Daily bump.
[official-gcc.git] / gcc / stor-layout.c
blobcb377ca5b82823eeb3c087a3f926cced2e431fba
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "dumpfile.h"
42 #include "gimplify.h"
43 #include "attribs.h"
44 #include "debug.h"
46 /* Data type for the expressions representing sizes of data types.
47 It is the first integer type laid out. */
48 tree sizetype_tab[(int) stk_type_kind_last];
50 /* If nonzero, this is an upper limit on alignment of structure fields.
51 The value is measured in bits. */
52 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
54 static tree self_referential_size (tree);
55 static void finalize_record_size (record_layout_info);
56 static void finalize_type_size (tree);
57 static void place_union_field (record_layout_info, tree);
58 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
59 HOST_WIDE_INT, tree);
60 extern void debug_rli (record_layout_info);
62 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
63 to serve as the actual size-expression for a type or decl. */
65 tree
66 variable_size (tree size)
68 /* Obviously. */
69 if (TREE_CONSTANT (size))
70 return size;
72 /* If the size is self-referential, we can't make a SAVE_EXPR (see
73 save_expr for the rationale). But we can do something else. */
74 if (CONTAINS_PLACEHOLDER_P (size))
75 return self_referential_size (size);
77 /* If we are in the global binding level, we can't make a SAVE_EXPR
78 since it may end up being shared across functions, so it is up
79 to the front-end to deal with this case. */
80 if (lang_hooks.decls.global_bindings_p ())
81 return size;
83 return save_expr (size);
86 /* An array of functions used for self-referential size computation. */
87 static GTY(()) vec<tree, va_gc> *size_functions;
89 /* Return true if T is a self-referential component reference. */
91 static bool
92 self_referential_component_ref_p (tree t)
94 if (TREE_CODE (t) != COMPONENT_REF)
95 return false;
97 while (REFERENCE_CLASS_P (t))
98 t = TREE_OPERAND (t, 0);
100 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
103 /* Similar to copy_tree_r but do not copy component references involving
104 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
105 and substituted in substitute_in_expr. */
107 static tree
108 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
110 enum tree_code code = TREE_CODE (*tp);
112 /* Stop at types, decls, constants like copy_tree_r. */
113 if (TREE_CODE_CLASS (code) == tcc_type
114 || TREE_CODE_CLASS (code) == tcc_declaration
115 || TREE_CODE_CLASS (code) == tcc_constant)
117 *walk_subtrees = 0;
118 return NULL_TREE;
121 /* This is the pattern built in ada/make_aligning_type. */
122 else if (code == ADDR_EXPR
123 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
125 *walk_subtrees = 0;
126 return NULL_TREE;
129 /* Default case: the component reference. */
130 else if (self_referential_component_ref_p (*tp))
132 *walk_subtrees = 0;
133 return NULL_TREE;
136 /* We're not supposed to have them in self-referential size trees
137 because we wouldn't properly control when they are evaluated.
138 However, not creating superfluous SAVE_EXPRs requires accurate
139 tracking of readonly-ness all the way down to here, which we
140 cannot always guarantee in practice. So punt in this case. */
141 else if (code == SAVE_EXPR)
142 return error_mark_node;
144 else if (code == STATEMENT_LIST)
145 gcc_unreachable ();
147 return copy_tree_r (tp, walk_subtrees, data);
150 /* Given a SIZE expression that is self-referential, return an equivalent
151 expression to serve as the actual size expression for a type. */
153 static tree
154 self_referential_size (tree size)
156 static unsigned HOST_WIDE_INT fnno = 0;
157 vec<tree> self_refs = vNULL;
158 tree param_type_list = NULL, param_decl_list = NULL;
159 tree t, ref, return_type, fntype, fnname, fndecl;
160 unsigned int i;
161 char buf[128];
162 vec<tree, va_gc> *args = NULL;
164 /* Do not factor out simple operations. */
165 t = skip_simple_constant_arithmetic (size);
166 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
167 return size;
169 /* Collect the list of self-references in the expression. */
170 find_placeholder_in_expr (size, &self_refs);
171 gcc_assert (self_refs.length () > 0);
173 /* Obtain a private copy of the expression. */
174 t = size;
175 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
176 return size;
177 size = t;
179 /* Build the parameter and argument lists in parallel; also
180 substitute the former for the latter in the expression. */
181 vec_alloc (args, self_refs.length ());
182 FOR_EACH_VEC_ELT (self_refs, i, ref)
184 tree subst, param_name, param_type, param_decl;
186 if (DECL_P (ref))
188 /* We shouldn't have true variables here. */
189 gcc_assert (TREE_READONLY (ref));
190 subst = ref;
192 /* This is the pattern built in ada/make_aligning_type. */
193 else if (TREE_CODE (ref) == ADDR_EXPR)
194 subst = ref;
195 /* Default case: the component reference. */
196 else
197 subst = TREE_OPERAND (ref, 1);
199 sprintf (buf, "p%d", i);
200 param_name = get_identifier (buf);
201 param_type = TREE_TYPE (ref);
202 param_decl
203 = build_decl (input_location, PARM_DECL, param_name, param_type);
204 DECL_ARG_TYPE (param_decl) = param_type;
205 DECL_ARTIFICIAL (param_decl) = 1;
206 TREE_READONLY (param_decl) = 1;
208 size = substitute_in_expr (size, subst, param_decl);
210 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
211 param_decl_list = chainon (param_decl, param_decl_list);
212 args->quick_push (ref);
215 self_refs.release ();
217 /* Append 'void' to indicate that the number of parameters is fixed. */
218 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
220 /* The 3 lists have been created in reverse order. */
221 param_type_list = nreverse (param_type_list);
222 param_decl_list = nreverse (param_decl_list);
224 /* Build the function type. */
225 return_type = TREE_TYPE (size);
226 fntype = build_function_type (return_type, param_type_list);
228 /* Build the function declaration. */
229 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
230 fnname = get_file_function_name (buf);
231 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
232 for (t = param_decl_list; t; t = DECL_CHAIN (t))
233 DECL_CONTEXT (t) = fndecl;
234 DECL_ARGUMENTS (fndecl) = param_decl_list;
235 DECL_RESULT (fndecl)
236 = build_decl (input_location, RESULT_DECL, 0, return_type);
237 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
239 /* The function has been created by the compiler and we don't
240 want to emit debug info for it. */
241 DECL_ARTIFICIAL (fndecl) = 1;
242 DECL_IGNORED_P (fndecl) = 1;
244 /* It is supposed to be "const" and never throw. */
245 TREE_READONLY (fndecl) = 1;
246 TREE_NOTHROW (fndecl) = 1;
248 /* We want it to be inlined when this is deemed profitable, as
249 well as discarded if every call has been integrated. */
250 DECL_DECLARED_INLINE_P (fndecl) = 1;
252 /* It is made up of a unique return statement. */
253 DECL_INITIAL (fndecl) = make_node (BLOCK);
254 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
255 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
256 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
257 TREE_STATIC (fndecl) = 1;
259 /* Put it onto the list of size functions. */
260 vec_safe_push (size_functions, fndecl);
262 /* Replace the original expression with a call to the size function. */
263 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
266 /* Take, queue and compile all the size functions. It is essential that
267 the size functions be gimplified at the very end of the compilation
268 in order to guarantee transparent handling of self-referential sizes.
269 Otherwise the GENERIC inliner would not be able to inline them back
270 at each of their call sites, thus creating artificial non-constant
271 size expressions which would trigger nasty problems later on. */
273 void
274 finalize_size_functions (void)
276 unsigned int i;
277 tree fndecl;
279 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
281 allocate_struct_function (fndecl, false);
282 set_cfun (NULL);
283 dump_function (TDI_original, fndecl);
285 /* As these functions are used to describe the layout of variable-length
286 structures, debug info generation needs their implementation. */
287 debug_hooks->size_function (fndecl);
288 gimplify_function_tree (fndecl);
289 cgraph_node::finalize_function (fndecl, false);
292 vec_free (size_functions);
295 /* Return a machine mode of class MCLASS with SIZE bits of precision,
296 if one exists. The mode may have padding bits as well the SIZE
297 value bits. If LIMIT is nonzero, disregard modes wider than
298 MAX_FIXED_MODE_SIZE. */
300 opt_machine_mode
301 mode_for_size (poly_uint64 size, enum mode_class mclass, int limit)
303 machine_mode mode;
304 int i;
306 if (limit && maybe_gt (size, (unsigned int) MAX_FIXED_MODE_SIZE))
307 return opt_machine_mode ();
309 /* Get the first mode which has this size, in the specified class. */
310 FOR_EACH_MODE_IN_CLASS (mode, mclass)
311 if (known_eq (GET_MODE_PRECISION (mode), size))
312 return mode;
314 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315 for (i = 0; i < NUM_INT_N_ENTS; i ++)
316 if (known_eq (int_n_data[i].bitsize, size)
317 && int_n_enabled_p[i])
318 return int_n_data[i].m;
320 return opt_machine_mode ();
323 /* Similar, except passed a tree node. */
325 opt_machine_mode
326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328 unsigned HOST_WIDE_INT uhwi;
329 unsigned int ui;
331 if (!tree_fits_uhwi_p (size))
332 return opt_machine_mode ();
333 uhwi = tree_to_uhwi (size);
334 ui = uhwi;
335 if (uhwi != ui)
336 return opt_machine_mode ();
337 return mode_for_size (ui, mclass, limit);
340 /* Return the narrowest mode of class MCLASS that contains at least
341 SIZE bits. Abort if no such mode exists. */
343 machine_mode
344 smallest_mode_for_size (poly_uint64 size, enum mode_class mclass)
346 machine_mode mode = VOIDmode;
347 int i;
349 /* Get the first mode which has at least this size, in the
350 specified class. */
351 FOR_EACH_MODE_IN_CLASS (mode, mclass)
352 if (known_ge (GET_MODE_PRECISION (mode), size))
353 break;
355 gcc_assert (mode != VOIDmode);
357 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
358 for (i = 0; i < NUM_INT_N_ENTS; i ++)
359 if (known_ge (int_n_data[i].bitsize, size)
360 && known_lt (int_n_data[i].bitsize, GET_MODE_PRECISION (mode))
361 && int_n_enabled_p[i])
362 mode = int_n_data[i].m;
364 return mode;
367 /* Return an integer mode of exactly the same size as MODE, if one exists. */
369 opt_scalar_int_mode
370 int_mode_for_mode (machine_mode mode)
372 switch (GET_MODE_CLASS (mode))
374 case MODE_INT:
375 case MODE_PARTIAL_INT:
376 return as_a <scalar_int_mode> (mode);
378 case MODE_COMPLEX_INT:
379 case MODE_COMPLEX_FLOAT:
380 case MODE_FLOAT:
381 case MODE_DECIMAL_FLOAT:
382 case MODE_FRACT:
383 case MODE_ACCUM:
384 case MODE_UFRACT:
385 case MODE_UACCUM:
386 case MODE_VECTOR_BOOL:
387 case MODE_VECTOR_INT:
388 case MODE_VECTOR_FLOAT:
389 case MODE_VECTOR_FRACT:
390 case MODE_VECTOR_ACCUM:
391 case MODE_VECTOR_UFRACT:
392 case MODE_VECTOR_UACCUM:
393 case MODE_POINTER_BOUNDS:
394 return int_mode_for_size (GET_MODE_BITSIZE (mode), 0);
396 case MODE_RANDOM:
397 if (mode == BLKmode)
398 return opt_scalar_int_mode ();
400 /* fall through */
402 case MODE_CC:
403 default:
404 gcc_unreachable ();
408 /* Find a mode that can be used for efficient bitwise operations on MODE,
409 if one exists. */
411 opt_machine_mode
412 bitwise_mode_for_mode (machine_mode mode)
414 /* Quick exit if we already have a suitable mode. */
415 scalar_int_mode int_mode;
416 if (is_a <scalar_int_mode> (mode, &int_mode)
417 && GET_MODE_BITSIZE (int_mode) <= MAX_FIXED_MODE_SIZE)
418 return int_mode;
420 /* Reuse the sanity checks from int_mode_for_mode. */
421 gcc_checking_assert ((int_mode_for_mode (mode), true));
423 poly_int64 bitsize = GET_MODE_BITSIZE (mode);
425 /* Try to replace complex modes with complex modes. In general we
426 expect both components to be processed independently, so we only
427 care whether there is a register for the inner mode. */
428 if (COMPLEX_MODE_P (mode))
430 machine_mode trial = mode;
431 if ((GET_MODE_CLASS (trial) == MODE_COMPLEX_INT
432 || mode_for_size (bitsize, MODE_COMPLEX_INT, false).exists (&trial))
433 && have_regs_of_mode[GET_MODE_INNER (trial)])
434 return trial;
437 /* Try to replace vector modes with vector modes. Also try using vector
438 modes if an integer mode would be too big. */
439 if (VECTOR_MODE_P (mode)
440 || maybe_gt (bitsize, MAX_FIXED_MODE_SIZE))
442 machine_mode trial = mode;
443 if ((GET_MODE_CLASS (trial) == MODE_VECTOR_INT
444 || mode_for_size (bitsize, MODE_VECTOR_INT, 0).exists (&trial))
445 && have_regs_of_mode[trial]
446 && targetm.vector_mode_supported_p (trial))
447 return trial;
450 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
451 return mode_for_size (bitsize, MODE_INT, true);
454 /* Find a type that can be used for efficient bitwise operations on MODE.
455 Return null if no such mode exists. */
457 tree
458 bitwise_type_for_mode (machine_mode mode)
460 if (!bitwise_mode_for_mode (mode).exists (&mode))
461 return NULL_TREE;
463 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
464 tree inner_type = build_nonstandard_integer_type (inner_size, true);
466 if (VECTOR_MODE_P (mode))
467 return build_vector_type_for_mode (inner_type, mode);
469 if (COMPLEX_MODE_P (mode))
470 return build_complex_type (inner_type);
472 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
473 return inner_type;
476 /* Find a mode that is suitable for representing a vector with NUNITS
477 elements of mode INNERMODE, if one exists. The returned mode can be
478 either an integer mode or a vector mode. */
480 opt_machine_mode
481 mode_for_vector (scalar_mode innermode, poly_uint64 nunits)
483 machine_mode mode;
485 /* First, look for a supported vector type. */
486 if (SCALAR_FLOAT_MODE_P (innermode))
487 mode = MIN_MODE_VECTOR_FLOAT;
488 else if (SCALAR_FRACT_MODE_P (innermode))
489 mode = MIN_MODE_VECTOR_FRACT;
490 else if (SCALAR_UFRACT_MODE_P (innermode))
491 mode = MIN_MODE_VECTOR_UFRACT;
492 else if (SCALAR_ACCUM_MODE_P (innermode))
493 mode = MIN_MODE_VECTOR_ACCUM;
494 else if (SCALAR_UACCUM_MODE_P (innermode))
495 mode = MIN_MODE_VECTOR_UACCUM;
496 else
497 mode = MIN_MODE_VECTOR_INT;
499 /* Do not check vector_mode_supported_p here. We'll do that
500 later in vector_type_mode. */
501 FOR_EACH_MODE_FROM (mode, mode)
502 if (known_eq (GET_MODE_NUNITS (mode), nunits)
503 && GET_MODE_INNER (mode) == innermode)
504 return mode;
506 /* For integers, try mapping it to a same-sized scalar mode. */
507 if (GET_MODE_CLASS (innermode) == MODE_INT)
509 poly_uint64 nbits = nunits * GET_MODE_BITSIZE (innermode);
510 if (int_mode_for_size (nbits, 0).exists (&mode)
511 && have_regs_of_mode[mode])
512 return mode;
515 return opt_machine_mode ();
518 /* Return the mode for a vector that has NUNITS integer elements of
519 INT_BITS bits each, if such a mode exists. The mode can be either
520 an integer mode or a vector mode. */
522 opt_machine_mode
523 mode_for_int_vector (unsigned int int_bits, poly_uint64 nunits)
525 scalar_int_mode int_mode;
526 machine_mode vec_mode;
527 if (int_mode_for_size (int_bits, 0).exists (&int_mode)
528 && mode_for_vector (int_mode, nunits).exists (&vec_mode))
529 return vec_mode;
530 return opt_machine_mode ();
533 /* Return the alignment of MODE. This will be bounded by 1 and
534 BIGGEST_ALIGNMENT. */
536 unsigned int
537 get_mode_alignment (machine_mode mode)
539 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
542 /* Return the natural mode of an array, given that it is SIZE bytes in
543 total and has elements of type ELEM_TYPE. */
545 static machine_mode
546 mode_for_array (tree elem_type, tree size)
548 tree elem_size;
549 poly_uint64 int_size, int_elem_size;
550 unsigned HOST_WIDE_INT num_elems;
551 bool limit_p;
553 /* One-element arrays get the component type's mode. */
554 elem_size = TYPE_SIZE (elem_type);
555 if (simple_cst_equal (size, elem_size))
556 return TYPE_MODE (elem_type);
558 limit_p = true;
559 if (poly_int_tree_p (size, &int_size)
560 && poly_int_tree_p (elem_size, &int_elem_size)
561 && maybe_ne (int_elem_size, 0U)
562 && constant_multiple_p (int_size, int_elem_size, &num_elems))
564 machine_mode elem_mode = TYPE_MODE (elem_type);
565 machine_mode mode;
566 if (targetm.array_mode (elem_mode, num_elems).exists (&mode))
567 return mode;
568 if (targetm.array_mode_supported_p (elem_mode, num_elems))
569 limit_p = false;
571 return mode_for_size_tree (size, MODE_INT, limit_p).else_blk ();
574 /* Subroutine of layout_decl: Force alignment required for the data type.
575 But if the decl itself wants greater alignment, don't override that. */
577 static inline void
578 do_type_align (tree type, tree decl)
580 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
582 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
583 if (TREE_CODE (decl) == FIELD_DECL)
584 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
586 if (TYPE_WARN_IF_NOT_ALIGN (type) > DECL_WARN_IF_NOT_ALIGN (decl))
587 SET_DECL_WARN_IF_NOT_ALIGN (decl, TYPE_WARN_IF_NOT_ALIGN (type));
590 /* Set the size, mode and alignment of a ..._DECL node.
591 TYPE_DECL does need this for C++.
592 Note that LABEL_DECL and CONST_DECL nodes do not need this,
593 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
594 Don't call layout_decl for them.
596 KNOWN_ALIGN is the amount of alignment we can assume this
597 decl has with no special effort. It is relevant only for FIELD_DECLs
598 and depends on the previous fields.
599 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
600 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
601 the record will be aligned to suit. */
603 void
604 layout_decl (tree decl, unsigned int known_align)
606 tree type = TREE_TYPE (decl);
607 enum tree_code code = TREE_CODE (decl);
608 rtx rtl = NULL_RTX;
609 location_t loc = DECL_SOURCE_LOCATION (decl);
611 if (code == CONST_DECL)
612 return;
614 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
615 || code == TYPE_DECL || code == FIELD_DECL);
617 rtl = DECL_RTL_IF_SET (decl);
619 if (type == error_mark_node)
620 type = void_type_node;
622 /* Usually the size and mode come from the data type without change,
623 however, the front-end may set the explicit width of the field, so its
624 size may not be the same as the size of its type. This happens with
625 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
626 also happens with other fields. For example, the C++ front-end creates
627 zero-sized fields corresponding to empty base classes, and depends on
628 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
629 size in bytes from the size in bits. If we have already set the mode,
630 don't set it again since we can be called twice for FIELD_DECLs. */
632 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
633 if (DECL_MODE (decl) == VOIDmode)
634 SET_DECL_MODE (decl, TYPE_MODE (type));
636 if (DECL_SIZE (decl) == 0)
638 DECL_SIZE (decl) = TYPE_SIZE (type);
639 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
641 else if (DECL_SIZE_UNIT (decl) == 0)
642 DECL_SIZE_UNIT (decl)
643 = fold_convert_loc (loc, sizetype,
644 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
645 bitsize_unit_node));
647 if (code != FIELD_DECL)
648 /* For non-fields, update the alignment from the type. */
649 do_type_align (type, decl);
650 else
651 /* For fields, it's a bit more complicated... */
653 bool old_user_align = DECL_USER_ALIGN (decl);
654 bool zero_bitfield = false;
655 bool packed_p = DECL_PACKED (decl);
656 unsigned int mfa;
658 if (DECL_BIT_FIELD (decl))
660 DECL_BIT_FIELD_TYPE (decl) = type;
662 /* A zero-length bit-field affects the alignment of the next
663 field. In essence such bit-fields are not influenced by
664 any packing due to #pragma pack or attribute packed. */
665 if (integer_zerop (DECL_SIZE (decl))
666 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
668 zero_bitfield = true;
669 packed_p = false;
670 if (PCC_BITFIELD_TYPE_MATTERS)
671 do_type_align (type, decl);
672 else
674 #ifdef EMPTY_FIELD_BOUNDARY
675 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
677 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
678 DECL_USER_ALIGN (decl) = 0;
680 #endif
684 /* See if we can use an ordinary integer mode for a bit-field.
685 Conditions are: a fixed size that is correct for another mode,
686 occupying a complete byte or bytes on proper boundary. */
687 if (TYPE_SIZE (type) != 0
688 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
689 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
691 machine_mode xmode;
692 if (mode_for_size_tree (DECL_SIZE (decl),
693 MODE_INT, 1).exists (&xmode))
695 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
696 if (!(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
697 && (known_align == 0 || known_align >= xalign))
699 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
700 SET_DECL_MODE (decl, xmode);
701 DECL_BIT_FIELD (decl) = 0;
706 /* Turn off DECL_BIT_FIELD if we won't need it set. */
707 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
708 && known_align >= TYPE_ALIGN (type)
709 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
710 DECL_BIT_FIELD (decl) = 0;
712 else if (packed_p && DECL_USER_ALIGN (decl))
713 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
714 round up; we'll reduce it again below. We want packing to
715 supersede USER_ALIGN inherited from the type, but defer to
716 alignment explicitly specified on the field decl. */;
717 else
718 do_type_align (type, decl);
720 /* If the field is packed and not explicitly aligned, give it the
721 minimum alignment. Note that do_type_align may set
722 DECL_USER_ALIGN, so we need to check old_user_align instead. */
723 if (packed_p
724 && !old_user_align)
725 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
727 if (! packed_p && ! DECL_USER_ALIGN (decl))
729 /* Some targets (i.e. i386, VMS) limit struct field alignment
730 to a lower boundary than alignment of variables unless
731 it was overridden by attribute aligned. */
732 #ifdef BIGGEST_FIELD_ALIGNMENT
733 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
734 (unsigned) BIGGEST_FIELD_ALIGNMENT));
735 #endif
736 #ifdef ADJUST_FIELD_ALIGN
737 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
738 DECL_ALIGN (decl)));
739 #endif
742 if (zero_bitfield)
743 mfa = initial_max_fld_align * BITS_PER_UNIT;
744 else
745 mfa = maximum_field_alignment;
746 /* Should this be controlled by DECL_USER_ALIGN, too? */
747 if (mfa != 0)
748 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
751 /* Evaluate nonconstant size only once, either now or as soon as safe. */
752 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
753 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
754 if (DECL_SIZE_UNIT (decl) != 0
755 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
756 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
758 /* If requested, warn about definitions of large data objects. */
759 if ((code == VAR_DECL || code == PARM_DECL)
760 && ! DECL_EXTERNAL (decl))
762 tree size = DECL_SIZE_UNIT (decl);
764 if (size != 0 && TREE_CODE (size) == INTEGER_CST
765 && compare_tree_int (size, warn_larger_than_size) > 0)
767 unsigned HOST_WIDE_INT uhwisize = tree_to_uhwi (size);
769 warning (OPT_Wlarger_than_, "size of %q+D %wu bytes exceeds "
770 "maximum object size %wu",
771 decl, uhwisize, warn_larger_than_size);
775 /* If the RTL was already set, update its mode and mem attributes. */
776 if (rtl)
778 PUT_MODE (rtl, DECL_MODE (decl));
779 SET_DECL_RTL (decl, 0);
780 if (MEM_P (rtl))
781 set_mem_attributes (rtl, decl, 1);
782 SET_DECL_RTL (decl, rtl);
786 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
787 results of a previous call to layout_decl and calls it again. */
789 void
790 relayout_decl (tree decl)
792 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
793 SET_DECL_MODE (decl, VOIDmode);
794 if (!DECL_USER_ALIGN (decl))
795 SET_DECL_ALIGN (decl, 0);
796 if (DECL_RTL_SET_P (decl))
797 SET_DECL_RTL (decl, 0);
799 layout_decl (decl, 0);
802 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
803 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
804 is to be passed to all other layout functions for this record. It is the
805 responsibility of the caller to call `free' for the storage returned.
806 Note that garbage collection is not permitted until we finish laying
807 out the record. */
809 record_layout_info
810 start_record_layout (tree t)
812 record_layout_info rli = XNEW (struct record_layout_info_s);
814 rli->t = t;
816 /* If the type has a minimum specified alignment (via an attribute
817 declaration, for example) use it -- otherwise, start with a
818 one-byte alignment. */
819 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
820 rli->unpacked_align = rli->record_align;
821 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
823 #ifdef STRUCTURE_SIZE_BOUNDARY
824 /* Packed structures don't need to have minimum size. */
825 if (! TYPE_PACKED (t))
827 unsigned tmp;
829 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
830 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
831 if (maximum_field_alignment != 0)
832 tmp = MIN (tmp, maximum_field_alignment);
833 rli->record_align = MAX (rli->record_align, tmp);
835 #endif
837 rli->offset = size_zero_node;
838 rli->bitpos = bitsize_zero_node;
839 rli->prev_field = 0;
840 rli->pending_statics = 0;
841 rli->packed_maybe_necessary = 0;
842 rli->remaining_in_alignment = 0;
844 return rli;
847 /* Fold sizetype value X to bitsizetype, given that X represents a type
848 size or offset. */
850 static tree
851 bits_from_bytes (tree x)
853 if (POLY_INT_CST_P (x))
854 /* The runtime calculation isn't allowed to overflow sizetype;
855 increasing the runtime values must always increase the size
856 or offset of the object. This means that the object imposes
857 a maximum value on the runtime parameters, but we don't record
858 what that is. */
859 return build_poly_int_cst
860 (bitsizetype,
861 poly_wide_int::from (poly_int_cst_value (x),
862 TYPE_PRECISION (bitsizetype),
863 TYPE_SIGN (TREE_TYPE (x))));
864 x = fold_convert (bitsizetype, x);
865 gcc_checking_assert (x);
866 return x;
869 /* Return the combined bit position for the byte offset OFFSET and the
870 bit position BITPOS.
872 These functions operate on byte and bit positions present in FIELD_DECLs
873 and assume that these expressions result in no (intermediate) overflow.
874 This assumption is necessary to fold the expressions as much as possible,
875 so as to avoid creating artificially variable-sized types in languages
876 supporting variable-sized types like Ada. */
878 tree
879 bit_from_pos (tree offset, tree bitpos)
881 return size_binop (PLUS_EXPR, bitpos,
882 size_binop (MULT_EXPR, bits_from_bytes (offset),
883 bitsize_unit_node));
886 /* Return the combined truncated byte position for the byte offset OFFSET and
887 the bit position BITPOS. */
889 tree
890 byte_from_pos (tree offset, tree bitpos)
892 tree bytepos;
893 if (TREE_CODE (bitpos) == MULT_EXPR
894 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
895 bytepos = TREE_OPERAND (bitpos, 0);
896 else
897 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
898 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
901 /* Split the bit position POS into a byte offset *POFFSET and a bit
902 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
904 void
905 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
906 tree pos)
908 tree toff_align = bitsize_int (off_align);
909 if (TREE_CODE (pos) == MULT_EXPR
910 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
912 *poffset = size_binop (MULT_EXPR,
913 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
914 size_int (off_align / BITS_PER_UNIT));
915 *pbitpos = bitsize_zero_node;
917 else
919 *poffset = size_binop (MULT_EXPR,
920 fold_convert (sizetype,
921 size_binop (FLOOR_DIV_EXPR, pos,
922 toff_align)),
923 size_int (off_align / BITS_PER_UNIT));
924 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
928 /* Given a pointer to bit and byte offsets and an offset alignment,
929 normalize the offsets so they are within the alignment. */
931 void
932 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
934 /* If the bit position is now larger than it should be, adjust it
935 downwards. */
936 if (compare_tree_int (*pbitpos, off_align) >= 0)
938 tree offset, bitpos;
939 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
940 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
941 *pbitpos = bitpos;
945 /* Print debugging information about the information in RLI. */
947 DEBUG_FUNCTION void
948 debug_rli (record_layout_info rli)
950 print_node_brief (stderr, "type", rli->t, 0);
951 print_node_brief (stderr, "\noffset", rli->offset, 0);
952 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
954 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
955 rli->record_align, rli->unpacked_align,
956 rli->offset_align);
958 /* The ms_struct code is the only that uses this. */
959 if (targetm.ms_bitfield_layout_p (rli->t))
960 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
962 if (rli->packed_maybe_necessary)
963 fprintf (stderr, "packed may be necessary\n");
965 if (!vec_safe_is_empty (rli->pending_statics))
967 fprintf (stderr, "pending statics:\n");
968 debug (rli->pending_statics);
972 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
973 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
975 void
976 normalize_rli (record_layout_info rli)
978 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
981 /* Returns the size in bytes allocated so far. */
983 tree
984 rli_size_unit_so_far (record_layout_info rli)
986 return byte_from_pos (rli->offset, rli->bitpos);
989 /* Returns the size in bits allocated so far. */
991 tree
992 rli_size_so_far (record_layout_info rli)
994 return bit_from_pos (rli->offset, rli->bitpos);
997 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
998 the next available location within the record is given by KNOWN_ALIGN.
999 Update the variable alignment fields in RLI, and return the alignment
1000 to give the FIELD. */
1002 unsigned int
1003 update_alignment_for_field (record_layout_info rli, tree field,
1004 unsigned int known_align)
1006 /* The alignment required for FIELD. */
1007 unsigned int desired_align;
1008 /* The type of this field. */
1009 tree type = TREE_TYPE (field);
1010 /* True if the field was explicitly aligned by the user. */
1011 bool user_align;
1012 bool is_bitfield;
1014 /* Do not attempt to align an ERROR_MARK node */
1015 if (TREE_CODE (type) == ERROR_MARK)
1016 return 0;
1018 /* Lay out the field so we know what alignment it needs. */
1019 layout_decl (field, known_align);
1020 desired_align = DECL_ALIGN (field);
1021 user_align = DECL_USER_ALIGN (field);
1023 is_bitfield = (type != error_mark_node
1024 && DECL_BIT_FIELD_TYPE (field)
1025 && ! integer_zerop (TYPE_SIZE (type)));
1027 /* Record must have at least as much alignment as any field.
1028 Otherwise, the alignment of the field within the record is
1029 meaningless. */
1030 if (targetm.ms_bitfield_layout_p (rli->t))
1032 /* Here, the alignment of the underlying type of a bitfield can
1033 affect the alignment of a record; even a zero-sized field
1034 can do this. The alignment should be to the alignment of
1035 the type, except that for zero-size bitfields this only
1036 applies if there was an immediately prior, nonzero-size
1037 bitfield. (That's the way it is, experimentally.) */
1038 if (!is_bitfield
1039 || ((DECL_SIZE (field) == NULL_TREE
1040 || !integer_zerop (DECL_SIZE (field)))
1041 ? !DECL_PACKED (field)
1042 : (rli->prev_field
1043 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1044 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1046 unsigned int type_align = TYPE_ALIGN (type);
1047 if (!is_bitfield && DECL_PACKED (field))
1048 type_align = desired_align;
1049 else
1050 type_align = MAX (type_align, desired_align);
1051 if (maximum_field_alignment != 0)
1052 type_align = MIN (type_align, maximum_field_alignment);
1053 rli->record_align = MAX (rli->record_align, type_align);
1054 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1057 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1059 /* Named bit-fields cause the entire structure to have the
1060 alignment implied by their type. Some targets also apply the same
1061 rules to unnamed bitfields. */
1062 if (DECL_NAME (field) != 0
1063 || targetm.align_anon_bitfield ())
1065 unsigned int type_align = TYPE_ALIGN (type);
1067 #ifdef ADJUST_FIELD_ALIGN
1068 if (! TYPE_USER_ALIGN (type))
1069 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1070 #endif
1072 /* Targets might chose to handle unnamed and hence possibly
1073 zero-width bitfield. Those are not influenced by #pragmas
1074 or packed attributes. */
1075 if (integer_zerop (DECL_SIZE (field)))
1077 if (initial_max_fld_align)
1078 type_align = MIN (type_align,
1079 initial_max_fld_align * BITS_PER_UNIT);
1081 else if (maximum_field_alignment != 0)
1082 type_align = MIN (type_align, maximum_field_alignment);
1083 else if (DECL_PACKED (field))
1084 type_align = MIN (type_align, BITS_PER_UNIT);
1086 /* The alignment of the record is increased to the maximum
1087 of the current alignment, the alignment indicated on the
1088 field (i.e., the alignment specified by an __aligned__
1089 attribute), and the alignment indicated by the type of
1090 the field. */
1091 rli->record_align = MAX (rli->record_align, desired_align);
1092 rli->record_align = MAX (rli->record_align, type_align);
1094 if (warn_packed)
1095 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1096 user_align |= TYPE_USER_ALIGN (type);
1099 else
1101 rli->record_align = MAX (rli->record_align, desired_align);
1102 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1105 TYPE_USER_ALIGN (rli->t) |= user_align;
1107 return desired_align;
1110 /* Issue a warning if the record alignment, RECORD_ALIGN, is less than
1111 the field alignment of FIELD or FIELD isn't aligned. */
1113 static void
1114 handle_warn_if_not_align (tree field, unsigned int record_align)
1116 tree type = TREE_TYPE (field);
1118 if (type == error_mark_node)
1119 return;
1121 unsigned int warn_if_not_align = 0;
1123 int opt_w = 0;
1125 if (warn_if_not_aligned)
1127 warn_if_not_align = DECL_WARN_IF_NOT_ALIGN (field);
1128 if (!warn_if_not_align)
1129 warn_if_not_align = TYPE_WARN_IF_NOT_ALIGN (type);
1130 if (warn_if_not_align)
1131 opt_w = OPT_Wif_not_aligned;
1134 if (!warn_if_not_align
1135 && warn_packed_not_aligned
1136 && lookup_attribute ("aligned", TYPE_ATTRIBUTES (type)))
1138 warn_if_not_align = TYPE_ALIGN (type);
1139 opt_w = OPT_Wpacked_not_aligned;
1142 if (!warn_if_not_align)
1143 return;
1145 tree context = DECL_CONTEXT (field);
1147 warn_if_not_align /= BITS_PER_UNIT;
1148 record_align /= BITS_PER_UNIT;
1149 if ((record_align % warn_if_not_align) != 0)
1150 warning (opt_w, "alignment %u of %qT is less than %u",
1151 record_align, context, warn_if_not_align);
1153 tree off = byte_position (field);
1154 if (!multiple_of_p (TREE_TYPE (off), off, size_int (warn_if_not_align)))
1156 if (TREE_CODE (off) == INTEGER_CST)
1157 warning (opt_w, "%q+D offset %E in %qT isn%'t aligned to %u",
1158 field, off, context, warn_if_not_align);
1159 else
1160 warning (opt_w, "%q+D offset %E in %qT may not be aligned to %u",
1161 field, off, context, warn_if_not_align);
1165 /* Called from place_field to handle unions. */
1167 static void
1168 place_union_field (record_layout_info rli, tree field)
1170 update_alignment_for_field (rli, field, /*known_align=*/0);
1172 DECL_FIELD_OFFSET (field) = size_zero_node;
1173 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1174 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1175 handle_warn_if_not_align (field, rli->record_align);
1177 /* If this is an ERROR_MARK return *after* having set the
1178 field at the start of the union. This helps when parsing
1179 invalid fields. */
1180 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1181 return;
1183 if (AGGREGATE_TYPE_P (TREE_TYPE (field))
1184 && TYPE_TYPELESS_STORAGE (TREE_TYPE (field)))
1185 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1187 /* We assume the union's size will be a multiple of a byte so we don't
1188 bother with BITPOS. */
1189 if (TREE_CODE (rli->t) == UNION_TYPE)
1190 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1191 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1192 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1193 DECL_SIZE_UNIT (field), rli->offset);
1196 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1197 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1198 units of alignment than the underlying TYPE. */
1199 static int
1200 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1201 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1203 /* Note that the calculation of OFFSET might overflow; we calculate it so
1204 that we still get the right result as long as ALIGN is a power of two. */
1205 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1207 offset = offset % align;
1208 return ((offset + size + align - 1) / align
1209 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1212 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1213 is a FIELD_DECL to be added after those fields already present in
1214 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1215 callers that desire that behavior must manually perform that step.) */
1217 void
1218 place_field (record_layout_info rli, tree field)
1220 /* The alignment required for FIELD. */
1221 unsigned int desired_align;
1222 /* The alignment FIELD would have if we just dropped it into the
1223 record as it presently stands. */
1224 unsigned int known_align;
1225 unsigned int actual_align;
1226 /* The type of this field. */
1227 tree type = TREE_TYPE (field);
1229 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1231 /* If FIELD is static, then treat it like a separate variable, not
1232 really like a structure field. If it is a FUNCTION_DECL, it's a
1233 method. In both cases, all we do is lay out the decl, and we do
1234 it *after* the record is laid out. */
1235 if (VAR_P (field))
1237 vec_safe_push (rli->pending_statics, field);
1238 return;
1241 /* Enumerators and enum types which are local to this class need not
1242 be laid out. Likewise for initialized constant fields. */
1243 else if (TREE_CODE (field) != FIELD_DECL)
1244 return;
1246 /* Unions are laid out very differently than records, so split
1247 that code off to another function. */
1248 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1250 place_union_field (rli, field);
1251 return;
1254 else if (TREE_CODE (type) == ERROR_MARK)
1256 /* Place this field at the current allocation position, so we
1257 maintain monotonicity. */
1258 DECL_FIELD_OFFSET (field) = rli->offset;
1259 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1260 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1261 handle_warn_if_not_align (field, rli->record_align);
1262 return;
1265 if (AGGREGATE_TYPE_P (type)
1266 && TYPE_TYPELESS_STORAGE (type))
1267 TYPE_TYPELESS_STORAGE (rli->t) = 1;
1269 /* Work out the known alignment so far. Note that A & (-A) is the
1270 value of the least-significant bit in A that is one. */
1271 if (! integer_zerop (rli->bitpos))
1272 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1273 else if (integer_zerop (rli->offset))
1274 known_align = 0;
1275 else if (tree_fits_uhwi_p (rli->offset))
1276 known_align = (BITS_PER_UNIT
1277 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1278 else
1279 known_align = rli->offset_align;
1281 desired_align = update_alignment_for_field (rli, field, known_align);
1282 if (known_align == 0)
1283 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1285 if (warn_packed && DECL_PACKED (field))
1287 if (known_align >= TYPE_ALIGN (type))
1289 if (TYPE_ALIGN (type) > desired_align)
1291 if (STRICT_ALIGNMENT)
1292 warning (OPT_Wattributes, "packed attribute causes "
1293 "inefficient alignment for %q+D", field);
1294 /* Don't warn if DECL_PACKED was set by the type. */
1295 else if (!TYPE_PACKED (rli->t))
1296 warning (OPT_Wattributes, "packed attribute is "
1297 "unnecessary for %q+D", field);
1300 else
1301 rli->packed_maybe_necessary = 1;
1304 /* Does this field automatically have alignment it needs by virtue
1305 of the fields that precede it and the record's own alignment? */
1306 if (known_align < desired_align
1307 && (! targetm.ms_bitfield_layout_p (rli->t)
1308 || rli->prev_field == NULL))
1310 /* No, we need to skip space before this field.
1311 Bump the cumulative size to multiple of field alignment. */
1313 if (!targetm.ms_bitfield_layout_p (rli->t)
1314 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1315 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1317 /* If the alignment is still within offset_align, just align
1318 the bit position. */
1319 if (desired_align < rli->offset_align)
1320 rli->bitpos = round_up (rli->bitpos, desired_align);
1321 else
1323 /* First adjust OFFSET by the partial bits, then align. */
1324 rli->offset
1325 = size_binop (PLUS_EXPR, rli->offset,
1326 fold_convert (sizetype,
1327 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1328 bitsize_unit_node)));
1329 rli->bitpos = bitsize_zero_node;
1331 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1334 if (! TREE_CONSTANT (rli->offset))
1335 rli->offset_align = desired_align;
1338 /* Handle compatibility with PCC. Note that if the record has any
1339 variable-sized fields, we need not worry about compatibility. */
1340 if (PCC_BITFIELD_TYPE_MATTERS
1341 && ! targetm.ms_bitfield_layout_p (rli->t)
1342 && TREE_CODE (field) == FIELD_DECL
1343 && type != error_mark_node
1344 && DECL_BIT_FIELD (field)
1345 && (! DECL_PACKED (field)
1346 /* Enter for these packed fields only to issue a warning. */
1347 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1348 && maximum_field_alignment == 0
1349 && ! integer_zerop (DECL_SIZE (field))
1350 && tree_fits_uhwi_p (DECL_SIZE (field))
1351 && tree_fits_uhwi_p (rli->offset)
1352 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1354 unsigned int type_align = TYPE_ALIGN (type);
1355 tree dsize = DECL_SIZE (field);
1356 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1357 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1358 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1360 #ifdef ADJUST_FIELD_ALIGN
1361 if (! TYPE_USER_ALIGN (type))
1362 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1363 #endif
1365 /* A bit field may not span more units of alignment of its type
1366 than its type itself. Advance to next boundary if necessary. */
1367 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1369 if (DECL_PACKED (field))
1371 if (warn_packed_bitfield_compat == 1)
1372 inform
1373 (input_location,
1374 "offset of packed bit-field %qD has changed in GCC 4.4",
1375 field);
1377 else
1378 rli->bitpos = round_up (rli->bitpos, type_align);
1381 if (! DECL_PACKED (field))
1382 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1384 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1385 TYPE_WARN_IF_NOT_ALIGN (type));
1388 #ifdef BITFIELD_NBYTES_LIMITED
1389 if (BITFIELD_NBYTES_LIMITED
1390 && ! targetm.ms_bitfield_layout_p (rli->t)
1391 && TREE_CODE (field) == FIELD_DECL
1392 && type != error_mark_node
1393 && DECL_BIT_FIELD_TYPE (field)
1394 && ! DECL_PACKED (field)
1395 && ! integer_zerop (DECL_SIZE (field))
1396 && tree_fits_uhwi_p (DECL_SIZE (field))
1397 && tree_fits_uhwi_p (rli->offset)
1398 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1400 unsigned int type_align = TYPE_ALIGN (type);
1401 tree dsize = DECL_SIZE (field);
1402 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1403 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1404 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1406 #ifdef ADJUST_FIELD_ALIGN
1407 if (! TYPE_USER_ALIGN (type))
1408 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1409 #endif
1411 if (maximum_field_alignment != 0)
1412 type_align = MIN (type_align, maximum_field_alignment);
1413 /* ??? This test is opposite the test in the containing if
1414 statement, so this code is unreachable currently. */
1415 else if (DECL_PACKED (field))
1416 type_align = MIN (type_align, BITS_PER_UNIT);
1418 /* A bit field may not span the unit of alignment of its type.
1419 Advance to next boundary if necessary. */
1420 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1421 rli->bitpos = round_up (rli->bitpos, type_align);
1423 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1424 SET_TYPE_WARN_IF_NOT_ALIGN (rli->t,
1425 TYPE_WARN_IF_NOT_ALIGN (type));
1427 #endif
1429 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1430 A subtlety:
1431 When a bit field is inserted into a packed record, the whole
1432 size of the underlying type is used by one or more same-size
1433 adjacent bitfields. (That is, if its long:3, 32 bits is
1434 used in the record, and any additional adjacent long bitfields are
1435 packed into the same chunk of 32 bits. However, if the size
1436 changes, a new field of that size is allocated.) In an unpacked
1437 record, this is the same as using alignment, but not equivalent
1438 when packing.
1440 Note: for compatibility, we use the type size, not the type alignment
1441 to determine alignment, since that matches the documentation */
1443 if (targetm.ms_bitfield_layout_p (rli->t))
1445 tree prev_saved = rli->prev_field;
1446 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1448 /* This is a bitfield if it exists. */
1449 if (rli->prev_field)
1451 bool realign_p = known_align < desired_align;
1453 /* If both are bitfields, nonzero, and the same size, this is
1454 the middle of a run. Zero declared size fields are special
1455 and handled as "end of run". (Note: it's nonzero declared
1456 size, but equal type sizes!) (Since we know that both
1457 the current and previous fields are bitfields by the
1458 time we check it, DECL_SIZE must be present for both.) */
1459 if (DECL_BIT_FIELD_TYPE (field)
1460 && !integer_zerop (DECL_SIZE (field))
1461 && !integer_zerop (DECL_SIZE (rli->prev_field))
1462 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1463 && tree_fits_uhwi_p (TYPE_SIZE (type))
1464 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1466 /* We're in the middle of a run of equal type size fields; make
1467 sure we realign if we run out of bits. (Not decl size,
1468 type size!) */
1469 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1471 if (rli->remaining_in_alignment < bitsize)
1473 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1475 /* out of bits; bump up to next 'word'. */
1476 rli->bitpos
1477 = size_binop (PLUS_EXPR, rli->bitpos,
1478 bitsize_int (rli->remaining_in_alignment));
1479 rli->prev_field = field;
1480 if (typesize < bitsize)
1481 rli->remaining_in_alignment = 0;
1482 else
1483 rli->remaining_in_alignment = typesize - bitsize;
1485 else
1487 rli->remaining_in_alignment -= bitsize;
1488 realign_p = false;
1491 else
1493 /* End of a run: if leaving a run of bitfields of the same type
1494 size, we have to "use up" the rest of the bits of the type
1495 size.
1497 Compute the new position as the sum of the size for the prior
1498 type and where we first started working on that type.
1499 Note: since the beginning of the field was aligned then
1500 of course the end will be too. No round needed. */
1502 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1504 rli->bitpos
1505 = size_binop (PLUS_EXPR, rli->bitpos,
1506 bitsize_int (rli->remaining_in_alignment));
1508 else
1509 /* We "use up" size zero fields; the code below should behave
1510 as if the prior field was not a bitfield. */
1511 prev_saved = NULL;
1513 /* Cause a new bitfield to be captured, either this time (if
1514 currently a bitfield) or next time we see one. */
1515 if (!DECL_BIT_FIELD_TYPE (field)
1516 || integer_zerop (DECL_SIZE (field)))
1517 rli->prev_field = NULL;
1520 /* Does this field automatically have alignment it needs by virtue
1521 of the fields that precede it and the record's own alignment? */
1522 if (realign_p)
1524 /* If the alignment is still within offset_align, just align
1525 the bit position. */
1526 if (desired_align < rli->offset_align)
1527 rli->bitpos = round_up (rli->bitpos, desired_align);
1528 else
1530 /* First adjust OFFSET by the partial bits, then align. */
1531 tree d = size_binop (CEIL_DIV_EXPR, rli->bitpos,
1532 bitsize_unit_node);
1533 rli->offset = size_binop (PLUS_EXPR, rli->offset,
1534 fold_convert (sizetype, d));
1535 rli->bitpos = bitsize_zero_node;
1537 rli->offset = round_up (rli->offset,
1538 desired_align / BITS_PER_UNIT);
1541 if (! TREE_CONSTANT (rli->offset))
1542 rli->offset_align = desired_align;
1545 normalize_rli (rli);
1548 /* If we're starting a new run of same type size bitfields
1549 (or a run of non-bitfields), set up the "first of the run"
1550 fields.
1552 That is, if the current field is not a bitfield, or if there
1553 was a prior bitfield the type sizes differ, or if there wasn't
1554 a prior bitfield the size of the current field is nonzero.
1556 Note: we must be sure to test ONLY the type size if there was
1557 a prior bitfield and ONLY for the current field being zero if
1558 there wasn't. */
1560 if (!DECL_BIT_FIELD_TYPE (field)
1561 || (prev_saved != NULL
1562 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1563 : !integer_zerop (DECL_SIZE (field))))
1565 /* Never smaller than a byte for compatibility. */
1566 unsigned int type_align = BITS_PER_UNIT;
1568 /* (When not a bitfield), we could be seeing a flex array (with
1569 no DECL_SIZE). Since we won't be using remaining_in_alignment
1570 until we see a bitfield (and come by here again) we just skip
1571 calculating it. */
1572 if (DECL_SIZE (field) != NULL
1573 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1574 && tree_fits_uhwi_p (DECL_SIZE (field)))
1576 unsigned HOST_WIDE_INT bitsize
1577 = tree_to_uhwi (DECL_SIZE (field));
1578 unsigned HOST_WIDE_INT typesize
1579 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1581 if (typesize < bitsize)
1582 rli->remaining_in_alignment = 0;
1583 else
1584 rli->remaining_in_alignment = typesize - bitsize;
1587 /* Now align (conventionally) for the new type. */
1588 if (! DECL_PACKED (field))
1589 type_align = TYPE_ALIGN (TREE_TYPE (field));
1591 if (maximum_field_alignment != 0)
1592 type_align = MIN (type_align, maximum_field_alignment);
1594 rli->bitpos = round_up (rli->bitpos, type_align);
1596 /* If we really aligned, don't allow subsequent bitfields
1597 to undo that. */
1598 rli->prev_field = NULL;
1602 /* Offset so far becomes the position of this field after normalizing. */
1603 normalize_rli (rli);
1604 DECL_FIELD_OFFSET (field) = rli->offset;
1605 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1606 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1607 handle_warn_if_not_align (field, rli->record_align);
1609 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1610 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1611 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1613 /* If this field ended up more aligned than we thought it would be (we
1614 approximate this by seeing if its position changed), lay out the field
1615 again; perhaps we can use an integral mode for it now. */
1616 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1617 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1618 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1619 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1620 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1621 actual_align = (BITS_PER_UNIT
1622 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1623 else
1624 actual_align = DECL_OFFSET_ALIGN (field);
1625 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1626 store / extract bit field operations will check the alignment of the
1627 record against the mode of bit fields. */
1629 if (known_align != actual_align)
1630 layout_decl (field, actual_align);
1632 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1633 rli->prev_field = field;
1635 /* Now add size of this field to the size of the record. If the size is
1636 not constant, treat the field as being a multiple of bytes and just
1637 adjust the offset, resetting the bit position. Otherwise, apportion the
1638 size amongst the bit position and offset. First handle the case of an
1639 unspecified size, which can happen when we have an invalid nested struct
1640 definition, such as struct j { struct j { int i; } }. The error message
1641 is printed in finish_struct. */
1642 if (DECL_SIZE (field) == 0)
1643 /* Do nothing. */;
1644 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1645 || TREE_OVERFLOW (DECL_SIZE (field)))
1647 rli->offset
1648 = size_binop (PLUS_EXPR, rli->offset,
1649 fold_convert (sizetype,
1650 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1651 bitsize_unit_node)));
1652 rli->offset
1653 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1654 rli->bitpos = bitsize_zero_node;
1655 rli->offset_align = MIN (rli->offset_align, desired_align);
1657 if (!multiple_of_p (bitsizetype, DECL_SIZE (field),
1658 bitsize_int (rli->offset_align)))
1660 tree type = strip_array_types (TREE_TYPE (field));
1661 /* The above adjusts offset_align just based on the start of the
1662 field. The field might not have a size that is a multiple of
1663 that offset_align though. If the field is an array of fixed
1664 sized elements, assume there can be any multiple of those
1665 sizes. If it is a variable length aggregate or array of
1666 variable length aggregates, assume worst that the end is
1667 just BITS_PER_UNIT aligned. */
1668 if (TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)
1670 if (TREE_INT_CST_LOW (TYPE_SIZE (type)))
1672 unsigned HOST_WIDE_INT sz
1673 = least_bit_hwi (TREE_INT_CST_LOW (TYPE_SIZE (type)));
1674 rli->offset_align = MIN (rli->offset_align, sz);
1677 else
1678 rli->offset_align = MIN (rli->offset_align, BITS_PER_UNIT);
1681 else if (targetm.ms_bitfield_layout_p (rli->t))
1683 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1685 /* If we ended a bitfield before the full length of the type then
1686 pad the struct out to the full length of the last type. */
1687 if ((DECL_CHAIN (field) == NULL
1688 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1689 && DECL_BIT_FIELD_TYPE (field)
1690 && !integer_zerop (DECL_SIZE (field)))
1691 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1692 bitsize_int (rli->remaining_in_alignment));
1694 normalize_rli (rli);
1696 else
1698 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1699 normalize_rli (rli);
1703 /* Assuming that all the fields have been laid out, this function uses
1704 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1705 indicated by RLI. */
1707 static void
1708 finalize_record_size (record_layout_info rli)
1710 tree unpadded_size, unpadded_size_unit;
1712 /* Now we want just byte and bit offsets, so set the offset alignment
1713 to be a byte and then normalize. */
1714 rli->offset_align = BITS_PER_UNIT;
1715 normalize_rli (rli);
1717 /* Determine the desired alignment. */
1718 #ifdef ROUND_TYPE_ALIGN
1719 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1720 rli->record_align));
1721 #else
1722 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1723 #endif
1725 /* Compute the size so far. Be sure to allow for extra bits in the
1726 size in bytes. We have guaranteed above that it will be no more
1727 than a single byte. */
1728 unpadded_size = rli_size_so_far (rli);
1729 unpadded_size_unit = rli_size_unit_so_far (rli);
1730 if (! integer_zerop (rli->bitpos))
1731 unpadded_size_unit
1732 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1734 /* Round the size up to be a multiple of the required alignment. */
1735 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1736 TYPE_SIZE_UNIT (rli->t)
1737 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1739 if (TREE_CONSTANT (unpadded_size)
1740 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1741 && input_location != BUILTINS_LOCATION)
1742 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1744 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1745 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1746 && TREE_CONSTANT (unpadded_size))
1748 tree unpacked_size;
1750 #ifdef ROUND_TYPE_ALIGN
1751 rli->unpacked_align
1752 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1753 #else
1754 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1755 #endif
1757 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1758 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1760 if (TYPE_NAME (rli->t))
1762 tree name;
1764 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1765 name = TYPE_NAME (rli->t);
1766 else
1767 name = DECL_NAME (TYPE_NAME (rli->t));
1769 if (STRICT_ALIGNMENT)
1770 warning (OPT_Wpacked, "packed attribute causes inefficient "
1771 "alignment for %qE", name);
1772 else
1773 warning (OPT_Wpacked,
1774 "packed attribute is unnecessary for %qE", name);
1776 else
1778 if (STRICT_ALIGNMENT)
1779 warning (OPT_Wpacked,
1780 "packed attribute causes inefficient alignment");
1781 else
1782 warning (OPT_Wpacked, "packed attribute is unnecessary");
1788 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1790 void
1791 compute_record_mode (tree type)
1793 tree field;
1794 machine_mode mode = VOIDmode;
1796 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1797 However, if possible, we use a mode that fits in a register
1798 instead, in order to allow for better optimization down the
1799 line. */
1800 SET_TYPE_MODE (type, BLKmode);
1802 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1803 return;
1805 /* A record which has any BLKmode members must itself be
1806 BLKmode; it can't go in a register. Unless the member is
1807 BLKmode only because it isn't aligned. */
1808 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1810 if (TREE_CODE (field) != FIELD_DECL)
1811 continue;
1813 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1814 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1815 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1816 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1817 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1818 || ! tree_fits_uhwi_p (bit_position (field))
1819 || DECL_SIZE (field) == 0
1820 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1821 return;
1823 /* If this field is the whole struct, remember its mode so
1824 that, say, we can put a double in a class into a DF
1825 register instead of forcing it to live in the stack. */
1826 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1827 mode = DECL_MODE (field);
1829 /* With some targets, it is sub-optimal to access an aligned
1830 BLKmode structure as a scalar. */
1831 if (targetm.member_type_forces_blk (field, mode))
1832 return;
1835 /* If we only have one real field; use its mode if that mode's size
1836 matches the type's size. This only applies to RECORD_TYPE. This
1837 does not apply to unions. */
1838 poly_uint64 type_size;
1839 if (TREE_CODE (type) == RECORD_TYPE
1840 && mode != VOIDmode
1841 && poly_int_tree_p (TYPE_SIZE (type), &type_size)
1842 && known_eq (GET_MODE_BITSIZE (mode), type_size))
1844 else
1845 mode = mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1).else_blk ();
1847 /* If structure's known alignment is less than what the scalar
1848 mode would need, and it matters, then stick with BLKmode. */
1849 if (mode != BLKmode
1850 && STRICT_ALIGNMENT
1851 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1852 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (mode)))
1854 /* If this is the only reason this type is BLKmode, then
1855 don't force containing types to be BLKmode. */
1856 TYPE_NO_FORCE_BLK (type) = 1;
1857 mode = BLKmode;
1860 SET_TYPE_MODE (type, mode);
1863 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1864 out. */
1866 static void
1867 finalize_type_size (tree type)
1869 /* Normally, use the alignment corresponding to the mode chosen.
1870 However, where strict alignment is not required, avoid
1871 over-aligning structures, since most compilers do not do this
1872 alignment. */
1873 if (TYPE_MODE (type) != BLKmode
1874 && TYPE_MODE (type) != VOIDmode
1875 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1877 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1879 /* Don't override a larger alignment requirement coming from a user
1880 alignment of one of the fields. */
1881 if (mode_align >= TYPE_ALIGN (type))
1883 SET_TYPE_ALIGN (type, mode_align);
1884 TYPE_USER_ALIGN (type) = 0;
1888 /* Do machine-dependent extra alignment. */
1889 #ifdef ROUND_TYPE_ALIGN
1890 SET_TYPE_ALIGN (type,
1891 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1892 #endif
1894 /* If we failed to find a simple way to calculate the unit size
1895 of the type, find it by division. */
1896 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1897 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1898 result will fit in sizetype. We will get more efficient code using
1899 sizetype, so we force a conversion. */
1900 TYPE_SIZE_UNIT (type)
1901 = fold_convert (sizetype,
1902 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1903 bitsize_unit_node));
1905 if (TYPE_SIZE (type) != 0)
1907 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1908 TYPE_SIZE_UNIT (type)
1909 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1912 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1913 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1914 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1915 if (TYPE_SIZE_UNIT (type) != 0
1916 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1917 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1919 /* Handle empty records as per the x86-64 psABI. */
1920 TYPE_EMPTY_P (type) = targetm.calls.empty_record_p (type);
1922 /* Also layout any other variants of the type. */
1923 if (TYPE_NEXT_VARIANT (type)
1924 || type != TYPE_MAIN_VARIANT (type))
1926 tree variant;
1927 /* Record layout info of this variant. */
1928 tree size = TYPE_SIZE (type);
1929 tree size_unit = TYPE_SIZE_UNIT (type);
1930 unsigned int align = TYPE_ALIGN (type);
1931 unsigned int precision = TYPE_PRECISION (type);
1932 unsigned int user_align = TYPE_USER_ALIGN (type);
1933 machine_mode mode = TYPE_MODE (type);
1934 bool empty_p = TYPE_EMPTY_P (type);
1936 /* Copy it into all variants. */
1937 for (variant = TYPE_MAIN_VARIANT (type);
1938 variant != 0;
1939 variant = TYPE_NEXT_VARIANT (variant))
1941 TYPE_SIZE (variant) = size;
1942 TYPE_SIZE_UNIT (variant) = size_unit;
1943 unsigned valign = align;
1944 if (TYPE_USER_ALIGN (variant))
1945 valign = MAX (valign, TYPE_ALIGN (variant));
1946 else
1947 TYPE_USER_ALIGN (variant) = user_align;
1948 SET_TYPE_ALIGN (variant, valign);
1949 TYPE_PRECISION (variant) = precision;
1950 SET_TYPE_MODE (variant, mode);
1951 TYPE_EMPTY_P (variant) = empty_p;
1956 /* Return a new underlying object for a bitfield started with FIELD. */
1958 static tree
1959 start_bitfield_representative (tree field)
1961 tree repr = make_node (FIELD_DECL);
1962 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1963 /* Force the representative to begin at a BITS_PER_UNIT aligned
1964 boundary - C++ may use tail-padding of a base object to
1965 continue packing bits so the bitfield region does not start
1966 at bit zero (see g++.dg/abi/bitfield5.C for example).
1967 Unallocated bits may happen for other reasons as well,
1968 for example Ada which allows explicit bit-granular structure layout. */
1969 DECL_FIELD_BIT_OFFSET (repr)
1970 = size_binop (BIT_AND_EXPR,
1971 DECL_FIELD_BIT_OFFSET (field),
1972 bitsize_int (~(BITS_PER_UNIT - 1)));
1973 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1974 DECL_SIZE (repr) = DECL_SIZE (field);
1975 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1976 DECL_PACKED (repr) = DECL_PACKED (field);
1977 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1978 /* There are no indirect accesses to this field. If we introduce
1979 some then they have to use the record alias set. This makes
1980 sure to properly conflict with [indirect] accesses to addressable
1981 fields of the bitfield group. */
1982 DECL_NONADDRESSABLE_P (repr) = 1;
1983 return repr;
1986 /* Finish up a bitfield group that was started by creating the underlying
1987 object REPR with the last field in the bitfield group FIELD. */
1989 static void
1990 finish_bitfield_representative (tree repr, tree field)
1992 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1993 tree nextf, size;
1995 size = size_diffop (DECL_FIELD_OFFSET (field),
1996 DECL_FIELD_OFFSET (repr));
1997 while (TREE_CODE (size) == COMPOUND_EXPR)
1998 size = TREE_OPERAND (size, 1);
1999 gcc_assert (tree_fits_uhwi_p (size));
2000 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
2001 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2002 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
2003 + tree_to_uhwi (DECL_SIZE (field)));
2005 /* Round up bitsize to multiples of BITS_PER_UNIT. */
2006 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2008 /* Now nothing tells us how to pad out bitsize ... */
2009 nextf = DECL_CHAIN (field);
2010 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
2011 nextf = DECL_CHAIN (nextf);
2012 if (nextf)
2014 tree maxsize;
2015 /* If there was an error, the field may be not laid out
2016 correctly. Don't bother to do anything. */
2017 if (TREE_TYPE (nextf) == error_mark_node)
2018 return;
2019 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
2020 DECL_FIELD_OFFSET (repr));
2021 if (tree_fits_uhwi_p (maxsize))
2023 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2024 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
2025 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2026 /* If the group ends within a bitfield nextf does not need to be
2027 aligned to BITS_PER_UNIT. Thus round up. */
2028 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
2030 else
2031 maxbitsize = bitsize;
2033 else
2035 /* Note that if the C++ FE sets up tail-padding to be re-used it
2036 creates a as-base variant of the type with TYPE_SIZE adjusted
2037 accordingly. So it is safe to include tail-padding here. */
2038 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
2039 (DECL_CONTEXT (field));
2040 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
2041 /* We cannot generally rely on maxsize to fold to an integer constant,
2042 so use bitsize as fallback for this case. */
2043 if (tree_fits_uhwi_p (maxsize))
2044 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
2045 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
2046 else
2047 maxbitsize = bitsize;
2050 /* Only if we don't artificially break up the representative in
2051 the middle of a large bitfield with different possibly
2052 overlapping representatives. And all representatives start
2053 at byte offset. */
2054 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
2056 /* Find the smallest nice mode to use. */
2057 opt_scalar_int_mode mode_iter;
2058 FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
2059 if (GET_MODE_BITSIZE (mode_iter.require ()) >= bitsize)
2060 break;
2062 scalar_int_mode mode;
2063 if (!mode_iter.exists (&mode)
2064 || GET_MODE_BITSIZE (mode) > maxbitsize
2065 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE)
2067 /* We really want a BLKmode representative only as a last resort,
2068 considering the member b in
2069 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
2070 Otherwise we simply want to split the representative up
2071 allowing for overlaps within the bitfield region as required for
2072 struct { int a : 7; int b : 7;
2073 int c : 10; int d; } __attribute__((packed));
2074 [0, 15] HImode for a and b, [8, 23] HImode for c. */
2075 DECL_SIZE (repr) = bitsize_int (bitsize);
2076 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
2077 SET_DECL_MODE (repr, BLKmode);
2078 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
2079 bitsize / BITS_PER_UNIT);
2081 else
2083 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
2084 DECL_SIZE (repr) = bitsize_int (modesize);
2085 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
2086 SET_DECL_MODE (repr, mode);
2087 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
2090 /* Remember whether the bitfield group is at the end of the
2091 structure or not. */
2092 DECL_CHAIN (repr) = nextf;
2095 /* Compute and set FIELD_DECLs for the underlying objects we should
2096 use for bitfield access for the structure T. */
2098 void
2099 finish_bitfield_layout (tree t)
2101 tree field, prev;
2102 tree repr = NULL_TREE;
2104 /* Unions would be special, for the ease of type-punning optimizations
2105 we could use the underlying type as hint for the representative
2106 if the bitfield would fit and the representative would not exceed
2107 the union in size. */
2108 if (TREE_CODE (t) != RECORD_TYPE)
2109 return;
2111 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
2112 field; field = DECL_CHAIN (field))
2114 if (TREE_CODE (field) != FIELD_DECL)
2115 continue;
2117 /* In the C++ memory model, consecutive bit fields in a structure are
2118 considered one memory location and updating a memory location
2119 may not store into adjacent memory locations. */
2120 if (!repr
2121 && DECL_BIT_FIELD_TYPE (field))
2123 /* Start new representative. */
2124 repr = start_bitfield_representative (field);
2126 else if (repr
2127 && ! DECL_BIT_FIELD_TYPE (field))
2129 /* Finish off new representative. */
2130 finish_bitfield_representative (repr, prev);
2131 repr = NULL_TREE;
2133 else if (DECL_BIT_FIELD_TYPE (field))
2135 gcc_assert (repr != NULL_TREE);
2137 /* Zero-size bitfields finish off a representative and
2138 do not have a representative themselves. This is
2139 required by the C++ memory model. */
2140 if (integer_zerop (DECL_SIZE (field)))
2142 finish_bitfield_representative (repr, prev);
2143 repr = NULL_TREE;
2146 /* We assume that either DECL_FIELD_OFFSET of the representative
2147 and each bitfield member is a constant or they are equal.
2148 This is because we need to be able to compute the bit-offset
2149 of each field relative to the representative in get_bit_range
2150 during RTL expansion.
2151 If these constraints are not met, simply force a new
2152 representative to be generated. That will at most
2153 generate worse code but still maintain correctness with
2154 respect to the C++ memory model. */
2155 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2156 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2157 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2158 DECL_FIELD_OFFSET (field), 0)))
2160 finish_bitfield_representative (repr, prev);
2161 repr = start_bitfield_representative (field);
2164 else
2165 continue;
2167 if (repr)
2168 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2170 prev = field;
2173 if (repr)
2174 finish_bitfield_representative (repr, prev);
2177 /* Do all of the work required to layout the type indicated by RLI,
2178 once the fields have been laid out. This function will call `free'
2179 for RLI, unless FREE_P is false. Passing a value other than false
2180 for FREE_P is bad practice; this option only exists to support the
2181 G++ 3.2 ABI. */
2183 void
2184 finish_record_layout (record_layout_info rli, int free_p)
2186 tree variant;
2188 /* Compute the final size. */
2189 finalize_record_size (rli);
2191 /* Compute the TYPE_MODE for the record. */
2192 compute_record_mode (rli->t);
2194 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2195 finalize_type_size (rli->t);
2197 /* Compute bitfield representatives. */
2198 finish_bitfield_layout (rli->t);
2200 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2201 With C++ templates, it is too early to do this when the attribute
2202 is being parsed. */
2203 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2204 variant = TYPE_NEXT_VARIANT (variant))
2206 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2207 TYPE_REVERSE_STORAGE_ORDER (variant)
2208 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2211 /* Lay out any static members. This is done now because their type
2212 may use the record's type. */
2213 while (!vec_safe_is_empty (rli->pending_statics))
2214 layout_decl (rli->pending_statics->pop (), 0);
2216 /* Clean up. */
2217 if (free_p)
2219 vec_free (rli->pending_statics);
2220 free (rli);
2225 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2226 NAME, its fields are chained in reverse on FIELDS.
2228 If ALIGN_TYPE is non-null, it is given the same alignment as
2229 ALIGN_TYPE. */
2231 void
2232 finish_builtin_struct (tree type, const char *name, tree fields,
2233 tree align_type)
2235 tree tail, next;
2237 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2239 DECL_FIELD_CONTEXT (fields) = type;
2240 next = DECL_CHAIN (fields);
2241 DECL_CHAIN (fields) = tail;
2243 TYPE_FIELDS (type) = tail;
2245 if (align_type)
2247 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2248 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2249 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2250 TYPE_WARN_IF_NOT_ALIGN (align_type));
2253 layout_type (type);
2254 #if 0 /* not yet, should get fixed properly later */
2255 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2256 #else
2257 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2258 TYPE_DECL, get_identifier (name), type);
2259 #endif
2260 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2261 layout_decl (TYPE_NAME (type), 0);
2264 /* Calculate the mode, size, and alignment for TYPE.
2265 For an array type, calculate the element separation as well.
2266 Record TYPE on the chain of permanent or temporary types
2267 so that dbxout will find out about it.
2269 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2270 layout_type does nothing on such a type.
2272 If the type is incomplete, its TYPE_SIZE remains zero. */
2274 void
2275 layout_type (tree type)
2277 gcc_assert (type);
2279 if (type == error_mark_node)
2280 return;
2282 /* We don't want finalize_type_size to copy an alignment attribute to
2283 variants that don't have it. */
2284 type = TYPE_MAIN_VARIANT (type);
2286 /* Do nothing if type has been laid out before. */
2287 if (TYPE_SIZE (type))
2288 return;
2290 switch (TREE_CODE (type))
2292 case LANG_TYPE:
2293 /* This kind of type is the responsibility
2294 of the language-specific code. */
2295 gcc_unreachable ();
2297 case BOOLEAN_TYPE:
2298 case INTEGER_TYPE:
2299 case ENUMERAL_TYPE:
2301 scalar_int_mode mode
2302 = smallest_int_mode_for_size (TYPE_PRECISION (type));
2303 SET_TYPE_MODE (type, mode);
2304 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2305 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2306 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2307 break;
2310 case REAL_TYPE:
2312 /* Allow the caller to choose the type mode, which is how decimal
2313 floats are distinguished from binary ones. */
2314 if (TYPE_MODE (type) == VOIDmode)
2315 SET_TYPE_MODE
2316 (type, float_mode_for_size (TYPE_PRECISION (type)).require ());
2317 scalar_float_mode mode = as_a <scalar_float_mode> (TYPE_MODE (type));
2318 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2319 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2320 break;
2323 case FIXED_POINT_TYPE:
2325 /* TYPE_MODE (type) has been set already. */
2326 scalar_mode mode = SCALAR_TYPE_MODE (type);
2327 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2328 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2329 break;
2332 case COMPLEX_TYPE:
2333 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2334 SET_TYPE_MODE (type,
2335 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2337 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2338 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2339 break;
2341 case VECTOR_TYPE:
2343 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type);
2344 tree innertype = TREE_TYPE (type);
2346 /* Find an appropriate mode for the vector type. */
2347 if (TYPE_MODE (type) == VOIDmode)
2348 SET_TYPE_MODE (type,
2349 mode_for_vector (SCALAR_TYPE_MODE (innertype),
2350 nunits).else_blk ());
2352 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2353 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2354 /* Several boolean vector elements may fit in a single unit. */
2355 if (VECTOR_BOOLEAN_TYPE_P (type)
2356 && type->type_common.mode != BLKmode)
2357 TYPE_SIZE_UNIT (type)
2358 = size_int (GET_MODE_SIZE (type->type_common.mode));
2359 else
2360 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2361 TYPE_SIZE_UNIT (innertype),
2362 size_int (nunits));
2363 TYPE_SIZE (type) = int_const_binop
2364 (MULT_EXPR,
2365 bits_from_bytes (TYPE_SIZE_UNIT (type)),
2366 bitsize_int (BITS_PER_UNIT));
2368 /* For vector types, we do not default to the mode's alignment.
2369 Instead, query a target hook, defaulting to natural alignment.
2370 This prevents ABI changes depending on whether or not native
2371 vector modes are supported. */
2372 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2374 /* However, if the underlying mode requires a bigger alignment than
2375 what the target hook provides, we cannot use the mode. For now,
2376 simply reject that case. */
2377 gcc_assert (TYPE_ALIGN (type)
2378 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2379 break;
2382 case VOID_TYPE:
2383 /* This is an incomplete type and so doesn't have a size. */
2384 SET_TYPE_ALIGN (type, 1);
2385 TYPE_USER_ALIGN (type) = 0;
2386 SET_TYPE_MODE (type, VOIDmode);
2387 break;
2389 case OFFSET_TYPE:
2390 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2391 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2392 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2393 integral, which may be an __intN. */
2394 SET_TYPE_MODE (type, int_mode_for_size (POINTER_SIZE, 0).require ());
2395 TYPE_PRECISION (type) = POINTER_SIZE;
2396 break;
2398 case FUNCTION_TYPE:
2399 case METHOD_TYPE:
2400 /* It's hard to see what the mode and size of a function ought to
2401 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2402 make it consistent with that. */
2403 SET_TYPE_MODE (type,
2404 int_mode_for_size (FUNCTION_BOUNDARY, 0).else_blk ());
2405 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2406 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2407 break;
2409 case POINTER_TYPE:
2410 case REFERENCE_TYPE:
2412 scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
2413 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2414 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2415 TYPE_UNSIGNED (type) = 1;
2416 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2418 break;
2420 case ARRAY_TYPE:
2422 tree index = TYPE_DOMAIN (type);
2423 tree element = TREE_TYPE (type);
2425 /* We need to know both bounds in order to compute the size. */
2426 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2427 && TYPE_SIZE (element))
2429 tree ub = TYPE_MAX_VALUE (index);
2430 tree lb = TYPE_MIN_VALUE (index);
2431 tree element_size = TYPE_SIZE (element);
2432 tree length;
2434 /* Make sure that an array of zero-sized element is zero-sized
2435 regardless of its extent. */
2436 if (integer_zerop (element_size))
2437 length = size_zero_node;
2439 /* The computation should happen in the original signedness so
2440 that (possible) negative values are handled appropriately
2441 when determining overflow. */
2442 else
2444 /* ??? When it is obvious that the range is signed
2445 represent it using ssizetype. */
2446 if (TREE_CODE (lb) == INTEGER_CST
2447 && TREE_CODE (ub) == INTEGER_CST
2448 && TYPE_UNSIGNED (TREE_TYPE (lb))
2449 && tree_int_cst_lt (ub, lb))
2451 lb = wide_int_to_tree (ssizetype,
2452 offset_int::from (wi::to_wide (lb),
2453 SIGNED));
2454 ub = wide_int_to_tree (ssizetype,
2455 offset_int::from (wi::to_wide (ub),
2456 SIGNED));
2458 length
2459 = fold_convert (sizetype,
2460 size_binop (PLUS_EXPR,
2461 build_int_cst (TREE_TYPE (lb), 1),
2462 size_binop (MINUS_EXPR, ub, lb)));
2465 /* ??? We have no way to distinguish a null-sized array from an
2466 array spanning the whole sizetype range, so we arbitrarily
2467 decide that [0, -1] is the only valid representation. */
2468 if (integer_zerop (length)
2469 && TREE_OVERFLOW (length)
2470 && integer_zerop (lb))
2471 length = size_zero_node;
2473 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2474 bits_from_bytes (length));
2476 /* If we know the size of the element, calculate the total size
2477 directly, rather than do some division thing below. This
2478 optimization helps Fortran assumed-size arrays (where the
2479 size of the array is determined at runtime) substantially. */
2480 if (TYPE_SIZE_UNIT (element))
2481 TYPE_SIZE_UNIT (type)
2482 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2485 /* Now round the alignment and size,
2486 using machine-dependent criteria if any. */
2488 unsigned align = TYPE_ALIGN (element);
2489 if (TYPE_USER_ALIGN (type))
2490 align = MAX (align, TYPE_ALIGN (type));
2491 else
2492 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2493 if (!TYPE_WARN_IF_NOT_ALIGN (type))
2494 SET_TYPE_WARN_IF_NOT_ALIGN (type,
2495 TYPE_WARN_IF_NOT_ALIGN (element));
2496 #ifdef ROUND_TYPE_ALIGN
2497 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2498 #else
2499 align = MAX (align, BITS_PER_UNIT);
2500 #endif
2501 SET_TYPE_ALIGN (type, align);
2502 SET_TYPE_MODE (type, BLKmode);
2503 if (TYPE_SIZE (type) != 0
2504 && ! targetm.member_type_forces_blk (type, VOIDmode)
2505 /* BLKmode elements force BLKmode aggregate;
2506 else extract/store fields may lose. */
2507 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2508 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2510 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2511 TYPE_SIZE (type)));
2512 if (TYPE_MODE (type) != BLKmode
2513 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2514 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2516 TYPE_NO_FORCE_BLK (type) = 1;
2517 SET_TYPE_MODE (type, BLKmode);
2520 if (AGGREGATE_TYPE_P (element))
2521 TYPE_TYPELESS_STORAGE (type) = TYPE_TYPELESS_STORAGE (element);
2522 /* When the element size is constant, check that it is at least as
2523 large as the element alignment. */
2524 if (TYPE_SIZE_UNIT (element)
2525 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2526 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2527 TYPE_ALIGN_UNIT. */
2528 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2529 && !integer_zerop (TYPE_SIZE_UNIT (element))
2530 && compare_tree_int (TYPE_SIZE_UNIT (element),
2531 TYPE_ALIGN_UNIT (element)) < 0)
2532 error ("alignment of array elements is greater than element size");
2533 break;
2536 case RECORD_TYPE:
2537 case UNION_TYPE:
2538 case QUAL_UNION_TYPE:
2540 tree field;
2541 record_layout_info rli;
2543 /* Initialize the layout information. */
2544 rli = start_record_layout (type);
2546 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2547 in the reverse order in building the COND_EXPR that denotes
2548 its size. We reverse them again later. */
2549 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2550 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2552 /* Place all the fields. */
2553 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2554 place_field (rli, field);
2556 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2557 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2559 /* Finish laying out the record. */
2560 finish_record_layout (rli, /*free_p=*/true);
2562 break;
2564 default:
2565 gcc_unreachable ();
2568 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2569 records and unions, finish_record_layout already called this
2570 function. */
2571 if (!RECORD_OR_UNION_TYPE_P (type))
2572 finalize_type_size (type);
2574 /* We should never see alias sets on incomplete aggregates. And we
2575 should not call layout_type on not incomplete aggregates. */
2576 if (AGGREGATE_TYPE_P (type))
2577 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2580 /* Return the least alignment required for type TYPE. */
2582 unsigned int
2583 min_align_of_type (tree type)
2585 unsigned int align = TYPE_ALIGN (type);
2586 if (!TYPE_USER_ALIGN (type))
2588 align = MIN (align, BIGGEST_ALIGNMENT);
2589 #ifdef BIGGEST_FIELD_ALIGNMENT
2590 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2591 #endif
2592 unsigned int field_align = align;
2593 #ifdef ADJUST_FIELD_ALIGN
2594 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2595 #endif
2596 align = MIN (align, field_align);
2598 return align / BITS_PER_UNIT;
2601 /* Create and return a type for signed integers of PRECISION bits. */
2603 tree
2604 make_signed_type (int precision)
2606 tree type = make_node (INTEGER_TYPE);
2608 TYPE_PRECISION (type) = precision;
2610 fixup_signed_type (type);
2611 return type;
2614 /* Create and return a type for unsigned integers of PRECISION bits. */
2616 tree
2617 make_unsigned_type (int precision)
2619 tree type = make_node (INTEGER_TYPE);
2621 TYPE_PRECISION (type) = precision;
2623 fixup_unsigned_type (type);
2624 return type;
2627 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2628 and SATP. */
2630 tree
2631 make_fract_type (int precision, int unsignedp, int satp)
2633 tree type = make_node (FIXED_POINT_TYPE);
2635 TYPE_PRECISION (type) = precision;
2637 if (satp)
2638 TYPE_SATURATING (type) = 1;
2640 /* Lay out the type: set its alignment, size, etc. */
2641 TYPE_UNSIGNED (type) = unsignedp;
2642 enum mode_class mclass = unsignedp ? MODE_UFRACT : MODE_FRACT;
2643 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2644 layout_type (type);
2646 return type;
2649 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2650 and SATP. */
2652 tree
2653 make_accum_type (int precision, int unsignedp, int satp)
2655 tree type = make_node (FIXED_POINT_TYPE);
2657 TYPE_PRECISION (type) = precision;
2659 if (satp)
2660 TYPE_SATURATING (type) = 1;
2662 /* Lay out the type: set its alignment, size, etc. */
2663 TYPE_UNSIGNED (type) = unsignedp;
2664 enum mode_class mclass = unsignedp ? MODE_UACCUM : MODE_ACCUM;
2665 SET_TYPE_MODE (type, mode_for_size (precision, mclass, 0).require ());
2666 layout_type (type);
2668 return type;
2671 /* Initialize sizetypes so layout_type can use them. */
2673 void
2674 initialize_sizetypes (void)
2676 int precision, bprecision;
2678 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2679 if (strcmp (SIZETYPE, "unsigned int") == 0)
2680 precision = INT_TYPE_SIZE;
2681 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2682 precision = LONG_TYPE_SIZE;
2683 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2684 precision = LONG_LONG_TYPE_SIZE;
2685 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2686 precision = SHORT_TYPE_SIZE;
2687 else
2689 int i;
2691 precision = -1;
2692 for (i = 0; i < NUM_INT_N_ENTS; i++)
2693 if (int_n_enabled_p[i])
2695 char name[50];
2696 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2698 if (strcmp (name, SIZETYPE) == 0)
2700 precision = int_n_data[i].bitsize;
2703 if (precision == -1)
2704 gcc_unreachable ();
2707 bprecision
2708 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2709 bprecision = GET_MODE_PRECISION (smallest_int_mode_for_size (bprecision));
2710 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2711 bprecision = HOST_BITS_PER_DOUBLE_INT;
2713 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2714 sizetype = make_node (INTEGER_TYPE);
2715 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2716 TYPE_PRECISION (sizetype) = precision;
2717 TYPE_UNSIGNED (sizetype) = 1;
2718 bitsizetype = make_node (INTEGER_TYPE);
2719 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2720 TYPE_PRECISION (bitsizetype) = bprecision;
2721 TYPE_UNSIGNED (bitsizetype) = 1;
2723 /* Now layout both types manually. */
2724 scalar_int_mode mode = smallest_int_mode_for_size (precision);
2725 SET_TYPE_MODE (sizetype, mode);
2726 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2727 TYPE_SIZE (sizetype) = bitsize_int (precision);
2728 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (mode));
2729 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2731 mode = smallest_int_mode_for_size (bprecision);
2732 SET_TYPE_MODE (bitsizetype, mode);
2733 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2734 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2735 TYPE_SIZE_UNIT (bitsizetype) = size_int (GET_MODE_SIZE (mode));
2736 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2738 /* Create the signed variants of *sizetype. */
2739 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2740 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2741 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2742 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2745 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2746 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2747 for TYPE, based on the PRECISION and whether or not the TYPE
2748 IS_UNSIGNED. PRECISION need not correspond to a width supported
2749 natively by the hardware; for example, on a machine with 8-bit,
2750 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2751 61. */
2753 void
2754 set_min_and_max_values_for_integral_type (tree type,
2755 int precision,
2756 signop sgn)
2758 /* For bitfields with zero width we end up creating integer types
2759 with zero precision. Don't assign any minimum/maximum values
2760 to those types, they don't have any valid value. */
2761 if (precision < 1)
2762 return;
2764 TYPE_MIN_VALUE (type)
2765 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2766 TYPE_MAX_VALUE (type)
2767 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2770 /* Set the extreme values of TYPE based on its precision in bits,
2771 then lay it out. Used when make_signed_type won't do
2772 because the tree code is not INTEGER_TYPE. */
2774 void
2775 fixup_signed_type (tree type)
2777 int precision = TYPE_PRECISION (type);
2779 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2781 /* Lay out the type: set its alignment, size, etc. */
2782 layout_type (type);
2785 /* Set the extreme values of TYPE based on its precision in bits,
2786 then lay it out. This is used both in `make_unsigned_type'
2787 and for enumeral types. */
2789 void
2790 fixup_unsigned_type (tree type)
2792 int precision = TYPE_PRECISION (type);
2794 TYPE_UNSIGNED (type) = 1;
2796 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2798 /* Lay out the type: set its alignment, size, etc. */
2799 layout_type (type);
2802 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2803 starting at BITPOS.
2805 BITREGION_START is the bit position of the first bit in this
2806 sequence of bit fields. BITREGION_END is the last bit in this
2807 sequence. If these two fields are non-zero, we should restrict the
2808 memory access to that range. Otherwise, we are allowed to touch
2809 any adjacent non bit-fields.
2811 ALIGN is the alignment of the underlying object in bits.
2812 VOLATILEP says whether the bitfield is volatile. */
2814 bit_field_mode_iterator
2815 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2816 poly_int64 bitregion_start,
2817 poly_int64 bitregion_end,
2818 unsigned int align, bool volatilep)
2819 : m_mode (NARROWEST_INT_MODE), m_bitsize (bitsize),
2820 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2821 m_bitregion_end (bitregion_end), m_align (align),
2822 m_volatilep (volatilep), m_count (0)
2824 if (known_eq (m_bitregion_end, 0))
2826 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2827 the bitfield is mapped and won't trap, provided that ALIGN isn't
2828 too large. The cap is the biggest required alignment for data,
2829 or at least the word size. And force one such chunk at least. */
2830 unsigned HOST_WIDE_INT units
2831 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2832 if (bitsize <= 0)
2833 bitsize = 1;
2834 HOST_WIDE_INT end = bitpos + bitsize + units - 1;
2835 m_bitregion_end = end - end % units - 1;
2839 /* Calls to this function return successively larger modes that can be used
2840 to represent the bitfield. Return true if another bitfield mode is
2841 available, storing it in *OUT_MODE if so. */
2843 bool
2844 bit_field_mode_iterator::next_mode (scalar_int_mode *out_mode)
2846 scalar_int_mode mode;
2847 for (; m_mode.exists (&mode); m_mode = GET_MODE_WIDER_MODE (mode))
2849 unsigned int unit = GET_MODE_BITSIZE (mode);
2851 /* Skip modes that don't have full precision. */
2852 if (unit != GET_MODE_PRECISION (mode))
2853 continue;
2855 /* Stop if the mode is too wide to handle efficiently. */
2856 if (unit > MAX_FIXED_MODE_SIZE)
2857 break;
2859 /* Don't deliver more than one multiword mode; the smallest one
2860 should be used. */
2861 if (m_count > 0 && unit > BITS_PER_WORD)
2862 break;
2864 /* Skip modes that are too small. */
2865 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2866 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2867 if (subend > unit)
2868 continue;
2870 /* Stop if the mode goes outside the bitregion. */
2871 HOST_WIDE_INT start = m_bitpos - substart;
2872 if (maybe_ne (m_bitregion_start, 0)
2873 && maybe_lt (start, m_bitregion_start))
2874 break;
2875 HOST_WIDE_INT end = start + unit;
2876 if (maybe_gt (end, m_bitregion_end + 1))
2877 break;
2879 /* Stop if the mode requires too much alignment. */
2880 if (GET_MODE_ALIGNMENT (mode) > m_align
2881 && targetm.slow_unaligned_access (mode, m_align))
2882 break;
2884 *out_mode = mode;
2885 m_mode = GET_MODE_WIDER_MODE (mode);
2886 m_count++;
2887 return true;
2889 return false;
2892 /* Return true if smaller modes are generally preferred for this kind
2893 of bitfield. */
2895 bool
2896 bit_field_mode_iterator::prefer_smaller_modes ()
2898 return (m_volatilep
2899 ? targetm.narrow_volatile_bitfield ()
2900 : !SLOW_BYTE_ACCESS);
2903 /* Find the best machine mode to use when referencing a bit field of length
2904 BITSIZE bits starting at BITPOS.
2906 BITREGION_START is the bit position of the first bit in this
2907 sequence of bit fields. BITREGION_END is the last bit in this
2908 sequence. If these two fields are non-zero, we should restrict the
2909 memory access to that range. Otherwise, we are allowed to touch
2910 any adjacent non bit-fields.
2912 The chosen mode must have no more than LARGEST_MODE_BITSIZE bits.
2913 INT_MAX is a suitable value for LARGEST_MODE_BITSIZE if the caller
2914 doesn't want to apply a specific limit.
2916 If no mode meets all these conditions, we return VOIDmode.
2918 The underlying object is known to be aligned to a boundary of ALIGN bits.
2920 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2921 smallest mode meeting these conditions.
2923 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2924 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2925 all the conditions.
2927 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2928 decide which of the above modes should be used. */
2930 bool
2931 get_best_mode (int bitsize, int bitpos,
2932 poly_uint64 bitregion_start, poly_uint64 bitregion_end,
2933 unsigned int align,
2934 unsigned HOST_WIDE_INT largest_mode_bitsize, bool volatilep,
2935 scalar_int_mode *best_mode)
2937 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2938 bitregion_end, align, volatilep);
2939 scalar_int_mode mode;
2940 bool found = false;
2941 while (iter.next_mode (&mode)
2942 /* ??? For historical reasons, reject modes that would normally
2943 receive greater alignment, even if unaligned accesses are
2944 acceptable. This has both advantages and disadvantages.
2945 Removing this check means that something like:
2947 struct s { unsigned int x; unsigned int y; };
2948 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2950 can be implemented using a single load and compare on
2951 64-bit machines that have no alignment restrictions.
2952 For example, on powerpc64-linux-gnu, we would generate:
2954 ld 3,0(3)
2955 cntlzd 3,3
2956 srdi 3,3,6
2959 rather than:
2961 lwz 9,0(3)
2962 cmpwi 7,9,0
2963 bne 7,.L3
2964 lwz 3,4(3)
2965 cntlzw 3,3
2966 srwi 3,3,5
2967 extsw 3,3
2969 .p2align 4,,15
2970 .L3:
2971 li 3,0
2974 However, accessing more than one field can make life harder
2975 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2976 has a series of unsigned short copies followed by a series of
2977 unsigned short comparisons. With this check, both the copies
2978 and comparisons remain 16-bit accesses and FRE is able
2979 to eliminate the latter. Without the check, the comparisons
2980 can be done using 2 64-bit operations, which FRE isn't able
2981 to handle in the same way.
2983 Either way, it would probably be worth disabling this check
2984 during expand. One particular example where removing the
2985 check would help is the get_best_mode call in store_bit_field.
2986 If we are given a memory bitregion of 128 bits that is aligned
2987 to a 64-bit boundary, and the bitfield we want to modify is
2988 in the second half of the bitregion, this check causes
2989 store_bitfield to turn the memory into a 64-bit reference
2990 to the _first_ half of the region. We later use
2991 adjust_bitfield_address to get a reference to the correct half,
2992 but doing so looks to adjust_bitfield_address as though we are
2993 moving past the end of the original object, so it drops the
2994 associated MEM_EXPR and MEM_OFFSET. Removing the check
2995 causes store_bit_field to keep a 128-bit memory reference,
2996 so that the final bitfield reference still has a MEM_EXPR
2997 and MEM_OFFSET. */
2998 && GET_MODE_ALIGNMENT (mode) <= align
2999 && GET_MODE_BITSIZE (mode) <= largest_mode_bitsize)
3001 *best_mode = mode;
3002 found = true;
3003 if (iter.prefer_smaller_modes ())
3004 break;
3007 return found;
3010 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
3011 SIGN). The returned constants are made to be usable in TARGET_MODE. */
3013 void
3014 get_mode_bounds (scalar_int_mode mode, int sign,
3015 scalar_int_mode target_mode,
3016 rtx *mmin, rtx *mmax)
3018 unsigned size = GET_MODE_PRECISION (mode);
3019 unsigned HOST_WIDE_INT min_val, max_val;
3021 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
3023 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
3024 if (mode == BImode)
3026 if (STORE_FLAG_VALUE < 0)
3028 min_val = STORE_FLAG_VALUE;
3029 max_val = 0;
3031 else
3033 min_val = 0;
3034 max_val = STORE_FLAG_VALUE;
3037 else if (sign)
3039 min_val = -(HOST_WIDE_INT_1U << (size - 1));
3040 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
3042 else
3044 min_val = 0;
3045 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
3048 *mmin = gen_int_mode (min_val, target_mode);
3049 *mmax = gen_int_mode (max_val, target_mode);
3052 #include "gt-stor-layout.h"