1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
47 #include "coretypes.h"
54 #include "insn-config.h"
55 #include "insn-attr.h"
57 #include "conditions.h"
59 #include "hard-reg-set.h"
63 #include "rtl-error.h"
64 #include "toplev.h" /* exact_log2, floor_log2 */
67 #include "basic-block.h"
69 #include "targhooks.h"
72 #include "tree-pass.h"
73 #include "tree-flow.h"
80 #include "tree-pretty-print.h" /* for dump_function_header */
82 #ifdef XCOFF_DEBUGGING_INFO
83 #include "xcoffout.h" /* Needed for external data
84 declarations for e.g. AIX 4.x. */
87 #include "dwarf2out.h"
89 #ifdef DBX_DEBUGGING_INFO
93 #ifdef SDB_DEBUGGING_INFO
97 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
98 So define a null default for it to save conditionalization later. */
99 #ifndef CC_STATUS_INIT
100 #define CC_STATUS_INIT
103 /* Is the given character a logical line separator for the assembler? */
104 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
105 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
108 #ifndef JUMP_TABLES_IN_TEXT_SECTION
109 #define JUMP_TABLES_IN_TEXT_SECTION 0
112 /* Bitflags used by final_scan_insn. */
115 #define SEEN_EMITTED 4
117 /* Last insn processed by final_scan_insn. */
118 static rtx debug_insn
;
119 rtx current_output_insn
;
121 /* Line number of last NOTE. */
122 static int last_linenum
;
124 /* Last discriminator written to assembly. */
125 static int last_discriminator
;
127 /* Discriminator of current block. */
128 static int discriminator
;
130 /* Highest line number in current block. */
131 static int high_block_linenum
;
133 /* Likewise for function. */
134 static int high_function_linenum
;
136 /* Filename of last NOTE. */
137 static const char *last_filename
;
139 /* Override filename and line number. */
140 static const char *override_filename
;
141 static int override_linenum
;
143 /* Whether to force emission of a line note before the next insn. */
144 static bool force_source_line
= false;
146 extern const int length_unit_log
; /* This is defined in insn-attrtab.c. */
148 /* Nonzero while outputting an `asm' with operands.
149 This means that inconsistencies are the user's fault, so don't die.
150 The precise value is the insn being output, to pass to error_for_asm. */
151 rtx this_is_asm_operands
;
153 /* Number of operands of this insn, for an `asm' with operands. */
154 static unsigned int insn_noperands
;
156 /* Compare optimization flag. */
158 static rtx last_ignored_compare
= 0;
160 /* Assign a unique number to each insn that is output.
161 This can be used to generate unique local labels. */
163 static int insn_counter
= 0;
166 /* This variable contains machine-dependent flags (defined in tm.h)
167 set and examined by output routines
168 that describe how to interpret the condition codes properly. */
172 /* During output of an insn, this contains a copy of cc_status
173 from before the insn. */
175 CC_STATUS cc_prev_status
;
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
180 static int block_depth
;
182 /* Nonzero if have enabled APP processing of our assembler output. */
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
191 #ifdef ASSEMBLER_DIALECT
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number
;
197 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
198 rtx current_insn_predicate
;
200 /* True if printing into -fdump-final-insns= dump. */
201 bool final_insns_dump_p
;
203 /* True if profile_function should be called, but hasn't been called yet. */
204 static bool need_profile_function
;
206 static int asm_insn_count (rtx
);
207 static void profile_function (FILE *);
208 static void profile_after_prologue (FILE *);
209 static bool notice_source_line (rtx
, bool *);
210 static rtx
walk_alter_subreg (rtx
*, bool *);
211 static void output_asm_name (void);
212 static void output_alternate_entry_point (FILE *, rtx
);
213 static tree
get_mem_expr_from_op (rtx
, int *);
214 static void output_asm_operand_names (rtx
*, int *, int);
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs (rtx
);
219 static int alter_cond (rtx
);
221 #ifndef ADDR_VEC_ALIGN
222 static int final_addr_vec_align (rtx
);
224 static int align_fuzz (rtx
, rtx
, int, unsigned);
226 /* Initialize data in final at the beginning of a compilation. */
229 init_final (const char *filename ATTRIBUTE_UNUSED
)
234 #ifdef ASSEMBLER_DIALECT
235 dialect_number
= ASSEMBLER_DIALECT
;
239 /* Default target function prologue and epilogue assembler output.
241 If not overridden for epilogue code, then the function body itself
242 contains return instructions wherever needed. */
244 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED
,
245 HOST_WIDE_INT size ATTRIBUTE_UNUSED
)
250 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED
,
251 tree decl ATTRIBUTE_UNUSED
,
252 bool new_is_cold ATTRIBUTE_UNUSED
)
256 /* Default target hook that outputs nothing to a stream. */
258 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED
)
262 /* Enable APP processing of subsequent output.
263 Used before the output from an `asm' statement. */
270 fputs (ASM_APP_ON
, asm_out_file
);
275 /* Disable APP processing of subsequent output.
276 Called from varasm.c before most kinds of output. */
283 fputs (ASM_APP_OFF
, asm_out_file
);
288 /* Return the number of slots filled in the current
289 delayed branch sequence (we don't count the insn needing the
290 delay slot). Zero if not in a delayed branch sequence. */
294 dbr_sequence_length (void)
296 if (final_sequence
!= 0)
297 return XVECLEN (final_sequence
, 0) - 1;
303 /* The next two pages contain routines used to compute the length of an insn
304 and to shorten branches. */
306 /* Arrays for insn lengths, and addresses. The latter is referenced by
307 `insn_current_length'. */
309 static int *insn_lengths
;
311 vec
<int> insn_addresses_
;
313 /* Max uid for which the above arrays are valid. */
314 static int insn_lengths_max_uid
;
316 /* Address of insn being processed. Used by `insn_current_length'. */
317 int insn_current_address
;
319 /* Address of insn being processed in previous iteration. */
320 int insn_last_address
;
322 /* known invariant alignment of insn being processed. */
323 int insn_current_align
;
325 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
326 gives the next following alignment insn that increases the known
327 alignment, or NULL_RTX if there is no such insn.
328 For any alignment obtained this way, we can again index uid_align with
329 its uid to obtain the next following align that in turn increases the
330 alignment, till we reach NULL_RTX; the sequence obtained this way
331 for each insn we'll call the alignment chain of this insn in the following
334 struct label_alignment
340 static rtx
*uid_align
;
341 static int *uid_shuid
;
342 static struct label_alignment
*label_align
;
344 /* Indicate that branch shortening hasn't yet been done. */
347 init_insn_lengths (void)
358 insn_lengths_max_uid
= 0;
360 if (HAVE_ATTR_length
)
361 INSN_ADDRESSES_FREE ();
369 /* Obtain the current length of an insn. If branch shortening has been done,
370 get its actual length. Otherwise, use FALLBACK_FN to calculate the
373 get_attr_length_1 (rtx insn
, int (*fallback_fn
) (rtx
))
379 if (!HAVE_ATTR_length
)
382 if (insn_lengths_max_uid
> INSN_UID (insn
))
383 return insn_lengths
[INSN_UID (insn
)];
385 switch (GET_CODE (insn
))
395 length
= fallback_fn (insn
);
399 body
= PATTERN (insn
);
400 if (GET_CODE (body
) == USE
|| GET_CODE (body
) == CLOBBER
)
403 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
404 length
= asm_insn_count (body
) * fallback_fn (insn
);
405 else if (GET_CODE (body
) == SEQUENCE
)
406 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
407 length
+= get_attr_length_1 (XVECEXP (body
, 0, i
), fallback_fn
);
409 length
= fallback_fn (insn
);
416 #ifdef ADJUST_INSN_LENGTH
417 ADJUST_INSN_LENGTH (insn
, length
);
422 /* Obtain the current length of an insn. If branch shortening has been done,
423 get its actual length. Otherwise, get its maximum length. */
425 get_attr_length (rtx insn
)
427 return get_attr_length_1 (insn
, insn_default_length
);
430 /* Obtain the current length of an insn. If branch shortening has been done,
431 get its actual length. Otherwise, get its minimum length. */
433 get_attr_min_length (rtx insn
)
435 return get_attr_length_1 (insn
, insn_min_length
);
438 /* Code to handle alignment inside shorten_branches. */
440 /* Here is an explanation how the algorithm in align_fuzz can give
443 Call a sequence of instructions beginning with alignment point X
444 and continuing until the next alignment point `block X'. When `X'
445 is used in an expression, it means the alignment value of the
448 Call the distance between the start of the first insn of block X, and
449 the end of the last insn of block X `IX', for the `inner size of X'.
450 This is clearly the sum of the instruction lengths.
452 Likewise with the next alignment-delimited block following X, which we
455 Call the distance between the start of the first insn of block X, and
456 the start of the first insn of block Y `OX', for the `outer size of X'.
458 The estimated padding is then OX - IX.
460 OX can be safely estimated as
465 OX = round_up(IX, X) + Y - X
467 Clearly est(IX) >= real(IX), because that only depends on the
468 instruction lengths, and those being overestimated is a given.
470 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
471 we needn't worry about that when thinking about OX.
473 When X >= Y, the alignment provided by Y adds no uncertainty factor
474 for branch ranges starting before X, so we can just round what we have.
475 But when X < Y, we don't know anything about the, so to speak,
476 `middle bits', so we have to assume the worst when aligning up from an
477 address mod X to one mod Y, which is Y - X. */
480 #define LABEL_ALIGN(LABEL) align_labels_log
484 #define LOOP_ALIGN(LABEL) align_loops_log
487 #ifndef LABEL_ALIGN_AFTER_BARRIER
488 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
492 #define JUMP_ALIGN(LABEL) align_jumps_log
496 default_label_align_after_barrier_max_skip (rtx insn ATTRIBUTE_UNUSED
)
502 default_loop_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
504 return align_loops_max_skip
;
508 default_label_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
510 return align_labels_max_skip
;
514 default_jump_align_max_skip (rtx insn ATTRIBUTE_UNUSED
)
516 return align_jumps_max_skip
;
519 #ifndef ADDR_VEC_ALIGN
521 final_addr_vec_align (rtx addr_vec
)
523 int align
= GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec
)));
525 if (align
> BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
)
526 align
= BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
;
527 return exact_log2 (align
);
531 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
534 #ifndef INSN_LENGTH_ALIGNMENT
535 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
538 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
540 static int min_labelno
, max_labelno
;
542 #define LABEL_TO_ALIGNMENT(LABEL) \
543 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
545 #define LABEL_TO_MAX_SKIP(LABEL) \
546 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
548 /* For the benefit of port specific code do this also as a function. */
551 label_to_alignment (rtx label
)
553 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
554 return LABEL_TO_ALIGNMENT (label
);
559 label_to_max_skip (rtx label
)
561 if (CODE_LABEL_NUMBER (label
) <= max_labelno
)
562 return LABEL_TO_MAX_SKIP (label
);
566 /* The differences in addresses
567 between a branch and its target might grow or shrink depending on
568 the alignment the start insn of the range (the branch for a forward
569 branch or the label for a backward branch) starts out on; if these
570 differences are used naively, they can even oscillate infinitely.
571 We therefore want to compute a 'worst case' address difference that
572 is independent of the alignment the start insn of the range end
573 up on, and that is at least as large as the actual difference.
574 The function align_fuzz calculates the amount we have to add to the
575 naively computed difference, by traversing the part of the alignment
576 chain of the start insn of the range that is in front of the end insn
577 of the range, and considering for each alignment the maximum amount
578 that it might contribute to a size increase.
580 For casesi tables, we also want to know worst case minimum amounts of
581 address difference, in case a machine description wants to introduce
582 some common offset that is added to all offsets in a table.
583 For this purpose, align_fuzz with a growth argument of 0 computes the
584 appropriate adjustment. */
586 /* Compute the maximum delta by which the difference of the addresses of
587 START and END might grow / shrink due to a different address for start
588 which changes the size of alignment insns between START and END.
589 KNOWN_ALIGN_LOG is the alignment known for START.
590 GROWTH should be ~0 if the objective is to compute potential code size
591 increase, and 0 if the objective is to compute potential shrink.
592 The return value is undefined for any other value of GROWTH. */
595 align_fuzz (rtx start
, rtx end
, int known_align_log
, unsigned int growth
)
597 int uid
= INSN_UID (start
);
599 int known_align
= 1 << known_align_log
;
600 int end_shuid
= INSN_SHUID (end
);
603 for (align_label
= uid_align
[uid
]; align_label
; align_label
= uid_align
[uid
])
605 int align_addr
, new_align
;
607 uid
= INSN_UID (align_label
);
608 align_addr
= INSN_ADDRESSES (uid
) - insn_lengths
[uid
];
609 if (uid_shuid
[uid
] > end_shuid
)
611 known_align_log
= LABEL_TO_ALIGNMENT (align_label
);
612 new_align
= 1 << known_align_log
;
613 if (new_align
< known_align
)
615 fuzz
+= (-align_addr
^ growth
) & (new_align
- known_align
);
616 known_align
= new_align
;
621 /* Compute a worst-case reference address of a branch so that it
622 can be safely used in the presence of aligned labels. Since the
623 size of the branch itself is unknown, the size of the branch is
624 not included in the range. I.e. for a forward branch, the reference
625 address is the end address of the branch as known from the previous
626 branch shortening pass, minus a value to account for possible size
627 increase due to alignment. For a backward branch, it is the start
628 address of the branch as known from the current pass, plus a value
629 to account for possible size increase due to alignment.
630 NB.: Therefore, the maximum offset allowed for backward branches needs
631 to exclude the branch size. */
634 insn_current_reference_address (rtx branch
)
639 if (! INSN_ADDRESSES_SET_P ())
642 seq
= NEXT_INSN (PREV_INSN (branch
));
643 seq_uid
= INSN_UID (seq
);
644 if (!JUMP_P (branch
))
645 /* This can happen for example on the PA; the objective is to know the
646 offset to address something in front of the start of the function.
647 Thus, we can treat it like a backward branch.
648 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
649 any alignment we'd encounter, so we skip the call to align_fuzz. */
650 return insn_current_address
;
651 dest
= JUMP_LABEL (branch
);
653 /* BRANCH has no proper alignment chain set, so use SEQ.
654 BRANCH also has no INSN_SHUID. */
655 if (INSN_SHUID (seq
) < INSN_SHUID (dest
))
657 /* Forward branch. */
658 return (insn_last_address
+ insn_lengths
[seq_uid
]
659 - align_fuzz (seq
, dest
, length_unit_log
, ~0));
663 /* Backward branch. */
664 return (insn_current_address
665 + align_fuzz (dest
, seq
, length_unit_log
, ~0));
669 /* Compute branch alignments based on frequency information in the
673 compute_alignments (void)
675 int log
, max_skip
, max_log
;
678 int freq_threshold
= 0;
686 max_labelno
= max_label_num ();
687 min_labelno
= get_first_label_num ();
688 label_align
= XCNEWVEC (struct label_alignment
, max_labelno
- min_labelno
+ 1);
690 /* If not optimizing or optimizing for size, don't assign any alignments. */
691 if (! optimize
|| optimize_function_for_size_p (cfun
))
696 dump_reg_info (dump_file
);
697 dump_flow_info (dump_file
, TDF_DETAILS
);
698 flow_loops_dump (dump_file
, NULL
, 1);
700 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
702 if (bb
->frequency
> freq_max
)
703 freq_max
= bb
->frequency
;
704 freq_threshold
= freq_max
/ PARAM_VALUE (PARAM_ALIGN_THRESHOLD
);
707 fprintf(dump_file
, "freq_max: %i\n",freq_max
);
710 rtx label
= BB_HEAD (bb
);
711 int fallthru_frequency
= 0, branch_frequency
= 0, has_fallthru
= 0;
716 || optimize_bb_for_size_p (bb
))
719 fprintf(dump_file
, "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
720 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
724 max_log
= LABEL_ALIGN (label
);
725 max_skip
= targetm
.asm_out
.label_align_max_skip (label
);
727 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
729 if (e
->flags
& EDGE_FALLTHRU
)
730 has_fallthru
= 1, fallthru_frequency
+= EDGE_FREQUENCY (e
);
732 branch_frequency
+= EDGE_FREQUENCY (e
);
736 fprintf(dump_file
, "BB %4i freq %4i loop %2i loop_depth %2i fall %4i branch %4i",
737 bb
->index
, bb
->frequency
, bb
->loop_father
->num
,
739 fallthru_frequency
, branch_frequency
);
740 if (!bb
->loop_father
->inner
&& bb
->loop_father
->num
)
741 fprintf (dump_file
, " inner_loop");
742 if (bb
->loop_father
->header
== bb
)
743 fprintf (dump_file
, " loop_header");
744 fprintf (dump_file
, "\n");
747 /* There are two purposes to align block with no fallthru incoming edge:
748 1) to avoid fetch stalls when branch destination is near cache boundary
749 2) to improve cache efficiency in case the previous block is not executed
750 (so it does not need to be in the cache).
752 We to catch first case, we align frequently executed blocks.
753 To catch the second, we align blocks that are executed more frequently
754 than the predecessor and the predecessor is likely to not be executed
755 when function is called. */
758 && (branch_frequency
> freq_threshold
759 || (bb
->frequency
> bb
->prev_bb
->frequency
* 10
760 && (bb
->prev_bb
->frequency
761 <= ENTRY_BLOCK_PTR
->frequency
/ 2))))
763 log
= JUMP_ALIGN (label
);
765 fprintf(dump_file
, " jump alignment added.\n");
769 max_skip
= targetm
.asm_out
.jump_align_max_skip (label
);
772 /* In case block is frequent and reached mostly by non-fallthru edge,
773 align it. It is most likely a first block of loop. */
775 && optimize_bb_for_speed_p (bb
)
776 && branch_frequency
+ fallthru_frequency
> freq_threshold
778 > fallthru_frequency
* PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS
)))
780 log
= LOOP_ALIGN (label
);
782 fprintf(dump_file
, " internal loop alignment added.\n");
786 max_skip
= targetm
.asm_out
.loop_align_max_skip (label
);
789 LABEL_TO_ALIGNMENT (label
) = max_log
;
790 LABEL_TO_MAX_SKIP (label
) = max_skip
;
793 loop_optimizer_finalize ();
794 free_dominance_info (CDI_DOMINATORS
);
798 /* Grow the LABEL_ALIGN array after new labels are created. */
801 grow_label_align (void)
803 int old
= max_labelno
;
807 max_labelno
= max_label_num ();
809 n_labels
= max_labelno
- min_labelno
+ 1;
810 n_old_labels
= old
- min_labelno
+ 1;
812 label_align
= XRESIZEVEC (struct label_alignment
, label_align
, n_labels
);
814 /* Range of labels grows monotonically in the function. Failing here
815 means that the initialization of array got lost. */
816 gcc_assert (n_old_labels
<= n_labels
);
818 memset (label_align
+ n_old_labels
, 0,
819 (n_labels
- n_old_labels
) * sizeof (struct label_alignment
));
822 /* Update the already computed alignment information. LABEL_PAIRS is a vector
823 made up of pairs of labels for which the alignment information of the first
824 element will be copied from that of the second element. */
827 update_alignments (vec
<rtx
> &label_pairs
)
832 if (max_labelno
!= max_label_num ())
835 FOR_EACH_VEC_ELT (label_pairs
, i
, iter
)
838 LABEL_TO_ALIGNMENT (label
) = LABEL_TO_ALIGNMENT (iter
);
839 LABEL_TO_MAX_SKIP (label
) = LABEL_TO_MAX_SKIP (iter
);
847 const pass_data pass_data_compute_alignments
=
850 "alignments", /* name */
851 OPTGROUP_NONE
, /* optinfo_flags */
852 false, /* has_gate */
853 true, /* has_execute */
855 0, /* properties_required */
856 0, /* properties_provided */
857 0, /* properties_destroyed */
858 0, /* todo_flags_start */
859 TODO_verify_rtl_sharing
, /* todo_flags_finish */
862 class pass_compute_alignments
: public rtl_opt_pass
865 pass_compute_alignments(gcc::context
*ctxt
)
866 : rtl_opt_pass(pass_data_compute_alignments
, ctxt
)
869 /* opt_pass methods: */
870 unsigned int execute () { return compute_alignments (); }
872 }; // class pass_compute_alignments
877 make_pass_compute_alignments (gcc::context
*ctxt
)
879 return new pass_compute_alignments (ctxt
);
883 /* Make a pass over all insns and compute their actual lengths by shortening
884 any branches of variable length if possible. */
886 /* shorten_branches might be called multiple times: for example, the SH
887 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
888 In order to do this, it needs proper length information, which it obtains
889 by calling shorten_branches. This cannot be collapsed with
890 shorten_branches itself into a single pass unless we also want to integrate
891 reorg.c, since the branch splitting exposes new instructions with delay
895 shorten_branches (rtx first
)
902 #define MAX_CODE_ALIGN 16
904 int something_changed
= 1;
905 char *varying_length
;
908 rtx align_tab
[MAX_CODE_ALIGN
];
910 /* Compute maximum UID and allocate label_align / uid_shuid. */
911 max_uid
= get_max_uid ();
913 /* Free uid_shuid before reallocating it. */
916 uid_shuid
= XNEWVEC (int, max_uid
);
918 if (max_labelno
!= max_label_num ())
921 /* Initialize label_align and set up uid_shuid to be strictly
922 monotonically rising with insn order. */
923 /* We use max_log here to keep track of the maximum alignment we want to
924 impose on the next CODE_LABEL (or the current one if we are processing
925 the CODE_LABEL itself). */
930 for (insn
= get_insns (), i
= 1; insn
; insn
= NEXT_INSN (insn
))
934 INSN_SHUID (insn
) = i
++;
941 bool next_is_jumptable
;
943 /* Merge in alignments computed by compute_alignments. */
944 log
= LABEL_TO_ALIGNMENT (insn
);
948 max_skip
= LABEL_TO_MAX_SKIP (insn
);
951 next
= next_nonnote_insn (insn
);
952 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
953 if (!next_is_jumptable
)
955 log
= LABEL_ALIGN (insn
);
959 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
962 /* ADDR_VECs only take room if read-only data goes into the text
964 if ((JUMP_TABLES_IN_TEXT_SECTION
965 || readonly_data_section
== text_section
)
966 && next_is_jumptable
)
968 log
= ADDR_VEC_ALIGN (next
);
972 max_skip
= targetm
.asm_out
.label_align_max_skip (insn
);
975 LABEL_TO_ALIGNMENT (insn
) = max_log
;
976 LABEL_TO_MAX_SKIP (insn
) = max_skip
;
980 else if (BARRIER_P (insn
))
984 for (label
= insn
; label
&& ! INSN_P (label
);
985 label
= NEXT_INSN (label
))
988 log
= LABEL_ALIGN_AFTER_BARRIER (insn
);
992 max_skip
= targetm
.asm_out
.label_align_after_barrier_max_skip (label
);
998 if (!HAVE_ATTR_length
)
1001 /* Allocate the rest of the arrays. */
1002 insn_lengths
= XNEWVEC (int, max_uid
);
1003 insn_lengths_max_uid
= max_uid
;
1004 /* Syntax errors can lead to labels being outside of the main insn stream.
1005 Initialize insn_addresses, so that we get reproducible results. */
1006 INSN_ADDRESSES_ALLOC (max_uid
);
1008 varying_length
= XCNEWVEC (char, max_uid
);
1010 /* Initialize uid_align. We scan instructions
1011 from end to start, and keep in align_tab[n] the last seen insn
1012 that does an alignment of at least n+1, i.e. the successor
1013 in the alignment chain for an insn that does / has a known
1015 uid_align
= XCNEWVEC (rtx
, max_uid
);
1017 for (i
= MAX_CODE_ALIGN
; --i
>= 0;)
1018 align_tab
[i
] = NULL_RTX
;
1019 seq
= get_last_insn ();
1020 for (; seq
; seq
= PREV_INSN (seq
))
1022 int uid
= INSN_UID (seq
);
1024 log
= (LABEL_P (seq
) ? LABEL_TO_ALIGNMENT (seq
) : 0);
1025 uid_align
[uid
] = align_tab
[0];
1028 /* Found an alignment label. */
1029 uid_align
[uid
] = align_tab
[log
];
1030 for (i
= log
- 1; i
>= 0; i
--)
1035 /* When optimizing, we start assuming minimum length, and keep increasing
1036 lengths as we find the need for this, till nothing changes.
1037 When not optimizing, we start assuming maximum lengths, and
1038 do a single pass to update the lengths. */
1039 bool increasing
= optimize
!= 0;
1041 #ifdef CASE_VECTOR_SHORTEN_MODE
1044 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1047 int min_shuid
= INSN_SHUID (get_insns ()) - 1;
1048 int max_shuid
= INSN_SHUID (get_last_insn ()) + 1;
1051 for (insn
= first
; insn
!= 0; insn
= NEXT_INSN (insn
))
1053 rtx min_lab
= NULL_RTX
, max_lab
= NULL_RTX
, pat
;
1054 int len
, i
, min
, max
, insn_shuid
;
1056 addr_diff_vec_flags flags
;
1058 if (! JUMP_TABLE_DATA_P (insn
)
1059 || GET_CODE (PATTERN (insn
)) != ADDR_DIFF_VEC
)
1061 pat
= PATTERN (insn
);
1062 len
= XVECLEN (pat
, 1);
1063 gcc_assert (len
> 0);
1064 min_align
= MAX_CODE_ALIGN
;
1065 for (min
= max_shuid
, max
= min_shuid
, i
= len
- 1; i
>= 0; i
--)
1067 rtx lab
= XEXP (XVECEXP (pat
, 1, i
), 0);
1068 int shuid
= INSN_SHUID (lab
);
1079 if (min_align
> LABEL_TO_ALIGNMENT (lab
))
1080 min_align
= LABEL_TO_ALIGNMENT (lab
);
1082 XEXP (pat
, 2) = gen_rtx_LABEL_REF (Pmode
, min_lab
);
1083 XEXP (pat
, 3) = gen_rtx_LABEL_REF (Pmode
, max_lab
);
1084 insn_shuid
= INSN_SHUID (insn
);
1085 rel
= INSN_SHUID (XEXP (XEXP (pat
, 0), 0));
1086 memset (&flags
, 0, sizeof (flags
));
1087 flags
.min_align
= min_align
;
1088 flags
.base_after_vec
= rel
> insn_shuid
;
1089 flags
.min_after_vec
= min
> insn_shuid
;
1090 flags
.max_after_vec
= max
> insn_shuid
;
1091 flags
.min_after_base
= min
> rel
;
1092 flags
.max_after_base
= max
> rel
;
1093 ADDR_DIFF_VEC_FLAGS (pat
) = flags
;
1096 PUT_MODE (pat
, CASE_VECTOR_SHORTEN_MODE (0, 0, pat
));
1099 #endif /* CASE_VECTOR_SHORTEN_MODE */
1101 /* Compute initial lengths, addresses, and varying flags for each insn. */
1102 int (*length_fun
) (rtx
) = increasing
? insn_min_length
: insn_default_length
;
1104 for (insn_current_address
= 0, insn
= first
;
1106 insn_current_address
+= insn_lengths
[uid
], insn
= NEXT_INSN (insn
))
1108 uid
= INSN_UID (insn
);
1110 insn_lengths
[uid
] = 0;
1114 int log
= LABEL_TO_ALIGNMENT (insn
);
1117 int align
= 1 << log
;
1118 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1119 insn_lengths
[uid
] = new_address
- insn_current_address
;
1123 INSN_ADDRESSES (uid
) = insn_current_address
+ insn_lengths
[uid
];
1125 if (NOTE_P (insn
) || BARRIER_P (insn
)
1126 || LABEL_P (insn
) || DEBUG_INSN_P(insn
))
1128 if (INSN_DELETED_P (insn
))
1131 body
= PATTERN (insn
);
1132 if (JUMP_TABLE_DATA_P (insn
))
1134 /* This only takes room if read-only data goes into the text
1136 if (JUMP_TABLES_IN_TEXT_SECTION
1137 || readonly_data_section
== text_section
)
1138 insn_lengths
[uid
] = (XVECLEN (body
,
1139 GET_CODE (body
) == ADDR_DIFF_VEC
)
1140 * GET_MODE_SIZE (GET_MODE (body
)));
1141 /* Alignment is handled by ADDR_VEC_ALIGN. */
1143 else if (GET_CODE (body
) == ASM_INPUT
|| asm_noperands (body
) >= 0)
1144 insn_lengths
[uid
] = asm_insn_count (body
) * insn_default_length (insn
);
1145 else if (GET_CODE (body
) == SEQUENCE
)
1148 int const_delay_slots
;
1150 const_delay_slots
= const_num_delay_slots (XVECEXP (body
, 0, 0));
1152 const_delay_slots
= 0;
1154 int (*inner_length_fun
) (rtx
)
1155 = const_delay_slots
? length_fun
: insn_default_length
;
1156 /* Inside a delay slot sequence, we do not do any branch shortening
1157 if the shortening could change the number of delay slots
1159 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1161 rtx inner_insn
= XVECEXP (body
, 0, i
);
1162 int inner_uid
= INSN_UID (inner_insn
);
1165 if (GET_CODE (body
) == ASM_INPUT
1166 || asm_noperands (PATTERN (XVECEXP (body
, 0, i
))) >= 0)
1167 inner_length
= (asm_insn_count (PATTERN (inner_insn
))
1168 * insn_default_length (inner_insn
));
1170 inner_length
= inner_length_fun (inner_insn
);
1172 insn_lengths
[inner_uid
] = inner_length
;
1173 if (const_delay_slots
)
1175 if ((varying_length
[inner_uid
]
1176 = insn_variable_length_p (inner_insn
)) != 0)
1177 varying_length
[uid
] = 1;
1178 INSN_ADDRESSES (inner_uid
) = (insn_current_address
1179 + insn_lengths
[uid
]);
1182 varying_length
[inner_uid
] = 0;
1183 insn_lengths
[uid
] += inner_length
;
1186 else if (GET_CODE (body
) != USE
&& GET_CODE (body
) != CLOBBER
)
1188 insn_lengths
[uid
] = length_fun (insn
);
1189 varying_length
[uid
] = insn_variable_length_p (insn
);
1192 /* If needed, do any adjustment. */
1193 #ifdef ADJUST_INSN_LENGTH
1194 ADJUST_INSN_LENGTH (insn
, insn_lengths
[uid
]);
1195 if (insn_lengths
[uid
] < 0)
1196 fatal_insn ("negative insn length", insn
);
1200 /* Now loop over all the insns finding varying length insns. For each,
1201 get the current insn length. If it has changed, reflect the change.
1202 When nothing changes for a full pass, we are done. */
1204 while (something_changed
)
1206 something_changed
= 0;
1207 insn_current_align
= MAX_CODE_ALIGN
- 1;
1208 for (insn_current_address
= 0, insn
= first
;
1210 insn
= NEXT_INSN (insn
))
1213 #ifdef ADJUST_INSN_LENGTH
1218 uid
= INSN_UID (insn
);
1222 int log
= LABEL_TO_ALIGNMENT (insn
);
1224 #ifdef CASE_VECTOR_SHORTEN_MODE
1225 /* If the mode of a following jump table was changed, we
1226 may need to update the alignment of this label. */
1228 bool next_is_jumptable
;
1230 next
= next_nonnote_insn (insn
);
1231 next_is_jumptable
= next
&& JUMP_TABLE_DATA_P (next
);
1232 if ((JUMP_TABLES_IN_TEXT_SECTION
1233 || readonly_data_section
== text_section
)
1234 && next_is_jumptable
)
1236 int newlog
= ADDR_VEC_ALIGN (next
);
1240 LABEL_TO_ALIGNMENT (insn
) = log
;
1241 something_changed
= 1;
1246 if (log
> insn_current_align
)
1248 int align
= 1 << log
;
1249 int new_address
= (insn_current_address
+ align
- 1) & -align
;
1250 insn_lengths
[uid
] = new_address
- insn_current_address
;
1251 insn_current_align
= log
;
1252 insn_current_address
= new_address
;
1255 insn_lengths
[uid
] = 0;
1256 INSN_ADDRESSES (uid
) = insn_current_address
;
1260 length_align
= INSN_LENGTH_ALIGNMENT (insn
);
1261 if (length_align
< insn_current_align
)
1262 insn_current_align
= length_align
;
1264 insn_last_address
= INSN_ADDRESSES (uid
);
1265 INSN_ADDRESSES (uid
) = insn_current_address
;
1267 #ifdef CASE_VECTOR_SHORTEN_MODE
1269 && JUMP_TABLE_DATA_P (insn
)
1270 && GET_CODE (PATTERN (insn
)) == ADDR_DIFF_VEC
)
1272 rtx body
= PATTERN (insn
);
1273 int old_length
= insn_lengths
[uid
];
1274 rtx rel_lab
= XEXP (XEXP (body
, 0), 0);
1275 rtx min_lab
= XEXP (XEXP (body
, 2), 0);
1276 rtx max_lab
= XEXP (XEXP (body
, 3), 0);
1277 int rel_addr
= INSN_ADDRESSES (INSN_UID (rel_lab
));
1278 int min_addr
= INSN_ADDRESSES (INSN_UID (min_lab
));
1279 int max_addr
= INSN_ADDRESSES (INSN_UID (max_lab
));
1282 addr_diff_vec_flags flags
;
1283 enum machine_mode vec_mode
;
1285 /* Avoid automatic aggregate initialization. */
1286 flags
= ADDR_DIFF_VEC_FLAGS (body
);
1288 /* Try to find a known alignment for rel_lab. */
1289 for (prev
= rel_lab
;
1291 && ! insn_lengths
[INSN_UID (prev
)]
1292 && ! (varying_length
[INSN_UID (prev
)] & 1);
1293 prev
= PREV_INSN (prev
))
1294 if (varying_length
[INSN_UID (prev
)] & 2)
1296 rel_align
= LABEL_TO_ALIGNMENT (prev
);
1300 /* See the comment on addr_diff_vec_flags in rtl.h for the
1301 meaning of the flags values. base: REL_LAB vec: INSN */
1302 /* Anything after INSN has still addresses from the last
1303 pass; adjust these so that they reflect our current
1304 estimate for this pass. */
1305 if (flags
.base_after_vec
)
1306 rel_addr
+= insn_current_address
- insn_last_address
;
1307 if (flags
.min_after_vec
)
1308 min_addr
+= insn_current_address
- insn_last_address
;
1309 if (flags
.max_after_vec
)
1310 max_addr
+= insn_current_address
- insn_last_address
;
1311 /* We want to know the worst case, i.e. lowest possible value
1312 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1313 its offset is positive, and we have to be wary of code shrink;
1314 otherwise, it is negative, and we have to be vary of code
1316 if (flags
.min_after_base
)
1318 /* If INSN is between REL_LAB and MIN_LAB, the size
1319 changes we are about to make can change the alignment
1320 within the observed offset, therefore we have to break
1321 it up into two parts that are independent. */
1322 if (! flags
.base_after_vec
&& flags
.min_after_vec
)
1324 min_addr
-= align_fuzz (rel_lab
, insn
, rel_align
, 0);
1325 min_addr
-= align_fuzz (insn
, min_lab
, 0, 0);
1328 min_addr
-= align_fuzz (rel_lab
, min_lab
, rel_align
, 0);
1332 if (flags
.base_after_vec
&& ! flags
.min_after_vec
)
1334 min_addr
-= align_fuzz (min_lab
, insn
, 0, ~0);
1335 min_addr
-= align_fuzz (insn
, rel_lab
, 0, ~0);
1338 min_addr
-= align_fuzz (min_lab
, rel_lab
, 0, ~0);
1340 /* Likewise, determine the highest lowest possible value
1341 for the offset of MAX_LAB. */
1342 if (flags
.max_after_base
)
1344 if (! flags
.base_after_vec
&& flags
.max_after_vec
)
1346 max_addr
+= align_fuzz (rel_lab
, insn
, rel_align
, ~0);
1347 max_addr
+= align_fuzz (insn
, max_lab
, 0, ~0);
1350 max_addr
+= align_fuzz (rel_lab
, max_lab
, rel_align
, ~0);
1354 if (flags
.base_after_vec
&& ! flags
.max_after_vec
)
1356 max_addr
+= align_fuzz (max_lab
, insn
, 0, 0);
1357 max_addr
+= align_fuzz (insn
, rel_lab
, 0, 0);
1360 max_addr
+= align_fuzz (max_lab
, rel_lab
, 0, 0);
1362 vec_mode
= CASE_VECTOR_SHORTEN_MODE (min_addr
- rel_addr
,
1363 max_addr
- rel_addr
, body
);
1365 || (GET_MODE_SIZE (vec_mode
)
1366 >= GET_MODE_SIZE (GET_MODE (body
))))
1367 PUT_MODE (body
, vec_mode
);
1368 if (JUMP_TABLES_IN_TEXT_SECTION
1369 || readonly_data_section
== text_section
)
1372 = (XVECLEN (body
, 1) * GET_MODE_SIZE (GET_MODE (body
)));
1373 insn_current_address
+= insn_lengths
[uid
];
1374 if (insn_lengths
[uid
] != old_length
)
1375 something_changed
= 1;
1380 #endif /* CASE_VECTOR_SHORTEN_MODE */
1382 if (! (varying_length
[uid
]))
1384 if (NONJUMP_INSN_P (insn
)
1385 && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1389 body
= PATTERN (insn
);
1390 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1392 rtx inner_insn
= XVECEXP (body
, 0, i
);
1393 int inner_uid
= INSN_UID (inner_insn
);
1395 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1397 insn_current_address
+= insn_lengths
[inner_uid
];
1401 insn_current_address
+= insn_lengths
[uid
];
1406 if (NONJUMP_INSN_P (insn
) && GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1410 body
= PATTERN (insn
);
1412 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1414 rtx inner_insn
= XVECEXP (body
, 0, i
);
1415 int inner_uid
= INSN_UID (inner_insn
);
1418 INSN_ADDRESSES (inner_uid
) = insn_current_address
;
1420 /* insn_current_length returns 0 for insns with a
1421 non-varying length. */
1422 if (! varying_length
[inner_uid
])
1423 inner_length
= insn_lengths
[inner_uid
];
1425 inner_length
= insn_current_length (inner_insn
);
1427 if (inner_length
!= insn_lengths
[inner_uid
])
1429 if (!increasing
|| inner_length
> insn_lengths
[inner_uid
])
1431 insn_lengths
[inner_uid
] = inner_length
;
1432 something_changed
= 1;
1435 inner_length
= insn_lengths
[inner_uid
];
1437 insn_current_address
+= inner_length
;
1438 new_length
+= inner_length
;
1443 new_length
= insn_current_length (insn
);
1444 insn_current_address
+= new_length
;
1447 #ifdef ADJUST_INSN_LENGTH
1448 /* If needed, do any adjustment. */
1449 tmp_length
= new_length
;
1450 ADJUST_INSN_LENGTH (insn
, new_length
);
1451 insn_current_address
+= (new_length
- tmp_length
);
1454 if (new_length
!= insn_lengths
[uid
]
1455 && (!increasing
|| new_length
> insn_lengths
[uid
]))
1457 insn_lengths
[uid
] = new_length
;
1458 something_changed
= 1;
1461 insn_current_address
+= insn_lengths
[uid
] - new_length
;
1463 /* For a non-optimizing compile, do only a single pass. */
1468 free (varying_length
);
1471 /* Given the body of an INSN known to be generated by an ASM statement, return
1472 the number of machine instructions likely to be generated for this insn.
1473 This is used to compute its length. */
1476 asm_insn_count (rtx body
)
1480 if (GET_CODE (body
) == ASM_INPUT
)
1481 templ
= XSTR (body
, 0);
1483 templ
= decode_asm_operands (body
, NULL
, NULL
, NULL
, NULL
, NULL
);
1485 return asm_str_count (templ
);
1488 /* Return the number of machine instructions likely to be generated for the
1489 inline-asm template. */
1491 asm_str_count (const char *templ
)
1498 for (; *templ
; templ
++)
1499 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ
, templ
)
1506 /* ??? This is probably the wrong place for these. */
1507 /* Structure recording the mapping from source file and directory
1508 names at compile time to those to be embedded in debug
1510 typedef struct debug_prefix_map
1512 const char *old_prefix
;
1513 const char *new_prefix
;
1516 struct debug_prefix_map
*next
;
1519 /* Linked list of such structures. */
1520 static debug_prefix_map
*debug_prefix_maps
;
1523 /* Record a debug file prefix mapping. ARG is the argument to
1524 -fdebug-prefix-map and must be of the form OLD=NEW. */
1527 add_debug_prefix_map (const char *arg
)
1529 debug_prefix_map
*map
;
1532 p
= strchr (arg
, '=');
1535 error ("invalid argument %qs to -fdebug-prefix-map", arg
);
1538 map
= XNEW (debug_prefix_map
);
1539 map
->old_prefix
= xstrndup (arg
, p
- arg
);
1540 map
->old_len
= p
- arg
;
1542 map
->new_prefix
= xstrdup (p
);
1543 map
->new_len
= strlen (p
);
1544 map
->next
= debug_prefix_maps
;
1545 debug_prefix_maps
= map
;
1548 /* Perform user-specified mapping of debug filename prefixes. Return
1549 the new name corresponding to FILENAME. */
1552 remap_debug_filename (const char *filename
)
1554 debug_prefix_map
*map
;
1559 for (map
= debug_prefix_maps
; map
; map
= map
->next
)
1560 if (filename_ncmp (filename
, map
->old_prefix
, map
->old_len
) == 0)
1564 name
= filename
+ map
->old_len
;
1565 name_len
= strlen (name
) + 1;
1566 s
= (char *) alloca (name_len
+ map
->new_len
);
1567 memcpy (s
, map
->new_prefix
, map
->new_len
);
1568 memcpy (s
+ map
->new_len
, name
, name_len
);
1569 return ggc_strdup (s
);
1572 /* Return true if DWARF2 debug info can be emitted for DECL. */
1575 dwarf2_debug_info_emitted_p (tree decl
)
1577 if (write_symbols
!= DWARF2_DEBUG
&& write_symbols
!= VMS_AND_DWARF2_DEBUG
)
1580 if (DECL_IGNORED_P (decl
))
1586 /* Return scope resulting from combination of S1 and S2. */
1588 choose_inner_scope (tree s1
, tree s2
)
1594 if (BLOCK_NUMBER (s1
) > BLOCK_NUMBER (s2
))
1599 /* Emit lexical block notes needed to change scope from S1 to S2. */
1602 change_scope (rtx orig_insn
, tree s1
, tree s2
)
1604 rtx insn
= orig_insn
;
1605 tree com
= NULL_TREE
;
1606 tree ts1
= s1
, ts2
= s2
;
1611 gcc_assert (ts1
&& ts2
);
1612 if (BLOCK_NUMBER (ts1
) > BLOCK_NUMBER (ts2
))
1613 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1614 else if (BLOCK_NUMBER (ts1
) < BLOCK_NUMBER (ts2
))
1615 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1618 ts1
= BLOCK_SUPERCONTEXT (ts1
);
1619 ts2
= BLOCK_SUPERCONTEXT (ts2
);
1628 rtx note
= emit_note_before (NOTE_INSN_BLOCK_END
, insn
);
1629 NOTE_BLOCK (note
) = s
;
1630 s
= BLOCK_SUPERCONTEXT (s
);
1637 insn
= emit_note_before (NOTE_INSN_BLOCK_BEG
, insn
);
1638 NOTE_BLOCK (insn
) = s
;
1639 s
= BLOCK_SUPERCONTEXT (s
);
1643 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1644 on the scope tree and the newly reordered instructions. */
1647 reemit_insn_block_notes (void)
1649 tree cur_block
= DECL_INITIAL (cfun
->decl
);
1652 insn
= get_insns ();
1653 if (!active_insn_p (insn
))
1654 insn
= next_active_insn (insn
);
1655 for (; insn
; insn
= next_active_insn (insn
))
1659 /* Avoid putting scope notes between jump table and its label. */
1660 if (JUMP_TABLE_DATA_P (insn
))
1663 this_block
= insn_scope (insn
);
1664 /* For sequences compute scope resulting from merging all scopes
1665 of instructions nested inside. */
1666 if (GET_CODE (PATTERN (insn
)) == SEQUENCE
)
1669 rtx body
= PATTERN (insn
);
1672 for (i
= 0; i
< XVECLEN (body
, 0); i
++)
1673 this_block
= choose_inner_scope (this_block
,
1674 insn_scope (XVECEXP (body
, 0, i
)));
1678 if (INSN_LOCATION (insn
) == UNKNOWN_LOCATION
)
1681 this_block
= DECL_INITIAL (cfun
->decl
);
1684 if (this_block
!= cur_block
)
1686 change_scope (insn
, cur_block
, this_block
);
1687 cur_block
= this_block
;
1691 /* change_scope emits before the insn, not after. */
1692 note
= emit_note (NOTE_INSN_DELETED
);
1693 change_scope (note
, cur_block
, DECL_INITIAL (cfun
->decl
));
1699 /* Output assembler code for the start of a function,
1700 and initialize some of the variables in this file
1701 for the new function. The label for the function and associated
1702 assembler pseudo-ops have already been output in `assemble_start_function'.
1704 FIRST is the first insn of the rtl for the function being compiled.
1705 FILE is the file to write assembler code to.
1706 OPTIMIZE_P is nonzero if we should eliminate redundant
1707 test and compare insns. */
1710 final_start_function (rtx first
, FILE *file
,
1711 int optimize_p ATTRIBUTE_UNUSED
)
1715 this_is_asm_operands
= 0;
1717 need_profile_function
= false;
1719 last_filename
= LOCATION_FILE (prologue_location
);
1720 last_linenum
= LOCATION_LINE (prologue_location
);
1721 last_discriminator
= discriminator
= 0;
1723 high_block_linenum
= high_function_linenum
= last_linenum
;
1725 if (!DECL_IGNORED_P (current_function_decl
))
1726 debug_hooks
->begin_prologue (last_linenum
, last_filename
);
1728 if (!dwarf2_debug_info_emitted_p (current_function_decl
))
1729 dwarf2out_begin_prologue (0, NULL
);
1731 #ifdef LEAF_REG_REMAP
1732 if (crtl
->uses_only_leaf_regs
)
1733 leaf_renumber_regs (first
);
1736 /* The Sun386i and perhaps other machines don't work right
1737 if the profiling code comes after the prologue. */
1738 if (targetm
.profile_before_prologue () && crtl
->profile
)
1740 if (targetm
.asm_out
.function_prologue
1741 == default_function_pro_epilogue
1742 #ifdef HAVE_prologue
1748 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1754 else if (NOTE_KIND (insn
) == NOTE_INSN_BASIC_BLOCK
1755 || NOTE_KIND (insn
) == NOTE_INSN_FUNCTION_BEG
)
1757 else if (NOTE_KIND (insn
) == NOTE_INSN_DELETED
1758 || NOTE_KIND (insn
) == NOTE_INSN_VAR_LOCATION
)
1767 need_profile_function
= true;
1769 profile_function (file
);
1772 profile_function (file
);
1775 /* If debugging, assign block numbers to all of the blocks in this
1779 reemit_insn_block_notes ();
1780 number_blocks (current_function_decl
);
1781 /* We never actually put out begin/end notes for the top-level
1782 block in the function. But, conceptually, that block is
1784 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl
)) = 1;
1787 if (warn_frame_larger_than
1788 && get_frame_size () > frame_larger_than_size
)
1790 /* Issue a warning */
1791 warning (OPT_Wframe_larger_than_
,
1792 "the frame size of %wd bytes is larger than %wd bytes",
1793 get_frame_size (), frame_larger_than_size
);
1796 /* First output the function prologue: code to set up the stack frame. */
1797 targetm
.asm_out
.function_prologue (file
, get_frame_size ());
1799 /* If the machine represents the prologue as RTL, the profiling code must
1800 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1801 #ifdef HAVE_prologue
1802 if (! HAVE_prologue
)
1804 profile_after_prologue (file
);
1808 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED
)
1810 if (!targetm
.profile_before_prologue () && crtl
->profile
)
1811 profile_function (file
);
1815 profile_function (FILE *file ATTRIBUTE_UNUSED
)
1817 #ifndef NO_PROFILE_COUNTERS
1818 # define NO_PROFILE_COUNTERS 0
1820 #ifdef ASM_OUTPUT_REG_PUSH
1821 rtx sval
= NULL
, chain
= NULL
;
1823 if (cfun
->returns_struct
)
1824 sval
= targetm
.calls
.struct_value_rtx (TREE_TYPE (current_function_decl
),
1826 if (cfun
->static_chain_decl
)
1827 chain
= targetm
.calls
.static_chain (current_function_decl
, true);
1828 #endif /* ASM_OUTPUT_REG_PUSH */
1830 if (! NO_PROFILE_COUNTERS
)
1832 int align
= MIN (BIGGEST_ALIGNMENT
, LONG_TYPE_SIZE
);
1833 switch_to_section (data_section
);
1834 ASM_OUTPUT_ALIGN (file
, floor_log2 (align
/ BITS_PER_UNIT
));
1835 targetm
.asm_out
.internal_label (file
, "LP", current_function_funcdef_no
);
1836 assemble_integer (const0_rtx
, LONG_TYPE_SIZE
/ BITS_PER_UNIT
, align
, 1);
1839 switch_to_section (current_function_section ());
1841 #ifdef ASM_OUTPUT_REG_PUSH
1842 if (sval
&& REG_P (sval
))
1843 ASM_OUTPUT_REG_PUSH (file
, REGNO (sval
));
1844 if (chain
&& REG_P (chain
))
1845 ASM_OUTPUT_REG_PUSH (file
, REGNO (chain
));
1848 FUNCTION_PROFILER (file
, current_function_funcdef_no
);
1850 #ifdef ASM_OUTPUT_REG_PUSH
1851 if (chain
&& REG_P (chain
))
1852 ASM_OUTPUT_REG_POP (file
, REGNO (chain
));
1853 if (sval
&& REG_P (sval
))
1854 ASM_OUTPUT_REG_POP (file
, REGNO (sval
));
1858 /* Output assembler code for the end of a function.
1859 For clarity, args are same as those of `final_start_function'
1860 even though not all of them are needed. */
1863 final_end_function (void)
1867 if (!DECL_IGNORED_P (current_function_decl
))
1868 debug_hooks
->end_function (high_function_linenum
);
1870 /* Finally, output the function epilogue:
1871 code to restore the stack frame and return to the caller. */
1872 targetm
.asm_out
.function_epilogue (asm_out_file
, get_frame_size ());
1874 /* And debug output. */
1875 if (!DECL_IGNORED_P (current_function_decl
))
1876 debug_hooks
->end_epilogue (last_linenum
, last_filename
);
1878 if (!dwarf2_debug_info_emitted_p (current_function_decl
)
1879 && dwarf2out_do_frame ())
1880 dwarf2out_end_epilogue (last_linenum
, last_filename
);
1884 /* Dumper helper for basic block information. FILE is the assembly
1885 output file, and INSN is the instruction being emitted. */
1888 dump_basic_block_info (FILE *file
, rtx insn
, basic_block
*start_to_bb
,
1889 basic_block
*end_to_bb
, int bb_map_size
, int *bb_seqn
)
1893 if (!flag_debug_asm
)
1896 if (INSN_UID (insn
) < bb_map_size
1897 && (bb
= start_to_bb
[INSN_UID (insn
)]) != NULL
)
1902 fprintf (file
, "%s BLOCK %d", ASM_COMMENT_START
, bb
->index
);
1904 fprintf (file
, " freq:%d", bb
->frequency
);
1906 fprintf (file
, " count:" HOST_WIDEST_INT_PRINT_DEC
,
1908 fprintf (file
, " seq:%d", (*bb_seqn
)++);
1909 fprintf (file
, "\n%s PRED:", ASM_COMMENT_START
);
1910 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
1912 dump_edge_info (file
, e
, TDF_DETAILS
, 0);
1914 fprintf (file
, "\n");
1916 if (INSN_UID (insn
) < bb_map_size
1917 && (bb
= end_to_bb
[INSN_UID (insn
)]) != NULL
)
1922 fprintf (asm_out_file
, "%s SUCC:", ASM_COMMENT_START
);
1923 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
1925 dump_edge_info (asm_out_file
, e
, TDF_DETAILS
, 1);
1927 fprintf (file
, "\n");
1931 /* Output assembler code for some insns: all or part of a function.
1932 For description of args, see `final_start_function', above. */
1935 final (rtx first
, FILE *file
, int optimize_p
)
1940 /* Used for -dA dump. */
1941 basic_block
*start_to_bb
= NULL
;
1942 basic_block
*end_to_bb
= NULL
;
1943 int bb_map_size
= 0;
1946 last_ignored_compare
= 0;
1949 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
1951 /* If CC tracking across branches is enabled, record the insn which
1952 jumps to each branch only reached from one place. */
1953 if (optimize_p
&& JUMP_P (insn
))
1955 rtx lab
= JUMP_LABEL (insn
);
1956 if (lab
&& LABEL_P (lab
) && LABEL_NUSES (lab
) == 1)
1958 LABEL_REFS (lab
) = insn
;
1972 bb_map_size
= get_max_uid () + 1;
1973 start_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
1974 end_to_bb
= XCNEWVEC (basic_block
, bb_map_size
);
1976 /* There is no cfg for a thunk. */
1977 if (!cfun
->is_thunk
)
1978 FOR_EACH_BB_REVERSE (bb
)
1980 start_to_bb
[INSN_UID (BB_HEAD (bb
))] = bb
;
1981 end_to_bb
[INSN_UID (BB_END (bb
))] = bb
;
1985 /* Output the insns. */
1986 for (insn
= first
; insn
;)
1988 if (HAVE_ATTR_length
)
1990 if ((unsigned) INSN_UID (insn
) >= INSN_ADDRESSES_SIZE ())
1992 /* This can be triggered by bugs elsewhere in the compiler if
1993 new insns are created after init_insn_lengths is called. */
1994 gcc_assert (NOTE_P (insn
));
1995 insn_current_address
= -1;
1998 insn_current_address
= INSN_ADDRESSES (INSN_UID (insn
));
2001 dump_basic_block_info (file
, insn
, start_to_bb
, end_to_bb
,
2002 bb_map_size
, &bb_seqn
);
2003 insn
= final_scan_insn (insn
, file
, optimize_p
, 0, &seen
);
2012 /* Remove CFI notes, to avoid compare-debug failures. */
2013 for (insn
= first
; insn
; insn
= next
)
2015 next
= NEXT_INSN (insn
);
2017 && (NOTE_KIND (insn
) == NOTE_INSN_CFI
2018 || NOTE_KIND (insn
) == NOTE_INSN_CFI_LABEL
))
2024 get_insn_template (int code
, rtx insn
)
2026 switch (insn_data
[code
].output_format
)
2028 case INSN_OUTPUT_FORMAT_SINGLE
:
2029 return insn_data
[code
].output
.single
;
2030 case INSN_OUTPUT_FORMAT_MULTI
:
2031 return insn_data
[code
].output
.multi
[which_alternative
];
2032 case INSN_OUTPUT_FORMAT_FUNCTION
:
2034 return (*insn_data
[code
].output
.function
) (recog_data
.operand
, insn
);
2041 /* Emit the appropriate declaration for an alternate-entry-point
2042 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2043 LABEL_KIND != LABEL_NORMAL.
2045 The case fall-through in this function is intentional. */
2047 output_alternate_entry_point (FILE *file
, rtx insn
)
2049 const char *name
= LABEL_NAME (insn
);
2051 switch (LABEL_KIND (insn
))
2053 case LABEL_WEAK_ENTRY
:
2054 #ifdef ASM_WEAKEN_LABEL
2055 ASM_WEAKEN_LABEL (file
, name
);
2057 case LABEL_GLOBAL_ENTRY
:
2058 targetm
.asm_out
.globalize_label (file
, name
);
2059 case LABEL_STATIC_ENTRY
:
2060 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2061 ASM_OUTPUT_TYPE_DIRECTIVE (file
, name
, "function");
2063 ASM_OUTPUT_LABEL (file
, name
);
2072 /* Given a CALL_INSN, find and return the nested CALL. */
2074 call_from_call_insn (rtx insn
)
2077 gcc_assert (CALL_P (insn
));
2080 while (GET_CODE (x
) != CALL
)
2082 switch (GET_CODE (x
))
2087 x
= COND_EXEC_CODE (x
);
2090 x
= XVECEXP (x
, 0, 0);
2100 /* The final scan for one insn, INSN.
2101 Args are same as in `final', except that INSN
2102 is the insn being scanned.
2103 Value returned is the next insn to be scanned.
2105 NOPEEPHOLES is the flag to disallow peephole processing (currently
2106 used for within delayed branch sequence output).
2108 SEEN is used to track the end of the prologue, for emitting
2109 debug information. We force the emission of a line note after
2110 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
2111 at the beginning of the second basic block, whichever comes
2115 final_scan_insn (rtx insn
, FILE *file
, int optimize_p ATTRIBUTE_UNUSED
,
2116 int nopeepholes ATTRIBUTE_UNUSED
, int *seen
)
2125 /* Ignore deleted insns. These can occur when we split insns (due to a
2126 template of "#") while not optimizing. */
2127 if (INSN_DELETED_P (insn
))
2128 return NEXT_INSN (insn
);
2130 switch (GET_CODE (insn
))
2133 switch (NOTE_KIND (insn
))
2135 case NOTE_INSN_DELETED
:
2138 case NOTE_INSN_SWITCH_TEXT_SECTIONS
:
2139 in_cold_section_p
= !in_cold_section_p
;
2141 if (dwarf2out_do_frame ())
2142 dwarf2out_switch_text_section ();
2143 else if (!DECL_IGNORED_P (current_function_decl
))
2144 debug_hooks
->switch_text_section ();
2146 switch_to_section (current_function_section ());
2147 targetm
.asm_out
.function_switched_text_sections (asm_out_file
,
2148 current_function_decl
,
2152 case NOTE_INSN_BASIC_BLOCK
:
2153 if (need_profile_function
)
2155 profile_function (asm_out_file
);
2156 need_profile_function
= false;
2159 if (targetm
.asm_out
.unwind_emit
)
2160 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2162 if ((*seen
& (SEEN_EMITTED
| SEEN_BB
)) == SEEN_BB
)
2164 *seen
|= SEEN_EMITTED
;
2165 force_source_line
= true;
2170 discriminator
= NOTE_BASIC_BLOCK (insn
)->discriminator
;
2174 case NOTE_INSN_EH_REGION_BEG
:
2175 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHB",
2176 NOTE_EH_HANDLER (insn
));
2179 case NOTE_INSN_EH_REGION_END
:
2180 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LEHE",
2181 NOTE_EH_HANDLER (insn
));
2184 case NOTE_INSN_PROLOGUE_END
:
2185 targetm
.asm_out
.function_end_prologue (file
);
2186 profile_after_prologue (file
);
2188 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2190 *seen
|= SEEN_EMITTED
;
2191 force_source_line
= true;
2198 case NOTE_INSN_EPILOGUE_BEG
:
2199 if (!DECL_IGNORED_P (current_function_decl
))
2200 (*debug_hooks
->begin_epilogue
) (last_linenum
, last_filename
);
2201 targetm
.asm_out
.function_begin_epilogue (file
);
2205 dwarf2out_emit_cfi (NOTE_CFI (insn
));
2208 case NOTE_INSN_CFI_LABEL
:
2209 ASM_OUTPUT_DEBUG_LABEL (asm_out_file
, "LCFI",
2210 NOTE_LABEL_NUMBER (insn
));
2213 case NOTE_INSN_FUNCTION_BEG
:
2214 if (need_profile_function
)
2216 profile_function (asm_out_file
);
2217 need_profile_function
= false;
2221 if (!DECL_IGNORED_P (current_function_decl
))
2222 debug_hooks
->end_prologue (last_linenum
, last_filename
);
2224 if ((*seen
& (SEEN_EMITTED
| SEEN_NOTE
)) == SEEN_NOTE
)
2226 *seen
|= SEEN_EMITTED
;
2227 force_source_line
= true;
2234 case NOTE_INSN_BLOCK_BEG
:
2235 if (debug_info_level
== DINFO_LEVEL_NORMAL
2236 || debug_info_level
== DINFO_LEVEL_VERBOSE
2237 || write_symbols
== DWARF2_DEBUG
2238 || write_symbols
== VMS_AND_DWARF2_DEBUG
2239 || write_symbols
== VMS_DEBUG
)
2241 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2245 high_block_linenum
= last_linenum
;
2247 /* Output debugging info about the symbol-block beginning. */
2248 if (!DECL_IGNORED_P (current_function_decl
))
2249 debug_hooks
->begin_block (last_linenum
, n
);
2251 /* Mark this block as output. */
2252 TREE_ASM_WRITTEN (NOTE_BLOCK (insn
)) = 1;
2254 if (write_symbols
== DBX_DEBUG
2255 || write_symbols
== SDB_DEBUG
)
2257 location_t
*locus_ptr
2258 = block_nonartificial_location (NOTE_BLOCK (insn
));
2260 if (locus_ptr
!= NULL
)
2262 override_filename
= LOCATION_FILE (*locus_ptr
);
2263 override_linenum
= LOCATION_LINE (*locus_ptr
);
2268 case NOTE_INSN_BLOCK_END
:
2269 if (debug_info_level
== DINFO_LEVEL_NORMAL
2270 || debug_info_level
== DINFO_LEVEL_VERBOSE
2271 || write_symbols
== DWARF2_DEBUG
2272 || write_symbols
== VMS_AND_DWARF2_DEBUG
2273 || write_symbols
== VMS_DEBUG
)
2275 int n
= BLOCK_NUMBER (NOTE_BLOCK (insn
));
2279 /* End of a symbol-block. */
2281 gcc_assert (block_depth
>= 0);
2283 if (!DECL_IGNORED_P (current_function_decl
))
2284 debug_hooks
->end_block (high_block_linenum
, n
);
2286 if (write_symbols
== DBX_DEBUG
2287 || write_symbols
== SDB_DEBUG
)
2289 tree outer_block
= BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn
));
2290 location_t
*locus_ptr
2291 = block_nonartificial_location (outer_block
);
2293 if (locus_ptr
!= NULL
)
2295 override_filename
= LOCATION_FILE (*locus_ptr
);
2296 override_linenum
= LOCATION_LINE (*locus_ptr
);
2300 override_filename
= NULL
;
2301 override_linenum
= 0;
2306 case NOTE_INSN_DELETED_LABEL
:
2307 /* Emit the label. We may have deleted the CODE_LABEL because
2308 the label could be proved to be unreachable, though still
2309 referenced (in the form of having its address taken. */
2310 ASM_OUTPUT_DEBUG_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
));
2313 case NOTE_INSN_DELETED_DEBUG_LABEL
:
2314 /* Similarly, but need to use different namespace for it. */
2315 if (CODE_LABEL_NUMBER (insn
) != -1)
2316 ASM_OUTPUT_DEBUG_LABEL (file
, "LDL", CODE_LABEL_NUMBER (insn
));
2319 case NOTE_INSN_VAR_LOCATION
:
2320 case NOTE_INSN_CALL_ARG_LOCATION
:
2321 if (!DECL_IGNORED_P (current_function_decl
))
2322 debug_hooks
->var_location (insn
);
2335 /* The target port might emit labels in the output function for
2336 some insn, e.g. sh.c output_branchy_insn. */
2337 if (CODE_LABEL_NUMBER (insn
) <= max_labelno
)
2339 int align
= LABEL_TO_ALIGNMENT (insn
);
2340 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2341 int max_skip
= LABEL_TO_MAX_SKIP (insn
);
2344 if (align
&& NEXT_INSN (insn
))
2346 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2347 ASM_OUTPUT_MAX_SKIP_ALIGN (file
, align
, max_skip
);
2349 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2350 ASM_OUTPUT_ALIGN_WITH_NOP (file
, align
);
2352 ASM_OUTPUT_ALIGN (file
, align
);
2359 if (!DECL_IGNORED_P (current_function_decl
) && LABEL_NAME (insn
))
2360 debug_hooks
->label (insn
);
2364 next
= next_nonnote_insn (insn
);
2365 /* If this label is followed by a jump-table, make sure we put
2366 the label in the read-only section. Also possibly write the
2367 label and jump table together. */
2368 if (next
!= 0 && JUMP_TABLE_DATA_P (next
))
2370 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2371 /* In this case, the case vector is being moved by the
2372 target, so don't output the label at all. Leave that
2373 to the back end macros. */
2375 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2379 switch_to_section (targetm
.asm_out
.function_rodata_section
2380 (current_function_decl
));
2382 #ifdef ADDR_VEC_ALIGN
2383 log_align
= ADDR_VEC_ALIGN (next
);
2385 log_align
= exact_log2 (BIGGEST_ALIGNMENT
/ BITS_PER_UNIT
);
2387 ASM_OUTPUT_ALIGN (file
, log_align
);
2390 switch_to_section (current_function_section ());
2392 #ifdef ASM_OUTPUT_CASE_LABEL
2393 ASM_OUTPUT_CASE_LABEL (file
, "L", CODE_LABEL_NUMBER (insn
),
2396 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2401 if (LABEL_ALT_ENTRY_P (insn
))
2402 output_alternate_entry_point (file
, insn
);
2404 targetm
.asm_out
.internal_label (file
, "L", CODE_LABEL_NUMBER (insn
));
2409 rtx body
= PATTERN (insn
);
2410 int insn_code_number
;
2414 /* Reset this early so it is correct for ASM statements. */
2415 current_insn_predicate
= NULL_RTX
;
2417 /* An INSN, JUMP_INSN or CALL_INSN.
2418 First check for special kinds that recog doesn't recognize. */
2420 if (GET_CODE (body
) == USE
/* These are just declarations. */
2421 || GET_CODE (body
) == CLOBBER
)
2426 /* If there is a REG_CC_SETTER note on this insn, it means that
2427 the setting of the condition code was done in the delay slot
2428 of the insn that branched here. So recover the cc status
2429 from the insn that set it. */
2431 rtx note
= find_reg_note (insn
, REG_CC_SETTER
, NULL_RTX
);
2434 NOTICE_UPDATE_CC (PATTERN (XEXP (note
, 0)), XEXP (note
, 0));
2435 cc_prev_status
= cc_status
;
2440 /* Detect insns that are really jump-tables
2441 and output them as such. */
2443 if (JUMP_TABLE_DATA_P (insn
))
2445 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2449 if (! JUMP_TABLES_IN_TEXT_SECTION
)
2450 switch_to_section (targetm
.asm_out
.function_rodata_section
2451 (current_function_decl
));
2453 switch_to_section (current_function_section ());
2457 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2458 if (GET_CODE (body
) == ADDR_VEC
)
2460 #ifdef ASM_OUTPUT_ADDR_VEC
2461 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn
), body
);
2468 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2469 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn
), body
);
2475 vlen
= XVECLEN (body
, GET_CODE (body
) == ADDR_DIFF_VEC
);
2476 for (idx
= 0; idx
< vlen
; idx
++)
2478 if (GET_CODE (body
) == ADDR_VEC
)
2480 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2481 ASM_OUTPUT_ADDR_VEC_ELT
2482 (file
, CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 0, idx
), 0)));
2489 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2490 ASM_OUTPUT_ADDR_DIFF_ELT
2493 CODE_LABEL_NUMBER (XEXP (XVECEXP (body
, 1, idx
), 0)),
2494 CODE_LABEL_NUMBER (XEXP (XEXP (body
, 0), 0)));
2500 #ifdef ASM_OUTPUT_CASE_END
2501 ASM_OUTPUT_CASE_END (file
,
2502 CODE_LABEL_NUMBER (PREV_INSN (insn
)),
2507 switch_to_section (current_function_section ());
2511 /* Output this line note if it is the first or the last line
2513 if (!DECL_IGNORED_P (current_function_decl
)
2514 && notice_source_line (insn
, &is_stmt
))
2515 (*debug_hooks
->source_line
) (last_linenum
, last_filename
,
2516 last_discriminator
, is_stmt
);
2518 if (GET_CODE (body
) == ASM_INPUT
)
2520 const char *string
= XSTR (body
, 0);
2522 /* There's no telling what that did to the condition codes. */
2527 expanded_location loc
;
2530 loc
= expand_location (ASM_INPUT_SOURCE_LOCATION (body
));
2531 if (*loc
.file
&& loc
.line
)
2532 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2533 ASM_COMMENT_START
, loc
.line
, loc
.file
);
2534 fprintf (asm_out_file
, "\t%s\n", string
);
2535 #if HAVE_AS_LINE_ZERO
2536 if (*loc
.file
&& loc
.line
)
2537 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2543 /* Detect `asm' construct with operands. */
2544 if (asm_noperands (body
) >= 0)
2546 unsigned int noperands
= asm_noperands (body
);
2547 rtx
*ops
= XALLOCAVEC (rtx
, noperands
);
2550 expanded_location expanded
;
2552 /* There's no telling what that did to the condition codes. */
2555 /* Get out the operand values. */
2556 string
= decode_asm_operands (body
, ops
, NULL
, NULL
, NULL
, &loc
);
2557 /* Inhibit dying on what would otherwise be compiler bugs. */
2558 insn_noperands
= noperands
;
2559 this_is_asm_operands
= insn
;
2560 expanded
= expand_location (loc
);
2562 #ifdef FINAL_PRESCAN_INSN
2563 FINAL_PRESCAN_INSN (insn
, ops
, insn_noperands
);
2566 /* Output the insn using them. */
2570 if (expanded
.file
&& expanded
.line
)
2571 fprintf (asm_out_file
, "%s %i \"%s\" 1\n",
2572 ASM_COMMENT_START
, expanded
.line
, expanded
.file
);
2573 output_asm_insn (string
, ops
);
2574 #if HAVE_AS_LINE_ZERO
2575 if (expanded
.file
&& expanded
.line
)
2576 fprintf (asm_out_file
, "%s 0 \"\" 2\n", ASM_COMMENT_START
);
2580 if (targetm
.asm_out
.final_postscan_insn
)
2581 targetm
.asm_out
.final_postscan_insn (file
, insn
, ops
,
2584 this_is_asm_operands
= 0;
2590 if (GET_CODE (body
) == SEQUENCE
)
2592 /* A delayed-branch sequence */
2595 final_sequence
= body
;
2597 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2598 force the restoration of a comparison that was previously
2599 thought unnecessary. If that happens, cancel this sequence
2600 and cause that insn to be restored. */
2602 next
= final_scan_insn (XVECEXP (body
, 0, 0), file
, 0, 1, seen
);
2603 if (next
!= XVECEXP (body
, 0, 1))
2609 for (i
= 1; i
< XVECLEN (body
, 0); i
++)
2611 rtx insn
= XVECEXP (body
, 0, i
);
2612 rtx next
= NEXT_INSN (insn
);
2613 /* We loop in case any instruction in a delay slot gets
2616 insn
= final_scan_insn (insn
, file
, 0, 1, seen
);
2617 while (insn
!= next
);
2619 #ifdef DBR_OUTPUT_SEQEND
2620 DBR_OUTPUT_SEQEND (file
);
2624 /* If the insn requiring the delay slot was a CALL_INSN, the
2625 insns in the delay slot are actually executed before the
2626 called function. Hence we don't preserve any CC-setting
2627 actions in these insns and the CC must be marked as being
2628 clobbered by the function. */
2629 if (CALL_P (XVECEXP (body
, 0, 0)))
2636 /* We have a real machine instruction as rtl. */
2638 body
= PATTERN (insn
);
2641 set
= single_set (insn
);
2643 /* Check for redundant test and compare instructions
2644 (when the condition codes are already set up as desired).
2645 This is done only when optimizing; if not optimizing,
2646 it should be possible for the user to alter a variable
2647 with the debugger in between statements
2648 and the next statement should reexamine the variable
2649 to compute the condition codes. */
2654 && GET_CODE (SET_DEST (set
)) == CC0
2655 && insn
!= last_ignored_compare
)
2658 if (GET_CODE (SET_SRC (set
)) == SUBREG
)
2659 SET_SRC (set
) = alter_subreg (&SET_SRC (set
), true);
2661 src1
= SET_SRC (set
);
2663 if (GET_CODE (SET_SRC (set
)) == COMPARE
)
2665 if (GET_CODE (XEXP (SET_SRC (set
), 0)) == SUBREG
)
2666 XEXP (SET_SRC (set
), 0)
2667 = alter_subreg (&XEXP (SET_SRC (set
), 0), true);
2668 if (GET_CODE (XEXP (SET_SRC (set
), 1)) == SUBREG
)
2669 XEXP (SET_SRC (set
), 1)
2670 = alter_subreg (&XEXP (SET_SRC (set
), 1), true);
2671 if (XEXP (SET_SRC (set
), 1)
2672 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set
), 0))))
2673 src2
= XEXP (SET_SRC (set
), 0);
2675 if ((cc_status
.value1
!= 0
2676 && rtx_equal_p (src1
, cc_status
.value1
))
2677 || (cc_status
.value2
!= 0
2678 && rtx_equal_p (src1
, cc_status
.value2
))
2679 || (src2
!= 0 && cc_status
.value1
!= 0
2680 && rtx_equal_p (src2
, cc_status
.value1
))
2681 || (src2
!= 0 && cc_status
.value2
!= 0
2682 && rtx_equal_p (src2
, cc_status
.value2
)))
2684 /* Don't delete insn if it has an addressing side-effect. */
2685 if (! FIND_REG_INC_NOTE (insn
, NULL_RTX
)
2686 /* or if anything in it is volatile. */
2687 && ! volatile_refs_p (PATTERN (insn
)))
2689 /* We don't really delete the insn; just ignore it. */
2690 last_ignored_compare
= insn
;
2697 /* If this is a conditional branch, maybe modify it
2698 if the cc's are in a nonstandard state
2699 so that it accomplishes the same thing that it would
2700 do straightforwardly if the cc's were set up normally. */
2702 if (cc_status
.flags
!= 0
2704 && GET_CODE (body
) == SET
2705 && SET_DEST (body
) == pc_rtx
2706 && GET_CODE (SET_SRC (body
)) == IF_THEN_ELSE
2707 && COMPARISON_P (XEXP (SET_SRC (body
), 0))
2708 && XEXP (XEXP (SET_SRC (body
), 0), 0) == cc0_rtx
)
2710 /* This function may alter the contents of its argument
2711 and clear some of the cc_status.flags bits.
2712 It may also return 1 meaning condition now always true
2713 or -1 meaning condition now always false
2714 or 2 meaning condition nontrivial but altered. */
2715 int result
= alter_cond (XEXP (SET_SRC (body
), 0));
2716 /* If condition now has fixed value, replace the IF_THEN_ELSE
2717 with its then-operand or its else-operand. */
2719 SET_SRC (body
) = XEXP (SET_SRC (body
), 1);
2721 SET_SRC (body
) = XEXP (SET_SRC (body
), 2);
2723 /* The jump is now either unconditional or a no-op.
2724 If it has become a no-op, don't try to output it.
2725 (It would not be recognized.) */
2726 if (SET_SRC (body
) == pc_rtx
)
2731 else if (ANY_RETURN_P (SET_SRC (body
)))
2732 /* Replace (set (pc) (return)) with (return). */
2733 PATTERN (insn
) = body
= SET_SRC (body
);
2735 /* Rerecognize the instruction if it has changed. */
2737 INSN_CODE (insn
) = -1;
2740 /* If this is a conditional trap, maybe modify it if the cc's
2741 are in a nonstandard state so that it accomplishes the same
2742 thing that it would do straightforwardly if the cc's were
2744 if (cc_status
.flags
!= 0
2745 && NONJUMP_INSN_P (insn
)
2746 && GET_CODE (body
) == TRAP_IF
2747 && COMPARISON_P (TRAP_CONDITION (body
))
2748 && XEXP (TRAP_CONDITION (body
), 0) == cc0_rtx
)
2750 /* This function may alter the contents of its argument
2751 and clear some of the cc_status.flags bits.
2752 It may also return 1 meaning condition now always true
2753 or -1 meaning condition now always false
2754 or 2 meaning condition nontrivial but altered. */
2755 int result
= alter_cond (TRAP_CONDITION (body
));
2757 /* If TRAP_CONDITION has become always false, delete the
2765 /* If TRAP_CONDITION has become always true, replace
2766 TRAP_CONDITION with const_true_rtx. */
2768 TRAP_CONDITION (body
) = const_true_rtx
;
2770 /* Rerecognize the instruction if it has changed. */
2772 INSN_CODE (insn
) = -1;
2775 /* Make same adjustments to instructions that examine the
2776 condition codes without jumping and instructions that
2777 handle conditional moves (if this machine has either one). */
2779 if (cc_status
.flags
!= 0
2782 rtx cond_rtx
, then_rtx
, else_rtx
;
2785 && GET_CODE (SET_SRC (set
)) == IF_THEN_ELSE
)
2787 cond_rtx
= XEXP (SET_SRC (set
), 0);
2788 then_rtx
= XEXP (SET_SRC (set
), 1);
2789 else_rtx
= XEXP (SET_SRC (set
), 2);
2793 cond_rtx
= SET_SRC (set
);
2794 then_rtx
= const_true_rtx
;
2795 else_rtx
= const0_rtx
;
2798 if (COMPARISON_P (cond_rtx
)
2799 && XEXP (cond_rtx
, 0) == cc0_rtx
)
2802 result
= alter_cond (cond_rtx
);
2804 validate_change (insn
, &SET_SRC (set
), then_rtx
, 0);
2805 else if (result
== -1)
2806 validate_change (insn
, &SET_SRC (set
), else_rtx
, 0);
2807 else if (result
== 2)
2808 INSN_CODE (insn
) = -1;
2809 if (SET_DEST (set
) == SET_SRC (set
))
2816 #ifdef HAVE_peephole
2817 /* Do machine-specific peephole optimizations if desired. */
2819 if (optimize_p
&& !flag_no_peephole
&& !nopeepholes
)
2821 rtx next
= peephole (insn
);
2822 /* When peepholing, if there were notes within the peephole,
2823 emit them before the peephole. */
2824 if (next
!= 0 && next
!= NEXT_INSN (insn
))
2826 rtx note
, prev
= PREV_INSN (insn
);
2828 for (note
= NEXT_INSN (insn
); note
!= next
;
2829 note
= NEXT_INSN (note
))
2830 final_scan_insn (note
, file
, optimize_p
, nopeepholes
, seen
);
2832 /* Put the notes in the proper position for a later
2833 rescan. For example, the SH target can do this
2834 when generating a far jump in a delayed branch
2836 note
= NEXT_INSN (insn
);
2837 PREV_INSN (note
) = prev
;
2838 NEXT_INSN (prev
) = note
;
2839 NEXT_INSN (PREV_INSN (next
)) = insn
;
2840 PREV_INSN (insn
) = PREV_INSN (next
);
2841 NEXT_INSN (insn
) = next
;
2842 PREV_INSN (next
) = insn
;
2845 /* PEEPHOLE might have changed this. */
2846 body
= PATTERN (insn
);
2850 /* Try to recognize the instruction.
2851 If successful, verify that the operands satisfy the
2852 constraints for the instruction. Crash if they don't,
2853 since `reload' should have changed them so that they do. */
2855 insn_code_number
= recog_memoized (insn
);
2856 cleanup_subreg_operands (insn
);
2858 /* Dump the insn in the assembly for debugging (-dAP).
2859 If the final dump is requested as slim RTL, dump slim
2860 RTL to the assembly file also. */
2861 if (flag_dump_rtl_in_asm
)
2863 print_rtx_head
= ASM_COMMENT_START
;
2864 if (! (dump_flags
& TDF_SLIM
))
2865 print_rtl_single (asm_out_file
, insn
);
2867 dump_insn_slim (asm_out_file
, insn
);
2868 print_rtx_head
= "";
2871 if (! constrain_operands_cached (1))
2872 fatal_insn_not_found (insn
);
2874 /* Some target machines need to prescan each insn before
2877 #ifdef FINAL_PRESCAN_INSN
2878 FINAL_PRESCAN_INSN (insn
, recog_data
.operand
, recog_data
.n_operands
);
2881 if (targetm
.have_conditional_execution ()
2882 && GET_CODE (PATTERN (insn
)) == COND_EXEC
)
2883 current_insn_predicate
= COND_EXEC_TEST (PATTERN (insn
));
2886 cc_prev_status
= cc_status
;
2888 /* Update `cc_status' for this instruction.
2889 The instruction's output routine may change it further.
2890 If the output routine for a jump insn needs to depend
2891 on the cc status, it should look at cc_prev_status. */
2893 NOTICE_UPDATE_CC (body
, insn
);
2896 current_output_insn
= debug_insn
= insn
;
2898 /* Find the proper template for this insn. */
2899 templ
= get_insn_template (insn_code_number
, insn
);
2901 /* If the C code returns 0, it means that it is a jump insn
2902 which follows a deleted test insn, and that test insn
2903 needs to be reinserted. */
2908 gcc_assert (prev_nonnote_insn (insn
) == last_ignored_compare
);
2910 /* We have already processed the notes between the setter and
2911 the user. Make sure we don't process them again, this is
2912 particularly important if one of the notes is a block
2913 scope note or an EH note. */
2915 prev
!= last_ignored_compare
;
2916 prev
= PREV_INSN (prev
))
2919 delete_insn (prev
); /* Use delete_note. */
2925 /* If the template is the string "#", it means that this insn must
2927 if (templ
[0] == '#' && templ
[1] == '\0')
2929 rtx new_rtx
= try_split (body
, insn
, 0);
2931 /* If we didn't split the insn, go away. */
2932 if (new_rtx
== insn
&& PATTERN (new_rtx
) == body
)
2933 fatal_insn ("could not split insn", insn
);
2935 /* If we have a length attribute, this instruction should have
2936 been split in shorten_branches, to ensure that we would have
2937 valid length info for the splitees. */
2938 gcc_assert (!HAVE_ATTR_length
);
2943 /* ??? This will put the directives in the wrong place if
2944 get_insn_template outputs assembly directly. However calling it
2945 before get_insn_template breaks if the insns is split. */
2946 if (targetm
.asm_out
.unwind_emit_before_insn
2947 && targetm
.asm_out
.unwind_emit
)
2948 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2952 rtx x
= call_from_call_insn (insn
);
2954 if (x
&& MEM_P (x
) && GET_CODE (XEXP (x
, 0)) == SYMBOL_REF
)
2958 t
= SYMBOL_REF_DECL (x
);
2960 assemble_external (t
);
2962 if (!DECL_IGNORED_P (current_function_decl
))
2963 debug_hooks
->var_location (insn
);
2966 /* Output assembler code from the template. */
2967 output_asm_insn (templ
, recog_data
.operand
);
2969 /* Some target machines need to postscan each insn after
2971 if (targetm
.asm_out
.final_postscan_insn
)
2972 targetm
.asm_out
.final_postscan_insn (file
, insn
, recog_data
.operand
,
2973 recog_data
.n_operands
);
2975 if (!targetm
.asm_out
.unwind_emit_before_insn
2976 && targetm
.asm_out
.unwind_emit
)
2977 targetm
.asm_out
.unwind_emit (asm_out_file
, insn
);
2979 current_output_insn
= debug_insn
= 0;
2982 return NEXT_INSN (insn
);
2985 /* Return whether a source line note needs to be emitted before INSN.
2986 Sets IS_STMT to TRUE if the line should be marked as a possible
2987 breakpoint location. */
2990 notice_source_line (rtx insn
, bool *is_stmt
)
2992 const char *filename
;
2995 if (override_filename
)
2997 filename
= override_filename
;
2998 linenum
= override_linenum
;
3002 filename
= insn_file (insn
);
3003 linenum
= insn_line (insn
);
3006 if (filename
== NULL
)
3009 if (force_source_line
3010 || filename
!= last_filename
3011 || last_linenum
!= linenum
)
3013 force_source_line
= false;
3014 last_filename
= filename
;
3015 last_linenum
= linenum
;
3016 last_discriminator
= discriminator
;
3018 high_block_linenum
= MAX (last_linenum
, high_block_linenum
);
3019 high_function_linenum
= MAX (last_linenum
, high_function_linenum
);
3023 if (SUPPORTS_DISCRIMINATOR
&& last_discriminator
!= discriminator
)
3025 /* If the discriminator changed, but the line number did not,
3026 output the line table entry with is_stmt false so the
3027 debugger does not treat this as a breakpoint location. */
3028 last_discriminator
= discriminator
;
3036 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3037 directly to the desired hard register. */
3040 cleanup_subreg_operands (rtx insn
)
3043 bool changed
= false;
3044 extract_insn_cached (insn
);
3045 for (i
= 0; i
< recog_data
.n_operands
; i
++)
3047 /* The following test cannot use recog_data.operand when testing
3048 for a SUBREG: the underlying object might have been changed
3049 already if we are inside a match_operator expression that
3050 matches the else clause. Instead we test the underlying
3051 expression directly. */
3052 if (GET_CODE (*recog_data
.operand_loc
[i
]) == SUBREG
)
3054 recog_data
.operand
[i
] = alter_subreg (recog_data
.operand_loc
[i
], true);
3057 else if (GET_CODE (recog_data
.operand
[i
]) == PLUS
3058 || GET_CODE (recog_data
.operand
[i
]) == MULT
3059 || MEM_P (recog_data
.operand
[i
]))
3060 recog_data
.operand
[i
] = walk_alter_subreg (recog_data
.operand_loc
[i
], &changed
);
3063 for (i
= 0; i
< recog_data
.n_dups
; i
++)
3065 if (GET_CODE (*recog_data
.dup_loc
[i
]) == SUBREG
)
3067 *recog_data
.dup_loc
[i
] = alter_subreg (recog_data
.dup_loc
[i
], true);
3070 else if (GET_CODE (*recog_data
.dup_loc
[i
]) == PLUS
3071 || GET_CODE (*recog_data
.dup_loc
[i
]) == MULT
3072 || MEM_P (*recog_data
.dup_loc
[i
]))
3073 *recog_data
.dup_loc
[i
] = walk_alter_subreg (recog_data
.dup_loc
[i
], &changed
);
3076 df_insn_rescan (insn
);
3079 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3080 the thing it is a subreg of. Do it anyway if FINAL_P. */
3083 alter_subreg (rtx
*xp
, bool final_p
)
3086 rtx y
= SUBREG_REG (x
);
3088 /* simplify_subreg does not remove subreg from volatile references.
3089 We are required to. */
3092 int offset
= SUBREG_BYTE (x
);
3094 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3095 contains 0 instead of the proper offset. See simplify_subreg. */
3097 && GET_MODE_SIZE (GET_MODE (y
)) < GET_MODE_SIZE (GET_MODE (x
)))
3099 int difference
= GET_MODE_SIZE (GET_MODE (y
))
3100 - GET_MODE_SIZE (GET_MODE (x
));
3101 if (WORDS_BIG_ENDIAN
)
3102 offset
+= (difference
/ UNITS_PER_WORD
) * UNITS_PER_WORD
;
3103 if (BYTES_BIG_ENDIAN
)
3104 offset
+= difference
% UNITS_PER_WORD
;
3108 *xp
= adjust_address (y
, GET_MODE (x
), offset
);
3110 *xp
= adjust_address_nv (y
, GET_MODE (x
), offset
);
3114 rtx new_rtx
= simplify_subreg (GET_MODE (x
), y
, GET_MODE (y
),
3119 else if (final_p
&& REG_P (y
))
3121 /* Simplify_subreg can't handle some REG cases, but we have to. */
3123 HOST_WIDE_INT offset
;
3125 regno
= subreg_regno (x
);
3126 if (subreg_lowpart_p (x
))
3127 offset
= byte_lowpart_offset (GET_MODE (x
), GET_MODE (y
));
3129 offset
= SUBREG_BYTE (x
);
3130 *xp
= gen_rtx_REG_offset (y
, GET_MODE (x
), regno
, offset
);
3137 /* Do alter_subreg on all the SUBREGs contained in X. */
3140 walk_alter_subreg (rtx
*xp
, bool *changed
)
3143 switch (GET_CODE (x
))
3148 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3149 XEXP (x
, 1) = walk_alter_subreg (&XEXP (x
, 1), changed
);
3154 XEXP (x
, 0) = walk_alter_subreg (&XEXP (x
, 0), changed
);
3159 return alter_subreg (xp
, true);
3170 /* Given BODY, the body of a jump instruction, alter the jump condition
3171 as required by the bits that are set in cc_status.flags.
3172 Not all of the bits there can be handled at this level in all cases.
3174 The value is normally 0.
3175 1 means that the condition has become always true.
3176 -1 means that the condition has become always false.
3177 2 means that COND has been altered. */
3180 alter_cond (rtx cond
)
3184 if (cc_status
.flags
& CC_REVERSED
)
3187 PUT_CODE (cond
, swap_condition (GET_CODE (cond
)));
3190 if (cc_status
.flags
& CC_INVERTED
)
3193 PUT_CODE (cond
, reverse_condition (GET_CODE (cond
)));
3196 if (cc_status
.flags
& CC_NOT_POSITIVE
)
3197 switch (GET_CODE (cond
))
3202 /* Jump becomes unconditional. */
3208 /* Jump becomes no-op. */
3212 PUT_CODE (cond
, EQ
);
3217 PUT_CODE (cond
, NE
);
3225 if (cc_status
.flags
& CC_NOT_NEGATIVE
)
3226 switch (GET_CODE (cond
))
3230 /* Jump becomes unconditional. */
3235 /* Jump becomes no-op. */
3240 PUT_CODE (cond
, EQ
);
3246 PUT_CODE (cond
, NE
);
3254 if (cc_status
.flags
& CC_NO_OVERFLOW
)
3255 switch (GET_CODE (cond
))
3258 /* Jump becomes unconditional. */
3262 PUT_CODE (cond
, EQ
);
3267 PUT_CODE (cond
, NE
);
3272 /* Jump becomes no-op. */
3279 if (cc_status
.flags
& (CC_Z_IN_NOT_N
| CC_Z_IN_N
))
3280 switch (GET_CODE (cond
))
3286 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? GE
: LT
);
3291 PUT_CODE (cond
, cc_status
.flags
& CC_Z_IN_N
? LT
: GE
);
3296 if (cc_status
.flags
& CC_NOT_SIGNED
)
3297 /* The flags are valid if signed condition operators are converted
3299 switch (GET_CODE (cond
))
3302 PUT_CODE (cond
, LEU
);
3307 PUT_CODE (cond
, LTU
);
3312 PUT_CODE (cond
, GTU
);
3317 PUT_CODE (cond
, GEU
);
3329 /* Report inconsistency between the assembler template and the operands.
3330 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3333 output_operand_lossage (const char *cmsgid
, ...)
3337 const char *pfx_str
;
3340 va_start (ap
, cmsgid
);
3342 pfx_str
= this_is_asm_operands
? _("invalid 'asm': ") : "output_operand: ";
3343 asprintf (&fmt_string
, "%s%s", pfx_str
, _(cmsgid
));
3344 vasprintf (&new_message
, fmt_string
, ap
);
3346 if (this_is_asm_operands
)
3347 error_for_asm (this_is_asm_operands
, "%s", new_message
);
3349 internal_error ("%s", new_message
);
3356 /* Output of assembler code from a template, and its subroutines. */
3358 /* Annotate the assembly with a comment describing the pattern and
3359 alternative used. */
3362 output_asm_name (void)
3366 int num
= INSN_CODE (debug_insn
);
3367 fprintf (asm_out_file
, "\t%s %d\t%s",
3368 ASM_COMMENT_START
, INSN_UID (debug_insn
),
3369 insn_data
[num
].name
);
3370 if (insn_data
[num
].n_alternatives
> 1)
3371 fprintf (asm_out_file
, "/%d", which_alternative
+ 1);
3373 if (HAVE_ATTR_length
)
3374 fprintf (asm_out_file
, "\t[length = %d]",
3375 get_attr_length (debug_insn
));
3377 /* Clear this so only the first assembler insn
3378 of any rtl insn will get the special comment for -dp. */
3383 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3384 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3385 corresponds to the address of the object and 0 if to the object. */
3388 get_mem_expr_from_op (rtx op
, int *paddressp
)
3396 return REG_EXPR (op
);
3397 else if (!MEM_P (op
))
3400 if (MEM_EXPR (op
) != 0)
3401 return MEM_EXPR (op
);
3403 /* Otherwise we have an address, so indicate it and look at the address. */
3407 /* First check if we have a decl for the address, then look at the right side
3408 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3409 But don't allow the address to itself be indirect. */
3410 if ((expr
= get_mem_expr_from_op (op
, &inner_addressp
)) && ! inner_addressp
)
3412 else if (GET_CODE (op
) == PLUS
3413 && (expr
= get_mem_expr_from_op (XEXP (op
, 1), &inner_addressp
)))
3417 || GET_RTX_CLASS (GET_CODE (op
)) == RTX_BIN_ARITH
)
3420 expr
= get_mem_expr_from_op (op
, &inner_addressp
);
3421 return inner_addressp
? 0 : expr
;
3424 /* Output operand names for assembler instructions. OPERANDS is the
3425 operand vector, OPORDER is the order to write the operands, and NOPS
3426 is the number of operands to write. */
3429 output_asm_operand_names (rtx
*operands
, int *oporder
, int nops
)
3434 for (i
= 0; i
< nops
; i
++)
3437 rtx op
= operands
[oporder
[i
]];
3438 tree expr
= get_mem_expr_from_op (op
, &addressp
);
3440 fprintf (asm_out_file
, "%c%s",
3441 wrote
? ',' : '\t', wrote
? "" : ASM_COMMENT_START
);
3445 fprintf (asm_out_file
, "%s",
3446 addressp
? "*" : "");
3447 print_mem_expr (asm_out_file
, expr
);
3450 else if (REG_P (op
) && ORIGINAL_REGNO (op
)
3451 && ORIGINAL_REGNO (op
) != REGNO (op
))
3452 fprintf (asm_out_file
, " tmp%i", ORIGINAL_REGNO (op
));
3456 #ifdef ASSEMBLER_DIALECT
3457 /* Helper function to parse assembler dialects in the asm string.
3458 This is called from output_asm_insn and asm_fprintf. */
3460 do_assembler_dialects (const char *p
, int *dialect
)
3471 output_operand_lossage ("nested assembly dialect alternatives");
3475 /* If we want the first dialect, do nothing. Otherwise, skip
3476 DIALECT_NUMBER of strings ending with '|'. */
3477 for (i
= 0; i
< dialect_number
; i
++)
3479 while (*p
&& *p
!= '}')
3487 /* Skip over any character after a percent sign. */
3499 output_operand_lossage ("unterminated assembly dialect alternative");
3506 /* Skip to close brace. */
3511 output_operand_lossage ("unterminated assembly dialect alternative");
3515 /* Skip over any character after a percent sign. */
3516 if (*p
== '%' && p
[1])
3530 putc (c
, asm_out_file
);
3535 putc (c
, asm_out_file
);
3546 /* Output text from TEMPLATE to the assembler output file,
3547 obeying %-directions to substitute operands taken from
3548 the vector OPERANDS.
3550 %N (for N a digit) means print operand N in usual manner.
3551 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3552 and print the label name with no punctuation.
3553 %cN means require operand N to be a constant
3554 and print the constant expression with no punctuation.
3555 %aN means expect operand N to be a memory address
3556 (not a memory reference!) and print a reference
3558 %nN means expect operand N to be a constant
3559 and print a constant expression for minus the value
3560 of the operand, with no other punctuation. */
3563 output_asm_insn (const char *templ
, rtx
*operands
)
3567 #ifdef ASSEMBLER_DIALECT
3570 int oporder
[MAX_RECOG_OPERANDS
];
3571 char opoutput
[MAX_RECOG_OPERANDS
];
3574 /* An insn may return a null string template
3575 in a case where no assembler code is needed. */
3579 memset (opoutput
, 0, sizeof opoutput
);
3581 putc ('\t', asm_out_file
);
3583 #ifdef ASM_OUTPUT_OPCODE
3584 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3591 if (flag_verbose_asm
)
3592 output_asm_operand_names (operands
, oporder
, ops
);
3593 if (flag_print_asm_name
)
3597 memset (opoutput
, 0, sizeof opoutput
);
3599 putc (c
, asm_out_file
);
3600 #ifdef ASM_OUTPUT_OPCODE
3601 while ((c
= *p
) == '\t')
3603 putc (c
, asm_out_file
);
3606 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
3610 #ifdef ASSEMBLER_DIALECT
3614 p
= do_assembler_dialects (p
, &dialect
);
3619 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3620 if ASSEMBLER_DIALECT defined and these characters have a special
3621 meaning as dialect delimiters.*/
3623 #ifdef ASSEMBLER_DIALECT
3624 || *p
== '{' || *p
== '}' || *p
== '|'
3628 putc (*p
, asm_out_file
);
3631 /* %= outputs a number which is unique to each insn in the entire
3632 compilation. This is useful for making local labels that are
3633 referred to more than once in a given insn. */
3637 fprintf (asm_out_file
, "%d", insn_counter
);
3639 /* % followed by a letter and some digits
3640 outputs an operand in a special way depending on the letter.
3641 Letters `acln' are implemented directly.
3642 Other letters are passed to `output_operand' so that
3643 the TARGET_PRINT_OPERAND hook can define them. */
3644 else if (ISALPHA (*p
))
3647 unsigned long opnum
;
3650 opnum
= strtoul (p
, &endptr
, 10);
3653 output_operand_lossage ("operand number missing "
3655 else if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3656 output_operand_lossage ("operand number out of range");
3657 else if (letter
== 'l')
3658 output_asm_label (operands
[opnum
]);
3659 else if (letter
== 'a')
3660 output_address (operands
[opnum
]);
3661 else if (letter
== 'c')
3663 if (CONSTANT_ADDRESS_P (operands
[opnum
]))
3664 output_addr_const (asm_out_file
, operands
[opnum
]);
3666 output_operand (operands
[opnum
], 'c');
3668 else if (letter
== 'n')
3670 if (CONST_INT_P (operands
[opnum
]))
3671 fprintf (asm_out_file
, HOST_WIDE_INT_PRINT_DEC
,
3672 - INTVAL (operands
[opnum
]));
3675 putc ('-', asm_out_file
);
3676 output_addr_const (asm_out_file
, operands
[opnum
]);
3680 output_operand (operands
[opnum
], letter
);
3682 if (!opoutput
[opnum
])
3683 oporder
[ops
++] = opnum
;
3684 opoutput
[opnum
] = 1;
3689 /* % followed by a digit outputs an operand the default way. */
3690 else if (ISDIGIT (*p
))
3692 unsigned long opnum
;
3695 opnum
= strtoul (p
, &endptr
, 10);
3696 if (this_is_asm_operands
&& opnum
>= insn_noperands
)
3697 output_operand_lossage ("operand number out of range");
3699 output_operand (operands
[opnum
], 0);
3701 if (!opoutput
[opnum
])
3702 oporder
[ops
++] = opnum
;
3703 opoutput
[opnum
] = 1;
3708 /* % followed by punctuation: output something for that
3709 punctuation character alone, with no operand. The
3710 TARGET_PRINT_OPERAND hook decides what is actually done. */
3711 else if (targetm
.asm_out
.print_operand_punct_valid_p ((unsigned char) *p
))
3712 output_operand (NULL_RTX
, *p
++);
3714 output_operand_lossage ("invalid %%-code");
3718 putc (c
, asm_out_file
);
3721 /* Write out the variable names for operands, if we know them. */
3722 if (flag_verbose_asm
)
3723 output_asm_operand_names (operands
, oporder
, ops
);
3724 if (flag_print_asm_name
)
3727 putc ('\n', asm_out_file
);
3730 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3733 output_asm_label (rtx x
)
3737 if (GET_CODE (x
) == LABEL_REF
)
3741 && NOTE_KIND (x
) == NOTE_INSN_DELETED_LABEL
))
3742 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3744 output_operand_lossage ("'%%l' operand isn't a label");
3746 assemble_name (asm_out_file
, buf
);
3749 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3750 output_operand. Marks SYMBOL_REFs as referenced through use of
3751 assemble_external. */
3754 mark_symbol_ref_as_used (rtx
*xp
, void *dummy ATTRIBUTE_UNUSED
)
3758 /* If we have a used symbol, we may have to emit assembly
3759 annotations corresponding to whether the symbol is external, weak
3760 or has non-default visibility. */
3761 if (GET_CODE (x
) == SYMBOL_REF
)
3765 t
= SYMBOL_REF_DECL (x
);
3767 assemble_external (t
);
3775 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3778 mark_symbol_refs_as_used (rtx x
)
3780 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3783 /* Print operand X using machine-dependent assembler syntax.
3784 CODE is a non-digit that preceded the operand-number in the % spec,
3785 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3786 between the % and the digits.
3787 When CODE is a non-letter, X is 0.
3789 The meanings of the letters are machine-dependent and controlled
3790 by TARGET_PRINT_OPERAND. */
3793 output_operand (rtx x
, int code ATTRIBUTE_UNUSED
)
3795 if (x
&& GET_CODE (x
) == SUBREG
)
3796 x
= alter_subreg (&x
, true);
3798 /* X must not be a pseudo reg. */
3799 gcc_assert (!x
|| !REG_P (x
) || REGNO (x
) < FIRST_PSEUDO_REGISTER
);
3801 targetm
.asm_out
.print_operand (asm_out_file
, x
, code
);
3806 for_each_rtx (&x
, mark_symbol_ref_as_used
, NULL
);
3809 /* Print a memory reference operand for address X using
3810 machine-dependent assembler syntax. */
3813 output_address (rtx x
)
3815 bool changed
= false;
3816 walk_alter_subreg (&x
, &changed
);
3817 targetm
.asm_out
.print_operand_address (asm_out_file
, x
);
3820 /* Print an integer constant expression in assembler syntax.
3821 Addition and subtraction are the only arithmetic
3822 that may appear in these expressions. */
3825 output_addr_const (FILE *file
, rtx x
)
3830 switch (GET_CODE (x
))
3837 if (SYMBOL_REF_DECL (x
))
3838 assemble_external (SYMBOL_REF_DECL (x
));
3839 #ifdef ASM_OUTPUT_SYMBOL_REF
3840 ASM_OUTPUT_SYMBOL_REF (file
, x
);
3842 assemble_name (file
, XSTR (x
, 0));
3850 ASM_GENERATE_INTERNAL_LABEL (buf
, "L", CODE_LABEL_NUMBER (x
));
3851 #ifdef ASM_OUTPUT_LABEL_REF
3852 ASM_OUTPUT_LABEL_REF (file
, buf
);
3854 assemble_name (file
, buf
);
3859 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, INTVAL (x
));
3863 /* This used to output parentheses around the expression,
3864 but that does not work on the 386 (either ATT or BSD assembler). */
3865 output_addr_const (file
, XEXP (x
, 0));
3869 if (GET_MODE (x
) == VOIDmode
)
3871 /* We can use %d if the number is one word and positive. */
3872 if (CONST_DOUBLE_HIGH (x
))
3873 fprintf (file
, HOST_WIDE_INT_PRINT_DOUBLE_HEX
,
3874 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_HIGH (x
),
3875 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3876 else if (CONST_DOUBLE_LOW (x
) < 0)
3877 fprintf (file
, HOST_WIDE_INT_PRINT_HEX
,
3878 (unsigned HOST_WIDE_INT
) CONST_DOUBLE_LOW (x
));
3880 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_DOUBLE_LOW (x
));
3883 /* We can't handle floating point constants;
3884 PRINT_OPERAND must handle them. */
3885 output_operand_lossage ("floating constant misused");
3889 fprintf (file
, HOST_WIDE_INT_PRINT_DEC
, CONST_FIXED_VALUE_LOW (x
));
3893 /* Some assemblers need integer constants to appear last (eg masm). */
3894 if (CONST_INT_P (XEXP (x
, 0)))
3896 output_addr_const (file
, XEXP (x
, 1));
3897 if (INTVAL (XEXP (x
, 0)) >= 0)
3898 fprintf (file
, "+");
3899 output_addr_const (file
, XEXP (x
, 0));
3903 output_addr_const (file
, XEXP (x
, 0));
3904 if (!CONST_INT_P (XEXP (x
, 1))
3905 || INTVAL (XEXP (x
, 1)) >= 0)
3906 fprintf (file
, "+");
3907 output_addr_const (file
, XEXP (x
, 1));
3912 /* Avoid outputting things like x-x or x+5-x,
3913 since some assemblers can't handle that. */
3914 x
= simplify_subtraction (x
);
3915 if (GET_CODE (x
) != MINUS
)
3918 output_addr_const (file
, XEXP (x
, 0));
3919 fprintf (file
, "-");
3920 if ((CONST_INT_P (XEXP (x
, 1)) && INTVAL (XEXP (x
, 1)) >= 0)
3921 || GET_CODE (XEXP (x
, 1)) == PC
3922 || GET_CODE (XEXP (x
, 1)) == SYMBOL_REF
)
3923 output_addr_const (file
, XEXP (x
, 1));
3926 fputs (targetm
.asm_out
.open_paren
, file
);
3927 output_addr_const (file
, XEXP (x
, 1));
3928 fputs (targetm
.asm_out
.close_paren
, file
);
3936 output_addr_const (file
, XEXP (x
, 0));
3940 if (targetm
.asm_out
.output_addr_const_extra (file
, x
))
3943 output_operand_lossage ("invalid expression as operand");
3947 /* Output a quoted string. */
3950 output_quoted_string (FILE *asm_file
, const char *string
)
3952 #ifdef OUTPUT_QUOTED_STRING
3953 OUTPUT_QUOTED_STRING (asm_file
, string
);
3957 putc ('\"', asm_file
);
3958 while ((c
= *string
++) != 0)
3962 if (c
== '\"' || c
== '\\')
3963 putc ('\\', asm_file
);
3967 fprintf (asm_file
, "\\%03o", (unsigned char) c
);
3969 putc ('\"', asm_file
);
3973 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
3976 fprint_whex (FILE *f
, unsigned HOST_WIDE_INT value
)
3978 char buf
[2 + CHAR_BIT
* sizeof (value
) / 4];
3983 char *p
= buf
+ sizeof (buf
);
3985 *--p
= "0123456789abcdef"[value
% 16];
3986 while ((value
/= 16) != 0);
3989 fwrite (p
, 1, buf
+ sizeof (buf
) - p
, f
);
3993 /* Internal function that prints an unsigned long in decimal in reverse.
3994 The output string IS NOT null-terminated. */
3997 sprint_ul_rev (char *s
, unsigned long value
)
4002 s
[i
] = "0123456789"[value
% 10];
4005 /* alternate version, without modulo */
4006 /* oldval = value; */
4008 /* s[i] = "0123456789" [oldval - 10*value]; */
4015 /* Write an unsigned long as decimal to a file, fast. */
4018 fprint_ul (FILE *f
, unsigned long value
)
4020 /* python says: len(str(2**64)) == 20 */
4024 i
= sprint_ul_rev (s
, value
);
4026 /* It's probably too small to bother with string reversal and fputs. */
4035 /* Write an unsigned long as decimal to a string, fast.
4036 s must be wide enough to not overflow, at least 21 chars.
4037 Returns the length of the string (without terminating '\0'). */
4040 sprint_ul (char *s
, unsigned long value
)
4047 len
= sprint_ul_rev (s
, value
);
4050 /* Reverse the string. */
4064 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4065 %R prints the value of REGISTER_PREFIX.
4066 %L prints the value of LOCAL_LABEL_PREFIX.
4067 %U prints the value of USER_LABEL_PREFIX.
4068 %I prints the value of IMMEDIATE_PREFIX.
4069 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4070 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4072 We handle alternate assembler dialects here, just like output_asm_insn. */
4075 asm_fprintf (FILE *file
, const char *p
, ...)
4079 #ifdef ASSEMBLER_DIALECT
4084 va_start (argptr
, p
);
4091 #ifdef ASSEMBLER_DIALECT
4095 p
= do_assembler_dialects (p
, &dialect
);
4102 while (strchr ("-+ #0", c
))
4107 while (ISDIGIT (c
) || c
== '.')
4118 case 'd': case 'i': case 'u':
4119 case 'x': case 'X': case 'o':
4123 fprintf (file
, buf
, va_arg (argptr
, int));
4127 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4128 'o' cases, but we do not check for those cases. It
4129 means that the value is a HOST_WIDE_INT, which may be
4130 either `long' or `long long'. */
4131 memcpy (q
, HOST_WIDE_INT_PRINT
, strlen (HOST_WIDE_INT_PRINT
));
4132 q
+= strlen (HOST_WIDE_INT_PRINT
);
4135 fprintf (file
, buf
, va_arg (argptr
, HOST_WIDE_INT
));
4140 #ifdef HAVE_LONG_LONG
4146 fprintf (file
, buf
, va_arg (argptr
, long long));
4153 fprintf (file
, buf
, va_arg (argptr
, long));
4161 fprintf (file
, buf
, va_arg (argptr
, char *));
4165 #ifdef ASM_OUTPUT_OPCODE
4166 ASM_OUTPUT_OPCODE (asm_out_file
, p
);
4171 #ifdef REGISTER_PREFIX
4172 fprintf (file
, "%s", REGISTER_PREFIX
);
4177 #ifdef IMMEDIATE_PREFIX
4178 fprintf (file
, "%s", IMMEDIATE_PREFIX
);
4183 #ifdef LOCAL_LABEL_PREFIX
4184 fprintf (file
, "%s", LOCAL_LABEL_PREFIX
);
4189 fputs (user_label_prefix
, file
);
4192 #ifdef ASM_FPRINTF_EXTENSIONS
4193 /* Uppercase letters are reserved for general use by asm_fprintf
4194 and so are not available to target specific code. In order to
4195 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4196 they are defined here. As they get turned into real extensions
4197 to asm_fprintf they should be removed from this list. */
4198 case 'A': case 'B': case 'C': case 'D': case 'E':
4199 case 'F': case 'G': case 'H': case 'J': case 'K':
4200 case 'M': case 'N': case 'P': case 'Q': case 'S':
4201 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4204 ASM_FPRINTF_EXTENSIONS (file
, argptr
, p
)
4217 /* Return nonzero if this function has no function calls. */
4220 leaf_function_p (void)
4224 if (crtl
->profile
|| profile_arc_flag
)
4227 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4230 && ! SIBLING_CALL_P (insn
))
4232 if (NONJUMP_INSN_P (insn
)
4233 && GET_CODE (PATTERN (insn
)) == SEQUENCE
4234 && CALL_P (XVECEXP (PATTERN (insn
), 0, 0))
4235 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn
), 0, 0)))
4242 /* Return 1 if branch is a forward branch.
4243 Uses insn_shuid array, so it works only in the final pass. May be used by
4244 output templates to customary add branch prediction hints.
4247 final_forward_branch_p (rtx insn
)
4249 int insn_id
, label_id
;
4251 gcc_assert (uid_shuid
);
4252 insn_id
= INSN_SHUID (insn
);
4253 label_id
= INSN_SHUID (JUMP_LABEL (insn
));
4254 /* We've hit some insns that does not have id information available. */
4255 gcc_assert (insn_id
&& label_id
);
4256 return insn_id
< label_id
;
4259 /* On some machines, a function with no call insns
4260 can run faster if it doesn't create its own register window.
4261 When output, the leaf function should use only the "output"
4262 registers. Ordinarily, the function would be compiled to use
4263 the "input" registers to find its arguments; it is a candidate
4264 for leaf treatment if it uses only the "input" registers.
4265 Leaf function treatment means renumbering so the function
4266 uses the "output" registers instead. */
4268 #ifdef LEAF_REGISTERS
4270 /* Return 1 if this function uses only the registers that can be
4271 safely renumbered. */
4274 only_leaf_regs_used (void)
4277 const char *const permitted_reg_in_leaf_functions
= LEAF_REGISTERS
;
4279 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
4280 if ((df_regs_ever_live_p (i
) || global_regs
[i
])
4281 && ! permitted_reg_in_leaf_functions
[i
])
4284 if (crtl
->uses_pic_offset_table
4285 && pic_offset_table_rtx
!= 0
4286 && REG_P (pic_offset_table_rtx
)
4287 && ! permitted_reg_in_leaf_functions
[REGNO (pic_offset_table_rtx
)])
4293 /* Scan all instructions and renumber all registers into those
4294 available in leaf functions. */
4297 leaf_renumber_regs (rtx first
)
4301 /* Renumber only the actual patterns.
4302 The reg-notes can contain frame pointer refs,
4303 and renumbering them could crash, and should not be needed. */
4304 for (insn
= first
; insn
; insn
= NEXT_INSN (insn
))
4306 leaf_renumber_regs_insn (PATTERN (insn
));
4309 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4310 available in leaf functions. */
4313 leaf_renumber_regs_insn (rtx in_rtx
)
4316 const char *format_ptr
;
4321 /* Renumber all input-registers into output-registers.
4322 renumbered_regs would be 1 for an output-register;
4329 /* Don't renumber the same reg twice. */
4333 newreg
= REGNO (in_rtx
);
4334 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4335 to reach here as part of a REG_NOTE. */
4336 if (newreg
>= FIRST_PSEUDO_REGISTER
)
4341 newreg
= LEAF_REG_REMAP (newreg
);
4342 gcc_assert (newreg
>= 0);
4343 df_set_regs_ever_live (REGNO (in_rtx
), false);
4344 df_set_regs_ever_live (newreg
, true);
4345 SET_REGNO (in_rtx
, newreg
);
4349 if (INSN_P (in_rtx
))
4351 /* Inside a SEQUENCE, we find insns.
4352 Renumber just the patterns of these insns,
4353 just as we do for the top-level insns. */
4354 leaf_renumber_regs_insn (PATTERN (in_rtx
));
4358 format_ptr
= GET_RTX_FORMAT (GET_CODE (in_rtx
));
4360 for (i
= 0; i
< GET_RTX_LENGTH (GET_CODE (in_rtx
)); i
++)
4361 switch (*format_ptr
++)
4364 leaf_renumber_regs_insn (XEXP (in_rtx
, i
));
4368 if (NULL
!= XVEC (in_rtx
, i
))
4370 for (j
= 0; j
< XVECLEN (in_rtx
, i
); j
++)
4371 leaf_renumber_regs_insn (XVECEXP (in_rtx
, i
, j
));
4390 /* Turn the RTL into assembly. */
4392 rest_of_handle_final (void)
4397 /* Get the function's name, as described by its RTL. This may be
4398 different from the DECL_NAME name used in the source file. */
4400 x
= DECL_RTL (current_function_decl
);
4401 gcc_assert (MEM_P (x
));
4403 gcc_assert (GET_CODE (x
) == SYMBOL_REF
);
4404 fnname
= XSTR (x
, 0);
4406 assemble_start_function (current_function_decl
, fnname
);
4407 final_start_function (get_insns (), asm_out_file
, optimize
);
4408 final (get_insns (), asm_out_file
, optimize
);
4409 final_end_function ();
4411 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4412 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4413 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4414 output_function_exception_table (fnname
);
4416 assemble_end_function (current_function_decl
, fnname
);
4418 user_defined_section_attribute
= false;
4420 /* Free up reg info memory. */
4424 fflush (asm_out_file
);
4426 /* Write DBX symbols if requested. */
4428 /* Note that for those inline functions where we don't initially
4429 know for certain that we will be generating an out-of-line copy,
4430 the first invocation of this routine (rest_of_compilation) will
4431 skip over this code by doing a `goto exit_rest_of_compilation;'.
4432 Later on, wrapup_global_declarations will (indirectly) call
4433 rest_of_compilation again for those inline functions that need
4434 to have out-of-line copies generated. During that call, we
4435 *will* be routed past here. */
4437 timevar_push (TV_SYMOUT
);
4438 if (!DECL_IGNORED_P (current_function_decl
))
4439 debug_hooks
->function_decl (current_function_decl
);
4440 timevar_pop (TV_SYMOUT
);
4442 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4443 DECL_INITIAL (current_function_decl
) = error_mark_node
;
4445 if (DECL_STATIC_CONSTRUCTOR (current_function_decl
)
4446 && targetm
.have_ctors_dtors
)
4447 targetm
.asm_out
.constructor (XEXP (DECL_RTL (current_function_decl
), 0),
4448 decl_init_priority_lookup
4449 (current_function_decl
));
4450 if (DECL_STATIC_DESTRUCTOR (current_function_decl
)
4451 && targetm
.have_ctors_dtors
)
4452 targetm
.asm_out
.destructor (XEXP (DECL_RTL (current_function_decl
), 0),
4453 decl_fini_priority_lookup
4454 (current_function_decl
));
4460 const pass_data pass_data_final
=
4462 RTL_PASS
, /* type */
4464 OPTGROUP_NONE
, /* optinfo_flags */
4465 false, /* has_gate */
4466 true, /* has_execute */
4467 TV_FINAL
, /* tv_id */
4468 0, /* properties_required */
4469 0, /* properties_provided */
4470 0, /* properties_destroyed */
4471 0, /* todo_flags_start */
4472 0, /* todo_flags_finish */
4475 class pass_final
: public rtl_opt_pass
4478 pass_final(gcc::context
*ctxt
)
4479 : rtl_opt_pass(pass_data_final
, ctxt
)
4482 /* opt_pass methods: */
4483 unsigned int execute () { return rest_of_handle_final (); }
4485 }; // class pass_final
4490 make_pass_final (gcc::context
*ctxt
)
4492 return new pass_final (ctxt
);
4497 rest_of_handle_shorten_branches (void)
4499 /* Shorten branches. */
4500 shorten_branches (get_insns ());
4506 const pass_data pass_data_shorten_branches
=
4508 RTL_PASS
, /* type */
4509 "shorten", /* name */
4510 OPTGROUP_NONE
, /* optinfo_flags */
4511 false, /* has_gate */
4512 true, /* has_execute */
4513 TV_SHORTEN_BRANCH
, /* tv_id */
4514 0, /* properties_required */
4515 0, /* properties_provided */
4516 0, /* properties_destroyed */
4517 0, /* todo_flags_start */
4518 0, /* todo_flags_finish */
4521 class pass_shorten_branches
: public rtl_opt_pass
4524 pass_shorten_branches(gcc::context
*ctxt
)
4525 : rtl_opt_pass(pass_data_shorten_branches
, ctxt
)
4528 /* opt_pass methods: */
4529 unsigned int execute () { return rest_of_handle_shorten_branches (); }
4531 }; // class pass_shorten_branches
4536 make_pass_shorten_branches (gcc::context
*ctxt
)
4538 return new pass_shorten_branches (ctxt
);
4543 rest_of_clean_state (void)
4546 FILE *final_output
= NULL
;
4547 int save_unnumbered
= flag_dump_unnumbered
;
4548 int save_noaddr
= flag_dump_noaddr
;
4550 if (flag_dump_final_insns
)
4552 final_output
= fopen (flag_dump_final_insns
, "a");
4555 error ("could not open final insn dump file %qs: %m",
4556 flag_dump_final_insns
);
4557 flag_dump_final_insns
= NULL
;
4561 flag_dump_noaddr
= flag_dump_unnumbered
= 1;
4562 if (flag_compare_debug_opt
|| flag_compare_debug
)
4563 dump_flags
|= TDF_NOUID
;
4564 dump_function_header (final_output
, current_function_decl
,
4566 final_insns_dump_p
= true;
4568 for (insn
= get_insns (); insn
; insn
= NEXT_INSN (insn
))
4570 INSN_UID (insn
) = CODE_LABEL_NUMBER (insn
);
4574 set_block_for_insn (insn
, NULL
);
4575 INSN_UID (insn
) = 0;
4580 /* It is very important to decompose the RTL instruction chain here:
4581 debug information keeps pointing into CODE_LABEL insns inside the function
4582 body. If these remain pointing to the other insns, we end up preserving
4583 whole RTL chain and attached detailed debug info in memory. */
4584 for (insn
= get_insns (); insn
; insn
= next
)
4586 next
= NEXT_INSN (insn
);
4587 NEXT_INSN (insn
) = NULL
;
4588 PREV_INSN (insn
) = NULL
;
4591 && (!NOTE_P (insn
) ||
4592 (NOTE_KIND (insn
) != NOTE_INSN_VAR_LOCATION
4593 && NOTE_KIND (insn
) != NOTE_INSN_CALL_ARG_LOCATION
4594 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_BEG
4595 && NOTE_KIND (insn
) != NOTE_INSN_BLOCK_END
4596 && NOTE_KIND (insn
) != NOTE_INSN_DELETED_DEBUG_LABEL
)))
4597 print_rtl_single (final_output
, insn
);
4602 flag_dump_noaddr
= save_noaddr
;
4603 flag_dump_unnumbered
= save_unnumbered
;
4604 final_insns_dump_p
= false;
4606 if (fclose (final_output
))
4608 error ("could not close final insn dump file %qs: %m",
4609 flag_dump_final_insns
);
4610 flag_dump_final_insns
= NULL
;
4614 /* In case the function was not output,
4615 don't leave any temporary anonymous types
4616 queued up for sdb output. */
4617 #ifdef SDB_DEBUGGING_INFO
4618 if (write_symbols
== SDB_DEBUG
)
4619 sdbout_types (NULL_TREE
);
4622 flag_rerun_cse_after_global_opts
= 0;
4623 reload_completed
= 0;
4624 epilogue_completed
= 0;
4626 regstack_completed
= 0;
4629 /* Clear out the insn_length contents now that they are no
4631 init_insn_lengths ();
4633 /* Show no temporary slots allocated. */
4636 free_bb_for_insn ();
4640 /* We can reduce stack alignment on call site only when we are sure that
4641 the function body just produced will be actually used in the final
4643 if (decl_binds_to_current_def_p (current_function_decl
))
4645 unsigned int pref
= crtl
->preferred_stack_boundary
;
4646 if (crtl
->stack_alignment_needed
> crtl
->preferred_stack_boundary
)
4647 pref
= crtl
->stack_alignment_needed
;
4648 cgraph_rtl_info (current_function_decl
)->preferred_incoming_stack_boundary
4652 /* Make sure volatile mem refs aren't considered valid operands for
4653 arithmetic insns. We must call this here if this is a nested inline
4654 function, since the above code leaves us in the init_recog state,
4655 and the function context push/pop code does not save/restore volatile_ok.
4657 ??? Maybe it isn't necessary for expand_start_function to call this
4658 anymore if we do it here? */
4660 init_recog_no_volatile ();
4662 /* We're done with this function. Free up memory if we can. */
4663 free_after_parsing (cfun
);
4664 free_after_compilation (cfun
);
4670 const pass_data pass_data_clean_state
=
4672 RTL_PASS
, /* type */
4673 "*clean_state", /* name */
4674 OPTGROUP_NONE
, /* optinfo_flags */
4675 false, /* has_gate */
4676 true, /* has_execute */
4677 TV_FINAL
, /* tv_id */
4678 0, /* properties_required */
4679 0, /* properties_provided */
4680 PROP_rtl
, /* properties_destroyed */
4681 0, /* todo_flags_start */
4682 0, /* todo_flags_finish */
4685 class pass_clean_state
: public rtl_opt_pass
4688 pass_clean_state(gcc::context
*ctxt
)
4689 : rtl_opt_pass(pass_data_clean_state
, ctxt
)
4692 /* opt_pass methods: */
4693 unsigned int execute () { return rest_of_clean_state (); }
4695 }; // class pass_clean_state
4700 make_pass_clean_state (gcc::context
*ctxt
)
4702 return new pass_clean_state (ctxt
);