1 /* Implementation of the PRODUCT intrinsic
2 Copyright (C) 2002-2017 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 3 of the License, or (at your option) any later version.
12 Libgfortran is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 Under Section 7 of GPL version 3, you are granted additional
18 permissions described in the GCC Runtime Library Exception, version
19 3.1, as published by the Free Software Foundation.
21 You should have received a copy of the GNU General Public License and
22 a copy of the GCC Runtime Library Exception along with this program;
23 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 <http://www.gnu.org/licenses/>. */
26 #include "libgfortran.h"
29 #if defined (HAVE_GFC_COMPLEX_10) && defined (HAVE_GFC_COMPLEX_10)
32 extern void product_c10 (gfc_array_c10
* const restrict
,
33 gfc_array_c10
* const restrict
, const index_type
* const restrict
);
34 export_proto(product_c10
);
37 product_c10 (gfc_array_c10
* const restrict retarray
,
38 gfc_array_c10
* const restrict array
,
39 const index_type
* const restrict pdim
)
41 index_type count
[GFC_MAX_DIMENSIONS
];
42 index_type extent
[GFC_MAX_DIMENSIONS
];
43 index_type sstride
[GFC_MAX_DIMENSIONS
];
44 index_type dstride
[GFC_MAX_DIMENSIONS
];
45 const GFC_COMPLEX_10
* restrict base
;
46 GFC_COMPLEX_10
* restrict dest
;
54 /* Make dim zero based to avoid confusion. */
56 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
58 len
= GFC_DESCRIPTOR_EXTENT(array
,dim
);
61 delta
= GFC_DESCRIPTOR_STRIDE(array
,dim
);
63 for (n
= 0; n
< dim
; n
++)
65 sstride
[n
] = GFC_DESCRIPTOR_STRIDE(array
,n
);
66 extent
[n
] = GFC_DESCRIPTOR_EXTENT(array
,n
);
71 for (n
= dim
; n
< rank
; n
++)
73 sstride
[n
] = GFC_DESCRIPTOR_STRIDE(array
, n
+ 1);
74 extent
[n
] = GFC_DESCRIPTOR_EXTENT(array
, n
+ 1);
80 if (retarray
->base_addr
== NULL
)
82 size_t alloc_size
, str
;
84 for (n
= 0; n
< rank
; n
++)
89 str
= GFC_DESCRIPTOR_STRIDE(retarray
,n
-1) * extent
[n
-1];
91 GFC_DIMENSION_SET(retarray
->dim
[n
], 0, extent
[n
] - 1, str
);
96 retarray
->dtype
= (array
->dtype
& ~GFC_DTYPE_RANK_MASK
) | rank
;
98 alloc_size
= GFC_DESCRIPTOR_STRIDE(retarray
,rank
-1) * extent
[rank
-1];
100 retarray
->base_addr
= xmallocarray (alloc_size
, sizeof (GFC_COMPLEX_10
));
103 /* Make sure we have a zero-sized array. */
104 GFC_DIMENSION_SET(retarray
->dim
[0], 0, -1, 1);
111 if (rank
!= GFC_DESCRIPTOR_RANK (retarray
))
112 runtime_error ("rank of return array incorrect in"
113 " PRODUCT intrinsic: is %ld, should be %ld",
114 (long int) (GFC_DESCRIPTOR_RANK (retarray
)),
117 if (unlikely (compile_options
.bounds_check
))
118 bounds_ifunction_return ((array_t
*) retarray
, extent
,
119 "return value", "PRODUCT");
122 for (n
= 0; n
< rank
; n
++)
125 dstride
[n
] = GFC_DESCRIPTOR_STRIDE(retarray
,n
);
130 base
= array
->base_addr
;
131 dest
= retarray
->base_addr
;
134 while (continue_loop
)
136 const GFC_COMPLEX_10
* restrict src
;
137 GFC_COMPLEX_10 result
;
146 for (n
= 0; n
< len
; n
++, src
+= delta
)
155 /* Advance to the next element. */
160 while (count
[n
] == extent
[n
])
162 /* When we get to the end of a dimension, reset it and increment
163 the next dimension. */
165 /* We could precalculate these products, but this is a less
166 frequently used path so probably not worth it. */
167 base
-= sstride
[n
] * extent
[n
];
168 dest
-= dstride
[n
] * extent
[n
];
172 /* Break out of the loop. */
187 extern void mproduct_c10 (gfc_array_c10
* const restrict
,
188 gfc_array_c10
* const restrict
, const index_type
* const restrict
,
189 gfc_array_l1
* const restrict
);
190 export_proto(mproduct_c10
);
193 mproduct_c10 (gfc_array_c10
* const restrict retarray
,
194 gfc_array_c10
* const restrict array
,
195 const index_type
* const restrict pdim
,
196 gfc_array_l1
* const restrict mask
)
198 index_type count
[GFC_MAX_DIMENSIONS
];
199 index_type extent
[GFC_MAX_DIMENSIONS
];
200 index_type sstride
[GFC_MAX_DIMENSIONS
];
201 index_type dstride
[GFC_MAX_DIMENSIONS
];
202 index_type mstride
[GFC_MAX_DIMENSIONS
];
203 GFC_COMPLEX_10
* restrict dest
;
204 const GFC_COMPLEX_10
* restrict base
;
205 const GFC_LOGICAL_1
* restrict mbase
;
215 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
217 len
= GFC_DESCRIPTOR_EXTENT(array
,dim
);
221 mbase
= mask
->base_addr
;
223 mask_kind
= GFC_DESCRIPTOR_SIZE (mask
);
225 if (mask_kind
== 1 || mask_kind
== 2 || mask_kind
== 4 || mask_kind
== 8
226 #ifdef HAVE_GFC_LOGICAL_16
230 mbase
= GFOR_POINTER_TO_L1 (mbase
, mask_kind
);
232 runtime_error ("Funny sized logical array");
234 delta
= GFC_DESCRIPTOR_STRIDE(array
,dim
);
235 mdelta
= GFC_DESCRIPTOR_STRIDE_BYTES(mask
,dim
);
237 for (n
= 0; n
< dim
; n
++)
239 sstride
[n
] = GFC_DESCRIPTOR_STRIDE(array
,n
);
240 mstride
[n
] = GFC_DESCRIPTOR_STRIDE_BYTES(mask
,n
);
241 extent
[n
] = GFC_DESCRIPTOR_EXTENT(array
,n
);
247 for (n
= dim
; n
< rank
; n
++)
249 sstride
[n
] = GFC_DESCRIPTOR_STRIDE(array
,n
+ 1);
250 mstride
[n
] = GFC_DESCRIPTOR_STRIDE_BYTES(mask
, n
+ 1);
251 extent
[n
] = GFC_DESCRIPTOR_EXTENT(array
, n
+ 1);
257 if (retarray
->base_addr
== NULL
)
259 size_t alloc_size
, str
;
261 for (n
= 0; n
< rank
; n
++)
266 str
= GFC_DESCRIPTOR_STRIDE(retarray
,n
-1) * extent
[n
-1];
268 GFC_DIMENSION_SET(retarray
->dim
[n
], 0, extent
[n
] - 1, str
);
272 alloc_size
= GFC_DESCRIPTOR_STRIDE(retarray
,rank
-1) * extent
[rank
-1];
274 retarray
->offset
= 0;
275 retarray
->dtype
= (array
->dtype
& ~GFC_DTYPE_RANK_MASK
) | rank
;
279 /* Make sure we have a zero-sized array. */
280 GFC_DIMENSION_SET(retarray
->dim
[0], 0, -1, 1);
284 retarray
->base_addr
= xmallocarray (alloc_size
, sizeof (GFC_COMPLEX_10
));
289 if (rank
!= GFC_DESCRIPTOR_RANK (retarray
))
290 runtime_error ("rank of return array incorrect in PRODUCT intrinsic");
292 if (unlikely (compile_options
.bounds_check
))
294 bounds_ifunction_return ((array_t
*) retarray
, extent
,
295 "return value", "PRODUCT");
296 bounds_equal_extents ((array_t
*) mask
, (array_t
*) array
,
297 "MASK argument", "PRODUCT");
301 for (n
= 0; n
< rank
; n
++)
304 dstride
[n
] = GFC_DESCRIPTOR_STRIDE(retarray
,n
);
309 dest
= retarray
->base_addr
;
310 base
= array
->base_addr
;
314 const GFC_COMPLEX_10
* restrict src
;
315 const GFC_LOGICAL_1
* restrict msrc
;
316 GFC_COMPLEX_10 result
;
322 for (n
= 0; n
< len
; n
++, src
+= delta
, msrc
+= mdelta
)
330 /* Advance to the next element. */
336 while (count
[n
] == extent
[n
])
338 /* When we get to the end of a dimension, reset it and increment
339 the next dimension. */
341 /* We could precalculate these products, but this is a less
342 frequently used path so probably not worth it. */
343 base
-= sstride
[n
] * extent
[n
];
344 mbase
-= mstride
[n
] * extent
[n
];
345 dest
-= dstride
[n
] * extent
[n
];
349 /* Break out of the loop. */
365 extern void sproduct_c10 (gfc_array_c10
* const restrict
,
366 gfc_array_c10
* const restrict
, const index_type
* const restrict
,
368 export_proto(sproduct_c10
);
371 sproduct_c10 (gfc_array_c10
* const restrict retarray
,
372 gfc_array_c10
* const restrict array
,
373 const index_type
* const restrict pdim
,
374 GFC_LOGICAL_4
* mask
)
376 index_type count
[GFC_MAX_DIMENSIONS
];
377 index_type extent
[GFC_MAX_DIMENSIONS
];
378 index_type dstride
[GFC_MAX_DIMENSIONS
];
379 GFC_COMPLEX_10
* restrict dest
;
387 product_c10 (retarray
, array
, pdim
);
390 /* Make dim zero based to avoid confusion. */
392 rank
= GFC_DESCRIPTOR_RANK (array
) - 1;
394 for (n
= 0; n
< dim
; n
++)
396 extent
[n
] = GFC_DESCRIPTOR_EXTENT(array
,n
);
402 for (n
= dim
; n
< rank
; n
++)
405 GFC_DESCRIPTOR_EXTENT(array
,n
+ 1);
411 if (retarray
->base_addr
== NULL
)
413 size_t alloc_size
, str
;
415 for (n
= 0; n
< rank
; n
++)
420 str
= GFC_DESCRIPTOR_STRIDE(retarray
,n
-1) * extent
[n
-1];
422 GFC_DIMENSION_SET(retarray
->dim
[n
], 0, extent
[n
] - 1, str
);
426 retarray
->offset
= 0;
427 retarray
->dtype
= (array
->dtype
& ~GFC_DTYPE_RANK_MASK
) | rank
;
429 alloc_size
= GFC_DESCRIPTOR_STRIDE(retarray
,rank
-1) * extent
[rank
-1];
433 /* Make sure we have a zero-sized array. */
434 GFC_DIMENSION_SET(retarray
->dim
[0], 0, -1, 1);
438 retarray
->base_addr
= xmallocarray (alloc_size
, sizeof (GFC_COMPLEX_10
));
442 if (rank
!= GFC_DESCRIPTOR_RANK (retarray
))
443 runtime_error ("rank of return array incorrect in"
444 " PRODUCT intrinsic: is %ld, should be %ld",
445 (long int) (GFC_DESCRIPTOR_RANK (retarray
)),
448 if (unlikely (compile_options
.bounds_check
))
450 for (n
=0; n
< rank
; n
++)
452 index_type ret_extent
;
454 ret_extent
= GFC_DESCRIPTOR_EXTENT(retarray
,n
);
455 if (extent
[n
] != ret_extent
)
456 runtime_error ("Incorrect extent in return value of"
457 " PRODUCT intrinsic in dimension %ld:"
458 " is %ld, should be %ld", (long int) n
+ 1,
459 (long int) ret_extent
, (long int) extent
[n
]);
464 for (n
= 0; n
< rank
; n
++)
467 dstride
[n
] = GFC_DESCRIPTOR_STRIDE(retarray
,n
);
470 dest
= retarray
->base_addr
;
478 while (count
[n
] == extent
[n
])
480 /* When we get to the end of a dimension, reset it and increment
481 the next dimension. */
483 /* We could precalculate these products, but this is a less
484 frequently used path so probably not worth it. */
485 dest
-= dstride
[n
] * extent
[n
];