* c-aux-info.c: NULL_PTR->NULL in calls to `concat'.
[official-gcc.git] / gcc / haifa-sched.c
blobd795c2d86d106ba518ddad2b7e46645011bbf60a
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7 This file is part of GNU CC.
9 GNU CC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published by the
11 Free Software Foundation; either version 2, or (at your option) any
12 later version.
14 GNU CC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
19 You should have received a copy of the GNU General Public License
20 along with GNU CC; see the file COPYING. If not, write to the Free
21 the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
24 /* Instruction scheduling pass. This file, along with sched-deps.c,
25 contains the generic parts. The actual entry point is found for
26 the normal instruction scheduling pass is found in sched-rgn.c.
28 We compute insn priorities based on data dependencies. Flow
29 analysis only creates a fraction of the data-dependencies we must
30 observe: namely, only those dependencies which the combiner can be
31 expected to use. For this pass, we must therefore create the
32 remaining dependencies we need to observe: register dependencies,
33 memory dependencies, dependencies to keep function calls in order,
34 and the dependence between a conditional branch and the setting of
35 condition codes are all dealt with here.
37 The scheduler first traverses the data flow graph, starting with
38 the last instruction, and proceeding to the first, assigning values
39 to insn_priority as it goes. This sorts the instructions
40 topologically by data dependence.
42 Once priorities have been established, we order the insns using
43 list scheduling. This works as follows: starting with a list of
44 all the ready insns, and sorted according to priority number, we
45 schedule the insn from the end of the list by placing its
46 predecessors in the list according to their priority order. We
47 consider this insn scheduled by setting the pointer to the "end" of
48 the list to point to the previous insn. When an insn has no
49 predecessors, we either queue it until sufficient time has elapsed
50 or add it to the ready list. As the instructions are scheduled or
51 when stalls are introduced, the queue advances and dumps insns into
52 the ready list. When all insns down to the lowest priority have
53 been scheduled, the critical path of the basic block has been made
54 as short as possible. The remaining insns are then scheduled in
55 remaining slots.
57 Function unit conflicts are resolved during forward list scheduling
58 by tracking the time when each insn is committed to the schedule
59 and from that, the time the function units it uses must be free.
60 As insns on the ready list are considered for scheduling, those
61 that would result in a blockage of the already committed insns are
62 queued until no blockage will result.
64 The following list shows the order in which we want to break ties
65 among insns in the ready list:
67 1. choose insn with the longest path to end of bb, ties
68 broken by
69 2. choose insn with least contribution to register pressure,
70 ties broken by
71 3. prefer in-block upon interblock motion, ties broken by
72 4. prefer useful upon speculative motion, ties broken by
73 5. choose insn with largest control flow probability, ties
74 broken by
75 6. choose insn with the least dependences upon the previously
76 scheduled insn, or finally
77 7 choose the insn which has the most insns dependent on it.
78 8. choose insn with lowest UID.
80 Memory references complicate matters. Only if we can be certain
81 that memory references are not part of the data dependency graph
82 (via true, anti, or output dependence), can we move operations past
83 memory references. To first approximation, reads can be done
84 independently, while writes introduce dependencies. Better
85 approximations will yield fewer dependencies.
87 Before reload, an extended analysis of interblock data dependences
88 is required for interblock scheduling. This is performed in
89 compute_block_backward_dependences ().
91 Dependencies set up by memory references are treated in exactly the
92 same way as other dependencies, by using LOG_LINKS backward
93 dependences. LOG_LINKS are translated into INSN_DEPEND forward
94 dependences for the purpose of forward list scheduling.
96 Having optimized the critical path, we may have also unduly
97 extended the lifetimes of some registers. If an operation requires
98 that constants be loaded into registers, it is certainly desirable
99 to load those constants as early as necessary, but no earlier.
100 I.e., it will not do to load up a bunch of registers at the
101 beginning of a basic block only to use them at the end, if they
102 could be loaded later, since this may result in excessive register
103 utilization.
105 Note that since branches are never in basic blocks, but only end
106 basic blocks, this pass will not move branches. But that is ok,
107 since we can use GNU's delayed branch scheduling pass to take care
108 of this case.
110 Also note that no further optimizations based on algebraic
111 identities are performed, so this pass would be a good one to
112 perform instruction splitting, such as breaking up a multiply
113 instruction into shifts and adds where that is profitable.
115 Given the memory aliasing analysis that this pass should perform,
116 it should be possible to remove redundant stores to memory, and to
117 load values from registers instead of hitting memory.
119 Before reload, speculative insns are moved only if a 'proof' exists
120 that no exception will be caused by this, and if no live registers
121 exist that inhibit the motion (live registers constraints are not
122 represented by data dependence edges).
124 This pass must update information that subsequent passes expect to
125 be correct. Namely: reg_n_refs, reg_n_sets, reg_n_deaths,
126 reg_n_calls_crossed, and reg_live_length. Also, BLOCK_HEAD,
127 BLOCK_END.
129 The information in the line number notes is carefully retained by
130 this pass. Notes that refer to the starting and ending of
131 exception regions are also carefully retained by this pass. All
132 other NOTE insns are grouped in their same relative order at the
133 beginning of basic blocks and regions that have been scheduled. */
135 #include "config.h"
136 #include "system.h"
137 #include "toplev.h"
138 #include "rtl.h"
139 #include "tm_p.h"
140 #include "hard-reg-set.h"
141 #include "basic-block.h"
142 #include "regs.h"
143 #include "function.h"
144 #include "flags.h"
145 #include "insn-config.h"
146 #include "insn-attr.h"
147 #include "except.h"
148 #include "toplev.h"
149 #include "recog.h"
150 #include "sched-int.h"
152 #ifdef INSN_SCHEDULING
154 /* issue_rate is the number of insns that can be scheduled in the same
155 machine cycle. It can be defined in the config/mach/mach.h file,
156 otherwise we set it to 1. */
158 static int issue_rate;
160 #ifndef ISSUE_RATE
161 #define ISSUE_RATE 1
162 #endif
164 /* sched-verbose controls the amount of debugging output the
165 scheduler prints. It is controlled by -fsched-verbose=N:
166 N>0 and no -DSR : the output is directed to stderr.
167 N>=10 will direct the printouts to stderr (regardless of -dSR).
168 N=1: same as -dSR.
169 N=2: bb's probabilities, detailed ready list info, unit/insn info.
170 N=3: rtl at abort point, control-flow, regions info.
171 N=5: dependences info. */
173 static int sched_verbose_param = 0;
174 int sched_verbose = 0;
176 /* Debugging file. All printouts are sent to dump, which is always set,
177 either to stderr, or to the dump listing file (-dRS). */
178 FILE *sched_dump = 0;
180 /* Highest uid before scheduling. */
181 static int old_max_uid;
183 /* fix_sched_param() is called from toplev.c upon detection
184 of the -fsched-verbose=N option. */
186 void
187 fix_sched_param (param, val)
188 const char *param, *val;
190 if (!strcmp (param, "verbose"))
191 sched_verbose_param = atoi (val);
192 else
193 warning ("fix_sched_param: unknown param: %s", param);
196 struct haifa_insn_data *h_i_d;
198 #define DONE_PRIORITY -1
199 #define MAX_PRIORITY 0x7fffffff
200 #define TAIL_PRIORITY 0x7ffffffe
201 #define LAUNCH_PRIORITY 0x7f000001
202 #define DONE_PRIORITY_P(INSN) (INSN_PRIORITY (INSN) < 0)
203 #define LOW_PRIORITY_P(INSN) ((INSN_PRIORITY (INSN) & 0x7f000000) == 0)
205 #define LINE_NOTE(INSN) (h_i_d[INSN_UID (INSN)].line_note)
206 #define INSN_TICK(INSN) (h_i_d[INSN_UID (INSN)].tick)
208 /* Vector indexed by basic block number giving the starting line-number
209 for each basic block. */
210 static rtx *line_note_head;
212 /* List of important notes we must keep around. This is a pointer to the
213 last element in the list. */
214 static rtx note_list;
216 /* Queues, etc. */
218 /* An instruction is ready to be scheduled when all insns preceding it
219 have already been scheduled. It is important to ensure that all
220 insns which use its result will not be executed until its result
221 has been computed. An insn is maintained in one of four structures:
223 (P) the "Pending" set of insns which cannot be scheduled until
224 their dependencies have been satisfied.
225 (Q) the "Queued" set of insns that can be scheduled when sufficient
226 time has passed.
227 (R) the "Ready" list of unscheduled, uncommitted insns.
228 (S) the "Scheduled" list of insns.
230 Initially, all insns are either "Pending" or "Ready" depending on
231 whether their dependencies are satisfied.
233 Insns move from the "Ready" list to the "Scheduled" list as they
234 are committed to the schedule. As this occurs, the insns in the
235 "Pending" list have their dependencies satisfied and move to either
236 the "Ready" list or the "Queued" set depending on whether
237 sufficient time has passed to make them ready. As time passes,
238 insns move from the "Queued" set to the "Ready" list. Insns may
239 move from the "Ready" list to the "Queued" set if they are blocked
240 due to a function unit conflict.
242 The "Pending" list (P) are the insns in the INSN_DEPEND of the unscheduled
243 insns, i.e., those that are ready, queued, and pending.
244 The "Queued" set (Q) is implemented by the variable `insn_queue'.
245 The "Ready" list (R) is implemented by the variables `ready' and
246 `n_ready'.
247 The "Scheduled" list (S) is the new insn chain built by this pass.
249 The transition (R->S) is implemented in the scheduling loop in
250 `schedule_block' when the best insn to schedule is chosen.
251 The transition (R->Q) is implemented in `queue_insn' when an
252 insn is found to have a function unit conflict with the already
253 committed insns.
254 The transitions (P->R and P->Q) are implemented in `schedule_insn' as
255 insns move from the ready list to the scheduled list.
256 The transition (Q->R) is implemented in 'queue_to_insn' as time
257 passes or stalls are introduced. */
259 /* Implement a circular buffer to delay instructions until sufficient
260 time has passed. INSN_QUEUE_SIZE is a power of two larger than
261 MAX_BLOCKAGE and MAX_READY_COST computed by genattr.c. This is the
262 longest time an isnsn may be queued. */
263 static rtx insn_queue[INSN_QUEUE_SIZE];
264 static int q_ptr = 0;
265 static int q_size = 0;
266 #define NEXT_Q(X) (((X)+1) & (INSN_QUEUE_SIZE-1))
267 #define NEXT_Q_AFTER(X, C) (((X)+C) & (INSN_QUEUE_SIZE-1))
269 /* Describe the ready list of the scheduler.
270 VEC holds space enough for all insns in the current region. VECLEN
271 says how many exactly.
272 FIRST is the index of the element with the highest priority; i.e. the
273 last one in the ready list, since elements are ordered by ascending
274 priority.
275 N_READY determines how many insns are on the ready list. */
277 struct ready_list
279 rtx *vec;
280 int veclen;
281 int first;
282 int n_ready;
285 /* Forward declarations. */
286 static unsigned int blockage_range PARAMS ((int, rtx));
287 static void clear_units PARAMS ((void));
288 static void schedule_unit PARAMS ((int, rtx, int));
289 static int actual_hazard PARAMS ((int, rtx, int, int));
290 static int potential_hazard PARAMS ((int, rtx, int));
291 static int priority PARAMS ((rtx));
292 static int rank_for_schedule PARAMS ((const PTR, const PTR));
293 static void swap_sort PARAMS ((rtx *, int));
294 static void queue_insn PARAMS ((rtx, int));
295 static void schedule_insn PARAMS ((rtx, struct ready_list *, int));
296 static void find_insn_reg_weight PARAMS ((int));
297 static void adjust_priority PARAMS ((rtx));
299 /* Notes handling mechanism:
300 =========================
301 Generally, NOTES are saved before scheduling and restored after scheduling.
302 The scheduler distinguishes between three types of notes:
304 (1) LINE_NUMBER notes, generated and used for debugging. Here,
305 before scheduling a region, a pointer to the LINE_NUMBER note is
306 added to the insn following it (in save_line_notes()), and the note
307 is removed (in rm_line_notes() and unlink_line_notes()). After
308 scheduling the region, this pointer is used for regeneration of
309 the LINE_NUMBER note (in restore_line_notes()).
311 (2) LOOP_BEGIN, LOOP_END, SETJMP, EHREGION_BEG, EHREGION_END notes:
312 Before scheduling a region, a pointer to the note is added to the insn
313 that follows or precedes it. (This happens as part of the data dependence
314 computation). After scheduling an insn, the pointer contained in it is
315 used for regenerating the corresponding note (in reemit_notes).
317 (3) All other notes (e.g. INSN_DELETED): Before scheduling a block,
318 these notes are put in a list (in rm_other_notes() and
319 unlink_other_notes ()). After scheduling the block, these notes are
320 inserted at the beginning of the block (in schedule_block()). */
322 static rtx unlink_other_notes PARAMS ((rtx, rtx));
323 static rtx unlink_line_notes PARAMS ((rtx, rtx));
324 static rtx reemit_notes PARAMS ((rtx, rtx));
326 static rtx *ready_lastpos PARAMS ((struct ready_list *));
327 static void ready_sort PARAMS ((struct ready_list *));
328 static rtx ready_remove_first PARAMS ((struct ready_list *));
330 static void queue_to_ready PARAMS ((struct ready_list *));
332 static void debug_ready_list PARAMS ((struct ready_list *));
334 static rtx move_insn1 PARAMS ((rtx, rtx));
335 static rtx move_insn PARAMS ((rtx, rtx));
337 #endif /* INSN_SCHEDULING */
339 /* Point to state used for the current scheduling pass. */
340 struct sched_info *current_sched_info;
342 #ifndef INSN_SCHEDULING
343 void
344 schedule_insns (dump_file)
345 FILE *dump_file ATTRIBUTE_UNUSED;
348 #else
350 /* Pointer to the last instruction scheduled. Used by rank_for_schedule,
351 so that insns independent of the last scheduled insn will be preferred
352 over dependent instructions. */
354 static rtx last_scheduled_insn;
356 /* Compute the function units used by INSN. This caches the value
357 returned by function_units_used. A function unit is encoded as the
358 unit number if the value is non-negative and the compliment of a
359 mask if the value is negative. A function unit index is the
360 non-negative encoding. */
362 HAIFA_INLINE int
363 insn_unit (insn)
364 rtx insn;
366 register int unit = INSN_UNIT (insn);
368 if (unit == 0)
370 recog_memoized (insn);
372 /* A USE insn, or something else we don't need to understand.
373 We can't pass these directly to function_units_used because it will
374 trigger a fatal error for unrecognizable insns. */
375 if (INSN_CODE (insn) < 0)
376 unit = -1;
377 else
379 unit = function_units_used (insn);
380 /* Increment non-negative values so we can cache zero. */
381 if (unit >= 0)
382 unit++;
384 /* We only cache 16 bits of the result, so if the value is out of
385 range, don't cache it. */
386 if (FUNCTION_UNITS_SIZE < HOST_BITS_PER_SHORT
387 || unit >= 0
388 || (unit & ~((1 << (HOST_BITS_PER_SHORT - 1)) - 1)) == 0)
389 INSN_UNIT (insn) = unit;
391 return (unit > 0 ? unit - 1 : unit);
394 /* Compute the blockage range for executing INSN on UNIT. This caches
395 the value returned by the blockage_range_function for the unit.
396 These values are encoded in an int where the upper half gives the
397 minimum value and the lower half gives the maximum value. */
399 HAIFA_INLINE static unsigned int
400 blockage_range (unit, insn)
401 int unit;
402 rtx insn;
404 unsigned int blockage = INSN_BLOCKAGE (insn);
405 unsigned int range;
407 if ((int) UNIT_BLOCKED (blockage) != unit + 1)
409 range = function_units[unit].blockage_range_function (insn);
410 /* We only cache the blockage range for one unit and then only if
411 the values fit. */
412 if (HOST_BITS_PER_INT >= UNIT_BITS + 2 * BLOCKAGE_BITS)
413 INSN_BLOCKAGE (insn) = ENCODE_BLOCKAGE (unit + 1, range);
415 else
416 range = BLOCKAGE_RANGE (blockage);
418 return range;
421 /* A vector indexed by function unit instance giving the last insn to use
422 the unit. The value of the function unit instance index for unit U
423 instance I is (U + I * FUNCTION_UNITS_SIZE). */
424 static rtx unit_last_insn[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
426 /* A vector indexed by function unit instance giving the minimum time when
427 the unit will unblock based on the maximum blockage cost. */
428 static int unit_tick[FUNCTION_UNITS_SIZE * MAX_MULTIPLICITY];
430 /* A vector indexed by function unit number giving the number of insns
431 that remain to use the unit. */
432 static int unit_n_insns[FUNCTION_UNITS_SIZE];
434 /* Access the unit_last_insn array. Used by the visualization code. */
437 get_unit_last_insn (instance)
438 int instance;
440 return unit_last_insn[instance];
443 /* Reset the function unit state to the null state. */
445 static void
446 clear_units ()
448 memset ((char *) unit_last_insn, 0, sizeof (unit_last_insn));
449 memset ((char *) unit_tick, 0, sizeof (unit_tick));
450 memset ((char *) unit_n_insns, 0, sizeof (unit_n_insns));
453 /* Return the issue-delay of an insn. */
455 HAIFA_INLINE int
456 insn_issue_delay (insn)
457 rtx insn;
459 int i, delay = 0;
460 int unit = insn_unit (insn);
462 /* Efficiency note: in fact, we are working 'hard' to compute a
463 value that was available in md file, and is not available in
464 function_units[] structure. It would be nice to have this
465 value there, too. */
466 if (unit >= 0)
468 if (function_units[unit].blockage_range_function &&
469 function_units[unit].blockage_function)
470 delay = function_units[unit].blockage_function (insn, insn);
472 else
473 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
474 if ((unit & 1) != 0 && function_units[i].blockage_range_function
475 && function_units[i].blockage_function)
476 delay = MAX (delay, function_units[i].blockage_function (insn, insn));
478 return delay;
481 /* Return the actual hazard cost of executing INSN on the unit UNIT,
482 instance INSTANCE at time CLOCK if the previous actual hazard cost
483 was COST. */
485 HAIFA_INLINE int
486 actual_hazard_this_instance (unit, instance, insn, clock, cost)
487 int unit, instance, clock, cost;
488 rtx insn;
490 int tick = unit_tick[instance]; /* Issue time of the last issued insn. */
492 if (tick - clock > cost)
494 /* The scheduler is operating forward, so unit's last insn is the
495 executing insn and INSN is the candidate insn. We want a
496 more exact measure of the blockage if we execute INSN at CLOCK
497 given when we committed the execution of the unit's last insn.
499 The blockage value is given by either the unit's max blockage
500 constant, blockage range function, or blockage function. Use
501 the most exact form for the given unit. */
503 if (function_units[unit].blockage_range_function)
505 if (function_units[unit].blockage_function)
506 tick += (function_units[unit].blockage_function
507 (unit_last_insn[instance], insn)
508 - function_units[unit].max_blockage);
509 else
510 tick += ((int) MAX_BLOCKAGE_COST (blockage_range (unit, insn))
511 - function_units[unit].max_blockage);
513 if (tick - clock > cost)
514 cost = tick - clock;
516 return cost;
519 /* Record INSN as having begun execution on the units encoded by UNIT at
520 time CLOCK. */
522 HAIFA_INLINE static void
523 schedule_unit (unit, insn, clock)
524 int unit, clock;
525 rtx insn;
527 int i;
529 if (unit >= 0)
531 int instance = unit;
532 #if MAX_MULTIPLICITY > 1
533 /* Find the first free instance of the function unit and use that
534 one. We assume that one is free. */
535 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
537 if (!actual_hazard_this_instance (unit, instance, insn, clock, 0))
538 break;
539 instance += FUNCTION_UNITS_SIZE;
541 #endif
542 unit_last_insn[instance] = insn;
543 unit_tick[instance] = (clock + function_units[unit].max_blockage);
545 else
546 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
547 if ((unit & 1) != 0)
548 schedule_unit (i, insn, clock);
551 /* Return the actual hazard cost of executing INSN on the units encoded by
552 UNIT at time CLOCK if the previous actual hazard cost was COST. */
554 HAIFA_INLINE static int
555 actual_hazard (unit, insn, clock, cost)
556 int unit, clock, cost;
557 rtx insn;
559 int i;
561 if (unit >= 0)
563 /* Find the instance of the function unit with the minimum hazard. */
564 int instance = unit;
565 int best_cost = actual_hazard_this_instance (unit, instance, insn,
566 clock, cost);
567 #if MAX_MULTIPLICITY > 1
568 int this_cost;
570 if (best_cost > cost)
572 for (i = function_units[unit].multiplicity - 1; i > 0; i--)
574 instance += FUNCTION_UNITS_SIZE;
575 this_cost = actual_hazard_this_instance (unit, instance, insn,
576 clock, cost);
577 if (this_cost < best_cost)
579 best_cost = this_cost;
580 if (this_cost <= cost)
581 break;
585 #endif
586 cost = MAX (cost, best_cost);
588 else
589 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
590 if ((unit & 1) != 0)
591 cost = actual_hazard (i, insn, clock, cost);
593 return cost;
596 /* Return the potential hazard cost of executing an instruction on the
597 units encoded by UNIT if the previous potential hazard cost was COST.
598 An insn with a large blockage time is chosen in preference to one
599 with a smaller time; an insn that uses a unit that is more likely
600 to be used is chosen in preference to one with a unit that is less
601 used. We are trying to minimize a subsequent actual hazard. */
603 HAIFA_INLINE static int
604 potential_hazard (unit, insn, cost)
605 int unit, cost;
606 rtx insn;
608 int i, ncost;
609 unsigned int minb, maxb;
611 if (unit >= 0)
613 minb = maxb = function_units[unit].max_blockage;
614 if (maxb > 1)
616 if (function_units[unit].blockage_range_function)
618 maxb = minb = blockage_range (unit, insn);
619 maxb = MAX_BLOCKAGE_COST (maxb);
620 minb = MIN_BLOCKAGE_COST (minb);
623 if (maxb > 1)
625 /* Make the number of instructions left dominate. Make the
626 minimum delay dominate the maximum delay. If all these
627 are the same, use the unit number to add an arbitrary
628 ordering. Other terms can be added. */
629 ncost = minb * 0x40 + maxb;
630 ncost *= (unit_n_insns[unit] - 1) * 0x1000 + unit;
631 if (ncost > cost)
632 cost = ncost;
636 else
637 for (i = 0, unit = ~unit; unit; i++, unit >>= 1)
638 if ((unit & 1) != 0)
639 cost = potential_hazard (i, insn, cost);
641 return cost;
644 /* Compute cost of executing INSN given the dependence LINK on the insn USED.
645 This is the number of cycles between instruction issue and
646 instruction results. */
648 HAIFA_INLINE int
649 insn_cost (insn, link, used)
650 rtx insn, link, used;
652 register int cost = INSN_COST (insn);
654 if (cost == 0)
656 recog_memoized (insn);
658 /* A USE insn, or something else we don't need to understand.
659 We can't pass these directly to result_ready_cost because it will
660 trigger a fatal error for unrecognizable insns. */
661 if (INSN_CODE (insn) < 0)
663 INSN_COST (insn) = 1;
664 return 1;
666 else
668 cost = result_ready_cost (insn);
670 if (cost < 1)
671 cost = 1;
673 INSN_COST (insn) = cost;
677 /* In this case estimate cost without caring how insn is used. */
678 if (link == 0 && used == 0)
679 return cost;
681 /* A USE insn should never require the value used to be computed. This
682 allows the computation of a function's result and parameter values to
683 overlap the return and call. */
684 recog_memoized (used);
685 if (INSN_CODE (used) < 0)
686 LINK_COST_FREE (link) = 1;
688 /* If some dependencies vary the cost, compute the adjustment. Most
689 commonly, the adjustment is complete: either the cost is ignored
690 (in the case of an output- or anti-dependence), or the cost is
691 unchanged. These values are cached in the link as LINK_COST_FREE
692 and LINK_COST_ZERO. */
694 if (LINK_COST_FREE (link))
695 cost = 0;
696 #ifdef ADJUST_COST
697 else if (!LINK_COST_ZERO (link))
699 int ncost = cost;
701 ADJUST_COST (used, link, insn, ncost);
702 if (ncost < 1)
704 LINK_COST_FREE (link) = 1;
705 ncost = 0;
707 if (cost == ncost)
708 LINK_COST_ZERO (link) = 1;
709 cost = ncost;
711 #endif
712 return cost;
715 /* Compute the priority number for INSN. */
717 static int
718 priority (insn)
719 rtx insn;
721 rtx link;
723 if (! INSN_P (insn))
724 return 0;
726 if (! INSN_PRIORITY_KNOWN (insn))
728 int this_priority = 0;
730 if (INSN_DEPEND (insn) == 0)
731 this_priority = insn_cost (insn, 0, 0);
732 else
734 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
736 rtx next;
737 int next_priority;
739 if (RTX_INTEGRATED_P (link))
740 continue;
742 next = XEXP (link, 0);
744 /* Critical path is meaningful in block boundaries only. */
745 if (! (*current_sched_info->contributes_to_priority) (next, insn))
746 continue;
748 next_priority = insn_cost (insn, link, next) + priority (next);
749 if (next_priority > this_priority)
750 this_priority = next_priority;
753 INSN_PRIORITY (insn) = this_priority;
754 INSN_PRIORITY_KNOWN (insn) = 1;
757 return INSN_PRIORITY (insn);
760 /* Macros and functions for keeping the priority queue sorted, and
761 dealing with queueing and dequeueing of instructions. */
763 #define SCHED_SORT(READY, N_READY) \
764 do { if ((N_READY) == 2) \
765 swap_sort (READY, N_READY); \
766 else if ((N_READY) > 2) \
767 qsort (READY, N_READY, sizeof (rtx), rank_for_schedule); } \
768 while (0)
770 /* Returns a positive value if x is preferred; returns a negative value if
771 y is preferred. Should never return 0, since that will make the sort
772 unstable. */
774 static int
775 rank_for_schedule (x, y)
776 const PTR x;
777 const PTR y;
779 rtx tmp = *(const rtx *) y;
780 rtx tmp2 = *(const rtx *) x;
781 rtx link;
782 int tmp_class, tmp2_class, depend_count1, depend_count2;
783 int val, priority_val, weight_val, info_val;
785 /* Prefer insn with higher priority. */
786 priority_val = INSN_PRIORITY (tmp2) - INSN_PRIORITY (tmp);
787 if (priority_val)
788 return priority_val;
790 /* Prefer an insn with smaller contribution to registers-pressure. */
791 if (!reload_completed &&
792 (weight_val = INSN_REG_WEIGHT (tmp) - INSN_REG_WEIGHT (tmp2)))
793 return (weight_val);
795 info_val = (*current_sched_info->rank) (tmp, tmp2);
796 if (info_val)
797 return info_val;
799 /* Compare insns based on their relation to the last-scheduled-insn. */
800 if (last_scheduled_insn)
802 /* Classify the instructions into three classes:
803 1) Data dependent on last schedule insn.
804 2) Anti/Output dependent on last scheduled insn.
805 3) Independent of last scheduled insn, or has latency of one.
806 Choose the insn from the highest numbered class if different. */
807 link = find_insn_list (tmp, INSN_DEPEND (last_scheduled_insn));
808 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp) == 1)
809 tmp_class = 3;
810 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
811 tmp_class = 1;
812 else
813 tmp_class = 2;
815 link = find_insn_list (tmp2, INSN_DEPEND (last_scheduled_insn));
816 if (link == 0 || insn_cost (last_scheduled_insn, link, tmp2) == 1)
817 tmp2_class = 3;
818 else if (REG_NOTE_KIND (link) == 0) /* Data dependence. */
819 tmp2_class = 1;
820 else
821 tmp2_class = 2;
823 if ((val = tmp2_class - tmp_class))
824 return val;
827 /* Prefer the insn which has more later insns that depend on it.
828 This gives the scheduler more freedom when scheduling later
829 instructions at the expense of added register pressure. */
830 depend_count1 = 0;
831 for (link = INSN_DEPEND (tmp); link; link = XEXP (link, 1))
832 depend_count1++;
834 depend_count2 = 0;
835 for (link = INSN_DEPEND (tmp2); link; link = XEXP (link, 1))
836 depend_count2++;
838 val = depend_count2 - depend_count1;
839 if (val)
840 return val;
842 /* If insns are equally good, sort by INSN_LUID (original insn order),
843 so that we make the sort stable. This minimizes instruction movement,
844 thus minimizing sched's effect on debugging and cross-jumping. */
845 return INSN_LUID (tmp) - INSN_LUID (tmp2);
848 /* Resort the array A in which only element at index N may be out of order. */
850 HAIFA_INLINE static void
851 swap_sort (a, n)
852 rtx *a;
853 int n;
855 rtx insn = a[n - 1];
856 int i = n - 2;
858 while (i >= 0 && rank_for_schedule (a + i, &insn) >= 0)
860 a[i + 1] = a[i];
861 i -= 1;
863 a[i + 1] = insn;
866 /* Add INSN to the insn queue so that it can be executed at least
867 N_CYCLES after the currently executing insn. Preserve insns
868 chain for debugging purposes. */
870 HAIFA_INLINE static void
871 queue_insn (insn, n_cycles)
872 rtx insn;
873 int n_cycles;
875 int next_q = NEXT_Q_AFTER (q_ptr, n_cycles);
876 rtx link = alloc_INSN_LIST (insn, insn_queue[next_q]);
877 insn_queue[next_q] = link;
878 q_size += 1;
880 if (sched_verbose >= 2)
882 fprintf (sched_dump, ";;\t\tReady-->Q: insn %s: ",
883 (*current_sched_info->print_insn) (insn, 0));
885 fprintf (sched_dump, "queued for %d cycles.\n", n_cycles);
889 /* Return a pointer to the bottom of the ready list, i.e. the insn
890 with the lowest priority. */
892 HAIFA_INLINE static rtx *
893 ready_lastpos (ready)
894 struct ready_list *ready;
896 if (ready->n_ready == 0)
897 abort ();
898 return ready->vec + ready->first - ready->n_ready + 1;
901 /* Add an element INSN to the ready list so that it ends up with the lowest
902 priority. */
904 HAIFA_INLINE void
905 ready_add (ready, insn)
906 struct ready_list *ready;
907 rtx insn;
909 if (ready->first == ready->n_ready)
911 memmove (ready->vec + ready->veclen - ready->n_ready,
912 ready_lastpos (ready),
913 ready->n_ready * sizeof (rtx));
914 ready->first = ready->veclen - 1;
916 ready->vec[ready->first - ready->n_ready] = insn;
917 ready->n_ready++;
920 /* Remove the element with the highest priority from the ready list and
921 return it. */
923 HAIFA_INLINE static rtx
924 ready_remove_first (ready)
925 struct ready_list *ready;
927 rtx t;
928 if (ready->n_ready == 0)
929 abort ();
930 t = ready->vec[ready->first--];
931 ready->n_ready--;
932 /* If the queue becomes empty, reset it. */
933 if (ready->n_ready == 0)
934 ready->first = ready->veclen - 1;
935 return t;
938 /* Sort the ready list READY by ascending priority, using the SCHED_SORT
939 macro. */
941 HAIFA_INLINE static void
942 ready_sort (ready)
943 struct ready_list *ready;
945 rtx *first = ready_lastpos (ready);
946 SCHED_SORT (first, ready->n_ready);
949 /* PREV is an insn that is ready to execute. Adjust its priority if that
950 will help shorten or lengthen register lifetimes as appropriate. Also
951 provide a hook for the target to tweek itself. */
953 HAIFA_INLINE static void
954 adjust_priority (prev)
955 rtx prev ATTRIBUTE_UNUSED;
957 /* ??? There used to be code here to try and estimate how an insn
958 affected register lifetimes, but it did it by looking at REG_DEAD
959 notes, which we removed in schedule_region. Nor did it try to
960 take into account register pressure or anything useful like that.
962 Revisit when we have a machine model to work with and not before. */
964 #ifdef ADJUST_PRIORITY
965 ADJUST_PRIORITY (prev);
966 #endif
969 /* Clock at which the previous instruction was issued. */
970 static int last_clock_var;
972 /* INSN is the "currently executing insn". Launch each insn which was
973 waiting on INSN. READY is the ready list which contains the insns
974 that are ready to fire. CLOCK is the current cycle.
977 static void
978 schedule_insn (insn, ready, clock)
979 rtx insn;
980 struct ready_list *ready;
981 int clock;
983 rtx link;
984 int unit;
986 unit = insn_unit (insn);
988 if (sched_verbose >= 2)
990 fprintf (sched_dump, ";;\t\t--> scheduling insn <<<%d>>> on unit ",
991 INSN_UID (insn));
992 insn_print_units (insn);
993 fprintf (sched_dump, "\n");
996 if (sched_verbose && unit == -1)
997 visualize_no_unit (insn);
999 if (MAX_BLOCKAGE > 1 || issue_rate > 1 || sched_verbose)
1000 schedule_unit (unit, insn, clock);
1002 if (INSN_DEPEND (insn) == 0)
1003 return;
1005 for (link = INSN_DEPEND (insn); link != 0; link = XEXP (link, 1))
1007 rtx next = XEXP (link, 0);
1008 int cost = insn_cost (insn, link, next);
1010 INSN_TICK (next) = MAX (INSN_TICK (next), clock + cost);
1012 if ((INSN_DEP_COUNT (next) -= 1) == 0)
1014 int effective_cost = INSN_TICK (next) - clock;
1016 if (! (*current_sched_info->new_ready) (next))
1017 continue;
1019 if (sched_verbose >= 2)
1021 fprintf (sched_dump, ";;\t\tdependences resolved: insn %s ",
1022 (*current_sched_info->print_insn) (next, 0));
1024 if (effective_cost < 1)
1025 fprintf (sched_dump, "into ready\n");
1026 else
1027 fprintf (sched_dump, "into queue with cost=%d\n", effective_cost);
1030 /* Adjust the priority of NEXT and either put it on the ready
1031 list or queue it. */
1032 adjust_priority (next);
1033 if (effective_cost < 1)
1034 ready_add (ready, next);
1035 else
1036 queue_insn (next, effective_cost);
1040 /* Annotate the instruction with issue information -- TImode
1041 indicates that the instruction is expected not to be able
1042 to issue on the same cycle as the previous insn. A machine
1043 may use this information to decide how the instruction should
1044 be aligned. */
1045 if (reload_completed && issue_rate > 1)
1047 PUT_MODE (insn, clock > last_clock_var ? TImode : VOIDmode);
1048 last_clock_var = clock;
1052 /* Functions for handling of notes. */
1054 /* Delete notes beginning with INSN and put them in the chain
1055 of notes ended by NOTE_LIST.
1056 Returns the insn following the notes. */
1058 static rtx
1059 unlink_other_notes (insn, tail)
1060 rtx insn, tail;
1062 rtx prev = PREV_INSN (insn);
1064 while (insn != tail && GET_CODE (insn) == NOTE)
1066 rtx next = NEXT_INSN (insn);
1067 /* Delete the note from its current position. */
1068 if (prev)
1069 NEXT_INSN (prev) = next;
1070 if (next)
1071 PREV_INSN (next) = prev;
1073 /* See sched_analyze to see how these are handled. */
1074 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_SETJMP
1075 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_BEG
1076 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_END
1077 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_BEG
1078 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_RANGE_END
1079 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_BEG
1080 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_EH_REGION_END)
1082 /* Insert the note at the end of the notes list. */
1083 PREV_INSN (insn) = note_list;
1084 if (note_list)
1085 NEXT_INSN (note_list) = insn;
1086 note_list = insn;
1089 insn = next;
1091 return insn;
1094 /* Delete line notes beginning with INSN. Record line-number notes so
1095 they can be reused. Returns the insn following the notes. */
1097 static rtx
1098 unlink_line_notes (insn, tail)
1099 rtx insn, tail;
1101 rtx prev = PREV_INSN (insn);
1103 while (insn != tail && GET_CODE (insn) == NOTE)
1105 rtx next = NEXT_INSN (insn);
1107 if (write_symbols != NO_DEBUG && NOTE_LINE_NUMBER (insn) > 0)
1109 /* Delete the note from its current position. */
1110 if (prev)
1111 NEXT_INSN (prev) = next;
1112 if (next)
1113 PREV_INSN (next) = prev;
1115 /* Record line-number notes so they can be reused. */
1116 LINE_NOTE (insn) = insn;
1118 else
1119 prev = insn;
1121 insn = next;
1123 return insn;
1126 /* Return the head and tail pointers of BB. */
1128 void
1129 get_block_head_tail (b, headp, tailp)
1130 int b;
1131 rtx *headp;
1132 rtx *tailp;
1134 /* HEAD and TAIL delimit the basic block being scheduled. */
1135 rtx head = BLOCK_HEAD (b);
1136 rtx tail = BLOCK_END (b);
1138 /* Don't include any notes or labels at the beginning of the
1139 basic block, or notes at the ends of basic blocks. */
1140 while (head != tail)
1142 if (GET_CODE (head) == NOTE)
1143 head = NEXT_INSN (head);
1144 else if (GET_CODE (tail) == NOTE)
1145 tail = PREV_INSN (tail);
1146 else if (GET_CODE (head) == CODE_LABEL)
1147 head = NEXT_INSN (head);
1148 else
1149 break;
1152 *headp = head;
1153 *tailp = tail;
1156 /* Return nonzero if there are no real insns in the range [ HEAD, TAIL ]. */
1159 no_real_insns_p (head, tail)
1160 rtx head, tail;
1162 while (head != NEXT_INSN (tail))
1164 if (GET_CODE (head) != NOTE && GET_CODE (head) != CODE_LABEL)
1165 return 0;
1166 head = NEXT_INSN (head);
1168 return 1;
1171 /* Delete line notes from one block. Save them so they can be later restored
1172 (in restore_line_notes). HEAD and TAIL are the boundaries of the
1173 block in which notes should be processed. */
1175 void
1176 rm_line_notes (head, tail)
1177 rtx head, tail;
1179 rtx next_tail;
1180 rtx insn;
1182 next_tail = NEXT_INSN (tail);
1183 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1185 rtx prev;
1187 /* Farm out notes, and maybe save them in NOTE_LIST.
1188 This is needed to keep the debugger from
1189 getting completely deranged. */
1190 if (GET_CODE (insn) == NOTE)
1192 prev = insn;
1193 insn = unlink_line_notes (insn, next_tail);
1195 if (prev == tail)
1196 abort ();
1197 if (prev == head)
1198 abort ();
1199 if (insn == next_tail)
1200 abort ();
1205 /* Save line number notes for each insn in block B. HEAD and TAIL are
1206 the boundaries of the block in which notes should be processed.*/
1208 void
1209 save_line_notes (b, head, tail)
1210 int b;
1211 rtx head, tail;
1213 rtx next_tail;
1215 /* We must use the true line number for the first insn in the block
1216 that was computed and saved at the start of this pass. We can't
1217 use the current line number, because scheduling of the previous
1218 block may have changed the current line number. */
1220 rtx line = line_note_head[b];
1221 rtx insn;
1223 next_tail = NEXT_INSN (tail);
1225 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1226 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1227 line = insn;
1228 else
1229 LINE_NOTE (insn) = line;
1232 /* After a block was scheduled, insert line notes into the insns list.
1233 HEAD and TAIL are the boundaries of the block in which notes should
1234 be processed.*/
1236 void
1237 restore_line_notes (head, tail)
1238 rtx head, tail;
1240 rtx line, note, prev, new;
1241 int added_notes = 0;
1242 rtx next_tail, insn;
1244 head = head;
1245 next_tail = NEXT_INSN (tail);
1247 /* Determine the current line-number. We want to know the current
1248 line number of the first insn of the block here, in case it is
1249 different from the true line number that was saved earlier. If
1250 different, then we need a line number note before the first insn
1251 of this block. If it happens to be the same, then we don't want to
1252 emit another line number note here. */
1253 for (line = head; line; line = PREV_INSN (line))
1254 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1255 break;
1257 /* Walk the insns keeping track of the current line-number and inserting
1258 the line-number notes as needed. */
1259 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1260 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1261 line = insn;
1262 /* This used to emit line number notes before every non-deleted note.
1263 However, this confuses a debugger, because line notes not separated
1264 by real instructions all end up at the same address. I can find no
1265 use for line number notes before other notes, so none are emitted. */
1266 else if (GET_CODE (insn) != NOTE
1267 && INSN_UID (insn) < old_max_uid
1268 && (note = LINE_NOTE (insn)) != 0
1269 && note != line
1270 && (line == 0
1271 || NOTE_LINE_NUMBER (note) != NOTE_LINE_NUMBER (line)
1272 || NOTE_SOURCE_FILE (note) != NOTE_SOURCE_FILE (line)))
1274 line = note;
1275 prev = PREV_INSN (insn);
1276 if (LINE_NOTE (note))
1278 /* Re-use the original line-number note. */
1279 LINE_NOTE (note) = 0;
1280 PREV_INSN (note) = prev;
1281 NEXT_INSN (prev) = note;
1282 PREV_INSN (insn) = note;
1283 NEXT_INSN (note) = insn;
1285 else
1287 added_notes++;
1288 new = emit_note_after (NOTE_LINE_NUMBER (note), prev);
1289 NOTE_SOURCE_FILE (new) = NOTE_SOURCE_FILE (note);
1290 RTX_INTEGRATED_P (new) = RTX_INTEGRATED_P (note);
1293 if (sched_verbose && added_notes)
1294 fprintf (sched_dump, ";; added %d line-number notes\n", added_notes);
1297 /* After scheduling the function, delete redundant line notes from the
1298 insns list. */
1300 void
1301 rm_redundant_line_notes ()
1303 rtx line = 0;
1304 rtx insn = get_insns ();
1305 int active_insn = 0;
1306 int notes = 0;
1308 /* Walk the insns deleting redundant line-number notes. Many of these
1309 are already present. The remainder tend to occur at basic
1310 block boundaries. */
1311 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
1312 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1314 /* If there are no active insns following, INSN is redundant. */
1315 if (active_insn == 0)
1317 notes++;
1318 NOTE_SOURCE_FILE (insn) = 0;
1319 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1321 /* If the line number is unchanged, LINE is redundant. */
1322 else if (line
1323 && NOTE_LINE_NUMBER (line) == NOTE_LINE_NUMBER (insn)
1324 && NOTE_SOURCE_FILE (line) == NOTE_SOURCE_FILE (insn))
1326 notes++;
1327 NOTE_SOURCE_FILE (line) = 0;
1328 NOTE_LINE_NUMBER (line) = NOTE_INSN_DELETED;
1329 line = insn;
1331 else
1332 line = insn;
1333 active_insn = 0;
1335 else if (!((GET_CODE (insn) == NOTE
1336 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_DELETED)
1337 || (GET_CODE (insn) == INSN
1338 && (GET_CODE (PATTERN (insn)) == USE
1339 || GET_CODE (PATTERN (insn)) == CLOBBER))))
1340 active_insn++;
1342 if (sched_verbose && notes)
1343 fprintf (sched_dump, ";; deleted %d line-number notes\n", notes);
1346 /* Delete notes between HEAD and TAIL and put them in the chain
1347 of notes ended by NOTE_LIST. */
1349 void
1350 rm_other_notes (head, tail)
1351 rtx head;
1352 rtx tail;
1354 rtx next_tail;
1355 rtx insn;
1357 note_list = 0;
1358 if (head == tail && (! INSN_P (head)))
1359 return;
1361 next_tail = NEXT_INSN (tail);
1362 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1364 rtx prev;
1366 /* Farm out notes, and maybe save them in NOTE_LIST.
1367 This is needed to keep the debugger from
1368 getting completely deranged. */
1369 if (GET_CODE (insn) == NOTE)
1371 prev = insn;
1373 insn = unlink_other_notes (insn, next_tail);
1375 if (prev == tail)
1376 abort ();
1377 if (prev == head)
1378 abort ();
1379 if (insn == next_tail)
1380 abort ();
1385 /* Functions for computation of registers live/usage info. */
1387 /* Calculate INSN_REG_WEIGHT for all insns of a block. */
1389 static void
1390 find_insn_reg_weight (b)
1391 int b;
1393 rtx insn, next_tail, head, tail;
1395 get_block_head_tail (b, &head, &tail);
1396 next_tail = NEXT_INSN (tail);
1398 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
1400 int reg_weight = 0;
1401 rtx x;
1403 /* Handle register life information. */
1404 if (! INSN_P (insn))
1405 continue;
1407 /* Increment weight for each register born here. */
1408 x = PATTERN (insn);
1409 if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1410 && register_operand (SET_DEST (x), VOIDmode))
1411 reg_weight++;
1412 else if (GET_CODE (x) == PARALLEL)
1414 int j;
1415 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
1417 x = XVECEXP (PATTERN (insn), 0, j);
1418 if ((GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1419 && register_operand (SET_DEST (x), VOIDmode))
1420 reg_weight++;
1424 /* Decrement weight for each register that dies here. */
1425 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1427 if (REG_NOTE_KIND (x) == REG_DEAD
1428 || REG_NOTE_KIND (x) == REG_UNUSED)
1429 reg_weight--;
1432 INSN_REG_WEIGHT (insn) = reg_weight;
1436 /* Scheduling clock, modified in schedule_block() and queue_to_ready (). */
1437 static int clock_var;
1439 /* Move insns that became ready to fire from queue to ready list. */
1441 static void
1442 queue_to_ready (ready)
1443 struct ready_list *ready;
1445 rtx insn;
1446 rtx link;
1448 q_ptr = NEXT_Q (q_ptr);
1450 /* Add all pending insns that can be scheduled without stalls to the
1451 ready list. */
1452 for (link = insn_queue[q_ptr]; link; link = XEXP (link, 1))
1454 insn = XEXP (link, 0);
1455 q_size -= 1;
1457 if (sched_verbose >= 2)
1458 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1459 (*current_sched_info->print_insn) (insn, 0));
1461 ready_add (ready, insn);
1462 if (sched_verbose >= 2)
1463 fprintf (sched_dump, "moving to ready without stalls\n");
1465 insn_queue[q_ptr] = 0;
1467 /* If there are no ready insns, stall until one is ready and add all
1468 of the pending insns at that point to the ready list. */
1469 if (ready->n_ready == 0)
1471 register int stalls;
1473 for (stalls = 1; stalls < INSN_QUEUE_SIZE; stalls++)
1475 if ((link = insn_queue[NEXT_Q_AFTER (q_ptr, stalls)]))
1477 for (; link; link = XEXP (link, 1))
1479 insn = XEXP (link, 0);
1480 q_size -= 1;
1482 if (sched_verbose >= 2)
1483 fprintf (sched_dump, ";;\t\tQ-->Ready: insn %s: ",
1484 (*current_sched_info->print_insn) (insn, 0));
1486 ready_add (ready, insn);
1487 if (sched_verbose >= 2)
1488 fprintf (sched_dump, "moving to ready with %d stalls\n", stalls);
1490 insn_queue[NEXT_Q_AFTER (q_ptr, stalls)] = 0;
1492 if (ready->n_ready)
1493 break;
1497 if (sched_verbose && stalls)
1498 visualize_stall_cycles (stalls);
1499 q_ptr = NEXT_Q_AFTER (q_ptr, stalls);
1500 clock_var += stalls;
1504 /* Print the ready list for debugging purposes. Callable from debugger. */
1506 static void
1507 debug_ready_list (ready)
1508 struct ready_list *ready;
1510 rtx *p;
1511 int i;
1513 if (ready->n_ready == 0)
1514 return;
1516 p = ready_lastpos (ready);
1517 for (i = 0; i < ready->n_ready; i++)
1518 fprintf (sched_dump, " %s", (*current_sched_info->print_insn) (p[i], 0));
1519 fprintf (sched_dump, "\n");
1522 /* move_insn1: Remove INSN from insn chain, and link it after LAST insn. */
1524 static rtx
1525 move_insn1 (insn, last)
1526 rtx insn, last;
1528 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
1529 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
1531 NEXT_INSN (insn) = NEXT_INSN (last);
1532 PREV_INSN (NEXT_INSN (last)) = insn;
1534 NEXT_INSN (last) = insn;
1535 PREV_INSN (insn) = last;
1537 return insn;
1540 /* Search INSN for REG_SAVE_NOTE note pairs for NOTE_INSN_SETJMP,
1541 NOTE_INSN_{LOOP,EHREGION}_{BEG,END}; and convert them back into
1542 NOTEs. The REG_SAVE_NOTE note following first one is contains the
1543 saved value for NOTE_BLOCK_NUMBER which is useful for
1544 NOTE_INSN_EH_REGION_{BEG,END} NOTEs. LAST is the last instruction
1545 output by the instruction scheduler. Return the new value of LAST. */
1547 static rtx
1548 reemit_notes (insn, last)
1549 rtx insn;
1550 rtx last;
1552 rtx note, retval;
1554 retval = last;
1555 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1557 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
1559 enum insn_note note_type = INTVAL (XEXP (note, 0));
1561 if (note_type == NOTE_INSN_SETJMP)
1563 retval = emit_note_after (NOTE_INSN_SETJMP, insn);
1564 CONST_CALL_P (retval) = CONST_CALL_P (note);
1565 remove_note (insn, note);
1566 note = XEXP (note, 1);
1568 else if (note_type == NOTE_INSN_RANGE_BEG
1569 || note_type == NOTE_INSN_RANGE_END)
1571 last = emit_note_before (note_type, last);
1572 remove_note (insn, note);
1573 note = XEXP (note, 1);
1574 NOTE_RANGE_INFO (last) = XEXP (note, 0);
1576 else
1578 last = emit_note_before (note_type, last);
1579 remove_note (insn, note);
1580 note = XEXP (note, 1);
1581 if (note_type == NOTE_INSN_EH_REGION_BEG
1582 || note_type == NOTE_INSN_EH_REGION_END)
1583 NOTE_EH_HANDLER (last) = INTVAL (XEXP (note, 0));
1585 remove_note (insn, note);
1588 return retval;
1591 /* Move INSN, and all insns which should be issued before it,
1592 due to SCHED_GROUP_P flag. Reemit notes if needed.
1594 Return the last insn emitted by the scheduler, which is the
1595 return value from the first call to reemit_notes. */
1597 static rtx
1598 move_insn (insn, last)
1599 rtx insn, last;
1601 rtx retval = NULL;
1603 /* If INSN has SCHED_GROUP_P set, then issue it and any other
1604 insns with SCHED_GROUP_P set first. */
1605 while (SCHED_GROUP_P (insn))
1607 rtx prev = PREV_INSN (insn);
1609 /* Move a SCHED_GROUP_P insn. */
1610 move_insn1 (insn, last);
1611 /* If this is the first call to reemit_notes, then record
1612 its return value. */
1613 if (retval == NULL_RTX)
1614 retval = reemit_notes (insn, insn);
1615 else
1616 reemit_notes (insn, insn);
1617 insn = prev;
1620 /* Now move the first non SCHED_GROUP_P insn. */
1621 move_insn1 (insn, last);
1623 /* If this is the first call to reemit_notes, then record
1624 its return value. */
1625 if (retval == NULL_RTX)
1626 retval = reemit_notes (insn, insn);
1627 else
1628 reemit_notes (insn, insn);
1630 return retval;
1633 /* Use forward list scheduling to rearrange insns of block B in region RGN,
1634 possibly bringing insns from subsequent blocks in the same region. */
1636 void
1637 schedule_block (b, rgn_n_insns)
1638 int b;
1639 int rgn_n_insns;
1641 rtx last;
1642 struct ready_list ready;
1643 int can_issue_more;
1645 /* Head/tail info for this block. */
1646 rtx prev_head = current_sched_info->prev_head;
1647 rtx next_tail = current_sched_info->next_tail;
1648 rtx head = NEXT_INSN (prev_head);
1649 rtx tail = PREV_INSN (next_tail);
1651 /* We used to have code to avoid getting parameters moved from hard
1652 argument registers into pseudos.
1654 However, it was removed when it proved to be of marginal benefit
1655 and caused problems because schedule_block and compute_forward_dependences
1656 had different notions of what the "head" insn was. */
1658 if (head == tail && (! INSN_P (head)))
1659 abort ();
1661 /* Debug info. */
1662 if (sched_verbose)
1664 fprintf (sched_dump, ";; ======================================================\n");
1665 fprintf (sched_dump,
1666 ";; -- basic block %d from %d to %d -- %s reload\n",
1667 b, INSN_UID (head), INSN_UID (tail),
1668 (reload_completed ? "after" : "before"));
1669 fprintf (sched_dump, ";; ======================================================\n");
1670 fprintf (sched_dump, "\n");
1672 visualize_alloc ();
1673 init_block_visualization ();
1676 clear_units ();
1678 /* Allocate the ready list. */
1679 ready.veclen = rgn_n_insns + 1 + ISSUE_RATE;
1680 ready.first = ready.veclen - 1;
1681 ready.vec = (rtx *) xmalloc (ready.veclen * sizeof (rtx));
1682 ready.n_ready = 0;
1684 (*current_sched_info->init_ready_list) (&ready);
1686 #ifdef MD_SCHED_INIT
1687 MD_SCHED_INIT (sched_dump, sched_verbose, ready.veclen);
1688 #endif
1690 /* No insns scheduled in this block yet. */
1691 last_scheduled_insn = 0;
1693 /* Initialize INSN_QUEUE. Q_SIZE is the total number of insns in the
1694 queue. */
1695 q_ptr = 0;
1696 q_size = 0;
1697 last_clock_var = 0;
1698 memset ((char *) insn_queue, 0, sizeof (insn_queue));
1700 /* Start just before the beginning of time. */
1701 clock_var = -1;
1703 /* We start inserting insns after PREV_HEAD. */
1704 last = prev_head;
1706 /* Loop until all the insns in BB are scheduled. */
1707 while ((*current_sched_info->schedule_more_p) ())
1709 clock_var++;
1711 /* Add to the ready list all pending insns that can be issued now.
1712 If there are no ready insns, increment clock until one
1713 is ready and add all pending insns at that point to the ready
1714 list. */
1715 queue_to_ready (&ready);
1717 #ifdef HAVE_cycle_display
1718 if (HAVE_cycle_display)
1719 last = emit_insn_after (gen_cycle_display (GEN_INT (clock_var)), last);
1720 #endif
1722 if (ready.n_ready == 0)
1723 abort ();
1725 if (sched_verbose >= 2)
1727 fprintf (sched_dump, ";;\t\tReady list after queue_to_ready: ");
1728 debug_ready_list (&ready);
1731 /* Sort the ready list based on priority. */
1732 ready_sort (&ready);
1734 /* Allow the target to reorder the list, typically for
1735 better instruction bundling. */
1736 #ifdef MD_SCHED_REORDER
1737 MD_SCHED_REORDER (sched_dump, sched_verbose, ready_lastpos (&ready),
1738 ready.n_ready, clock_var, can_issue_more);
1739 #else
1740 can_issue_more = issue_rate;
1741 #endif
1743 if (sched_verbose)
1745 fprintf (sched_dump, "\n;;\tReady list (t =%3d): ", clock_var);
1746 debug_ready_list (&ready);
1749 /* Issue insns from ready list. */
1750 while (ready.n_ready != 0
1751 && can_issue_more
1752 && (*current_sched_info->schedule_more_p) ())
1754 /* Select and remove the insn from the ready list. */
1755 rtx insn = ready_remove_first (&ready);
1756 int cost = actual_hazard (insn_unit (insn), insn, clock_var, 0);
1758 if (cost >= 1)
1760 queue_insn (insn, cost);
1761 continue;
1764 if (! (*current_sched_info->can_schedule_ready_p) (insn))
1765 goto next;
1767 last_scheduled_insn = insn;
1768 last = move_insn (insn, last);
1770 #ifdef MD_SCHED_VARIABLE_ISSUE
1771 MD_SCHED_VARIABLE_ISSUE (sched_dump, sched_verbose, insn,
1772 can_issue_more);
1773 #else
1774 can_issue_more--;
1775 #endif
1777 schedule_insn (insn, &ready, clock_var);
1779 next:
1781 #ifdef MD_SCHED_REORDER2
1782 /* Sort the ready list based on priority. */
1783 if (ready.n_ready > 0)
1784 ready_sort (&ready);
1785 MD_SCHED_REORDER2 (sched_dump, sched_verbose,
1786 ready.n_ready ? ready_lastpos (&ready) : NULL,
1787 ready.n_ready, clock_var, can_issue_more);
1788 #endif
1791 /* Debug info. */
1792 if (sched_verbose)
1793 visualize_scheduled_insns (clock_var);
1796 #ifdef MD_SCHED_FINISH
1797 MD_SCHED_FINISH (sched_dump, sched_verbose);
1798 #endif
1800 /* Debug info. */
1801 if (sched_verbose)
1803 fprintf (sched_dump, ";;\tReady list (final): ");
1804 debug_ready_list (&ready);
1805 print_block_visualization ("");
1808 /* Sanity check -- queue must be empty now. Meaningless if region has
1809 multiple bbs. */
1810 if (current_sched_info->queue_must_finish_empty && q_size != 0)
1811 abort ();
1813 /* Update head/tail boundaries. */
1814 head = NEXT_INSN (prev_head);
1815 tail = last;
1817 /* Restore-other-notes: NOTE_LIST is the end of a chain of notes
1818 previously found among the insns. Insert them at the beginning
1819 of the insns. */
1820 if (note_list != 0)
1822 rtx note_head = note_list;
1824 while (PREV_INSN (note_head))
1826 note_head = PREV_INSN (note_head);
1829 PREV_INSN (note_head) = PREV_INSN (head);
1830 NEXT_INSN (PREV_INSN (head)) = note_head;
1831 PREV_INSN (head) = note_list;
1832 NEXT_INSN (note_list) = head;
1833 head = note_head;
1836 /* Debugging. */
1837 if (sched_verbose)
1839 fprintf (sched_dump, ";; total time = %d\n;; new head = %d\n",
1840 clock_var, INSN_UID (head));
1841 fprintf (sched_dump, ";; new tail = %d\n\n",
1842 INSN_UID (tail));
1843 visualize_free ();
1846 current_sched_info->head = head;
1847 current_sched_info->tail = tail;
1849 free (ready.vec);
1852 /* Set_priorities: compute priority of each insn in the block. */
1855 set_priorities (head, tail)
1856 rtx head, tail;
1858 rtx insn;
1859 int n_insn;
1861 rtx prev_head;
1863 prev_head = PREV_INSN (head);
1865 if (head == tail && (! INSN_P (head)))
1866 return 0;
1868 n_insn = 0;
1869 for (insn = tail; insn != prev_head; insn = PREV_INSN (insn))
1871 if (GET_CODE (insn) == NOTE)
1872 continue;
1874 if (!(SCHED_GROUP_P (insn)))
1875 n_insn++;
1876 (void) priority (insn);
1879 return n_insn;
1882 /* Initialize some global state for the scheduler. DUMP_FILE is to be used
1883 for debugging output. */
1885 void
1886 sched_init (dump_file)
1887 FILE *dump_file;
1889 int luid, b;
1890 rtx insn;
1892 /* Disable speculative loads in their presence if cc0 defined. */
1893 #ifdef HAVE_cc0
1894 flag_schedule_speculative_load = 0;
1895 #endif
1897 /* Set dump and sched_verbose for the desired debugging output. If no
1898 dump-file was specified, but -fsched-verbose=N (any N), print to stderr.
1899 For -fsched-verbose=N, N>=10, print everything to stderr. */
1900 sched_verbose = sched_verbose_param;
1901 if (sched_verbose_param == 0 && dump_file)
1902 sched_verbose = 1;
1903 sched_dump = ((sched_verbose_param >= 10 || !dump_file)
1904 ? stderr : dump_file);
1906 /* Initialize issue_rate. */
1907 issue_rate = ISSUE_RATE;
1909 split_all_insns (1);
1911 /* We use LUID 0 for the fake insn (UID 0) which holds dependencies for
1912 pseudos which do not cross calls. */
1913 old_max_uid = get_max_uid () + 1;
1915 h_i_d = (struct haifa_insn_data *) xcalloc (old_max_uid, sizeof (*h_i_d));
1917 h_i_d[0].luid = 0;
1918 luid = 1;
1919 for (b = 0; b < n_basic_blocks; b++)
1920 for (insn = BLOCK_HEAD (b);; insn = NEXT_INSN (insn))
1922 INSN_LUID (insn) = luid;
1924 /* Increment the next luid, unless this is a note. We don't
1925 really need separate IDs for notes and we don't want to
1926 schedule differently depending on whether or not there are
1927 line-number notes, i.e., depending on whether or not we're
1928 generating debugging information. */
1929 if (GET_CODE (insn) != NOTE)
1930 ++luid;
1932 if (insn == BLOCK_END (b))
1933 break;
1936 init_dependency_caches (luid);
1938 compute_bb_for_insn (old_max_uid);
1940 init_alias_analysis ();
1942 if (write_symbols != NO_DEBUG)
1944 rtx line;
1946 line_note_head = (rtx *) xcalloc (n_basic_blocks, sizeof (rtx));
1948 /* Save-line-note-head:
1949 Determine the line-number at the start of each basic block.
1950 This must be computed and saved now, because after a basic block's
1951 predecessor has been scheduled, it is impossible to accurately
1952 determine the correct line number for the first insn of the block. */
1954 for (b = 0; b < n_basic_blocks; b++)
1956 for (line = BLOCK_HEAD (b); line; line = PREV_INSN (line))
1957 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1959 line_note_head[b] = line;
1960 break;
1962 /* Do a forward search as well, since we won't get to see the first
1963 notes in a basic block. */
1964 for (line = BLOCK_HEAD (b); line; line = NEXT_INSN (line))
1966 if (INSN_P (line))
1967 break;
1968 if (GET_CODE (line) == NOTE && NOTE_LINE_NUMBER (line) > 0)
1969 line_note_head[b] = line;
1974 /* Find units used in this fuction, for visualization. */
1975 if (sched_verbose)
1976 init_target_units ();
1978 /* ??? Add a NOTE after the last insn of the last basic block. It is not
1979 known why this is done. */
1981 insn = BLOCK_END (n_basic_blocks - 1);
1982 if (NEXT_INSN (insn) == 0
1983 || (GET_CODE (insn) != NOTE
1984 && GET_CODE (insn) != CODE_LABEL
1985 /* Don't emit a NOTE if it would end up before a BARRIER. */
1986 && GET_CODE (NEXT_INSN (insn)) != BARRIER))
1987 emit_note_after (NOTE_INSN_DELETED, BLOCK_END (n_basic_blocks - 1));
1989 /* Compute INSN_REG_WEIGHT for all blocks. We must do this before
1990 removing death notes. */
1991 for (b = n_basic_blocks - 1; b >= 0; b--)
1992 find_insn_reg_weight (b);
1995 /* Free global data used during insn scheduling. */
1997 void
1998 sched_finish ()
2000 free (h_i_d);
2001 free_dependency_caches ();
2002 end_alias_analysis ();
2003 if (write_symbols != NO_DEBUG)
2004 free (line_note_head);
2006 #endif /* INSN_SCHEDULING */