PR middle-end/54635
[official-gcc.git] / gcc / config / m32r / m32r.c
blob03360b6a5b02892d1a4ccb82a07f6c92aa42102f
1 /* Subroutines used for code generation on the Renesas M32R cpu.
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "hard-reg-set.h"
29 #include "insn-config.h"
30 #include "conditions.h"
31 #include "output.h"
32 #include "dbxout.h"
33 #include "insn-attr.h"
34 #include "flags.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "recog.h"
38 #include "diagnostic-core.h"
39 #include "ggc.h"
40 #include "df.h"
41 #include "tm_p.h"
42 #include "target.h"
43 #include "target-def.h"
44 #include "tm-constrs.h"
45 #include "opts.h"
47 /* Array of valid operand punctuation characters. */
48 static char m32r_punct_chars[256];
50 /* Machine-specific symbol_ref flags. */
51 #define SYMBOL_FLAG_MODEL_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT
52 #define SYMBOL_REF_MODEL(X) \
53 ((enum m32r_model) ((SYMBOL_REF_FLAGS (X) >> SYMBOL_FLAG_MODEL_SHIFT) & 3))
55 /* For string literals, etc. */
56 #define LIT_NAME_P(NAME) ((NAME)[0] == '*' && (NAME)[1] == '.')
58 /* Forward declaration. */
59 static void m32r_option_override (void);
60 static void init_reg_tables (void);
61 static void block_move_call (rtx, rtx, rtx);
62 static int m32r_is_insn (rtx);
63 static bool m32r_legitimate_address_p (enum machine_mode, rtx, bool);
64 static rtx m32r_legitimize_address (rtx, rtx, enum machine_mode);
65 static bool m32r_mode_dependent_address_p (const_rtx, addr_space_t);
66 static tree m32r_handle_model_attribute (tree *, tree, tree, int, bool *);
67 static void m32r_print_operand (FILE *, rtx, int);
68 static void m32r_print_operand_address (FILE *, rtx);
69 static bool m32r_print_operand_punct_valid_p (unsigned char code);
70 static void m32r_output_function_prologue (FILE *, HOST_WIDE_INT);
71 static void m32r_output_function_epilogue (FILE *, HOST_WIDE_INT);
73 static void m32r_file_start (void);
75 static int m32r_adjust_priority (rtx, int);
76 static int m32r_issue_rate (void);
78 static void m32r_encode_section_info (tree, rtx, int);
79 static bool m32r_in_small_data_p (const_tree);
80 static bool m32r_return_in_memory (const_tree, const_tree);
81 static rtx m32r_function_value (const_tree, const_tree, bool);
82 static rtx m32r_libcall_value (enum machine_mode, const_rtx);
83 static bool m32r_function_value_regno_p (const unsigned int);
84 static void m32r_setup_incoming_varargs (cumulative_args_t, enum machine_mode,
85 tree, int *, int);
86 static void init_idents (void);
87 static bool m32r_rtx_costs (rtx, int, int, int, int *, bool speed);
88 static int m32r_memory_move_cost (enum machine_mode, reg_class_t, bool);
89 static bool m32r_pass_by_reference (cumulative_args_t, enum machine_mode,
90 const_tree, bool);
91 static int m32r_arg_partial_bytes (cumulative_args_t, enum machine_mode,
92 tree, bool);
93 static rtx m32r_function_arg (cumulative_args_t, enum machine_mode,
94 const_tree, bool);
95 static void m32r_function_arg_advance (cumulative_args_t, enum machine_mode,
96 const_tree, bool);
97 static bool m32r_can_eliminate (const int, const int);
98 static void m32r_conditional_register_usage (void);
99 static void m32r_trampoline_init (rtx, tree, rtx);
100 static bool m32r_legitimate_constant_p (enum machine_mode, rtx);
102 /* M32R specific attributes. */
104 static const struct attribute_spec m32r_attribute_table[] =
106 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler,
107 affects_type_identity } */
108 { "interrupt", 0, 0, true, false, false, NULL, false },
109 { "model", 1, 1, true, false, false, m32r_handle_model_attribute,
110 false },
111 { NULL, 0, 0, false, false, false, NULL, false }
114 /* Initialize the GCC target structure. */
115 #undef TARGET_ATTRIBUTE_TABLE
116 #define TARGET_ATTRIBUTE_TABLE m32r_attribute_table
118 #undef TARGET_LEGITIMATE_ADDRESS_P
119 #define TARGET_LEGITIMATE_ADDRESS_P m32r_legitimate_address_p
120 #undef TARGET_LEGITIMIZE_ADDRESS
121 #define TARGET_LEGITIMIZE_ADDRESS m32r_legitimize_address
122 #undef TARGET_MODE_DEPENDENT_ADDRESS_P
123 #define TARGET_MODE_DEPENDENT_ADDRESS_P m32r_mode_dependent_address_p
125 #undef TARGET_ASM_ALIGNED_HI_OP
126 #define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
127 #undef TARGET_ASM_ALIGNED_SI_OP
128 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
130 #undef TARGET_PRINT_OPERAND
131 #define TARGET_PRINT_OPERAND m32r_print_operand
132 #undef TARGET_PRINT_OPERAND_ADDRESS
133 #define TARGET_PRINT_OPERAND_ADDRESS m32r_print_operand_address
134 #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
135 #define TARGET_PRINT_OPERAND_PUNCT_VALID_P m32r_print_operand_punct_valid_p
137 #undef TARGET_ASM_FUNCTION_PROLOGUE
138 #define TARGET_ASM_FUNCTION_PROLOGUE m32r_output_function_prologue
139 #undef TARGET_ASM_FUNCTION_EPILOGUE
140 #define TARGET_ASM_FUNCTION_EPILOGUE m32r_output_function_epilogue
142 #undef TARGET_ASM_FILE_START
143 #define TARGET_ASM_FILE_START m32r_file_start
145 #undef TARGET_SCHED_ADJUST_PRIORITY
146 #define TARGET_SCHED_ADJUST_PRIORITY m32r_adjust_priority
147 #undef TARGET_SCHED_ISSUE_RATE
148 #define TARGET_SCHED_ISSUE_RATE m32r_issue_rate
150 #undef TARGET_OPTION_OVERRIDE
151 #define TARGET_OPTION_OVERRIDE m32r_option_override
153 #undef TARGET_ENCODE_SECTION_INFO
154 #define TARGET_ENCODE_SECTION_INFO m32r_encode_section_info
155 #undef TARGET_IN_SMALL_DATA_P
156 #define TARGET_IN_SMALL_DATA_P m32r_in_small_data_p
159 #undef TARGET_MEMORY_MOVE_COST
160 #define TARGET_MEMORY_MOVE_COST m32r_memory_move_cost
161 #undef TARGET_RTX_COSTS
162 #define TARGET_RTX_COSTS m32r_rtx_costs
163 #undef TARGET_ADDRESS_COST
164 #define TARGET_ADDRESS_COST hook_int_rtx_mode_as_bool_0
166 #undef TARGET_PROMOTE_PROTOTYPES
167 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
168 #undef TARGET_RETURN_IN_MEMORY
169 #define TARGET_RETURN_IN_MEMORY m32r_return_in_memory
171 #undef TARGET_FUNCTION_VALUE
172 #define TARGET_FUNCTION_VALUE m32r_function_value
173 #undef TARGET_LIBCALL_VALUE
174 #define TARGET_LIBCALL_VALUE m32r_libcall_value
175 #undef TARGET_FUNCTION_VALUE_REGNO_P
176 #define TARGET_FUNCTION_VALUE_REGNO_P m32r_function_value_regno_p
178 #undef TARGET_SETUP_INCOMING_VARARGS
179 #define TARGET_SETUP_INCOMING_VARARGS m32r_setup_incoming_varargs
180 #undef TARGET_MUST_PASS_IN_STACK
181 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
182 #undef TARGET_PASS_BY_REFERENCE
183 #define TARGET_PASS_BY_REFERENCE m32r_pass_by_reference
184 #undef TARGET_ARG_PARTIAL_BYTES
185 #define TARGET_ARG_PARTIAL_BYTES m32r_arg_partial_bytes
186 #undef TARGET_FUNCTION_ARG
187 #define TARGET_FUNCTION_ARG m32r_function_arg
188 #undef TARGET_FUNCTION_ARG_ADVANCE
189 #define TARGET_FUNCTION_ARG_ADVANCE m32r_function_arg_advance
191 #undef TARGET_CAN_ELIMINATE
192 #define TARGET_CAN_ELIMINATE m32r_can_eliminate
194 #undef TARGET_CONDITIONAL_REGISTER_USAGE
195 #define TARGET_CONDITIONAL_REGISTER_USAGE m32r_conditional_register_usage
197 #undef TARGET_TRAMPOLINE_INIT
198 #define TARGET_TRAMPOLINE_INIT m32r_trampoline_init
200 #undef TARGET_LEGITIMATE_CONSTANT_P
201 #define TARGET_LEGITIMATE_CONSTANT_P m32r_legitimate_constant_p
203 struct gcc_target targetm = TARGET_INITIALIZER;
205 /* Called by m32r_option_override to initialize various things. */
207 void
208 m32r_init (void)
210 init_reg_tables ();
212 /* Initialize array for TARGET_PRINT_OPERAND_PUNCT_VALID_P. */
213 memset (m32r_punct_chars, 0, sizeof (m32r_punct_chars));
214 m32r_punct_chars['#'] = 1;
215 m32r_punct_chars['@'] = 1; /* ??? no longer used */
217 /* Provide default value if not specified. */
218 if (!global_options_set.x_g_switch_value)
219 g_switch_value = SDATA_DEFAULT_SIZE;
222 static void
223 m32r_option_override (void)
225 /* These need to be done at start up.
226 It's convenient to do them here. */
227 m32r_init ();
228 SUBTARGET_OVERRIDE_OPTIONS;
231 /* Vectors to keep interesting information about registers where it can easily
232 be got. We use to use the actual mode value as the bit number, but there
233 is (or may be) more than 32 modes now. Instead we use two tables: one
234 indexed by hard register number, and one indexed by mode. */
236 /* The purpose of m32r_mode_class is to shrink the range of modes so that
237 they all fit (as bit numbers) in a 32-bit word (again). Each real mode is
238 mapped into one m32r_mode_class mode. */
240 enum m32r_mode_class
242 C_MODE,
243 S_MODE, D_MODE, T_MODE, O_MODE,
244 SF_MODE, DF_MODE, TF_MODE, OF_MODE, A_MODE
247 /* Modes for condition codes. */
248 #define C_MODES (1 << (int) C_MODE)
250 /* Modes for single-word and smaller quantities. */
251 #define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
253 /* Modes for double-word and smaller quantities. */
254 #define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))
256 /* Modes for quad-word and smaller quantities. */
257 #define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
259 /* Modes for accumulators. */
260 #define A_MODES (1 << (int) A_MODE)
262 /* Value is 1 if register/mode pair is acceptable on arc. */
264 const unsigned int m32r_hard_regno_mode_ok[FIRST_PSEUDO_REGISTER] =
266 T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES,
267 T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, S_MODES, S_MODES, S_MODES,
268 S_MODES, C_MODES, A_MODES, A_MODES
271 unsigned int m32r_mode_class [NUM_MACHINE_MODES];
273 enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER];
275 static void
276 init_reg_tables (void)
278 int i;
280 for (i = 0; i < NUM_MACHINE_MODES; i++)
282 switch (GET_MODE_CLASS (i))
284 case MODE_INT:
285 case MODE_PARTIAL_INT:
286 case MODE_COMPLEX_INT:
287 if (GET_MODE_SIZE (i) <= 4)
288 m32r_mode_class[i] = 1 << (int) S_MODE;
289 else if (GET_MODE_SIZE (i) == 8)
290 m32r_mode_class[i] = 1 << (int) D_MODE;
291 else if (GET_MODE_SIZE (i) == 16)
292 m32r_mode_class[i] = 1 << (int) T_MODE;
293 else if (GET_MODE_SIZE (i) == 32)
294 m32r_mode_class[i] = 1 << (int) O_MODE;
295 else
296 m32r_mode_class[i] = 0;
297 break;
298 case MODE_FLOAT:
299 case MODE_COMPLEX_FLOAT:
300 if (GET_MODE_SIZE (i) <= 4)
301 m32r_mode_class[i] = 1 << (int) SF_MODE;
302 else if (GET_MODE_SIZE (i) == 8)
303 m32r_mode_class[i] = 1 << (int) DF_MODE;
304 else if (GET_MODE_SIZE (i) == 16)
305 m32r_mode_class[i] = 1 << (int) TF_MODE;
306 else if (GET_MODE_SIZE (i) == 32)
307 m32r_mode_class[i] = 1 << (int) OF_MODE;
308 else
309 m32r_mode_class[i] = 0;
310 break;
311 case MODE_CC:
312 m32r_mode_class[i] = 1 << (int) C_MODE;
313 break;
314 default:
315 m32r_mode_class[i] = 0;
316 break;
320 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
322 if (GPR_P (i))
323 m32r_regno_reg_class[i] = GENERAL_REGS;
324 else if (i == ARG_POINTER_REGNUM)
325 m32r_regno_reg_class[i] = GENERAL_REGS;
326 else
327 m32r_regno_reg_class[i] = NO_REGS;
331 /* M32R specific attribute support.
333 interrupt - for interrupt functions
335 model - select code model used to access object
337 small: addresses use 24 bits, use bl to make calls
338 medium: addresses use 32 bits, use bl to make calls
339 large: addresses use 32 bits, use seth/add3/jl to make calls
341 Grep for MODEL in m32r.h for more info. */
343 static tree small_ident1;
344 static tree small_ident2;
345 static tree medium_ident1;
346 static tree medium_ident2;
347 static tree large_ident1;
348 static tree large_ident2;
350 static void
351 init_idents (void)
353 if (small_ident1 == 0)
355 small_ident1 = get_identifier ("small");
356 small_ident2 = get_identifier ("__small__");
357 medium_ident1 = get_identifier ("medium");
358 medium_ident2 = get_identifier ("__medium__");
359 large_ident1 = get_identifier ("large");
360 large_ident2 = get_identifier ("__large__");
364 /* Handle an "model" attribute; arguments as in
365 struct attribute_spec.handler. */
366 static tree
367 m32r_handle_model_attribute (tree *node ATTRIBUTE_UNUSED, tree name,
368 tree args, int flags ATTRIBUTE_UNUSED,
369 bool *no_add_attrs)
371 tree arg;
373 init_idents ();
374 arg = TREE_VALUE (args);
376 if (arg != small_ident1
377 && arg != small_ident2
378 && arg != medium_ident1
379 && arg != medium_ident2
380 && arg != large_ident1
381 && arg != large_ident2)
383 warning (OPT_Wattributes, "invalid argument of %qs attribute",
384 IDENTIFIER_POINTER (name));
385 *no_add_attrs = true;
388 return NULL_TREE;
391 /* Encode section information of DECL, which is either a VAR_DECL,
392 FUNCTION_DECL, STRING_CST, CONSTRUCTOR, or ???.
394 For the M32R we want to record:
396 - whether the object lives in .sdata/.sbss.
397 - what code model should be used to access the object
400 static void
401 m32r_encode_section_info (tree decl, rtx rtl, int first)
403 int extra_flags = 0;
404 tree model_attr;
405 enum m32r_model model;
407 default_encode_section_info (decl, rtl, first);
409 if (!DECL_P (decl))
410 return;
412 model_attr = lookup_attribute ("model", DECL_ATTRIBUTES (decl));
413 if (model_attr)
415 tree id;
417 init_idents ();
419 id = TREE_VALUE (TREE_VALUE (model_attr));
421 if (id == small_ident1 || id == small_ident2)
422 model = M32R_MODEL_SMALL;
423 else if (id == medium_ident1 || id == medium_ident2)
424 model = M32R_MODEL_MEDIUM;
425 else if (id == large_ident1 || id == large_ident2)
426 model = M32R_MODEL_LARGE;
427 else
428 gcc_unreachable (); /* shouldn't happen */
430 else
432 if (TARGET_MODEL_SMALL)
433 model = M32R_MODEL_SMALL;
434 else if (TARGET_MODEL_MEDIUM)
435 model = M32R_MODEL_MEDIUM;
436 else if (TARGET_MODEL_LARGE)
437 model = M32R_MODEL_LARGE;
438 else
439 gcc_unreachable (); /* shouldn't happen */
441 extra_flags |= model << SYMBOL_FLAG_MODEL_SHIFT;
443 if (extra_flags)
444 SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= extra_flags;
447 /* Only mark the object as being small data area addressable if
448 it hasn't been explicitly marked with a code model.
450 The user can explicitly put an object in the small data area with the
451 section attribute. If the object is in sdata/sbss and marked with a
452 code model do both [put the object in .sdata and mark it as being
453 addressed with a specific code model - don't mark it as being addressed
454 with an SDA reloc though]. This is ok and might be useful at times. If
455 the object doesn't fit the linker will give an error. */
457 static bool
458 m32r_in_small_data_p (const_tree decl)
460 const_tree section;
462 if (TREE_CODE (decl) != VAR_DECL)
463 return false;
465 if (lookup_attribute ("model", DECL_ATTRIBUTES (decl)))
466 return false;
468 section = DECL_SECTION_NAME (decl);
469 if (section)
471 const char *const name = TREE_STRING_POINTER (section);
472 if (strcmp (name, ".sdata") == 0 || strcmp (name, ".sbss") == 0)
473 return true;
475 else
477 if (! TREE_READONLY (decl) && ! TARGET_SDATA_NONE)
479 int size = int_size_in_bytes (TREE_TYPE (decl));
481 if (size > 0 && size <= g_switch_value)
482 return true;
486 return false;
489 /* Do anything needed before RTL is emitted for each function. */
491 void
492 m32r_init_expanders (void)
494 /* ??? At one point there was code here. The function is left in
495 to make it easy to experiment. */
499 call_operand (rtx op, enum machine_mode mode)
501 if (!MEM_P (op))
502 return 0;
503 op = XEXP (op, 0);
504 return call_address_operand (op, mode);
507 /* Return 1 if OP is a reference to an object in .sdata/.sbss. */
510 small_data_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
512 if (! TARGET_SDATA_USE)
513 return 0;
515 if (GET_CODE (op) == SYMBOL_REF)
516 return SYMBOL_REF_SMALL_P (op);
518 if (GET_CODE (op) == CONST
519 && GET_CODE (XEXP (op, 0)) == PLUS
520 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
521 && satisfies_constraint_J (XEXP (XEXP (op, 0), 1)))
522 return SYMBOL_REF_SMALL_P (XEXP (XEXP (op, 0), 0));
524 return 0;
527 /* Return 1 if OP is a symbol that can use 24-bit addressing. */
530 addr24_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
532 rtx sym;
534 if (flag_pic)
535 return 0;
537 if (GET_CODE (op) == LABEL_REF)
538 return TARGET_ADDR24;
540 if (GET_CODE (op) == SYMBOL_REF)
541 sym = op;
542 else if (GET_CODE (op) == CONST
543 && GET_CODE (XEXP (op, 0)) == PLUS
544 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
545 && satisfies_constraint_M (XEXP (XEXP (op, 0), 1)))
546 sym = XEXP (XEXP (op, 0), 0);
547 else
548 return 0;
550 if (SYMBOL_REF_MODEL (sym) == M32R_MODEL_SMALL)
551 return 1;
553 if (TARGET_ADDR24
554 && (CONSTANT_POOL_ADDRESS_P (sym)
555 || LIT_NAME_P (XSTR (sym, 0))))
556 return 1;
558 return 0;
561 /* Return 1 if OP is a symbol that needs 32-bit addressing. */
564 addr32_operand (rtx op, enum machine_mode mode)
566 rtx sym;
568 if (GET_CODE (op) == LABEL_REF)
569 return TARGET_ADDR32;
571 if (GET_CODE (op) == SYMBOL_REF)
572 sym = op;
573 else if (GET_CODE (op) == CONST
574 && GET_CODE (XEXP (op, 0)) == PLUS
575 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
576 && CONST_INT_P (XEXP (XEXP (op, 0), 1))
577 && ! flag_pic)
578 sym = XEXP (XEXP (op, 0), 0);
579 else
580 return 0;
582 return (! addr24_operand (sym, mode)
583 && ! small_data_operand (sym, mode));
586 /* Return 1 if OP is a function that can be called with the `bl' insn. */
589 call26_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
591 if (flag_pic)
592 return 1;
594 if (GET_CODE (op) == SYMBOL_REF)
595 return SYMBOL_REF_MODEL (op) != M32R_MODEL_LARGE;
597 return TARGET_CALL26;
600 /* Return 1 if OP is a DImode const we want to handle inline.
601 This must match the code in the movdi pattern.
602 It is used by the 'G' CONST_DOUBLE_OK_FOR_LETTER. */
605 easy_di_const (rtx op)
607 rtx high_rtx, low_rtx;
608 HOST_WIDE_INT high, low;
610 split_double (op, &high_rtx, &low_rtx);
611 high = INTVAL (high_rtx);
612 low = INTVAL (low_rtx);
613 /* Pick constants loadable with 2 16-bit `ldi' insns. */
614 if (high >= -128 && high <= 127
615 && low >= -128 && low <= 127)
616 return 1;
617 return 0;
620 /* Return 1 if OP is a DFmode const we want to handle inline.
621 This must match the code in the movdf pattern.
622 It is used by the 'H' CONST_DOUBLE_OK_FOR_LETTER. */
625 easy_df_const (rtx op)
627 REAL_VALUE_TYPE r;
628 long l[2];
630 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
631 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
632 if (l[0] == 0 && l[1] == 0)
633 return 1;
634 if ((l[0] & 0xffff) == 0 && l[1] == 0)
635 return 1;
636 return 0;
639 /* Return 1 if OP is (mem (reg ...)).
640 This is used in insn length calcs. */
643 memreg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
645 return MEM_P (op) && REG_P (XEXP (op, 0));
648 /* Return nonzero if TYPE must be passed by indirect reference. */
650 static bool
651 m32r_pass_by_reference (cumulative_args_t ca ATTRIBUTE_UNUSED,
652 enum machine_mode mode, const_tree type,
653 bool named ATTRIBUTE_UNUSED)
655 int size;
657 if (type)
658 size = int_size_in_bytes (type);
659 else
660 size = GET_MODE_SIZE (mode);
662 return (size < 0 || size > 8);
665 /* Comparisons. */
667 /* X and Y are two things to compare using CODE. Emit the compare insn and
668 return the rtx for compare [arg0 of the if_then_else].
669 If need_compare is true then the comparison insn must be generated, rather
670 than being subsumed into the following branch instruction. */
673 gen_compare (enum rtx_code code, rtx x, rtx y, int need_compare)
675 enum rtx_code compare_code;
676 enum rtx_code branch_code;
677 rtx cc_reg = gen_rtx_REG (CCmode, CARRY_REGNUM);
678 int must_swap = 0;
680 switch (code)
682 case EQ: compare_code = EQ; branch_code = NE; break;
683 case NE: compare_code = EQ; branch_code = EQ; break;
684 case LT: compare_code = LT; branch_code = NE; break;
685 case LE: compare_code = LT; branch_code = EQ; must_swap = 1; break;
686 case GT: compare_code = LT; branch_code = NE; must_swap = 1; break;
687 case GE: compare_code = LT; branch_code = EQ; break;
688 case LTU: compare_code = LTU; branch_code = NE; break;
689 case LEU: compare_code = LTU; branch_code = EQ; must_swap = 1; break;
690 case GTU: compare_code = LTU; branch_code = NE; must_swap = 1; break;
691 case GEU: compare_code = LTU; branch_code = EQ; break;
693 default:
694 gcc_unreachable ();
697 if (need_compare)
699 switch (compare_code)
701 case EQ:
702 if (satisfies_constraint_P (y) /* Reg equal to small const. */
703 && y != const0_rtx)
705 rtx tmp = gen_reg_rtx (SImode);
707 emit_insn (gen_addsi3 (tmp, x, GEN_INT (-INTVAL (y))));
708 x = tmp;
709 y = const0_rtx;
711 else if (CONSTANT_P (y)) /* Reg equal to const. */
713 rtx tmp = force_reg (GET_MODE (x), y);
714 y = tmp;
717 if (register_operand (y, SImode) /* Reg equal to reg. */
718 || y == const0_rtx) /* Reg equal to zero. */
720 emit_insn (gen_cmp_eqsi_insn (x, y));
722 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
724 break;
726 case LT:
727 if (register_operand (y, SImode)
728 || satisfies_constraint_P (y))
730 rtx tmp = gen_reg_rtx (SImode); /* Reg compared to reg. */
732 switch (code)
734 case LT:
735 emit_insn (gen_cmp_ltsi_insn (x, y));
736 code = EQ;
737 break;
738 case LE:
739 if (y == const0_rtx)
740 tmp = const1_rtx;
741 else
742 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
743 emit_insn (gen_cmp_ltsi_insn (x, tmp));
744 code = EQ;
745 break;
746 case GT:
747 if (CONST_INT_P (y))
748 tmp = gen_rtx_PLUS (SImode, y, const1_rtx);
749 else
750 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
751 emit_insn (gen_cmp_ltsi_insn (x, tmp));
752 code = NE;
753 break;
754 case GE:
755 emit_insn (gen_cmp_ltsi_insn (x, y));
756 code = NE;
757 break;
758 default:
759 gcc_unreachable ();
762 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
764 break;
766 case LTU:
767 if (register_operand (y, SImode)
768 || satisfies_constraint_P (y))
770 rtx tmp = gen_reg_rtx (SImode); /* Reg (unsigned) compared to reg. */
772 switch (code)
774 case LTU:
775 emit_insn (gen_cmp_ltusi_insn (x, y));
776 code = EQ;
777 break;
778 case LEU:
779 if (y == const0_rtx)
780 tmp = const1_rtx;
781 else
782 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
783 emit_insn (gen_cmp_ltusi_insn (x, tmp));
784 code = EQ;
785 break;
786 case GTU:
787 if (CONST_INT_P (y))
788 tmp = gen_rtx_PLUS (SImode, y, const1_rtx);
789 else
790 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
791 emit_insn (gen_cmp_ltusi_insn (x, tmp));
792 code = NE;
793 break;
794 case GEU:
795 emit_insn (gen_cmp_ltusi_insn (x, y));
796 code = NE;
797 break;
798 default:
799 gcc_unreachable ();
802 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
804 break;
806 default:
807 gcc_unreachable ();
810 else
812 /* Reg/reg equal comparison. */
813 if (compare_code == EQ
814 && register_operand (y, SImode))
815 return gen_rtx_fmt_ee (code, CCmode, x, y);
817 /* Reg/zero signed comparison. */
818 if ((compare_code == EQ || compare_code == LT)
819 && y == const0_rtx)
820 return gen_rtx_fmt_ee (code, CCmode, x, y);
822 /* Reg/smallconst equal comparison. */
823 if (compare_code == EQ
824 && satisfies_constraint_P (y))
826 rtx tmp = gen_reg_rtx (SImode);
828 emit_insn (gen_addsi3 (tmp, x, GEN_INT (-INTVAL (y))));
829 return gen_rtx_fmt_ee (code, CCmode, tmp, const0_rtx);
832 /* Reg/const equal comparison. */
833 if (compare_code == EQ
834 && CONSTANT_P (y))
836 rtx tmp = force_reg (GET_MODE (x), y);
838 return gen_rtx_fmt_ee (code, CCmode, x, tmp);
842 if (CONSTANT_P (y))
844 if (must_swap)
845 y = force_reg (GET_MODE (x), y);
846 else
848 int ok_const = reg_or_int16_operand (y, GET_MODE (y));
850 if (! ok_const)
851 y = force_reg (GET_MODE (x), y);
855 switch (compare_code)
857 case EQ :
858 emit_insn (gen_cmp_eqsi_insn (must_swap ? y : x, must_swap ? x : y));
859 break;
860 case LT :
861 emit_insn (gen_cmp_ltsi_insn (must_swap ? y : x, must_swap ? x : y));
862 break;
863 case LTU :
864 emit_insn (gen_cmp_ltusi_insn (must_swap ? y : x, must_swap ? x : y));
865 break;
867 default:
868 gcc_unreachable ();
871 return gen_rtx_fmt_ee (branch_code, VOIDmode, cc_reg, CONST0_RTX (CCmode));
874 bool
875 gen_cond_store (enum rtx_code code, rtx op0, rtx op1, rtx op2)
877 enum machine_mode mode = GET_MODE (op0);
879 gcc_assert (mode == SImode);
880 switch (code)
882 case EQ:
883 if (!register_operand (op1, mode))
884 op1 = force_reg (mode, op1);
886 if (TARGET_M32RX || TARGET_M32R2)
888 if (!reg_or_zero_operand (op2, mode))
889 op2 = force_reg (mode, op2);
891 emit_insn (gen_seq_insn_m32rx (op0, op1, op2));
892 return true;
894 if (CONST_INT_P (op2) && INTVAL (op2) == 0)
896 emit_insn (gen_seq_zero_insn (op0, op1));
897 return true;
900 if (!reg_or_eq_int16_operand (op2, mode))
901 op2 = force_reg (mode, op2);
903 emit_insn (gen_seq_insn (op0, op1, op2));
904 return true;
906 case NE:
907 if (!CONST_INT_P (op2)
908 || (INTVAL (op2) != 0 && satisfies_constraint_K (op2)))
910 rtx reg;
912 if (reload_completed || reload_in_progress)
913 return false;
915 reg = gen_reg_rtx (SImode);
916 emit_insn (gen_xorsi3 (reg, op1, op2));
917 op1 = reg;
919 if (!register_operand (op1, mode))
920 op1 = force_reg (mode, op1);
922 emit_insn (gen_sne_zero_insn (op0, op1));
923 return true;
925 return false;
927 case LT:
928 case GT:
929 if (code == GT)
931 rtx tmp = op2;
932 op2 = op1;
933 op1 = tmp;
934 code = LT;
937 if (!register_operand (op1, mode))
938 op1 = force_reg (mode, op1);
940 if (!reg_or_int16_operand (op2, mode))
941 op2 = force_reg (mode, op2);
943 emit_insn (gen_slt_insn (op0, op1, op2));
944 return true;
946 case LTU:
947 case GTU:
948 if (code == GTU)
950 rtx tmp = op2;
951 op2 = op1;
952 op1 = tmp;
953 code = LTU;
956 if (!register_operand (op1, mode))
957 op1 = force_reg (mode, op1);
959 if (!reg_or_int16_operand (op2, mode))
960 op2 = force_reg (mode, op2);
962 emit_insn (gen_sltu_insn (op0, op1, op2));
963 return true;
965 case GE:
966 case GEU:
967 if (!register_operand (op1, mode))
968 op1 = force_reg (mode, op1);
970 if (!reg_or_int16_operand (op2, mode))
971 op2 = force_reg (mode, op2);
973 if (code == GE)
974 emit_insn (gen_sge_insn (op0, op1, op2));
975 else
976 emit_insn (gen_sgeu_insn (op0, op1, op2));
977 return true;
979 case LE:
980 case LEU:
981 if (!register_operand (op1, mode))
982 op1 = force_reg (mode, op1);
984 if (CONST_INT_P (op2))
986 HOST_WIDE_INT value = INTVAL (op2);
987 if (value >= 2147483647)
989 emit_move_insn (op0, const1_rtx);
990 return true;
993 op2 = GEN_INT (value + 1);
994 if (value < -32768 || value >= 32767)
995 op2 = force_reg (mode, op2);
997 if (code == LEU)
998 emit_insn (gen_sltu_insn (op0, op1, op2));
999 else
1000 emit_insn (gen_slt_insn (op0, op1, op2));
1001 return true;
1004 if (!register_operand (op2, mode))
1005 op2 = force_reg (mode, op2);
1007 if (code == LEU)
1008 emit_insn (gen_sleu_insn (op0, op1, op2));
1009 else
1010 emit_insn (gen_sle_insn (op0, op1, op2));
1011 return true;
1013 default:
1014 gcc_unreachable ();
1019 /* Split a 2 word move (DI or DF) into component parts. */
1022 gen_split_move_double (rtx operands[])
1024 enum machine_mode mode = GET_MODE (operands[0]);
1025 rtx dest = operands[0];
1026 rtx src = operands[1];
1027 rtx val;
1029 /* We might have (SUBREG (MEM)) here, so just get rid of the
1030 subregs to make this code simpler. It is safe to call
1031 alter_subreg any time after reload. */
1032 if (GET_CODE (dest) == SUBREG)
1033 alter_subreg (&dest);
1034 if (GET_CODE (src) == SUBREG)
1035 alter_subreg (&src);
1037 start_sequence ();
1038 if (REG_P (dest))
1040 int dregno = REGNO (dest);
1042 /* Reg = reg. */
1043 if (REG_P (src))
1045 int sregno = REGNO (src);
1047 int reverse = (dregno == sregno + 1);
1049 /* We normally copy the low-numbered register first. However, if
1050 the first register operand 0 is the same as the second register of
1051 operand 1, we must copy in the opposite order. */
1052 emit_insn (gen_rtx_SET (VOIDmode,
1053 operand_subword (dest, reverse, TRUE, mode),
1054 operand_subword (src, reverse, TRUE, mode)));
1056 emit_insn (gen_rtx_SET (VOIDmode,
1057 operand_subword (dest, !reverse, TRUE, mode),
1058 operand_subword (src, !reverse, TRUE, mode)));
1061 /* Reg = constant. */
1062 else if (CONST_INT_P (src) || GET_CODE (src) == CONST_DOUBLE)
1064 rtx words[2];
1065 split_double (src, &words[0], &words[1]);
1066 emit_insn (gen_rtx_SET (VOIDmode,
1067 operand_subword (dest, 0, TRUE, mode),
1068 words[0]));
1070 emit_insn (gen_rtx_SET (VOIDmode,
1071 operand_subword (dest, 1, TRUE, mode),
1072 words[1]));
1075 /* Reg = mem. */
1076 else if (MEM_P (src))
1078 /* If the high-address word is used in the address, we must load it
1079 last. Otherwise, load it first. */
1080 int reverse
1081 = (refers_to_regno_p (dregno, dregno + 1, XEXP (src, 0), 0) != 0);
1083 /* We used to optimize loads from single registers as
1085 ld r1,r3+; ld r2,r3
1087 if r3 were not used subsequently. However, the REG_NOTES aren't
1088 propagated correctly by the reload phase, and it can cause bad
1089 code to be generated. We could still try:
1091 ld r1,r3+; ld r2,r3; addi r3,-4
1093 which saves 2 bytes and doesn't force longword alignment. */
1094 emit_insn (gen_rtx_SET (VOIDmode,
1095 operand_subword (dest, reverse, TRUE, mode),
1096 adjust_address (src, SImode,
1097 reverse * UNITS_PER_WORD)));
1099 emit_insn (gen_rtx_SET (VOIDmode,
1100 operand_subword (dest, !reverse, TRUE, mode),
1101 adjust_address (src, SImode,
1102 !reverse * UNITS_PER_WORD)));
1104 else
1105 gcc_unreachable ();
1108 /* Mem = reg. */
1109 /* We used to optimize loads from single registers as
1111 st r1,r3; st r2,+r3
1113 if r3 were not used subsequently. However, the REG_NOTES aren't
1114 propagated correctly by the reload phase, and it can cause bad
1115 code to be generated. We could still try:
1117 st r1,r3; st r2,+r3; addi r3,-4
1119 which saves 2 bytes and doesn't force longword alignment. */
1120 else if (MEM_P (dest) && REG_P (src))
1122 emit_insn (gen_rtx_SET (VOIDmode,
1123 adjust_address (dest, SImode, 0),
1124 operand_subword (src, 0, TRUE, mode)));
1126 emit_insn (gen_rtx_SET (VOIDmode,
1127 adjust_address (dest, SImode, UNITS_PER_WORD),
1128 operand_subword (src, 1, TRUE, mode)));
1131 else
1132 gcc_unreachable ();
1134 val = get_insns ();
1135 end_sequence ();
1136 return val;
1140 static int
1141 m32r_arg_partial_bytes (cumulative_args_t cum_v, enum machine_mode mode,
1142 tree type, bool named ATTRIBUTE_UNUSED)
1144 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1146 int words;
1147 unsigned int size =
1148 (((mode == BLKmode && type)
1149 ? (unsigned int) int_size_in_bytes (type)
1150 : GET_MODE_SIZE (mode)) + UNITS_PER_WORD - 1)
1151 / UNITS_PER_WORD;
1153 if (*cum >= M32R_MAX_PARM_REGS)
1154 words = 0;
1155 else if (*cum + size > M32R_MAX_PARM_REGS)
1156 words = (*cum + size) - M32R_MAX_PARM_REGS;
1157 else
1158 words = 0;
1160 return words * UNITS_PER_WORD;
1163 /* The ROUND_ADVANCE* macros are local to this file. */
1164 /* Round SIZE up to a word boundary. */
1165 #define ROUND_ADVANCE(SIZE) \
1166 (((SIZE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1168 /* Round arg MODE/TYPE up to the next word boundary. */
1169 #define ROUND_ADVANCE_ARG(MODE, TYPE) \
1170 ((MODE) == BLKmode \
1171 ? ROUND_ADVANCE ((unsigned int) int_size_in_bytes (TYPE)) \
1172 : ROUND_ADVANCE ((unsigned int) GET_MODE_SIZE (MODE)))
1174 /* Round CUM up to the necessary point for argument MODE/TYPE. */
1175 #define ROUND_ADVANCE_CUM(CUM, MODE, TYPE) (CUM)
1177 /* Return boolean indicating arg of type TYPE and mode MODE will be passed in
1178 a reg. This includes arguments that have to be passed by reference as the
1179 pointer to them is passed in a reg if one is available (and that is what
1180 we're given).
1181 This macro is only used in this file. */
1182 #define PASS_IN_REG_P(CUM, MODE, TYPE) \
1183 (ROUND_ADVANCE_CUM ((CUM), (MODE), (TYPE)) < M32R_MAX_PARM_REGS)
1185 /* Determine where to put an argument to a function.
1186 Value is zero to push the argument on the stack,
1187 or a hard register in which to store the argument.
1189 MODE is the argument's machine mode.
1190 TYPE is the data type of the argument (as a tree).
1191 This is null for libcalls where that information may
1192 not be available.
1193 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1194 the preceding args and about the function being called.
1195 NAMED is nonzero if this argument is a named parameter
1196 (otherwise it is an extra parameter matching an ellipsis). */
1197 /* On the M32R the first M32R_MAX_PARM_REGS args are normally in registers
1198 and the rest are pushed. */
1200 static rtx
1201 m32r_function_arg (cumulative_args_t cum_v, enum machine_mode mode,
1202 const_tree type ATTRIBUTE_UNUSED,
1203 bool named ATTRIBUTE_UNUSED)
1205 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1207 return (PASS_IN_REG_P (*cum, mode, type)
1208 ? gen_rtx_REG (mode, ROUND_ADVANCE_CUM (*cum, mode, type))
1209 : NULL_RTX);
1212 /* Update the data in CUM to advance over an argument
1213 of mode MODE and data type TYPE.
1214 (TYPE is null for libcalls where that information may not be available.) */
1216 static void
1217 m32r_function_arg_advance (cumulative_args_t cum_v, enum machine_mode mode,
1218 const_tree type, bool named ATTRIBUTE_UNUSED)
1220 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
1222 *cum = (ROUND_ADVANCE_CUM (*cum, mode, type)
1223 + ROUND_ADVANCE_ARG (mode, type));
1226 /* Worker function for TARGET_RETURN_IN_MEMORY. */
1228 static bool
1229 m32r_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
1231 cumulative_args_t dummy = pack_cumulative_args (NULL);
1233 return m32r_pass_by_reference (dummy, TYPE_MODE (type), type, false);
1236 /* Worker function for TARGET_FUNCTION_VALUE. */
1238 static rtx
1239 m32r_function_value (const_tree valtype,
1240 const_tree fn_decl_or_type ATTRIBUTE_UNUSED,
1241 bool outgoing ATTRIBUTE_UNUSED)
1243 return gen_rtx_REG (TYPE_MODE (valtype), 0);
1246 /* Worker function for TARGET_LIBCALL_VALUE. */
1248 static rtx
1249 m32r_libcall_value (enum machine_mode mode,
1250 const_rtx fun ATTRIBUTE_UNUSED)
1252 return gen_rtx_REG (mode, 0);
1255 /* Worker function for TARGET_FUNCTION_VALUE_REGNO_P.
1257 ??? What about r1 in DI/DF values. */
1259 static bool
1260 m32r_function_value_regno_p (const unsigned int regno)
1262 return (regno == 0);
1265 /* Do any needed setup for a variadic function. For the M32R, we must
1266 create a register parameter block, and then copy any anonymous arguments
1267 in registers to memory.
1269 CUM has not been updated for the last named argument which has type TYPE
1270 and mode MODE, and we rely on this fact. */
1272 static void
1273 m32r_setup_incoming_varargs (cumulative_args_t cum, enum machine_mode mode,
1274 tree type, int *pretend_size, int no_rtl)
1276 int first_anon_arg;
1278 if (no_rtl)
1279 return;
1281 /* All BLKmode values are passed by reference. */
1282 gcc_assert (mode != BLKmode);
1284 first_anon_arg = (ROUND_ADVANCE_CUM (*get_cumulative_args (cum), mode, type)
1285 + ROUND_ADVANCE_ARG (mode, type));
1287 if (first_anon_arg < M32R_MAX_PARM_REGS)
1289 /* Note that first_reg_offset < M32R_MAX_PARM_REGS. */
1290 int first_reg_offset = first_anon_arg;
1291 /* Size in words to "pretend" allocate. */
1292 int size = M32R_MAX_PARM_REGS - first_reg_offset;
1293 rtx regblock;
1295 regblock = gen_frame_mem (BLKmode,
1296 plus_constant (Pmode, arg_pointer_rtx,
1297 FIRST_PARM_OFFSET (0)));
1298 set_mem_alias_set (regblock, get_varargs_alias_set ());
1299 move_block_from_reg (first_reg_offset, regblock, size);
1301 *pretend_size = (size * UNITS_PER_WORD);
1306 /* Return true if INSN is real instruction bearing insn. */
1308 static int
1309 m32r_is_insn (rtx insn)
1311 return (NONDEBUG_INSN_P (insn)
1312 && GET_CODE (PATTERN (insn)) != USE
1313 && GET_CODE (PATTERN (insn)) != CLOBBER
1314 && GET_CODE (PATTERN (insn)) != ADDR_VEC);
1317 /* Increase the priority of long instructions so that the
1318 short instructions are scheduled ahead of the long ones. */
1320 static int
1321 m32r_adjust_priority (rtx insn, int priority)
1323 if (m32r_is_insn (insn)
1324 && get_attr_insn_size (insn) != INSN_SIZE_SHORT)
1325 priority <<= 3;
1327 return priority;
1331 /* Indicate how many instructions can be issued at the same time.
1332 This is sort of a lie. The m32r can issue only 1 long insn at
1333 once, but it can issue 2 short insns. The default therefore is
1334 set at 2, but this can be overridden by the command line option
1335 -missue-rate=1. */
1337 static int
1338 m32r_issue_rate (void)
1340 return ((TARGET_LOW_ISSUE_RATE) ? 1 : 2);
1343 /* Cost functions. */
1344 /* Memory is 3 times as expensive as registers.
1345 ??? Is that the right way to look at it? */
1347 static int
1348 m32r_memory_move_cost (enum machine_mode mode,
1349 reg_class_t rclass ATTRIBUTE_UNUSED,
1350 bool in ATTRIBUTE_UNUSED)
1352 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
1353 return 6;
1354 else
1355 return 12;
1358 static bool
1359 m32r_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED,
1360 int opno ATTRIBUTE_UNUSED, int *total,
1361 bool speed ATTRIBUTE_UNUSED)
1363 switch (code)
1365 /* Small integers are as cheap as registers. 4 byte values can be
1366 fetched as immediate constants - let's give that the cost of an
1367 extra insn. */
1368 case CONST_INT:
1369 if (INT16_P (INTVAL (x)))
1371 *total = 0;
1372 return true;
1374 /* FALLTHRU */
1376 case CONST:
1377 case LABEL_REF:
1378 case SYMBOL_REF:
1379 *total = COSTS_N_INSNS (1);
1380 return true;
1382 case CONST_DOUBLE:
1384 rtx high, low;
1386 split_double (x, &high, &low);
1387 *total = COSTS_N_INSNS (!INT16_P (INTVAL (high))
1388 + !INT16_P (INTVAL (low)));
1389 return true;
1392 case MULT:
1393 *total = COSTS_N_INSNS (3);
1394 return true;
1396 case DIV:
1397 case UDIV:
1398 case MOD:
1399 case UMOD:
1400 *total = COSTS_N_INSNS (10);
1401 return true;
1403 default:
1404 return false;
1408 /* Type of function DECL.
1410 The result is cached. To reset the cache at the end of a function,
1411 call with DECL = NULL_TREE. */
1413 enum m32r_function_type
1414 m32r_compute_function_type (tree decl)
1416 /* Cached value. */
1417 static enum m32r_function_type fn_type = M32R_FUNCTION_UNKNOWN;
1418 /* Last function we were called for. */
1419 static tree last_fn = NULL_TREE;
1421 /* Resetting the cached value? */
1422 if (decl == NULL_TREE)
1424 fn_type = M32R_FUNCTION_UNKNOWN;
1425 last_fn = NULL_TREE;
1426 return fn_type;
1429 if (decl == last_fn && fn_type != M32R_FUNCTION_UNKNOWN)
1430 return fn_type;
1432 /* Compute function type. */
1433 fn_type = (lookup_attribute ("interrupt", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE
1434 ? M32R_FUNCTION_INTERRUPT
1435 : M32R_FUNCTION_NORMAL);
1437 last_fn = decl;
1438 return fn_type;
1440 \f/* Function prologue/epilogue handlers. */
1442 /* M32R stack frames look like:
1444 Before call After call
1445 +-----------------------+ +-----------------------+
1446 | | | |
1447 high | local variables, | | local variables, |
1448 mem | reg save area, etc. | | reg save area, etc. |
1449 | | | |
1450 +-----------------------+ +-----------------------+
1451 | | | |
1452 | arguments on stack. | | arguments on stack. |
1453 | | | |
1454 SP+0->+-----------------------+ +-----------------------+
1455 | reg parm save area, |
1456 | only created for |
1457 | variable argument |
1458 | functions |
1459 +-----------------------+
1460 | previous frame ptr |
1461 +-----------------------+
1463 | register save area |
1465 +-----------------------+
1466 | return address |
1467 +-----------------------+
1469 | local variables |
1471 +-----------------------+
1473 | alloca allocations |
1475 +-----------------------+
1477 low | arguments on stack |
1478 memory | |
1479 SP+0->+-----------------------+
1481 Notes:
1482 1) The "reg parm save area" does not exist for non variable argument fns.
1483 2) The "reg parm save area" can be eliminated completely if we saved regs
1484 containing anonymous args separately but that complicates things too
1485 much (so it's not done).
1486 3) The return address is saved after the register save area so as to have as
1487 many insns as possible between the restoration of `lr' and the `jmp lr'. */
1489 /* Structure to be filled in by m32r_compute_frame_size with register
1490 save masks, and offsets for the current function. */
1491 struct m32r_frame_info
1493 unsigned int total_size; /* # bytes that the entire frame takes up. */
1494 unsigned int extra_size; /* # bytes of extra stuff. */
1495 unsigned int pretend_size; /* # bytes we push and pretend caller did. */
1496 unsigned int args_size; /* # bytes that outgoing arguments take up. */
1497 unsigned int reg_size; /* # bytes needed to store regs. */
1498 unsigned int var_size; /* # bytes that variables take up. */
1499 unsigned int gmask; /* Mask of saved gp registers. */
1500 unsigned int save_fp; /* Nonzero if fp must be saved. */
1501 unsigned int save_lr; /* Nonzero if lr (return addr) must be saved. */
1502 int initialized; /* Nonzero if frame size already calculated. */
1505 /* Current frame information calculated by m32r_compute_frame_size. */
1506 static struct m32r_frame_info current_frame_info;
1508 /* Zero structure to initialize current_frame_info. */
1509 static struct m32r_frame_info zero_frame_info;
1511 #define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
1512 #define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))
1514 /* Tell prologue and epilogue if register REGNO should be saved / restored.
1515 The return address and frame pointer are treated separately.
1516 Don't consider them here. */
1517 #define MUST_SAVE_REGISTER(regno, interrupt_p) \
1518 ((regno) != RETURN_ADDR_REGNUM && (regno) != FRAME_POINTER_REGNUM \
1519 && (df_regs_ever_live_p (regno) && (!call_really_used_regs[regno] || interrupt_p)))
1521 #define MUST_SAVE_FRAME_POINTER (df_regs_ever_live_p (FRAME_POINTER_REGNUM))
1522 #define MUST_SAVE_RETURN_ADDR (df_regs_ever_live_p (RETURN_ADDR_REGNUM) || crtl->profile)
1524 #define SHORT_INSN_SIZE 2 /* Size of small instructions. */
1525 #define LONG_INSN_SIZE 4 /* Size of long instructions. */
1527 /* Return the bytes needed to compute the frame pointer from the current
1528 stack pointer.
1530 SIZE is the size needed for local variables. */
1532 unsigned int
1533 m32r_compute_frame_size (int size) /* # of var. bytes allocated. */
1535 unsigned int regno;
1536 unsigned int total_size, var_size, args_size, pretend_size, extra_size;
1537 unsigned int reg_size;
1538 unsigned int gmask;
1539 enum m32r_function_type fn_type;
1540 int interrupt_p;
1541 int pic_reg_used = flag_pic && (crtl->uses_pic_offset_table
1542 | crtl->profile);
1544 var_size = M32R_STACK_ALIGN (size);
1545 args_size = M32R_STACK_ALIGN (crtl->outgoing_args_size);
1546 pretend_size = crtl->args.pretend_args_size;
1547 extra_size = FIRST_PARM_OFFSET (0);
1548 total_size = extra_size + pretend_size + args_size + var_size;
1549 reg_size = 0;
1550 gmask = 0;
1552 /* See if this is an interrupt handler. Call used registers must be saved
1553 for them too. */
1554 fn_type = m32r_compute_function_type (current_function_decl);
1555 interrupt_p = M32R_INTERRUPT_P (fn_type);
1557 /* Calculate space needed for registers. */
1558 for (regno = 0; regno < M32R_MAX_INT_REGS; regno++)
1560 if (MUST_SAVE_REGISTER (regno, interrupt_p)
1561 || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
1563 reg_size += UNITS_PER_WORD;
1564 gmask |= 1 << regno;
1568 current_frame_info.save_fp = MUST_SAVE_FRAME_POINTER;
1569 current_frame_info.save_lr = MUST_SAVE_RETURN_ADDR || pic_reg_used;
1571 reg_size += ((current_frame_info.save_fp + current_frame_info.save_lr)
1572 * UNITS_PER_WORD);
1573 total_size += reg_size;
1575 /* ??? Not sure this is necessary, and I don't think the epilogue
1576 handler will do the right thing if this changes total_size. */
1577 total_size = M32R_STACK_ALIGN (total_size);
1579 /* frame_size = total_size - (pretend_size + reg_size); */
1581 /* Save computed information. */
1582 current_frame_info.total_size = total_size;
1583 current_frame_info.extra_size = extra_size;
1584 current_frame_info.pretend_size = pretend_size;
1585 current_frame_info.var_size = var_size;
1586 current_frame_info.args_size = args_size;
1587 current_frame_info.reg_size = reg_size;
1588 current_frame_info.gmask = gmask;
1589 current_frame_info.initialized = reload_completed;
1591 /* Ok, we're done. */
1592 return total_size;
1595 /* Worker function for TARGET_CAN_ELIMINATE. */
1597 bool
1598 m32r_can_eliminate (const int from, const int to)
1600 return (from == ARG_POINTER_REGNUM && to == STACK_POINTER_REGNUM
1601 ? ! frame_pointer_needed
1602 : true);
1606 /* The table we use to reference PIC data. */
1607 static rtx global_offset_table;
1609 static void
1610 m32r_reload_lr (rtx sp, int size)
1612 rtx lr = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
1614 if (size == 0)
1615 emit_insn (gen_movsi (lr, gen_frame_mem (Pmode, sp)));
1616 else if (size < 32768)
1617 emit_insn (gen_movsi (lr, gen_frame_mem (Pmode,
1618 gen_rtx_PLUS (Pmode, sp,
1619 GEN_INT (size)))));
1620 else
1622 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1624 emit_insn (gen_movsi (tmp, GEN_INT (size)));
1625 emit_insn (gen_addsi3 (tmp, tmp, sp));
1626 emit_insn (gen_movsi (lr, gen_frame_mem (Pmode, tmp)));
1629 emit_use (lr);
1632 void
1633 m32r_load_pic_register (void)
1635 global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
1636 emit_insn (gen_get_pc (pic_offset_table_rtx, global_offset_table,
1637 GEN_INT (TARGET_MODEL_SMALL)));
1639 /* Need to emit this whether or not we obey regdecls,
1640 since setjmp/longjmp can cause life info to screw up. */
1641 emit_use (pic_offset_table_rtx);
1644 /* Expand the m32r prologue as a series of insns. */
1646 void
1647 m32r_expand_prologue (void)
1649 int regno;
1650 int frame_size;
1651 unsigned int gmask;
1652 int pic_reg_used = flag_pic && (crtl->uses_pic_offset_table
1653 | crtl->profile);
1655 if (! current_frame_info.initialized)
1656 m32r_compute_frame_size (get_frame_size ());
1658 gmask = current_frame_info.gmask;
1660 /* These cases shouldn't happen. Catch them now. */
1661 gcc_assert (current_frame_info.total_size || !gmask);
1663 /* Allocate space for register arguments if this is a variadic function. */
1664 if (current_frame_info.pretend_size != 0)
1666 /* Use a HOST_WIDE_INT temporary, since negating an unsigned int gives
1667 the wrong result on a 64-bit host. */
1668 HOST_WIDE_INT pretend_size = current_frame_info.pretend_size;
1669 emit_insn (gen_addsi3 (stack_pointer_rtx,
1670 stack_pointer_rtx,
1671 GEN_INT (-pretend_size)));
1674 /* Save any registers we need to and set up fp. */
1675 if (current_frame_info.save_fp)
1676 emit_insn (gen_movsi_push (stack_pointer_rtx, frame_pointer_rtx));
1678 gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
1680 /* Save any needed call-saved regs (and call-used if this is an
1681 interrupt handler). */
1682 for (regno = 0; regno <= M32R_MAX_INT_REGS; ++regno)
1684 if ((gmask & (1 << regno)) != 0)
1685 emit_insn (gen_movsi_push (stack_pointer_rtx,
1686 gen_rtx_REG (Pmode, regno)));
1689 if (current_frame_info.save_lr)
1690 emit_insn (gen_movsi_push (stack_pointer_rtx,
1691 gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)));
1693 /* Allocate the stack frame. */
1694 frame_size = (current_frame_info.total_size
1695 - (current_frame_info.pretend_size
1696 + current_frame_info.reg_size));
1698 if (frame_size == 0)
1699 ; /* Nothing to do. */
1700 else if (frame_size <= 32768)
1701 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1702 GEN_INT (-frame_size)));
1703 else
1705 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1707 emit_insn (gen_movsi (tmp, GEN_INT (frame_size)));
1708 emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
1711 if (frame_pointer_needed)
1712 emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
1714 if (crtl->profile)
1715 /* Push lr for mcount (form_pc, x). */
1716 emit_insn (gen_movsi_push (stack_pointer_rtx,
1717 gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)));
1719 if (pic_reg_used)
1721 m32r_load_pic_register ();
1722 m32r_reload_lr (stack_pointer_rtx,
1723 (crtl->profile ? 0 : frame_size));
1726 if (crtl->profile && !pic_reg_used)
1727 emit_insn (gen_blockage ());
1731 /* Set up the stack and frame pointer (if desired) for the function.
1732 Note, if this is changed, you need to mirror the changes in
1733 m32r_compute_frame_size which calculates the prolog size. */
1735 static void
1736 m32r_output_function_prologue (FILE * file, HOST_WIDE_INT size)
1738 enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl);
1740 /* If this is an interrupt handler, mark it as such. */
1741 if (M32R_INTERRUPT_P (fn_type))
1742 fprintf (file, "\t%s interrupt handler\n", ASM_COMMENT_START);
1744 if (! current_frame_info.initialized)
1745 m32r_compute_frame_size (size);
1747 /* This is only for the human reader. */
1748 fprintf (file,
1749 "\t%s PROLOGUE, vars= %d, regs= %d, args= %d, extra= %d\n",
1750 ASM_COMMENT_START,
1751 current_frame_info.var_size,
1752 current_frame_info.reg_size / 4,
1753 current_frame_info.args_size,
1754 current_frame_info.extra_size);
1757 /* Output RTL to pop register REGNO from the stack. */
1759 static void
1760 pop (int regno)
1762 rtx x;
1764 x = emit_insn (gen_movsi_pop (gen_rtx_REG (Pmode, regno),
1765 stack_pointer_rtx));
1766 add_reg_note (x, REG_INC, stack_pointer_rtx);
1769 /* Expand the m32r epilogue as a series of insns. */
1771 void
1772 m32r_expand_epilogue (void)
1774 int regno;
1775 int noepilogue = FALSE;
1776 int total_size;
1778 gcc_assert (current_frame_info.initialized);
1779 total_size = current_frame_info.total_size;
1781 if (total_size == 0)
1783 rtx insn = get_last_insn ();
1785 /* If the last insn was a BARRIER, we don't have to write any code
1786 because a jump (aka return) was put there. */
1787 if (insn && NOTE_P (insn))
1788 insn = prev_nonnote_insn (insn);
1789 if (insn && BARRIER_P (insn))
1790 noepilogue = TRUE;
1793 if (!noepilogue)
1795 unsigned int var_size = current_frame_info.var_size;
1796 unsigned int args_size = current_frame_info.args_size;
1797 unsigned int gmask = current_frame_info.gmask;
1798 int can_trust_sp_p = !cfun->calls_alloca;
1800 if (flag_exceptions)
1801 emit_insn (gen_blockage ());
1803 /* The first thing to do is point the sp at the bottom of the register
1804 save area. */
1805 if (can_trust_sp_p)
1807 unsigned int reg_offset = var_size + args_size;
1809 if (reg_offset == 0)
1810 ; /* Nothing to do. */
1811 else if (reg_offset < 32768)
1812 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1813 GEN_INT (reg_offset)));
1814 else
1816 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1818 emit_insn (gen_movsi (tmp, GEN_INT (reg_offset)));
1819 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1820 tmp));
1823 else if (frame_pointer_needed)
1825 unsigned int reg_offset = var_size + args_size;
1827 if (reg_offset == 0)
1828 emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
1829 else if (reg_offset < 32768)
1830 emit_insn (gen_addsi3 (stack_pointer_rtx, frame_pointer_rtx,
1831 GEN_INT (reg_offset)));
1832 else
1834 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1836 emit_insn (gen_movsi (tmp, GEN_INT (reg_offset)));
1837 emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
1838 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1839 tmp));
1842 else
1843 gcc_unreachable ();
1845 if (current_frame_info.save_lr)
1846 pop (RETURN_ADDR_REGNUM);
1848 /* Restore any saved registers, in reverse order of course. */
1849 gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
1850 for (regno = M32R_MAX_INT_REGS - 1; regno >= 0; --regno)
1852 if ((gmask & (1L << regno)) != 0)
1853 pop (regno);
1856 if (current_frame_info.save_fp)
1857 pop (FRAME_POINTER_REGNUM);
1859 /* Remove varargs area if present. */
1860 if (current_frame_info.pretend_size != 0)
1861 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1862 GEN_INT (current_frame_info.pretend_size)));
1864 emit_insn (gen_blockage ());
1868 /* Do any necessary cleanup after a function to restore stack, frame,
1869 and regs. */
1871 static void
1872 m32r_output_function_epilogue (FILE * file ATTRIBUTE_UNUSED,
1873 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
1875 /* Reset state info for each function. */
1876 current_frame_info = zero_frame_info;
1877 m32r_compute_function_type (NULL_TREE);
1880 /* Return nonzero if this function is known to have a null or 1 instruction
1881 epilogue. */
1884 direct_return (void)
1886 if (!reload_completed)
1887 return FALSE;
1889 if (M32R_INTERRUPT_P (m32r_compute_function_type (current_function_decl)))
1890 return FALSE;
1892 if (! current_frame_info.initialized)
1893 m32r_compute_frame_size (get_frame_size ());
1895 return current_frame_info.total_size == 0;
1899 /* PIC. */
1902 m32r_legitimate_pic_operand_p (rtx x)
1904 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
1905 return 0;
1907 if (GET_CODE (x) == CONST
1908 && GET_CODE (XEXP (x, 0)) == PLUS
1909 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1910 || GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)
1911 && (CONST_INT_P (XEXP (XEXP (x, 0), 1))))
1912 return 0;
1914 return 1;
1918 m32r_legitimize_pic_address (rtx orig, rtx reg)
1920 #ifdef DEBUG_PIC
1921 printf("m32r_legitimize_pic_address()\n");
1922 #endif
1924 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
1926 rtx pic_ref, address;
1927 int subregs = 0;
1929 if (reg == 0)
1931 gcc_assert (!reload_in_progress && !reload_completed);
1932 reg = gen_reg_rtx (Pmode);
1934 subregs = 1;
1937 if (subregs)
1938 address = gen_reg_rtx (Pmode);
1939 else
1940 address = reg;
1942 crtl->uses_pic_offset_table = 1;
1944 if (GET_CODE (orig) == LABEL_REF
1945 || (GET_CODE (orig) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (orig)))
1947 emit_insn (gen_gotoff_load_addr (reg, orig));
1948 emit_insn (gen_addsi3 (reg, reg, pic_offset_table_rtx));
1949 return reg;
1952 emit_insn (gen_pic_load_addr (address, orig));
1954 emit_insn (gen_addsi3 (address, address, pic_offset_table_rtx));
1955 pic_ref = gen_const_mem (Pmode, address);
1956 emit_move_insn (reg, pic_ref);
1957 return reg;
1959 else if (GET_CODE (orig) == CONST)
1961 rtx base, offset;
1963 if (GET_CODE (XEXP (orig, 0)) == PLUS
1964 && XEXP (XEXP (orig, 0), 1) == pic_offset_table_rtx)
1965 return orig;
1967 if (reg == 0)
1969 gcc_assert (!reload_in_progress && !reload_completed);
1970 reg = gen_reg_rtx (Pmode);
1973 if (GET_CODE (XEXP (orig, 0)) == PLUS)
1975 base = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 0), reg);
1976 if (base == reg)
1977 offset = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), NULL_RTX);
1978 else
1979 offset = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), reg);
1981 else
1982 return orig;
1984 if (CONST_INT_P (offset))
1986 if (INT16_P (INTVAL (offset)))
1987 return plus_constant (Pmode, base, INTVAL (offset));
1988 else
1990 gcc_assert (! reload_in_progress && ! reload_completed);
1991 offset = force_reg (Pmode, offset);
1995 return gen_rtx_PLUS (Pmode, base, offset);
1998 return orig;
2001 static rtx
2002 m32r_legitimize_address (rtx x, rtx orig_x ATTRIBUTE_UNUSED,
2003 enum machine_mode mode ATTRIBUTE_UNUSED)
2005 if (flag_pic)
2006 return m32r_legitimize_pic_address (x, NULL_RTX);
2007 else
2008 return x;
2011 /* Worker function for TARGET_MODE_DEPENDENT_ADDRESS_P. */
2013 static bool
2014 m32r_mode_dependent_address_p (const_rtx addr, addr_space_t as ATTRIBUTE_UNUSED)
2016 if (GET_CODE (addr) == LO_SUM)
2017 return true;
2019 return false;
2022 /* Nested function support. */
2024 /* Emit RTL insns to initialize the variable parts of a trampoline.
2025 FNADDR is an RTX for the address of the function's pure code.
2026 CXT is an RTX for the static chain value for the function. */
2028 void
2029 m32r_initialize_trampoline (rtx tramp ATTRIBUTE_UNUSED,
2030 rtx fnaddr ATTRIBUTE_UNUSED,
2031 rtx cxt ATTRIBUTE_UNUSED)
2035 static void
2036 m32r_file_start (void)
2038 default_file_start ();
2040 if (flag_verbose_asm)
2041 fprintf (asm_out_file,
2042 "%s M32R/D special options: -G %d\n",
2043 ASM_COMMENT_START, g_switch_value);
2045 if (TARGET_LITTLE_ENDIAN)
2046 fprintf (asm_out_file, "\t.little\n");
2049 /* Print operand X (an rtx) in assembler syntax to file FILE.
2050 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2051 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2053 static void
2054 m32r_print_operand (FILE * file, rtx x, int code)
2056 rtx addr;
2058 switch (code)
2060 /* The 's' and 'p' codes are used by output_block_move() to
2061 indicate post-increment 's'tores and 'p're-increment loads. */
2062 case 's':
2063 if (REG_P (x))
2064 fprintf (file, "@+%s", reg_names [REGNO (x)]);
2065 else
2066 output_operand_lossage ("invalid operand to %%s code");
2067 return;
2069 case 'p':
2070 if (REG_P (x))
2071 fprintf (file, "@%s+", reg_names [REGNO (x)]);
2072 else
2073 output_operand_lossage ("invalid operand to %%p code");
2074 return;
2076 case 'R' :
2077 /* Write second word of DImode or DFmode reference,
2078 register or memory. */
2079 if (REG_P (x))
2080 fputs (reg_names[REGNO (x)+1], file);
2081 else if (MEM_P (x))
2083 fprintf (file, "@(");
2084 /* Handle possible auto-increment. Since it is pre-increment and
2085 we have already done it, we can just use an offset of four. */
2086 /* ??? This is taken from rs6000.c I think. I don't think it is
2087 currently necessary, but keep it around. */
2088 if (GET_CODE (XEXP (x, 0)) == PRE_INC
2089 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
2090 output_address (plus_constant (Pmode, XEXP (XEXP (x, 0), 0), 4));
2091 else
2092 output_address (plus_constant (Pmode, XEXP (x, 0), 4));
2093 fputc (')', file);
2095 else
2096 output_operand_lossage ("invalid operand to %%R code");
2097 return;
2099 case 'H' : /* High word. */
2100 case 'L' : /* Low word. */
2101 if (REG_P (x))
2103 /* L = least significant word, H = most significant word. */
2104 if ((WORDS_BIG_ENDIAN != 0) ^ (code == 'L'))
2105 fputs (reg_names[REGNO (x)], file);
2106 else
2107 fputs (reg_names[REGNO (x)+1], file);
2109 else if (CONST_INT_P (x)
2110 || GET_CODE (x) == CONST_DOUBLE)
2112 rtx first, second;
2114 split_double (x, &first, &second);
2115 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
2116 code == 'L' ? INTVAL (first) : INTVAL (second));
2118 else
2119 output_operand_lossage ("invalid operand to %%H/%%L code");
2120 return;
2122 case 'A' :
2124 char str[30];
2126 if (GET_CODE (x) != CONST_DOUBLE
2127 || GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT)
2128 fatal_insn ("bad insn for 'A'", x);
2130 real_to_decimal (str, CONST_DOUBLE_REAL_VALUE (x), sizeof (str), 0, 1);
2131 fprintf (file, "%s", str);
2132 return;
2135 case 'B' : /* Bottom half. */
2136 case 'T' : /* Top half. */
2137 /* Output the argument to a `seth' insn (sets the Top half-word).
2138 For constants output arguments to a seth/or3 pair to set Top and
2139 Bottom halves. For symbols output arguments to a seth/add3 pair to
2140 set Top and Bottom halves. The difference exists because for
2141 constants seth/or3 is more readable but for symbols we need to use
2142 the same scheme as `ld' and `st' insns (16-bit addend is signed). */
2143 switch (GET_CODE (x))
2145 case CONST_INT :
2146 case CONST_DOUBLE :
2148 rtx first, second;
2150 split_double (x, &first, &second);
2151 x = WORDS_BIG_ENDIAN ? second : first;
2152 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
2153 (code == 'B'
2154 ? INTVAL (x) & 0xffff
2155 : (INTVAL (x) >> 16) & 0xffff));
2157 return;
2158 case CONST :
2159 case SYMBOL_REF :
2160 if (code == 'B'
2161 && small_data_operand (x, VOIDmode))
2163 fputs ("sda(", file);
2164 output_addr_const (file, x);
2165 fputc (')', file);
2166 return;
2168 /* fall through */
2169 case LABEL_REF :
2170 fputs (code == 'T' ? "shigh(" : "low(", file);
2171 output_addr_const (file, x);
2172 fputc (')', file);
2173 return;
2174 default :
2175 output_operand_lossage ("invalid operand to %%T/%%B code");
2176 return;
2178 break;
2180 case 'U' :
2181 /* ??? wip */
2182 /* Output a load/store with update indicator if appropriate. */
2183 if (MEM_P (x))
2185 if (GET_CODE (XEXP (x, 0)) == PRE_INC
2186 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
2187 fputs (".a", file);
2189 else
2190 output_operand_lossage ("invalid operand to %%U code");
2191 return;
2193 case 'N' :
2194 /* Print a constant value negated. */
2195 if (CONST_INT_P (x))
2196 output_addr_const (file, GEN_INT (- INTVAL (x)));
2197 else
2198 output_operand_lossage ("invalid operand to %%N code");
2199 return;
2201 case 'X' :
2202 /* Print a const_int in hex. Used in comments. */
2203 if (CONST_INT_P (x))
2204 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
2205 return;
2207 case '#' :
2208 fputs (IMMEDIATE_PREFIX, file);
2209 return;
2211 case 0 :
2212 /* Do nothing special. */
2213 break;
2215 default :
2216 /* Unknown flag. */
2217 output_operand_lossage ("invalid operand output code");
2220 switch (GET_CODE (x))
2222 case REG :
2223 fputs (reg_names[REGNO (x)], file);
2224 break;
2226 case MEM :
2227 addr = XEXP (x, 0);
2228 if (GET_CODE (addr) == PRE_INC)
2230 if (!REG_P (XEXP (addr, 0)))
2231 fatal_insn ("pre-increment address is not a register", x);
2233 fprintf (file, "@+%s", reg_names[REGNO (XEXP (addr, 0))]);
2235 else if (GET_CODE (addr) == PRE_DEC)
2237 if (!REG_P (XEXP (addr, 0)))
2238 fatal_insn ("pre-decrement address is not a register", x);
2240 fprintf (file, "@-%s", reg_names[REGNO (XEXP (addr, 0))]);
2242 else if (GET_CODE (addr) == POST_INC)
2244 if (!REG_P (XEXP (addr, 0)))
2245 fatal_insn ("post-increment address is not a register", x);
2247 fprintf (file, "@%s+", reg_names[REGNO (XEXP (addr, 0))]);
2249 else
2251 fputs ("@(", file);
2252 output_address (XEXP (x, 0));
2253 fputc (')', file);
2255 break;
2257 case CONST_DOUBLE :
2258 /* We handle SFmode constants here as output_addr_const doesn't. */
2259 if (GET_MODE (x) == SFmode)
2261 REAL_VALUE_TYPE d;
2262 long l;
2264 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
2265 REAL_VALUE_TO_TARGET_SINGLE (d, l);
2266 fprintf (file, "0x%08lx", l);
2267 break;
2270 /* Fall through. Let output_addr_const deal with it. */
2272 default :
2273 output_addr_const (file, x);
2274 break;
2278 /* Print a memory address as an operand to reference that memory location. */
2280 static void
2281 m32r_print_operand_address (FILE * file, rtx addr)
2283 rtx base;
2284 rtx index = 0;
2285 int offset = 0;
2287 switch (GET_CODE (addr))
2289 case REG :
2290 fputs (reg_names[REGNO (addr)], file);
2291 break;
2293 case PLUS :
2294 if (CONST_INT_P (XEXP (addr, 0)))
2295 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);
2296 else if (CONST_INT_P (XEXP (addr, 1)))
2297 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);
2298 else
2299 base = XEXP (addr, 0), index = XEXP (addr, 1);
2300 if (REG_P (base))
2302 /* Print the offset first (if present) to conform to the manual. */
2303 if (index == 0)
2305 if (offset != 0)
2306 fprintf (file, "%d,", offset);
2307 fputs (reg_names[REGNO (base)], file);
2309 /* The chip doesn't support this, but left in for generality. */
2310 else if (REG_P (index))
2311 fprintf (file, "%s,%s",
2312 reg_names[REGNO (base)], reg_names[REGNO (index)]);
2313 /* Not sure this can happen, but leave in for now. */
2314 else if (GET_CODE (index) == SYMBOL_REF)
2316 output_addr_const (file, index);
2317 fputc (',', file);
2318 fputs (reg_names[REGNO (base)], file);
2320 else
2321 fatal_insn ("bad address", addr);
2323 else if (GET_CODE (base) == LO_SUM)
2325 gcc_assert (!index && REG_P (XEXP (base, 0)));
2326 if (small_data_operand (XEXP (base, 1), VOIDmode))
2327 fputs ("sda(", file);
2328 else
2329 fputs ("low(", file);
2330 output_addr_const (file, plus_constant (Pmode, XEXP (base, 1),
2331 offset));
2332 fputs ("),", file);
2333 fputs (reg_names[REGNO (XEXP (base, 0))], file);
2335 else
2336 fatal_insn ("bad address", addr);
2337 break;
2339 case LO_SUM :
2340 if (!REG_P (XEXP (addr, 0)))
2341 fatal_insn ("lo_sum not of register", addr);
2342 if (small_data_operand (XEXP (addr, 1), VOIDmode))
2343 fputs ("sda(", file);
2344 else
2345 fputs ("low(", file);
2346 output_addr_const (file, XEXP (addr, 1));
2347 fputs ("),", file);
2348 fputs (reg_names[REGNO (XEXP (addr, 0))], file);
2349 break;
2351 case PRE_INC : /* Assume SImode. */
2352 fprintf (file, "+%s", reg_names[REGNO (XEXP (addr, 0))]);
2353 break;
2355 case PRE_DEC : /* Assume SImode. */
2356 fprintf (file, "-%s", reg_names[REGNO (XEXP (addr, 0))]);
2357 break;
2359 case POST_INC : /* Assume SImode. */
2360 fprintf (file, "%s+", reg_names[REGNO (XEXP (addr, 0))]);
2361 break;
2363 default :
2364 output_addr_const (file, addr);
2365 break;
2369 static bool
2370 m32r_print_operand_punct_valid_p (unsigned char code)
2372 return m32r_punct_chars[code];
2375 /* Return true if the operands are the constants 0 and 1. */
2378 zero_and_one (rtx operand1, rtx operand2)
2380 return
2381 CONST_INT_P (operand1)
2382 && CONST_INT_P (operand2)
2383 && ( ((INTVAL (operand1) == 0) && (INTVAL (operand2) == 1))
2384 ||((INTVAL (operand1) == 1) && (INTVAL (operand2) == 0)));
2387 /* Generate the correct assembler code to handle the conditional loading of a
2388 value into a register. It is known that the operands satisfy the
2389 conditional_move_operand() function above. The destination is operand[0].
2390 The condition is operand [1]. The 'true' value is operand [2] and the
2391 'false' value is operand [3]. */
2393 char *
2394 emit_cond_move (rtx * operands, rtx insn ATTRIBUTE_UNUSED)
2396 static char buffer [100];
2397 const char * dest = reg_names [REGNO (operands [0])];
2399 buffer [0] = 0;
2401 /* Destination must be a register. */
2402 gcc_assert (REG_P (operands [0]));
2403 gcc_assert (conditional_move_operand (operands [2], SImode));
2404 gcc_assert (conditional_move_operand (operands [3], SImode));
2406 /* Check to see if the test is reversed. */
2407 if (GET_CODE (operands [1]) == NE)
2409 rtx tmp = operands [2];
2410 operands [2] = operands [3];
2411 operands [3] = tmp;
2414 sprintf (buffer, "mvfc %s, cbr", dest);
2416 /* If the true value was '0' then we need to invert the results of the move. */
2417 if (INTVAL (operands [2]) == 0)
2418 sprintf (buffer + strlen (buffer), "\n\txor3 %s, %s, #1",
2419 dest, dest);
2421 return buffer;
2424 /* Returns true if the registers contained in the two
2425 rtl expressions are different. */
2428 m32r_not_same_reg (rtx a, rtx b)
2430 int reg_a = -1;
2431 int reg_b = -2;
2433 while (GET_CODE (a) == SUBREG)
2434 a = SUBREG_REG (a);
2436 if (REG_P (a))
2437 reg_a = REGNO (a);
2439 while (GET_CODE (b) == SUBREG)
2440 b = SUBREG_REG (b);
2442 if (REG_P (b))
2443 reg_b = REGNO (b);
2445 return reg_a != reg_b;
2450 m32r_function_symbol (const char *name)
2452 int extra_flags = 0;
2453 enum m32r_model model;
2454 rtx sym = gen_rtx_SYMBOL_REF (Pmode, name);
2456 if (TARGET_MODEL_SMALL)
2457 model = M32R_MODEL_SMALL;
2458 else if (TARGET_MODEL_MEDIUM)
2459 model = M32R_MODEL_MEDIUM;
2460 else if (TARGET_MODEL_LARGE)
2461 model = M32R_MODEL_LARGE;
2462 else
2463 gcc_unreachable (); /* Shouldn't happen. */
2464 extra_flags |= model << SYMBOL_FLAG_MODEL_SHIFT;
2466 if (extra_flags)
2467 SYMBOL_REF_FLAGS (sym) |= extra_flags;
2469 return sym;
2472 /* Use a library function to move some bytes. */
2474 static void
2475 block_move_call (rtx dest_reg, rtx src_reg, rtx bytes_rtx)
2477 /* We want to pass the size as Pmode, which will normally be SImode
2478 but will be DImode if we are using 64-bit longs and pointers. */
2479 if (GET_MODE (bytes_rtx) != VOIDmode
2480 && GET_MODE (bytes_rtx) != Pmode)
2481 bytes_rtx = convert_to_mode (Pmode, bytes_rtx, 1);
2483 emit_library_call (m32r_function_symbol ("memcpy"), LCT_NORMAL,
2484 VOIDmode, 3, dest_reg, Pmode, src_reg, Pmode,
2485 convert_to_mode (TYPE_MODE (sizetype), bytes_rtx,
2486 TYPE_UNSIGNED (sizetype)),
2487 TYPE_MODE (sizetype));
2490 /* Expand string/block move operations.
2492 operands[0] is the pointer to the destination.
2493 operands[1] is the pointer to the source.
2494 operands[2] is the number of bytes to move.
2495 operands[3] is the alignment.
2497 Returns 1 upon success, 0 otherwise. */
2500 m32r_expand_block_move (rtx operands[])
2502 rtx orig_dst = operands[0];
2503 rtx orig_src = operands[1];
2504 rtx bytes_rtx = operands[2];
2505 rtx align_rtx = operands[3];
2506 int constp = CONST_INT_P (bytes_rtx);
2507 HOST_WIDE_INT bytes = constp ? INTVAL (bytes_rtx) : 0;
2508 int align = INTVAL (align_rtx);
2509 int leftover;
2510 rtx src_reg;
2511 rtx dst_reg;
2513 if (constp && bytes <= 0)
2514 return 1;
2516 /* Move the address into scratch registers. */
2517 dst_reg = copy_addr_to_reg (XEXP (orig_dst, 0));
2518 src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
2520 if (align > UNITS_PER_WORD)
2521 align = UNITS_PER_WORD;
2523 /* If we prefer size over speed, always use a function call.
2524 If we do not know the size, use a function call.
2525 If the blocks are not word aligned, use a function call. */
2526 if (optimize_size || ! constp || align != UNITS_PER_WORD)
2528 block_move_call (dst_reg, src_reg, bytes_rtx);
2529 return 0;
2532 leftover = bytes % MAX_MOVE_BYTES;
2533 bytes -= leftover;
2535 /* If necessary, generate a loop to handle the bulk of the copy. */
2536 if (bytes)
2538 rtx label = NULL_RTX;
2539 rtx final_src = NULL_RTX;
2540 rtx at_a_time = GEN_INT (MAX_MOVE_BYTES);
2541 rtx rounded_total = GEN_INT (bytes);
2542 rtx new_dst_reg = gen_reg_rtx (SImode);
2543 rtx new_src_reg = gen_reg_rtx (SImode);
2545 /* If we are going to have to perform this loop more than
2546 once, then generate a label and compute the address the
2547 source register will contain upon completion of the final
2548 iteration. */
2549 if (bytes > MAX_MOVE_BYTES)
2551 final_src = gen_reg_rtx (Pmode);
2553 if (INT16_P(bytes))
2554 emit_insn (gen_addsi3 (final_src, src_reg, rounded_total));
2555 else
2557 emit_insn (gen_movsi (final_src, rounded_total));
2558 emit_insn (gen_addsi3 (final_src, final_src, src_reg));
2561 label = gen_label_rtx ();
2562 emit_label (label);
2565 /* It is known that output_block_move() will update src_reg to point
2566 to the word after the end of the source block, and dst_reg to point
2567 to the last word of the destination block, provided that the block
2568 is MAX_MOVE_BYTES long. */
2569 emit_insn (gen_movmemsi_internal (dst_reg, src_reg, at_a_time,
2570 new_dst_reg, new_src_reg));
2571 emit_move_insn (dst_reg, new_dst_reg);
2572 emit_move_insn (src_reg, new_src_reg);
2573 emit_insn (gen_addsi3 (dst_reg, dst_reg, GEN_INT (4)));
2575 if (bytes > MAX_MOVE_BYTES)
2577 rtx test = gen_rtx_NE (VOIDmode, src_reg, final_src);
2578 emit_jump_insn (gen_cbranchsi4 (test, src_reg, final_src, label));
2582 if (leftover)
2583 emit_insn (gen_movmemsi_internal (dst_reg, src_reg, GEN_INT (leftover),
2584 gen_reg_rtx (SImode),
2585 gen_reg_rtx (SImode)));
2586 return 1;
2590 /* Emit load/stores for a small constant word aligned block_move.
2592 operands[0] is the memory address of the destination.
2593 operands[1] is the memory address of the source.
2594 operands[2] is the number of bytes to move.
2595 operands[3] is a temp register.
2596 operands[4] is a temp register. */
2598 void
2599 m32r_output_block_move (rtx insn ATTRIBUTE_UNUSED, rtx operands[])
2601 HOST_WIDE_INT bytes = INTVAL (operands[2]);
2602 int first_time;
2603 int got_extra = 0;
2605 gcc_assert (bytes >= 1 && bytes <= MAX_MOVE_BYTES);
2607 /* We do not have a post-increment store available, so the first set of
2608 stores are done without any increment, then the remaining ones can use
2609 the pre-increment addressing mode.
2611 Note: expand_block_move() also relies upon this behavior when building
2612 loops to copy large blocks. */
2613 first_time = 1;
2615 while (bytes > 0)
2617 if (bytes >= 8)
2619 if (first_time)
2621 output_asm_insn ("ld\t%5, %p1", operands);
2622 output_asm_insn ("ld\t%6, %p1", operands);
2623 output_asm_insn ("st\t%5, @%0", operands);
2624 output_asm_insn ("st\t%6, %s0", operands);
2626 else
2628 output_asm_insn ("ld\t%5, %p1", operands);
2629 output_asm_insn ("ld\t%6, %p1", operands);
2630 output_asm_insn ("st\t%5, %s0", operands);
2631 output_asm_insn ("st\t%6, %s0", operands);
2634 bytes -= 8;
2636 else if (bytes >= 4)
2638 if (bytes > 4)
2639 got_extra = 1;
2641 output_asm_insn ("ld\t%5, %p1", operands);
2643 if (got_extra)
2644 output_asm_insn ("ld\t%6, %p1", operands);
2646 if (first_time)
2647 output_asm_insn ("st\t%5, @%0", operands);
2648 else
2649 output_asm_insn ("st\t%5, %s0", operands);
2651 bytes -= 4;
2653 else
2655 /* Get the entire next word, even though we do not want all of it.
2656 The saves us from doing several smaller loads, and we assume that
2657 we cannot cause a page fault when at least part of the word is in
2658 valid memory [since we don't get called if things aren't properly
2659 aligned]. */
2660 int dst_offset = first_time ? 0 : 4;
2661 /* The amount of increment we have to make to the
2662 destination pointer. */
2663 int dst_inc_amount = dst_offset + bytes - 4;
2664 /* The same for the source pointer. */
2665 int src_inc_amount = bytes;
2666 int last_shift;
2667 rtx my_operands[3];
2669 /* If got_extra is true then we have already loaded
2670 the next word as part of loading and storing the previous word. */
2671 if (! got_extra)
2672 output_asm_insn ("ld\t%6, @%1", operands);
2674 if (bytes >= 2)
2676 bytes -= 2;
2678 output_asm_insn ("sra3\t%5, %6, #16", operands);
2679 my_operands[0] = operands[5];
2680 my_operands[1] = GEN_INT (dst_offset);
2681 my_operands[2] = operands[0];
2682 output_asm_insn ("sth\t%0, @(%1,%2)", my_operands);
2684 /* If there is a byte left to store then increment the
2685 destination address and shift the contents of the source
2686 register down by 8 bits. We could not do the address
2687 increment in the store half word instruction, because it does
2688 not have an auto increment mode. */
2689 if (bytes > 0) /* assert (bytes == 1) */
2691 dst_offset += 2;
2692 last_shift = 8;
2695 else
2696 last_shift = 24;
2698 if (bytes > 0)
2700 my_operands[0] = operands[6];
2701 my_operands[1] = GEN_INT (last_shift);
2702 output_asm_insn ("srai\t%0, #%1", my_operands);
2703 my_operands[0] = operands[6];
2704 my_operands[1] = GEN_INT (dst_offset);
2705 my_operands[2] = operands[0];
2706 output_asm_insn ("stb\t%0, @(%1,%2)", my_operands);
2709 /* Update the destination pointer if needed. We have to do
2710 this so that the patterns matches what we output in this
2711 function. */
2712 if (dst_inc_amount
2713 && !find_reg_note (insn, REG_UNUSED, operands[0]))
2715 my_operands[0] = operands[0];
2716 my_operands[1] = GEN_INT (dst_inc_amount);
2717 output_asm_insn ("addi\t%0, #%1", my_operands);
2720 /* Update the source pointer if needed. We have to do this
2721 so that the patterns matches what we output in this
2722 function. */
2723 if (src_inc_amount
2724 && !find_reg_note (insn, REG_UNUSED, operands[1]))
2726 my_operands[0] = operands[1];
2727 my_operands[1] = GEN_INT (src_inc_amount);
2728 output_asm_insn ("addi\t%0, #%1", my_operands);
2731 bytes = 0;
2734 first_time = 0;
2738 /* Return true if using NEW_REG in place of OLD_REG is ok. */
2741 m32r_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
2742 unsigned int new_reg)
2744 /* Interrupt routines can't clobber any register that isn't already used. */
2745 if (lookup_attribute ("interrupt", DECL_ATTRIBUTES (current_function_decl))
2746 && !df_regs_ever_live_p (new_reg))
2747 return 0;
2749 return 1;
2753 m32r_return_addr (int count)
2755 if (count != 0)
2756 return const0_rtx;
2758 return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM);
2761 static void
2762 m32r_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
2764 emit_move_insn (adjust_address (m_tramp, SImode, 0),
2765 gen_int_mode (TARGET_LITTLE_ENDIAN ?
2766 0x017e8e17 : 0x178e7e01, SImode));
2767 emit_move_insn (adjust_address (m_tramp, SImode, 4),
2768 gen_int_mode (TARGET_LITTLE_ENDIAN ?
2769 0x0c00ae86 : 0x86ae000c, SImode));
2770 emit_move_insn (adjust_address (m_tramp, SImode, 8),
2771 gen_int_mode (TARGET_LITTLE_ENDIAN ?
2772 0xe627871e : 0x1e8727e6, SImode));
2773 emit_move_insn (adjust_address (m_tramp, SImode, 12),
2774 gen_int_mode (TARGET_LITTLE_ENDIAN ?
2775 0xc616c626 : 0x26c61fc6, SImode));
2776 emit_move_insn (adjust_address (m_tramp, SImode, 16),
2777 chain_value);
2778 emit_move_insn (adjust_address (m_tramp, SImode, 20),
2779 XEXP (DECL_RTL (fndecl), 0));
2781 if (m32r_cache_flush_trap >= 0)
2782 emit_insn (gen_flush_icache
2783 (validize_mem (adjust_address (m_tramp, SImode, 0)),
2784 gen_int_mode (m32r_cache_flush_trap, SImode)));
2785 else if (m32r_cache_flush_func && m32r_cache_flush_func[0])
2786 emit_library_call (m32r_function_symbol (m32r_cache_flush_func),
2787 LCT_NORMAL, VOIDmode, 3, XEXP (m_tramp, 0), Pmode,
2788 gen_int_mode (TRAMPOLINE_SIZE, SImode), SImode,
2789 GEN_INT (3), SImode);
2792 /* True if X is a reg that can be used as a base reg. */
2794 static bool
2795 m32r_rtx_ok_for_base_p (const_rtx x, bool strict)
2797 if (! REG_P (x))
2798 return false;
2800 if (strict)
2802 if (GPR_P (REGNO (x)))
2803 return true;
2805 else
2807 if (GPR_P (REGNO (x))
2808 || REGNO (x) == ARG_POINTER_REGNUM
2809 || ! HARD_REGISTER_P (x))
2810 return true;
2813 return false;
2816 static inline bool
2817 m32r_rtx_ok_for_offset_p (const_rtx x)
2819 return (CONST_INT_P (x) && INT16_P (INTVAL (x)));
2822 static inline bool
2823 m32r_legitimate_offset_addres_p (enum machine_mode mode ATTRIBUTE_UNUSED,
2824 const_rtx x, bool strict)
2826 if (GET_CODE (x) == PLUS
2827 && m32r_rtx_ok_for_base_p (XEXP (x, 0), strict)
2828 && m32r_rtx_ok_for_offset_p (XEXP (x, 1)))
2829 return true;
2831 return false;
2834 /* For LO_SUM addresses, do not allow them if the MODE is > 1 word,
2835 since more than one instruction will be required. */
2837 static inline bool
2838 m32r_legitimate_lo_sum_addres_p (enum machine_mode mode, const_rtx x,
2839 bool strict)
2841 if (GET_CODE (x) == LO_SUM
2842 && (mode != BLKmode && GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
2843 && m32r_rtx_ok_for_base_p (XEXP (x, 0), strict)
2844 && CONSTANT_P (XEXP (x, 1)))
2845 return true;
2847 return false;
2850 /* Is this a load and increment operation. */
2852 static inline bool
2853 m32r_load_postinc_p (enum machine_mode mode, const_rtx x, bool strict)
2855 if ((mode == SImode || mode == SFmode)
2856 && GET_CODE (x) == POST_INC
2857 && REG_P (XEXP (x, 0))
2858 && m32r_rtx_ok_for_base_p (XEXP (x, 0), strict))
2859 return true;
2861 return false;
2864 /* Is this an increment/decrement and store operation. */
2866 static inline bool
2867 m32r_store_preinc_predec_p (enum machine_mode mode, const_rtx x, bool strict)
2869 if ((mode == SImode || mode == SFmode)
2870 && (GET_CODE (x) == PRE_INC || GET_CODE (x) == PRE_DEC)
2871 && REG_P (XEXP (x, 0)) \
2872 && m32r_rtx_ok_for_base_p (XEXP (x, 0), strict))
2873 return true;
2875 return false;
2878 /* Implement TARGET_LEGITIMATE_ADDRESS_P. */
2880 static bool
2881 m32r_legitimate_address_p (enum machine_mode mode, rtx x, bool strict)
2883 if (m32r_rtx_ok_for_base_p (x, strict)
2884 || m32r_legitimate_offset_addres_p (mode, x, strict)
2885 || m32r_legitimate_lo_sum_addres_p (mode, x, strict)
2886 || m32r_load_postinc_p (mode, x, strict)
2887 || m32r_store_preinc_predec_p (mode, x, strict))
2888 return true;
2890 return false;
2893 static void
2894 m32r_conditional_register_usage (void)
2896 if (flag_pic)
2898 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
2899 call_used_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
2903 /* Implement TARGET_LEGITIMATE_CONSTANT_P
2905 We don't allow (plus symbol large-constant) as the relocations can't
2906 describe it. INTVAL > 32767 handles both 16-bit and 24-bit relocations.
2907 We allow all CONST_DOUBLE's as the md file patterns will force the
2908 constant to memory if they can't handle them. */
2910 static bool
2911 m32r_legitimate_constant_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx x)
2913 return !(GET_CODE (x) == CONST
2914 && GET_CODE (XEXP (x, 0)) == PLUS
2915 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
2916 || GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)
2917 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
2918 && UINTVAL (XEXP (XEXP (x, 0), 1)) > 32767);