1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
29 Boston, MA 02111-1307, USA. */
34 #include "libgfortran.h"
37 extern void product_r8 (gfc_array_r8
*, gfc_array_r8
*, index_type
*);
38 export_proto(product_r8
);
41 product_r8 (gfc_array_r8
*retarray
, gfc_array_r8
*array
, index_type
*pdim
)
43 index_type count
[GFC_MAX_DIMENSIONS
- 1];
44 index_type extent
[GFC_MAX_DIMENSIONS
- 1];
45 index_type sstride
[GFC_MAX_DIMENSIONS
- 1];
46 index_type dstride
[GFC_MAX_DIMENSIONS
- 1];
55 /* Make dim zero based to avoid confusion. */
57 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
58 assert (rank
== GFC_DESCRIPTOR_RANK (retarray
));
59 if (array
->dim
[0].stride
== 0)
60 array
->dim
[0].stride
= 1;
61 if (retarray
->dim
[0].stride
== 0)
62 retarray
->dim
[0].stride
= 1;
64 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
65 delta
= array
->dim
[dim
].stride
;
67 for (n
= 0; n
< dim
; n
++)
69 sstride
[n
] = array
->dim
[n
].stride
;
70 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
72 for (n
= dim
; n
< rank
; n
++)
74 sstride
[n
] = array
->dim
[n
+ 1].stride
;
76 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
79 if (retarray
->data
== NULL
)
81 for (n
= 0; n
< rank
; n
++)
83 retarray
->dim
[n
].lbound
= 0;
84 retarray
->dim
[n
].ubound
= extent
[n
]-1;
86 retarray
->dim
[n
].stride
= 1;
88 retarray
->dim
[n
].stride
= retarray
->dim
[n
-1].stride
* extent
[n
-1];
92 = internal_malloc_size (sizeof (GFC_REAL_8
)
93 * retarray
->dim
[rank
-1].stride
98 for (n
= 0; n
< rank
; n
++)
101 dstride
[n
] = retarray
->dim
[n
].stride
;
107 dest
= retarray
->data
;
121 for (n
= 0; n
< len
; n
++, src
+= delta
)
129 /* Advance to the next element. */
134 while (count
[n
] == extent
[n
])
136 /* When we get to the end of a dimension, reset it and increment
137 the next dimension. */
139 /* We could precalculate these products, but this is a less
140 frequently used path so proabably not worth it. */
141 base
-= sstride
[n
] * extent
[n
];
142 dest
-= dstride
[n
] * extent
[n
];
146 /* Break out of the look. */
161 extern void mproduct_r8 (gfc_array_r8
*, gfc_array_r8
*, index_type
*,
163 export_proto(mproduct_r8
);
166 mproduct_r8 (gfc_array_r8
* retarray
, gfc_array_r8
* array
,
167 index_type
*pdim
, gfc_array_l4
* mask
)
169 index_type count
[GFC_MAX_DIMENSIONS
- 1];
170 index_type extent
[GFC_MAX_DIMENSIONS
- 1];
171 index_type sstride
[GFC_MAX_DIMENSIONS
- 1];
172 index_type dstride
[GFC_MAX_DIMENSIONS
- 1];
173 index_type mstride
[GFC_MAX_DIMENSIONS
- 1];
176 GFC_LOGICAL_4
*mbase
;
185 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
186 assert (rank
== GFC_DESCRIPTOR_RANK (retarray
));
187 if (array
->dim
[0].stride
== 0)
188 array
->dim
[0].stride
= 1;
189 if (retarray
->dim
[0].stride
== 0)
190 retarray
->dim
[0].stride
= 1;
192 len
= array
->dim
[dim
].ubound
+ 1 - array
->dim
[dim
].lbound
;
195 delta
= array
->dim
[dim
].stride
;
196 mdelta
= mask
->dim
[dim
].stride
;
198 for (n
= 0; n
< dim
; n
++)
200 sstride
[n
] = array
->dim
[n
].stride
;
201 mstride
[n
] = mask
->dim
[n
].stride
;
202 extent
[n
] = array
->dim
[n
].ubound
+ 1 - array
->dim
[n
].lbound
;
204 for (n
= dim
; n
< rank
; n
++)
206 sstride
[n
] = array
->dim
[n
+ 1].stride
;
207 mstride
[n
] = mask
->dim
[n
+ 1].stride
;
209 array
->dim
[n
+ 1].ubound
+ 1 - array
->dim
[n
+ 1].lbound
;
212 for (n
= 0; n
< rank
; n
++)
215 dstride
[n
] = retarray
->dim
[n
].stride
;
220 dest
= retarray
->data
;
224 if (GFC_DESCRIPTOR_SIZE (mask
) != 4)
226 /* This allows the same loop to be used for all logical types. */
227 assert (GFC_DESCRIPTOR_SIZE (mask
) == 8);
228 for (n
= 0; n
< rank
; n
++)
231 mbase
= (GFOR_POINTER_L8_TO_L4 (mbase
));
248 for (n
= 0; n
< len
; n
++, src
+= delta
, msrc
+= mdelta
)
257 /* Advance to the next element. */
263 while (count
[n
] == extent
[n
])
265 /* When we get to the end of a dimension, reset it and increment
266 the next dimension. */
268 /* We could precalculate these products, but this is a less
269 frequently used path so proabably not worth it. */
270 base
-= sstride
[n
] * extent
[n
];
271 mbase
-= mstride
[n
] * extent
[n
];
272 dest
-= dstride
[n
] * extent
[n
];
276 /* Break out of the look. */