1 /* Subroutines used by or related to instruction recognition.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
23 #include "coretypes.h"
25 #include "rtl-error.h"
27 #include "insn-config.h"
28 #include "insn-attr.h"
29 #include "hard-reg-set.h"
32 #include "addresses.h"
36 #include "basic-block.h"
39 #include "tree-pass.h"
41 #include "insn-codes.h"
43 #ifndef STACK_PUSH_CODE
44 #ifdef STACK_GROWS_DOWNWARD
45 #define STACK_PUSH_CODE PRE_DEC
47 #define STACK_PUSH_CODE PRE_INC
51 #ifndef STACK_POP_CODE
52 #ifdef STACK_GROWS_DOWNWARD
53 #define STACK_POP_CODE POST_INC
55 #define STACK_POP_CODE POST_DEC
59 static void validate_replace_rtx_1 (rtx
*, rtx
, rtx
, rtx
, bool);
60 static void validate_replace_src_1 (rtx
*, void *);
61 static rtx
split_insn (rtx
);
63 /* Nonzero means allow operands to be volatile.
64 This should be 0 if you are generating rtl, such as if you are calling
65 the functions in optabs.c and expmed.c (most of the time).
66 This should be 1 if all valid insns need to be recognized,
67 such as in reginfo.c and final.c and reload.c.
69 init_recog and init_recog_no_volatile are responsible for setting this. */
73 struct recog_data_d recog_data
;
75 /* Contains a vector of operand_alternative structures for every operand.
76 Set up by preprocess_constraints. */
77 struct operand_alternative recog_op_alt
[MAX_RECOG_OPERANDS
][MAX_RECOG_ALTERNATIVES
];
79 /* On return from `constrain_operands', indicate which alternative
82 int which_alternative
;
84 /* Nonzero after end of reload pass.
85 Set to 1 or 0 by toplev.c.
86 Controls the significance of (SUBREG (MEM)). */
90 /* Nonzero after thread_prologue_and_epilogue_insns has run. */
91 int epilogue_completed
;
93 /* Initialize data used by the function `recog'.
94 This must be called once in the compilation of a function
95 before any insn recognition may be done in the function. */
98 init_recog_no_volatile (void)
110 /* Return true if labels in asm operands BODY are LABEL_REFs. */
113 asm_labels_ok (rtx body
)
118 asmop
= extract_asm_operands (body
);
119 if (asmop
== NULL_RTX
)
122 for (i
= 0; i
< ASM_OPERANDS_LABEL_LENGTH (asmop
); i
++)
123 if (GET_CODE (ASM_OPERANDS_LABEL (asmop
, i
)) != LABEL_REF
)
129 /* Check that X is an insn-body for an `asm' with operands
130 and that the operands mentioned in it are legitimate. */
133 check_asm_operands (rtx x
)
137 const char **constraints
;
140 if (!asm_labels_ok (x
))
143 /* Post-reload, be more strict with things. */
144 if (reload_completed
)
146 /* ??? Doh! We've not got the wrapping insn. Cook one up. */
147 extract_insn (make_insn_raw (x
));
148 constrain_operands (1);
149 return which_alternative
>= 0;
152 noperands
= asm_noperands (x
);
158 operands
= XALLOCAVEC (rtx
, noperands
);
159 constraints
= XALLOCAVEC (const char *, noperands
);
161 decode_asm_operands (x
, operands
, NULL
, constraints
, NULL
, NULL
);
163 for (i
= 0; i
< noperands
; i
++)
165 const char *c
= constraints
[i
];
168 if (! asm_operand_ok (operands
[i
], c
, constraints
))
175 /* Static data for the next two routines. */
177 typedef struct change_t
186 static change_t
*changes
;
187 static int changes_allocated
;
189 static int num_changes
= 0;
191 /* Validate a proposed change to OBJECT. LOC is the location in the rtl
192 at which NEW_RTX will be placed. If OBJECT is zero, no validation is done,
193 the change is simply made.
195 Two types of objects are supported: If OBJECT is a MEM, memory_address_p
196 will be called with the address and mode as parameters. If OBJECT is
197 an INSN, CALL_INSN, or JUMP_INSN, the insn will be re-recognized with
200 IN_GROUP is nonzero if this is part of a group of changes that must be
201 performed as a group. In that case, the changes will be stored. The
202 function `apply_change_group' will validate and apply the changes.
204 If IN_GROUP is zero, this is a single change. Try to recognize the insn
205 or validate the memory reference with the change applied. If the result
206 is not valid for the machine, suppress the change and return zero.
207 Otherwise, perform the change and return 1. */
210 validate_change_1 (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
, bool unshare
)
214 if (old
== new_rtx
|| rtx_equal_p (old
, new_rtx
))
217 gcc_assert (in_group
!= 0 || num_changes
== 0);
221 /* Save the information describing this change. */
222 if (num_changes
>= changes_allocated
)
224 if (changes_allocated
== 0)
225 /* This value allows for repeated substitutions inside complex
226 indexed addresses, or changes in up to 5 insns. */
227 changes_allocated
= MAX_RECOG_OPERANDS
* 5;
229 changes_allocated
*= 2;
231 changes
= XRESIZEVEC (change_t
, changes
, changes_allocated
);
234 changes
[num_changes
].object
= object
;
235 changes
[num_changes
].loc
= loc
;
236 changes
[num_changes
].old
= old
;
237 changes
[num_changes
].unshare
= unshare
;
239 if (object
&& !MEM_P (object
))
241 /* Set INSN_CODE to force rerecognition of insn. Save old code in
243 changes
[num_changes
].old_code
= INSN_CODE (object
);
244 INSN_CODE (object
) = -1;
249 /* If we are making a group of changes, return 1. Otherwise, validate the
250 change group we made. */
255 return apply_change_group ();
258 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
262 validate_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
264 return validate_change_1 (object
, loc
, new_rtx
, in_group
, false);
267 /* Wrapper for validate_change_1 without the UNSHARE argument defaulting
271 validate_unshare_change (rtx object
, rtx
*loc
, rtx new_rtx
, bool in_group
)
273 return validate_change_1 (object
, loc
, new_rtx
, in_group
, true);
277 /* Keep X canonicalized if some changes have made it non-canonical; only
278 modifies the operands of X, not (for example) its code. Simplifications
279 are not the job of this routine.
281 Return true if anything was changed. */
283 canonicalize_change_group (rtx insn
, rtx x
)
285 if (COMMUTATIVE_P (x
)
286 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
288 /* Oops, the caller has made X no longer canonical.
289 Let's redo the changes in the correct order. */
290 rtx tem
= XEXP (x
, 0);
291 validate_unshare_change (insn
, &XEXP (x
, 0), XEXP (x
, 1), 1);
292 validate_unshare_change (insn
, &XEXP (x
, 1), tem
, 1);
300 /* This subroutine of apply_change_group verifies whether the changes to INSN
301 were valid; i.e. whether INSN can still be recognized.
303 If IN_GROUP is true clobbers which have to be added in order to
304 match the instructions will be added to the current change group.
305 Otherwise the changes will take effect immediately. */
308 insn_invalid_p (rtx insn
, bool in_group
)
310 rtx pat
= PATTERN (insn
);
311 int num_clobbers
= 0;
312 /* If we are before reload and the pattern is a SET, see if we can add
314 int icode
= recog (pat
, insn
,
315 (GET_CODE (pat
) == SET
316 && ! reload_completed
&& ! reload_in_progress
)
317 ? &num_clobbers
: 0);
318 int is_asm
= icode
< 0 && asm_noperands (PATTERN (insn
)) >= 0;
321 /* If this is an asm and the operand aren't legal, then fail. Likewise if
322 this is not an asm and the insn wasn't recognized. */
323 if ((is_asm
&& ! check_asm_operands (PATTERN (insn
)))
324 || (!is_asm
&& icode
< 0))
327 /* If we have to add CLOBBERs, fail if we have to add ones that reference
328 hard registers since our callers can't know if they are live or not.
329 Otherwise, add them. */
330 if (num_clobbers
> 0)
334 if (added_clobbers_hard_reg_p (icode
))
337 newpat
= gen_rtx_PARALLEL (VOIDmode
, rtvec_alloc (num_clobbers
+ 1));
338 XVECEXP (newpat
, 0, 0) = pat
;
339 add_clobbers (newpat
, icode
);
341 validate_change (insn
, &PATTERN (insn
), newpat
, 1);
343 PATTERN (insn
) = pat
= newpat
;
346 /* After reload, verify that all constraints are satisfied. */
347 if (reload_completed
)
351 if (! constrain_operands (1))
355 INSN_CODE (insn
) = icode
;
359 /* Return number of changes made and not validated yet. */
361 num_changes_pending (void)
366 /* Tentatively apply the changes numbered NUM and up.
367 Return 1 if all changes are valid, zero otherwise. */
370 verify_changes (int num
)
373 rtx last_validated
= NULL_RTX
;
375 /* The changes have been applied and all INSN_CODEs have been reset to force
378 The changes are valid if we aren't given an object, or if we are
379 given a MEM and it still is a valid address, or if this is in insn
380 and it is recognized. In the latter case, if reload has completed,
381 we also require that the operands meet the constraints for
384 for (i
= num
; i
< num_changes
; i
++)
386 rtx object
= changes
[i
].object
;
388 /* If there is no object to test or if it is the same as the one we
389 already tested, ignore it. */
390 if (object
== 0 || object
== last_validated
)
395 if (! memory_address_addr_space_p (GET_MODE (object
),
397 MEM_ADDR_SPACE (object
)))
400 else if (REG_P (changes
[i
].old
)
401 && asm_noperands (PATTERN (object
)) > 0
402 && REG_EXPR (changes
[i
].old
) != NULL_TREE
403 && DECL_ASSEMBLER_NAME_SET_P (REG_EXPR (changes
[i
].old
))
404 && DECL_REGISTER (REG_EXPR (changes
[i
].old
)))
406 /* Don't allow changes of hard register operands to inline
407 assemblies if they have been defined as register asm ("x"). */
410 else if (DEBUG_INSN_P (object
))
412 else if (insn_invalid_p (object
, true))
414 rtx pat
= PATTERN (object
);
416 /* Perhaps we couldn't recognize the insn because there were
417 extra CLOBBERs at the end. If so, try to re-recognize
418 without the last CLOBBER (later iterations will cause each of
419 them to be eliminated, in turn). But don't do this if we
420 have an ASM_OPERAND. */
421 if (GET_CODE (pat
) == PARALLEL
422 && GET_CODE (XVECEXP (pat
, 0, XVECLEN (pat
, 0) - 1)) == CLOBBER
423 && asm_noperands (PATTERN (object
)) < 0)
427 if (XVECLEN (pat
, 0) == 2)
428 newpat
= XVECEXP (pat
, 0, 0);
434 = gen_rtx_PARALLEL (VOIDmode
,
435 rtvec_alloc (XVECLEN (pat
, 0) - 1));
436 for (j
= 0; j
< XVECLEN (newpat
, 0); j
++)
437 XVECEXP (newpat
, 0, j
) = XVECEXP (pat
, 0, j
);
440 /* Add a new change to this group to replace the pattern
441 with this new pattern. Then consider this change
442 as having succeeded. The change we added will
443 cause the entire call to fail if things remain invalid.
445 Note that this can lose if a later change than the one
446 we are processing specified &XVECEXP (PATTERN (object), 0, X)
447 but this shouldn't occur. */
449 validate_change (object
, &PATTERN (object
), newpat
, 1);
452 else if (GET_CODE (pat
) == USE
|| GET_CODE (pat
) == CLOBBER
453 || GET_CODE (pat
) == VAR_LOCATION
)
454 /* If this insn is a CLOBBER or USE, it is always valid, but is
460 last_validated
= object
;
463 return (i
== num_changes
);
466 /* A group of changes has previously been issued with validate_change
467 and verified with verify_changes. Call df_insn_rescan for each of
468 the insn changed and clear num_changes. */
471 confirm_change_group (void)
474 rtx last_object
= NULL
;
476 for (i
= 0; i
< num_changes
; i
++)
478 rtx object
= changes
[i
].object
;
480 if (changes
[i
].unshare
)
481 *changes
[i
].loc
= copy_rtx (*changes
[i
].loc
);
483 /* Avoid unnecessary rescanning when multiple changes to same instruction
487 if (object
!= last_object
&& last_object
&& INSN_P (last_object
))
488 df_insn_rescan (last_object
);
489 last_object
= object
;
493 if (last_object
&& INSN_P (last_object
))
494 df_insn_rescan (last_object
);
498 /* Apply a group of changes previously issued with `validate_change'.
499 If all changes are valid, call confirm_change_group and return 1,
500 otherwise, call cancel_changes and return 0. */
503 apply_change_group (void)
505 if (verify_changes (0))
507 confirm_change_group ();
518 /* Return the number of changes so far in the current group. */
521 num_validated_changes (void)
526 /* Retract the changes numbered NUM and up. */
529 cancel_changes (int num
)
533 /* Back out all the changes. Do this in the opposite order in which
535 for (i
= num_changes
- 1; i
>= num
; i
--)
537 *changes
[i
].loc
= changes
[i
].old
;
538 if (changes
[i
].object
&& !MEM_P (changes
[i
].object
))
539 INSN_CODE (changes
[i
].object
) = changes
[i
].old_code
;
544 /* Reduce conditional compilation elsewhere. */
547 #define CODE_FOR_extv CODE_FOR_nothing
551 #define CODE_FOR_extzv CODE_FOR_nothing
554 /* A subroutine of validate_replace_rtx_1 that tries to simplify the resulting
558 simplify_while_replacing (rtx
*loc
, rtx to
, rtx object
,
559 enum machine_mode op0_mode
)
562 enum rtx_code code
= GET_CODE (x
);
565 if (SWAPPABLE_OPERANDS_P (x
)
566 && swap_commutative_operands_p (XEXP (x
, 0), XEXP (x
, 1)))
568 validate_unshare_change (object
, loc
,
569 gen_rtx_fmt_ee (COMMUTATIVE_ARITH_P (x
) ? code
570 : swap_condition (code
),
571 GET_MODE (x
), XEXP (x
, 1),
580 /* If we have a PLUS whose second operand is now a CONST_INT, use
581 simplify_gen_binary to try to simplify it.
582 ??? We may want later to remove this, once simplification is
583 separated from this function. */
584 if (CONST_INT_P (XEXP (x
, 1)) && XEXP (x
, 1) == to
)
585 validate_change (object
, loc
,
587 (PLUS
, GET_MODE (x
), XEXP (x
, 0), XEXP (x
, 1)), 1);
590 if (CONST_SCALAR_INT_P (XEXP (x
, 1)))
591 validate_change (object
, loc
,
593 (PLUS
, GET_MODE (x
), XEXP (x
, 0),
594 simplify_gen_unary (NEG
,
595 GET_MODE (x
), XEXP (x
, 1),
600 if (GET_MODE (XEXP (x
, 0)) == VOIDmode
)
602 new_rtx
= simplify_gen_unary (code
, GET_MODE (x
), XEXP (x
, 0),
604 /* If any of the above failed, substitute in something that
605 we know won't be recognized. */
607 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
608 validate_change (object
, loc
, new_rtx
, 1);
612 /* All subregs possible to simplify should be simplified. */
613 new_rtx
= simplify_subreg (GET_MODE (x
), SUBREG_REG (x
), op0_mode
,
616 /* Subregs of VOIDmode operands are incorrect. */
617 if (!new_rtx
&& GET_MODE (SUBREG_REG (x
)) == VOIDmode
)
618 new_rtx
= gen_rtx_CLOBBER (GET_MODE (x
), const0_rtx
);
620 validate_change (object
, loc
, new_rtx
, 1);
624 /* If we are replacing a register with memory, try to change the memory
625 to be the mode required for memory in extract operations (this isn't
626 likely to be an insertion operation; if it was, nothing bad will
627 happen, we might just fail in some cases). */
629 if (MEM_P (XEXP (x
, 0))
630 && CONST_INT_P (XEXP (x
, 1))
631 && CONST_INT_P (XEXP (x
, 2))
632 && !mode_dependent_address_p (XEXP (XEXP (x
, 0), 0),
633 MEM_ADDR_SPACE (XEXP (x
, 0)))
634 && !MEM_VOLATILE_P (XEXP (x
, 0)))
636 enum machine_mode wanted_mode
= VOIDmode
;
637 enum machine_mode is_mode
= GET_MODE (XEXP (x
, 0));
638 int pos
= INTVAL (XEXP (x
, 2));
640 if (GET_CODE (x
) == ZERO_EXTRACT
&& HAVE_extzv
)
642 wanted_mode
= insn_data
[CODE_FOR_extzv
].operand
[1].mode
;
643 if (wanted_mode
== VOIDmode
)
644 wanted_mode
= word_mode
;
646 else if (GET_CODE (x
) == SIGN_EXTRACT
&& HAVE_extv
)
648 wanted_mode
= insn_data
[CODE_FOR_extv
].operand
[1].mode
;
649 if (wanted_mode
== VOIDmode
)
650 wanted_mode
= word_mode
;
653 /* If we have a narrower mode, we can do something. */
654 if (wanted_mode
!= VOIDmode
655 && GET_MODE_SIZE (wanted_mode
) < GET_MODE_SIZE (is_mode
))
657 int offset
= pos
/ BITS_PER_UNIT
;
660 /* If the bytes and bits are counted differently, we
661 must adjust the offset. */
662 if (BYTES_BIG_ENDIAN
!= BITS_BIG_ENDIAN
)
664 (GET_MODE_SIZE (is_mode
) - GET_MODE_SIZE (wanted_mode
) -
667 gcc_assert (GET_MODE_PRECISION (wanted_mode
)
668 == GET_MODE_BITSIZE (wanted_mode
));
669 pos
%= GET_MODE_BITSIZE (wanted_mode
);
671 newmem
= adjust_address_nv (XEXP (x
, 0), wanted_mode
, offset
);
673 validate_change (object
, &XEXP (x
, 2), GEN_INT (pos
), 1);
674 validate_change (object
, &XEXP (x
, 0), newmem
, 1);
685 /* Replace every occurrence of FROM in X with TO. Mark each change with
686 validate_change passing OBJECT. */
689 validate_replace_rtx_1 (rtx
*loc
, rtx from
, rtx to
, rtx object
,
696 enum machine_mode op0_mode
= VOIDmode
;
697 int prev_changes
= num_changes
;
703 fmt
= GET_RTX_FORMAT (code
);
705 op0_mode
= GET_MODE (XEXP (x
, 0));
707 /* X matches FROM if it is the same rtx or they are both referring to the
708 same register in the same mode. Avoid calling rtx_equal_p unless the
709 operands look similar. */
712 || (REG_P (x
) && REG_P (from
)
713 && GET_MODE (x
) == GET_MODE (from
)
714 && REGNO (x
) == REGNO (from
))
715 || (GET_CODE (x
) == GET_CODE (from
) && GET_MODE (x
) == GET_MODE (from
)
716 && rtx_equal_p (x
, from
)))
718 validate_unshare_change (object
, loc
, to
, 1);
722 /* Call ourself recursively to perform the replacements.
723 We must not replace inside already replaced expression, otherwise we
724 get infinite recursion for replacements like (reg X)->(subreg (reg X))
725 done by regmove, so we must special case shared ASM_OPERANDS. */
727 if (GET_CODE (x
) == PARALLEL
)
729 for (j
= XVECLEN (x
, 0) - 1; j
>= 0; j
--)
731 if (j
&& GET_CODE (XVECEXP (x
, 0, j
)) == SET
732 && GET_CODE (SET_SRC (XVECEXP (x
, 0, j
))) == ASM_OPERANDS
)
734 /* Verify that operands are really shared. */
735 gcc_assert (ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP (x
, 0, 0)))
736 == ASM_OPERANDS_INPUT_VEC (SET_SRC (XVECEXP
738 validate_replace_rtx_1 (&SET_DEST (XVECEXP (x
, 0, j
)),
739 from
, to
, object
, simplify
);
742 validate_replace_rtx_1 (&XVECEXP (x
, 0, j
), from
, to
, object
,
747 for (i
= GET_RTX_LENGTH (code
) - 1; i
>= 0; i
--)
750 validate_replace_rtx_1 (&XEXP (x
, i
), from
, to
, object
, simplify
);
751 else if (fmt
[i
] == 'E')
752 for (j
= XVECLEN (x
, i
) - 1; j
>= 0; j
--)
753 validate_replace_rtx_1 (&XVECEXP (x
, i
, j
), from
, to
, object
,
757 /* If we didn't substitute, there is nothing more to do. */
758 if (num_changes
== prev_changes
)
761 /* Allow substituted expression to have different mode. This is used by
762 regmove to change mode of pseudo register. */
763 if (fmt
[0] == 'e' && GET_MODE (XEXP (x
, 0)) != VOIDmode
)
764 op0_mode
= GET_MODE (XEXP (x
, 0));
766 /* Do changes needed to keep rtx consistent. Don't do any other
767 simplifications, as it is not our job. */
769 simplify_while_replacing (loc
, to
, object
, op0_mode
);
772 /* Try replacing every occurrence of FROM in subexpression LOC of INSN
773 with TO. After all changes have been made, validate by seeing
774 if INSN is still valid. */
777 validate_replace_rtx_subexp (rtx from
, rtx to
, rtx insn
, rtx
*loc
)
779 validate_replace_rtx_1 (loc
, from
, to
, insn
, true);
780 return apply_change_group ();
783 /* Try replacing every occurrence of FROM in INSN with TO. After all
784 changes have been made, validate by seeing if INSN is still valid. */
787 validate_replace_rtx (rtx from
, rtx to
, rtx insn
)
789 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
790 return apply_change_group ();
793 /* Try replacing every occurrence of FROM in WHERE with TO. Assume that WHERE
794 is a part of INSN. After all changes have been made, validate by seeing if
796 validate_replace_rtx (from, to, insn) is equivalent to
797 validate_replace_rtx_part (from, to, &PATTERN (insn), insn). */
800 validate_replace_rtx_part (rtx from
, rtx to
, rtx
*where
, rtx insn
)
802 validate_replace_rtx_1 (where
, from
, to
, insn
, true);
803 return apply_change_group ();
806 /* Same as above, but do not simplify rtx afterwards. */
808 validate_replace_rtx_part_nosimplify (rtx from
, rtx to
, rtx
*where
,
811 validate_replace_rtx_1 (where
, from
, to
, insn
, false);
812 return apply_change_group ();
816 /* Try replacing every occurrence of FROM in INSN with TO. This also
817 will replace in REG_EQUAL and REG_EQUIV notes. */
820 validate_replace_rtx_group (rtx from
, rtx to
, rtx insn
)
823 validate_replace_rtx_1 (&PATTERN (insn
), from
, to
, insn
, true);
824 for (note
= REG_NOTES (insn
); note
; note
= XEXP (note
, 1))
825 if (REG_NOTE_KIND (note
) == REG_EQUAL
826 || REG_NOTE_KIND (note
) == REG_EQUIV
)
827 validate_replace_rtx_1 (&XEXP (note
, 0), from
, to
, insn
, true);
830 /* Function called by note_uses to replace used subexpressions. */
831 struct validate_replace_src_data
833 rtx from
; /* Old RTX */
834 rtx to
; /* New RTX */
835 rtx insn
; /* Insn in which substitution is occurring. */
839 validate_replace_src_1 (rtx
*x
, void *data
)
841 struct validate_replace_src_data
*d
842 = (struct validate_replace_src_data
*) data
;
844 validate_replace_rtx_1 (x
, d
->from
, d
->to
, d
->insn
, true);
847 /* Try replacing every occurrence of FROM in INSN with TO, avoiding
851 validate_replace_src_group (rtx from
, rtx to
, rtx insn
)
853 struct validate_replace_src_data d
;
858 note_uses (&PATTERN (insn
), validate_replace_src_1
, &d
);
861 /* Try simplify INSN.
862 Invoke simplify_rtx () on every SET_SRC and SET_DEST inside the INSN's
863 pattern and return true if something was simplified. */
866 validate_simplify_insn (rtx insn
)
872 pat
= PATTERN (insn
);
874 if (GET_CODE (pat
) == SET
)
876 newpat
= simplify_rtx (SET_SRC (pat
));
877 if (newpat
&& !rtx_equal_p (SET_SRC (pat
), newpat
))
878 validate_change (insn
, &SET_SRC (pat
), newpat
, 1);
879 newpat
= simplify_rtx (SET_DEST (pat
));
880 if (newpat
&& !rtx_equal_p (SET_DEST (pat
), newpat
))
881 validate_change (insn
, &SET_DEST (pat
), newpat
, 1);
883 else if (GET_CODE (pat
) == PARALLEL
)
884 for (i
= 0; i
< XVECLEN (pat
, 0); i
++)
886 rtx s
= XVECEXP (pat
, 0, i
);
888 if (GET_CODE (XVECEXP (pat
, 0, i
)) == SET
)
890 newpat
= simplify_rtx (SET_SRC (s
));
891 if (newpat
&& !rtx_equal_p (SET_SRC (s
), newpat
))
892 validate_change (insn
, &SET_SRC (s
), newpat
, 1);
893 newpat
= simplify_rtx (SET_DEST (s
));
894 if (newpat
&& !rtx_equal_p (SET_DEST (s
), newpat
))
895 validate_change (insn
, &SET_DEST (s
), newpat
, 1);
898 return ((num_changes_pending () > 0) && (apply_change_group () > 0));
902 /* Return 1 if the insn using CC0 set by INSN does not contain
903 any ordered tests applied to the condition codes.
904 EQ and NE tests do not count. */
907 next_insn_tests_no_inequality (rtx insn
)
909 rtx next
= next_cc0_user (insn
);
911 /* If there is no next insn, we have to take the conservative choice. */
915 return (INSN_P (next
)
916 && ! inequality_comparisons_p (PATTERN (next
)));
920 /* Return 1 if OP is a valid general operand for machine mode MODE.
921 This is either a register reference, a memory reference,
922 or a constant. In the case of a memory reference, the address
923 is checked for general validity for the target machine.
925 Register and memory references must have mode MODE in order to be valid,
926 but some constants have no machine mode and are valid for any mode.
928 If MODE is VOIDmode, OP is checked for validity for whatever mode
931 The main use of this function is as a predicate in match_operand
932 expressions in the machine description. */
935 general_operand (rtx op
, enum machine_mode mode
)
937 enum rtx_code code
= GET_CODE (op
);
939 if (mode
== VOIDmode
)
940 mode
= GET_MODE (op
);
942 /* Don't accept CONST_INT or anything similar
943 if the caller wants something floating. */
944 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
945 && GET_MODE_CLASS (mode
) != MODE_INT
946 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
951 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
955 return ((GET_MODE (op
) == VOIDmode
|| GET_MODE (op
) == mode
957 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
958 && targetm
.legitimate_constant_p (mode
== VOIDmode
962 /* Except for certain constants with VOIDmode, already checked for,
963 OP's mode must match MODE if MODE specifies a mode. */
965 if (GET_MODE (op
) != mode
)
970 rtx sub
= SUBREG_REG (op
);
972 #ifdef INSN_SCHEDULING
973 /* On machines that have insn scheduling, we want all memory
974 reference to be explicit, so outlaw paradoxical SUBREGs.
975 However, we must allow them after reload so that they can
976 get cleaned up by cleanup_subreg_operands. */
977 if (!reload_completed
&& MEM_P (sub
)
978 && GET_MODE_SIZE (mode
) > GET_MODE_SIZE (GET_MODE (sub
)))
981 /* Avoid memories with nonzero SUBREG_BYTE, as offsetting the memory
982 may result in incorrect reference. We should simplify all valid
983 subregs of MEM anyway. But allow this after reload because we
984 might be called from cleanup_subreg_operands.
986 ??? This is a kludge. */
987 if (!reload_completed
&& SUBREG_BYTE (op
) != 0
991 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
992 create such rtl, and we must reject it. */
993 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
994 /* LRA can use subreg to store a floating point value in an
995 integer mode. Although the floating point and the
996 integer modes need the same number of hard registers, the
997 size of floating point mode can be less than the integer
1000 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1004 code
= GET_CODE (op
);
1008 return (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1009 || in_hard_reg_set_p (operand_reg_set
, GET_MODE (op
), REGNO (op
)));
1013 rtx y
= XEXP (op
, 0);
1015 if (! volatile_ok
&& MEM_VOLATILE_P (op
))
1018 /* Use the mem's mode, since it will be reloaded thus. */
1019 if (memory_address_addr_space_p (GET_MODE (op
), y
, MEM_ADDR_SPACE (op
)))
1026 /* Return 1 if OP is a valid memory address for a memory reference
1029 The main use of this function is as a predicate in match_operand
1030 expressions in the machine description. */
1033 address_operand (rtx op
, enum machine_mode mode
)
1035 return memory_address_p (mode
, op
);
1038 /* Return 1 if OP is a register reference of mode MODE.
1039 If MODE is VOIDmode, accept a register in any mode.
1041 The main use of this function is as a predicate in match_operand
1042 expressions in the machine description. */
1045 register_operand (rtx op
, enum machine_mode mode
)
1047 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1050 if (GET_CODE (op
) == SUBREG
)
1052 rtx sub
= SUBREG_REG (op
);
1054 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1055 because it is guaranteed to be reloaded into one.
1056 Just make sure the MEM is valid in itself.
1057 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1058 but currently it does result from (SUBREG (REG)...) where the
1059 reg went on the stack.) */
1060 if (! reload_completed
&& MEM_P (sub
))
1061 return general_operand (op
, mode
);
1063 #ifdef CANNOT_CHANGE_MODE_CLASS
1065 && REGNO (sub
) < FIRST_PSEUDO_REGISTER
1066 && REG_CANNOT_CHANGE_MODE_P (REGNO (sub
), GET_MODE (sub
), mode
)
1067 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_INT
1068 && GET_MODE_CLASS (GET_MODE (sub
)) != MODE_COMPLEX_FLOAT
1069 /* LRA can generate some invalid SUBREGS just for matched
1070 operand reload presentation. LRA needs to treat them as
1072 && ! LRA_SUBREG_P (op
))
1076 /* FLOAT_MODE subregs can't be paradoxical. Combine will occasionally
1077 create such rtl, and we must reject it. */
1078 if (SCALAR_FLOAT_MODE_P (GET_MODE (op
))
1079 /* LRA can use subreg to store a floating point value in an
1080 integer mode. Although the floating point and the
1081 integer modes need the same number of hard registers, the
1082 size of floating point mode can be less than the integer
1084 && ! lra_in_progress
1085 && GET_MODE_SIZE (GET_MODE (op
)) > GET_MODE_SIZE (GET_MODE (sub
)))
1092 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1093 || in_hard_reg_set_p (operand_reg_set
,
1094 GET_MODE (op
), REGNO (op
))));
1097 /* Return 1 for a register in Pmode; ignore the tested mode. */
1100 pmode_register_operand (rtx op
, enum machine_mode mode ATTRIBUTE_UNUSED
)
1102 return register_operand (op
, Pmode
);
1105 /* Return 1 if OP should match a MATCH_SCRATCH, i.e., if it is a SCRATCH
1106 or a hard register. */
1109 scratch_operand (rtx op
, enum machine_mode mode
)
1111 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1114 return (GET_CODE (op
) == SCRATCH
1116 && (lra_in_progress
|| REGNO (op
) < FIRST_PSEUDO_REGISTER
)));
1119 /* Return 1 if OP is a valid immediate operand for mode MODE.
1121 The main use of this function is as a predicate in match_operand
1122 expressions in the machine description. */
1125 immediate_operand (rtx op
, enum machine_mode mode
)
1127 /* Don't accept CONST_INT or anything similar
1128 if the caller wants something floating. */
1129 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1130 && GET_MODE_CLASS (mode
) != MODE_INT
1131 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1134 if (CONST_INT_P (op
)
1136 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1139 return (CONSTANT_P (op
)
1140 && (GET_MODE (op
) == mode
|| mode
== VOIDmode
1141 || GET_MODE (op
) == VOIDmode
)
1142 && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
))
1143 && targetm
.legitimate_constant_p (mode
== VOIDmode
1148 /* Returns 1 if OP is an operand that is a CONST_INT. */
1151 const_int_operand (rtx op
, enum machine_mode mode
)
1153 if (!CONST_INT_P (op
))
1156 if (mode
!= VOIDmode
1157 && trunc_int_for_mode (INTVAL (op
), mode
) != INTVAL (op
))
1163 /* Returns 1 if OP is an operand that is a constant integer or constant
1164 floating-point number. */
1167 const_double_operand (rtx op
, enum machine_mode mode
)
1169 /* Don't accept CONST_INT or anything similar
1170 if the caller wants something floating. */
1171 if (GET_MODE (op
) == VOIDmode
&& mode
!= VOIDmode
1172 && GET_MODE_CLASS (mode
) != MODE_INT
1173 && GET_MODE_CLASS (mode
) != MODE_PARTIAL_INT
)
1176 return ((CONST_DOUBLE_P (op
) || CONST_INT_P (op
))
1177 && (mode
== VOIDmode
|| GET_MODE (op
) == mode
1178 || GET_MODE (op
) == VOIDmode
));
1181 /* Return 1 if OP is a general operand that is not an immediate operand. */
1184 nonimmediate_operand (rtx op
, enum machine_mode mode
)
1186 return (general_operand (op
, mode
) && ! CONSTANT_P (op
));
1189 /* Return 1 if OP is a register reference or immediate value of mode MODE. */
1192 nonmemory_operand (rtx op
, enum machine_mode mode
)
1194 if (CONSTANT_P (op
))
1195 return immediate_operand (op
, mode
);
1197 if (GET_MODE (op
) != mode
&& mode
!= VOIDmode
)
1200 if (GET_CODE (op
) == SUBREG
)
1202 /* Before reload, we can allow (SUBREG (MEM...)) as a register operand
1203 because it is guaranteed to be reloaded into one.
1204 Just make sure the MEM is valid in itself.
1205 (Ideally, (SUBREG (MEM)...) should not exist after reload,
1206 but currently it does result from (SUBREG (REG)...) where the
1207 reg went on the stack.) */
1208 if (! reload_completed
&& MEM_P (SUBREG_REG (op
)))
1209 return general_operand (op
, mode
);
1210 op
= SUBREG_REG (op
);
1214 && (REGNO (op
) >= FIRST_PSEUDO_REGISTER
1215 || in_hard_reg_set_p (operand_reg_set
,
1216 GET_MODE (op
), REGNO (op
))));
1219 /* Return 1 if OP is a valid operand that stands for pushing a
1220 value of mode MODE onto the stack.
1222 The main use of this function is as a predicate in match_operand
1223 expressions in the machine description. */
1226 push_operand (rtx op
, enum machine_mode mode
)
1228 unsigned int rounded_size
= GET_MODE_SIZE (mode
);
1230 #ifdef PUSH_ROUNDING
1231 rounded_size
= PUSH_ROUNDING (rounded_size
);
1237 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1242 if (rounded_size
== GET_MODE_SIZE (mode
))
1244 if (GET_CODE (op
) != STACK_PUSH_CODE
)
1249 if (GET_CODE (op
) != PRE_MODIFY
1250 || GET_CODE (XEXP (op
, 1)) != PLUS
1251 || XEXP (XEXP (op
, 1), 0) != XEXP (op
, 0)
1252 || !CONST_INT_P (XEXP (XEXP (op
, 1), 1))
1253 #ifdef STACK_GROWS_DOWNWARD
1254 || INTVAL (XEXP (XEXP (op
, 1), 1)) != - (int) rounded_size
1256 || INTVAL (XEXP (XEXP (op
, 1), 1)) != (int) rounded_size
1262 return XEXP (op
, 0) == stack_pointer_rtx
;
1265 /* Return 1 if OP is a valid operand that stands for popping a
1266 value of mode MODE off the stack.
1268 The main use of this function is as a predicate in match_operand
1269 expressions in the machine description. */
1272 pop_operand (rtx op
, enum machine_mode mode
)
1277 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1282 if (GET_CODE (op
) != STACK_POP_CODE
)
1285 return XEXP (op
, 0) == stack_pointer_rtx
;
1288 /* Return 1 if ADDR is a valid memory address
1289 for mode MODE in address space AS. */
1292 memory_address_addr_space_p (enum machine_mode mode ATTRIBUTE_UNUSED
,
1293 rtx addr
, addr_space_t as
)
1295 #ifdef GO_IF_LEGITIMATE_ADDRESS
1296 gcc_assert (ADDR_SPACE_GENERIC_P (as
));
1297 GO_IF_LEGITIMATE_ADDRESS (mode
, addr
, win
);
1303 return targetm
.addr_space
.legitimate_address_p (mode
, addr
, 0, as
);
1307 /* Return 1 if OP is a valid memory reference with mode MODE,
1308 including a valid address.
1310 The main use of this function is as a predicate in match_operand
1311 expressions in the machine description. */
1314 memory_operand (rtx op
, enum machine_mode mode
)
1318 if (! reload_completed
)
1319 /* Note that no SUBREG is a memory operand before end of reload pass,
1320 because (SUBREG (MEM...)) forces reloading into a register. */
1321 return MEM_P (op
) && general_operand (op
, mode
);
1323 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1327 if (GET_CODE (inner
) == SUBREG
)
1328 inner
= SUBREG_REG (inner
);
1330 return (MEM_P (inner
) && general_operand (op
, mode
));
1333 /* Return 1 if OP is a valid indirect memory reference with mode MODE;
1334 that is, a memory reference whose address is a general_operand. */
1337 indirect_operand (rtx op
, enum machine_mode mode
)
1339 /* Before reload, a SUBREG isn't in memory (see memory_operand, above). */
1340 if (! reload_completed
1341 && GET_CODE (op
) == SUBREG
&& MEM_P (SUBREG_REG (op
)))
1343 int offset
= SUBREG_BYTE (op
);
1344 rtx inner
= SUBREG_REG (op
);
1346 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1349 /* The only way that we can have a general_operand as the resulting
1350 address is if OFFSET is zero and the address already is an operand
1351 or if the address is (plus Y (const_int -OFFSET)) and Y is an
1354 return ((offset
== 0 && general_operand (XEXP (inner
, 0), Pmode
))
1355 || (GET_CODE (XEXP (inner
, 0)) == PLUS
1356 && CONST_INT_P (XEXP (XEXP (inner
, 0), 1))
1357 && INTVAL (XEXP (XEXP (inner
, 0), 1)) == -offset
1358 && general_operand (XEXP (XEXP (inner
, 0), 0), Pmode
)));
1362 && memory_operand (op
, mode
)
1363 && general_operand (XEXP (op
, 0), Pmode
));
1366 /* Return 1 if this is an ordered comparison operator (not including
1367 ORDERED and UNORDERED). */
1370 ordered_comparison_operator (rtx op
, enum machine_mode mode
)
1372 if (mode
!= VOIDmode
&& GET_MODE (op
) != mode
)
1374 switch (GET_CODE (op
))
1392 /* Return 1 if this is a comparison operator. This allows the use of
1393 MATCH_OPERATOR to recognize all the branch insns. */
1396 comparison_operator (rtx op
, enum machine_mode mode
)
1398 return ((mode
== VOIDmode
|| GET_MODE (op
) == mode
)
1399 && COMPARISON_P (op
));
1402 /* If BODY is an insn body that uses ASM_OPERANDS, return it. */
1405 extract_asm_operands (rtx body
)
1408 switch (GET_CODE (body
))
1414 /* Single output operand: BODY is (set OUTPUT (asm_operands ...)). */
1415 tmp
= SET_SRC (body
);
1416 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1421 tmp
= XVECEXP (body
, 0, 0);
1422 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1424 if (GET_CODE (tmp
) == SET
)
1426 tmp
= SET_SRC (tmp
);
1427 if (GET_CODE (tmp
) == ASM_OPERANDS
)
1438 /* If BODY is an insn body that uses ASM_OPERANDS,
1439 return the number of operands (both input and output) in the insn.
1440 Otherwise return -1. */
1443 asm_noperands (const_rtx body
)
1445 rtx asm_op
= extract_asm_operands (CONST_CAST_RTX (body
));
1451 if (GET_CODE (body
) == SET
)
1453 else if (GET_CODE (body
) == PARALLEL
)
1456 if (GET_CODE (XVECEXP (body
, 0, 0)) == SET
)
1458 /* Multiple output operands, or 1 output plus some clobbers:
1460 [(set OUTPUT (asm_operands ...))... (clobber (reg ...))...]. */
1461 /* Count backwards through CLOBBERs to determine number of SETs. */
1462 for (i
= XVECLEN (body
, 0); i
> 0; i
--)
1464 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) == SET
)
1466 if (GET_CODE (XVECEXP (body
, 0, i
- 1)) != CLOBBER
)
1470 /* N_SETS is now number of output operands. */
1473 /* Verify that all the SETs we have
1474 came from a single original asm_operands insn
1475 (so that invalid combinations are blocked). */
1476 for (i
= 0; i
< n_sets
; i
++)
1478 rtx elt
= XVECEXP (body
, 0, i
);
1479 if (GET_CODE (elt
) != SET
)
1481 if (GET_CODE (SET_SRC (elt
)) != ASM_OPERANDS
)
1483 /* If these ASM_OPERANDS rtx's came from different original insns
1484 then they aren't allowed together. */
1485 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (elt
))
1486 != ASM_OPERANDS_INPUT_VEC (asm_op
))
1492 /* 0 outputs, but some clobbers:
1493 body is [(asm_operands ...) (clobber (reg ...))...]. */
1494 /* Make sure all the other parallel things really are clobbers. */
1495 for (i
= XVECLEN (body
, 0) - 1; i
> 0; i
--)
1496 if (GET_CODE (XVECEXP (body
, 0, i
)) != CLOBBER
)
1501 return (ASM_OPERANDS_INPUT_LENGTH (asm_op
)
1502 + ASM_OPERANDS_LABEL_LENGTH (asm_op
) + n_sets
);
1505 /* Assuming BODY is an insn body that uses ASM_OPERANDS,
1506 copy its operands (both input and output) into the vector OPERANDS,
1507 the locations of the operands within the insn into the vector OPERAND_LOCS,
1508 and the constraints for the operands into CONSTRAINTS.
1509 Write the modes of the operands into MODES.
1510 Return the assembler-template.
1512 If MODES, OPERAND_LOCS, CONSTRAINTS or OPERANDS is 0,
1513 we don't store that info. */
1516 decode_asm_operands (rtx body
, rtx
*operands
, rtx
**operand_locs
,
1517 const char **constraints
, enum machine_mode
*modes
,
1520 int nbase
= 0, n
, i
;
1523 switch (GET_CODE (body
))
1526 /* Zero output asm: BODY is (asm_operands ...). */
1531 /* Single output asm: BODY is (set OUTPUT (asm_operands ...)). */
1532 asmop
= SET_SRC (body
);
1534 /* The output is in the SET.
1535 Its constraint is in the ASM_OPERANDS itself. */
1537 operands
[0] = SET_DEST (body
);
1539 operand_locs
[0] = &SET_DEST (body
);
1541 constraints
[0] = ASM_OPERANDS_OUTPUT_CONSTRAINT (asmop
);
1543 modes
[0] = GET_MODE (SET_DEST (body
));
1549 int nparallel
= XVECLEN (body
, 0); /* Includes CLOBBERs. */
1551 asmop
= XVECEXP (body
, 0, 0);
1552 if (GET_CODE (asmop
) == SET
)
1554 asmop
= SET_SRC (asmop
);
1556 /* At least one output, plus some CLOBBERs. The outputs are in
1557 the SETs. Their constraints are in the ASM_OPERANDS itself. */
1558 for (i
= 0; i
< nparallel
; i
++)
1560 if (GET_CODE (XVECEXP (body
, 0, i
)) == CLOBBER
)
1561 break; /* Past last SET */
1563 operands
[i
] = SET_DEST (XVECEXP (body
, 0, i
));
1565 operand_locs
[i
] = &SET_DEST (XVECEXP (body
, 0, i
));
1567 constraints
[i
] = XSTR (SET_SRC (XVECEXP (body
, 0, i
)), 1);
1569 modes
[i
] = GET_MODE (SET_DEST (XVECEXP (body
, 0, i
)));
1580 n
= ASM_OPERANDS_INPUT_LENGTH (asmop
);
1581 for (i
= 0; i
< n
; i
++)
1584 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_INPUT (asmop
, i
);
1586 operands
[nbase
+ i
] = ASM_OPERANDS_INPUT (asmop
, i
);
1588 constraints
[nbase
+ i
] = ASM_OPERANDS_INPUT_CONSTRAINT (asmop
, i
);
1590 modes
[nbase
+ i
] = ASM_OPERANDS_INPUT_MODE (asmop
, i
);
1594 n
= ASM_OPERANDS_LABEL_LENGTH (asmop
);
1595 for (i
= 0; i
< n
; i
++)
1598 operand_locs
[nbase
+ i
] = &ASM_OPERANDS_LABEL (asmop
, i
);
1600 operands
[nbase
+ i
] = ASM_OPERANDS_LABEL (asmop
, i
);
1602 constraints
[nbase
+ i
] = "";
1604 modes
[nbase
+ i
] = Pmode
;
1608 *loc
= ASM_OPERANDS_SOURCE_LOCATION (asmop
);
1610 return ASM_OPERANDS_TEMPLATE (asmop
);
1613 /* Check if an asm_operand matches its constraints.
1614 Return > 0 if ok, = 0 if bad, < 0 if inconclusive. */
1617 asm_operand_ok (rtx op
, const char *constraint
, const char **constraints
)
1621 bool incdec_ok
= false;
1624 /* Use constrain_operands after reload. */
1625 gcc_assert (!reload_completed
);
1627 /* Empty constraint string is the same as "X,...,X", i.e. X for as
1628 many alternatives as required to match the other operands. */
1629 if (*constraint
== '\0')
1634 char c
= *constraint
;
1651 case '0': case '1': case '2': case '3': case '4':
1652 case '5': case '6': case '7': case '8': case '9':
1653 /* If caller provided constraints pointer, look up
1654 the matching constraint. Otherwise, our caller should have
1655 given us the proper matching constraint, but we can't
1656 actually fail the check if they didn't. Indicate that
1657 results are inconclusive. */
1661 unsigned long match
;
1663 match
= strtoul (constraint
, &end
, 10);
1665 result
= asm_operand_ok (op
, constraints
[match
], NULL
);
1666 constraint
= (const char *) end
;
1672 while (ISDIGIT (*constraint
));
1679 if (address_operand (op
, VOIDmode
))
1683 case TARGET_MEM_CONSTRAINT
:
1684 case 'V': /* non-offsettable */
1685 if (memory_operand (op
, VOIDmode
))
1689 case 'o': /* offsettable */
1690 if (offsettable_nonstrict_memref_p (op
))
1695 /* ??? Before auto-inc-dec, auto inc/dec insns are not supposed to exist,
1696 excepting those that expand_call created. Further, on some
1697 machines which do not have generalized auto inc/dec, an inc/dec
1698 is not a memory_operand.
1700 Match any memory and hope things are resolved after reload. */
1704 || GET_CODE (XEXP (op
, 0)) == PRE_DEC
1705 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
1715 || GET_CODE (XEXP (op
, 0)) == PRE_INC
1716 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
1725 if (CONST_DOUBLE_AS_FLOAT_P (op
)
1726 || (GET_CODE (op
) == CONST_VECTOR
1727 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
1732 if (CONST_DOUBLE_AS_FLOAT_P (op
)
1733 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'G', constraint
))
1737 if (CONST_DOUBLE_AS_FLOAT_P (op
)
1738 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, 'H', constraint
))
1743 if (CONST_SCALAR_INT_P (op
))
1748 if (CONSTANT_P (op
) && (! flag_pic
|| LEGITIMATE_PIC_OPERAND_P (op
)))
1753 if (CONST_SCALAR_INT_P (op
))
1758 if (CONST_INT_P (op
)
1759 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'I', constraint
))
1763 if (CONST_INT_P (op
)
1764 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'J', constraint
))
1768 if (CONST_INT_P (op
)
1769 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'K', constraint
))
1773 if (CONST_INT_P (op
)
1774 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'L', constraint
))
1778 if (CONST_INT_P (op
)
1779 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'M', constraint
))
1783 if (CONST_INT_P (op
)
1784 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'N', constraint
))
1788 if (CONST_INT_P (op
)
1789 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'O', constraint
))
1793 if (CONST_INT_P (op
)
1794 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), 'P', constraint
))
1803 if (general_operand (op
, VOIDmode
))
1808 /* For all other letters, we first check for a register class,
1809 otherwise it is an EXTRA_CONSTRAINT. */
1810 if (REG_CLASS_FROM_CONSTRAINT (c
, constraint
) != NO_REGS
)
1813 if (GET_MODE (op
) == BLKmode
)
1815 if (register_operand (op
, VOIDmode
))
1818 #ifdef EXTRA_CONSTRAINT_STR
1819 else if (EXTRA_MEMORY_CONSTRAINT (c
, constraint
))
1820 /* Every memory operand can be reloaded to fit. */
1821 result
= result
|| memory_operand (op
, VOIDmode
);
1822 else if (EXTRA_ADDRESS_CONSTRAINT (c
, constraint
))
1823 /* Every address operand can be reloaded to fit. */
1824 result
= result
|| address_operand (op
, VOIDmode
);
1825 else if (EXTRA_CONSTRAINT_STR (op
, c
, constraint
))
1830 len
= CONSTRAINT_LEN (c
, constraint
);
1833 while (--len
&& *constraint
);
1839 /* For operands without < or > constraints reject side-effects. */
1840 if (!incdec_ok
&& result
&& MEM_P (op
))
1841 switch (GET_CODE (XEXP (op
, 0)))
1858 /* Given an rtx *P, if it is a sum containing an integer constant term,
1859 return the location (type rtx *) of the pointer to that constant term.
1860 Otherwise, return a null pointer. */
1863 find_constant_term_loc (rtx
*p
)
1866 enum rtx_code code
= GET_CODE (*p
);
1868 /* If *P IS such a constant term, P is its location. */
1870 if (code
== CONST_INT
|| code
== SYMBOL_REF
|| code
== LABEL_REF
1874 /* Otherwise, if not a sum, it has no constant term. */
1876 if (GET_CODE (*p
) != PLUS
)
1879 /* If one of the summands is constant, return its location. */
1881 if (XEXP (*p
, 0) && CONSTANT_P (XEXP (*p
, 0))
1882 && XEXP (*p
, 1) && CONSTANT_P (XEXP (*p
, 1)))
1885 /* Otherwise, check each summand for containing a constant term. */
1887 if (XEXP (*p
, 0) != 0)
1889 tem
= find_constant_term_loc (&XEXP (*p
, 0));
1894 if (XEXP (*p
, 1) != 0)
1896 tem
= find_constant_term_loc (&XEXP (*p
, 1));
1904 /* Return 1 if OP is a memory reference
1905 whose address contains no side effects
1906 and remains valid after the addition
1907 of a positive integer less than the
1908 size of the object being referenced.
1910 We assume that the original address is valid and do not check it.
1912 This uses strict_memory_address_p as a subroutine, so
1913 don't use it before reload. */
1916 offsettable_memref_p (rtx op
)
1918 return ((MEM_P (op
))
1919 && offsettable_address_addr_space_p (1, GET_MODE (op
), XEXP (op
, 0),
1920 MEM_ADDR_SPACE (op
)));
1923 /* Similar, but don't require a strictly valid mem ref:
1924 consider pseudo-regs valid as index or base regs. */
1927 offsettable_nonstrict_memref_p (rtx op
)
1929 return ((MEM_P (op
))
1930 && offsettable_address_addr_space_p (0, GET_MODE (op
), XEXP (op
, 0),
1931 MEM_ADDR_SPACE (op
)));
1934 /* Return 1 if Y is a memory address which contains no side effects
1935 and would remain valid for address space AS after the addition of
1936 a positive integer less than the size of that mode.
1938 We assume that the original address is valid and do not check it.
1939 We do check that it is valid for narrower modes.
1941 If STRICTP is nonzero, we require a strictly valid address,
1942 for the sake of use in reload.c. */
1945 offsettable_address_addr_space_p (int strictp
, enum machine_mode mode
, rtx y
,
1948 enum rtx_code ycode
= GET_CODE (y
);
1952 int (*addressp
) (enum machine_mode
, rtx
, addr_space_t
) =
1953 (strictp
? strict_memory_address_addr_space_p
1954 : memory_address_addr_space_p
);
1955 unsigned int mode_sz
= GET_MODE_SIZE (mode
);
1957 if (CONSTANT_ADDRESS_P (y
))
1960 /* Adjusting an offsettable address involves changing to a narrower mode.
1961 Make sure that's OK. */
1963 if (mode_dependent_address_p (y
, as
))
1966 enum machine_mode address_mode
= GET_MODE (y
);
1967 if (address_mode
== VOIDmode
)
1968 address_mode
= targetm
.addr_space
.address_mode (as
);
1969 #ifdef POINTERS_EXTEND_UNSIGNED
1970 enum machine_mode pointer_mode
= targetm
.addr_space
.pointer_mode (as
);
1973 /* ??? How much offset does an offsettable BLKmode reference need?
1974 Clearly that depends on the situation in which it's being used.
1975 However, the current situation in which we test 0xffffffff is
1976 less than ideal. Caveat user. */
1978 mode_sz
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
1980 /* If the expression contains a constant term,
1981 see if it remains valid when max possible offset is added. */
1983 if ((ycode
== PLUS
) && (y2
= find_constant_term_loc (&y1
)))
1988 *y2
= plus_constant (address_mode
, *y2
, mode_sz
- 1);
1989 /* Use QImode because an odd displacement may be automatically invalid
1990 for any wider mode. But it should be valid for a single byte. */
1991 good
= (*addressp
) (QImode
, y
, as
);
1993 /* In any case, restore old contents of memory. */
1998 if (GET_RTX_CLASS (ycode
) == RTX_AUTOINC
)
2001 /* The offset added here is chosen as the maximum offset that
2002 any instruction could need to add when operating on something
2003 of the specified mode. We assume that if Y and Y+c are
2004 valid addresses then so is Y+d for all 0<d<c. adjust_address will
2005 go inside a LO_SUM here, so we do so as well. */
2006 if (GET_CODE (y
) == LO_SUM
2008 && mode_sz
<= GET_MODE_ALIGNMENT (mode
) / BITS_PER_UNIT
)
2009 z
= gen_rtx_LO_SUM (address_mode
, XEXP (y
, 0),
2010 plus_constant (address_mode
, XEXP (y
, 1),
2012 #ifdef POINTERS_EXTEND_UNSIGNED
2013 /* Likewise for a ZERO_EXTEND from pointer_mode. */
2014 else if (POINTERS_EXTEND_UNSIGNED
> 0
2015 && GET_CODE (y
) == ZERO_EXTEND
2016 && GET_MODE (XEXP (y
, 0)) == pointer_mode
)
2017 z
= gen_rtx_ZERO_EXTEND (address_mode
,
2018 plus_constant (pointer_mode
, XEXP (y
, 0),
2022 z
= plus_constant (address_mode
, y
, mode_sz
- 1);
2024 /* Use QImode because an odd displacement may be automatically invalid
2025 for any wider mode. But it should be valid for a single byte. */
2026 return (*addressp
) (QImode
, z
, as
);
2029 /* Return 1 if ADDR is an address-expression whose effect depends
2030 on the mode of the memory reference it is used in.
2032 ADDRSPACE is the address space associated with the address.
2034 Autoincrement addressing is a typical example of mode-dependence
2035 because the amount of the increment depends on the mode. */
2038 mode_dependent_address_p (rtx addr
, addr_space_t addrspace
)
2040 /* Auto-increment addressing with anything other than post_modify
2041 or pre_modify always introduces a mode dependency. Catch such
2042 cases now instead of deferring to the target. */
2043 if (GET_CODE (addr
) == PRE_INC
2044 || GET_CODE (addr
) == POST_INC
2045 || GET_CODE (addr
) == PRE_DEC
2046 || GET_CODE (addr
) == POST_DEC
)
2049 return targetm
.mode_dependent_address_p (addr
, addrspace
);
2052 /* Like extract_insn, but save insn extracted and don't extract again, when
2053 called again for the same insn expecting that recog_data still contain the
2054 valid information. This is used primary by gen_attr infrastructure that
2055 often does extract insn again and again. */
2057 extract_insn_cached (rtx insn
)
2059 if (recog_data
.insn
== insn
&& INSN_CODE (insn
) >= 0)
2061 extract_insn (insn
);
2062 recog_data
.insn
= insn
;
2065 /* Do cached extract_insn, constrain_operands and complain about failures.
2066 Used by insn_attrtab. */
2068 extract_constrain_insn_cached (rtx insn
)
2070 extract_insn_cached (insn
);
2071 if (which_alternative
== -1
2072 && !constrain_operands (reload_completed
))
2073 fatal_insn_not_found (insn
);
2076 /* Do cached constrain_operands and complain about failures. */
2078 constrain_operands_cached (int strict
)
2080 if (which_alternative
== -1)
2081 return constrain_operands (strict
);
2086 /* Analyze INSN and fill in recog_data. */
2089 extract_insn (rtx insn
)
2094 rtx body
= PATTERN (insn
);
2096 recog_data
.n_operands
= 0;
2097 recog_data
.n_alternatives
= 0;
2098 recog_data
.n_dups
= 0;
2099 recog_data
.is_asm
= false;
2101 switch (GET_CODE (body
))
2112 if (GET_CODE (SET_SRC (body
)) == ASM_OPERANDS
)
2117 if ((GET_CODE (XVECEXP (body
, 0, 0)) == SET
2118 && GET_CODE (SET_SRC (XVECEXP (body
, 0, 0))) == ASM_OPERANDS
)
2119 || GET_CODE (XVECEXP (body
, 0, 0)) == ASM_OPERANDS
)
2125 recog_data
.n_operands
= noperands
= asm_noperands (body
);
2128 /* This insn is an `asm' with operands. */
2130 /* expand_asm_operands makes sure there aren't too many operands. */
2131 gcc_assert (noperands
<= MAX_RECOG_OPERANDS
);
2133 /* Now get the operand values and constraints out of the insn. */
2134 decode_asm_operands (body
, recog_data
.operand
,
2135 recog_data
.operand_loc
,
2136 recog_data
.constraints
,
2137 recog_data
.operand_mode
, NULL
);
2138 memset (recog_data
.is_operator
, 0, sizeof recog_data
.is_operator
);
2141 const char *p
= recog_data
.constraints
[0];
2142 recog_data
.n_alternatives
= 1;
2144 recog_data
.n_alternatives
+= (*p
++ == ',');
2146 recog_data
.is_asm
= true;
2149 fatal_insn_not_found (insn
);
2153 /* Ordinary insn: recognize it, get the operands via insn_extract
2154 and get the constraints. */
2156 icode
= recog_memoized (insn
);
2158 fatal_insn_not_found (insn
);
2160 recog_data
.n_operands
= noperands
= insn_data
[icode
].n_operands
;
2161 recog_data
.n_alternatives
= insn_data
[icode
].n_alternatives
;
2162 recog_data
.n_dups
= insn_data
[icode
].n_dups
;
2164 insn_extract (insn
);
2166 for (i
= 0; i
< noperands
; i
++)
2168 recog_data
.constraints
[i
] = insn_data
[icode
].operand
[i
].constraint
;
2169 recog_data
.is_operator
[i
] = insn_data
[icode
].operand
[i
].is_operator
;
2170 recog_data
.operand_mode
[i
] = insn_data
[icode
].operand
[i
].mode
;
2171 /* VOIDmode match_operands gets mode from their real operand. */
2172 if (recog_data
.operand_mode
[i
] == VOIDmode
)
2173 recog_data
.operand_mode
[i
] = GET_MODE (recog_data
.operand
[i
]);
2176 for (i
= 0; i
< noperands
; i
++)
2177 recog_data
.operand_type
[i
]
2178 = (recog_data
.constraints
[i
][0] == '=' ? OP_OUT
2179 : recog_data
.constraints
[i
][0] == '+' ? OP_INOUT
2182 gcc_assert (recog_data
.n_alternatives
<= MAX_RECOG_ALTERNATIVES
);
2184 if (INSN_CODE (insn
) < 0)
2185 for (i
= 0; i
< recog_data
.n_alternatives
; i
++)
2186 recog_data
.alternative_enabled_p
[i
] = true;
2189 recog_data
.insn
= insn
;
2190 for (i
= 0; i
< recog_data
.n_alternatives
; i
++)
2192 which_alternative
= i
;
2193 recog_data
.alternative_enabled_p
[i
]
2194 = HAVE_ATTR_enabled
? get_attr_enabled (insn
) : 1;
2198 recog_data
.insn
= NULL
;
2199 which_alternative
= -1;
2202 /* After calling extract_insn, you can use this function to extract some
2203 information from the constraint strings into a more usable form.
2204 The collected data is stored in recog_op_alt. */
2206 preprocess_constraints (void)
2210 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2211 memset (recog_op_alt
[i
], 0, (recog_data
.n_alternatives
2212 * sizeof (struct operand_alternative
)));
2214 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2217 struct operand_alternative
*op_alt
;
2218 const char *p
= recog_data
.constraints
[i
];
2220 op_alt
= recog_op_alt
[i
];
2222 for (j
= 0; j
< recog_data
.n_alternatives
; j
++)
2224 op_alt
[j
].cl
= NO_REGS
;
2225 op_alt
[j
].constraint
= p
;
2226 op_alt
[j
].matches
= -1;
2227 op_alt
[j
].matched
= -1;
2229 if (!recog_data
.alternative_enabled_p
[j
])
2231 p
= skip_alternative (p
);
2235 if (*p
== '\0' || *p
== ',')
2237 op_alt
[j
].anything_ok
= 1;
2247 while (c
!= ',' && c
!= '\0');
2248 if (c
== ',' || c
== '\0')
2256 case '=': case '+': case '*': case '%':
2257 case 'E': case 'F': case 'G': case 'H':
2258 case 's': case 'i': case 'n':
2259 case 'I': case 'J': case 'K': case 'L':
2260 case 'M': case 'N': case 'O': case 'P':
2261 /* These don't say anything we care about. */
2265 op_alt
[j
].reject
+= 6;
2268 op_alt
[j
].reject
+= 600;
2271 op_alt
[j
].earlyclobber
= 1;
2274 case '0': case '1': case '2': case '3': case '4':
2275 case '5': case '6': case '7': case '8': case '9':
2278 op_alt
[j
].matches
= strtoul (p
, &end
, 10);
2279 recog_op_alt
[op_alt
[j
].matches
][j
].matched
= i
;
2284 case TARGET_MEM_CONSTRAINT
:
2285 op_alt
[j
].memory_ok
= 1;
2288 op_alt
[j
].decmem_ok
= 1;
2291 op_alt
[j
].incmem_ok
= 1;
2294 op_alt
[j
].nonoffmem_ok
= 1;
2297 op_alt
[j
].offmem_ok
= 1;
2300 op_alt
[j
].anything_ok
= 1;
2304 op_alt
[j
].is_address
= 1;
2305 op_alt
[j
].cl
= reg_class_subunion
[(int) op_alt
[j
].cl
]
2306 [(int) base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2313 reg_class_subunion
[(int) op_alt
[j
].cl
][(int) GENERAL_REGS
];
2317 if (EXTRA_MEMORY_CONSTRAINT (c
, p
))
2319 op_alt
[j
].memory_ok
= 1;
2322 if (EXTRA_ADDRESS_CONSTRAINT (c
, p
))
2324 op_alt
[j
].is_address
= 1;
2326 = (reg_class_subunion
2327 [(int) op_alt
[j
].cl
]
2328 [(int) base_reg_class (VOIDmode
, ADDR_SPACE_GENERIC
,
2329 ADDRESS
, SCRATCH
)]);
2334 = (reg_class_subunion
2335 [(int) op_alt
[j
].cl
]
2336 [(int) REG_CLASS_FROM_CONSTRAINT ((unsigned char) c
, p
)]);
2339 p
+= CONSTRAINT_LEN (c
, p
);
2345 /* Check the operands of an insn against the insn's operand constraints
2346 and return 1 if they are valid.
2347 The information about the insn's operands, constraints, operand modes
2348 etc. is obtained from the global variables set up by extract_insn.
2350 WHICH_ALTERNATIVE is set to a number which indicates which
2351 alternative of constraints was matched: 0 for the first alternative,
2352 1 for the next, etc.
2354 In addition, when two operands are required to match
2355 and it happens that the output operand is (reg) while the
2356 input operand is --(reg) or ++(reg) (a pre-inc or pre-dec),
2357 make the output operand look like the input.
2358 This is because the output operand is the one the template will print.
2360 This is used in final, just before printing the assembler code and by
2361 the routines that determine an insn's attribute.
2363 If STRICT is a positive nonzero value, it means that we have been
2364 called after reload has been completed. In that case, we must
2365 do all checks strictly. If it is zero, it means that we have been called
2366 before reload has completed. In that case, we first try to see if we can
2367 find an alternative that matches strictly. If not, we try again, this
2368 time assuming that reload will fix up the insn. This provides a "best
2369 guess" for the alternative and is used to compute attributes of insns prior
2370 to reload. A negative value of STRICT is used for this internal call. */
2378 constrain_operands (int strict
)
2380 const char *constraints
[MAX_RECOG_OPERANDS
];
2381 int matching_operands
[MAX_RECOG_OPERANDS
];
2382 int earlyclobber
[MAX_RECOG_OPERANDS
];
2385 struct funny_match funny_match
[MAX_RECOG_OPERANDS
];
2386 int funny_match_index
;
2388 which_alternative
= 0;
2389 if (recog_data
.n_operands
== 0 || recog_data
.n_alternatives
== 0)
2392 for (c
= 0; c
< recog_data
.n_operands
; c
++)
2394 constraints
[c
] = recog_data
.constraints
[c
];
2395 matching_operands
[c
] = -1;
2400 int seen_earlyclobber_at
= -1;
2403 funny_match_index
= 0;
2405 if (!recog_data
.alternative_enabled_p
[which_alternative
])
2409 for (i
= 0; i
< recog_data
.n_operands
; i
++)
2410 constraints
[i
] = skip_alternative (constraints
[i
]);
2412 which_alternative
++;
2416 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2418 rtx op
= recog_data
.operand
[opno
];
2419 enum machine_mode mode
= GET_MODE (op
);
2420 const char *p
= constraints
[opno
];
2426 earlyclobber
[opno
] = 0;
2428 /* A unary operator may be accepted by the predicate, but it
2429 is irrelevant for matching constraints. */
2433 if (GET_CODE (op
) == SUBREG
)
2435 if (REG_P (SUBREG_REG (op
))
2436 && REGNO (SUBREG_REG (op
)) < FIRST_PSEUDO_REGISTER
)
2437 offset
= subreg_regno_offset (REGNO (SUBREG_REG (op
)),
2438 GET_MODE (SUBREG_REG (op
)),
2441 op
= SUBREG_REG (op
);
2444 /* An empty constraint or empty alternative
2445 allows anything which matched the pattern. */
2446 if (*p
== 0 || *p
== ',')
2450 switch (c
= *p
, len
= CONSTRAINT_LEN (c
, p
), c
)
2459 case '?': case '!': case '*': case '%':
2464 /* Ignore rest of this alternative as far as
2465 constraint checking is concerned. */
2468 while (*p
&& *p
!= ',');
2473 earlyclobber
[opno
] = 1;
2474 if (seen_earlyclobber_at
< 0)
2475 seen_earlyclobber_at
= opno
;
2478 case '0': case '1': case '2': case '3': case '4':
2479 case '5': case '6': case '7': case '8': case '9':
2481 /* This operand must be the same as a previous one.
2482 This kind of constraint is used for instructions such
2483 as add when they take only two operands.
2485 Note that the lower-numbered operand is passed first.
2487 If we are not testing strictly, assume that this
2488 constraint will be satisfied. */
2493 match
= strtoul (p
, &end
, 10);
2500 rtx op1
= recog_data
.operand
[match
];
2501 rtx op2
= recog_data
.operand
[opno
];
2503 /* A unary operator may be accepted by the predicate,
2504 but it is irrelevant for matching constraints. */
2506 op1
= XEXP (op1
, 0);
2508 op2
= XEXP (op2
, 0);
2510 val
= operands_match_p (op1
, op2
);
2513 matching_operands
[opno
] = match
;
2514 matching_operands
[match
] = opno
;
2519 /* If output is *x and input is *--x, arrange later
2520 to change the output to *--x as well, since the
2521 output op is the one that will be printed. */
2522 if (val
== 2 && strict
> 0)
2524 funny_match
[funny_match_index
].this_op
= opno
;
2525 funny_match
[funny_match_index
++].other
= match
;
2532 /* p is used for address_operands. When we are called by
2533 gen_reload, no one will have checked that the address is
2534 strictly valid, i.e., that all pseudos requiring hard regs
2535 have gotten them. */
2537 || (strict_memory_address_p (recog_data
.operand_mode
[opno
],
2542 /* No need to check general_operand again;
2543 it was done in insn-recog.c. Well, except that reload
2544 doesn't check the validity of its replacements, but
2545 that should only matter when there's a bug. */
2547 /* Anything goes unless it is a REG and really has a hard reg
2548 but the hard reg is not in the class GENERAL_REGS. */
2552 || GENERAL_REGS
== ALL_REGS
2553 || (reload_in_progress
2554 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2555 || reg_fits_class_p (op
, GENERAL_REGS
, offset
, mode
))
2558 else if (strict
< 0 || general_operand (op
, mode
))
2563 /* This is used for a MATCH_SCRATCH in the cases when
2564 we don't actually need anything. So anything goes
2569 case TARGET_MEM_CONSTRAINT
:
2570 /* Memory operands must be valid, to the extent
2571 required by STRICT. */
2575 && !strict_memory_address_addr_space_p
2576 (GET_MODE (op
), XEXP (op
, 0),
2577 MEM_ADDR_SPACE (op
)))
2580 && !memory_address_addr_space_p
2581 (GET_MODE (op
), XEXP (op
, 0),
2582 MEM_ADDR_SPACE (op
)))
2586 /* Before reload, accept what reload can turn into mem. */
2587 else if (strict
< 0 && CONSTANT_P (op
))
2589 /* During reload, accept a pseudo */
2590 else if (reload_in_progress
&& REG_P (op
)
2591 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2597 && (GET_CODE (XEXP (op
, 0)) == PRE_DEC
2598 || GET_CODE (XEXP (op
, 0)) == POST_DEC
))
2604 && (GET_CODE (XEXP (op
, 0)) == PRE_INC
2605 || GET_CODE (XEXP (op
, 0)) == POST_INC
))
2611 if (CONST_DOUBLE_AS_FLOAT_P (op
)
2612 || (GET_CODE (op
) == CONST_VECTOR
2613 && GET_MODE_CLASS (GET_MODE (op
)) == MODE_VECTOR_FLOAT
))
2619 if (CONST_DOUBLE_AS_FLOAT_P (op
)
2620 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (op
, c
, p
))
2625 if (CONST_SCALAR_INT_P (op
))
2628 if (CONSTANT_P (op
))
2633 if (CONST_SCALAR_INT_P (op
))
2645 if (CONST_INT_P (op
)
2646 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (op
), c
, p
))
2652 && ((strict
> 0 && ! offsettable_memref_p (op
))
2654 && !(CONSTANT_P (op
) || MEM_P (op
)))
2655 || (reload_in_progress
2657 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))))
2662 if ((strict
> 0 && offsettable_memref_p (op
))
2663 || (strict
== 0 && offsettable_nonstrict_memref_p (op
))
2664 /* Before reload, accept what reload can handle. */
2666 && (CONSTANT_P (op
) || MEM_P (op
)))
2667 /* During reload, accept a pseudo */
2668 || (reload_in_progress
&& REG_P (op
)
2669 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
))
2678 ? GENERAL_REGS
: REG_CLASS_FROM_CONSTRAINT (c
, p
));
2684 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)
2685 || (strict
== 0 && GET_CODE (op
) == SCRATCH
)
2687 && reg_fits_class_p (op
, cl
, offset
, mode
)))
2690 #ifdef EXTRA_CONSTRAINT_STR
2691 else if (EXTRA_CONSTRAINT_STR (op
, c
, p
))
2694 else if (EXTRA_MEMORY_CONSTRAINT (c
, p
)
2695 /* Every memory operand can be reloaded to fit. */
2696 && ((strict
< 0 && MEM_P (op
))
2697 /* Before reload, accept what reload can turn
2699 || (strict
< 0 && CONSTANT_P (op
))
2700 /* During reload, accept a pseudo */
2701 || (reload_in_progress
&& REG_P (op
)
2702 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
)))
2704 else if (EXTRA_ADDRESS_CONSTRAINT (c
, p
)
2705 /* Every address operand can be reloaded to fit. */
2708 /* Cater to architectures like IA-64 that define extra memory
2709 constraints without using define_memory_constraint. */
2710 else if (reload_in_progress
2712 && REGNO (op
) >= FIRST_PSEUDO_REGISTER
2713 && reg_renumber
[REGNO (op
)] < 0
2714 && reg_equiv_mem (REGNO (op
)) != 0
2715 && EXTRA_CONSTRAINT_STR
2716 (reg_equiv_mem (REGNO (op
)), c
, p
))
2722 while (p
+= len
, c
);
2724 constraints
[opno
] = p
;
2725 /* If this operand did not win somehow,
2726 this alternative loses. */
2730 /* This alternative won; the operands are ok.
2731 Change whichever operands this alternative says to change. */
2736 /* See if any earlyclobber operand conflicts with some other
2739 if (strict
> 0 && seen_earlyclobber_at
>= 0)
2740 for (eopno
= seen_earlyclobber_at
;
2741 eopno
< recog_data
.n_operands
;
2743 /* Ignore earlyclobber operands now in memory,
2744 because we would often report failure when we have
2745 two memory operands, one of which was formerly a REG. */
2746 if (earlyclobber
[eopno
]
2747 && REG_P (recog_data
.operand
[eopno
]))
2748 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2749 if ((MEM_P (recog_data
.operand
[opno
])
2750 || recog_data
.operand_type
[opno
] != OP_OUT
)
2752 /* Ignore things like match_operator operands. */
2753 && *recog_data
.constraints
[opno
] != 0
2754 && ! (matching_operands
[opno
] == eopno
2755 && operands_match_p (recog_data
.operand
[opno
],
2756 recog_data
.operand
[eopno
]))
2757 && ! safe_from_earlyclobber (recog_data
.operand
[opno
],
2758 recog_data
.operand
[eopno
]))
2763 while (--funny_match_index
>= 0)
2765 recog_data
.operand
[funny_match
[funny_match_index
].other
]
2766 = recog_data
.operand
[funny_match
[funny_match_index
].this_op
];
2770 /* For operands without < or > constraints reject side-effects. */
2771 if (recog_data
.is_asm
)
2773 for (opno
= 0; opno
< recog_data
.n_operands
; opno
++)
2774 if (MEM_P (recog_data
.operand
[opno
]))
2775 switch (GET_CODE (XEXP (recog_data
.operand
[opno
], 0)))
2783 if (strchr (recog_data
.constraints
[opno
], '<') == NULL
2784 && strchr (recog_data
.constraints
[opno
], '>')
2797 which_alternative
++;
2799 while (which_alternative
< recog_data
.n_alternatives
);
2801 which_alternative
= -1;
2802 /* If we are about to reject this, but we are not to test strictly,
2803 try a very loose test. Only return failure if it fails also. */
2805 return constrain_operands (-1);
2810 /* Return true iff OPERAND (assumed to be a REG rtx)
2811 is a hard reg in class CLASS when its regno is offset by OFFSET
2812 and changed to mode MODE.
2813 If REG occupies multiple hard regs, all of them must be in CLASS. */
2816 reg_fits_class_p (const_rtx operand
, reg_class_t cl
, int offset
,
2817 enum machine_mode mode
)
2819 unsigned int regno
= REGNO (operand
);
2824 /* Regno must not be a pseudo register. Offset may be negative. */
2825 return (HARD_REGISTER_NUM_P (regno
)
2826 && HARD_REGISTER_NUM_P (regno
+ offset
)
2827 && in_hard_reg_set_p (reg_class_contents
[(int) cl
], mode
,
2831 /* Split single instruction. Helper function for split_all_insns and
2832 split_all_insns_noflow. Return last insn in the sequence if successful,
2833 or NULL if unsuccessful. */
2836 split_insn (rtx insn
)
2838 /* Split insns here to get max fine-grain parallelism. */
2839 rtx first
= PREV_INSN (insn
);
2840 rtx last
= try_split (PATTERN (insn
), insn
, 1);
2841 rtx insn_set
, last_set
, note
;
2846 /* If the original instruction was a single set that was known to be
2847 equivalent to a constant, see if we can say the same about the last
2848 instruction in the split sequence. The two instructions must set
2849 the same destination. */
2850 insn_set
= single_set (insn
);
2853 last_set
= single_set (last
);
2854 if (last_set
&& rtx_equal_p (SET_DEST (last_set
), SET_DEST (insn_set
)))
2856 note
= find_reg_equal_equiv_note (insn
);
2857 if (note
&& CONSTANT_P (XEXP (note
, 0)))
2858 set_unique_reg_note (last
, REG_EQUAL
, XEXP (note
, 0));
2859 else if (CONSTANT_P (SET_SRC (insn_set
)))
2860 set_unique_reg_note (last
, REG_EQUAL
,
2861 copy_rtx (SET_SRC (insn_set
)));
2865 /* try_split returns the NOTE that INSN became. */
2866 SET_INSN_DELETED (insn
);
2868 /* ??? Coddle to md files that generate subregs in post-reload
2869 splitters instead of computing the proper hard register. */
2870 if (reload_completed
&& first
!= last
)
2872 first
= NEXT_INSN (first
);
2876 cleanup_subreg_operands (first
);
2879 first
= NEXT_INSN (first
);
2886 /* Split all insns in the function. If UPD_LIFE, update life info after. */
2889 split_all_insns (void)
2895 blocks
= sbitmap_alloc (last_basic_block
);
2896 bitmap_clear (blocks
);
2899 FOR_EACH_BB_REVERSE (bb
)
2902 bool finish
= false;
2904 rtl_profile_for_bb (bb
);
2905 for (insn
= BB_HEAD (bb
); !finish
; insn
= next
)
2907 /* Can't use `next_real_insn' because that might go across
2908 CODE_LABELS and short-out basic blocks. */
2909 next
= NEXT_INSN (insn
);
2910 finish
= (insn
== BB_END (bb
));
2913 rtx set
= single_set (insn
);
2915 /* Don't split no-op move insns. These should silently
2916 disappear later in final. Splitting such insns would
2917 break the code that handles LIBCALL blocks. */
2918 if (set
&& set_noop_p (set
))
2920 /* Nops get in the way while scheduling, so delete them
2921 now if register allocation has already been done. It
2922 is too risky to try to do this before register
2923 allocation, and there are unlikely to be very many
2924 nops then anyways. */
2925 if (reload_completed
)
2926 delete_insn_and_edges (insn
);
2930 if (split_insn (insn
))
2932 bitmap_set_bit (blocks
, bb
->index
);
2940 default_rtl_profile ();
2942 find_many_sub_basic_blocks (blocks
);
2944 #ifdef ENABLE_CHECKING
2945 verify_flow_info ();
2948 sbitmap_free (blocks
);
2951 /* Same as split_all_insns, but do not expect CFG to be available.
2952 Used by machine dependent reorg passes. */
2955 split_all_insns_noflow (void)
2959 for (insn
= get_insns (); insn
; insn
= next
)
2961 next
= NEXT_INSN (insn
);
2964 /* Don't split no-op move insns. These should silently
2965 disappear later in final. Splitting such insns would
2966 break the code that handles LIBCALL blocks. */
2967 rtx set
= single_set (insn
);
2968 if (set
&& set_noop_p (set
))
2970 /* Nops get in the way while scheduling, so delete them
2971 now if register allocation has already been done. It
2972 is too risky to try to do this before register
2973 allocation, and there are unlikely to be very many
2976 ??? Should we use delete_insn when the CFG isn't valid? */
2977 if (reload_completed
)
2978 delete_insn_and_edges (insn
);
2987 #ifdef HAVE_peephole2
2988 struct peep2_insn_data
2994 static struct peep2_insn_data peep2_insn_data
[MAX_INSNS_PER_PEEP2
+ 1];
2995 static int peep2_current
;
2997 static bool peep2_do_rebuild_jump_labels
;
2998 static bool peep2_do_cleanup_cfg
;
3000 /* The number of instructions available to match a peep2. */
3001 int peep2_current_count
;
3003 /* A non-insn marker indicating the last insn of the block.
3004 The live_before regset for this element is correct, indicating
3005 DF_LIVE_OUT for the block. */
3006 #define PEEP2_EOB pc_rtx
3008 /* Wrap N to fit into the peep2_insn_data buffer. */
3011 peep2_buf_position (int n
)
3013 if (n
>= MAX_INSNS_PER_PEEP2
+ 1)
3014 n
-= MAX_INSNS_PER_PEEP2
+ 1;
3018 /* Return the Nth non-note insn after `current', or return NULL_RTX if it
3019 does not exist. Used by the recognizer to find the next insn to match
3020 in a multi-insn pattern. */
3023 peep2_next_insn (int n
)
3025 gcc_assert (n
<= peep2_current_count
);
3027 n
= peep2_buf_position (peep2_current
+ n
);
3029 return peep2_insn_data
[n
].insn
;
3032 /* Return true if REGNO is dead before the Nth non-note insn
3036 peep2_regno_dead_p (int ofs
, int regno
)
3038 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
3040 ofs
= peep2_buf_position (peep2_current
+ ofs
);
3042 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3044 return ! REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
);
3047 /* Similarly for a REG. */
3050 peep2_reg_dead_p (int ofs
, rtx reg
)
3054 gcc_assert (ofs
< MAX_INSNS_PER_PEEP2
+ 1);
3056 ofs
= peep2_buf_position (peep2_current
+ ofs
);
3058 gcc_assert (peep2_insn_data
[ofs
].insn
!= NULL_RTX
);
3060 regno
= REGNO (reg
);
3061 n
= hard_regno_nregs
[regno
][GET_MODE (reg
)];
3063 if (REGNO_REG_SET_P (peep2_insn_data
[ofs
].live_before
, regno
+ n
))
3068 /* Try to find a hard register of mode MODE, matching the register class in
3069 CLASS_STR, which is available at the beginning of insn CURRENT_INSN and
3070 remains available until the end of LAST_INSN. LAST_INSN may be NULL_RTX,
3071 in which case the only condition is that the register must be available
3072 before CURRENT_INSN.
3073 Registers that already have bits set in REG_SET will not be considered.
3075 If an appropriate register is available, it will be returned and the
3076 corresponding bit(s) in REG_SET will be set; otherwise, NULL_RTX is
3080 peep2_find_free_register (int from
, int to
, const char *class_str
,
3081 enum machine_mode mode
, HARD_REG_SET
*reg_set
)
3083 static int search_ofs
;
3089 gcc_assert (from
< MAX_INSNS_PER_PEEP2
+ 1);
3090 gcc_assert (to
< MAX_INSNS_PER_PEEP2
+ 1);
3092 from
= peep2_buf_position (peep2_current
+ from
);
3093 to
= peep2_buf_position (peep2_current
+ to
);
3095 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3096 REG_SET_TO_HARD_REG_SET (live
, peep2_insn_data
[from
].live_before
);
3100 gcc_assert (peep2_insn_data
[from
].insn
!= NULL_RTX
);
3102 /* Don't use registers set or clobbered by the insn. */
3103 for (def_rec
= DF_INSN_DEFS (peep2_insn_data
[from
].insn
);
3104 *def_rec
; def_rec
++)
3105 SET_HARD_REG_BIT (live
, DF_REF_REGNO (*def_rec
));
3107 from
= peep2_buf_position (from
+ 1);
3110 cl
= (class_str
[0] == 'r' ? GENERAL_REGS
3111 : REG_CLASS_FROM_CONSTRAINT (class_str
[0], class_str
));
3113 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
3115 int raw_regno
, regno
, success
, j
;
3117 /* Distribute the free registers as much as possible. */
3118 raw_regno
= search_ofs
+ i
;
3119 if (raw_regno
>= FIRST_PSEUDO_REGISTER
)
3120 raw_regno
-= FIRST_PSEUDO_REGISTER
;
3121 #ifdef REG_ALLOC_ORDER
3122 regno
= reg_alloc_order
[raw_regno
];
3127 /* Can it support the mode we need? */
3128 if (! HARD_REGNO_MODE_OK (regno
, mode
))
3132 for (j
= 0; success
&& j
< hard_regno_nregs
[regno
][mode
]; j
++)
3134 /* Don't allocate fixed registers. */
3135 if (fixed_regs
[regno
+ j
])
3140 /* Don't allocate global registers. */
3141 if (global_regs
[regno
+ j
])
3146 /* Make sure the register is of the right class. */
3147 if (! TEST_HARD_REG_BIT (reg_class_contents
[cl
], regno
+ j
))
3152 /* And that we don't create an extra save/restore. */
3153 if (! call_used_regs
[regno
+ j
] && ! df_regs_ever_live_p (regno
+ j
))
3159 if (! targetm
.hard_regno_scratch_ok (regno
+ j
))
3165 /* And we don't clobber traceback for noreturn functions. */
3166 if ((regno
+ j
== FRAME_POINTER_REGNUM
3167 || regno
+ j
== HARD_FRAME_POINTER_REGNUM
)
3168 && (! reload_completed
|| frame_pointer_needed
))
3174 if (TEST_HARD_REG_BIT (*reg_set
, regno
+ j
)
3175 || TEST_HARD_REG_BIT (live
, regno
+ j
))
3184 add_to_hard_reg_set (reg_set
, mode
, regno
);
3186 /* Start the next search with the next register. */
3187 if (++raw_regno
>= FIRST_PSEUDO_REGISTER
)
3189 search_ofs
= raw_regno
;
3191 return gen_rtx_REG (mode
, regno
);
3199 /* Forget all currently tracked instructions, only remember current
3203 peep2_reinit_state (regset live
)
3207 /* Indicate that all slots except the last holds invalid data. */
3208 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
; ++i
)
3209 peep2_insn_data
[i
].insn
= NULL_RTX
;
3210 peep2_current_count
= 0;
3212 /* Indicate that the last slot contains live_after data. */
3213 peep2_insn_data
[MAX_INSNS_PER_PEEP2
].insn
= PEEP2_EOB
;
3214 peep2_current
= MAX_INSNS_PER_PEEP2
;
3216 COPY_REG_SET (peep2_insn_data
[MAX_INSNS_PER_PEEP2
].live_before
, live
);
3219 /* While scanning basic block BB, we found a match of length MATCH_LEN,
3220 starting at INSN. Perform the replacement, removing the old insns and
3221 replacing them with ATTEMPT. Returns the last insn emitted, or NULL
3222 if the replacement is rejected. */
3225 peep2_attempt (basic_block bb
, rtx insn
, int match_len
, rtx attempt
)
3228 rtx last
, eh_note
, as_note
, before_try
, x
;
3229 rtx old_insn
, new_insn
;
3230 bool was_call
= false;
3232 /* If we are splitting an RTX_FRAME_RELATED_P insn, do not allow it to
3233 match more than one insn, or to be split into more than one insn. */
3234 old_insn
= peep2_insn_data
[peep2_current
].insn
;
3235 if (RTX_FRAME_RELATED_P (old_insn
))
3237 bool any_note
= false;
3243 /* Look for one "active" insn. I.e. ignore any "clobber" insns that
3244 may be in the stream for the purpose of register allocation. */
3245 if (active_insn_p (attempt
))
3248 new_insn
= next_active_insn (attempt
);
3249 if (next_active_insn (new_insn
))
3252 /* We have a 1-1 replacement. Copy over any frame-related info. */
3253 RTX_FRAME_RELATED_P (new_insn
) = 1;
3255 /* Allow the backend to fill in a note during the split. */
3256 for (note
= REG_NOTES (new_insn
); note
; note
= XEXP (note
, 1))
3257 switch (REG_NOTE_KIND (note
))
3259 case REG_FRAME_RELATED_EXPR
:
3260 case REG_CFA_DEF_CFA
:
3261 case REG_CFA_ADJUST_CFA
:
3262 case REG_CFA_OFFSET
:
3263 case REG_CFA_REGISTER
:
3264 case REG_CFA_EXPRESSION
:
3265 case REG_CFA_RESTORE
:
3266 case REG_CFA_SET_VDRAP
:
3273 /* If the backend didn't supply a note, copy one over. */
3275 for (note
= REG_NOTES (old_insn
); note
; note
= XEXP (note
, 1))
3276 switch (REG_NOTE_KIND (note
))
3278 case REG_FRAME_RELATED_EXPR
:
3279 case REG_CFA_DEF_CFA
:
3280 case REG_CFA_ADJUST_CFA
:
3281 case REG_CFA_OFFSET
:
3282 case REG_CFA_REGISTER
:
3283 case REG_CFA_EXPRESSION
:
3284 case REG_CFA_RESTORE
:
3285 case REG_CFA_SET_VDRAP
:
3286 add_reg_note (new_insn
, REG_NOTE_KIND (note
), XEXP (note
, 0));
3293 /* If there still isn't a note, make sure the unwind info sees the
3294 same expression as before the split. */
3297 rtx old_set
, new_set
;
3299 /* The old insn had better have been simple, or annotated. */
3300 old_set
= single_set (old_insn
);
3301 gcc_assert (old_set
!= NULL
);
3303 new_set
= single_set (new_insn
);
3304 if (!new_set
|| !rtx_equal_p (new_set
, old_set
))
3305 add_reg_note (new_insn
, REG_FRAME_RELATED_EXPR
, old_set
);
3308 /* Copy prologue/epilogue status. This is required in order to keep
3309 proper placement of EPILOGUE_BEG and the DW_CFA_remember_state. */
3310 maybe_copy_prologue_epilogue_insn (old_insn
, new_insn
);
3313 /* If we are splitting a CALL_INSN, look for the CALL_INSN
3314 in SEQ and copy our CALL_INSN_FUNCTION_USAGE and other
3315 cfg-related call notes. */
3316 for (i
= 0; i
<= match_len
; ++i
)
3321 j
= peep2_buf_position (peep2_current
+ i
);
3322 old_insn
= peep2_insn_data
[j
].insn
;
3323 if (!CALL_P (old_insn
))
3328 while (new_insn
!= NULL_RTX
)
3330 if (CALL_P (new_insn
))
3332 new_insn
= NEXT_INSN (new_insn
);
3335 gcc_assert (new_insn
!= NULL_RTX
);
3337 CALL_INSN_FUNCTION_USAGE (new_insn
)
3338 = CALL_INSN_FUNCTION_USAGE (old_insn
);
3340 for (note
= REG_NOTES (old_insn
);
3342 note
= XEXP (note
, 1))
3343 switch (REG_NOTE_KIND (note
))
3348 add_reg_note (new_insn
, REG_NOTE_KIND (note
),
3352 /* Discard all other reg notes. */
3356 /* Croak if there is another call in the sequence. */
3357 while (++i
<= match_len
)
3359 j
= peep2_buf_position (peep2_current
+ i
);
3360 old_insn
= peep2_insn_data
[j
].insn
;
3361 gcc_assert (!CALL_P (old_insn
));
3366 /* If we matched any instruction that had a REG_ARGS_SIZE, then
3367 move those notes over to the new sequence. */
3369 for (i
= match_len
; i
>= 0; --i
)
3371 int j
= peep2_buf_position (peep2_current
+ i
);
3372 old_insn
= peep2_insn_data
[j
].insn
;
3374 as_note
= find_reg_note (old_insn
, REG_ARGS_SIZE
, NULL
);
3379 i
= peep2_buf_position (peep2_current
+ match_len
);
3380 eh_note
= find_reg_note (peep2_insn_data
[i
].insn
, REG_EH_REGION
, NULL_RTX
);
3382 /* Replace the old sequence with the new. */
3383 last
= emit_insn_after_setloc (attempt
,
3384 peep2_insn_data
[i
].insn
,
3385 INSN_LOCATION (peep2_insn_data
[i
].insn
));
3386 before_try
= PREV_INSN (insn
);
3387 delete_insn_chain (insn
, peep2_insn_data
[i
].insn
, false);
3389 /* Re-insert the EH_REGION notes. */
3390 if (eh_note
|| (was_call
&& nonlocal_goto_handler_labels
))
3395 FOR_EACH_EDGE (eh_edge
, ei
, bb
->succs
)
3396 if (eh_edge
->flags
& (EDGE_EH
| EDGE_ABNORMAL_CALL
))
3400 copy_reg_eh_region_note_backward (eh_note
, last
, before_try
);
3403 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3404 if (x
!= BB_END (bb
)
3405 && (can_throw_internal (x
)
3406 || can_nonlocal_goto (x
)))
3411 nfte
= split_block (bb
, x
);
3412 flags
= (eh_edge
->flags
3413 & (EDGE_EH
| EDGE_ABNORMAL
));
3415 flags
|= EDGE_ABNORMAL_CALL
;
3416 nehe
= make_edge (nfte
->src
, eh_edge
->dest
,
3419 nehe
->probability
= eh_edge
->probability
;
3421 = REG_BR_PROB_BASE
- nehe
->probability
;
3423 peep2_do_cleanup_cfg
|= purge_dead_edges (nfte
->dest
);
3428 /* Converting possibly trapping insn to non-trapping is
3429 possible. Zap dummy outgoing edges. */
3430 peep2_do_cleanup_cfg
|= purge_dead_edges (bb
);
3433 /* Re-insert the ARGS_SIZE notes. */
3435 fixup_args_size_notes (before_try
, last
, INTVAL (XEXP (as_note
, 0)));
3437 /* If we generated a jump instruction, it won't have
3438 JUMP_LABEL set. Recompute after we're done. */
3439 for (x
= last
; x
!= before_try
; x
= PREV_INSN (x
))
3442 peep2_do_rebuild_jump_labels
= true;
3449 /* After performing a replacement in basic block BB, fix up the life
3450 information in our buffer. LAST is the last of the insns that we
3451 emitted as a replacement. PREV is the insn before the start of
3452 the replacement. MATCH_LEN is the number of instructions that were
3453 matched, and which now need to be replaced in the buffer. */
3456 peep2_update_life (basic_block bb
, int match_len
, rtx last
, rtx prev
)
3458 int i
= peep2_buf_position (peep2_current
+ match_len
+ 1);
3462 INIT_REG_SET (&live
);
3463 COPY_REG_SET (&live
, peep2_insn_data
[i
].live_before
);
3465 gcc_assert (peep2_current_count
>= match_len
+ 1);
3466 peep2_current_count
-= match_len
+ 1;
3474 if (peep2_current_count
< MAX_INSNS_PER_PEEP2
)
3476 peep2_current_count
++;
3478 i
= MAX_INSNS_PER_PEEP2
;
3479 peep2_insn_data
[i
].insn
= x
;
3480 df_simulate_one_insn_backwards (bb
, x
, &live
);
3481 COPY_REG_SET (peep2_insn_data
[i
].live_before
, &live
);
3487 CLEAR_REG_SET (&live
);
3492 /* Add INSN, which is in BB, at the end of the peep2 insn buffer if possible.
3493 Return true if we added it, false otherwise. The caller will try to match
3494 peepholes against the buffer if we return false; otherwise it will try to
3495 add more instructions to the buffer. */
3498 peep2_fill_buffer (basic_block bb
, rtx insn
, regset live
)
3502 /* Once we have filled the maximum number of insns the buffer can hold,
3503 allow the caller to match the insns against peepholes. We wait until
3504 the buffer is full in case the target has similar peepholes of different
3505 length; we always want to match the longest if possible. */
3506 if (peep2_current_count
== MAX_INSNS_PER_PEEP2
)
3509 /* If an insn has RTX_FRAME_RELATED_P set, do not allow it to be matched with
3510 any other pattern, lest it change the semantics of the frame info. */
3511 if (RTX_FRAME_RELATED_P (insn
))
3513 /* Let the buffer drain first. */
3514 if (peep2_current_count
> 0)
3516 /* Now the insn will be the only thing in the buffer. */
3519 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3520 peep2_insn_data
[pos
].insn
= insn
;
3521 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3522 peep2_current_count
++;
3524 df_simulate_one_insn_forwards (bb
, insn
, live
);
3528 /* Perform the peephole2 optimization pass. */
3531 peephole2_optimize (void)
3538 peep2_do_cleanup_cfg
= false;
3539 peep2_do_rebuild_jump_labels
= false;
3541 df_set_flags (DF_LR_RUN_DCE
);
3542 df_note_add_problem ();
3545 /* Initialize the regsets we're going to use. */
3546 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3547 peep2_insn_data
[i
].live_before
= BITMAP_ALLOC (®_obstack
);
3548 live
= BITMAP_ALLOC (®_obstack
);
3550 FOR_EACH_BB_REVERSE (bb
)
3552 bool past_end
= false;
3555 rtl_profile_for_bb (bb
);
3557 /* Start up propagation. */
3558 bitmap_copy (live
, DF_LR_IN (bb
));
3559 df_simulate_initialize_forwards (bb
, live
);
3560 peep2_reinit_state (live
);
3562 insn
= BB_HEAD (bb
);
3568 if (!past_end
&& !NONDEBUG_INSN_P (insn
))
3571 insn
= NEXT_INSN (insn
);
3572 if (insn
== NEXT_INSN (BB_END (bb
)))
3576 if (!past_end
&& peep2_fill_buffer (bb
, insn
, live
))
3579 /* If we did not fill an empty buffer, it signals the end of the
3581 if (peep2_current_count
== 0)
3584 /* The buffer filled to the current maximum, so try to match. */
3586 pos
= peep2_buf_position (peep2_current
+ peep2_current_count
);
3587 peep2_insn_data
[pos
].insn
= PEEP2_EOB
;
3588 COPY_REG_SET (peep2_insn_data
[pos
].live_before
, live
);
3590 /* Match the peephole. */
3591 head
= peep2_insn_data
[peep2_current
].insn
;
3592 attempt
= peephole2_insns (PATTERN (head
), head
, &match_len
);
3593 if (attempt
!= NULL
)
3595 rtx last
= peep2_attempt (bb
, head
, match_len
, attempt
);
3598 peep2_update_life (bb
, match_len
, last
, PREV_INSN (attempt
));
3603 /* No match: advance the buffer by one insn. */
3604 peep2_current
= peep2_buf_position (peep2_current
+ 1);
3605 peep2_current_count
--;
3609 default_rtl_profile ();
3610 for (i
= 0; i
< MAX_INSNS_PER_PEEP2
+ 1; ++i
)
3611 BITMAP_FREE (peep2_insn_data
[i
].live_before
);
3613 if (peep2_do_rebuild_jump_labels
)
3614 rebuild_jump_labels (get_insns ());
3616 #endif /* HAVE_peephole2 */
3618 /* Common predicates for use with define_bypass. */
3620 /* True if the dependency between OUT_INSN and IN_INSN is on the store
3621 data not the address operand(s) of the store. IN_INSN and OUT_INSN
3622 must be either a single_set or a PARALLEL with SETs inside. */
3625 store_data_bypass_p (rtx out_insn
, rtx in_insn
)
3627 rtx out_set
, in_set
;
3628 rtx out_pat
, in_pat
;
3629 rtx out_exp
, in_exp
;
3632 in_set
= single_set (in_insn
);
3635 if (!MEM_P (SET_DEST (in_set
)))
3638 out_set
= single_set (out_insn
);
3641 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_set
)))
3646 out_pat
= PATTERN (out_insn
);
3648 if (GET_CODE (out_pat
) != PARALLEL
)
3651 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3653 out_exp
= XVECEXP (out_pat
, 0, i
);
3655 if (GET_CODE (out_exp
) == CLOBBER
)
3658 gcc_assert (GET_CODE (out_exp
) == SET
);
3660 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_set
)))
3667 in_pat
= PATTERN (in_insn
);
3668 gcc_assert (GET_CODE (in_pat
) == PARALLEL
);
3670 for (i
= 0; i
< XVECLEN (in_pat
, 0); i
++)
3672 in_exp
= XVECEXP (in_pat
, 0, i
);
3674 if (GET_CODE (in_exp
) == CLOBBER
)
3677 gcc_assert (GET_CODE (in_exp
) == SET
);
3679 if (!MEM_P (SET_DEST (in_exp
)))
3682 out_set
= single_set (out_insn
);
3685 if (reg_mentioned_p (SET_DEST (out_set
), SET_DEST (in_exp
)))
3690 out_pat
= PATTERN (out_insn
);
3691 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3693 for (j
= 0; j
< XVECLEN (out_pat
, 0); j
++)
3695 out_exp
= XVECEXP (out_pat
, 0, j
);
3697 if (GET_CODE (out_exp
) == CLOBBER
)
3700 gcc_assert (GET_CODE (out_exp
) == SET
);
3702 if (reg_mentioned_p (SET_DEST (out_exp
), SET_DEST (in_exp
)))
3712 /* True if the dependency between OUT_INSN and IN_INSN is in the IF_THEN_ELSE
3713 condition, and not the THEN or ELSE branch. OUT_INSN may be either a single
3714 or multiple set; IN_INSN should be single_set for truth, but for convenience
3715 of insn categorization may be any JUMP or CALL insn. */
3718 if_test_bypass_p (rtx out_insn
, rtx in_insn
)
3720 rtx out_set
, in_set
;
3722 in_set
= single_set (in_insn
);
3725 gcc_assert (JUMP_P (in_insn
) || CALL_P (in_insn
));
3729 if (GET_CODE (SET_SRC (in_set
)) != IF_THEN_ELSE
)
3731 in_set
= SET_SRC (in_set
);
3733 out_set
= single_set (out_insn
);
3736 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3737 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3745 out_pat
= PATTERN (out_insn
);
3746 gcc_assert (GET_CODE (out_pat
) == PARALLEL
);
3748 for (i
= 0; i
< XVECLEN (out_pat
, 0); i
++)
3750 rtx exp
= XVECEXP (out_pat
, 0, i
);
3752 if (GET_CODE (exp
) == CLOBBER
)
3755 gcc_assert (GET_CODE (exp
) == SET
);
3757 if (reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 1))
3758 || reg_mentioned_p (SET_DEST (out_set
), XEXP (in_set
, 2)))
3767 gate_handle_peephole2 (void)
3769 return (optimize
> 0 && flag_peephole2
);
3773 rest_of_handle_peephole2 (void)
3775 #ifdef HAVE_peephole2
3776 peephole2_optimize ();
3783 const pass_data pass_data_peephole2
=
3785 RTL_PASS
, /* type */
3786 "peephole2", /* name */
3787 OPTGROUP_NONE
, /* optinfo_flags */
3788 true, /* has_gate */
3789 true, /* has_execute */
3790 TV_PEEPHOLE2
, /* tv_id */
3791 0, /* properties_required */
3792 0, /* properties_provided */
3793 0, /* properties_destroyed */
3794 0, /* todo_flags_start */
3795 ( TODO_df_finish
| TODO_verify_rtl_sharing
| 0 ), /* todo_flags_finish */
3798 class pass_peephole2
: public rtl_opt_pass
3801 pass_peephole2(gcc::context
*ctxt
)
3802 : rtl_opt_pass(pass_data_peephole2
, ctxt
)
3805 /* opt_pass methods: */
3806 /* The epiphany backend creates a second instance of this pass, so we need
3808 opt_pass
* clone () { return new pass_peephole2 (ctxt_
); }
3809 bool gate () { return gate_handle_peephole2 (); }
3810 unsigned int execute () { return rest_of_handle_peephole2 (); }
3812 }; // class pass_peephole2
3817 make_pass_peephole2 (gcc::context
*ctxt
)
3819 return new pass_peephole2 (ctxt
);
3823 rest_of_handle_split_all_insns (void)
3831 const pass_data pass_data_split_all_insns
=
3833 RTL_PASS
, /* type */
3834 "split1", /* name */
3835 OPTGROUP_NONE
, /* optinfo_flags */
3836 false, /* has_gate */
3837 true, /* has_execute */
3838 TV_NONE
, /* tv_id */
3839 0, /* properties_required */
3840 0, /* properties_provided */
3841 0, /* properties_destroyed */
3842 0, /* todo_flags_start */
3843 0, /* todo_flags_finish */
3846 class pass_split_all_insns
: public rtl_opt_pass
3849 pass_split_all_insns(gcc::context
*ctxt
)
3850 : rtl_opt_pass(pass_data_split_all_insns
, ctxt
)
3853 /* opt_pass methods: */
3854 /* The epiphany backend creates a second instance of this pass, so
3855 we need a clone method. */
3856 opt_pass
* clone () { return new pass_split_all_insns (ctxt_
); }
3857 unsigned int execute () { return rest_of_handle_split_all_insns (); }
3859 }; // class pass_split_all_insns
3864 make_pass_split_all_insns (gcc::context
*ctxt
)
3866 return new pass_split_all_insns (ctxt
);
3870 rest_of_handle_split_after_reload (void)
3872 /* If optimizing, then go ahead and split insns now. */
3882 const pass_data pass_data_split_after_reload
=
3884 RTL_PASS
, /* type */
3885 "split2", /* name */
3886 OPTGROUP_NONE
, /* optinfo_flags */
3887 false, /* has_gate */
3888 true, /* has_execute */
3889 TV_NONE
, /* tv_id */
3890 0, /* properties_required */
3891 0, /* properties_provided */
3892 0, /* properties_destroyed */
3893 0, /* todo_flags_start */
3894 0, /* todo_flags_finish */
3897 class pass_split_after_reload
: public rtl_opt_pass
3900 pass_split_after_reload(gcc::context
*ctxt
)
3901 : rtl_opt_pass(pass_data_split_after_reload
, ctxt
)
3904 /* opt_pass methods: */
3905 unsigned int execute () { return rest_of_handle_split_after_reload (); }
3907 }; // class pass_split_after_reload
3912 make_pass_split_after_reload (gcc::context
*ctxt
)
3914 return new pass_split_after_reload (ctxt
);
3918 gate_handle_split_before_regstack (void)
3920 #if HAVE_ATTR_length && defined (STACK_REGS)
3921 /* If flow2 creates new instructions which need splitting
3922 and scheduling after reload is not done, they might not be
3923 split until final which doesn't allow splitting
3924 if HAVE_ATTR_length. */
3925 # ifdef INSN_SCHEDULING
3926 return (optimize
&& !flag_schedule_insns_after_reload
);
3936 rest_of_handle_split_before_regstack (void)
3944 const pass_data pass_data_split_before_regstack
=
3946 RTL_PASS
, /* type */
3947 "split3", /* name */
3948 OPTGROUP_NONE
, /* optinfo_flags */
3949 true, /* has_gate */
3950 true, /* has_execute */
3951 TV_NONE
, /* tv_id */
3952 0, /* properties_required */
3953 0, /* properties_provided */
3954 0, /* properties_destroyed */
3955 0, /* todo_flags_start */
3956 0, /* todo_flags_finish */
3959 class pass_split_before_regstack
: public rtl_opt_pass
3962 pass_split_before_regstack(gcc::context
*ctxt
)
3963 : rtl_opt_pass(pass_data_split_before_regstack
, ctxt
)
3966 /* opt_pass methods: */
3967 bool gate () { return gate_handle_split_before_regstack (); }
3968 unsigned int execute () {
3969 return rest_of_handle_split_before_regstack ();
3972 }; // class pass_split_before_regstack
3977 make_pass_split_before_regstack (gcc::context
*ctxt
)
3979 return new pass_split_before_regstack (ctxt
);
3983 gate_handle_split_before_sched2 (void)
3985 #ifdef INSN_SCHEDULING
3986 return optimize
> 0 && flag_schedule_insns_after_reload
;
3993 rest_of_handle_split_before_sched2 (void)
3995 #ifdef INSN_SCHEDULING
4003 const pass_data pass_data_split_before_sched2
=
4005 RTL_PASS
, /* type */
4006 "split4", /* name */
4007 OPTGROUP_NONE
, /* optinfo_flags */
4008 true, /* has_gate */
4009 true, /* has_execute */
4010 TV_NONE
, /* tv_id */
4011 0, /* properties_required */
4012 0, /* properties_provided */
4013 0, /* properties_destroyed */
4014 0, /* todo_flags_start */
4015 TODO_verify_flow
, /* todo_flags_finish */
4018 class pass_split_before_sched2
: public rtl_opt_pass
4021 pass_split_before_sched2(gcc::context
*ctxt
)
4022 : rtl_opt_pass(pass_data_split_before_sched2
, ctxt
)
4025 /* opt_pass methods: */
4026 bool gate () { return gate_handle_split_before_sched2 (); }
4027 unsigned int execute () { return rest_of_handle_split_before_sched2 (); }
4029 }; // class pass_split_before_sched2
4034 make_pass_split_before_sched2 (gcc::context
*ctxt
)
4036 return new pass_split_before_sched2 (ctxt
);
4039 /* The placement of the splitting that we do for shorten_branches
4040 depends on whether regstack is used by the target or not. */
4042 gate_do_final_split (void)
4044 #if HAVE_ATTR_length && !defined (STACK_REGS)
4053 const pass_data pass_data_split_for_shorten_branches
=
4055 RTL_PASS
, /* type */
4056 "split5", /* name */
4057 OPTGROUP_NONE
, /* optinfo_flags */
4058 true, /* has_gate */
4059 true, /* has_execute */
4060 TV_NONE
, /* tv_id */
4061 0, /* properties_required */
4062 0, /* properties_provided */
4063 0, /* properties_destroyed */
4064 0, /* todo_flags_start */
4065 TODO_verify_rtl_sharing
, /* todo_flags_finish */
4068 class pass_split_for_shorten_branches
: public rtl_opt_pass
4071 pass_split_for_shorten_branches(gcc::context
*ctxt
)
4072 : rtl_opt_pass(pass_data_split_for_shorten_branches
, ctxt
)
4075 /* opt_pass methods: */
4076 bool gate () { return gate_do_final_split (); }
4077 unsigned int execute () { return split_all_insns_noflow (); }
4079 }; // class pass_split_for_shorten_branches
4084 make_pass_split_for_shorten_branches (gcc::context
*ctxt
)
4086 return new pass_split_for_shorten_branches (ctxt
);