2013-08-11 Paolo Carlini <paolo.carlini@oracle.com>
[official-gcc.git] / gcc / recog.c
blob2d44416892efa49f902ea2ab45c0f0debe35ce5e
1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "insn-config.h"
28 #include "insn-attr.h"
29 #include "hard-reg-set.h"
30 #include "recog.h"
31 #include "regs.h"
32 #include "addresses.h"
33 #include "expr.h"
34 #include "function.h"
35 #include "flags.h"
36 #include "basic-block.h"
37 #include "reload.h"
38 #include "target.h"
39 #include "tree-pass.h"
40 #include "df.h"
41 #include "insn-codes.h"
43 #ifndef STACK_PUSH_CODE
44 #ifdef STACK_GROWS_DOWNWARD
45 #define STACK_PUSH_CODE PRE_DEC
46 #else
47 #define STACK_PUSH_CODE PRE_INC
48 #endif
49 #endif
51 #ifndef STACK_POP_CODE
52 #ifdef STACK_GROWS_DOWNWARD
53 #define STACK_POP_CODE POST_INC
54 #else
55 #define STACK_POP_CODE POST_DEC
56 #endif
57 #endif
59 static void validate_replace_rtx_1 (rtx *, rtx, rtx, rtx, bool);
60 static void validate_replace_src_1 (rtx *, void *);
61 static rtx split_insn (rtx);
63 /* Nonzero means allow operands to be volatile.
64 This should be 0 if you are generating rtl, such as if you are calling
65 the functions in optabs.c and expmed.c (most of the time).
66 This should be 1 if all valid insns need to be recognized,
67 such as in reginfo.c and final.c and reload.c.
69 init_recog and init_recog_no_volatile are responsible for setting this. */
71 int volatile_ok;
73 struct recog_data_d recog_data;
75 /* Contains a vector of operand_alternative structures for every operand.
76 Set up by preprocess_constraints. */
77 struct operand_alternative recog_op_alt[MAX_RECOG_OPERANDS][MAX_RECOG_ALTERNATIVES];
79 /* On return from `constrain_operands', indicate which alternative
80 was satisfied. */
82 int which_alternative;
84 /* Nonzero after end of reload pass.
85 Set to 1 or 0 by toplev.c.
86 Controls the significance of (SUBREG (MEM)). */
88 int reload_completed;
90 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
91 int epilogue_completed;
93 /* Initialize data used by the function `recog'.
94 This must be called once in the compilation of a function
95 before any insn recognition may be done in the function. */
97 void
98 init_recog_no_volatile (void)
100 volatile_ok = 0;
103 void
104 init_recog (void)
106 volatile_ok = 1;
110 /* Return true if labels in asm operands BODY are LABEL_REFs. */
112 static bool
113 asm_labels_ok (rtx body)
115 rtx asmop;
116 int i;
118 asmop = extract_asm_operands (body);
119 if (asmop == NULL_RTX)
120 return true;
122 for (i = 0; i < ASM_OPERANDS_LABEL_LENGTH (asmop); i++)
123 if (GET_CODE (ASM_OPERANDS_LABEL (asmop, i)) != LABEL_REF)
124 return false;
126 return true;
129 /* Check that X is an insn-body for an `asm' with operands
130 and that the operands mentioned in it are legitimate. */
133 check_asm_operands (rtx x)
135 int noperands;
136 rtx *operands;
137 const char **constraints;
138 int i;
140 if (!asm_labels_ok (x))
141 return 0;
143 /* Post-reload, be more strict with things. */
144 if (reload_completed)
146 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
147 extract_insn (make_insn_raw (x));
148 constrain_operands (1);
149 return which_alternative >= 0;
152 noperands = asm_noperands (x);
153 if (noperands < 0)
154 return 0;
155 if (noperands == 0)
156 return 1;
158 operands = XALLOCAVEC (rtx, noperands);
159 constraints = XALLOCAVEC (const char *, noperands);
161 decode_asm_operands (x, operands, NULL, constraints, NULL, NULL);
163 for (i = 0; i < noperands; i++)
165 const char *c = constraints[i];
166 if (c[0] == '%')
167 c++;
168 if (! asm_operand_ok (operands[i], c, constraints))
169 return 0;
172 return 1;
175 /* Static data for the next two routines. */
177 typedef struct change_t
179 rtx object;
180 int old_code;
181 rtx *loc;
182 rtx old;
183 bool unshare;
184 } change_t;
186 static change_t *changes;
187 static int changes_allocated;
189 static int num_changes = 0;
191 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
192 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
193 the change is simply made.
195 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
196 will be called with the address and mode as parameters. If OBJECT is
197 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
198 the change in place.
200 IN_GROUP is nonzero if this is part of a group of changes that must be
201 performed as a group. In that case, the changes will be stored. The
202 function `apply_change_group' will validate and apply the changes.
204 If IN_GROUP is zero, this is a single change. Try to recognize the insn
205 or validate the memory reference with the change applied. If the result
206 is not valid for the machine, suppress the change and return zero.
207 Otherwise, perform the change and return 1. */
209 static bool
210 validate_change_1 (rtx object, rtx *loc, rtx new_rtx, bool in_group, bool unshare)
212 rtx old = *loc;
214 if (old == new_rtx || rtx_equal_p (old, new_rtx))
215 return 1;
217 gcc_assert (in_group != 0 || num_changes == 0);
219 *loc = new_rtx;
221 /* Save the information describing this change. */
222 if (num_changes >= changes_allocated)
224 if (changes_allocated == 0)
225 /* This value allows for repeated substitutions inside complex
226 indexed addresses, or changes in up to 5 insns. */
227 changes_allocated = MAX_RECOG_OPERANDS * 5;
228 else
229 changes_allocated *= 2;
231 changes = XRESIZEVEC (change_t, changes, changes_allocated);
234 changes[num_changes].object = object;
235 changes[num_changes].loc = loc;
236 changes[num_changes].old = old;
237 changes[num_changes].unshare = unshare;
239 if (object && !MEM_P (object))
241 /* Set INSN_CODE to force rerecognition of insn. Save old code in
242 case invalid. */
243 changes[num_changes].old_code = INSN_CODE (object);
244 INSN_CODE (object) = -1;
247 num_changes++;
249 /* If we are making a group of changes, return 1. Otherwise, validate the
250 change group we made. */
252 if (in_group)
253 return 1;
254 else
255 return apply_change_group ();
258 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
259 UNSHARE to false. */
261 bool
262 validate_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
264 return validate_change_1 (object, loc, new_rtx, in_group, false);
267 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
268 UNSHARE to true. */
270 bool
271 validate_unshare_change (rtx object, rtx *loc, rtx new_rtx, bool in_group)
273 return validate_change_1 (object, loc, new_rtx, in_group, true);
277 /* Keep X canonicalized if some changes have made it non-canonical; only
278 modifies the operands of X, not (for example) its code. Simplifications
279 are not the job of this routine.
281 Return true if anything was changed. */
282 bool
283 canonicalize_change_group (rtx insn, rtx x)
285 if (COMMUTATIVE_P (x)
286 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
288 /* Oops, the caller has made X no longer canonical.
289 Let's redo the changes in the correct order. */
290 rtx tem = XEXP (x, 0);
291 validate_unshare_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
292 validate_unshare_change (insn, &XEXP (x, 1), tem, 1);
293 return true;
295 else
296 return false;
300 /* This subroutine of apply_change_group verifies whether the changes to INSN
301 were valid; i.e. whether INSN can still be recognized.
303 If IN_GROUP is true clobbers which have to be added in order to
304 match the instructions will be added to the current change group.
305 Otherwise the changes will take effect immediately. */
308 insn_invalid_p (rtx insn, bool in_group)
310 rtx pat = PATTERN (insn);
311 int num_clobbers = 0;
312 /* If we are before reload and the pattern is a SET, see if we can add
313 clobbers. */
314 int icode = recog (pat, insn,
315 (GET_CODE (pat) == SET
316 && ! reload_completed && ! reload_in_progress)
317 ? &num_clobbers : 0);
318 int is_asm = icode < 0 && asm_noperands (PATTERN (insn)) >= 0;
321 /* If this is an asm and the operand aren't legal, then fail. Likewise if
322 this is not an asm and the insn wasn't recognized. */
323 if ((is_asm && ! check_asm_operands (PATTERN (insn)))
324 || (!is_asm && icode < 0))
325 return 1;
327 /* If we have to add CLOBBERs, fail if we have to add ones that reference
328 hard registers since our callers can't know if they are live or not.
329 Otherwise, add them. */
330 if (num_clobbers > 0)
332 rtx newpat;
334 if (added_clobbers_hard_reg_p (icode))
335 return 1;
337 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (num_clobbers + 1));
338 XVECEXP (newpat, 0, 0) = pat;
339 add_clobbers (newpat, icode);
340 if (in_group)
341 validate_change (insn, &PATTERN (insn), newpat, 1);
342 else
343 PATTERN (insn) = pat = newpat;
346 /* After reload, verify that all constraints are satisfied. */
347 if (reload_completed)
349 extract_insn (insn);
351 if (! constrain_operands (1))
352 return 1;
355 INSN_CODE (insn) = icode;
356 return 0;
359 /* Return number of changes made and not validated yet. */
361 num_changes_pending (void)
363 return num_changes;
366 /* Tentatively apply the changes numbered NUM and up.
367 Return 1 if all changes are valid, zero otherwise. */
370 verify_changes (int num)
372 int i;
373 rtx last_validated = NULL_RTX;
375 /* The changes have been applied and all INSN_CODEs have been reset to force
376 rerecognition.
378 The changes are valid if we aren't given an object, or if we are
379 given a MEM and it still is a valid address, or if this is in insn
380 and it is recognized. In the latter case, if reload has completed,
381 we also require that the operands meet the constraints for
382 the insn. */
384 for (i = num; i < num_changes; i++)
386 rtx object = changes[i].object;
388 /* If there is no object to test or if it is the same as the one we
389 already tested, ignore it. */
390 if (object == 0 || object == last_validated)
391 continue;
393 if (MEM_P (object))
395 if (! memory_address_addr_space_p (GET_MODE (object),
396 XEXP (object, 0),
397 MEM_ADDR_SPACE (object)))
398 break;
400 else if (REG_P (changes[i].old)
401 && asm_noperands (PATTERN (object)) > 0
402 && REG_EXPR (changes[i].old) != NULL_TREE
403 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes[i].old))
404 && DECL_REGISTER (REG_EXPR (changes[i].old)))
406 /* Don't allow changes of hard register operands to inline
407 assemblies if they have been defined as register asm ("x"). */
408 break;
410 else if (DEBUG_INSN_P (object))
411 continue;
412 else if (insn_invalid_p (object, true))
414 rtx pat = PATTERN (object);
416 /* Perhaps we couldn't recognize the insn because there were
417 extra CLOBBERs at the end. If so, try to re-recognize
418 without the last CLOBBER (later iterations will cause each of
419 them to be eliminated, in turn). But don't do this if we
420 have an ASM_OPERAND. */
421 if (GET_CODE (pat) == PARALLEL
422 && GET_CODE (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1)) == CLOBBER
423 && asm_noperands (PATTERN (object)) < 0)
425 rtx newpat;
427 if (XVECLEN (pat, 0) == 2)
428 newpat = XVECEXP (pat, 0, 0);
429 else
431 int j;
433 newpat
434 = gen_rtx_PARALLEL (VOIDmode,
435 rtvec_alloc (XVECLEN (pat, 0) - 1));
436 for (j = 0; j < XVECLEN (newpat, 0); j++)
437 XVECEXP (newpat, 0, j) = XVECEXP (pat, 0, j);
440 /* Add a new change to this group to replace the pattern
441 with this new pattern. Then consider this change
442 as having succeeded. The change we added will
443 cause the entire call to fail if things remain invalid.
445 Note that this can lose if a later change than the one
446 we are processing specified &XVECEXP (PATTERN (object), 0, X)
447 but this shouldn't occur. */
449 validate_change (object, &PATTERN (object), newpat, 1);
450 continue;
452 else if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER
453 || GET_CODE (pat) == VAR_LOCATION)
454 /* If this insn is a CLOBBER or USE, it is always valid, but is
455 never recognized. */
456 continue;
457 else
458 break;
460 last_validated = object;
463 return (i == num_changes);
466 /* A group of changes has previously been issued with validate_change
467 and verified with verify_changes. Call df_insn_rescan for each of
468 the insn changed and clear num_changes. */
470 void
471 confirm_change_group (void)
473 int i;
474 rtx last_object = NULL;
476 for (i = 0; i < num_changes; i++)
478 rtx object = changes[i].object;
480 if (changes[i].unshare)
481 *changes[i].loc = copy_rtx (*changes[i].loc);
483 /* Avoid unnecessary rescanning when multiple changes to same instruction
484 are made. */
485 if (object)
487 if (object != last_object && last_object && INSN_P (last_object))
488 df_insn_rescan (last_object);
489 last_object = object;
493 if (last_object && INSN_P (last_object))
494 df_insn_rescan (last_object);
495 num_changes = 0;
498 /* Apply a group of changes previously issued with `validate_change'.
499 If all changes are valid, call confirm_change_group and return 1,
500 otherwise, call cancel_changes and return 0. */
503 apply_change_group (void)
505 if (verify_changes (0))
507 confirm_change_group ();
508 return 1;
510 else
512 cancel_changes (0);
513 return 0;
518 /* Return the number of changes so far in the current group. */
521 num_validated_changes (void)
523 return num_changes;
526 /* Retract the changes numbered NUM and up. */
528 void
529 cancel_changes (int num)
531 int i;
533 /* Back out all the changes. Do this in the opposite order in which
534 they were made. */
535 for (i = num_changes - 1; i >= num; i--)
537 *changes[i].loc = changes[i].old;
538 if (changes[i].object && !MEM_P (changes[i].object))
539 INSN_CODE (changes[i].object) = changes[i].old_code;
541 num_changes = num;
544 /* Reduce conditional compilation elsewhere. */
545 #ifndef HAVE_extv
546 #define HAVE_extv 0
547 #define CODE_FOR_extv CODE_FOR_nothing
548 #endif
549 #ifndef HAVE_extzv
550 #define HAVE_extzv 0
551 #define CODE_FOR_extzv CODE_FOR_nothing
552 #endif
554 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
555 rtx. */
557 static void
558 simplify_while_replacing (rtx *loc, rtx to, rtx object,
559 enum machine_mode op0_mode)
561 rtx x = *loc;
562 enum rtx_code code = GET_CODE (x);
563 rtx new_rtx;
565 if (SWAPPABLE_OPERANDS_P (x)
566 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
568 validate_unshare_change (object, loc,
569 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x) ? code
570 : swap_condition (code),
571 GET_MODE (x), XEXP (x, 1),
572 XEXP (x, 0)), 1);
573 x = *loc;
574 code = GET_CODE (x);
577 switch (code)
579 case PLUS:
580 /* If we have a PLUS whose second operand is now a CONST_INT, use
581 simplify_gen_binary to try to simplify it.
582 ??? We may want later to remove this, once simplification is
583 separated from this function. */
584 if (CONST_INT_P (XEXP (x, 1)) && XEXP (x, 1) == to)
585 validate_change (object, loc,
586 simplify_gen_binary
587 (PLUS, GET_MODE (x), XEXP (x, 0), XEXP (x, 1)), 1);
588 break;
589 case MINUS:
590 if (CONST_SCALAR_INT_P (XEXP (x, 1)))
591 validate_change (object, loc,
592 simplify_gen_binary
593 (PLUS, GET_MODE (x), XEXP (x, 0),
594 simplify_gen_unary (NEG,
595 GET_MODE (x), XEXP (x, 1),
596 GET_MODE (x))), 1);
597 break;
598 case ZERO_EXTEND:
599 case SIGN_EXTEND:
600 if (GET_MODE (XEXP (x, 0)) == VOIDmode)
602 new_rtx = simplify_gen_unary (code, GET_MODE (x), XEXP (x, 0),
603 op0_mode);
604 /* If any of the above failed, substitute in something that
605 we know won't be recognized. */
606 if (!new_rtx)
607 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
608 validate_change (object, loc, new_rtx, 1);
610 break;
611 case SUBREG:
612 /* All subregs possible to simplify should be simplified. */
613 new_rtx = simplify_subreg (GET_MODE (x), SUBREG_REG (x), op0_mode,
614 SUBREG_BYTE (x));
616 /* Subregs of VOIDmode operands are incorrect. */
617 if (!new_rtx && GET_MODE (SUBREG_REG (x)) == VOIDmode)
618 new_rtx = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
619 if (new_rtx)
620 validate_change (object, loc, new_rtx, 1);
621 break;
622 case ZERO_EXTRACT:
623 case SIGN_EXTRACT:
624 /* If we are replacing a register with memory, try to change the memory
625 to be the mode required for memory in extract operations (this isn't
626 likely to be an insertion operation; if it was, nothing bad will
627 happen, we might just fail in some cases). */
629 if (MEM_P (XEXP (x, 0))
630 && CONST_INT_P (XEXP (x, 1))
631 && CONST_INT_P (XEXP (x, 2))
632 && !mode_dependent_address_p (XEXP (XEXP (x, 0), 0),
633 MEM_ADDR_SPACE (XEXP (x, 0)))
634 && !MEM_VOLATILE_P (XEXP (x, 0)))
636 enum machine_mode wanted_mode = VOIDmode;
637 enum machine_mode is_mode = GET_MODE (XEXP (x, 0));
638 int pos = INTVAL (XEXP (x, 2));
640 if (GET_CODE (x) == ZERO_EXTRACT && HAVE_extzv)
642 wanted_mode = insn_data[CODE_FOR_extzv].operand[1].mode;
643 if (wanted_mode == VOIDmode)
644 wanted_mode = word_mode;
646 else if (GET_CODE (x) == SIGN_EXTRACT && HAVE_extv)
648 wanted_mode = insn_data[CODE_FOR_extv].operand[1].mode;
649 if (wanted_mode == VOIDmode)
650 wanted_mode = word_mode;
653 /* If we have a narrower mode, we can do something. */
654 if (wanted_mode != VOIDmode
655 && GET_MODE_SIZE (wanted_mode) < GET_MODE_SIZE (is_mode))
657 int offset = pos / BITS_PER_UNIT;
658 rtx newmem;
660 /* If the bytes and bits are counted differently, we
661 must adjust the offset. */
662 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN)
663 offset =
664 (GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (wanted_mode) -
665 offset);
667 gcc_assert (GET_MODE_PRECISION (wanted_mode)
668 == GET_MODE_BITSIZE (wanted_mode));
669 pos %= GET_MODE_BITSIZE (wanted_mode);
671 newmem = adjust_address_nv (XEXP (x, 0), wanted_mode, offset);
673 validate_change (object, &XEXP (x, 2), GEN_INT (pos), 1);
674 validate_change (object, &XEXP (x, 0), newmem, 1);
678 break;
680 default:
681 break;
685 /* Replace every occurrence of FROM in X with TO. Mark each change with
686 validate_change passing OBJECT. */
688 static void
689 validate_replace_rtx_1 (rtx *loc, rtx from, rtx to, rtx object,
690 bool simplify)
692 int i, j;
693 const char *fmt;
694 rtx x = *loc;
695 enum rtx_code code;
696 enum machine_mode op0_mode = VOIDmode;
697 int prev_changes = num_changes;
699 if (!x)
700 return;
702 code = GET_CODE (x);
703 fmt = GET_RTX_FORMAT (code);
704 if (fmt[0] == 'e')
705 op0_mode = GET_MODE (XEXP (x, 0));
707 /* X matches FROM if it is the same rtx or they are both referring to the
708 same register in the same mode. Avoid calling rtx_equal_p unless the
709 operands look similar. */
711 if (x == from
712 || (REG_P (x) && REG_P (from)
713 && GET_MODE (x) == GET_MODE (from)
714 && REGNO (x) == REGNO (from))
715 || (GET_CODE (x) == GET_CODE (from) && GET_MODE (x) == GET_MODE (from)
716 && rtx_equal_p (x, from)))
718 validate_unshare_change (object, loc, to, 1);
719 return;
722 /* Call ourself recursively to perform the replacements.
723 We must not replace inside already replaced expression, otherwise we
724 get infinite recursion for replacements like (reg X)->(subreg (reg X))
725 done by regmove, so we must special case shared ASM_OPERANDS. */
727 if (GET_CODE (x) == PARALLEL)
729 for (j = XVECLEN (x, 0) - 1; j >= 0; j--)
731 if (j && GET_CODE (XVECEXP (x, 0, j)) == SET
732 && GET_CODE (SET_SRC (XVECEXP (x, 0, j))) == ASM_OPERANDS)
734 /* Verify that operands are really shared. */
735 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x, 0, 0)))
736 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
737 (x, 0, j))));
738 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x, 0, j)),
739 from, to, object, simplify);
741 else
742 validate_replace_rtx_1 (&XVECEXP (x, 0, j), from, to, object,
743 simplify);
746 else
747 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
749 if (fmt[i] == 'e')
750 validate_replace_rtx_1 (&XEXP (x, i), from, to, object, simplify);
751 else if (fmt[i] == 'E')
752 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
753 validate_replace_rtx_1 (&XVECEXP (x, i, j), from, to, object,
754 simplify);
757 /* If we didn't substitute, there is nothing more to do. */
758 if (num_changes == prev_changes)
759 return;
761 /* Allow substituted expression to have different mode. This is used by
762 regmove to change mode of pseudo register. */
763 if (fmt[0] == 'e' && GET_MODE (XEXP (x, 0)) != VOIDmode)
764 op0_mode = GET_MODE (XEXP (x, 0));
766 /* Do changes needed to keep rtx consistent. Don't do any other
767 simplifications, as it is not our job. */
768 if (simplify)
769 simplify_while_replacing (loc, to, object, op0_mode);
772 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
773 with TO. After all changes have been made, validate by seeing
774 if INSN is still valid. */
777 validate_replace_rtx_subexp (rtx from, rtx to, rtx insn, rtx *loc)
779 validate_replace_rtx_1 (loc, from, to, insn, true);
780 return apply_change_group ();
783 /* Try replacing every occurrence of FROM in INSN with TO. After all
784 changes have been made, validate by seeing if INSN is still valid. */
787 validate_replace_rtx (rtx from, rtx to, rtx insn)
789 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
790 return apply_change_group ();
793 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
794 is a part of INSN. After all changes have been made, validate by seeing if
795 INSN is still valid.
796 validate_replace_rtx (from, to, insn) is equivalent to
797 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
800 validate_replace_rtx_part (rtx from, rtx to, rtx *where, rtx insn)
802 validate_replace_rtx_1 (where, from, to, insn, true);
803 return apply_change_group ();
806 /* Same as above, but do not simplify rtx afterwards. */
808 validate_replace_rtx_part_nosimplify (rtx from, rtx to, rtx *where,
809 rtx insn)
811 validate_replace_rtx_1 (where, from, to, insn, false);
812 return apply_change_group ();
816 /* Try replacing every occurrence of FROM in INSN with TO. This also
817 will replace in REG_EQUAL and REG_EQUIV notes. */
819 void
820 validate_replace_rtx_group (rtx from, rtx to, rtx insn)
822 rtx note;
823 validate_replace_rtx_1 (&PATTERN (insn), from, to, insn, true);
824 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
825 if (REG_NOTE_KIND (note) == REG_EQUAL
826 || REG_NOTE_KIND (note) == REG_EQUIV)
827 validate_replace_rtx_1 (&XEXP (note, 0), from, to, insn, true);
830 /* Function called by note_uses to replace used subexpressions. */
831 struct validate_replace_src_data
833 rtx from; /* Old RTX */
834 rtx to; /* New RTX */
835 rtx insn; /* Insn in which substitution is occurring. */
838 static void
839 validate_replace_src_1 (rtx *x, void *data)
841 struct validate_replace_src_data *d
842 = (struct validate_replace_src_data *) data;
844 validate_replace_rtx_1 (x, d->from, d->to, d->insn, true);
847 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
848 SET_DESTs. */
850 void
851 validate_replace_src_group (rtx from, rtx to, rtx insn)
853 struct validate_replace_src_data d;
855 d.from = from;
856 d.to = to;
857 d.insn = insn;
858 note_uses (&PATTERN (insn), validate_replace_src_1, &d);
861 /* Try simplify INSN.
862 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
863 pattern and return true if something was simplified. */
865 bool
866 validate_simplify_insn (rtx insn)
868 int i;
869 rtx pat = NULL;
870 rtx newpat = NULL;
872 pat = PATTERN (insn);
874 if (GET_CODE (pat) == SET)
876 newpat = simplify_rtx (SET_SRC (pat));
877 if (newpat && !rtx_equal_p (SET_SRC (pat), newpat))
878 validate_change (insn, &SET_SRC (pat), newpat, 1);
879 newpat = simplify_rtx (SET_DEST (pat));
880 if (newpat && !rtx_equal_p (SET_DEST (pat), newpat))
881 validate_change (insn, &SET_DEST (pat), newpat, 1);
883 else if (GET_CODE (pat) == PARALLEL)
884 for (i = 0; i < XVECLEN (pat, 0); i++)
886 rtx s = XVECEXP (pat, 0, i);
888 if (GET_CODE (XVECEXP (pat, 0, i)) == SET)
890 newpat = simplify_rtx (SET_SRC (s));
891 if (newpat && !rtx_equal_p (SET_SRC (s), newpat))
892 validate_change (insn, &SET_SRC (s), newpat, 1);
893 newpat = simplify_rtx (SET_DEST (s));
894 if (newpat && !rtx_equal_p (SET_DEST (s), newpat))
895 validate_change (insn, &SET_DEST (s), newpat, 1);
898 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
901 #ifdef HAVE_cc0
902 /* Return 1 if the insn using CC0 set by INSN does not contain
903 any ordered tests applied to the condition codes.
904 EQ and NE tests do not count. */
907 next_insn_tests_no_inequality (rtx insn)
909 rtx next = next_cc0_user (insn);
911 /* If there is no next insn, we have to take the conservative choice. */
912 if (next == 0)
913 return 0;
915 return (INSN_P (next)
916 && ! inequality_comparisons_p (PATTERN (next)));
918 #endif
920 /* Return 1 if OP is a valid general operand for machine mode MODE.
921 This is either a register reference, a memory reference,
922 or a constant. In the case of a memory reference, the address
923 is checked for general validity for the target machine.
925 Register and memory references must have mode MODE in order to be valid,
926 but some constants have no machine mode and are valid for any mode.
928 If MODE is VOIDmode, OP is checked for validity for whatever mode
929 it has.
931 The main use of this function is as a predicate in match_operand
932 expressions in the machine description. */
935 general_operand (rtx op, enum machine_mode mode)
937 enum rtx_code code = GET_CODE (op);
939 if (mode == VOIDmode)
940 mode = GET_MODE (op);
942 /* Don't accept CONST_INT or anything similar
943 if the caller wants something floating. */
944 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
945 && GET_MODE_CLASS (mode) != MODE_INT
946 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
947 return 0;
949 if (CONST_INT_P (op)
950 && mode != VOIDmode
951 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
952 return 0;
954 if (CONSTANT_P (op))
955 return ((GET_MODE (op) == VOIDmode || GET_MODE (op) == mode
956 || mode == VOIDmode)
957 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
958 && targetm.legitimate_constant_p (mode == VOIDmode
959 ? GET_MODE (op)
960 : mode, op));
962 /* Except for certain constants with VOIDmode, already checked for,
963 OP's mode must match MODE if MODE specifies a mode. */
965 if (GET_MODE (op) != mode)
966 return 0;
968 if (code == SUBREG)
970 rtx sub = SUBREG_REG (op);
972 #ifdef INSN_SCHEDULING
973 /* On machines that have insn scheduling, we want all memory
974 reference to be explicit, so outlaw paradoxical SUBREGs.
975 However, we must allow them after reload so that they can
976 get cleaned up by cleanup_subreg_operands. */
977 if (!reload_completed && MEM_P (sub)
978 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (sub)))
979 return 0;
980 #endif
981 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
982 may result in incorrect reference. We should simplify all valid
983 subregs of MEM anyway. But allow this after reload because we
984 might be called from cleanup_subreg_operands.
986 ??? This is a kludge. */
987 if (!reload_completed && SUBREG_BYTE (op) != 0
988 && MEM_P (sub))
989 return 0;
991 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
992 create such rtl, and we must reject it. */
993 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
994 /* LRA can use subreg to store a floating point value in an
995 integer mode. Although the floating point and the
996 integer modes need the same number of hard registers, the
997 size of floating point mode can be less than the integer
998 mode. */
999 && ! lra_in_progress
1000 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1001 return 0;
1003 op = sub;
1004 code = GET_CODE (op);
1007 if (code == REG)
1008 return (REGNO (op) >= FIRST_PSEUDO_REGISTER
1009 || in_hard_reg_set_p (operand_reg_set, GET_MODE (op), REGNO (op)));
1011 if (code == MEM)
1013 rtx y = XEXP (op, 0);
1015 if (! volatile_ok && MEM_VOLATILE_P (op))
1016 return 0;
1018 /* Use the mem's mode, since it will be reloaded thus. */
1019 if (memory_address_addr_space_p (GET_MODE (op), y, MEM_ADDR_SPACE (op)))
1020 return 1;
1023 return 0;
1026 /* Return 1 if OP is a valid memory address for a memory reference
1027 of mode MODE.
1029 The main use of this function is as a predicate in match_operand
1030 expressions in the machine description. */
1033 address_operand (rtx op, enum machine_mode mode)
1035 return memory_address_p (mode, op);
1038 /* Return 1 if OP is a register reference of mode MODE.
1039 If MODE is VOIDmode, accept a register in any mode.
1041 The main use of this function is as a predicate in match_operand
1042 expressions in the machine description. */
1045 register_operand (rtx op, enum machine_mode mode)
1047 if (GET_MODE (op) != mode && mode != VOIDmode)
1048 return 0;
1050 if (GET_CODE (op) == SUBREG)
1052 rtx sub = SUBREG_REG (op);
1054 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1055 because it is guaranteed to be reloaded into one.
1056 Just make sure the MEM is valid in itself.
1057 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1058 but currently it does result from (SUBREG (REG)...) where the
1059 reg went on the stack.) */
1060 if (! reload_completed && MEM_P (sub))
1061 return general_operand (op, mode);
1063 #ifdef CANNOT_CHANGE_MODE_CLASS
1064 if (REG_P (sub)
1065 && REGNO (sub) < FIRST_PSEUDO_REGISTER
1066 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub), GET_MODE (sub), mode)
1067 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_INT
1068 && GET_MODE_CLASS (GET_MODE (sub)) != MODE_COMPLEX_FLOAT
1069 /* LRA can generate some invalid SUBREGS just for matched
1070 operand reload presentation. LRA needs to treat them as
1071 valid. */
1072 && ! LRA_SUBREG_P (op))
1073 return 0;
1074 #endif
1076 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1077 create such rtl, and we must reject it. */
1078 if (SCALAR_FLOAT_MODE_P (GET_MODE (op))
1079 /* LRA can use subreg to store a floating point value in an
1080 integer mode. Although the floating point and the
1081 integer modes need the same number of hard registers, the
1082 size of floating point mode can be less than the integer
1083 mode. */
1084 && ! lra_in_progress
1085 && GET_MODE_SIZE (GET_MODE (op)) > GET_MODE_SIZE (GET_MODE (sub)))
1086 return 0;
1088 op = sub;
1091 return (REG_P (op)
1092 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1093 || in_hard_reg_set_p (operand_reg_set,
1094 GET_MODE (op), REGNO (op))));
1097 /* Return 1 for a register in Pmode; ignore the tested mode. */
1100 pmode_register_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
1102 return register_operand (op, Pmode);
1105 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1106 or a hard register. */
1109 scratch_operand (rtx op, enum machine_mode mode)
1111 if (GET_MODE (op) != mode && mode != VOIDmode)
1112 return 0;
1114 return (GET_CODE (op) == SCRATCH
1115 || (REG_P (op)
1116 && (lra_in_progress || REGNO (op) < FIRST_PSEUDO_REGISTER)));
1119 /* Return 1 if OP is a valid immediate operand for mode MODE.
1121 The main use of this function is as a predicate in match_operand
1122 expressions in the machine description. */
1125 immediate_operand (rtx op, enum machine_mode mode)
1127 /* Don't accept CONST_INT or anything similar
1128 if the caller wants something floating. */
1129 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1130 && GET_MODE_CLASS (mode) != MODE_INT
1131 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1132 return 0;
1134 if (CONST_INT_P (op)
1135 && mode != VOIDmode
1136 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1137 return 0;
1139 return (CONSTANT_P (op)
1140 && (GET_MODE (op) == mode || mode == VOIDmode
1141 || GET_MODE (op) == VOIDmode)
1142 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op))
1143 && targetm.legitimate_constant_p (mode == VOIDmode
1144 ? GET_MODE (op)
1145 : mode, op));
1148 /* Returns 1 if OP is an operand that is a CONST_INT. */
1151 const_int_operand (rtx op, enum machine_mode mode)
1153 if (!CONST_INT_P (op))
1154 return 0;
1156 if (mode != VOIDmode
1157 && trunc_int_for_mode (INTVAL (op), mode) != INTVAL (op))
1158 return 0;
1160 return 1;
1163 /* Returns 1 if OP is an operand that is a constant integer or constant
1164 floating-point number. */
1167 const_double_operand (rtx op, enum machine_mode mode)
1169 /* Don't accept CONST_INT or anything similar
1170 if the caller wants something floating. */
1171 if (GET_MODE (op) == VOIDmode && mode != VOIDmode
1172 && GET_MODE_CLASS (mode) != MODE_INT
1173 && GET_MODE_CLASS (mode) != MODE_PARTIAL_INT)
1174 return 0;
1176 return ((CONST_DOUBLE_P (op) || CONST_INT_P (op))
1177 && (mode == VOIDmode || GET_MODE (op) == mode
1178 || GET_MODE (op) == VOIDmode));
1181 /* Return 1 if OP is a general operand that is not an immediate operand. */
1184 nonimmediate_operand (rtx op, enum machine_mode mode)
1186 return (general_operand (op, mode) && ! CONSTANT_P (op));
1189 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1192 nonmemory_operand (rtx op, enum machine_mode mode)
1194 if (CONSTANT_P (op))
1195 return immediate_operand (op, mode);
1197 if (GET_MODE (op) != mode && mode != VOIDmode)
1198 return 0;
1200 if (GET_CODE (op) == SUBREG)
1202 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1203 because it is guaranteed to be reloaded into one.
1204 Just make sure the MEM is valid in itself.
1205 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1206 but currently it does result from (SUBREG (REG)...) where the
1207 reg went on the stack.) */
1208 if (! reload_completed && MEM_P (SUBREG_REG (op)))
1209 return general_operand (op, mode);
1210 op = SUBREG_REG (op);
1213 return (REG_P (op)
1214 && (REGNO (op) >= FIRST_PSEUDO_REGISTER
1215 || in_hard_reg_set_p (operand_reg_set,
1216 GET_MODE (op), REGNO (op))));
1219 /* Return 1 if OP is a valid operand that stands for pushing a
1220 value of mode MODE onto the stack.
1222 The main use of this function is as a predicate in match_operand
1223 expressions in the machine description. */
1226 push_operand (rtx op, enum machine_mode mode)
1228 unsigned int rounded_size = GET_MODE_SIZE (mode);
1230 #ifdef PUSH_ROUNDING
1231 rounded_size = PUSH_ROUNDING (rounded_size);
1232 #endif
1234 if (!MEM_P (op))
1235 return 0;
1237 if (mode != VOIDmode && GET_MODE (op) != mode)
1238 return 0;
1240 op = XEXP (op, 0);
1242 if (rounded_size == GET_MODE_SIZE (mode))
1244 if (GET_CODE (op) != STACK_PUSH_CODE)
1245 return 0;
1247 else
1249 if (GET_CODE (op) != PRE_MODIFY
1250 || GET_CODE (XEXP (op, 1)) != PLUS
1251 || XEXP (XEXP (op, 1), 0) != XEXP (op, 0)
1252 || !CONST_INT_P (XEXP (XEXP (op, 1), 1))
1253 #ifdef STACK_GROWS_DOWNWARD
1254 || INTVAL (XEXP (XEXP (op, 1), 1)) != - (int) rounded_size
1255 #else
1256 || INTVAL (XEXP (XEXP (op, 1), 1)) != (int) rounded_size
1257 #endif
1259 return 0;
1262 return XEXP (op, 0) == stack_pointer_rtx;
1265 /* Return 1 if OP is a valid operand that stands for popping a
1266 value of mode MODE off the stack.
1268 The main use of this function is as a predicate in match_operand
1269 expressions in the machine description. */
1272 pop_operand (rtx op, enum machine_mode mode)
1274 if (!MEM_P (op))
1275 return 0;
1277 if (mode != VOIDmode && GET_MODE (op) != mode)
1278 return 0;
1280 op = XEXP (op, 0);
1282 if (GET_CODE (op) != STACK_POP_CODE)
1283 return 0;
1285 return XEXP (op, 0) == stack_pointer_rtx;
1288 /* Return 1 if ADDR is a valid memory address
1289 for mode MODE in address space AS. */
1292 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED,
1293 rtx addr, addr_space_t as)
1295 #ifdef GO_IF_LEGITIMATE_ADDRESS
1296 gcc_assert (ADDR_SPACE_GENERIC_P (as));
1297 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
1298 return 0;
1300 win:
1301 return 1;
1302 #else
1303 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
1304 #endif
1307 /* Return 1 if OP is a valid memory reference with mode MODE,
1308 including a valid address.
1310 The main use of this function is as a predicate in match_operand
1311 expressions in the machine description. */
1314 memory_operand (rtx op, enum machine_mode mode)
1316 rtx inner;
1318 if (! reload_completed)
1319 /* Note that no SUBREG is a memory operand before end of reload pass,
1320 because (SUBREG (MEM...)) forces reloading into a register. */
1321 return MEM_P (op) && general_operand (op, mode);
1323 if (mode != VOIDmode && GET_MODE (op) != mode)
1324 return 0;
1326 inner = op;
1327 if (GET_CODE (inner) == SUBREG)
1328 inner = SUBREG_REG (inner);
1330 return (MEM_P (inner) && general_operand (op, mode));
1333 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1334 that is, a memory reference whose address is a general_operand. */
1337 indirect_operand (rtx op, enum machine_mode mode)
1339 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1340 if (! reload_completed
1341 && GET_CODE (op) == SUBREG && MEM_P (SUBREG_REG (op)))
1343 int offset = SUBREG_BYTE (op);
1344 rtx inner = SUBREG_REG (op);
1346 if (mode != VOIDmode && GET_MODE (op) != mode)
1347 return 0;
1349 /* The only way that we can have a general_operand as the resulting
1350 address is if OFFSET is zero and the address already is an operand
1351 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1352 operand. */
1354 return ((offset == 0 && general_operand (XEXP (inner, 0), Pmode))
1355 || (GET_CODE (XEXP (inner, 0)) == PLUS
1356 && CONST_INT_P (XEXP (XEXP (inner, 0), 1))
1357 && INTVAL (XEXP (XEXP (inner, 0), 1)) == -offset
1358 && general_operand (XEXP (XEXP (inner, 0), 0), Pmode)));
1361 return (MEM_P (op)
1362 && memory_operand (op, mode)
1363 && general_operand (XEXP (op, 0), Pmode));
1366 /* Return 1 if this is an ordered comparison operator (not including
1367 ORDERED and UNORDERED). */
1370 ordered_comparison_operator (rtx op, enum machine_mode mode)
1372 if (mode != VOIDmode && GET_MODE (op) != mode)
1373 return false;
1374 switch (GET_CODE (op))
1376 case EQ:
1377 case NE:
1378 case LT:
1379 case LTU:
1380 case LE:
1381 case LEU:
1382 case GT:
1383 case GTU:
1384 case GE:
1385 case GEU:
1386 return true;
1387 default:
1388 return false;
1392 /* Return 1 if this is a comparison operator. This allows the use of
1393 MATCH_OPERATOR to recognize all the branch insns. */
1396 comparison_operator (rtx op, enum machine_mode mode)
1398 return ((mode == VOIDmode || GET_MODE (op) == mode)
1399 && COMPARISON_P (op));
1402 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1405 extract_asm_operands (rtx body)
1407 rtx tmp;
1408 switch (GET_CODE (body))
1410 case ASM_OPERANDS:
1411 return body;
1413 case SET:
1414 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1415 tmp = SET_SRC (body);
1416 if (GET_CODE (tmp) == ASM_OPERANDS)
1417 return tmp;
1418 break;
1420 case PARALLEL:
1421 tmp = XVECEXP (body, 0, 0);
1422 if (GET_CODE (tmp) == ASM_OPERANDS)
1423 return tmp;
1424 if (GET_CODE (tmp) == SET)
1426 tmp = SET_SRC (tmp);
1427 if (GET_CODE (tmp) == ASM_OPERANDS)
1428 return tmp;
1430 break;
1432 default:
1433 break;
1435 return NULL;
1438 /* If BODY is an insn body that uses ASM_OPERANDS,
1439 return the number of operands (both input and output) in the insn.
1440 Otherwise return -1. */
1443 asm_noperands (const_rtx body)
1445 rtx asm_op = extract_asm_operands (CONST_CAST_RTX (body));
1446 int n_sets = 0;
1448 if (asm_op == NULL)
1449 return -1;
1451 if (GET_CODE (body) == SET)
1452 n_sets = 1;
1453 else if (GET_CODE (body) == PARALLEL)
1455 int i;
1456 if (GET_CODE (XVECEXP (body, 0, 0)) == SET)
1458 /* Multiple output operands, or 1 output plus some clobbers:
1459 body is
1460 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1461 /* Count backwards through CLOBBERs to determine number of SETs. */
1462 for (i = XVECLEN (body, 0); i > 0; i--)
1464 if (GET_CODE (XVECEXP (body, 0, i - 1)) == SET)
1465 break;
1466 if (GET_CODE (XVECEXP (body, 0, i - 1)) != CLOBBER)
1467 return -1;
1470 /* N_SETS is now number of output operands. */
1471 n_sets = i;
1473 /* Verify that all the SETs we have
1474 came from a single original asm_operands insn
1475 (so that invalid combinations are blocked). */
1476 for (i = 0; i < n_sets; i++)
1478 rtx elt = XVECEXP (body, 0, i);
1479 if (GET_CODE (elt) != SET)
1480 return -1;
1481 if (GET_CODE (SET_SRC (elt)) != ASM_OPERANDS)
1482 return -1;
1483 /* If these ASM_OPERANDS rtx's came from different original insns
1484 then they aren't allowed together. */
1485 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt))
1486 != ASM_OPERANDS_INPUT_VEC (asm_op))
1487 return -1;
1490 else
1492 /* 0 outputs, but some clobbers:
1493 body is [(asm_operands ...) (clobber (reg ...))...]. */
1494 /* Make sure all the other parallel things really are clobbers. */
1495 for (i = XVECLEN (body, 0) - 1; i > 0; i--)
1496 if (GET_CODE (XVECEXP (body, 0, i)) != CLOBBER)
1497 return -1;
1501 return (ASM_OPERANDS_INPUT_LENGTH (asm_op)
1502 + ASM_OPERANDS_LABEL_LENGTH (asm_op) + n_sets);
1505 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1506 copy its operands (both input and output) into the vector OPERANDS,
1507 the locations of the operands within the insn into the vector OPERAND_LOCS,
1508 and the constraints for the operands into CONSTRAINTS.
1509 Write the modes of the operands into MODES.
1510 Return the assembler-template.
1512 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1513 we don't store that info. */
1515 const char *
1516 decode_asm_operands (rtx body, rtx *operands, rtx **operand_locs,
1517 const char **constraints, enum machine_mode *modes,
1518 location_t *loc)
1520 int nbase = 0, n, i;
1521 rtx asmop;
1523 switch (GET_CODE (body))
1525 case ASM_OPERANDS:
1526 /* Zero output asm: BODY is (asm_operands ...). */
1527 asmop = body;
1528 break;
1530 case SET:
1531 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1532 asmop = SET_SRC (body);
1534 /* The output is in the SET.
1535 Its constraint is in the ASM_OPERANDS itself. */
1536 if (operands)
1537 operands[0] = SET_DEST (body);
1538 if (operand_locs)
1539 operand_locs[0] = &SET_DEST (body);
1540 if (constraints)
1541 constraints[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop);
1542 if (modes)
1543 modes[0] = GET_MODE (SET_DEST (body));
1544 nbase = 1;
1545 break;
1547 case PARALLEL:
1549 int nparallel = XVECLEN (body, 0); /* Includes CLOBBERs. */
1551 asmop = XVECEXP (body, 0, 0);
1552 if (GET_CODE (asmop) == SET)
1554 asmop = SET_SRC (asmop);
1556 /* At least one output, plus some CLOBBERs. The outputs are in
1557 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1558 for (i = 0; i < nparallel; i++)
1560 if (GET_CODE (XVECEXP (body, 0, i)) == CLOBBER)
1561 break; /* Past last SET */
1562 if (operands)
1563 operands[i] = SET_DEST (XVECEXP (body, 0, i));
1564 if (operand_locs)
1565 operand_locs[i] = &SET_DEST (XVECEXP (body, 0, i));
1566 if (constraints)
1567 constraints[i] = XSTR (SET_SRC (XVECEXP (body, 0, i)), 1);
1568 if (modes)
1569 modes[i] = GET_MODE (SET_DEST (XVECEXP (body, 0, i)));
1571 nbase = i;
1573 break;
1576 default:
1577 gcc_unreachable ();
1580 n = ASM_OPERANDS_INPUT_LENGTH (asmop);
1581 for (i = 0; i < n; i++)
1583 if (operand_locs)
1584 operand_locs[nbase + i] = &ASM_OPERANDS_INPUT (asmop, i);
1585 if (operands)
1586 operands[nbase + i] = ASM_OPERANDS_INPUT (asmop, i);
1587 if (constraints)
1588 constraints[nbase + i] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop, i);
1589 if (modes)
1590 modes[nbase + i] = ASM_OPERANDS_INPUT_MODE (asmop, i);
1592 nbase += n;
1594 n = ASM_OPERANDS_LABEL_LENGTH (asmop);
1595 for (i = 0; i < n; i++)
1597 if (operand_locs)
1598 operand_locs[nbase + i] = &ASM_OPERANDS_LABEL (asmop, i);
1599 if (operands)
1600 operands[nbase + i] = ASM_OPERANDS_LABEL (asmop, i);
1601 if (constraints)
1602 constraints[nbase + i] = "";
1603 if (modes)
1604 modes[nbase + i] = Pmode;
1607 if (loc)
1608 *loc = ASM_OPERANDS_SOURCE_LOCATION (asmop);
1610 return ASM_OPERANDS_TEMPLATE (asmop);
1613 /* Check if an asm_operand matches its constraints.
1614 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1617 asm_operand_ok (rtx op, const char *constraint, const char **constraints)
1619 int result = 0;
1620 #ifdef AUTO_INC_DEC
1621 bool incdec_ok = false;
1622 #endif
1624 /* Use constrain_operands after reload. */
1625 gcc_assert (!reload_completed);
1627 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1628 many alternatives as required to match the other operands. */
1629 if (*constraint == '\0')
1630 result = 1;
1632 while (*constraint)
1634 char c = *constraint;
1635 int len;
1636 switch (c)
1638 case ',':
1639 constraint++;
1640 continue;
1641 case '=':
1642 case '+':
1643 case '*':
1644 case '%':
1645 case '!':
1646 case '#':
1647 case '&':
1648 case '?':
1649 break;
1651 case '0': case '1': case '2': case '3': case '4':
1652 case '5': case '6': case '7': case '8': case '9':
1653 /* If caller provided constraints pointer, look up
1654 the matching constraint. Otherwise, our caller should have
1655 given us the proper matching constraint, but we can't
1656 actually fail the check if they didn't. Indicate that
1657 results are inconclusive. */
1658 if (constraints)
1660 char *end;
1661 unsigned long match;
1663 match = strtoul (constraint, &end, 10);
1664 if (!result)
1665 result = asm_operand_ok (op, constraints[match], NULL);
1666 constraint = (const char *) end;
1668 else
1671 constraint++;
1672 while (ISDIGIT (*constraint));
1673 if (! result)
1674 result = -1;
1676 continue;
1678 case 'p':
1679 if (address_operand (op, VOIDmode))
1680 result = 1;
1681 break;
1683 case TARGET_MEM_CONSTRAINT:
1684 case 'V': /* non-offsettable */
1685 if (memory_operand (op, VOIDmode))
1686 result = 1;
1687 break;
1689 case 'o': /* offsettable */
1690 if (offsettable_nonstrict_memref_p (op))
1691 result = 1;
1692 break;
1694 case '<':
1695 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1696 excepting those that expand_call created. Further, on some
1697 machines which do not have generalized auto inc/dec, an inc/dec
1698 is not a memory_operand.
1700 Match any memory and hope things are resolved after reload. */
1702 if (MEM_P (op)
1703 && (1
1704 || GET_CODE (XEXP (op, 0)) == PRE_DEC
1705 || GET_CODE (XEXP (op, 0)) == POST_DEC))
1706 result = 1;
1707 #ifdef AUTO_INC_DEC
1708 incdec_ok = true;
1709 #endif
1710 break;
1712 case '>':
1713 if (MEM_P (op)
1714 && (1
1715 || GET_CODE (XEXP (op, 0)) == PRE_INC
1716 || GET_CODE (XEXP (op, 0)) == POST_INC))
1717 result = 1;
1718 #ifdef AUTO_INC_DEC
1719 incdec_ok = true;
1720 #endif
1721 break;
1723 case 'E':
1724 case 'F':
1725 if (CONST_DOUBLE_AS_FLOAT_P (op)
1726 || (GET_CODE (op) == CONST_VECTOR
1727 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
1728 result = 1;
1729 break;
1731 case 'G':
1732 if (CONST_DOUBLE_AS_FLOAT_P (op)
1733 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'G', constraint))
1734 result = 1;
1735 break;
1736 case 'H':
1737 if (CONST_DOUBLE_AS_FLOAT_P (op)
1738 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, 'H', constraint))
1739 result = 1;
1740 break;
1742 case 's':
1743 if (CONST_SCALAR_INT_P (op))
1744 break;
1745 /* Fall through. */
1747 case 'i':
1748 if (CONSTANT_P (op) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (op)))
1749 result = 1;
1750 break;
1752 case 'n':
1753 if (CONST_SCALAR_INT_P (op))
1754 result = 1;
1755 break;
1757 case 'I':
1758 if (CONST_INT_P (op)
1759 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'I', constraint))
1760 result = 1;
1761 break;
1762 case 'J':
1763 if (CONST_INT_P (op)
1764 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'J', constraint))
1765 result = 1;
1766 break;
1767 case 'K':
1768 if (CONST_INT_P (op)
1769 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'K', constraint))
1770 result = 1;
1771 break;
1772 case 'L':
1773 if (CONST_INT_P (op)
1774 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'L', constraint))
1775 result = 1;
1776 break;
1777 case 'M':
1778 if (CONST_INT_P (op)
1779 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'M', constraint))
1780 result = 1;
1781 break;
1782 case 'N':
1783 if (CONST_INT_P (op)
1784 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'N', constraint))
1785 result = 1;
1786 break;
1787 case 'O':
1788 if (CONST_INT_P (op)
1789 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'O', constraint))
1790 result = 1;
1791 break;
1792 case 'P':
1793 if (CONST_INT_P (op)
1794 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), 'P', constraint))
1795 result = 1;
1796 break;
1798 case 'X':
1799 result = 1;
1800 break;
1802 case 'g':
1803 if (general_operand (op, VOIDmode))
1804 result = 1;
1805 break;
1807 default:
1808 /* For all other letters, we first check for a register class,
1809 otherwise it is an EXTRA_CONSTRAINT. */
1810 if (REG_CLASS_FROM_CONSTRAINT (c, constraint) != NO_REGS)
1812 case 'r':
1813 if (GET_MODE (op) == BLKmode)
1814 break;
1815 if (register_operand (op, VOIDmode))
1816 result = 1;
1818 #ifdef EXTRA_CONSTRAINT_STR
1819 else if (EXTRA_MEMORY_CONSTRAINT (c, constraint))
1820 /* Every memory operand can be reloaded to fit. */
1821 result = result || memory_operand (op, VOIDmode);
1822 else if (EXTRA_ADDRESS_CONSTRAINT (c, constraint))
1823 /* Every address operand can be reloaded to fit. */
1824 result = result || address_operand (op, VOIDmode);
1825 else if (EXTRA_CONSTRAINT_STR (op, c, constraint))
1826 result = 1;
1827 #endif
1828 break;
1830 len = CONSTRAINT_LEN (c, constraint);
1832 constraint++;
1833 while (--len && *constraint);
1834 if (len)
1835 return 0;
1838 #ifdef AUTO_INC_DEC
1839 /* For operands without < or > constraints reject side-effects. */
1840 if (!incdec_ok && result && MEM_P (op))
1841 switch (GET_CODE (XEXP (op, 0)))
1843 case PRE_INC:
1844 case POST_INC:
1845 case PRE_DEC:
1846 case POST_DEC:
1847 case PRE_MODIFY:
1848 case POST_MODIFY:
1849 return 0;
1850 default:
1851 break;
1853 #endif
1855 return result;
1858 /* Given an rtx *P, if it is a sum containing an integer constant term,
1859 return the location (type rtx *) of the pointer to that constant term.
1860 Otherwise, return a null pointer. */
1862 rtx *
1863 find_constant_term_loc (rtx *p)
1865 rtx *tem;
1866 enum rtx_code code = GET_CODE (*p);
1868 /* If *P IS such a constant term, P is its location. */
1870 if (code == CONST_INT || code == SYMBOL_REF || code == LABEL_REF
1871 || code == CONST)
1872 return p;
1874 /* Otherwise, if not a sum, it has no constant term. */
1876 if (GET_CODE (*p) != PLUS)
1877 return 0;
1879 /* If one of the summands is constant, return its location. */
1881 if (XEXP (*p, 0) && CONSTANT_P (XEXP (*p, 0))
1882 && XEXP (*p, 1) && CONSTANT_P (XEXP (*p, 1)))
1883 return p;
1885 /* Otherwise, check each summand for containing a constant term. */
1887 if (XEXP (*p, 0) != 0)
1889 tem = find_constant_term_loc (&XEXP (*p, 0));
1890 if (tem != 0)
1891 return tem;
1894 if (XEXP (*p, 1) != 0)
1896 tem = find_constant_term_loc (&XEXP (*p, 1));
1897 if (tem != 0)
1898 return tem;
1901 return 0;
1904 /* Return 1 if OP is a memory reference
1905 whose address contains no side effects
1906 and remains valid after the addition
1907 of a positive integer less than the
1908 size of the object being referenced.
1910 We assume that the original address is valid and do not check it.
1912 This uses strict_memory_address_p as a subroutine, so
1913 don't use it before reload. */
1916 offsettable_memref_p (rtx op)
1918 return ((MEM_P (op))
1919 && offsettable_address_addr_space_p (1, GET_MODE (op), XEXP (op, 0),
1920 MEM_ADDR_SPACE (op)));
1923 /* Similar, but don't require a strictly valid mem ref:
1924 consider pseudo-regs valid as index or base regs. */
1927 offsettable_nonstrict_memref_p (rtx op)
1929 return ((MEM_P (op))
1930 && offsettable_address_addr_space_p (0, GET_MODE (op), XEXP (op, 0),
1931 MEM_ADDR_SPACE (op)));
1934 /* Return 1 if Y is a memory address which contains no side effects
1935 and would remain valid for address space AS after the addition of
1936 a positive integer less than the size of that mode.
1938 We assume that the original address is valid and do not check it.
1939 We do check that it is valid for narrower modes.
1941 If STRICTP is nonzero, we require a strictly valid address,
1942 for the sake of use in reload.c. */
1945 offsettable_address_addr_space_p (int strictp, enum machine_mode mode, rtx y,
1946 addr_space_t as)
1948 enum rtx_code ycode = GET_CODE (y);
1949 rtx z;
1950 rtx y1 = y;
1951 rtx *y2;
1952 int (*addressp) (enum machine_mode, rtx, addr_space_t) =
1953 (strictp ? strict_memory_address_addr_space_p
1954 : memory_address_addr_space_p);
1955 unsigned int mode_sz = GET_MODE_SIZE (mode);
1957 if (CONSTANT_ADDRESS_P (y))
1958 return 1;
1960 /* Adjusting an offsettable address involves changing to a narrower mode.
1961 Make sure that's OK. */
1963 if (mode_dependent_address_p (y, as))
1964 return 0;
1966 enum machine_mode address_mode = GET_MODE (y);
1967 if (address_mode == VOIDmode)
1968 address_mode = targetm.addr_space.address_mode (as);
1969 #ifdef POINTERS_EXTEND_UNSIGNED
1970 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
1971 #endif
1973 /* ??? How much offset does an offsettable BLKmode reference need?
1974 Clearly that depends on the situation in which it's being used.
1975 However, the current situation in which we test 0xffffffff is
1976 less than ideal. Caveat user. */
1977 if (mode_sz == 0)
1978 mode_sz = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
1980 /* If the expression contains a constant term,
1981 see if it remains valid when max possible offset is added. */
1983 if ((ycode == PLUS) && (y2 = find_constant_term_loc (&y1)))
1985 int good;
1987 y1 = *y2;
1988 *y2 = plus_constant (address_mode, *y2, mode_sz - 1);
1989 /* Use QImode because an odd displacement may be automatically invalid
1990 for any wider mode. But it should be valid for a single byte. */
1991 good = (*addressp) (QImode, y, as);
1993 /* In any case, restore old contents of memory. */
1994 *y2 = y1;
1995 return good;
1998 if (GET_RTX_CLASS (ycode) == RTX_AUTOINC)
1999 return 0;
2001 /* The offset added here is chosen as the maximum offset that
2002 any instruction could need to add when operating on something
2003 of the specified mode. We assume that if Y and Y+c are
2004 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2005 go inside a LO_SUM here, so we do so as well. */
2006 if (GET_CODE (y) == LO_SUM
2007 && mode != BLKmode
2008 && mode_sz <= GET_MODE_ALIGNMENT (mode) / BITS_PER_UNIT)
2009 z = gen_rtx_LO_SUM (address_mode, XEXP (y, 0),
2010 plus_constant (address_mode, XEXP (y, 1),
2011 mode_sz - 1));
2012 #ifdef POINTERS_EXTEND_UNSIGNED
2013 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2014 else if (POINTERS_EXTEND_UNSIGNED > 0
2015 && GET_CODE (y) == ZERO_EXTEND
2016 && GET_MODE (XEXP (y, 0)) == pointer_mode)
2017 z = gen_rtx_ZERO_EXTEND (address_mode,
2018 plus_constant (pointer_mode, XEXP (y, 0),
2019 mode_sz - 1));
2020 #endif
2021 else
2022 z = plus_constant (address_mode, y, mode_sz - 1);
2024 /* Use QImode because an odd displacement may be automatically invalid
2025 for any wider mode. But it should be valid for a single byte. */
2026 return (*addressp) (QImode, z, as);
2029 /* Return 1 if ADDR is an address-expression whose effect depends
2030 on the mode of the memory reference it is used in.
2032 ADDRSPACE is the address space associated with the address.
2034 Autoincrement addressing is a typical example of mode-dependence
2035 because the amount of the increment depends on the mode. */
2037 bool
2038 mode_dependent_address_p (rtx addr, addr_space_t addrspace)
2040 /* Auto-increment addressing with anything other than post_modify
2041 or pre_modify always introduces a mode dependency. Catch such
2042 cases now instead of deferring to the target. */
2043 if (GET_CODE (addr) == PRE_INC
2044 || GET_CODE (addr) == POST_INC
2045 || GET_CODE (addr) == PRE_DEC
2046 || GET_CODE (addr) == POST_DEC)
2047 return true;
2049 return targetm.mode_dependent_address_p (addr, addrspace);
2052 /* Like extract_insn, but save insn extracted and don't extract again, when
2053 called again for the same insn expecting that recog_data still contain the
2054 valid information. This is used primary by gen_attr infrastructure that
2055 often does extract insn again and again. */
2056 void
2057 extract_insn_cached (rtx insn)
2059 if (recog_data.insn == insn && INSN_CODE (insn) >= 0)
2060 return;
2061 extract_insn (insn);
2062 recog_data.insn = insn;
2065 /* Do cached extract_insn, constrain_operands and complain about failures.
2066 Used by insn_attrtab. */
2067 void
2068 extract_constrain_insn_cached (rtx insn)
2070 extract_insn_cached (insn);
2071 if (which_alternative == -1
2072 && !constrain_operands (reload_completed))
2073 fatal_insn_not_found (insn);
2076 /* Do cached constrain_operands and complain about failures. */
2078 constrain_operands_cached (int strict)
2080 if (which_alternative == -1)
2081 return constrain_operands (strict);
2082 else
2083 return 1;
2086 /* Analyze INSN and fill in recog_data. */
2088 void
2089 extract_insn (rtx insn)
2091 int i;
2092 int icode;
2093 int noperands;
2094 rtx body = PATTERN (insn);
2096 recog_data.n_operands = 0;
2097 recog_data.n_alternatives = 0;
2098 recog_data.n_dups = 0;
2099 recog_data.is_asm = false;
2101 switch (GET_CODE (body))
2103 case USE:
2104 case CLOBBER:
2105 case ASM_INPUT:
2106 case ADDR_VEC:
2107 case ADDR_DIFF_VEC:
2108 case VAR_LOCATION:
2109 return;
2111 case SET:
2112 if (GET_CODE (SET_SRC (body)) == ASM_OPERANDS)
2113 goto asm_insn;
2114 else
2115 goto normal_insn;
2116 case PARALLEL:
2117 if ((GET_CODE (XVECEXP (body, 0, 0)) == SET
2118 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) == ASM_OPERANDS)
2119 || GET_CODE (XVECEXP (body, 0, 0)) == ASM_OPERANDS)
2120 goto asm_insn;
2121 else
2122 goto normal_insn;
2123 case ASM_OPERANDS:
2124 asm_insn:
2125 recog_data.n_operands = noperands = asm_noperands (body);
2126 if (noperands >= 0)
2128 /* This insn is an `asm' with operands. */
2130 /* expand_asm_operands makes sure there aren't too many operands. */
2131 gcc_assert (noperands <= MAX_RECOG_OPERANDS);
2133 /* Now get the operand values and constraints out of the insn. */
2134 decode_asm_operands (body, recog_data.operand,
2135 recog_data.operand_loc,
2136 recog_data.constraints,
2137 recog_data.operand_mode, NULL);
2138 memset (recog_data.is_operator, 0, sizeof recog_data.is_operator);
2139 if (noperands > 0)
2141 const char *p = recog_data.constraints[0];
2142 recog_data.n_alternatives = 1;
2143 while (*p)
2144 recog_data.n_alternatives += (*p++ == ',');
2146 recog_data.is_asm = true;
2147 break;
2149 fatal_insn_not_found (insn);
2151 default:
2152 normal_insn:
2153 /* Ordinary insn: recognize it, get the operands via insn_extract
2154 and get the constraints. */
2156 icode = recog_memoized (insn);
2157 if (icode < 0)
2158 fatal_insn_not_found (insn);
2160 recog_data.n_operands = noperands = insn_data[icode].n_operands;
2161 recog_data.n_alternatives = insn_data[icode].n_alternatives;
2162 recog_data.n_dups = insn_data[icode].n_dups;
2164 insn_extract (insn);
2166 for (i = 0; i < noperands; i++)
2168 recog_data.constraints[i] = insn_data[icode].operand[i].constraint;
2169 recog_data.is_operator[i] = insn_data[icode].operand[i].is_operator;
2170 recog_data.operand_mode[i] = insn_data[icode].operand[i].mode;
2171 /* VOIDmode match_operands gets mode from their real operand. */
2172 if (recog_data.operand_mode[i] == VOIDmode)
2173 recog_data.operand_mode[i] = GET_MODE (recog_data.operand[i]);
2176 for (i = 0; i < noperands; i++)
2177 recog_data.operand_type[i]
2178 = (recog_data.constraints[i][0] == '=' ? OP_OUT
2179 : recog_data.constraints[i][0] == '+' ? OP_INOUT
2180 : OP_IN);
2182 gcc_assert (recog_data.n_alternatives <= MAX_RECOG_ALTERNATIVES);
2184 if (INSN_CODE (insn) < 0)
2185 for (i = 0; i < recog_data.n_alternatives; i++)
2186 recog_data.alternative_enabled_p[i] = true;
2187 else
2189 recog_data.insn = insn;
2190 for (i = 0; i < recog_data.n_alternatives; i++)
2192 which_alternative = i;
2193 recog_data.alternative_enabled_p[i]
2194 = HAVE_ATTR_enabled ? get_attr_enabled (insn) : 1;
2198 recog_data.insn = NULL;
2199 which_alternative = -1;
2202 /* After calling extract_insn, you can use this function to extract some
2203 information from the constraint strings into a more usable form.
2204 The collected data is stored in recog_op_alt. */
2205 void
2206 preprocess_constraints (void)
2208 int i;
2210 for (i = 0; i < recog_data.n_operands; i++)
2211 memset (recog_op_alt[i], 0, (recog_data.n_alternatives
2212 * sizeof (struct operand_alternative)));
2214 for (i = 0; i < recog_data.n_operands; i++)
2216 int j;
2217 struct operand_alternative *op_alt;
2218 const char *p = recog_data.constraints[i];
2220 op_alt = recog_op_alt[i];
2222 for (j = 0; j < recog_data.n_alternatives; j++)
2224 op_alt[j].cl = NO_REGS;
2225 op_alt[j].constraint = p;
2226 op_alt[j].matches = -1;
2227 op_alt[j].matched = -1;
2229 if (!recog_data.alternative_enabled_p[j])
2231 p = skip_alternative (p);
2232 continue;
2235 if (*p == '\0' || *p == ',')
2237 op_alt[j].anything_ok = 1;
2238 continue;
2241 for (;;)
2243 char c = *p;
2244 if (c == '#')
2246 c = *++p;
2247 while (c != ',' && c != '\0');
2248 if (c == ',' || c == '\0')
2250 p++;
2251 break;
2254 switch (c)
2256 case '=': case '+': case '*': case '%':
2257 case 'E': case 'F': case 'G': case 'H':
2258 case 's': case 'i': case 'n':
2259 case 'I': case 'J': case 'K': case 'L':
2260 case 'M': case 'N': case 'O': case 'P':
2261 /* These don't say anything we care about. */
2262 break;
2264 case '?':
2265 op_alt[j].reject += 6;
2266 break;
2267 case '!':
2268 op_alt[j].reject += 600;
2269 break;
2270 case '&':
2271 op_alt[j].earlyclobber = 1;
2272 break;
2274 case '0': case '1': case '2': case '3': case '4':
2275 case '5': case '6': case '7': case '8': case '9':
2277 char *end;
2278 op_alt[j].matches = strtoul (p, &end, 10);
2279 recog_op_alt[op_alt[j].matches][j].matched = i;
2280 p = end;
2282 continue;
2284 case TARGET_MEM_CONSTRAINT:
2285 op_alt[j].memory_ok = 1;
2286 break;
2287 case '<':
2288 op_alt[j].decmem_ok = 1;
2289 break;
2290 case '>':
2291 op_alt[j].incmem_ok = 1;
2292 break;
2293 case 'V':
2294 op_alt[j].nonoffmem_ok = 1;
2295 break;
2296 case 'o':
2297 op_alt[j].offmem_ok = 1;
2298 break;
2299 case 'X':
2300 op_alt[j].anything_ok = 1;
2301 break;
2303 case 'p':
2304 op_alt[j].is_address = 1;
2305 op_alt[j].cl = reg_class_subunion[(int) op_alt[j].cl]
2306 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2307 ADDRESS, SCRATCH)];
2308 break;
2310 case 'g':
2311 case 'r':
2312 op_alt[j].cl =
2313 reg_class_subunion[(int) op_alt[j].cl][(int) GENERAL_REGS];
2314 break;
2316 default:
2317 if (EXTRA_MEMORY_CONSTRAINT (c, p))
2319 op_alt[j].memory_ok = 1;
2320 break;
2322 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
2324 op_alt[j].is_address = 1;
2325 op_alt[j].cl
2326 = (reg_class_subunion
2327 [(int) op_alt[j].cl]
2328 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2329 ADDRESS, SCRATCH)]);
2330 break;
2333 op_alt[j].cl
2334 = (reg_class_subunion
2335 [(int) op_alt[j].cl]
2336 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c, p)]);
2337 break;
2339 p += CONSTRAINT_LEN (c, p);
2345 /* Check the operands of an insn against the insn's operand constraints
2346 and return 1 if they are valid.
2347 The information about the insn's operands, constraints, operand modes
2348 etc. is obtained from the global variables set up by extract_insn.
2350 WHICH_ALTERNATIVE is set to a number which indicates which
2351 alternative of constraints was matched: 0 for the first alternative,
2352 1 for the next, etc.
2354 In addition, when two operands are required to match
2355 and it happens that the output operand is (reg) while the
2356 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2357 make the output operand look like the input.
2358 This is because the output operand is the one the template will print.
2360 This is used in final, just before printing the assembler code and by
2361 the routines that determine an insn's attribute.
2363 If STRICT is a positive nonzero value, it means that we have been
2364 called after reload has been completed. In that case, we must
2365 do all checks strictly. If it is zero, it means that we have been called
2366 before reload has completed. In that case, we first try to see if we can
2367 find an alternative that matches strictly. If not, we try again, this
2368 time assuming that reload will fix up the insn. This provides a "best
2369 guess" for the alternative and is used to compute attributes of insns prior
2370 to reload. A negative value of STRICT is used for this internal call. */
2372 struct funny_match
2374 int this_op, other;
2378 constrain_operands (int strict)
2380 const char *constraints[MAX_RECOG_OPERANDS];
2381 int matching_operands[MAX_RECOG_OPERANDS];
2382 int earlyclobber[MAX_RECOG_OPERANDS];
2383 int c;
2385 struct funny_match funny_match[MAX_RECOG_OPERANDS];
2386 int funny_match_index;
2388 which_alternative = 0;
2389 if (recog_data.n_operands == 0 || recog_data.n_alternatives == 0)
2390 return 1;
2392 for (c = 0; c < recog_data.n_operands; c++)
2394 constraints[c] = recog_data.constraints[c];
2395 matching_operands[c] = -1;
2400 int seen_earlyclobber_at = -1;
2401 int opno;
2402 int lose = 0;
2403 funny_match_index = 0;
2405 if (!recog_data.alternative_enabled_p[which_alternative])
2407 int i;
2409 for (i = 0; i < recog_data.n_operands; i++)
2410 constraints[i] = skip_alternative (constraints[i]);
2412 which_alternative++;
2413 continue;
2416 for (opno = 0; opno < recog_data.n_operands; opno++)
2418 rtx op = recog_data.operand[opno];
2419 enum machine_mode mode = GET_MODE (op);
2420 const char *p = constraints[opno];
2421 int offset = 0;
2422 int win = 0;
2423 int val;
2424 int len;
2426 earlyclobber[opno] = 0;
2428 /* A unary operator may be accepted by the predicate, but it
2429 is irrelevant for matching constraints. */
2430 if (UNARY_P (op))
2431 op = XEXP (op, 0);
2433 if (GET_CODE (op) == SUBREG)
2435 if (REG_P (SUBREG_REG (op))
2436 && REGNO (SUBREG_REG (op)) < FIRST_PSEUDO_REGISTER)
2437 offset = subreg_regno_offset (REGNO (SUBREG_REG (op)),
2438 GET_MODE (SUBREG_REG (op)),
2439 SUBREG_BYTE (op),
2440 GET_MODE (op));
2441 op = SUBREG_REG (op);
2444 /* An empty constraint or empty alternative
2445 allows anything which matched the pattern. */
2446 if (*p == 0 || *p == ',')
2447 win = 1;
2450 switch (c = *p, len = CONSTRAINT_LEN (c, p), c)
2452 case '\0':
2453 len = 0;
2454 break;
2455 case ',':
2456 c = '\0';
2457 break;
2459 case '?': case '!': case '*': case '%':
2460 case '=': case '+':
2461 break;
2463 case '#':
2464 /* Ignore rest of this alternative as far as
2465 constraint checking is concerned. */
2467 p++;
2468 while (*p && *p != ',');
2469 len = 0;
2470 break;
2472 case '&':
2473 earlyclobber[opno] = 1;
2474 if (seen_earlyclobber_at < 0)
2475 seen_earlyclobber_at = opno;
2476 break;
2478 case '0': case '1': case '2': case '3': case '4':
2479 case '5': case '6': case '7': case '8': case '9':
2481 /* This operand must be the same as a previous one.
2482 This kind of constraint is used for instructions such
2483 as add when they take only two operands.
2485 Note that the lower-numbered operand is passed first.
2487 If we are not testing strictly, assume that this
2488 constraint will be satisfied. */
2490 char *end;
2491 int match;
2493 match = strtoul (p, &end, 10);
2494 p = end;
2496 if (strict < 0)
2497 val = 1;
2498 else
2500 rtx op1 = recog_data.operand[match];
2501 rtx op2 = recog_data.operand[opno];
2503 /* A unary operator may be accepted by the predicate,
2504 but it is irrelevant for matching constraints. */
2505 if (UNARY_P (op1))
2506 op1 = XEXP (op1, 0);
2507 if (UNARY_P (op2))
2508 op2 = XEXP (op2, 0);
2510 val = operands_match_p (op1, op2);
2513 matching_operands[opno] = match;
2514 matching_operands[match] = opno;
2516 if (val != 0)
2517 win = 1;
2519 /* If output is *x and input is *--x, arrange later
2520 to change the output to *--x as well, since the
2521 output op is the one that will be printed. */
2522 if (val == 2 && strict > 0)
2524 funny_match[funny_match_index].this_op = opno;
2525 funny_match[funny_match_index++].other = match;
2528 len = 0;
2529 break;
2531 case 'p':
2532 /* p is used for address_operands. When we are called by
2533 gen_reload, no one will have checked that the address is
2534 strictly valid, i.e., that all pseudos requiring hard regs
2535 have gotten them. */
2536 if (strict <= 0
2537 || (strict_memory_address_p (recog_data.operand_mode[opno],
2538 op)))
2539 win = 1;
2540 break;
2542 /* No need to check general_operand again;
2543 it was done in insn-recog.c. Well, except that reload
2544 doesn't check the validity of its replacements, but
2545 that should only matter when there's a bug. */
2546 case 'g':
2547 /* Anything goes unless it is a REG and really has a hard reg
2548 but the hard reg is not in the class GENERAL_REGS. */
2549 if (REG_P (op))
2551 if (strict < 0
2552 || GENERAL_REGS == ALL_REGS
2553 || (reload_in_progress
2554 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2555 || reg_fits_class_p (op, GENERAL_REGS, offset, mode))
2556 win = 1;
2558 else if (strict < 0 || general_operand (op, mode))
2559 win = 1;
2560 break;
2562 case 'X':
2563 /* This is used for a MATCH_SCRATCH in the cases when
2564 we don't actually need anything. So anything goes
2565 any time. */
2566 win = 1;
2567 break;
2569 case TARGET_MEM_CONSTRAINT:
2570 /* Memory operands must be valid, to the extent
2571 required by STRICT. */
2572 if (MEM_P (op))
2574 if (strict > 0
2575 && !strict_memory_address_addr_space_p
2576 (GET_MODE (op), XEXP (op, 0),
2577 MEM_ADDR_SPACE (op)))
2578 break;
2579 if (strict == 0
2580 && !memory_address_addr_space_p
2581 (GET_MODE (op), XEXP (op, 0),
2582 MEM_ADDR_SPACE (op)))
2583 break;
2584 win = 1;
2586 /* Before reload, accept what reload can turn into mem. */
2587 else if (strict < 0 && CONSTANT_P (op))
2588 win = 1;
2589 /* During reload, accept a pseudo */
2590 else if (reload_in_progress && REG_P (op)
2591 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2592 win = 1;
2593 break;
2595 case '<':
2596 if (MEM_P (op)
2597 && (GET_CODE (XEXP (op, 0)) == PRE_DEC
2598 || GET_CODE (XEXP (op, 0)) == POST_DEC))
2599 win = 1;
2600 break;
2602 case '>':
2603 if (MEM_P (op)
2604 && (GET_CODE (XEXP (op, 0)) == PRE_INC
2605 || GET_CODE (XEXP (op, 0)) == POST_INC))
2606 win = 1;
2607 break;
2609 case 'E':
2610 case 'F':
2611 if (CONST_DOUBLE_AS_FLOAT_P (op)
2612 || (GET_CODE (op) == CONST_VECTOR
2613 && GET_MODE_CLASS (GET_MODE (op)) == MODE_VECTOR_FLOAT))
2614 win = 1;
2615 break;
2617 case 'G':
2618 case 'H':
2619 if (CONST_DOUBLE_AS_FLOAT_P (op)
2620 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op, c, p))
2621 win = 1;
2622 break;
2624 case 's':
2625 if (CONST_SCALAR_INT_P (op))
2626 break;
2627 case 'i':
2628 if (CONSTANT_P (op))
2629 win = 1;
2630 break;
2632 case 'n':
2633 if (CONST_SCALAR_INT_P (op))
2634 win = 1;
2635 break;
2637 case 'I':
2638 case 'J':
2639 case 'K':
2640 case 'L':
2641 case 'M':
2642 case 'N':
2643 case 'O':
2644 case 'P':
2645 if (CONST_INT_P (op)
2646 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op), c, p))
2647 win = 1;
2648 break;
2650 case 'V':
2651 if (MEM_P (op)
2652 && ((strict > 0 && ! offsettable_memref_p (op))
2653 || (strict < 0
2654 && !(CONSTANT_P (op) || MEM_P (op)))
2655 || (reload_in_progress
2656 && !(REG_P (op)
2657 && REGNO (op) >= FIRST_PSEUDO_REGISTER))))
2658 win = 1;
2659 break;
2661 case 'o':
2662 if ((strict > 0 && offsettable_memref_p (op))
2663 || (strict == 0 && offsettable_nonstrict_memref_p (op))
2664 /* Before reload, accept what reload can handle. */
2665 || (strict < 0
2666 && (CONSTANT_P (op) || MEM_P (op)))
2667 /* During reload, accept a pseudo */
2668 || (reload_in_progress && REG_P (op)
2669 && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2670 win = 1;
2671 break;
2673 default:
2675 enum reg_class cl;
2677 cl = (c == 'r'
2678 ? GENERAL_REGS : REG_CLASS_FROM_CONSTRAINT (c, p));
2679 if (cl != NO_REGS)
2681 if (strict < 0
2682 || (strict == 0
2683 && REG_P (op)
2684 && REGNO (op) >= FIRST_PSEUDO_REGISTER)
2685 || (strict == 0 && GET_CODE (op) == SCRATCH)
2686 || (REG_P (op)
2687 && reg_fits_class_p (op, cl, offset, mode)))
2688 win = 1;
2690 #ifdef EXTRA_CONSTRAINT_STR
2691 else if (EXTRA_CONSTRAINT_STR (op, c, p))
2692 win = 1;
2694 else if (EXTRA_MEMORY_CONSTRAINT (c, p)
2695 /* Every memory operand can be reloaded to fit. */
2696 && ((strict < 0 && MEM_P (op))
2697 /* Before reload, accept what reload can turn
2698 into mem. */
2699 || (strict < 0 && CONSTANT_P (op))
2700 /* During reload, accept a pseudo */
2701 || (reload_in_progress && REG_P (op)
2702 && REGNO (op) >= FIRST_PSEUDO_REGISTER)))
2703 win = 1;
2704 else if (EXTRA_ADDRESS_CONSTRAINT (c, p)
2705 /* Every address operand can be reloaded to fit. */
2706 && strict < 0)
2707 win = 1;
2708 /* Cater to architectures like IA-64 that define extra memory
2709 constraints without using define_memory_constraint. */
2710 else if (reload_in_progress
2711 && REG_P (op)
2712 && REGNO (op) >= FIRST_PSEUDO_REGISTER
2713 && reg_renumber[REGNO (op)] < 0
2714 && reg_equiv_mem (REGNO (op)) != 0
2715 && EXTRA_CONSTRAINT_STR
2716 (reg_equiv_mem (REGNO (op)), c, p))
2717 win = 1;
2718 #endif
2719 break;
2722 while (p += len, c);
2724 constraints[opno] = p;
2725 /* If this operand did not win somehow,
2726 this alternative loses. */
2727 if (! win)
2728 lose = 1;
2730 /* This alternative won; the operands are ok.
2731 Change whichever operands this alternative says to change. */
2732 if (! lose)
2734 int opno, eopno;
2736 /* See if any earlyclobber operand conflicts with some other
2737 operand. */
2739 if (strict > 0 && seen_earlyclobber_at >= 0)
2740 for (eopno = seen_earlyclobber_at;
2741 eopno < recog_data.n_operands;
2742 eopno++)
2743 /* Ignore earlyclobber operands now in memory,
2744 because we would often report failure when we have
2745 two memory operands, one of which was formerly a REG. */
2746 if (earlyclobber[eopno]
2747 && REG_P (recog_data.operand[eopno]))
2748 for (opno = 0; opno < recog_data.n_operands; opno++)
2749 if ((MEM_P (recog_data.operand[opno])
2750 || recog_data.operand_type[opno] != OP_OUT)
2751 && opno != eopno
2752 /* Ignore things like match_operator operands. */
2753 && *recog_data.constraints[opno] != 0
2754 && ! (matching_operands[opno] == eopno
2755 && operands_match_p (recog_data.operand[opno],
2756 recog_data.operand[eopno]))
2757 && ! safe_from_earlyclobber (recog_data.operand[opno],
2758 recog_data.operand[eopno]))
2759 lose = 1;
2761 if (! lose)
2763 while (--funny_match_index >= 0)
2765 recog_data.operand[funny_match[funny_match_index].other]
2766 = recog_data.operand[funny_match[funny_match_index].this_op];
2769 #ifdef AUTO_INC_DEC
2770 /* For operands without < or > constraints reject side-effects. */
2771 if (recog_data.is_asm)
2773 for (opno = 0; opno < recog_data.n_operands; opno++)
2774 if (MEM_P (recog_data.operand[opno]))
2775 switch (GET_CODE (XEXP (recog_data.operand[opno], 0)))
2777 case PRE_INC:
2778 case POST_INC:
2779 case PRE_DEC:
2780 case POST_DEC:
2781 case PRE_MODIFY:
2782 case POST_MODIFY:
2783 if (strchr (recog_data.constraints[opno], '<') == NULL
2784 && strchr (recog_data.constraints[opno], '>')
2785 == NULL)
2786 return 0;
2787 break;
2788 default:
2789 break;
2792 #endif
2793 return 1;
2797 which_alternative++;
2799 while (which_alternative < recog_data.n_alternatives);
2801 which_alternative = -1;
2802 /* If we are about to reject this, but we are not to test strictly,
2803 try a very loose test. Only return failure if it fails also. */
2804 if (strict == 0)
2805 return constrain_operands (-1);
2806 else
2807 return 0;
2810 /* Return true iff OPERAND (assumed to be a REG rtx)
2811 is a hard reg in class CLASS when its regno is offset by OFFSET
2812 and changed to mode MODE.
2813 If REG occupies multiple hard regs, all of them must be in CLASS. */
2815 bool
2816 reg_fits_class_p (const_rtx operand, reg_class_t cl, int offset,
2817 enum machine_mode mode)
2819 unsigned int regno = REGNO (operand);
2821 if (cl == NO_REGS)
2822 return false;
2824 /* Regno must not be a pseudo register. Offset may be negative. */
2825 return (HARD_REGISTER_NUM_P (regno)
2826 && HARD_REGISTER_NUM_P (regno + offset)
2827 && in_hard_reg_set_p (reg_class_contents[(int) cl], mode,
2828 regno + offset));
2831 /* Split single instruction. Helper function for split_all_insns and
2832 split_all_insns_noflow. Return last insn in the sequence if successful,
2833 or NULL if unsuccessful. */
2835 static rtx
2836 split_insn (rtx insn)
2838 /* Split insns here to get max fine-grain parallelism. */
2839 rtx first = PREV_INSN (insn);
2840 rtx last = try_split (PATTERN (insn), insn, 1);
2841 rtx insn_set, last_set, note;
2843 if (last == insn)
2844 return NULL_RTX;
2846 /* If the original instruction was a single set that was known to be
2847 equivalent to a constant, see if we can say the same about the last
2848 instruction in the split sequence. The two instructions must set
2849 the same destination. */
2850 insn_set = single_set (insn);
2851 if (insn_set)
2853 last_set = single_set (last);
2854 if (last_set && rtx_equal_p (SET_DEST (last_set), SET_DEST (insn_set)))
2856 note = find_reg_equal_equiv_note (insn);
2857 if (note && CONSTANT_P (XEXP (note, 0)))
2858 set_unique_reg_note (last, REG_EQUAL, XEXP (note, 0));
2859 else if (CONSTANT_P (SET_SRC (insn_set)))
2860 set_unique_reg_note (last, REG_EQUAL,
2861 copy_rtx (SET_SRC (insn_set)));
2865 /* try_split returns the NOTE that INSN became. */
2866 SET_INSN_DELETED (insn);
2868 /* ??? Coddle to md files that generate subregs in post-reload
2869 splitters instead of computing the proper hard register. */
2870 if (reload_completed && first != last)
2872 first = NEXT_INSN (first);
2873 for (;;)
2875 if (INSN_P (first))
2876 cleanup_subreg_operands (first);
2877 if (first == last)
2878 break;
2879 first = NEXT_INSN (first);
2883 return last;
2886 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2888 void
2889 split_all_insns (void)
2891 sbitmap blocks;
2892 bool changed;
2893 basic_block bb;
2895 blocks = sbitmap_alloc (last_basic_block);
2896 bitmap_clear (blocks);
2897 changed = false;
2899 FOR_EACH_BB_REVERSE (bb)
2901 rtx insn, next;
2902 bool finish = false;
2904 rtl_profile_for_bb (bb);
2905 for (insn = BB_HEAD (bb); !finish ; insn = next)
2907 /* Can't use `next_real_insn' because that might go across
2908 CODE_LABELS and short-out basic blocks. */
2909 next = NEXT_INSN (insn);
2910 finish = (insn == BB_END (bb));
2911 if (INSN_P (insn))
2913 rtx set = single_set (insn);
2915 /* Don't split no-op move insns. These should silently
2916 disappear later in final. Splitting such insns would
2917 break the code that handles LIBCALL blocks. */
2918 if (set && set_noop_p (set))
2920 /* Nops get in the way while scheduling, so delete them
2921 now if register allocation has already been done. It
2922 is too risky to try to do this before register
2923 allocation, and there are unlikely to be very many
2924 nops then anyways. */
2925 if (reload_completed)
2926 delete_insn_and_edges (insn);
2928 else
2930 if (split_insn (insn))
2932 bitmap_set_bit (blocks, bb->index);
2933 changed = true;
2940 default_rtl_profile ();
2941 if (changed)
2942 find_many_sub_basic_blocks (blocks);
2944 #ifdef ENABLE_CHECKING
2945 verify_flow_info ();
2946 #endif
2948 sbitmap_free (blocks);
2951 /* Same as split_all_insns, but do not expect CFG to be available.
2952 Used by machine dependent reorg passes. */
2954 unsigned int
2955 split_all_insns_noflow (void)
2957 rtx next, insn;
2959 for (insn = get_insns (); insn; insn = next)
2961 next = NEXT_INSN (insn);
2962 if (INSN_P (insn))
2964 /* Don't split no-op move insns. These should silently
2965 disappear later in final. Splitting such insns would
2966 break the code that handles LIBCALL blocks. */
2967 rtx set = single_set (insn);
2968 if (set && set_noop_p (set))
2970 /* Nops get in the way while scheduling, so delete them
2971 now if register allocation has already been done. It
2972 is too risky to try to do this before register
2973 allocation, and there are unlikely to be very many
2974 nops then anyways.
2976 ??? Should we use delete_insn when the CFG isn't valid? */
2977 if (reload_completed)
2978 delete_insn_and_edges (insn);
2980 else
2981 split_insn (insn);
2984 return 0;
2987 #ifdef HAVE_peephole2
2988 struct peep2_insn_data
2990 rtx insn;
2991 regset live_before;
2994 static struct peep2_insn_data peep2_insn_data[MAX_INSNS_PER_PEEP2 + 1];
2995 static int peep2_current;
2997 static bool peep2_do_rebuild_jump_labels;
2998 static bool peep2_do_cleanup_cfg;
3000 /* The number of instructions available to match a peep2. */
3001 int peep2_current_count;
3003 /* A non-insn marker indicating the last insn of the block.
3004 The live_before regset for this element is correct, indicating
3005 DF_LIVE_OUT for the block. */
3006 #define PEEP2_EOB pc_rtx
3008 /* Wrap N to fit into the peep2_insn_data buffer. */
3010 static int
3011 peep2_buf_position (int n)
3013 if (n >= MAX_INSNS_PER_PEEP2 + 1)
3014 n -= MAX_INSNS_PER_PEEP2 + 1;
3015 return n;
3018 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3019 does not exist. Used by the recognizer to find the next insn to match
3020 in a multi-insn pattern. */
3023 peep2_next_insn (int n)
3025 gcc_assert (n <= peep2_current_count);
3027 n = peep2_buf_position (peep2_current + n);
3029 return peep2_insn_data[n].insn;
3032 /* Return true if REGNO is dead before the Nth non-note insn
3033 after `current'. */
3036 peep2_regno_dead_p (int ofs, int regno)
3038 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3040 ofs = peep2_buf_position (peep2_current + ofs);
3042 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3044 return ! REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno);
3047 /* Similarly for a REG. */
3050 peep2_reg_dead_p (int ofs, rtx reg)
3052 int regno, n;
3054 gcc_assert (ofs < MAX_INSNS_PER_PEEP2 + 1);
3056 ofs = peep2_buf_position (peep2_current + ofs);
3058 gcc_assert (peep2_insn_data[ofs].insn != NULL_RTX);
3060 regno = REGNO (reg);
3061 n = hard_regno_nregs[regno][GET_MODE (reg)];
3062 while (--n >= 0)
3063 if (REGNO_REG_SET_P (peep2_insn_data[ofs].live_before, regno + n))
3064 return 0;
3065 return 1;
3068 /* Try to find a hard register of mode MODE, matching the register class in
3069 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3070 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3071 in which case the only condition is that the register must be available
3072 before CURRENT_INSN.
3073 Registers that already have bits set in REG_SET will not be considered.
3075 If an appropriate register is available, it will be returned and the
3076 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3077 returned. */
3080 peep2_find_free_register (int from, int to, const char *class_str,
3081 enum machine_mode mode, HARD_REG_SET *reg_set)
3083 static int search_ofs;
3084 enum reg_class cl;
3085 HARD_REG_SET live;
3086 df_ref *def_rec;
3087 int i;
3089 gcc_assert (from < MAX_INSNS_PER_PEEP2 + 1);
3090 gcc_assert (to < MAX_INSNS_PER_PEEP2 + 1);
3092 from = peep2_buf_position (peep2_current + from);
3093 to = peep2_buf_position (peep2_current + to);
3095 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3096 REG_SET_TO_HARD_REG_SET (live, peep2_insn_data[from].live_before);
3098 while (from != to)
3100 gcc_assert (peep2_insn_data[from].insn != NULL_RTX);
3102 /* Don't use registers set or clobbered by the insn. */
3103 for (def_rec = DF_INSN_DEFS (peep2_insn_data[from].insn);
3104 *def_rec; def_rec++)
3105 SET_HARD_REG_BIT (live, DF_REF_REGNO (*def_rec));
3107 from = peep2_buf_position (from + 1);
3110 cl = (class_str[0] == 'r' ? GENERAL_REGS
3111 : REG_CLASS_FROM_CONSTRAINT (class_str[0], class_str));
3113 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3115 int raw_regno, regno, success, j;
3117 /* Distribute the free registers as much as possible. */
3118 raw_regno = search_ofs + i;
3119 if (raw_regno >= FIRST_PSEUDO_REGISTER)
3120 raw_regno -= FIRST_PSEUDO_REGISTER;
3121 #ifdef REG_ALLOC_ORDER
3122 regno = reg_alloc_order[raw_regno];
3123 #else
3124 regno = raw_regno;
3125 #endif
3127 /* Can it support the mode we need? */
3128 if (! HARD_REGNO_MODE_OK (regno, mode))
3129 continue;
3131 success = 1;
3132 for (j = 0; success && j < hard_regno_nregs[regno][mode]; j++)
3134 /* Don't allocate fixed registers. */
3135 if (fixed_regs[regno + j])
3137 success = 0;
3138 break;
3140 /* Don't allocate global registers. */
3141 if (global_regs[regno + j])
3143 success = 0;
3144 break;
3146 /* Make sure the register is of the right class. */
3147 if (! TEST_HARD_REG_BIT (reg_class_contents[cl], regno + j))
3149 success = 0;
3150 break;
3152 /* And that we don't create an extra save/restore. */
3153 if (! call_used_regs[regno + j] && ! df_regs_ever_live_p (regno + j))
3155 success = 0;
3156 break;
3159 if (! targetm.hard_regno_scratch_ok (regno + j))
3161 success = 0;
3162 break;
3165 /* And we don't clobber traceback for noreturn functions. */
3166 if ((regno + j == FRAME_POINTER_REGNUM
3167 || regno + j == HARD_FRAME_POINTER_REGNUM)
3168 && (! reload_completed || frame_pointer_needed))
3170 success = 0;
3171 break;
3174 if (TEST_HARD_REG_BIT (*reg_set, regno + j)
3175 || TEST_HARD_REG_BIT (live, regno + j))
3177 success = 0;
3178 break;
3182 if (success)
3184 add_to_hard_reg_set (reg_set, mode, regno);
3186 /* Start the next search with the next register. */
3187 if (++raw_regno >= FIRST_PSEUDO_REGISTER)
3188 raw_regno = 0;
3189 search_ofs = raw_regno;
3191 return gen_rtx_REG (mode, regno);
3195 search_ofs = 0;
3196 return NULL_RTX;
3199 /* Forget all currently tracked instructions, only remember current
3200 LIVE regset. */
3202 static void
3203 peep2_reinit_state (regset live)
3205 int i;
3207 /* Indicate that all slots except the last holds invalid data. */
3208 for (i = 0; i < MAX_INSNS_PER_PEEP2; ++i)
3209 peep2_insn_data[i].insn = NULL_RTX;
3210 peep2_current_count = 0;
3212 /* Indicate that the last slot contains live_after data. */
3213 peep2_insn_data[MAX_INSNS_PER_PEEP2].insn = PEEP2_EOB;
3214 peep2_current = MAX_INSNS_PER_PEEP2;
3216 COPY_REG_SET (peep2_insn_data[MAX_INSNS_PER_PEEP2].live_before, live);
3219 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3220 starting at INSN. Perform the replacement, removing the old insns and
3221 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3222 if the replacement is rejected. */
3224 static rtx
3225 peep2_attempt (basic_block bb, rtx insn, int match_len, rtx attempt)
3227 int i;
3228 rtx last, eh_note, as_note, before_try, x;
3229 rtx old_insn, new_insn;
3230 bool was_call = false;
3232 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3233 match more than one insn, or to be split into more than one insn. */
3234 old_insn = peep2_insn_data[peep2_current].insn;
3235 if (RTX_FRAME_RELATED_P (old_insn))
3237 bool any_note = false;
3238 rtx note;
3240 if (match_len != 0)
3241 return NULL;
3243 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3244 may be in the stream for the purpose of register allocation. */
3245 if (active_insn_p (attempt))
3246 new_insn = attempt;
3247 else
3248 new_insn = next_active_insn (attempt);
3249 if (next_active_insn (new_insn))
3250 return NULL;
3252 /* We have a 1-1 replacement. Copy over any frame-related info. */
3253 RTX_FRAME_RELATED_P (new_insn) = 1;
3255 /* Allow the backend to fill in a note during the split. */
3256 for (note = REG_NOTES (new_insn); note ; note = XEXP (note, 1))
3257 switch (REG_NOTE_KIND (note))
3259 case REG_FRAME_RELATED_EXPR:
3260 case REG_CFA_DEF_CFA:
3261 case REG_CFA_ADJUST_CFA:
3262 case REG_CFA_OFFSET:
3263 case REG_CFA_REGISTER:
3264 case REG_CFA_EXPRESSION:
3265 case REG_CFA_RESTORE:
3266 case REG_CFA_SET_VDRAP:
3267 any_note = true;
3268 break;
3269 default:
3270 break;
3273 /* If the backend didn't supply a note, copy one over. */
3274 if (!any_note)
3275 for (note = REG_NOTES (old_insn); note ; note = XEXP (note, 1))
3276 switch (REG_NOTE_KIND (note))
3278 case REG_FRAME_RELATED_EXPR:
3279 case REG_CFA_DEF_CFA:
3280 case REG_CFA_ADJUST_CFA:
3281 case REG_CFA_OFFSET:
3282 case REG_CFA_REGISTER:
3283 case REG_CFA_EXPRESSION:
3284 case REG_CFA_RESTORE:
3285 case REG_CFA_SET_VDRAP:
3286 add_reg_note (new_insn, REG_NOTE_KIND (note), XEXP (note, 0));
3287 any_note = true;
3288 break;
3289 default:
3290 break;
3293 /* If there still isn't a note, make sure the unwind info sees the
3294 same expression as before the split. */
3295 if (!any_note)
3297 rtx old_set, new_set;
3299 /* The old insn had better have been simple, or annotated. */
3300 old_set = single_set (old_insn);
3301 gcc_assert (old_set != NULL);
3303 new_set = single_set (new_insn);
3304 if (!new_set || !rtx_equal_p (new_set, old_set))
3305 add_reg_note (new_insn, REG_FRAME_RELATED_EXPR, old_set);
3308 /* Copy prologue/epilogue status. This is required in order to keep
3309 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3310 maybe_copy_prologue_epilogue_insn (old_insn, new_insn);
3313 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3314 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3315 cfg-related call notes. */
3316 for (i = 0; i <= match_len; ++i)
3318 int j;
3319 rtx note;
3321 j = peep2_buf_position (peep2_current + i);
3322 old_insn = peep2_insn_data[j].insn;
3323 if (!CALL_P (old_insn))
3324 continue;
3325 was_call = true;
3327 new_insn = attempt;
3328 while (new_insn != NULL_RTX)
3330 if (CALL_P (new_insn))
3331 break;
3332 new_insn = NEXT_INSN (new_insn);
3335 gcc_assert (new_insn != NULL_RTX);
3337 CALL_INSN_FUNCTION_USAGE (new_insn)
3338 = CALL_INSN_FUNCTION_USAGE (old_insn);
3340 for (note = REG_NOTES (old_insn);
3341 note;
3342 note = XEXP (note, 1))
3343 switch (REG_NOTE_KIND (note))
3345 case REG_NORETURN:
3346 case REG_SETJMP:
3347 case REG_TM:
3348 add_reg_note (new_insn, REG_NOTE_KIND (note),
3349 XEXP (note, 0));
3350 break;
3351 default:
3352 /* Discard all other reg notes. */
3353 break;
3356 /* Croak if there is another call in the sequence. */
3357 while (++i <= match_len)
3359 j = peep2_buf_position (peep2_current + i);
3360 old_insn = peep2_insn_data[j].insn;
3361 gcc_assert (!CALL_P (old_insn));
3363 break;
3366 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3367 move those notes over to the new sequence. */
3368 as_note = NULL;
3369 for (i = match_len; i >= 0; --i)
3371 int j = peep2_buf_position (peep2_current + i);
3372 old_insn = peep2_insn_data[j].insn;
3374 as_note = find_reg_note (old_insn, REG_ARGS_SIZE, NULL);
3375 if (as_note)
3376 break;
3379 i = peep2_buf_position (peep2_current + match_len);
3380 eh_note = find_reg_note (peep2_insn_data[i].insn, REG_EH_REGION, NULL_RTX);
3382 /* Replace the old sequence with the new. */
3383 last = emit_insn_after_setloc (attempt,
3384 peep2_insn_data[i].insn,
3385 INSN_LOCATION (peep2_insn_data[i].insn));
3386 before_try = PREV_INSN (insn);
3387 delete_insn_chain (insn, peep2_insn_data[i].insn, false);
3389 /* Re-insert the EH_REGION notes. */
3390 if (eh_note || (was_call && nonlocal_goto_handler_labels))
3392 edge eh_edge;
3393 edge_iterator ei;
3395 FOR_EACH_EDGE (eh_edge, ei, bb->succs)
3396 if (eh_edge->flags & (EDGE_EH | EDGE_ABNORMAL_CALL))
3397 break;
3399 if (eh_note)
3400 copy_reg_eh_region_note_backward (eh_note, last, before_try);
3402 if (eh_edge)
3403 for (x = last; x != before_try; x = PREV_INSN (x))
3404 if (x != BB_END (bb)
3405 && (can_throw_internal (x)
3406 || can_nonlocal_goto (x)))
3408 edge nfte, nehe;
3409 int flags;
3411 nfte = split_block (bb, x);
3412 flags = (eh_edge->flags
3413 & (EDGE_EH | EDGE_ABNORMAL));
3414 if (CALL_P (x))
3415 flags |= EDGE_ABNORMAL_CALL;
3416 nehe = make_edge (nfte->src, eh_edge->dest,
3417 flags);
3419 nehe->probability = eh_edge->probability;
3420 nfte->probability
3421 = REG_BR_PROB_BASE - nehe->probability;
3423 peep2_do_cleanup_cfg |= purge_dead_edges (nfte->dest);
3424 bb = nfte->src;
3425 eh_edge = nehe;
3428 /* Converting possibly trapping insn to non-trapping is
3429 possible. Zap dummy outgoing edges. */
3430 peep2_do_cleanup_cfg |= purge_dead_edges (bb);
3433 /* Re-insert the ARGS_SIZE notes. */
3434 if (as_note)
3435 fixup_args_size_notes (before_try, last, INTVAL (XEXP (as_note, 0)));
3437 /* If we generated a jump instruction, it won't have
3438 JUMP_LABEL set. Recompute after we're done. */
3439 for (x = last; x != before_try; x = PREV_INSN (x))
3440 if (JUMP_P (x))
3442 peep2_do_rebuild_jump_labels = true;
3443 break;
3446 return last;
3449 /* After performing a replacement in basic block BB, fix up the life
3450 information in our buffer. LAST is the last of the insns that we
3451 emitted as a replacement. PREV is the insn before the start of
3452 the replacement. MATCH_LEN is the number of instructions that were
3453 matched, and which now need to be replaced in the buffer. */
3455 static void
3456 peep2_update_life (basic_block bb, int match_len, rtx last, rtx prev)
3458 int i = peep2_buf_position (peep2_current + match_len + 1);
3459 rtx x;
3460 regset_head live;
3462 INIT_REG_SET (&live);
3463 COPY_REG_SET (&live, peep2_insn_data[i].live_before);
3465 gcc_assert (peep2_current_count >= match_len + 1);
3466 peep2_current_count -= match_len + 1;
3468 x = last;
3471 if (INSN_P (x))
3473 df_insn_rescan (x);
3474 if (peep2_current_count < MAX_INSNS_PER_PEEP2)
3476 peep2_current_count++;
3477 if (--i < 0)
3478 i = MAX_INSNS_PER_PEEP2;
3479 peep2_insn_data[i].insn = x;
3480 df_simulate_one_insn_backwards (bb, x, &live);
3481 COPY_REG_SET (peep2_insn_data[i].live_before, &live);
3484 x = PREV_INSN (x);
3486 while (x != prev);
3487 CLEAR_REG_SET (&live);
3489 peep2_current = i;
3492 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3493 Return true if we added it, false otherwise. The caller will try to match
3494 peepholes against the buffer if we return false; otherwise it will try to
3495 add more instructions to the buffer. */
3497 static bool
3498 peep2_fill_buffer (basic_block bb, rtx insn, regset live)
3500 int pos;
3502 /* Once we have filled the maximum number of insns the buffer can hold,
3503 allow the caller to match the insns against peepholes. We wait until
3504 the buffer is full in case the target has similar peepholes of different
3505 length; we always want to match the longest if possible. */
3506 if (peep2_current_count == MAX_INSNS_PER_PEEP2)
3507 return false;
3509 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3510 any other pattern, lest it change the semantics of the frame info. */
3511 if (RTX_FRAME_RELATED_P (insn))
3513 /* Let the buffer drain first. */
3514 if (peep2_current_count > 0)
3515 return false;
3516 /* Now the insn will be the only thing in the buffer. */
3519 pos = peep2_buf_position (peep2_current + peep2_current_count);
3520 peep2_insn_data[pos].insn = insn;
3521 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3522 peep2_current_count++;
3524 df_simulate_one_insn_forwards (bb, insn, live);
3525 return true;
3528 /* Perform the peephole2 optimization pass. */
3530 static void
3531 peephole2_optimize (void)
3533 rtx insn;
3534 bitmap live;
3535 int i;
3536 basic_block bb;
3538 peep2_do_cleanup_cfg = false;
3539 peep2_do_rebuild_jump_labels = false;
3541 df_set_flags (DF_LR_RUN_DCE);
3542 df_note_add_problem ();
3543 df_analyze ();
3545 /* Initialize the regsets we're going to use. */
3546 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3547 peep2_insn_data[i].live_before = BITMAP_ALLOC (&reg_obstack);
3548 live = BITMAP_ALLOC (&reg_obstack);
3550 FOR_EACH_BB_REVERSE (bb)
3552 bool past_end = false;
3553 int pos;
3555 rtl_profile_for_bb (bb);
3557 /* Start up propagation. */
3558 bitmap_copy (live, DF_LR_IN (bb));
3559 df_simulate_initialize_forwards (bb, live);
3560 peep2_reinit_state (live);
3562 insn = BB_HEAD (bb);
3563 for (;;)
3565 rtx attempt, head;
3566 int match_len;
3568 if (!past_end && !NONDEBUG_INSN_P (insn))
3570 next_insn:
3571 insn = NEXT_INSN (insn);
3572 if (insn == NEXT_INSN (BB_END (bb)))
3573 past_end = true;
3574 continue;
3576 if (!past_end && peep2_fill_buffer (bb, insn, live))
3577 goto next_insn;
3579 /* If we did not fill an empty buffer, it signals the end of the
3580 block. */
3581 if (peep2_current_count == 0)
3582 break;
3584 /* The buffer filled to the current maximum, so try to match. */
3586 pos = peep2_buf_position (peep2_current + peep2_current_count);
3587 peep2_insn_data[pos].insn = PEEP2_EOB;
3588 COPY_REG_SET (peep2_insn_data[pos].live_before, live);
3590 /* Match the peephole. */
3591 head = peep2_insn_data[peep2_current].insn;
3592 attempt = peephole2_insns (PATTERN (head), head, &match_len);
3593 if (attempt != NULL)
3595 rtx last = peep2_attempt (bb, head, match_len, attempt);
3596 if (last)
3598 peep2_update_life (bb, match_len, last, PREV_INSN (attempt));
3599 continue;
3603 /* No match: advance the buffer by one insn. */
3604 peep2_current = peep2_buf_position (peep2_current + 1);
3605 peep2_current_count--;
3609 default_rtl_profile ();
3610 for (i = 0; i < MAX_INSNS_PER_PEEP2 + 1; ++i)
3611 BITMAP_FREE (peep2_insn_data[i].live_before);
3612 BITMAP_FREE (live);
3613 if (peep2_do_rebuild_jump_labels)
3614 rebuild_jump_labels (get_insns ());
3616 #endif /* HAVE_peephole2 */
3618 /* Common predicates for use with define_bypass. */
3620 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3621 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3622 must be either a single_set or a PARALLEL with SETs inside. */
3625 store_data_bypass_p (rtx out_insn, rtx in_insn)
3627 rtx out_set, in_set;
3628 rtx out_pat, in_pat;
3629 rtx out_exp, in_exp;
3630 int i, j;
3632 in_set = single_set (in_insn);
3633 if (in_set)
3635 if (!MEM_P (SET_DEST (in_set)))
3636 return false;
3638 out_set = single_set (out_insn);
3639 if (out_set)
3641 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_set)))
3642 return false;
3644 else
3646 out_pat = PATTERN (out_insn);
3648 if (GET_CODE (out_pat) != PARALLEL)
3649 return false;
3651 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3653 out_exp = XVECEXP (out_pat, 0, i);
3655 if (GET_CODE (out_exp) == CLOBBER)
3656 continue;
3658 gcc_assert (GET_CODE (out_exp) == SET);
3660 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_set)))
3661 return false;
3665 else
3667 in_pat = PATTERN (in_insn);
3668 gcc_assert (GET_CODE (in_pat) == PARALLEL);
3670 for (i = 0; i < XVECLEN (in_pat, 0); i++)
3672 in_exp = XVECEXP (in_pat, 0, i);
3674 if (GET_CODE (in_exp) == CLOBBER)
3675 continue;
3677 gcc_assert (GET_CODE (in_exp) == SET);
3679 if (!MEM_P (SET_DEST (in_exp)))
3680 return false;
3682 out_set = single_set (out_insn);
3683 if (out_set)
3685 if (reg_mentioned_p (SET_DEST (out_set), SET_DEST (in_exp)))
3686 return false;
3688 else
3690 out_pat = PATTERN (out_insn);
3691 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3693 for (j = 0; j < XVECLEN (out_pat, 0); j++)
3695 out_exp = XVECEXP (out_pat, 0, j);
3697 if (GET_CODE (out_exp) == CLOBBER)
3698 continue;
3700 gcc_assert (GET_CODE (out_exp) == SET);
3702 if (reg_mentioned_p (SET_DEST (out_exp), SET_DEST (in_exp)))
3703 return false;
3709 return true;
3712 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3713 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3714 or multiple set; IN_INSN should be single_set for truth, but for convenience
3715 of insn categorization may be any JUMP or CALL insn. */
3718 if_test_bypass_p (rtx out_insn, rtx in_insn)
3720 rtx out_set, in_set;
3722 in_set = single_set (in_insn);
3723 if (! in_set)
3725 gcc_assert (JUMP_P (in_insn) || CALL_P (in_insn));
3726 return false;
3729 if (GET_CODE (SET_SRC (in_set)) != IF_THEN_ELSE)
3730 return false;
3731 in_set = SET_SRC (in_set);
3733 out_set = single_set (out_insn);
3734 if (out_set)
3736 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3737 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3738 return false;
3740 else
3742 rtx out_pat;
3743 int i;
3745 out_pat = PATTERN (out_insn);
3746 gcc_assert (GET_CODE (out_pat) == PARALLEL);
3748 for (i = 0; i < XVECLEN (out_pat, 0); i++)
3750 rtx exp = XVECEXP (out_pat, 0, i);
3752 if (GET_CODE (exp) == CLOBBER)
3753 continue;
3755 gcc_assert (GET_CODE (exp) == SET);
3757 if (reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 1))
3758 || reg_mentioned_p (SET_DEST (out_set), XEXP (in_set, 2)))
3759 return false;
3763 return true;
3766 static bool
3767 gate_handle_peephole2 (void)
3769 return (optimize > 0 && flag_peephole2);
3772 static unsigned int
3773 rest_of_handle_peephole2 (void)
3775 #ifdef HAVE_peephole2
3776 peephole2_optimize ();
3777 #endif
3778 return 0;
3781 namespace {
3783 const pass_data pass_data_peephole2 =
3785 RTL_PASS, /* type */
3786 "peephole2", /* name */
3787 OPTGROUP_NONE, /* optinfo_flags */
3788 true, /* has_gate */
3789 true, /* has_execute */
3790 TV_PEEPHOLE2, /* tv_id */
3791 0, /* properties_required */
3792 0, /* properties_provided */
3793 0, /* properties_destroyed */
3794 0, /* todo_flags_start */
3795 ( TODO_df_finish | TODO_verify_rtl_sharing | 0 ), /* todo_flags_finish */
3798 class pass_peephole2 : public rtl_opt_pass
3800 public:
3801 pass_peephole2(gcc::context *ctxt)
3802 : rtl_opt_pass(pass_data_peephole2, ctxt)
3805 /* opt_pass methods: */
3806 /* The epiphany backend creates a second instance of this pass, so we need
3807 a clone method. */
3808 opt_pass * clone () { return new pass_peephole2 (ctxt_); }
3809 bool gate () { return gate_handle_peephole2 (); }
3810 unsigned int execute () { return rest_of_handle_peephole2 (); }
3812 }; // class pass_peephole2
3814 } // anon namespace
3816 rtl_opt_pass *
3817 make_pass_peephole2 (gcc::context *ctxt)
3819 return new pass_peephole2 (ctxt);
3822 static unsigned int
3823 rest_of_handle_split_all_insns (void)
3825 split_all_insns ();
3826 return 0;
3829 namespace {
3831 const pass_data pass_data_split_all_insns =
3833 RTL_PASS, /* type */
3834 "split1", /* name */
3835 OPTGROUP_NONE, /* optinfo_flags */
3836 false, /* has_gate */
3837 true, /* has_execute */
3838 TV_NONE, /* tv_id */
3839 0, /* properties_required */
3840 0, /* properties_provided */
3841 0, /* properties_destroyed */
3842 0, /* todo_flags_start */
3843 0, /* todo_flags_finish */
3846 class pass_split_all_insns : public rtl_opt_pass
3848 public:
3849 pass_split_all_insns(gcc::context *ctxt)
3850 : rtl_opt_pass(pass_data_split_all_insns, ctxt)
3853 /* opt_pass methods: */
3854 /* The epiphany backend creates a second instance of this pass, so
3855 we need a clone method. */
3856 opt_pass * clone () { return new pass_split_all_insns (ctxt_); }
3857 unsigned int execute () { return rest_of_handle_split_all_insns (); }
3859 }; // class pass_split_all_insns
3861 } // anon namespace
3863 rtl_opt_pass *
3864 make_pass_split_all_insns (gcc::context *ctxt)
3866 return new pass_split_all_insns (ctxt);
3869 static unsigned int
3870 rest_of_handle_split_after_reload (void)
3872 /* If optimizing, then go ahead and split insns now. */
3873 #ifndef STACK_REGS
3874 if (optimize > 0)
3875 #endif
3876 split_all_insns ();
3877 return 0;
3880 namespace {
3882 const pass_data pass_data_split_after_reload =
3884 RTL_PASS, /* type */
3885 "split2", /* name */
3886 OPTGROUP_NONE, /* optinfo_flags */
3887 false, /* has_gate */
3888 true, /* has_execute */
3889 TV_NONE, /* tv_id */
3890 0, /* properties_required */
3891 0, /* properties_provided */
3892 0, /* properties_destroyed */
3893 0, /* todo_flags_start */
3894 0, /* todo_flags_finish */
3897 class pass_split_after_reload : public rtl_opt_pass
3899 public:
3900 pass_split_after_reload(gcc::context *ctxt)
3901 : rtl_opt_pass(pass_data_split_after_reload, ctxt)
3904 /* opt_pass methods: */
3905 unsigned int execute () { return rest_of_handle_split_after_reload (); }
3907 }; // class pass_split_after_reload
3909 } // anon namespace
3911 rtl_opt_pass *
3912 make_pass_split_after_reload (gcc::context *ctxt)
3914 return new pass_split_after_reload (ctxt);
3917 static bool
3918 gate_handle_split_before_regstack (void)
3920 #if HAVE_ATTR_length && defined (STACK_REGS)
3921 /* If flow2 creates new instructions which need splitting
3922 and scheduling after reload is not done, they might not be
3923 split until final which doesn't allow splitting
3924 if HAVE_ATTR_length. */
3925 # ifdef INSN_SCHEDULING
3926 return (optimize && !flag_schedule_insns_after_reload);
3927 # else
3928 return (optimize);
3929 # endif
3930 #else
3931 return 0;
3932 #endif
3935 static unsigned int
3936 rest_of_handle_split_before_regstack (void)
3938 split_all_insns ();
3939 return 0;
3942 namespace {
3944 const pass_data pass_data_split_before_regstack =
3946 RTL_PASS, /* type */
3947 "split3", /* name */
3948 OPTGROUP_NONE, /* optinfo_flags */
3949 true, /* has_gate */
3950 true, /* has_execute */
3951 TV_NONE, /* tv_id */
3952 0, /* properties_required */
3953 0, /* properties_provided */
3954 0, /* properties_destroyed */
3955 0, /* todo_flags_start */
3956 0, /* todo_flags_finish */
3959 class pass_split_before_regstack : public rtl_opt_pass
3961 public:
3962 pass_split_before_regstack(gcc::context *ctxt)
3963 : rtl_opt_pass(pass_data_split_before_regstack, ctxt)
3966 /* opt_pass methods: */
3967 bool gate () { return gate_handle_split_before_regstack (); }
3968 unsigned int execute () {
3969 return rest_of_handle_split_before_regstack ();
3972 }; // class pass_split_before_regstack
3974 } // anon namespace
3976 rtl_opt_pass *
3977 make_pass_split_before_regstack (gcc::context *ctxt)
3979 return new pass_split_before_regstack (ctxt);
3982 static bool
3983 gate_handle_split_before_sched2 (void)
3985 #ifdef INSN_SCHEDULING
3986 return optimize > 0 && flag_schedule_insns_after_reload;
3987 #else
3988 return 0;
3989 #endif
3992 static unsigned int
3993 rest_of_handle_split_before_sched2 (void)
3995 #ifdef INSN_SCHEDULING
3996 split_all_insns ();
3997 #endif
3998 return 0;
4001 namespace {
4003 const pass_data pass_data_split_before_sched2 =
4005 RTL_PASS, /* type */
4006 "split4", /* name */
4007 OPTGROUP_NONE, /* optinfo_flags */
4008 true, /* has_gate */
4009 true, /* has_execute */
4010 TV_NONE, /* tv_id */
4011 0, /* properties_required */
4012 0, /* properties_provided */
4013 0, /* properties_destroyed */
4014 0, /* todo_flags_start */
4015 TODO_verify_flow, /* todo_flags_finish */
4018 class pass_split_before_sched2 : public rtl_opt_pass
4020 public:
4021 pass_split_before_sched2(gcc::context *ctxt)
4022 : rtl_opt_pass(pass_data_split_before_sched2, ctxt)
4025 /* opt_pass methods: */
4026 bool gate () { return gate_handle_split_before_sched2 (); }
4027 unsigned int execute () { return rest_of_handle_split_before_sched2 (); }
4029 }; // class pass_split_before_sched2
4031 } // anon namespace
4033 rtl_opt_pass *
4034 make_pass_split_before_sched2 (gcc::context *ctxt)
4036 return new pass_split_before_sched2 (ctxt);
4039 /* The placement of the splitting that we do for shorten_branches
4040 depends on whether regstack is used by the target or not. */
4041 static bool
4042 gate_do_final_split (void)
4044 #if HAVE_ATTR_length && !defined (STACK_REGS)
4045 return 1;
4046 #else
4047 return 0;
4048 #endif
4051 namespace {
4053 const pass_data pass_data_split_for_shorten_branches =
4055 RTL_PASS, /* type */
4056 "split5", /* name */
4057 OPTGROUP_NONE, /* optinfo_flags */
4058 true, /* has_gate */
4059 true, /* has_execute */
4060 TV_NONE, /* tv_id */
4061 0, /* properties_required */
4062 0, /* properties_provided */
4063 0, /* properties_destroyed */
4064 0, /* todo_flags_start */
4065 TODO_verify_rtl_sharing, /* todo_flags_finish */
4068 class pass_split_for_shorten_branches : public rtl_opt_pass
4070 public:
4071 pass_split_for_shorten_branches(gcc::context *ctxt)
4072 : rtl_opt_pass(pass_data_split_for_shorten_branches, ctxt)
4075 /* opt_pass methods: */
4076 bool gate () { return gate_do_final_split (); }
4077 unsigned int execute () { return split_all_insns_noflow (); }
4079 }; // class pass_split_for_shorten_branches
4081 } // anon namespace
4083 rtl_opt_pass *
4084 make_pass_split_for_shorten_branches (gcc::context *ctxt)
4086 return new pass_split_for_shorten_branches (ctxt);