* c-aux-info.c: NULL_PTR->NULL in calls to `concat'.
[official-gcc.git] / gcc / jump.c
blob4046b9a350d65fc5cd92c208c9679c354720043e
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
5 This file is part of GNU CC.
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
22 /* This is the jump-optimization pass of the compiler.
23 It is run two or three times: once before cse, sometimes once after cse,
24 and once after reload (before final).
26 jump_optimize deletes unreachable code and labels that are not used.
27 It also deletes jumps that jump to the following insn,
28 and simplifies jumps around unconditional jumps and jumps
29 to unconditional jumps.
31 Each CODE_LABEL has a count of the times it is used
32 stored in the LABEL_NUSES internal field, and each JUMP_INSN
33 has one label that it refers to stored in the
34 JUMP_LABEL internal field. With this we can detect labels that
35 become unused because of the deletion of all the jumps that
36 formerly used them. The JUMP_LABEL info is sometimes looked
37 at by later passes.
39 Optionally, cross-jumping can be done. Currently it is done
40 only the last time (when after reload and before final).
41 In fact, the code for cross-jumping now assumes that register
42 allocation has been done, since it uses `rtx_renumbered_equal_p'.
44 Jump optimization is done after cse when cse's constant-propagation
45 causes jumps to become unconditional or to be deleted.
47 Unreachable loops are not detected here, because the labels
48 have references and the insns appear reachable from the labels.
49 find_basic_blocks in flow.c finds and deletes such loops.
51 The subroutines delete_insn, redirect_jump, and invert_jump are used
52 from other passes as well. */
54 #include "config.h"
55 #include "system.h"
56 #include "rtl.h"
57 #include "tm_p.h"
58 #include "flags.h"
59 #include "hard-reg-set.h"
60 #include "regs.h"
61 #include "insn-config.h"
62 #include "insn-attr.h"
63 #include "recog.h"
64 #include "function.h"
65 #include "expr.h"
66 #include "real.h"
67 #include "except.h"
68 #include "toplev.h"
69 #include "reload.h"
71 /* ??? Eventually must record somehow the labels used by jumps
72 from nested functions. */
73 /* Pre-record the next or previous real insn for each label?
74 No, this pass is very fast anyway. */
75 /* Condense consecutive labels?
76 This would make life analysis faster, maybe. */
77 /* Optimize jump y; x: ... y: jumpif... x?
78 Don't know if it is worth bothering with. */
79 /* Optimize two cases of conditional jump to conditional jump?
80 This can never delete any instruction or make anything dead,
81 or even change what is live at any point.
82 So perhaps let combiner do it. */
84 /* Vector indexed by uid.
85 For each CODE_LABEL, index by its uid to get first unconditional jump
86 that jumps to the label.
87 For each JUMP_INSN, index by its uid to get the next unconditional jump
88 that jumps to the same label.
89 Element 0 is the start of a chain of all return insns.
90 (It is safe to use element 0 because insn uid 0 is not used. */
92 static rtx *jump_chain;
94 /* Maximum index in jump_chain. */
96 static int max_jump_chain;
98 /* Indicates whether death notes are significant in cross jump analysis.
99 Normally they are not significant, because of A and B jump to C,
100 and R dies in A, it must die in B. But this might not be true after
101 stack register conversion, and we must compare death notes in that
102 case. */
104 static int cross_jump_death_matters = 0;
106 static int init_label_info PARAMS ((rtx));
107 static void delete_barrier_successors PARAMS ((rtx));
108 static void mark_all_labels PARAMS ((rtx, int));
109 static rtx delete_unreferenced_labels PARAMS ((rtx));
110 static void delete_noop_moves PARAMS ((rtx));
111 static int duplicate_loop_exit_test PARAMS ((rtx));
112 static void find_cross_jump PARAMS ((rtx, rtx, int, rtx *, rtx *));
113 static void do_cross_jump PARAMS ((rtx, rtx, rtx));
114 static int jump_back_p PARAMS ((rtx, rtx));
115 static int tension_vector_labels PARAMS ((rtx, int));
116 static void delete_computation PARAMS ((rtx));
117 static void redirect_exp_1 PARAMS ((rtx *, rtx, rtx, rtx));
118 static int redirect_exp PARAMS ((rtx, rtx, rtx));
119 static void invert_exp_1 PARAMS ((rtx));
120 static int invert_exp PARAMS ((rtx));
121 static void delete_from_jump_chain PARAMS ((rtx));
122 static int delete_labelref_insn PARAMS ((rtx, rtx, int));
123 static void mark_modified_reg PARAMS ((rtx, rtx, void *));
124 static void redirect_tablejump PARAMS ((rtx, rtx));
125 static void jump_optimize_1 PARAMS ((rtx, int, int, int, int, int));
126 static int returnjump_p_1 PARAMS ((rtx *, void *));
127 static void delete_prior_computation PARAMS ((rtx, rtx));
129 /* Main external entry point into the jump optimizer. See comments before
130 jump_optimize_1 for descriptions of the arguments. */
131 void
132 jump_optimize (f, cross_jump, noop_moves, after_regscan)
133 rtx f;
134 int cross_jump;
135 int noop_moves;
136 int after_regscan;
138 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan, 0, 0);
141 /* Alternate entry into the jump optimizer. This entry point only rebuilds
142 the JUMP_LABEL field in jumping insns and REG_LABEL notes in non-jumping
143 instructions. */
144 void
145 rebuild_jump_labels (f)
146 rtx f;
148 jump_optimize_1 (f, 0, 0, 0, 1, 0);
151 /* Alternate entry into the jump optimizer. Do only trivial optimizations. */
153 void
154 jump_optimize_minimal (f)
155 rtx f;
157 jump_optimize_1 (f, 0, 0, 0, 0, 1);
160 /* Delete no-op jumps and optimize jumps to jumps
161 and jumps around jumps.
162 Delete unused labels and unreachable code.
164 If CROSS_JUMP is 1, detect matching code
165 before a jump and its destination and unify them.
166 If CROSS_JUMP is 2, do cross-jumping, but pay attention to death notes.
168 If NOOP_MOVES is nonzero, delete no-op move insns.
170 If AFTER_REGSCAN is nonzero, then this jump pass is being run immediately
171 after regscan, and it is safe to use regno_first_uid and regno_last_uid.
173 If MARK_LABELS_ONLY is nonzero, then we only rebuild the jump chain
174 and JUMP_LABEL field for jumping insns.
176 If `optimize' is zero, don't change any code,
177 just determine whether control drops off the end of the function.
178 This case occurs when we have -W and not -O.
179 It works because `delete_insn' checks the value of `optimize'
180 and refrains from actually deleting when that is 0.
182 If MINIMAL is nonzero, then we only perform trivial optimizations:
184 * Removal of unreachable code after BARRIERs.
185 * Removal of unreferenced CODE_LABELs.
186 * Removal of a jump to the next instruction.
187 * Removal of a conditional jump followed by an unconditional jump
188 to the same target as the conditional jump.
189 * Simplify a conditional jump around an unconditional jump.
190 * Simplify a jump to a jump.
191 * Delete extraneous line number notes.
194 static void
195 jump_optimize_1 (f, cross_jump, noop_moves, after_regscan,
196 mark_labels_only, minimal)
197 rtx f;
198 int cross_jump;
199 int noop_moves;
200 int after_regscan;
201 int mark_labels_only;
202 int minimal;
204 register rtx insn, next;
205 int changed;
206 int old_max_reg;
207 int first = 1;
208 int max_uid = 0;
209 rtx last_insn;
210 #ifdef HAVE_trap
211 enum rtx_code reversed_code;
212 #endif
214 cross_jump_death_matters = (cross_jump == 2);
215 max_uid = init_label_info (f) + 1;
217 /* Leave some extra room for labels and duplicate exit test insns
218 we make. */
219 max_jump_chain = max_uid * 14 / 10;
220 jump_chain = (rtx *) xcalloc (max_jump_chain, sizeof (rtx));
222 mark_all_labels (f, cross_jump);
224 /* Keep track of labels used from static data; we don't track them
225 closely enough to delete them here, so make sure their reference
226 count doesn't drop to zero. */
228 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
229 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
230 LABEL_NUSES (XEXP (insn, 0))++;
232 /* Keep track of labels used for marking handlers for exception
233 regions; they cannot usually be deleted. */
235 for (insn = exception_handler_labels; insn; insn = XEXP (insn, 1))
236 if (GET_CODE (XEXP (insn, 0)) == CODE_LABEL)
237 LABEL_NUSES (XEXP (insn, 0))++;
239 if (! mark_labels_only)
240 delete_barrier_successors (f);
242 /* Quit now if we just wanted to rebuild the JUMP_LABEL and REG_LABEL
243 notes and recompute LABEL_NUSES. */
244 if (mark_labels_only)
245 goto end;
247 last_insn = delete_unreferenced_labels (f);
249 if (noop_moves)
250 delete_noop_moves (f);
252 /* Now iterate optimizing jumps until nothing changes over one pass. */
253 changed = 1;
254 old_max_reg = max_reg_num ();
255 while (changed)
257 changed = 0;
259 for (insn = f; insn; insn = next)
261 rtx reallabelprev;
262 rtx temp, temp1, temp2 = NULL_RTX;
263 rtx temp4 ATTRIBUTE_UNUSED;
264 rtx nlabel;
265 int this_is_any_uncondjump;
266 int this_is_any_condjump;
267 int this_is_onlyjump;
269 next = NEXT_INSN (insn);
271 /* See if this is a NOTE_INSN_LOOP_BEG followed by an unconditional
272 jump. Try to optimize by duplicating the loop exit test if so.
273 This is only safe immediately after regscan, because it uses
274 the values of regno_first_uid and regno_last_uid. */
275 if (after_regscan && GET_CODE (insn) == NOTE
276 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
277 && (temp1 = next_nonnote_insn (insn)) != 0
278 && any_uncondjump_p (temp1)
279 && onlyjump_p (temp1))
281 temp = PREV_INSN (insn);
282 if (duplicate_loop_exit_test (insn))
284 changed = 1;
285 next = NEXT_INSN (temp);
286 continue;
290 if (GET_CODE (insn) != JUMP_INSN)
291 continue;
293 this_is_any_condjump = any_condjump_p (insn);
294 this_is_any_uncondjump = any_uncondjump_p (insn);
295 this_is_onlyjump = onlyjump_p (insn);
297 /* Tension the labels in dispatch tables. */
299 if (GET_CODE (PATTERN (insn)) == ADDR_VEC)
300 changed |= tension_vector_labels (PATTERN (insn), 0);
301 if (GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
302 changed |= tension_vector_labels (PATTERN (insn), 1);
304 /* See if this jump goes to another jump and redirect if so. */
305 nlabel = follow_jumps (JUMP_LABEL (insn));
306 if (nlabel != JUMP_LABEL (insn))
307 changed |= redirect_jump (insn, nlabel, 1);
309 if (! optimize || minimal)
310 continue;
312 /* If a dispatch table always goes to the same place,
313 get rid of it and replace the insn that uses it. */
315 if (GET_CODE (PATTERN (insn)) == ADDR_VEC
316 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
318 int i;
319 rtx pat = PATTERN (insn);
320 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
321 int len = XVECLEN (pat, diff_vec_p);
322 rtx dispatch = prev_real_insn (insn);
323 rtx set;
325 for (i = 0; i < len; i++)
326 if (XEXP (XVECEXP (pat, diff_vec_p, i), 0)
327 != XEXP (XVECEXP (pat, diff_vec_p, 0), 0))
328 break;
330 if (i == len
331 && dispatch != 0
332 && GET_CODE (dispatch) == JUMP_INSN
333 && JUMP_LABEL (dispatch) != 0
334 /* Don't mess with a casesi insn.
335 XXX according to the comment before computed_jump_p(),
336 all casesi insns should be a parallel of the jump
337 and a USE of a LABEL_REF. */
338 && ! ((set = single_set (dispatch)) != NULL
339 && (GET_CODE (SET_SRC (set)) == IF_THEN_ELSE))
340 && next_real_insn (JUMP_LABEL (dispatch)) == insn)
342 redirect_tablejump (dispatch,
343 XEXP (XVECEXP (pat, diff_vec_p, 0), 0));
344 changed = 1;
348 reallabelprev = prev_active_insn (JUMP_LABEL (insn));
350 /* Detect jump to following insn. */
351 if (reallabelprev == insn
352 && (this_is_any_condjump || this_is_any_uncondjump)
353 && this_is_onlyjump)
355 next = next_real_insn (JUMP_LABEL (insn));
356 delete_jump (insn);
358 /* Remove the "inactive" but "real" insns (i.e. uses and
359 clobbers) in between here and there. */
360 temp = insn;
361 while ((temp = next_real_insn (temp)) != next)
362 delete_insn (temp);
364 changed = 1;
365 continue;
368 /* Detect a conditional jump going to the same place
369 as an immediately following unconditional jump. */
370 else if (this_is_any_condjump && this_is_onlyjump
371 && (temp = next_active_insn (insn)) != 0
372 && simplejump_p (temp)
373 && (next_active_insn (JUMP_LABEL (insn))
374 == next_active_insn (JUMP_LABEL (temp))))
376 /* Don't mess up test coverage analysis. */
377 temp2 = temp;
378 if (flag_test_coverage && !reload_completed)
379 for (temp2 = insn; temp2 != temp; temp2 = NEXT_INSN (temp2))
380 if (GET_CODE (temp2) == NOTE && NOTE_LINE_NUMBER (temp2) > 0)
381 break;
383 if (temp2 == temp)
385 /* Ensure that we jump to the later of the two labels.
386 Consider:
388 if (test) goto L2;
389 goto L1;
392 (clobber return-reg)
394 (use return-reg)
396 If we leave the goto L1, we'll incorrectly leave
397 return-reg dead for TEST true. */
399 temp2 = next_active_insn (JUMP_LABEL (insn));
400 if (!temp2)
401 temp2 = get_last_insn ();
402 if (GET_CODE (temp2) != CODE_LABEL)
403 temp2 = prev_label (temp2);
404 if (temp2 != JUMP_LABEL (temp))
405 redirect_jump (temp, temp2, 1);
407 delete_jump (insn);
408 changed = 1;
409 continue;
413 /* Detect a conditional jump jumping over an unconditional jump. */
415 else if (this_is_any_condjump
416 && reallabelprev != 0
417 && GET_CODE (reallabelprev) == JUMP_INSN
418 && prev_active_insn (reallabelprev) == insn
419 && no_labels_between_p (insn, reallabelprev)
420 && any_uncondjump_p (reallabelprev)
421 && onlyjump_p (reallabelprev))
423 /* When we invert the unconditional jump, we will be
424 decrementing the usage count of its old label.
425 Make sure that we don't delete it now because that
426 might cause the following code to be deleted. */
427 rtx prev_uses = prev_nonnote_insn (reallabelprev);
428 rtx prev_label = JUMP_LABEL (insn);
430 if (prev_label)
431 ++LABEL_NUSES (prev_label);
433 if (invert_jump (insn, JUMP_LABEL (reallabelprev), 1))
435 /* It is very likely that if there are USE insns before
436 this jump, they hold REG_DEAD notes. These REG_DEAD
437 notes are no longer valid due to this optimization,
438 and will cause the life-analysis that following passes
439 (notably delayed-branch scheduling) to think that
440 these registers are dead when they are not.
442 To prevent this trouble, we just remove the USE insns
443 from the insn chain. */
445 while (prev_uses && GET_CODE (prev_uses) == INSN
446 && GET_CODE (PATTERN (prev_uses)) == USE)
448 rtx useless = prev_uses;
449 prev_uses = prev_nonnote_insn (prev_uses);
450 delete_insn (useless);
453 delete_insn (reallabelprev);
454 changed = 1;
457 /* We can now safely delete the label if it is unreferenced
458 since the delete_insn above has deleted the BARRIER. */
459 if (prev_label && --LABEL_NUSES (prev_label) == 0)
460 delete_insn (prev_label);
462 next = NEXT_INSN (insn);
465 /* If we have an unconditional jump preceded by a USE, try to put
466 the USE before the target and jump there. This simplifies many
467 of the optimizations below since we don't have to worry about
468 dealing with these USE insns. We only do this if the label
469 being branch to already has the identical USE or if code
470 never falls through to that label. */
472 else if (this_is_any_uncondjump
473 && (temp = prev_nonnote_insn (insn)) != 0
474 && GET_CODE (temp) == INSN
475 && GET_CODE (PATTERN (temp)) == USE
476 && (temp1 = prev_nonnote_insn (JUMP_LABEL (insn))) != 0
477 && (GET_CODE (temp1) == BARRIER
478 || (GET_CODE (temp1) == INSN
479 && rtx_equal_p (PATTERN (temp), PATTERN (temp1))))
480 /* Don't do this optimization if we have a loop containing
481 only the USE instruction, and the loop start label has
482 a usage count of 1. This is because we will redo this
483 optimization everytime through the outer loop, and jump
484 opt will never exit. */
485 && ! ((temp2 = prev_nonnote_insn (temp)) != 0
486 && temp2 == JUMP_LABEL (insn)
487 && LABEL_NUSES (temp2) == 1))
489 if (GET_CODE (temp1) == BARRIER)
491 emit_insn_after (PATTERN (temp), temp1);
492 temp1 = NEXT_INSN (temp1);
495 delete_insn (temp);
496 redirect_jump (insn, get_label_before (temp1), 1);
497 reallabelprev = prev_real_insn (temp1);
498 changed = 1;
499 next = NEXT_INSN (insn);
502 #ifdef HAVE_trap
503 /* Detect a conditional jump jumping over an unconditional trap. */
504 if (HAVE_trap
505 && this_is_any_condjump && this_is_onlyjump
506 && reallabelprev != 0
507 && GET_CODE (reallabelprev) == INSN
508 && GET_CODE (PATTERN (reallabelprev)) == TRAP_IF
509 && TRAP_CONDITION (PATTERN (reallabelprev)) == const_true_rtx
510 && prev_active_insn (reallabelprev) == insn
511 && no_labels_between_p (insn, reallabelprev)
512 && (temp2 = get_condition (insn, &temp4))
513 && ((reversed_code = reversed_comparison_code (temp2, insn))
514 != UNKNOWN))
516 rtx new = gen_cond_trap (reversed_code,
517 XEXP (temp2, 0), XEXP (temp2, 1),
518 TRAP_CODE (PATTERN (reallabelprev)));
520 if (new)
522 emit_insn_before (new, temp4);
523 delete_insn (reallabelprev);
524 delete_jump (insn);
525 changed = 1;
526 continue;
529 /* Detect a jump jumping to an unconditional trap. */
530 else if (HAVE_trap && this_is_onlyjump
531 && (temp = next_active_insn (JUMP_LABEL (insn)))
532 && GET_CODE (temp) == INSN
533 && GET_CODE (PATTERN (temp)) == TRAP_IF
534 && (this_is_any_uncondjump
535 || (this_is_any_condjump
536 && (temp2 = get_condition (insn, &temp4)))))
538 rtx tc = TRAP_CONDITION (PATTERN (temp));
540 if (tc == const_true_rtx
541 || (! this_is_any_uncondjump && rtx_equal_p (temp2, tc)))
543 rtx new;
544 /* Replace an unconditional jump to a trap with a trap. */
545 if (this_is_any_uncondjump)
547 emit_barrier_after (emit_insn_before (gen_trap (), insn));
548 delete_jump (insn);
549 changed = 1;
550 continue;
552 new = gen_cond_trap (GET_CODE (temp2), XEXP (temp2, 0),
553 XEXP (temp2, 1),
554 TRAP_CODE (PATTERN (temp)));
555 if (new)
557 emit_insn_before (new, temp4);
558 delete_jump (insn);
559 changed = 1;
560 continue;
563 /* If the trap condition and jump condition are mutually
564 exclusive, redirect the jump to the following insn. */
565 else if (GET_RTX_CLASS (GET_CODE (tc)) == '<'
566 && this_is_any_condjump
567 && swap_condition (GET_CODE (temp2)) == GET_CODE (tc)
568 && rtx_equal_p (XEXP (tc, 0), XEXP (temp2, 0))
569 && rtx_equal_p (XEXP (tc, 1), XEXP (temp2, 1))
570 && redirect_jump (insn, get_label_after (temp), 1))
572 changed = 1;
573 continue;
576 #endif
577 else
579 /* Now that the jump has been tensioned,
580 try cross jumping: check for identical code
581 before the jump and before its target label. */
583 /* First, cross jumping of conditional jumps: */
585 if (cross_jump && condjump_p (insn))
587 rtx newjpos, newlpos;
588 rtx x = prev_real_insn (JUMP_LABEL (insn));
590 /* A conditional jump may be crossjumped
591 only if the place it jumps to follows
592 an opposing jump that comes back here. */
594 if (x != 0 && ! jump_back_p (x, insn))
595 /* We have no opposing jump;
596 cannot cross jump this insn. */
597 x = 0;
599 newjpos = 0;
600 /* TARGET is nonzero if it is ok to cross jump
601 to code before TARGET. If so, see if matches. */
602 if (x != 0)
603 find_cross_jump (insn, x, 2,
604 &newjpos, &newlpos);
606 if (newjpos != 0)
608 do_cross_jump (insn, newjpos, newlpos);
609 /* Make the old conditional jump
610 into an unconditional one. */
611 SET_SRC (PATTERN (insn))
612 = gen_rtx_LABEL_REF (VOIDmode, JUMP_LABEL (insn));
613 INSN_CODE (insn) = -1;
614 emit_barrier_after (insn);
615 /* Add to jump_chain unless this is a new label
616 whose UID is too large. */
617 if (INSN_UID (JUMP_LABEL (insn)) < max_jump_chain)
619 jump_chain[INSN_UID (insn)]
620 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
621 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
623 changed = 1;
624 next = insn;
628 /* Cross jumping of unconditional jumps:
629 a few differences. */
631 if (cross_jump && simplejump_p (insn))
633 rtx newjpos, newlpos;
634 rtx target;
636 newjpos = 0;
638 /* TARGET is nonzero if it is ok to cross jump
639 to code before TARGET. If so, see if matches. */
640 find_cross_jump (insn, JUMP_LABEL (insn), 1,
641 &newjpos, &newlpos);
643 /* If cannot cross jump to code before the label,
644 see if we can cross jump to another jump to
645 the same label. */
646 /* Try each other jump to this label. */
647 if (INSN_UID (JUMP_LABEL (insn)) < max_uid)
648 for (target = jump_chain[INSN_UID (JUMP_LABEL (insn))];
649 target != 0 && newjpos == 0;
650 target = jump_chain[INSN_UID (target)])
651 if (target != insn
652 && JUMP_LABEL (target) == JUMP_LABEL (insn)
653 /* Ignore TARGET if it's deleted. */
654 && ! INSN_DELETED_P (target))
655 find_cross_jump (insn, target, 2,
656 &newjpos, &newlpos);
658 if (newjpos != 0)
660 do_cross_jump (insn, newjpos, newlpos);
661 changed = 1;
662 next = insn;
666 /* This code was dead in the previous jump.c! */
667 if (cross_jump && GET_CODE (PATTERN (insn)) == RETURN)
669 /* Return insns all "jump to the same place"
670 so we can cross-jump between any two of them. */
672 rtx newjpos, newlpos, target;
674 newjpos = 0;
676 /* If cannot cross jump to code before the label,
677 see if we can cross jump to another jump to
678 the same label. */
679 /* Try each other jump to this label. */
680 for (target = jump_chain[0];
681 target != 0 && newjpos == 0;
682 target = jump_chain[INSN_UID (target)])
683 if (target != insn
684 && ! INSN_DELETED_P (target)
685 && GET_CODE (PATTERN (target)) == RETURN)
686 find_cross_jump (insn, target, 2,
687 &newjpos, &newlpos);
689 if (newjpos != 0)
691 do_cross_jump (insn, newjpos, newlpos);
692 changed = 1;
693 next = insn;
699 first = 0;
702 /* Delete extraneous line number notes.
703 Note that two consecutive notes for different lines are not really
704 extraneous. There should be some indication where that line belonged,
705 even if it became empty. */
708 rtx last_note = 0;
710 for (insn = f; insn; insn = NEXT_INSN (insn))
711 if (GET_CODE (insn) == NOTE)
713 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_FUNCTION_BEG)
714 /* Any previous line note was for the prologue; gdb wants a new
715 note after the prologue even if it is for the same line. */
716 last_note = NULL_RTX;
717 else if (NOTE_LINE_NUMBER (insn) >= 0)
719 /* Delete this note if it is identical to previous note. */
720 if (last_note
721 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last_note)
722 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last_note))
724 delete_insn (insn);
725 continue;
728 last_note = insn;
733 end:
734 /* Clean up. */
735 free (jump_chain);
736 jump_chain = 0;
739 /* Initialize LABEL_NUSES and JUMP_LABEL fields. Delete any REG_LABEL
740 notes whose labels don't occur in the insn any more. Returns the
741 largest INSN_UID found. */
742 static int
743 init_label_info (f)
744 rtx f;
746 int largest_uid = 0;
747 rtx insn;
749 for (insn = f; insn; insn = NEXT_INSN (insn))
751 if (GET_CODE (insn) == CODE_LABEL)
752 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
753 else if (GET_CODE (insn) == JUMP_INSN)
754 JUMP_LABEL (insn) = 0;
755 else if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
757 rtx note, next;
759 for (note = REG_NOTES (insn); note; note = next)
761 next = XEXP (note, 1);
762 if (REG_NOTE_KIND (note) == REG_LABEL
763 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
764 remove_note (insn, note);
767 if (INSN_UID (insn) > largest_uid)
768 largest_uid = INSN_UID (insn);
771 return largest_uid;
774 /* Delete insns following barriers, up to next label.
776 Also delete no-op jumps created by gcse. */
778 static void
779 delete_barrier_successors (f)
780 rtx f;
782 rtx insn;
783 rtx set;
785 for (insn = f; insn;)
787 if (GET_CODE (insn) == BARRIER)
789 insn = NEXT_INSN (insn);
791 never_reached_warning (insn);
793 while (insn != 0 && GET_CODE (insn) != CODE_LABEL)
795 if (GET_CODE (insn) == JUMP_INSN)
797 /* Detect when we're deleting a tablejump; get rid of
798 the jump table as well. */
799 rtx next1 = next_nonnote_insn (insn);
800 rtx next2 = next1 ? next_nonnote_insn (next1) : 0;
801 if (next2 && GET_CODE (next1) == CODE_LABEL
802 && GET_CODE (next2) == JUMP_INSN
803 && (GET_CODE (PATTERN (next2)) == ADDR_VEC
804 || GET_CODE (PATTERN (next2)) == ADDR_DIFF_VEC))
806 delete_insn (insn);
807 insn = next2;
809 else
810 insn = delete_insn (insn);
812 else if (GET_CODE (insn) == NOTE
813 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_FUNCTION_END)
814 insn = NEXT_INSN (insn);
815 else
816 insn = delete_insn (insn);
818 /* INSN is now the code_label. */
821 /* Also remove (set (pc) (pc)) insns which can be created by
822 gcse. We eliminate such insns now to avoid having them
823 cause problems later. */
824 else if (GET_CODE (insn) == JUMP_INSN
825 && (set = pc_set (insn)) != NULL
826 && SET_SRC (set) == pc_rtx
827 && SET_DEST (set) == pc_rtx
828 && onlyjump_p (insn))
829 insn = delete_insn (insn);
831 else
832 insn = NEXT_INSN (insn);
836 /* Mark the label each jump jumps to.
837 Combine consecutive labels, and count uses of labels.
839 For each label, make a chain (using `jump_chain')
840 of all the *unconditional* jumps that jump to it;
841 also make a chain of all returns.
843 CROSS_JUMP indicates whether we are doing cross jumping
844 and if we are whether we will be paying attention to
845 death notes or not. */
847 static void
848 mark_all_labels (f, cross_jump)
849 rtx f;
850 int cross_jump;
852 rtx insn;
854 for (insn = f; insn; insn = NEXT_INSN (insn))
855 if (INSN_P (insn))
857 if (GET_CODE (insn) == CALL_INSN
858 && GET_CODE (PATTERN (insn)) == CALL_PLACEHOLDER)
860 mark_all_labels (XEXP (PATTERN (insn), 0), cross_jump);
861 mark_all_labels (XEXP (PATTERN (insn), 1), cross_jump);
862 mark_all_labels (XEXP (PATTERN (insn), 2), cross_jump);
864 /* Canonicalize the tail recursion label attached to the
865 CALL_PLACEHOLDER insn. */
866 if (XEXP (PATTERN (insn), 3))
868 rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
869 XEXP (PATTERN (insn), 3));
870 mark_jump_label (label_ref, insn, cross_jump, 0);
871 XEXP (PATTERN (insn), 3) = XEXP (label_ref, 0);
874 continue;
877 mark_jump_label (PATTERN (insn), insn, cross_jump, 0);
878 if (! INSN_DELETED_P (insn) && GET_CODE (insn) == JUMP_INSN)
880 /* When we know the LABEL_REF contained in a REG used in
881 an indirect jump, we'll have a REG_LABEL note so that
882 flow can tell where it's going. */
883 if (JUMP_LABEL (insn) == 0)
885 rtx label_note = find_reg_note (insn, REG_LABEL, NULL_RTX);
886 if (label_note)
888 /* But a LABEL_REF around the REG_LABEL note, so
889 that we can canonicalize it. */
890 rtx label_ref = gen_rtx_LABEL_REF (VOIDmode,
891 XEXP (label_note, 0));
893 mark_jump_label (label_ref, insn, cross_jump, 0);
894 XEXP (label_note, 0) = XEXP (label_ref, 0);
895 JUMP_LABEL (insn) = XEXP (label_note, 0);
898 if (JUMP_LABEL (insn) != 0 && simplejump_p (insn))
900 jump_chain[INSN_UID (insn)]
901 = jump_chain[INSN_UID (JUMP_LABEL (insn))];
902 jump_chain[INSN_UID (JUMP_LABEL (insn))] = insn;
904 if (GET_CODE (PATTERN (insn)) == RETURN)
906 jump_chain[INSN_UID (insn)] = jump_chain[0];
907 jump_chain[0] = insn;
913 /* Delete all labels already not referenced.
914 Also find and return the last insn. */
916 static rtx
917 delete_unreferenced_labels (f)
918 rtx f;
920 rtx final = NULL_RTX;
921 rtx insn;
923 for (insn = f; insn;)
925 if (GET_CODE (insn) == CODE_LABEL
926 && LABEL_NUSES (insn) == 0
927 && LABEL_ALTERNATE_NAME (insn) == NULL)
928 insn = delete_insn (insn);
929 else
931 final = insn;
932 insn = NEXT_INSN (insn);
936 return final;
939 /* Delete various simple forms of moves which have no necessary
940 side effect. */
942 static void
943 delete_noop_moves (f)
944 rtx f;
946 rtx insn, next;
948 for (insn = f; insn;)
950 next = NEXT_INSN (insn);
952 if (GET_CODE (insn) == INSN)
954 register rtx body = PATTERN (insn);
956 /* Detect and delete no-op move instructions
957 resulting from not allocating a parameter in a register. */
959 if (GET_CODE (body) == SET && set_noop_p (body))
960 delete_computation (insn);
962 /* Detect and ignore no-op move instructions
963 resulting from smart or fortuitous register allocation. */
965 else if (GET_CODE (body) == SET)
967 int sreg = true_regnum (SET_SRC (body));
968 int dreg = true_regnum (SET_DEST (body));
970 if (sreg == dreg && sreg >= 0)
971 delete_insn (insn);
972 else if (sreg >= 0 && dreg >= 0)
974 rtx trial;
975 rtx tem = find_equiv_reg (NULL_RTX, insn, 0,
976 sreg, NULL_PTR, dreg,
977 GET_MODE (SET_SRC (body)));
979 if (tem != 0
980 && GET_MODE (tem) == GET_MODE (SET_DEST (body)))
982 /* DREG may have been the target of a REG_DEAD note in
983 the insn which makes INSN redundant. If so, reorg
984 would still think it is dead. So search for such a
985 note and delete it if we find it. */
986 if (! find_regno_note (insn, REG_UNUSED, dreg))
987 for (trial = prev_nonnote_insn (insn);
988 trial && GET_CODE (trial) != CODE_LABEL;
989 trial = prev_nonnote_insn (trial))
990 if (find_regno_note (trial, REG_DEAD, dreg))
992 remove_death (dreg, trial);
993 break;
996 /* Deleting insn could lose a death-note for SREG. */
997 if ((trial = find_regno_note (insn, REG_DEAD, sreg)))
999 /* Change this into a USE so that we won't emit
1000 code for it, but still can keep the note. */
1001 PATTERN (insn)
1002 = gen_rtx_USE (VOIDmode, XEXP (trial, 0));
1003 INSN_CODE (insn) = -1;
1004 /* Remove all reg notes but the REG_DEAD one. */
1005 REG_NOTES (insn) = trial;
1006 XEXP (trial, 1) = NULL_RTX;
1008 else
1009 delete_insn (insn);
1012 else if (dreg >= 0 && CONSTANT_P (SET_SRC (body))
1013 && find_equiv_reg (SET_SRC (body), insn, 0, dreg,
1014 NULL_PTR, 0,
1015 GET_MODE (SET_DEST (body))))
1017 /* This handles the case where we have two consecutive
1018 assignments of the same constant to pseudos that didn't
1019 get a hard reg. Each SET from the constant will be
1020 converted into a SET of the spill register and an
1021 output reload will be made following it. This produces
1022 two loads of the same constant into the same spill
1023 register. */
1025 rtx in_insn = insn;
1027 /* Look back for a death note for the first reg.
1028 If there is one, it is no longer accurate. */
1029 while (in_insn && GET_CODE (in_insn) != CODE_LABEL)
1031 if ((GET_CODE (in_insn) == INSN
1032 || GET_CODE (in_insn) == JUMP_INSN)
1033 && find_regno_note (in_insn, REG_DEAD, dreg))
1035 remove_death (dreg, in_insn);
1036 break;
1038 in_insn = PREV_INSN (in_insn);
1041 /* Delete the second load of the value. */
1042 delete_insn (insn);
1045 else if (GET_CODE (body) == PARALLEL)
1047 /* If each part is a set between two identical registers or
1048 a USE or CLOBBER, delete the insn. */
1049 int i, sreg, dreg;
1050 rtx tem;
1052 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1054 tem = XVECEXP (body, 0, i);
1055 if (GET_CODE (tem) == USE || GET_CODE (tem) == CLOBBER)
1056 continue;
1058 if (GET_CODE (tem) != SET
1059 || (sreg = true_regnum (SET_SRC (tem))) < 0
1060 || (dreg = true_regnum (SET_DEST (tem))) < 0
1061 || dreg != sreg)
1062 break;
1065 if (i < 0)
1066 delete_insn (insn);
1069 insn = next;
1073 /* LOOP_START is a NOTE_INSN_LOOP_BEG note that is followed by an unconditional
1074 jump. Assume that this unconditional jump is to the exit test code. If
1075 the code is sufficiently simple, make a copy of it before INSN,
1076 followed by a jump to the exit of the loop. Then delete the unconditional
1077 jump after INSN.
1079 Return 1 if we made the change, else 0.
1081 This is only safe immediately after a regscan pass because it uses the
1082 values of regno_first_uid and regno_last_uid. */
1084 static int
1085 duplicate_loop_exit_test (loop_start)
1086 rtx loop_start;
1088 rtx insn, set, reg, p, link;
1089 rtx copy = 0, first_copy = 0;
1090 int num_insns = 0;
1091 rtx exitcode = NEXT_INSN (JUMP_LABEL (next_nonnote_insn (loop_start)));
1092 rtx lastexit;
1093 int max_reg = max_reg_num ();
1094 rtx *reg_map = 0;
1096 /* Scan the exit code. We do not perform this optimization if any insn:
1098 is a CALL_INSN
1099 is a CODE_LABEL
1100 has a REG_RETVAL or REG_LIBCALL note (hard to adjust)
1101 is a NOTE_INSN_LOOP_BEG because this means we have a nested loop
1102 is a NOTE_INSN_BLOCK_{BEG,END} because duplicating these notes
1103 is not valid.
1105 We also do not do this if we find an insn with ASM_OPERANDS. While
1106 this restriction should not be necessary, copying an insn with
1107 ASM_OPERANDS can confuse asm_noperands in some cases.
1109 Also, don't do this if the exit code is more than 20 insns. */
1111 for (insn = exitcode;
1112 insn
1113 && ! (GET_CODE (insn) == NOTE
1114 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END);
1115 insn = NEXT_INSN (insn))
1117 switch (GET_CODE (insn))
1119 case CODE_LABEL:
1120 case CALL_INSN:
1121 return 0;
1122 case NOTE:
1123 /* We could be in front of the wrong NOTE_INSN_LOOP_END if there is
1124 a jump immediately after the loop start that branches outside
1125 the loop but within an outer loop, near the exit test.
1126 If we copied this exit test and created a phony
1127 NOTE_INSN_LOOP_VTOP, this could make instructions immediately
1128 before the exit test look like these could be safely moved
1129 out of the loop even if they actually may be never executed.
1130 This can be avoided by checking here for NOTE_INSN_LOOP_CONT. */
1132 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1133 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT)
1134 return 0;
1136 if (optimize < 2
1137 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1138 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END))
1139 /* If we were to duplicate this code, we would not move
1140 the BLOCK notes, and so debugging the moved code would
1141 be difficult. Thus, we only move the code with -O2 or
1142 higher. */
1143 return 0;
1145 break;
1146 case JUMP_INSN:
1147 case INSN:
1148 /* The code below would grossly mishandle REG_WAS_0 notes,
1149 so get rid of them here. */
1150 while ((p = find_reg_note (insn, REG_WAS_0, NULL_RTX)) != 0)
1151 remove_note (insn, p);
1152 if (++num_insns > 20
1153 || find_reg_note (insn, REG_RETVAL, NULL_RTX)
1154 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
1155 return 0;
1156 break;
1157 default:
1158 break;
1162 /* Unless INSN is zero, we can do the optimization. */
1163 if (insn == 0)
1164 return 0;
1166 lastexit = insn;
1168 /* See if any insn sets a register only used in the loop exit code and
1169 not a user variable. If so, replace it with a new register. */
1170 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1171 if (GET_CODE (insn) == INSN
1172 && (set = single_set (insn)) != 0
1173 && ((reg = SET_DEST (set), GET_CODE (reg) == REG)
1174 || (GET_CODE (reg) == SUBREG
1175 && (reg = SUBREG_REG (reg), GET_CODE (reg) == REG)))
1176 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1177 && REGNO_FIRST_UID (REGNO (reg)) == INSN_UID (insn))
1179 for (p = NEXT_INSN (insn); p != lastexit; p = NEXT_INSN (p))
1180 if (REGNO_LAST_UID (REGNO (reg)) == INSN_UID (p))
1181 break;
1183 if (p != lastexit)
1185 /* We can do the replacement. Allocate reg_map if this is the
1186 first replacement we found. */
1187 if (reg_map == 0)
1188 reg_map = (rtx *) xcalloc (max_reg, sizeof (rtx));
1190 REG_LOOP_TEST_P (reg) = 1;
1192 reg_map[REGNO (reg)] = gen_reg_rtx (GET_MODE (reg));
1196 /* Now copy each insn. */
1197 for (insn = exitcode; insn != lastexit; insn = NEXT_INSN (insn))
1199 switch (GET_CODE (insn))
1201 case BARRIER:
1202 copy = emit_barrier_before (loop_start);
1203 break;
1204 case NOTE:
1205 /* Only copy line-number notes. */
1206 if (NOTE_LINE_NUMBER (insn) >= 0)
1208 copy = emit_note_before (NOTE_LINE_NUMBER (insn), loop_start);
1209 NOTE_SOURCE_FILE (copy) = NOTE_SOURCE_FILE (insn);
1211 break;
1213 case INSN:
1214 copy = emit_insn_before (copy_insn (PATTERN (insn)), loop_start);
1215 if (reg_map)
1216 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1218 mark_jump_label (PATTERN (copy), copy, 0, 0);
1220 /* Copy all REG_NOTES except REG_LABEL since mark_jump_label will
1221 make them. */
1222 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1223 if (REG_NOTE_KIND (link) != REG_LABEL)
1225 if (GET_CODE (link) == EXPR_LIST)
1226 REG_NOTES (copy)
1227 = copy_insn_1 (gen_rtx_EXPR_LIST (REG_NOTE_KIND (link),
1228 XEXP (link, 0),
1229 REG_NOTES (copy)));
1230 else
1231 REG_NOTES (copy)
1232 = copy_insn_1 (gen_rtx_INSN_LIST (REG_NOTE_KIND (link),
1233 XEXP (link, 0),
1234 REG_NOTES (copy)));
1237 if (reg_map && REG_NOTES (copy))
1238 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1239 break;
1241 case JUMP_INSN:
1242 copy = emit_jump_insn_before (copy_insn (PATTERN (insn)),
1243 loop_start);
1244 if (reg_map)
1245 replace_regs (PATTERN (copy), reg_map, max_reg, 1);
1246 mark_jump_label (PATTERN (copy), copy, 0, 0);
1247 if (REG_NOTES (insn))
1249 REG_NOTES (copy) = copy_insn_1 (REG_NOTES (insn));
1250 if (reg_map)
1251 replace_regs (REG_NOTES (copy), reg_map, max_reg, 1);
1254 /* If this is a simple jump, add it to the jump chain. */
1256 if (INSN_UID (copy) < max_jump_chain && JUMP_LABEL (copy)
1257 && simplejump_p (copy))
1259 jump_chain[INSN_UID (copy)]
1260 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1261 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1263 break;
1265 default:
1266 abort ();
1269 /* Record the first insn we copied. We need it so that we can
1270 scan the copied insns for new pseudo registers. */
1271 if (! first_copy)
1272 first_copy = copy;
1275 /* Now clean up by emitting a jump to the end label and deleting the jump
1276 at the start of the loop. */
1277 if (! copy || GET_CODE (copy) != BARRIER)
1279 copy = emit_jump_insn_before (gen_jump (get_label_after (insn)),
1280 loop_start);
1282 /* Record the first insn we copied. We need it so that we can
1283 scan the copied insns for new pseudo registers. This may not
1284 be strictly necessary since we should have copied at least one
1285 insn above. But I am going to be safe. */
1286 if (! first_copy)
1287 first_copy = copy;
1289 mark_jump_label (PATTERN (copy), copy, 0, 0);
1290 if (INSN_UID (copy) < max_jump_chain
1291 && INSN_UID (JUMP_LABEL (copy)) < max_jump_chain)
1293 jump_chain[INSN_UID (copy)]
1294 = jump_chain[INSN_UID (JUMP_LABEL (copy))];
1295 jump_chain[INSN_UID (JUMP_LABEL (copy))] = copy;
1297 emit_barrier_before (loop_start);
1300 /* Now scan from the first insn we copied to the last insn we copied
1301 (copy) for new pseudo registers. Do this after the code to jump to
1302 the end label since that might create a new pseudo too. */
1303 reg_scan_update (first_copy, copy, max_reg);
1305 /* Mark the exit code as the virtual top of the converted loop. */
1306 emit_note_before (NOTE_INSN_LOOP_VTOP, exitcode);
1308 delete_insn (next_nonnote_insn (loop_start));
1310 /* Clean up. */
1311 if (reg_map)
1312 free (reg_map);
1314 return 1;
1317 /* Move all block-beg, block-end, loop-beg, loop-cont, loop-vtop, loop-end,
1318 notes between START and END out before START. Assume that END is not
1319 such a note. START may be such a note. Returns the value of the new
1320 starting insn, which may be different if the original start was such a
1321 note. */
1324 squeeze_notes (start, end)
1325 rtx start, end;
1327 rtx insn;
1328 rtx next;
1330 for (insn = start; insn != end; insn = next)
1332 next = NEXT_INSN (insn);
1333 if (GET_CODE (insn) == NOTE
1334 && (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END
1335 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG
1336 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG
1337 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END
1338 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_CONT
1339 || NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_VTOP))
1341 if (insn == start)
1342 start = next;
1343 else
1345 rtx prev = PREV_INSN (insn);
1346 PREV_INSN (insn) = PREV_INSN (start);
1347 NEXT_INSN (insn) = start;
1348 NEXT_INSN (PREV_INSN (insn)) = insn;
1349 PREV_INSN (NEXT_INSN (insn)) = insn;
1350 NEXT_INSN (prev) = next;
1351 PREV_INSN (next) = prev;
1356 return start;
1359 /* Compare the instructions before insn E1 with those before E2
1360 to find an opportunity for cross jumping.
1361 (This means detecting identical sequences of insns followed by
1362 jumps to the same place, or followed by a label and a jump
1363 to that label, and replacing one with a jump to the other.)
1365 Assume E1 is a jump that jumps to label E2
1366 (that is not always true but it might as well be).
1367 Find the longest possible equivalent sequences
1368 and store the first insns of those sequences into *F1 and *F2.
1369 Store zero there if no equivalent preceding instructions are found.
1371 We give up if we find a label in stream 1.
1372 Actually we could transfer that label into stream 2. */
1374 static void
1375 find_cross_jump (e1, e2, minimum, f1, f2)
1376 rtx e1, e2;
1377 int minimum;
1378 rtx *f1, *f2;
1380 register rtx i1 = e1, i2 = e2;
1381 register rtx p1, p2;
1382 int lose = 0;
1384 rtx last1 = 0, last2 = 0;
1385 rtx afterlast1 = 0, afterlast2 = 0;
1387 *f1 = 0;
1388 *f2 = 0;
1390 while (1)
1392 i1 = prev_nonnote_insn (i1);
1394 i2 = PREV_INSN (i2);
1395 while (i2 && (GET_CODE (i2) == NOTE || GET_CODE (i2) == CODE_LABEL))
1396 i2 = PREV_INSN (i2);
1398 if (i1 == 0)
1399 break;
1401 /* Don't allow the range of insns preceding E1 or E2
1402 to include the other (E2 or E1). */
1403 if (i2 == e1 || i1 == e2)
1404 break;
1406 /* If we will get to this code by jumping, those jumps will be
1407 tensioned to go directly to the new label (before I2),
1408 so this cross-jumping won't cost extra. So reduce the minimum. */
1409 if (GET_CODE (i1) == CODE_LABEL)
1411 --minimum;
1412 break;
1415 if (i2 == 0 || GET_CODE (i1) != GET_CODE (i2))
1416 break;
1418 p1 = PATTERN (i1);
1419 p2 = PATTERN (i2);
1421 /* If this is a CALL_INSN, compare register usage information.
1422 If we don't check this on stack register machines, the two
1423 CALL_INSNs might be merged leaving reg-stack.c with mismatching
1424 numbers of stack registers in the same basic block.
1425 If we don't check this on machines with delay slots, a delay slot may
1426 be filled that clobbers a parameter expected by the subroutine.
1428 ??? We take the simple route for now and assume that if they're
1429 equal, they were constructed identically. */
1431 if (GET_CODE (i1) == CALL_INSN
1432 && ! rtx_equal_p (CALL_INSN_FUNCTION_USAGE (i1),
1433 CALL_INSN_FUNCTION_USAGE (i2)))
1434 lose = 1;
1436 #ifdef STACK_REGS
1437 /* If cross_jump_death_matters is not 0, the insn's mode
1438 indicates whether or not the insn contains any stack-like
1439 regs. */
1441 if (!lose && cross_jump_death_matters && stack_regs_mentioned (i1))
1443 /* If register stack conversion has already been done, then
1444 death notes must also be compared before it is certain that
1445 the two instruction streams match. */
1447 rtx note;
1448 HARD_REG_SET i1_regset, i2_regset;
1450 CLEAR_HARD_REG_SET (i1_regset);
1451 CLEAR_HARD_REG_SET (i2_regset);
1453 for (note = REG_NOTES (i1); note; note = XEXP (note, 1))
1454 if (REG_NOTE_KIND (note) == REG_DEAD
1455 && STACK_REG_P (XEXP (note, 0)))
1456 SET_HARD_REG_BIT (i1_regset, REGNO (XEXP (note, 0)));
1458 for (note = REG_NOTES (i2); note; note = XEXP (note, 1))
1459 if (REG_NOTE_KIND (note) == REG_DEAD
1460 && STACK_REG_P (XEXP (note, 0)))
1461 SET_HARD_REG_BIT (i2_regset, REGNO (XEXP (note, 0)));
1463 GO_IF_HARD_REG_EQUAL (i1_regset, i2_regset, done);
1465 lose = 1;
1467 done:
1470 #endif
1472 /* Don't allow old-style asm or volatile extended asms to be accepted
1473 for cross jumping purposes. It is conceptually correct to allow
1474 them, since cross-jumping preserves the dynamic instruction order
1475 even though it is changing the static instruction order. However,
1476 if an asm is being used to emit an assembler pseudo-op, such as
1477 the MIPS `.set reorder' pseudo-op, then the static instruction order
1478 matters and it must be preserved. */
1479 if (GET_CODE (p1) == ASM_INPUT || GET_CODE (p2) == ASM_INPUT
1480 || (GET_CODE (p1) == ASM_OPERANDS && MEM_VOLATILE_P (p1))
1481 || (GET_CODE (p2) == ASM_OPERANDS && MEM_VOLATILE_P (p2)))
1482 lose = 1;
1484 if (lose || GET_CODE (p1) != GET_CODE (p2)
1485 || ! rtx_renumbered_equal_p (p1, p2))
1487 /* The following code helps take care of G++ cleanups. */
1488 rtx equiv1;
1489 rtx equiv2;
1491 if (!lose && GET_CODE (p1) == GET_CODE (p2)
1492 && ((equiv1 = find_reg_note (i1, REG_EQUAL, NULL_RTX)) != 0
1493 || (equiv1 = find_reg_note (i1, REG_EQUIV, NULL_RTX)) != 0)
1494 && ((equiv2 = find_reg_note (i2, REG_EQUAL, NULL_RTX)) != 0
1495 || (equiv2 = find_reg_note (i2, REG_EQUIV, NULL_RTX)) != 0)
1496 /* If the equivalences are not to a constant, they may
1497 reference pseudos that no longer exist, so we can't
1498 use them. */
1499 && CONSTANT_P (XEXP (equiv1, 0))
1500 && rtx_equal_p (XEXP (equiv1, 0), XEXP (equiv2, 0)))
1502 rtx s1 = single_set (i1);
1503 rtx s2 = single_set (i2);
1504 if (s1 != 0 && s2 != 0
1505 && rtx_renumbered_equal_p (SET_DEST (s1), SET_DEST (s2)))
1507 validate_change (i1, &SET_SRC (s1), XEXP (equiv1, 0), 1);
1508 validate_change (i2, &SET_SRC (s2), XEXP (equiv2, 0), 1);
1509 if (! rtx_renumbered_equal_p (p1, p2))
1510 cancel_changes (0);
1511 else if (apply_change_group ())
1512 goto win;
1516 /* Insns fail to match; cross jumping is limited to the following
1517 insns. */
1519 #ifdef HAVE_cc0
1520 /* Don't allow the insn after a compare to be shared by
1521 cross-jumping unless the compare is also shared.
1522 Here, if either of these non-matching insns is a compare,
1523 exclude the following insn from possible cross-jumping. */
1524 if (sets_cc0_p (p1) || sets_cc0_p (p2))
1525 last1 = afterlast1, last2 = afterlast2, ++minimum;
1526 #endif
1528 /* If cross-jumping here will feed a jump-around-jump
1529 optimization, this jump won't cost extra, so reduce
1530 the minimum. */
1531 if (GET_CODE (i1) == JUMP_INSN
1532 && JUMP_LABEL (i1)
1533 && prev_real_insn (JUMP_LABEL (i1)) == e1)
1534 --minimum;
1535 break;
1538 win:
1539 if (GET_CODE (p1) != USE && GET_CODE (p1) != CLOBBER)
1541 /* Ok, this insn is potentially includable in a cross-jump here. */
1542 afterlast1 = last1, afterlast2 = last2;
1543 last1 = i1, last2 = i2, --minimum;
1547 if (minimum <= 0 && last1 != 0 && last1 != e1)
1548 *f1 = last1, *f2 = last2;
1551 static void
1552 do_cross_jump (insn, newjpos, newlpos)
1553 rtx insn, newjpos, newlpos;
1555 /* Find an existing label at this point
1556 or make a new one if there is none. */
1557 register rtx label = get_label_before (newlpos);
1559 /* Make the same jump insn jump to the new point. */
1560 if (GET_CODE (PATTERN (insn)) == RETURN)
1562 /* Remove from jump chain of returns. */
1563 delete_from_jump_chain (insn);
1564 /* Change the insn. */
1565 PATTERN (insn) = gen_jump (label);
1566 INSN_CODE (insn) = -1;
1567 JUMP_LABEL (insn) = label;
1568 LABEL_NUSES (label)++;
1569 /* Add to new the jump chain. */
1570 if (INSN_UID (label) < max_jump_chain
1571 && INSN_UID (insn) < max_jump_chain)
1573 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (label)];
1574 jump_chain[INSN_UID (label)] = insn;
1577 else
1578 redirect_jump (insn, label, 1);
1580 /* Delete the matching insns before the jump. Also, remove any REG_EQUAL
1581 or REG_EQUIV note in the NEWLPOS stream that isn't also present in
1582 the NEWJPOS stream. */
1584 while (newjpos != insn)
1586 rtx lnote;
1588 for (lnote = REG_NOTES (newlpos); lnote; lnote = XEXP (lnote, 1))
1589 if ((REG_NOTE_KIND (lnote) == REG_EQUAL
1590 || REG_NOTE_KIND (lnote) == REG_EQUIV)
1591 && ! find_reg_note (newjpos, REG_EQUAL, XEXP (lnote, 0))
1592 && ! find_reg_note (newjpos, REG_EQUIV, XEXP (lnote, 0)))
1593 remove_note (newlpos, lnote);
1595 delete_insn (newjpos);
1596 newjpos = next_real_insn (newjpos);
1597 newlpos = next_real_insn (newlpos);
1601 /* Return the label before INSN, or put a new label there. */
1604 get_label_before (insn)
1605 rtx insn;
1607 rtx label;
1609 /* Find an existing label at this point
1610 or make a new one if there is none. */
1611 label = prev_nonnote_insn (insn);
1613 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1615 rtx prev = PREV_INSN (insn);
1617 label = gen_label_rtx ();
1618 emit_label_after (label, prev);
1619 LABEL_NUSES (label) = 0;
1621 return label;
1624 /* Return the label after INSN, or put a new label there. */
1627 get_label_after (insn)
1628 rtx insn;
1630 rtx label;
1632 /* Find an existing label at this point
1633 or make a new one if there is none. */
1634 label = next_nonnote_insn (insn);
1636 if (label == 0 || GET_CODE (label) != CODE_LABEL)
1638 label = gen_label_rtx ();
1639 emit_label_after (label, insn);
1640 LABEL_NUSES (label) = 0;
1642 return label;
1645 /* Return 1 if INSN is a jump that jumps to right after TARGET
1646 only on the condition that TARGET itself would drop through.
1647 Assumes that TARGET is a conditional jump. */
1649 static int
1650 jump_back_p (insn, target)
1651 rtx insn, target;
1653 rtx cinsn, ctarget;
1654 enum rtx_code codei, codet;
1655 rtx set, tset;
1657 if (! any_condjump_p (insn)
1658 || any_uncondjump_p (target)
1659 || target != prev_real_insn (JUMP_LABEL (insn)))
1660 return 0;
1661 set = pc_set (insn);
1662 tset = pc_set (target);
1664 cinsn = XEXP (SET_SRC (set), 0);
1665 ctarget = XEXP (SET_SRC (tset), 0);
1667 codei = GET_CODE (cinsn);
1668 codet = GET_CODE (ctarget);
1670 if (XEXP (SET_SRC (set), 1) == pc_rtx)
1672 codei = reversed_comparison_code (cinsn, insn);
1673 if (codei == UNKNOWN)
1674 return 0;
1677 if (XEXP (SET_SRC (tset), 2) == pc_rtx)
1679 codet = reversed_comparison_code (ctarget, target);
1680 if (codei == UNKNOWN)
1681 return 0;
1684 return (codei == codet
1685 && rtx_renumbered_equal_p (XEXP (cinsn, 0), XEXP (ctarget, 0))
1686 && rtx_renumbered_equal_p (XEXP (cinsn, 1), XEXP (ctarget, 1)));
1689 /* Given a comparison (CODE ARG0 ARG1), inside a insn, INSN, return an code
1690 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
1691 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
1692 know whether it's source is floating point or integer comparison. Machine
1693 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
1694 to help this function avoid overhead in these cases. */
1695 enum rtx_code
1696 reversed_comparison_code_parts (code, arg0, arg1, insn)
1697 rtx insn, arg0, arg1;
1698 enum rtx_code code;
1700 enum machine_mode mode;
1702 /* If this is not actually a comparison, we can't reverse it. */
1703 if (GET_RTX_CLASS (code) != '<')
1704 return UNKNOWN;
1706 mode = GET_MODE (arg0);
1707 if (mode == VOIDmode)
1708 mode = GET_MODE (arg1);
1710 /* First see if machine description supply us way to reverse the comparison.
1711 Give it priority over everything else to allow machine description to do
1712 tricks. */
1713 #ifdef REVERSIBLE_CC_MODE
1714 if (GET_MODE_CLASS (mode) == MODE_CC
1715 && REVERSIBLE_CC_MODE (mode))
1717 #ifdef REVERSE_CONDITION
1718 return REVERSE_CONDITION (code, mode);
1719 #endif
1720 return reverse_condition (code);
1722 #endif
1724 /* Try few special cases based on the comparison code. */
1725 switch (code)
1727 case GEU:
1728 case GTU:
1729 case LEU:
1730 case LTU:
1731 case NE:
1732 case EQ:
1733 /* It is always safe to reverse EQ and NE, even for the floating
1734 point. Similary the unsigned comparisons are never used for
1735 floating point so we can reverse them in the default way. */
1736 return reverse_condition (code);
1737 case ORDERED:
1738 case UNORDERED:
1739 case LTGT:
1740 case UNEQ:
1741 /* In case we already see unordered comparison, we can be sure to
1742 be dealing with floating point so we don't need any more tests. */
1743 return reverse_condition_maybe_unordered (code);
1744 case UNLT:
1745 case UNLE:
1746 case UNGT:
1747 case UNGE:
1748 /* We don't have safe way to reverse these yet. */
1749 return UNKNOWN;
1750 default:
1751 break;
1754 /* In case we give up IEEE compatibility, all comparisons are reversible. */
1755 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT
1756 || flag_unsafe_math_optimizations)
1757 return reverse_condition (code);
1759 if (GET_MODE_CLASS (mode) == MODE_CC
1760 #ifdef HAVE_cc0
1761 || arg0 == cc0_rtx
1762 #endif
1765 rtx prev;
1766 /* Try to search for the comparison to determine the real mode.
1767 This code is expensive, but with sane machine description it
1768 will be never used, since REVERSIBLE_CC_MODE will return true
1769 in all cases. */
1770 if (! insn)
1771 return UNKNOWN;
1773 for (prev = prev_nonnote_insn (insn);
1774 prev != 0 && GET_CODE (prev) != CODE_LABEL;
1775 prev = prev_nonnote_insn (prev))
1777 rtx set = set_of (arg0, prev);
1778 if (set && GET_CODE (set) == SET
1779 && rtx_equal_p (SET_DEST (set), arg0))
1781 rtx src = SET_SRC (set);
1783 if (GET_CODE (src) == COMPARE)
1785 rtx comparison = src;
1786 arg0 = XEXP (src, 0);
1787 mode = GET_MODE (arg0);
1788 if (mode == VOIDmode)
1789 mode = GET_MODE (XEXP (comparison, 1));
1790 break;
1792 /* We can get past reg-reg moves. This may be usefull for model
1793 of i387 comparisons that first move flag registers around. */
1794 if (REG_P (src))
1796 arg0 = src;
1797 continue;
1800 /* If register is clobbered in some ununderstandable way,
1801 give up. */
1802 if (set)
1803 return UNKNOWN;
1807 /* An integer condition. */
1808 if (GET_CODE (arg0) == CONST_INT
1809 || (GET_MODE (arg0) != VOIDmode
1810 && GET_MODE_CLASS (mode) != MODE_CC
1811 && ! FLOAT_MODE_P (mode)))
1812 return reverse_condition (code);
1814 return UNKNOWN;
1817 /* An wrapper around the previous function to take COMPARISON as rtx
1818 expression. This simplifies many callers. */
1819 enum rtx_code
1820 reversed_comparison_code (comparison, insn)
1821 rtx comparison, insn;
1823 if (GET_RTX_CLASS (GET_CODE (comparison)) != '<')
1824 return UNKNOWN;
1825 return reversed_comparison_code_parts (GET_CODE (comparison),
1826 XEXP (comparison, 0),
1827 XEXP (comparison, 1), insn);
1830 /* Given an rtx-code for a comparison, return the code for the negated
1831 comparison. If no such code exists, return UNKNOWN.
1833 WATCH OUT! reverse_condition is not safe to use on a jump that might
1834 be acting on the results of an IEEE floating point comparison, because
1835 of the special treatment of non-signaling nans in comparisons.
1836 Use reversed_comparison_code instead. */
1838 enum rtx_code
1839 reverse_condition (code)
1840 enum rtx_code code;
1842 switch (code)
1844 case EQ:
1845 return NE;
1846 case NE:
1847 return EQ;
1848 case GT:
1849 return LE;
1850 case GE:
1851 return LT;
1852 case LT:
1853 return GE;
1854 case LE:
1855 return GT;
1856 case GTU:
1857 return LEU;
1858 case GEU:
1859 return LTU;
1860 case LTU:
1861 return GEU;
1862 case LEU:
1863 return GTU;
1864 case UNORDERED:
1865 return ORDERED;
1866 case ORDERED:
1867 return UNORDERED;
1869 case UNLT:
1870 case UNLE:
1871 case UNGT:
1872 case UNGE:
1873 case UNEQ:
1874 case LTGT:
1875 return UNKNOWN;
1877 default:
1878 abort ();
1882 /* Similar, but we're allowed to generate unordered comparisons, which
1883 makes it safe for IEEE floating-point. Of course, we have to recognize
1884 that the target will support them too... */
1886 enum rtx_code
1887 reverse_condition_maybe_unordered (code)
1888 enum rtx_code code;
1890 /* Non-IEEE formats don't have unordered conditions. */
1891 if (TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT)
1892 return reverse_condition (code);
1894 switch (code)
1896 case EQ:
1897 return NE;
1898 case NE:
1899 return EQ;
1900 case GT:
1901 return UNLE;
1902 case GE:
1903 return UNLT;
1904 case LT:
1905 return UNGE;
1906 case LE:
1907 return UNGT;
1908 case LTGT:
1909 return UNEQ;
1910 case UNORDERED:
1911 return ORDERED;
1912 case ORDERED:
1913 return UNORDERED;
1914 case UNLT:
1915 return GE;
1916 case UNLE:
1917 return GT;
1918 case UNGT:
1919 return LE;
1920 case UNGE:
1921 return LT;
1922 case UNEQ:
1923 return LTGT;
1925 default:
1926 abort ();
1930 /* Similar, but return the code when two operands of a comparison are swapped.
1931 This IS safe for IEEE floating-point. */
1933 enum rtx_code
1934 swap_condition (code)
1935 enum rtx_code code;
1937 switch (code)
1939 case EQ:
1940 case NE:
1941 case UNORDERED:
1942 case ORDERED:
1943 case UNEQ:
1944 case LTGT:
1945 return code;
1947 case GT:
1948 return LT;
1949 case GE:
1950 return LE;
1951 case LT:
1952 return GT;
1953 case LE:
1954 return GE;
1955 case GTU:
1956 return LTU;
1957 case GEU:
1958 return LEU;
1959 case LTU:
1960 return GTU;
1961 case LEU:
1962 return GEU;
1963 case UNLT:
1964 return UNGT;
1965 case UNLE:
1966 return UNGE;
1967 case UNGT:
1968 return UNLT;
1969 case UNGE:
1970 return UNLE;
1972 default:
1973 abort ();
1977 /* Given a comparison CODE, return the corresponding unsigned comparison.
1978 If CODE is an equality comparison or already an unsigned comparison,
1979 CODE is returned. */
1981 enum rtx_code
1982 unsigned_condition (code)
1983 enum rtx_code code;
1985 switch (code)
1987 case EQ:
1988 case NE:
1989 case GTU:
1990 case GEU:
1991 case LTU:
1992 case LEU:
1993 return code;
1995 case GT:
1996 return GTU;
1997 case GE:
1998 return GEU;
1999 case LT:
2000 return LTU;
2001 case LE:
2002 return LEU;
2004 default:
2005 abort ();
2009 /* Similarly, return the signed version of a comparison. */
2011 enum rtx_code
2012 signed_condition (code)
2013 enum rtx_code code;
2015 switch (code)
2017 case EQ:
2018 case NE:
2019 case GT:
2020 case GE:
2021 case LT:
2022 case LE:
2023 return code;
2025 case GTU:
2026 return GT;
2027 case GEU:
2028 return GE;
2029 case LTU:
2030 return LT;
2031 case LEU:
2032 return LE;
2034 default:
2035 abort ();
2039 /* Return non-zero if CODE1 is more strict than CODE2, i.e., if the
2040 truth of CODE1 implies the truth of CODE2. */
2043 comparison_dominates_p (code1, code2)
2044 enum rtx_code code1, code2;
2046 /* UNKNOWN comparison codes can happen as a result of trying to revert
2047 comparison codes.
2048 They can't match anything, so we have to reject them here. */
2049 if (code1 == UNKNOWN || code2 == UNKNOWN)
2050 return 0;
2052 if (code1 == code2)
2053 return 1;
2055 switch (code1)
2057 case UNEQ:
2058 if (code2 == UNLE || code2 == UNGE)
2059 return 1;
2060 break;
2062 case EQ:
2063 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
2064 || code2 == ORDERED)
2065 return 1;
2066 break;
2068 case UNLT:
2069 if (code2 == UNLE || code2 == NE)
2070 return 1;
2071 break;
2073 case LT:
2074 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
2075 return 1;
2076 break;
2078 case UNGT:
2079 if (code2 == UNGE || code2 == NE)
2080 return 1;
2081 break;
2083 case GT:
2084 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
2085 return 1;
2086 break;
2088 case GE:
2089 case LE:
2090 if (code2 == ORDERED)
2091 return 1;
2092 break;
2094 case LTGT:
2095 if (code2 == NE || code2 == ORDERED)
2096 return 1;
2097 break;
2099 case LTU:
2100 if (code2 == LEU || code2 == NE)
2101 return 1;
2102 break;
2104 case GTU:
2105 if (code2 == GEU || code2 == NE)
2106 return 1;
2107 break;
2109 case UNORDERED:
2110 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
2111 || code2 == UNGE || code2 == UNGT)
2112 return 1;
2113 break;
2115 default:
2116 break;
2119 return 0;
2122 /* Return 1 if INSN is an unconditional jump and nothing else. */
2125 simplejump_p (insn)
2126 rtx insn;
2128 return (GET_CODE (insn) == JUMP_INSN
2129 && GET_CODE (PATTERN (insn)) == SET
2130 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
2131 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
2134 /* Return nonzero if INSN is a (possibly) conditional jump
2135 and nothing more.
2137 Use this function is deprecated, since we need to support combined
2138 branch and compare insns. Use any_condjump_p instead whenever possible. */
2141 condjump_p (insn)
2142 rtx insn;
2144 register rtx x = PATTERN (insn);
2146 if (GET_CODE (x) != SET
2147 || GET_CODE (SET_DEST (x)) != PC)
2148 return 0;
2150 x = SET_SRC (x);
2151 if (GET_CODE (x) == LABEL_REF)
2152 return 1;
2153 else
2154 return (GET_CODE (x) == IF_THEN_ELSE
2155 && ((GET_CODE (XEXP (x, 2)) == PC
2156 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
2157 || GET_CODE (XEXP (x, 1)) == RETURN))
2158 || (GET_CODE (XEXP (x, 1)) == PC
2159 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
2160 || GET_CODE (XEXP (x, 2)) == RETURN))));
2162 return 0;
2165 /* Return nonzero if INSN is a (possibly) conditional jump inside a
2166 PARALLEL.
2168 Use this function is deprecated, since we need to support combined
2169 branch and compare insns. Use any_condjump_p instead whenever possible. */
2172 condjump_in_parallel_p (insn)
2173 rtx insn;
2175 register rtx x = PATTERN (insn);
2177 if (GET_CODE (x) != PARALLEL)
2178 return 0;
2179 else
2180 x = XVECEXP (x, 0, 0);
2182 if (GET_CODE (x) != SET)
2183 return 0;
2184 if (GET_CODE (SET_DEST (x)) != PC)
2185 return 0;
2186 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
2187 return 1;
2188 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2189 return 0;
2190 if (XEXP (SET_SRC (x), 2) == pc_rtx
2191 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
2192 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
2193 return 1;
2194 if (XEXP (SET_SRC (x), 1) == pc_rtx
2195 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
2196 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
2197 return 1;
2198 return 0;
2201 /* Return set of PC, otherwise NULL. */
2204 pc_set (insn)
2205 rtx insn;
2207 rtx pat;
2208 if (GET_CODE (insn) != JUMP_INSN)
2209 return NULL_RTX;
2210 pat = PATTERN (insn);
2212 /* The set is allowed to appear either as the insn pattern or
2213 the first set in a PARALLEL. */
2214 if (GET_CODE (pat) == PARALLEL)
2215 pat = XVECEXP (pat, 0, 0);
2216 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
2217 return pat;
2219 return NULL_RTX;
2222 /* Return true when insn is an unconditional direct jump,
2223 possibly bundled inside a PARALLEL. */
2226 any_uncondjump_p (insn)
2227 rtx insn;
2229 rtx x = pc_set (insn);
2230 if (!x)
2231 return 0;
2232 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
2233 return 0;
2234 return 1;
2237 /* Return true when insn is a conditional jump. This function works for
2238 instructions containing PC sets in PARALLELs. The instruction may have
2239 various other effects so before removing the jump you must verify
2240 onlyjump_p.
2242 Note that unlike condjump_p it returns false for unconditional jumps. */
2245 any_condjump_p (insn)
2246 rtx insn;
2248 rtx x = pc_set (insn);
2249 enum rtx_code a, b;
2251 if (!x)
2252 return 0;
2253 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
2254 return 0;
2256 a = GET_CODE (XEXP (SET_SRC (x), 1));
2257 b = GET_CODE (XEXP (SET_SRC (x), 2));
2259 return ((b == PC && (a == LABEL_REF || a == RETURN))
2260 || (a == PC && (b == LABEL_REF || b == RETURN)));
2263 /* Return the label of a conditional jump. */
2266 condjump_label (insn)
2267 rtx insn;
2269 rtx x = pc_set (insn);
2271 if (!x)
2272 return NULL_RTX;
2273 x = SET_SRC (x);
2274 if (GET_CODE (x) == LABEL_REF)
2275 return x;
2276 if (GET_CODE (x) != IF_THEN_ELSE)
2277 return NULL_RTX;
2278 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
2279 return XEXP (x, 1);
2280 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
2281 return XEXP (x, 2);
2282 return NULL_RTX;
2285 /* Return true if INSN is a (possibly conditional) return insn. */
2287 static int
2288 returnjump_p_1 (loc, data)
2289 rtx *loc;
2290 void *data ATTRIBUTE_UNUSED;
2292 rtx x = *loc;
2293 return x && GET_CODE (x) == RETURN;
2297 returnjump_p (insn)
2298 rtx insn;
2300 if (GET_CODE (insn) != JUMP_INSN)
2301 return 0;
2302 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
2305 /* Return true if INSN is a jump that only transfers control and
2306 nothing more. */
2309 onlyjump_p (insn)
2310 rtx insn;
2312 rtx set;
2314 if (GET_CODE (insn) != JUMP_INSN)
2315 return 0;
2317 set = single_set (insn);
2318 if (set == NULL)
2319 return 0;
2320 if (GET_CODE (SET_DEST (set)) != PC)
2321 return 0;
2322 if (side_effects_p (SET_SRC (set)))
2323 return 0;
2325 return 1;
2328 #ifdef HAVE_cc0
2330 /* Return 1 if X is an RTX that does nothing but set the condition codes
2331 and CLOBBER or USE registers.
2332 Return -1 if X does explicitly set the condition codes,
2333 but also does other things. */
2336 sets_cc0_p (x)
2337 rtx x ATTRIBUTE_UNUSED;
2339 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
2340 return 1;
2341 if (GET_CODE (x) == PARALLEL)
2343 int i;
2344 int sets_cc0 = 0;
2345 int other_things = 0;
2346 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2348 if (GET_CODE (XVECEXP (x, 0, i)) == SET
2349 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
2350 sets_cc0 = 1;
2351 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
2352 other_things = 1;
2354 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
2356 return 0;
2358 #endif
2360 /* Follow any unconditional jump at LABEL;
2361 return the ultimate label reached by any such chain of jumps.
2362 If LABEL is not followed by a jump, return LABEL.
2363 If the chain loops or we can't find end, return LABEL,
2364 since that tells caller to avoid changing the insn.
2366 If RELOAD_COMPLETED is 0, we do not chain across a NOTE_INSN_LOOP_BEG or
2367 a USE or CLOBBER. */
2370 follow_jumps (label)
2371 rtx label;
2373 register rtx insn;
2374 register rtx next;
2375 register rtx value = label;
2376 register int depth;
2378 for (depth = 0;
2379 (depth < 10
2380 && (insn = next_active_insn (value)) != 0
2381 && GET_CODE (insn) == JUMP_INSN
2382 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
2383 && onlyjump_p (insn))
2384 || GET_CODE (PATTERN (insn)) == RETURN)
2385 && (next = NEXT_INSN (insn))
2386 && GET_CODE (next) == BARRIER);
2387 depth++)
2389 /* Don't chain through the insn that jumps into a loop
2390 from outside the loop,
2391 since that would create multiple loop entry jumps
2392 and prevent loop optimization. */
2393 rtx tem;
2394 if (!reload_completed)
2395 for (tem = value; tem != insn; tem = NEXT_INSN (tem))
2396 if (GET_CODE (tem) == NOTE
2397 && (NOTE_LINE_NUMBER (tem) == NOTE_INSN_LOOP_BEG
2398 /* ??? Optional. Disables some optimizations, but makes
2399 gcov output more accurate with -O. */
2400 || (flag_test_coverage && NOTE_LINE_NUMBER (tem) > 0)))
2401 return value;
2403 /* If we have found a cycle, make the insn jump to itself. */
2404 if (JUMP_LABEL (insn) == label)
2405 return label;
2407 tem = next_active_insn (JUMP_LABEL (insn));
2408 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2409 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2410 break;
2412 value = JUMP_LABEL (insn);
2414 if (depth == 10)
2415 return label;
2416 return value;
2419 /* Assuming that field IDX of X is a vector of label_refs,
2420 replace each of them by the ultimate label reached by it.
2421 Return nonzero if a change is made.
2422 If IGNORE_LOOPS is 0, we do not chain across a NOTE_INSN_LOOP_BEG. */
2424 static int
2425 tension_vector_labels (x, idx)
2426 register rtx x;
2427 register int idx;
2429 int changed = 0;
2430 register int i;
2431 for (i = XVECLEN (x, idx) - 1; i >= 0; i--)
2433 register rtx olabel = XEXP (XVECEXP (x, idx, i), 0);
2434 register rtx nlabel = follow_jumps (olabel);
2435 if (nlabel && nlabel != olabel)
2437 XEXP (XVECEXP (x, idx, i), 0) = nlabel;
2438 ++LABEL_NUSES (nlabel);
2439 if (--LABEL_NUSES (olabel) == 0)
2440 delete_insn (olabel);
2441 changed = 1;
2444 return changed;
2447 /* Find all CODE_LABELs referred to in X, and increment their use counts.
2448 If INSN is a JUMP_INSN and there is at least one CODE_LABEL referenced
2449 in INSN, then store one of them in JUMP_LABEL (INSN).
2450 If INSN is an INSN or a CALL_INSN and there is at least one CODE_LABEL
2451 referenced in INSN, add a REG_LABEL note containing that label to INSN.
2452 Also, when there are consecutive labels, canonicalize on the last of them.
2454 Note that two labels separated by a loop-beginning note
2455 must be kept distinct if we have not yet done loop-optimization,
2456 because the gap between them is where loop-optimize
2457 will want to move invariant code to. CROSS_JUMP tells us
2458 that loop-optimization is done with.
2460 Once reload has completed (CROSS_JUMP non-zero), we need not consider
2461 two labels distinct if they are separated by only USE or CLOBBER insns. */
2463 void
2464 mark_jump_label (x, insn, cross_jump, in_mem)
2465 register rtx x;
2466 rtx insn;
2467 int cross_jump;
2468 int in_mem;
2470 register RTX_CODE code = GET_CODE (x);
2471 register int i;
2472 register const char *fmt;
2474 switch (code)
2476 case PC:
2477 case CC0:
2478 case REG:
2479 case SUBREG:
2480 case CONST_INT:
2481 case CONST_DOUBLE:
2482 case CLOBBER:
2483 case CALL:
2484 return;
2486 case MEM:
2487 in_mem = 1;
2488 break;
2490 case SYMBOL_REF:
2491 if (!in_mem)
2492 return;
2494 /* If this is a constant-pool reference, see if it is a label. */
2495 if (CONSTANT_POOL_ADDRESS_P (x))
2496 mark_jump_label (get_pool_constant (x), insn, cross_jump, in_mem);
2497 break;
2499 case LABEL_REF:
2501 rtx label = XEXP (x, 0);
2502 rtx olabel = label;
2503 rtx note;
2504 rtx next;
2506 /* Ignore remaining references to unreachable labels that
2507 have been deleted. */
2508 if (GET_CODE (label) == NOTE
2509 && NOTE_LINE_NUMBER (label) == NOTE_INSN_DELETED_LABEL)
2510 break;
2512 if (GET_CODE (label) != CODE_LABEL)
2513 abort ();
2515 /* Ignore references to labels of containing functions. */
2516 if (LABEL_REF_NONLOCAL_P (x))
2517 break;
2519 /* If there are other labels following this one,
2520 replace it with the last of the consecutive labels. */
2521 for (next = NEXT_INSN (label); next; next = NEXT_INSN (next))
2523 if (GET_CODE (next) == CODE_LABEL)
2524 label = next;
2525 else if (cross_jump && GET_CODE (next) == INSN
2526 && (GET_CODE (PATTERN (next)) == USE
2527 || GET_CODE (PATTERN (next)) == CLOBBER))
2528 continue;
2529 else if (GET_CODE (next) != NOTE)
2530 break;
2531 else if (! cross_jump
2532 && (NOTE_LINE_NUMBER (next) == NOTE_INSN_LOOP_BEG
2533 || NOTE_LINE_NUMBER (next) == NOTE_INSN_FUNCTION_END
2534 /* ??? Optional. Disables some optimizations, but
2535 makes gcov output more accurate with -O. */
2536 || (flag_test_coverage
2537 && NOTE_LINE_NUMBER (next) > 0)))
2538 break;
2541 XEXP (x, 0) = label;
2542 if (! insn || ! INSN_DELETED_P (insn))
2543 ++LABEL_NUSES (label);
2545 if (insn)
2547 if (GET_CODE (insn) == JUMP_INSN)
2548 JUMP_LABEL (insn) = label;
2550 /* If we've changed OLABEL and we had a REG_LABEL note
2551 for it, update it as well. */
2552 else if (label != olabel
2553 && (note = find_reg_note (insn, REG_LABEL, olabel)) != 0)
2554 XEXP (note, 0) = label;
2556 /* Otherwise, add a REG_LABEL note for LABEL unless there already
2557 is one. */
2558 else if (! find_reg_note (insn, REG_LABEL, label))
2560 /* This code used to ignore labels which refered to dispatch
2561 tables to avoid flow.c generating worse code.
2563 However, in the presense of global optimizations like
2564 gcse which call find_basic_blocks without calling
2565 life_analysis, not recording such labels will lead
2566 to compiler aborts because of inconsistencies in the
2567 flow graph. So we go ahead and record the label.
2569 It may also be the case that the optimization argument
2570 is no longer valid because of the more accurate cfg
2571 we build in find_basic_blocks -- it no longer pessimizes
2572 code when it finds a REG_LABEL note. */
2573 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL, label,
2574 REG_NOTES (insn));
2577 return;
2580 /* Do walk the labels in a vector, but not the first operand of an
2581 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
2582 case ADDR_VEC:
2583 case ADDR_DIFF_VEC:
2584 if (! INSN_DELETED_P (insn))
2586 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
2588 for (i = 0; i < XVECLEN (x, eltnum); i++)
2589 mark_jump_label (XVECEXP (x, eltnum, i), NULL_RTX,
2590 cross_jump, in_mem);
2592 return;
2594 default:
2595 break;
2598 fmt = GET_RTX_FORMAT (code);
2599 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2601 if (fmt[i] == 'e')
2602 mark_jump_label (XEXP (x, i), insn, cross_jump, in_mem);
2603 else if (fmt[i] == 'E')
2605 register int j;
2606 for (j = 0; j < XVECLEN (x, i); j++)
2607 mark_jump_label (XVECEXP (x, i, j), insn, cross_jump, in_mem);
2612 /* If all INSN does is set the pc, delete it,
2613 and delete the insn that set the condition codes for it
2614 if that's what the previous thing was. */
2616 void
2617 delete_jump (insn)
2618 rtx insn;
2620 register rtx set = single_set (insn);
2622 if (set && GET_CODE (SET_DEST (set)) == PC)
2623 delete_computation (insn);
2626 /* Verify INSN is a BARRIER and delete it. */
2628 void
2629 delete_barrier (insn)
2630 rtx insn;
2632 if (GET_CODE (insn) != BARRIER)
2633 abort ();
2635 delete_insn (insn);
2638 /* Recursively delete prior insns that compute the value (used only by INSN
2639 which the caller is deleting) stored in the register mentioned by NOTE
2640 which is a REG_DEAD note associated with INSN. */
2642 static void
2643 delete_prior_computation (note, insn)
2644 rtx note;
2645 rtx insn;
2647 rtx our_prev;
2648 rtx reg = XEXP (note, 0);
2650 for (our_prev = prev_nonnote_insn (insn);
2651 our_prev && (GET_CODE (our_prev) == INSN
2652 || GET_CODE (our_prev) == CALL_INSN);
2653 our_prev = prev_nonnote_insn (our_prev))
2655 rtx pat = PATTERN (our_prev);
2657 /* If we reach a CALL which is not calling a const function
2658 or the callee pops the arguments, then give up. */
2659 if (GET_CODE (our_prev) == CALL_INSN
2660 && (! CONST_CALL_P (our_prev)
2661 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
2662 break;
2664 /* If we reach a SEQUENCE, it is too complex to try to
2665 do anything with it, so give up. */
2666 if (GET_CODE (pat) == SEQUENCE)
2667 break;
2669 if (GET_CODE (pat) == USE
2670 && GET_CODE (XEXP (pat, 0)) == INSN)
2671 /* reorg creates USEs that look like this. We leave them
2672 alone because reorg needs them for its own purposes. */
2673 break;
2675 if (reg_set_p (reg, pat))
2677 if (side_effects_p (pat) && GET_CODE (our_prev) != CALL_INSN)
2678 break;
2680 if (GET_CODE (pat) == PARALLEL)
2682 /* If we find a SET of something else, we can't
2683 delete the insn. */
2685 int i;
2687 for (i = 0; i < XVECLEN (pat, 0); i++)
2689 rtx part = XVECEXP (pat, 0, i);
2691 if (GET_CODE (part) == SET
2692 && SET_DEST (part) != reg)
2693 break;
2696 if (i == XVECLEN (pat, 0))
2697 delete_computation (our_prev);
2699 else if (GET_CODE (pat) == SET
2700 && GET_CODE (SET_DEST (pat)) == REG)
2702 int dest_regno = REGNO (SET_DEST (pat));
2703 int dest_endregno
2704 = (dest_regno
2705 + (dest_regno < FIRST_PSEUDO_REGISTER
2706 ? HARD_REGNO_NREGS (dest_regno,
2707 GET_MODE (SET_DEST (pat))) : 1));
2708 int regno = REGNO (reg);
2709 int endregno
2710 = (regno
2711 + (regno < FIRST_PSEUDO_REGISTER
2712 ? HARD_REGNO_NREGS (regno, GET_MODE (reg)) : 1));
2714 if (dest_regno >= regno
2715 && dest_endregno <= endregno)
2716 delete_computation (our_prev);
2718 /* We may have a multi-word hard register and some, but not
2719 all, of the words of the register are needed in subsequent
2720 insns. Write REG_UNUSED notes for those parts that were not
2721 needed. */
2722 else if (dest_regno <= regno
2723 && dest_endregno >= endregno)
2725 int i;
2727 REG_NOTES (our_prev)
2728 = gen_rtx_EXPR_LIST (REG_UNUSED, reg,
2729 REG_NOTES (our_prev));
2731 for (i = dest_regno; i < dest_endregno; i++)
2732 if (! find_regno_note (our_prev, REG_UNUSED, i))
2733 break;
2735 if (i == dest_endregno)
2736 delete_computation (our_prev);
2740 break;
2743 /* If PAT references the register that dies here, it is an
2744 additional use. Hence any prior SET isn't dead. However, this
2745 insn becomes the new place for the REG_DEAD note. */
2746 if (reg_overlap_mentioned_p (reg, pat))
2748 XEXP (note, 1) = REG_NOTES (our_prev);
2749 REG_NOTES (our_prev) = note;
2750 break;
2755 /* Delete INSN and recursively delete insns that compute values used only
2756 by INSN. This uses the REG_DEAD notes computed during flow analysis.
2757 If we are running before flow.c, we need do nothing since flow.c will
2758 delete dead code. We also can't know if the registers being used are
2759 dead or not at this point.
2761 Otherwise, look at all our REG_DEAD notes. If a previous insn does
2762 nothing other than set a register that dies in this insn, we can delete
2763 that insn as well.
2765 On machines with CC0, if CC0 is used in this insn, we may be able to
2766 delete the insn that set it. */
2768 static void
2769 delete_computation (insn)
2770 rtx insn;
2772 rtx note, next;
2774 #ifdef HAVE_cc0
2775 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2777 rtx prev = prev_nonnote_insn (insn);
2778 /* We assume that at this stage
2779 CC's are always set explicitly
2780 and always immediately before the jump that
2781 will use them. So if the previous insn
2782 exists to set the CC's, delete it
2783 (unless it performs auto-increments, etc.). */
2784 if (prev && GET_CODE (prev) == INSN
2785 && sets_cc0_p (PATTERN (prev)))
2787 if (sets_cc0_p (PATTERN (prev)) > 0
2788 && ! side_effects_p (PATTERN (prev)))
2789 delete_computation (prev);
2790 else
2791 /* Otherwise, show that cc0 won't be used. */
2792 REG_NOTES (prev) = gen_rtx_EXPR_LIST (REG_UNUSED,
2793 cc0_rtx, REG_NOTES (prev));
2796 #endif
2798 for (note = REG_NOTES (insn); note; note = next)
2800 next = XEXP (note, 1);
2802 if (REG_NOTE_KIND (note) != REG_DEAD
2803 /* Verify that the REG_NOTE is legitimate. */
2804 || GET_CODE (XEXP (note, 0)) != REG)
2805 continue;
2807 delete_prior_computation (note, insn);
2810 delete_insn (insn);
2813 /* Delete insn INSN from the chain of insns and update label ref counts.
2814 May delete some following insns as a consequence; may even delete
2815 a label elsewhere and insns that follow it.
2817 Returns the first insn after INSN that was not deleted. */
2820 delete_insn (insn)
2821 register rtx insn;
2823 register rtx next = NEXT_INSN (insn);
2824 register rtx prev = PREV_INSN (insn);
2825 register int was_code_label = (GET_CODE (insn) == CODE_LABEL);
2826 register int dont_really_delete = 0;
2827 rtx note;
2829 while (next && INSN_DELETED_P (next))
2830 next = NEXT_INSN (next);
2832 /* This insn is already deleted => return first following nondeleted. */
2833 if (INSN_DELETED_P (insn))
2834 return next;
2836 if (was_code_label)
2837 remove_node_from_expr_list (insn, &nonlocal_goto_handler_labels);
2839 /* Don't delete user-declared labels. When optimizing, convert them
2840 to special NOTEs instead. When not optimizing, leave them alone. */
2841 if (was_code_label && LABEL_NAME (insn) != 0)
2843 if (optimize)
2845 const char *name = LABEL_NAME (insn);
2846 PUT_CODE (insn, NOTE);
2847 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED_LABEL;
2848 NOTE_SOURCE_FILE (insn) = name;
2851 dont_really_delete = 1;
2853 else
2854 /* Mark this insn as deleted. */
2855 INSN_DELETED_P (insn) = 1;
2857 /* If this is an unconditional jump, delete it from the jump chain. */
2858 if (simplejump_p (insn))
2859 delete_from_jump_chain (insn);
2861 /* If instruction is followed by a barrier,
2862 delete the barrier too. */
2864 if (next != 0 && GET_CODE (next) == BARRIER)
2866 INSN_DELETED_P (next) = 1;
2867 next = NEXT_INSN (next);
2870 /* Patch out INSN (and the barrier if any) */
2872 if (! dont_really_delete)
2874 if (prev)
2876 NEXT_INSN (prev) = next;
2877 if (GET_CODE (prev) == INSN && GET_CODE (PATTERN (prev)) == SEQUENCE)
2878 NEXT_INSN (XVECEXP (PATTERN (prev), 0,
2879 XVECLEN (PATTERN (prev), 0) - 1)) = next;
2882 if (next)
2884 PREV_INSN (next) = prev;
2885 if (GET_CODE (next) == INSN && GET_CODE (PATTERN (next)) == SEQUENCE)
2886 PREV_INSN (XVECEXP (PATTERN (next), 0, 0)) = prev;
2889 if (prev && NEXT_INSN (prev) == 0)
2890 set_last_insn (prev);
2893 /* If deleting a jump, decrement the count of the label,
2894 and delete the label if it is now unused. */
2896 if (GET_CODE (insn) == JUMP_INSN && JUMP_LABEL (insn))
2898 rtx lab = JUMP_LABEL (insn), lab_next;
2900 if (--LABEL_NUSES (lab) == 0)
2902 /* This can delete NEXT or PREV,
2903 either directly if NEXT is JUMP_LABEL (INSN),
2904 or indirectly through more levels of jumps. */
2905 delete_insn (lab);
2907 /* I feel a little doubtful about this loop,
2908 but I see no clean and sure alternative way
2909 to find the first insn after INSN that is not now deleted.
2910 I hope this works. */
2911 while (next && INSN_DELETED_P (next))
2912 next = NEXT_INSN (next);
2913 return next;
2915 else if ((lab_next = next_nonnote_insn (lab)) != NULL
2916 && GET_CODE (lab_next) == JUMP_INSN
2917 && (GET_CODE (PATTERN (lab_next)) == ADDR_VEC
2918 || GET_CODE (PATTERN (lab_next)) == ADDR_DIFF_VEC))
2920 /* If we're deleting the tablejump, delete the dispatch table.
2921 We may not be able to kill the label immediately preceeding
2922 just yet, as it might be referenced in code leading up to
2923 the tablejump. */
2924 delete_insn (lab_next);
2928 /* Likewise if we're deleting a dispatch table. */
2930 if (GET_CODE (insn) == JUMP_INSN
2931 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
2932 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
2934 rtx pat = PATTERN (insn);
2935 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2936 int len = XVECLEN (pat, diff_vec_p);
2938 for (i = 0; i < len; i++)
2939 if (--LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
2940 delete_insn (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
2941 while (next && INSN_DELETED_P (next))
2942 next = NEXT_INSN (next);
2943 return next;
2946 /* Likewise for an ordinary INSN / CALL_INSN with a REG_LABEL note. */
2947 if (GET_CODE (insn) == INSN || GET_CODE (insn) == CALL_INSN)
2948 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2949 if (REG_NOTE_KIND (note) == REG_LABEL
2950 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
2951 && GET_CODE (XEXP (note, 0)) == CODE_LABEL)
2952 if (--LABEL_NUSES (XEXP (note, 0)) == 0)
2953 delete_insn (XEXP (note, 0));
2955 while (prev && (INSN_DELETED_P (prev) || GET_CODE (prev) == NOTE))
2956 prev = PREV_INSN (prev);
2958 /* If INSN was a label and a dispatch table follows it,
2959 delete the dispatch table. The tablejump must have gone already.
2960 It isn't useful to fall through into a table. */
2962 if (was_code_label
2963 && NEXT_INSN (insn) != 0
2964 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
2965 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
2966 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
2967 next = delete_insn (NEXT_INSN (insn));
2969 /* If INSN was a label, delete insns following it if now unreachable. */
2971 if (was_code_label && prev && GET_CODE (prev) == BARRIER)
2973 register RTX_CODE code;
2974 while (next != 0
2975 && (GET_RTX_CLASS (code = GET_CODE (next)) == 'i'
2976 || code == NOTE || code == BARRIER
2977 || (code == CODE_LABEL && INSN_DELETED_P (next))))
2979 if (code == NOTE
2980 && NOTE_LINE_NUMBER (next) != NOTE_INSN_FUNCTION_END)
2981 next = NEXT_INSN (next);
2982 /* Keep going past other deleted labels to delete what follows. */
2983 else if (code == CODE_LABEL && INSN_DELETED_P (next))
2984 next = NEXT_INSN (next);
2985 else
2986 /* Note: if this deletes a jump, it can cause more
2987 deletion of unreachable code, after a different label.
2988 As long as the value from this recursive call is correct,
2989 this invocation functions correctly. */
2990 next = delete_insn (next);
2994 return next;
2997 /* Advance from INSN till reaching something not deleted
2998 then return that. May return INSN itself. */
3001 next_nondeleted_insn (insn)
3002 rtx insn;
3004 while (INSN_DELETED_P (insn))
3005 insn = NEXT_INSN (insn);
3006 return insn;
3009 /* Delete a range of insns from FROM to TO, inclusive.
3010 This is for the sake of peephole optimization, so assume
3011 that whatever these insns do will still be done by a new
3012 peephole insn that will replace them. */
3014 void
3015 delete_for_peephole (from, to)
3016 register rtx from, to;
3018 register rtx insn = from;
3020 while (1)
3022 register rtx next = NEXT_INSN (insn);
3023 register rtx prev = PREV_INSN (insn);
3025 if (GET_CODE (insn) != NOTE)
3027 INSN_DELETED_P (insn) = 1;
3029 /* Patch this insn out of the chain. */
3030 /* We don't do this all at once, because we
3031 must preserve all NOTEs. */
3032 if (prev)
3033 NEXT_INSN (prev) = next;
3035 if (next)
3036 PREV_INSN (next) = prev;
3039 if (insn == to)
3040 break;
3041 insn = next;
3044 /* Note that if TO is an unconditional jump
3045 we *do not* delete the BARRIER that follows,
3046 since the peephole that replaces this sequence
3047 is also an unconditional jump in that case. */
3050 /* We have determined that INSN is never reached, and are about to
3051 delete it. Print a warning if the user asked for one.
3053 To try to make this warning more useful, this should only be called
3054 once per basic block not reached, and it only warns when the basic
3055 block contains more than one line from the current function, and
3056 contains at least one operation. CSE and inlining can duplicate insns,
3057 so it's possible to get spurious warnings from this. */
3059 void
3060 never_reached_warning (avoided_insn)
3061 rtx avoided_insn;
3063 rtx insn;
3064 rtx a_line_note = NULL;
3065 int two_avoided_lines = 0;
3066 int contains_insn = 0;
3068 if (! warn_notreached)
3069 return;
3071 /* Scan forwards, looking at LINE_NUMBER notes, until
3072 we hit a LABEL or we run out of insns. */
3074 for (insn = avoided_insn; insn != NULL; insn = NEXT_INSN (insn))
3076 if (GET_CODE (insn) == CODE_LABEL)
3077 break;
3078 else if (GET_CODE (insn) == NOTE /* A line number note? */
3079 && NOTE_LINE_NUMBER (insn) >= 0)
3081 if (a_line_note == NULL)
3082 a_line_note = insn;
3083 else
3084 two_avoided_lines |= (NOTE_LINE_NUMBER (a_line_note)
3085 != NOTE_LINE_NUMBER (insn));
3087 else if (INSN_P (insn))
3088 contains_insn = 1;
3090 if (two_avoided_lines && contains_insn)
3091 warning_with_file_and_line (NOTE_SOURCE_FILE (a_line_note),
3092 NOTE_LINE_NUMBER (a_line_note),
3093 "will never be executed");
3096 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
3097 NLABEL as a return. Accrue modifications into the change group. */
3099 static void
3100 redirect_exp_1 (loc, olabel, nlabel, insn)
3101 rtx *loc;
3102 rtx olabel, nlabel;
3103 rtx insn;
3105 register rtx x = *loc;
3106 register RTX_CODE code = GET_CODE (x);
3107 register int i;
3108 register const char *fmt;
3110 if (code == LABEL_REF)
3112 if (XEXP (x, 0) == olabel)
3114 rtx n;
3115 if (nlabel)
3116 n = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3117 else
3118 n = gen_rtx_RETURN (VOIDmode);
3120 validate_change (insn, loc, n, 1);
3121 return;
3124 else if (code == RETURN && olabel == 0)
3126 x = gen_rtx_LABEL_REF (VOIDmode, nlabel);
3127 if (loc == &PATTERN (insn))
3128 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
3129 validate_change (insn, loc, x, 1);
3130 return;
3133 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
3134 && GET_CODE (SET_SRC (x)) == LABEL_REF
3135 && XEXP (SET_SRC (x), 0) == olabel)
3137 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
3138 return;
3141 fmt = GET_RTX_FORMAT (code);
3142 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3144 if (fmt[i] == 'e')
3145 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
3146 else if (fmt[i] == 'E')
3148 register int j;
3149 for (j = 0; j < XVECLEN (x, i); j++)
3150 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
3155 /* Similar, but apply the change group and report success or failure. */
3157 static int
3158 redirect_exp (olabel, nlabel, insn)
3159 rtx olabel, nlabel;
3160 rtx insn;
3162 rtx *loc;
3164 if (GET_CODE (PATTERN (insn)) == PARALLEL)
3165 loc = &XVECEXP (PATTERN (insn), 0, 0);
3166 else
3167 loc = &PATTERN (insn);
3169 redirect_exp_1 (loc, olabel, nlabel, insn);
3170 if (num_validated_changes () == 0)
3171 return 0;
3173 return apply_change_group ();
3176 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
3177 the modifications into the change group. Return false if we did
3178 not see how to do that. */
3181 redirect_jump_1 (jump, nlabel)
3182 rtx jump, nlabel;
3184 int ochanges = num_validated_changes ();
3185 rtx *loc;
3187 if (GET_CODE (PATTERN (jump)) == PARALLEL)
3188 loc = &XVECEXP (PATTERN (jump), 0, 0);
3189 else
3190 loc = &PATTERN (jump);
3192 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
3193 return num_validated_changes () > ochanges;
3196 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
3197 jump target label is unused as a result, it and the code following
3198 it may be deleted.
3200 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
3201 RETURN insn.
3203 The return value will be 1 if the change was made, 0 if it wasn't
3204 (this can only occur for NLABEL == 0). */
3207 redirect_jump (jump, nlabel, delete_unused)
3208 rtx jump, nlabel;
3209 int delete_unused;
3211 register rtx olabel = JUMP_LABEL (jump);
3213 if (nlabel == olabel)
3214 return 1;
3216 if (! redirect_exp (olabel, nlabel, jump))
3217 return 0;
3219 /* If this is an unconditional branch, delete it from the jump_chain of
3220 OLABEL and add it to the jump_chain of NLABEL (assuming both labels
3221 have UID's in range and JUMP_CHAIN is valid). */
3222 if (jump_chain && (simplejump_p (jump)
3223 || GET_CODE (PATTERN (jump)) == RETURN))
3225 int label_index = nlabel ? INSN_UID (nlabel) : 0;
3227 delete_from_jump_chain (jump);
3228 if (label_index < max_jump_chain
3229 && INSN_UID (jump) < max_jump_chain)
3231 jump_chain[INSN_UID (jump)] = jump_chain[label_index];
3232 jump_chain[label_index] = jump;
3236 JUMP_LABEL (jump) = nlabel;
3237 if (nlabel)
3238 ++LABEL_NUSES (nlabel);
3240 /* If we're eliding the jump over exception cleanups at the end of a
3241 function, move the function end note so that -Wreturn-type works. */
3242 if (olabel && nlabel
3243 && NEXT_INSN (olabel)
3244 && GET_CODE (NEXT_INSN (olabel)) == NOTE
3245 && NOTE_LINE_NUMBER (NEXT_INSN (olabel)) == NOTE_INSN_FUNCTION_END)
3246 emit_note_after (NOTE_INSN_FUNCTION_END, nlabel);
3248 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused)
3249 delete_insn (olabel);
3251 return 1;
3254 /* Invert the jump condition of rtx X contained in jump insn, INSN.
3255 Accrue the modifications into the change group. */
3257 static void
3258 invert_exp_1 (insn)
3259 rtx insn;
3261 register RTX_CODE code;
3262 rtx x = pc_set (insn);
3264 if (!x)
3265 abort ();
3266 x = SET_SRC (x);
3268 code = GET_CODE (x);
3270 if (code == IF_THEN_ELSE)
3272 register rtx comp = XEXP (x, 0);
3273 register rtx tem;
3274 enum rtx_code reversed_code;
3276 /* We can do this in two ways: The preferable way, which can only
3277 be done if this is not an integer comparison, is to reverse
3278 the comparison code. Otherwise, swap the THEN-part and ELSE-part
3279 of the IF_THEN_ELSE. If we can't do either, fail. */
3281 reversed_code = reversed_comparison_code (comp, insn);
3283 if (reversed_code != UNKNOWN)
3285 validate_change (insn, &XEXP (x, 0),
3286 gen_rtx_fmt_ee (reversed_code,
3287 GET_MODE (comp), XEXP (comp, 0),
3288 XEXP (comp, 1)),
3290 return;
3293 tem = XEXP (x, 1);
3294 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
3295 validate_change (insn, &XEXP (x, 2), tem, 1);
3297 else
3298 abort ();
3301 /* Invert the jump condition of conditional jump insn, INSN.
3303 Return 1 if we can do so, 0 if we cannot find a way to do so that
3304 matches a pattern. */
3306 static int
3307 invert_exp (insn)
3308 rtx insn;
3310 invert_exp_1 (insn);
3311 if (num_validated_changes () == 0)
3312 return 0;
3314 return apply_change_group ();
3317 /* Invert the condition of the jump JUMP, and make it jump to label
3318 NLABEL instead of where it jumps now. Accrue changes into the
3319 change group. Return false if we didn't see how to perform the
3320 inversion and redirection. */
3323 invert_jump_1 (jump, nlabel)
3324 rtx jump, nlabel;
3326 int ochanges;
3328 ochanges = num_validated_changes ();
3329 invert_exp_1 (jump);
3330 if (num_validated_changes () == ochanges)
3331 return 0;
3333 return redirect_jump_1 (jump, nlabel);
3336 /* Invert the condition of the jump JUMP, and make it jump to label
3337 NLABEL instead of where it jumps now. Return true if successful. */
3340 invert_jump (jump, nlabel, delete_unused)
3341 rtx jump, nlabel;
3342 int delete_unused;
3344 /* We have to either invert the condition and change the label or
3345 do neither. Either operation could fail. We first try to invert
3346 the jump. If that succeeds, we try changing the label. If that fails,
3347 we invert the jump back to what it was. */
3349 if (! invert_exp (jump))
3350 return 0;
3352 if (redirect_jump (jump, nlabel, delete_unused))
3354 /* An inverted jump means that a probability taken becomes a
3355 probability not taken. Subtract the branch probability from the
3356 probability base to convert it back to a taken probability. */
3358 rtx note = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3359 if (note)
3360 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
3362 return 1;
3365 if (! invert_exp (jump))
3366 /* This should just be putting it back the way it was. */
3367 abort ();
3369 return 0;
3372 /* Delete the instruction JUMP from any jump chain it might be on. */
3374 static void
3375 delete_from_jump_chain (jump)
3376 rtx jump;
3378 int index;
3379 rtx olabel = JUMP_LABEL (jump);
3381 /* Handle unconditional jumps. */
3382 if (jump_chain && olabel != 0
3383 && INSN_UID (olabel) < max_jump_chain
3384 && simplejump_p (jump))
3385 index = INSN_UID (olabel);
3386 /* Handle return insns. */
3387 else if (jump_chain && GET_CODE (PATTERN (jump)) == RETURN)
3388 index = 0;
3389 else
3390 return;
3392 if (jump_chain[index] == jump)
3393 jump_chain[index] = jump_chain[INSN_UID (jump)];
3394 else
3396 rtx insn;
3398 for (insn = jump_chain[index];
3399 insn != 0;
3400 insn = jump_chain[INSN_UID (insn)])
3401 if (jump_chain[INSN_UID (insn)] == jump)
3403 jump_chain[INSN_UID (insn)] = jump_chain[INSN_UID (jump)];
3404 break;
3409 /* Make jump JUMP jump to label NLABEL, assuming it used to be a tablejump.
3411 If the old jump target label (before the dispatch table) becomes unused,
3412 it and the dispatch table may be deleted. In that case, find the insn
3413 before the jump references that label and delete it and logical successors
3414 too. */
3416 static void
3417 redirect_tablejump (jump, nlabel)
3418 rtx jump, nlabel;
3420 register rtx olabel = JUMP_LABEL (jump);
3421 rtx *notep, note, next;
3423 /* Add this jump to the jump_chain of NLABEL. */
3424 if (jump_chain && INSN_UID (nlabel) < max_jump_chain
3425 && INSN_UID (jump) < max_jump_chain)
3427 jump_chain[INSN_UID (jump)] = jump_chain[INSN_UID (nlabel)];
3428 jump_chain[INSN_UID (nlabel)] = jump;
3431 for (notep = &REG_NOTES (jump), note = *notep; note; note = next)
3433 next = XEXP (note, 1);
3435 if (REG_NOTE_KIND (note) != REG_DEAD
3436 /* Verify that the REG_NOTE is legitimate. */
3437 || GET_CODE (XEXP (note, 0)) != REG
3438 || ! reg_mentioned_p (XEXP (note, 0), PATTERN (jump)))
3439 notep = &XEXP (note, 1);
3440 else
3442 delete_prior_computation (note, jump);
3443 *notep = next;
3447 PATTERN (jump) = gen_jump (nlabel);
3448 JUMP_LABEL (jump) = nlabel;
3449 ++LABEL_NUSES (nlabel);
3450 INSN_CODE (jump) = -1;
3452 if (--LABEL_NUSES (olabel) == 0)
3454 delete_labelref_insn (jump, olabel, 0);
3455 delete_insn (olabel);
3459 /* Find the insn referencing LABEL that is a logical predecessor of INSN.
3460 If we found one, delete it and then delete this insn if DELETE_THIS is
3461 non-zero. Return non-zero if INSN or a predecessor references LABEL. */
3463 static int
3464 delete_labelref_insn (insn, label, delete_this)
3465 rtx insn, label;
3466 int delete_this;
3468 int deleted = 0;
3469 rtx link;
3471 if (GET_CODE (insn) != NOTE
3472 && reg_mentioned_p (label, PATTERN (insn)))
3474 if (delete_this)
3476 delete_insn (insn);
3477 deleted = 1;
3479 else
3480 return 1;
3483 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
3484 if (delete_labelref_insn (XEXP (link, 0), label, 1))
3486 if (delete_this)
3488 delete_insn (insn);
3489 deleted = 1;
3491 else
3492 return 1;
3495 return deleted;
3498 /* Like rtx_equal_p except that it considers two REGs as equal
3499 if they renumber to the same value and considers two commutative
3500 operations to be the same if the order of the operands has been
3501 reversed.
3503 ??? Addition is not commutative on the PA due to the weird implicit
3504 space register selection rules for memory addresses. Therefore, we
3505 don't consider a + b == b + a.
3507 We could/should make this test a little tighter. Possibly only
3508 disabling it on the PA via some backend macro or only disabling this
3509 case when the PLUS is inside a MEM. */
3512 rtx_renumbered_equal_p (x, y)
3513 rtx x, y;
3515 register int i;
3516 register RTX_CODE code = GET_CODE (x);
3517 register const char *fmt;
3519 if (x == y)
3520 return 1;
3522 if ((code == REG || (code == SUBREG && GET_CODE (SUBREG_REG (x)) == REG))
3523 && (GET_CODE (y) == REG || (GET_CODE (y) == SUBREG
3524 && GET_CODE (SUBREG_REG (y)) == REG)))
3526 int reg_x = -1, reg_y = -1;
3527 int byte_x = 0, byte_y = 0;
3529 if (GET_MODE (x) != GET_MODE (y))
3530 return 0;
3532 /* If we haven't done any renumbering, don't
3533 make any assumptions. */
3534 if (reg_renumber == 0)
3535 return rtx_equal_p (x, y);
3537 if (code == SUBREG)
3539 reg_x = REGNO (SUBREG_REG (x));
3540 byte_x = SUBREG_BYTE (x);
3542 if (reg_renumber[reg_x] >= 0)
3544 reg_x = subreg_regno_offset (reg_renumber[reg_x],
3545 GET_MODE (SUBREG_REG (x)),
3546 byte_x,
3547 GET_MODE (x));
3548 byte_x = 0;
3551 else
3553 reg_x = REGNO (x);
3554 if (reg_renumber[reg_x] >= 0)
3555 reg_x = reg_renumber[reg_x];
3558 if (GET_CODE (y) == SUBREG)
3560 reg_y = REGNO (SUBREG_REG (y));
3561 byte_y = SUBREG_BYTE (y);
3563 if (reg_renumber[reg_y] >= 0)
3565 reg_y = subreg_regno_offset (reg_renumber[reg_y],
3566 GET_MODE (SUBREG_REG (y)),
3567 byte_y,
3568 GET_MODE (y));
3569 byte_y = 0;
3572 else
3574 reg_y = REGNO (y);
3575 if (reg_renumber[reg_y] >= 0)
3576 reg_y = reg_renumber[reg_y];
3579 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
3582 /* Now we have disposed of all the cases
3583 in which different rtx codes can match. */
3584 if (code != GET_CODE (y))
3585 return 0;
3587 switch (code)
3589 case PC:
3590 case CC0:
3591 case ADDR_VEC:
3592 case ADDR_DIFF_VEC:
3593 return 0;
3595 case CONST_INT:
3596 return INTVAL (x) == INTVAL (y);
3598 case LABEL_REF:
3599 /* We can't assume nonlocal labels have their following insns yet. */
3600 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
3601 return XEXP (x, 0) == XEXP (y, 0);
3603 /* Two label-refs are equivalent if they point at labels
3604 in the same position in the instruction stream. */
3605 return (next_real_insn (XEXP (x, 0))
3606 == next_real_insn (XEXP (y, 0)));
3608 case SYMBOL_REF:
3609 return XSTR (x, 0) == XSTR (y, 0);
3611 case CODE_LABEL:
3612 /* If we didn't match EQ equality above, they aren't the same. */
3613 return 0;
3615 default:
3616 break;
3619 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
3621 if (GET_MODE (x) != GET_MODE (y))
3622 return 0;
3624 /* For commutative operations, the RTX match if the operand match in any
3625 order. Also handle the simple binary and unary cases without a loop.
3627 ??? Don't consider PLUS a commutative operator; see comments above. */
3628 if ((code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
3629 && code != PLUS)
3630 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3631 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
3632 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
3633 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
3634 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
3635 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
3636 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
3637 else if (GET_RTX_CLASS (code) == '1')
3638 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
3640 /* Compare the elements. If any pair of corresponding elements
3641 fail to match, return 0 for the whole things. */
3643 fmt = GET_RTX_FORMAT (code);
3644 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3646 register int j;
3647 switch (fmt[i])
3649 case 'w':
3650 if (XWINT (x, i) != XWINT (y, i))
3651 return 0;
3652 break;
3654 case 'i':
3655 if (XINT (x, i) != XINT (y, i))
3656 return 0;
3657 break;
3659 case 's':
3660 if (strcmp (XSTR (x, i), XSTR (y, i)))
3661 return 0;
3662 break;
3664 case 'e':
3665 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
3666 return 0;
3667 break;
3669 case 'u':
3670 if (XEXP (x, i) != XEXP (y, i))
3671 return 0;
3672 /* fall through. */
3673 case '0':
3674 break;
3676 case 'E':
3677 if (XVECLEN (x, i) != XVECLEN (y, i))
3678 return 0;
3679 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3680 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
3681 return 0;
3682 break;
3684 default:
3685 abort ();
3688 return 1;
3691 /* If X is a hard register or equivalent to one or a subregister of one,
3692 return the hard register number. If X is a pseudo register that was not
3693 assigned a hard register, return the pseudo register number. Otherwise,
3694 return -1. Any rtx is valid for X. */
3697 true_regnum (x)
3698 rtx x;
3700 if (GET_CODE (x) == REG)
3702 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
3703 return reg_renumber[REGNO (x)];
3704 return REGNO (x);
3706 if (GET_CODE (x) == SUBREG)
3708 int base = true_regnum (SUBREG_REG (x));
3709 if (base >= 0 && base < FIRST_PSEUDO_REGISTER)
3710 return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
3711 GET_MODE (SUBREG_REG (x)),
3712 SUBREG_BYTE (x), GET_MODE (x));
3714 return -1;
3717 /* Optimize code of the form:
3719 for (x = a[i]; x; ...)
3721 for (x = a[i]; x; ...)
3723 foo:
3725 Loop optimize will change the above code into
3727 if (x = a[i])
3728 for (;;)
3729 { ...; if (! (x = ...)) break; }
3730 if (x = a[i])
3731 for (;;)
3732 { ...; if (! (x = ...)) break; }
3733 foo:
3735 In general, if the first test fails, the program can branch
3736 directly to `foo' and skip the second try which is doomed to fail.
3737 We run this after loop optimization and before flow analysis. */
3739 /* When comparing the insn patterns, we track the fact that different
3740 pseudo-register numbers may have been used in each computation.
3741 The following array stores an equivalence -- same_regs[I] == J means
3742 that pseudo register I was used in the first set of tests in a context
3743 where J was used in the second set. We also count the number of such
3744 pending equivalences. If nonzero, the expressions really aren't the
3745 same. */
3747 static int *same_regs;
3749 static int num_same_regs;
3751 /* Track any registers modified between the target of the first jump and
3752 the second jump. They never compare equal. */
3754 static char *modified_regs;
3756 /* Record if memory was modified. */
3758 static int modified_mem;
3760 /* Called via note_stores on each insn between the target of the first
3761 branch and the second branch. It marks any changed registers. */
3763 static void
3764 mark_modified_reg (dest, x, data)
3765 rtx dest;
3766 rtx x ATTRIBUTE_UNUSED;
3767 void *data ATTRIBUTE_UNUSED;
3769 int regno;
3770 unsigned int i;
3772 if (GET_CODE (dest) == SUBREG)
3773 dest = SUBREG_REG (dest);
3775 if (GET_CODE (dest) == MEM)
3776 modified_mem = 1;
3778 if (GET_CODE (dest) != REG)
3779 return;
3781 regno = REGNO (dest);
3782 if (regno >= FIRST_PSEUDO_REGISTER)
3783 modified_regs[regno] = 1;
3784 else
3785 for (i = 0; i < HARD_REGNO_NREGS (regno, GET_MODE (dest)); i++)
3786 modified_regs[regno + i] = 1;
3789 /* F is the first insn in the chain of insns. */
3791 void
3792 thread_jumps (f, max_reg, flag_before_loop)
3793 rtx f;
3794 int max_reg;
3795 int flag_before_loop;
3797 /* Basic algorithm is to find a conditional branch,
3798 the label it may branch to, and the branch after
3799 that label. If the two branches test the same condition,
3800 walk back from both branch paths until the insn patterns
3801 differ, or code labels are hit. If we make it back to
3802 the target of the first branch, then we know that the first branch
3803 will either always succeed or always fail depending on the relative
3804 senses of the two branches. So adjust the first branch accordingly
3805 in this case. */
3807 rtx label, b1, b2, t1, t2;
3808 enum rtx_code code1, code2;
3809 rtx b1op0, b1op1, b2op0, b2op1;
3810 int changed = 1;
3811 int i;
3812 int *all_reset;
3813 enum rtx_code reversed_code1, reversed_code2;
3815 /* Allocate register tables and quick-reset table. */
3816 modified_regs = (char *) xmalloc (max_reg * sizeof (char));
3817 same_regs = (int *) xmalloc (max_reg * sizeof (int));
3818 all_reset = (int *) xmalloc (max_reg * sizeof (int));
3819 for (i = 0; i < max_reg; i++)
3820 all_reset[i] = -1;
3822 while (changed)
3824 changed = 0;
3826 for (b1 = f; b1; b1 = NEXT_INSN (b1))
3828 rtx set;
3829 rtx set2;
3831 /* Get to a candidate branch insn. */
3832 if (GET_CODE (b1) != JUMP_INSN
3833 || ! any_condjump_p (b1) || JUMP_LABEL (b1) == 0)
3834 continue;
3836 memset (modified_regs, 0, max_reg * sizeof (char));
3837 modified_mem = 0;
3839 memcpy (same_regs, all_reset, max_reg * sizeof (int));
3840 num_same_regs = 0;
3842 label = JUMP_LABEL (b1);
3844 /* Look for a branch after the target. Record any registers and
3845 memory modified between the target and the branch. Stop when we
3846 get to a label since we can't know what was changed there. */
3847 for (b2 = NEXT_INSN (label); b2; b2 = NEXT_INSN (b2))
3849 if (GET_CODE (b2) == CODE_LABEL)
3850 break;
3852 else if (GET_CODE (b2) == JUMP_INSN)
3854 /* If this is an unconditional jump and is the only use of
3855 its target label, we can follow it. */
3856 if (any_uncondjump_p (b2)
3857 && onlyjump_p (b2)
3858 && JUMP_LABEL (b2) != 0
3859 && LABEL_NUSES (JUMP_LABEL (b2)) == 1)
3861 b2 = JUMP_LABEL (b2);
3862 continue;
3864 else
3865 break;
3868 if (GET_CODE (b2) != CALL_INSN && GET_CODE (b2) != INSN)
3869 continue;
3871 if (GET_CODE (b2) == CALL_INSN)
3873 modified_mem = 1;
3874 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3875 if (call_used_regs[i] && ! fixed_regs[i]
3876 && i != STACK_POINTER_REGNUM
3877 && i != FRAME_POINTER_REGNUM
3878 && i != HARD_FRAME_POINTER_REGNUM
3879 && i != ARG_POINTER_REGNUM)
3880 modified_regs[i] = 1;
3883 note_stores (PATTERN (b2), mark_modified_reg, NULL);
3886 /* Check the next candidate branch insn from the label
3887 of the first. */
3888 if (b2 == 0
3889 || GET_CODE (b2) != JUMP_INSN
3890 || b2 == b1
3891 || !any_condjump_p (b2)
3892 || !onlyjump_p (b2))
3893 continue;
3894 set = pc_set (b1);
3895 set2 = pc_set (b2);
3897 /* Get the comparison codes and operands, reversing the
3898 codes if appropriate. If we don't have comparison codes,
3899 we can't do anything. */
3900 b1op0 = XEXP (XEXP (SET_SRC (set), 0), 0);
3901 b1op1 = XEXP (XEXP (SET_SRC (set), 0), 1);
3902 code1 = GET_CODE (XEXP (SET_SRC (set), 0));
3903 reversed_code1 = code1;
3904 if (XEXP (SET_SRC (set), 1) == pc_rtx)
3905 code1 = reversed_comparison_code (XEXP (SET_SRC (set), 0), b1);
3906 else
3907 reversed_code1 = reversed_comparison_code (XEXP (SET_SRC (set), 0), b1);
3909 b2op0 = XEXP (XEXP (SET_SRC (set2), 0), 0);
3910 b2op1 = XEXP (XEXP (SET_SRC (set2), 0), 1);
3911 code2 = GET_CODE (XEXP (SET_SRC (set2), 0));
3912 reversed_code2 = code2;
3913 if (XEXP (SET_SRC (set2), 1) == pc_rtx)
3914 code2 = reversed_comparison_code (XEXP (SET_SRC (set2), 0), b2);
3915 else
3916 reversed_code2 = reversed_comparison_code (XEXP (SET_SRC (set2), 0), b2);
3918 /* If they test the same things and knowing that B1 branches
3919 tells us whether or not B2 branches, check if we
3920 can thread the branch. */
3921 if (rtx_equal_for_thread_p (b1op0, b2op0, b2)
3922 && rtx_equal_for_thread_p (b1op1, b2op1, b2)
3923 && (comparison_dominates_p (code1, code2)
3924 || comparison_dominates_p (code1, reversed_code2)))
3927 t1 = prev_nonnote_insn (b1);
3928 t2 = prev_nonnote_insn (b2);
3930 while (t1 != 0 && t2 != 0)
3932 if (t2 == label)
3934 /* We have reached the target of the first branch.
3935 If there are no pending register equivalents,
3936 we know that this branch will either always
3937 succeed (if the senses of the two branches are
3938 the same) or always fail (if not). */
3939 rtx new_label;
3941 if (num_same_regs != 0)
3942 break;
3944 if (comparison_dominates_p (code1, code2))
3945 new_label = JUMP_LABEL (b2);
3946 else
3947 new_label = get_label_after (b2);
3949 if (JUMP_LABEL (b1) != new_label)
3951 rtx prev = PREV_INSN (new_label);
3953 if (flag_before_loop
3954 && GET_CODE (prev) == NOTE
3955 && NOTE_LINE_NUMBER (prev) == NOTE_INSN_LOOP_BEG)
3957 /* Don't thread to the loop label. If a loop
3958 label is reused, loop optimization will
3959 be disabled for that loop. */
3960 new_label = gen_label_rtx ();
3961 emit_label_after (new_label, PREV_INSN (prev));
3963 changed |= redirect_jump (b1, new_label, 1);
3965 break;
3968 /* If either of these is not a normal insn (it might be
3969 a JUMP_INSN, CALL_INSN, or CODE_LABEL) we fail. (NOTEs
3970 have already been skipped above.) Similarly, fail
3971 if the insns are different. */
3972 if (GET_CODE (t1) != INSN || GET_CODE (t2) != INSN
3973 || recog_memoized (t1) != recog_memoized (t2)
3974 || ! rtx_equal_for_thread_p (PATTERN (t1),
3975 PATTERN (t2), t2))
3976 break;
3978 t1 = prev_nonnote_insn (t1);
3979 t2 = prev_nonnote_insn (t2);
3985 /* Clean up. */
3986 free (modified_regs);
3987 free (same_regs);
3988 free (all_reset);
3991 /* This is like RTX_EQUAL_P except that it knows about our handling of
3992 possibly equivalent registers and knows to consider volatile and
3993 modified objects as not equal.
3995 YINSN is the insn containing Y. */
3998 rtx_equal_for_thread_p (x, y, yinsn)
3999 rtx x, y;
4000 rtx yinsn;
4002 register int i;
4003 register int j;
4004 register enum rtx_code code;
4005 register const char *fmt;
4007 code = GET_CODE (x);
4008 /* Rtx's of different codes cannot be equal. */
4009 if (code != GET_CODE (y))
4010 return 0;
4012 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent.
4013 (REG:SI x) and (REG:HI x) are NOT equivalent. */
4015 if (GET_MODE (x) != GET_MODE (y))
4016 return 0;
4018 /* For floating-point, consider everything unequal. This is a bit
4019 pessimistic, but this pass would only rarely do anything for FP
4020 anyway. */
4021 if (TARGET_FLOAT_FORMAT == IEEE_FLOAT_FORMAT
4022 && FLOAT_MODE_P (GET_MODE (x)) && ! flag_unsafe_math_optimizations)
4023 return 0;
4025 /* For commutative operations, the RTX match if the operand match in any
4026 order. Also handle the simple binary and unary cases without a loop. */
4027 if (code == EQ || code == NE || GET_RTX_CLASS (code) == 'c')
4028 return ((rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
4029 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn))
4030 || (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 1), yinsn)
4031 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 0), yinsn)));
4032 else if (GET_RTX_CLASS (code) == '<' || GET_RTX_CLASS (code) == '2')
4033 return (rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn)
4034 && rtx_equal_for_thread_p (XEXP (x, 1), XEXP (y, 1), yinsn));
4035 else if (GET_RTX_CLASS (code) == '1')
4036 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4038 /* Handle special-cases first. */
4039 switch (code)
4041 case REG:
4042 if (REGNO (x) == REGNO (y) && ! modified_regs[REGNO (x)])
4043 return 1;
4045 /* If neither is user variable or hard register, check for possible
4046 equivalence. */
4047 if (REG_USERVAR_P (x) || REG_USERVAR_P (y)
4048 || REGNO (x) < FIRST_PSEUDO_REGISTER
4049 || REGNO (y) < FIRST_PSEUDO_REGISTER)
4050 return 0;
4052 if (same_regs[REGNO (x)] == -1)
4054 same_regs[REGNO (x)] = REGNO (y);
4055 num_same_regs++;
4057 /* If this is the first time we are seeing a register on the `Y'
4058 side, see if it is the last use. If not, we can't thread the
4059 jump, so mark it as not equivalent. */
4060 if (REGNO_LAST_UID (REGNO (y)) != INSN_UID (yinsn))
4061 return 0;
4063 return 1;
4065 else
4066 return (same_regs[REGNO (x)] == (int) REGNO (y));
4068 break;
4070 case MEM:
4071 /* If memory modified or either volatile, not equivalent.
4072 Else, check address. */
4073 if (modified_mem || MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4074 return 0;
4076 return rtx_equal_for_thread_p (XEXP (x, 0), XEXP (y, 0), yinsn);
4078 case ASM_INPUT:
4079 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
4080 return 0;
4082 break;
4084 case SET:
4085 /* Cancel a pending `same_regs' if setting equivalenced registers.
4086 Then process source. */
4087 if (GET_CODE (SET_DEST (x)) == REG
4088 && GET_CODE (SET_DEST (y)) == REG)
4090 if (same_regs[REGNO (SET_DEST (x))] == (int) REGNO (SET_DEST (y)))
4092 same_regs[REGNO (SET_DEST (x))] = -1;
4093 num_same_regs--;
4095 else if (REGNO (SET_DEST (x)) != REGNO (SET_DEST (y)))
4096 return 0;
4098 else
4100 if (rtx_equal_for_thread_p (SET_DEST (x), SET_DEST (y), yinsn) == 0)
4101 return 0;
4104 return rtx_equal_for_thread_p (SET_SRC (x), SET_SRC (y), yinsn);
4106 case LABEL_REF:
4107 return XEXP (x, 0) == XEXP (y, 0);
4109 case SYMBOL_REF:
4110 return XSTR (x, 0) == XSTR (y, 0);
4112 default:
4113 break;
4116 if (x == y)
4117 return 1;
4119 fmt = GET_RTX_FORMAT (code);
4120 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4122 switch (fmt[i])
4124 case 'w':
4125 if (XWINT (x, i) != XWINT (y, i))
4126 return 0;
4127 break;
4129 case 'n':
4130 case 'i':
4131 if (XINT (x, i) != XINT (y, i))
4132 return 0;
4133 break;
4135 case 'V':
4136 case 'E':
4137 /* Two vectors must have the same length. */
4138 if (XVECLEN (x, i) != XVECLEN (y, i))
4139 return 0;
4141 /* And the corresponding elements must match. */
4142 for (j = 0; j < XVECLEN (x, i); j++)
4143 if (rtx_equal_for_thread_p (XVECEXP (x, i, j),
4144 XVECEXP (y, i, j), yinsn) == 0)
4145 return 0;
4146 break;
4148 case 'e':
4149 if (rtx_equal_for_thread_p (XEXP (x, i), XEXP (y, i), yinsn) == 0)
4150 return 0;
4151 break;
4153 case 'S':
4154 case 's':
4155 if (strcmp (XSTR (x, i), XSTR (y, i)))
4156 return 0;
4157 break;
4159 case 'u':
4160 /* These are just backpointers, so they don't matter. */
4161 break;
4163 case '0':
4164 case 't':
4165 break;
4167 /* It is believed that rtx's at this level will never
4168 contain anything but integers and other rtx's,
4169 except for within LABEL_REFs and SYMBOL_REFs. */
4170 default:
4171 abort ();
4174 return 1;