866 -- clear result of always True or Always False, that's decisive and
12867 -- we are done. Otherwise we repeat the processing with Assume_Valid
12868 -- set to True to generate additional warnings. We can skip that step
12869 -- if Constant_Condition_Warnings is False.
12871 for AV
in False .. True loop
12873 Typ
: constant Entity_Id
:= Etype
(N
);
12874 Op1
: constant Node_Id
:= Left_Opnd
(N
);
12875 Op2
: constant Node_Id
:= Right_Opnd
(N
);
12877 Res
: constant Compare_Result
:=
12878 Compile_Time_Compare
(Op1
, Op2
, Assume_Valid
=> AV
);
12879 -- Res indicates if compare outcome can be compile time determined
12881 True_Result
: Boolean;
12882 False_Result
: Boolean;
12885 case N_Op_Compare
(Nkind
(N
)) is
12887 True_Result
:= Res
= EQ
;
12888 False_Result
:= Res
= LT
or else Res
= GT
or else Res
= NE
;
12891 True_Result
:= Res
in Compare_GE
;
12892 False_Result
:= Res
= LT
;
12895 and then Constant_Condition_Warnings
12896 and then Comes_From_Source
(Original_Node
(N
))
12897 and then Nkind
(Original_Node
(N
)) = N_Op_Ge
12898 and then not In_Instance
12899 and then Is_Integer_Type
(Etype
(Left_Opnd
(N
)))
12900 and then not Has_Warnings_Off
(Etype
(Left_Opnd
(N
)))
12903 ("can never be greater than, could replace by ""'=""?c?",
12905 Warning_Generated
:= True;
12909 True_Result
:= Res
= GT
;
12910 False_Result
:= Res
in Compare_LE
;
12913 True_Result
:= Res
= LT
;
12914 False_Result
:= Res
in Compare_GE
;
12917 True_Result
:= Res
in Compare_LE
;
12918 False_Result
:= Res
= GT
;
12921 and then Constant_Condition_Warnings
12922 and then Comes_From_Source
(Original_Node
(N
))
12923 and then Nkind
(Original_Node
(N
)) = N_Op_Le
12924 and then not In_Instance
12925 and then Is_Integer_Type
(Etype
(Left_Opnd
(N
)))
12926 and then not Has_Warnings_Off
(Etype
(Left_Opnd
(N
)))
12929 ("can never be less than, could replace by ""'=""?c?", N
);
12930 Warning_Generated
:= True;
12934 True_Result
:= Res
= NE
or else Res
= GT
or else Res
= LT
;
12935 False_Result
:= Res
= EQ
;
12938 -- If this is the first iteration, then we actually convert the
12939 -- comparison into True or False, if the result is certain.
12942 if True_Result
or False_Result
then
12943 Result
:= Boolean_Literals
(True_Result
);
12946 New_Occurrence_Of
(Result
, Sloc
(N
))));
12947 Analyze_And_Resolve
(N
, Typ
);
12948 Warn_On_Known_Condition
(N
);
12952 -- If this is the second iteration (AV = True), and the original
12953 -- node comes from source and we are not in an instance, then give
12954 -- a warning if we know result would be True or False. Note: we
12955 -- know Constant_Condition_Warnings is set if we get here.
12957 elsif Comes_From_Source
(Original_Node
(N
))
12958 and then not In_Instance
12960 if True_Result
then
12962 ("condition can only be False if invalid values present??",
12964 elsif False_Result
then
12966 ("condition can only be True if invalid values present??",
12972 -- Skip second iteration if not warning on constant conditions or
12973 -- if the first iteration already generated a warning of some kind or
12974 -- if we are in any case assuming all values are valid (so that the
12975 -- first iteration took care of the valid case).
12977 exit when not Constant_Condition_Warnings
;
12978 exit when Warning_Generated
;
12979 exit when Assume_No_Invalid_Values
;
12981 end Rewrite_Comparison
;
12983 ----------------------------
12984 -- Safe_In_Place_Array_Op --
12985 ----------------------------
12987 function Safe_In_Place_Array_Op
12990 Op2
: Node_Id
) return Boolean
12992 Target
: Entity_Id
;
12994 function Is_Safe_Operand
(Op
: Node_Id
) return Boolean;
12995 -- Operand is safe if it cannot overlap part of the target of the
12996 -- operation. If the operand and the target are identical, the operand
12997 -- is safe. The operand can be empty in the case of negation.
12999 function Is_Unaliased
(N
: Node_Id
) return Boolean;
13000 -- Check that N is a stand-alone entity
13006 function Is_Unaliased
(N
: Node_Id
) return Boolean is
13010 and then No
(Address_Clause
(Entity
(N
)))
13011 and then No
(Renamed_Object
(Entity
(N
)));
13014 ---------------------
13015 -- Is_Safe_Operand --
13016 ---------------------
13018 function Is_Safe_Operand
(Op
: Node_Id
) return Boolean is
13023 elsif Is_Entity_Name
(Op
) then
13024 return Is_Unaliased
(Op
);
13026 elsif Nkind_In
(Op
, N_Indexed_Component
, N_Selected_Component
) then
13027 return Is_Unaliased
(Prefix
(Op
));
13029 elsif Nkind
(Op
) = N_Slice
then
13031 Is_Unaliased
(Prefix
(Op
))
13032 and then Entity
(Prefix
(Op
)) /= Target
;
13034 elsif Nkind
(Op
) = N_Op_Not
then
13035 return Is_Safe_Operand
(Right_Opnd
(Op
));
13040 end Is_Safe_Operand
;
13042 -- Start of processing for Safe_In_Place_Array_Op
13045 -- Skip this processing if the component size is different from system
13046 -- storage unit (since at least for NOT this would cause problems).
13048 if Component_Size
(Etype
(Lhs
)) /= System_Storage_Unit
then
13051 -- Cannot do in place stuff on VM_Target since cannot pass addresses
13053 elsif VM_Target
/= No_VM
then
13056 -- Cannot do in place stuff if non-standard Boolean representation
13058 elsif Has_Non_Standard_Rep
(Component_Type
(Etype
(Lhs
))) then
13061 elsif not Is_Unaliased
(Lhs
) then
13065 Target
:= Entity
(Lhs
);
13066 return Is_Safe_Operand
(Op1
) and then Is_Safe_Operand
(Op2
);
13068 end Safe_In_Place_Array_Op
;
13070 -----------------------
13071 -- Tagged_Membership --
13072 -----------------------
13074 -- There are two different cases to consider depending on whether the right
13075 -- operand is a class-wide type or not. If not we just compare the actual
13076 -- tag of the left expr to the target type tag:
13078 -- Left_Expr.Tag = Right_Type'Tag;
13080 -- If it is a class-wide type we use the RT function CW_Membership which is
13081 -- usually implemented by looking in the ancestor tables contained in the
13082 -- dispatch table pointed by Left_Expr.Tag for Typ'Tag
13084 -- Ada 2005 (AI-251): If it is a class-wide interface type we use the RT
13085 -- function IW_Membership which is usually implemented by looking in the
13086 -- table of abstract interface types plus the ancestor table contained in
13087 -- the dispatch table pointed by Left_Expr.Tag for Typ'Tag
13089 procedure Tagged_Membership
13091 SCIL_Node
: out Node_Id
;
13092 Result
: out Node_Id
)
13094 Left
: constant Node_Id
:= Left_Opnd
(N
);
13095 Right
: constant Node_Id
:= Right_Opnd
(N
);
13096 Loc
: constant Source_Ptr
:= Sloc
(N
);
13098 Full_R_Typ
: Entity_Id
;
13099 Left_Type
: Entity_Id
;
13100 New_Node
: Node_Id
;
13101 Right_Type
: Entity_Id
;
13105 SCIL_Node
:= Empty
;
13107 -- Handle entities from the limited view
13109 Left_Type
:= Available_View
(Etype
(Left
));
13110 Right_Type
:= Available_View
(Etype
(Right
));
13112 -- In the case where the type is an access type, the test is applied
13113 -- using the designated types (needed in Ada 2012 for implicit anonymous
13114 -- access conversions, for AI05-0149).
13116 if Is_Access_Type
(Right_Type
) then
13117 Left_Type
:= Designated_Type
(Left_Type
);
13118 Right_Type
:= Designated_Type
(Right_Type
);
13121 if Is_Class_Wide_Type
(Left_Type
) then
13122 Left_Type
:= Root_Type
(Left_Type
);
13125 if Is_Class_Wide_Type
(Right_Type
) then
13126 Full_R_Typ
:= Underlying_Type
(Root_Type
(Right_Type
));
13128 Full_R_Typ
:= Underlying_Type
(Right_Type
);
13132 Make_Selected_Component
(Loc
,
13133 Prefix
=> Relocate_Node
(Left
),
13135 New_Occurrence_Of
(First_Tag_Component
(Left_Type
), Loc
));
13137 if Is_Class_Wide_Type
(Right_Type
) then
13139 -- No need to issue a run-time check if we statically know that the
13140 -- result of this membership test is always true. For example,
13141 -- considering the following declarations:
13143 -- type Iface is interface;
13144 -- type T is tagged null record;
13145 -- type DT is new T and Iface with null record;
13150 -- These membership tests are always true:
13153 -- Obj2 in T'Class;
13154 -- Obj2 in Iface'Class;
13156 -- We do not need to handle cases where the membership is illegal.
13159 -- Obj1 in DT'Class; -- Compile time error
13160 -- Obj1 in Iface'Class; -- Compile time error
13162 if not Is_Class_Wide_Type
(Left_Type
)
13163 and then (Is_Ancestor
(Etype
(Right_Type
), Left_Type
,
13164 Use_Full_View
=> True)
13165 or else (Is_Interface
(Etype
(Right_Type
))
13166 and then Interface_Present_In_Ancestor
13168 Iface
=> Etype
(Right_Type
))))
13170 Result
:= New_Occurrence_Of
(Standard_True
, Loc
);
13174 -- Ada 2005 (AI-251): Class-wide applied to interfaces
13176 if Is_Interface
(Etype
(Class_Wide_Type
(Right_Type
)))
13178 -- Support to: "Iface_CW_Typ in Typ'Class"
13180 or else Is_Interface
(Left_Type
)
13182 -- Issue error if IW_Membership operation not available in a
13183 -- configurable run time setting.
13185 if not RTE_Available
(RE_IW_Membership
) then
13187 ("dynamic membership test on interface types", N
);
13193 Make_Function_Call
(Loc
,
13194 Name
=> New_Occurrence_Of
(RTE
(RE_IW_Membership
), Loc
),
13195 Parameter_Associations
=> New_List
(
13196 Make_Attribute_Reference
(Loc
,
13198 Attribute_Name
=> Name_Address
),
13199 New_Occurrence_Of
(
13200 Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))),
13203 -- Ada 95: Normal case
13206 Build_CW_Membership
(Loc
,
13207 Obj_Tag_Node
=> Obj_Tag
,
13209 New_Occurrence_Of
(
13210 Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))), Loc
),
13212 New_Node
=> New_Node
);
13214 -- Generate the SCIL node for this class-wide membership test.
13215 -- Done here because the previous call to Build_CW_Membership
13216 -- relocates Obj_Tag.
13218 if Generate_SCIL
then
13219 SCIL_Node
:= Make_SCIL_Membership_Test
(Sloc
(N
));
13220 Set_SCIL_Entity
(SCIL_Node
, Etype
(Right_Type
));
13221 Set_SCIL_Tag_Value
(SCIL_Node
, Obj_Tag
);
13224 Result
:= New_Node
;
13227 -- Right_Type is not a class-wide type
13230 -- No need to check the tag of the object if Right_Typ is abstract
13232 if Is_Abstract_Type
(Right_Type
) then
13233 Result
:= New_Occurrence_Of
(Standard_False
, Loc
);
13238 Left_Opnd
=> Obj_Tag
,
13241 (Node
(First_Elmt
(Access_Disp_Table
(Full_R_Typ
))), Loc
));
13244 end Tagged_Membership
;
13246 ------------------------------
13247 -- Unary_Op_Validity_Checks --
13248 ------------------------------
13250 procedure Unary_Op_Validity_Checks
(N
: Node_Id
) is
13252 if Validity_Checks_On
and Validity_Check_Operands
then
13253 Ensure_Valid
(Right_Opnd
(N
));
13255 end Unary_Op_Validity_Checks
;