[Ada] Add special bypass for obsolete code pattern
[official-gcc.git] / gcc / vec.h
blob091056b37bcc59245edda1d0d7e4c0a495c4e987
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2019 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
25 /* Some gen* file have no ggc support as the header file gtype-desc.h is
26 missing. Provide these definitions in case ggc.h has not been included.
27 This is not a problem because any code that runs before gengtype is built
28 will never need to use GC vectors.*/
30 extern void ggc_free (void *);
31 extern size_t ggc_round_alloc_size (size_t requested_size);
32 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
34 /* Templated vector type and associated interfaces.
36 The interface functions are typesafe and use inline functions,
37 sometimes backed by out-of-line generic functions. The vectors are
38 designed to interoperate with the GTY machinery.
40 There are both 'index' and 'iterate' accessors. The index accessor
41 is implemented by operator[]. The iterator returns a boolean
42 iteration condition and updates the iteration variable passed by
43 reference. Because the iterator will be inlined, the address-of
44 can be optimized away.
46 Each operation that increases the number of active elements is
47 available in 'quick' and 'safe' variants. The former presumes that
48 there is sufficient allocated space for the operation to succeed
49 (it dies if there is not). The latter will reallocate the
50 vector, if needed. Reallocation causes an exponential increase in
51 vector size. If you know you will be adding N elements, it would
52 be more efficient to use the reserve operation before adding the
53 elements with the 'quick' operation. This will ensure there are at
54 least as many elements as you ask for, it will exponentially
55 increase if there are too few spare slots. If you want reserve a
56 specific number of slots, but do not want the exponential increase
57 (for instance, you know this is the last allocation), use the
58 reserve_exact operation. You can also create a vector of a
59 specific size from the get go.
61 You should prefer the push and pop operations, as they append and
62 remove from the end of the vector. If you need to remove several
63 items in one go, use the truncate operation. The insert and remove
64 operations allow you to change elements in the middle of the
65 vector. There are two remove operations, one which preserves the
66 element ordering 'ordered_remove', and one which does not
67 'unordered_remove'. The latter function copies the end element
68 into the removed slot, rather than invoke a memmove operation. The
69 'lower_bound' function will determine where to place an item in the
70 array using insert that will maintain sorted order.
72 Vectors are template types with three arguments: the type of the
73 elements in the vector, the allocation strategy, and the physical
74 layout to use
76 Four allocation strategies are supported:
78 - Heap: allocation is done using malloc/free. This is the
79 default allocation strategy.
81 - GC: allocation is done using ggc_alloc/ggc_free.
83 - GC atomic: same as GC with the exception that the elements
84 themselves are assumed to be of an atomic type that does
85 not need to be garbage collected. This means that marking
86 routines do not need to traverse the array marking the
87 individual elements. This increases the performance of
88 GC activities.
90 Two physical layouts are supported:
92 - Embedded: The vector is structured using the trailing array
93 idiom. The last member of the structure is an array of size
94 1. When the vector is initially allocated, a single memory
95 block is created to hold the vector's control data and the
96 array of elements. These vectors cannot grow without
97 reallocation (see discussion on embeddable vectors below).
99 - Space efficient: The vector is structured as a pointer to an
100 embedded vector. This is the default layout. It means that
101 vectors occupy a single word of storage before initial
102 allocation. Vectors are allowed to grow (the internal
103 pointer is reallocated but the main vector instance does not
104 need to relocate).
106 The type, allocation and layout are specified when the vector is
107 declared.
109 If you need to directly manipulate a vector, then the 'address'
110 accessor will return the address of the start of the vector. Also
111 the 'space' predicate will tell you whether there is spare capacity
112 in the vector. You will not normally need to use these two functions.
114 Notes on the different layout strategies
116 * Embeddable vectors (vec<T, A, vl_embed>)
118 These vectors are suitable to be embedded in other data
119 structures so that they can be pre-allocated in a contiguous
120 memory block.
122 Embeddable vectors are implemented using the trailing array
123 idiom, thus they are not resizeable without changing the address
124 of the vector object itself. This means you cannot have
125 variables or fields of embeddable vector type -- always use a
126 pointer to a vector. The one exception is the final field of a
127 structure, which could be a vector type.
129 You will have to use the embedded_size & embedded_init calls to
130 create such objects, and they will not be resizeable (so the
131 'safe' allocation variants are not available).
133 Properties of embeddable vectors:
135 - The whole vector and control data are allocated in a single
136 contiguous block. It uses the trailing-vector idiom, so
137 allocation must reserve enough space for all the elements
138 in the vector plus its control data.
139 - The vector cannot be re-allocated.
140 - The vector cannot grow nor shrink.
141 - No indirections needed for access/manipulation.
142 - It requires 2 words of storage (prior to vector allocation).
145 * Space efficient vector (vec<T, A, vl_ptr>)
147 These vectors can grow dynamically and are allocated together
148 with their control data. They are suited to be included in data
149 structures. Prior to initial allocation, they only take a single
150 word of storage.
152 These vectors are implemented as a pointer to embeddable vectors.
153 The semantics allow for this pointer to be NULL to represent
154 empty vectors. This way, empty vectors occupy minimal space in
155 the structure containing them.
157 Properties:
159 - The whole vector and control data are allocated in a single
160 contiguous block.
161 - The whole vector may be re-allocated.
162 - Vector data may grow and shrink.
163 - Access and manipulation requires a pointer test and
164 indirection.
165 - It requires 1 word of storage (prior to vector allocation).
167 An example of their use would be,
169 struct my_struct {
170 // A space-efficient vector of tree pointers in GC memory.
171 vec<tree, va_gc, vl_ptr> v;
174 struct my_struct *s;
176 if (s->v.length ()) { we have some contents }
177 s->v.safe_push (decl); // append some decl onto the end
178 for (ix = 0; s->v.iterate (ix, &elt); ix++)
179 { do something with elt }
182 /* Support function for statistics. */
183 extern void dump_vec_loc_statistics (void);
185 /* Hashtable mapping vec addresses to descriptors. */
186 extern htab_t vec_mem_usage_hash;
188 /* Control data for vectors. This contains the number of allocated
189 and used slots inside a vector. */
191 struct vec_prefix
193 /* FIXME - These fields should be private, but we need to cater to
194 compilers that have stricter notions of PODness for types. */
196 /* Memory allocation support routines in vec.c. */
197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198 void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO);
199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
200 static unsigned calculate_allocation_1 (unsigned, unsigned);
202 /* Note that vec_prefix should be a base class for vec, but we use
203 offsetof() on vector fields of tree structures (e.g.,
204 tree_binfo::base_binfos), and offsetof only supports base types.
206 To compensate, we make vec_prefix a field inside vec and make
207 vec a friend class of vec_prefix so it can access its fields. */
208 template <typename, typename, typename> friend struct vec;
210 /* The allocator types also need access to our internals. */
211 friend struct va_gc;
212 friend struct va_gc_atomic;
213 friend struct va_heap;
215 unsigned m_alloc : 31;
216 unsigned m_using_auto_storage : 1;
217 unsigned m_num;
220 /* Calculate the number of slots to reserve a vector, making sure that
221 RESERVE slots are free. If EXACT grow exactly, otherwise grow
222 exponentially. PFX is the control data for the vector. */
224 inline unsigned
225 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 bool exact)
228 if (exact)
229 return (pfx ? pfx->m_num : 0) + reserve;
230 else if (!pfx)
231 return MAX (4, reserve);
232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
235 template<typename, typename, typename> struct vec;
237 /* Valid vector layouts
239 vl_embed - Embeddable vector that uses the trailing array idiom.
240 vl_ptr - Space efficient vector that uses a pointer to an
241 embeddable vector. */
242 struct vl_embed { };
243 struct vl_ptr { };
246 /* Types of supported allocations
248 va_heap - Allocation uses malloc/free.
249 va_gc - Allocation uses ggc_alloc.
250 va_gc_atomic - Same as GC, but individual elements of the array
251 do not need to be marked during collection. */
253 /* Allocator type for heap vectors. */
254 struct va_heap
256 /* Heap vectors are frequently regular instances, so use the vl_ptr
257 layout for them. */
258 typedef vl_ptr default_layout;
260 template<typename T>
261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 CXX_MEM_STAT_INFO);
264 template<typename T>
265 static void release (vec<T, va_heap, vl_embed> *&);
269 /* Allocator for heap memory. Ensure there are at least RESERVE free
270 slots in V. If EXACT is true, grow exactly, else grow
271 exponentially. As a special case, if the vector had not been
272 allocated and RESERVE is 0, no vector will be created. */
274 template<typename T>
275 inline void
276 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 MEM_STAT_DECL)
279 size_t elt_size = sizeof (T);
280 unsigned alloc
281 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
282 gcc_checking_assert (alloc);
284 if (GATHER_STATISTICS && v)
285 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
286 v->allocated (), false);
288 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
289 unsigned nelem = v ? v->length () : 0;
290 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
291 v->embedded_init (alloc, nelem);
293 if (GATHER_STATISTICS)
294 v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT);
298 /* Free the heap space allocated for vector V. */
300 template<typename T>
301 void
302 va_heap::release (vec<T, va_heap, vl_embed> *&v)
304 size_t elt_size = sizeof (T);
305 if (v == NULL)
306 return;
308 if (GATHER_STATISTICS)
309 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
310 v->allocated (), true);
311 ::free (v);
312 v = NULL;
316 /* Allocator type for GC vectors. Notice that we need the structure
317 declaration even if GC is not enabled. */
319 struct va_gc
321 /* Use vl_embed as the default layout for GC vectors. Due to GTY
322 limitations, GC vectors must always be pointers, so it is more
323 efficient to use a pointer to the vl_embed layout, rather than
324 using a pointer to a pointer as would be the case with vl_ptr. */
325 typedef vl_embed default_layout;
327 template<typename T, typename A>
328 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
329 CXX_MEM_STAT_INFO);
331 template<typename T, typename A>
332 static void release (vec<T, A, vl_embed> *&v);
336 /* Free GC memory used by V and reset V to NULL. */
338 template<typename T, typename A>
339 inline void
340 va_gc::release (vec<T, A, vl_embed> *&v)
342 if (v)
343 ::ggc_free (v);
344 v = NULL;
348 /* Allocator for GC memory. Ensure there are at least RESERVE free
349 slots in V. If EXACT is true, grow exactly, else grow
350 exponentially. As a special case, if the vector had not been
351 allocated and RESERVE is 0, no vector will be created. */
353 template<typename T, typename A>
354 void
355 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
356 MEM_STAT_DECL)
358 unsigned alloc
359 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
360 if (!alloc)
362 ::ggc_free (v);
363 v = NULL;
364 return;
367 /* Calculate the amount of space we want. */
368 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
370 /* Ask the allocator how much space it will really give us. */
371 size = ::ggc_round_alloc_size (size);
373 /* Adjust the number of slots accordingly. */
374 size_t vec_offset = sizeof (vec_prefix);
375 size_t elt_size = sizeof (T);
376 alloc = (size - vec_offset) / elt_size;
378 /* And finally, recalculate the amount of space we ask for. */
379 size = vec_offset + alloc * elt_size;
381 unsigned nelem = v ? v->length () : 0;
382 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
383 PASS_MEM_STAT));
384 v->embedded_init (alloc, nelem);
388 /* Allocator type for GC vectors. This is for vectors of types
389 atomics w.r.t. collection, so allocation and deallocation is
390 completely inherited from va_gc. */
391 struct va_gc_atomic : va_gc
396 /* Generic vector template. Default values for A and L indicate the
397 most commonly used strategies.
399 FIXME - Ideally, they would all be vl_ptr to encourage using regular
400 instances for vectors, but the existing GTY machinery is limited
401 in that it can only deal with GC objects that are pointers
402 themselves.
404 This means that vector operations that need to deal with
405 potentially NULL pointers, must be provided as free
406 functions (see the vec_safe_* functions above). */
407 template<typename T,
408 typename A = va_heap,
409 typename L = typename A::default_layout>
410 struct GTY((user)) vec
414 /* Generic vec<> debug helpers.
416 These need to be instantiated for each vec<TYPE> used throughout
417 the compiler like this:
419 DEFINE_DEBUG_VEC (TYPE)
421 The reason we have a debug_helper() is because GDB can't
422 disambiguate a plain call to debug(some_vec), and it must be called
423 like debug<TYPE>(some_vec). */
425 template<typename T>
426 void
427 debug_helper (vec<T> &ref)
429 unsigned i;
430 for (i = 0; i < ref.length (); ++i)
432 fprintf (stderr, "[%d] = ", i);
433 debug_slim (ref[i]);
434 fputc ('\n', stderr);
438 /* We need a separate va_gc variant here because default template
439 argument for functions cannot be used in c++-98. Once this
440 restriction is removed, those variant should be folded with the
441 above debug_helper. */
443 template<typename T>
444 void
445 debug_helper (vec<T, va_gc> &ref)
447 unsigned i;
448 for (i = 0; i < ref.length (); ++i)
450 fprintf (stderr, "[%d] = ", i);
451 debug_slim (ref[i]);
452 fputc ('\n', stderr);
456 /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
457 functions for a type T. */
459 #define DEFINE_DEBUG_VEC(T) \
460 template void debug_helper (vec<T> &); \
461 template void debug_helper (vec<T, va_gc> &); \
462 /* Define the vec<T> debug functions. */ \
463 DEBUG_FUNCTION void \
464 debug (vec<T> &ref) \
466 debug_helper <T> (ref); \
468 DEBUG_FUNCTION void \
469 debug (vec<T> *ptr) \
471 if (ptr) \
472 debug (*ptr); \
473 else \
474 fprintf (stderr, "<nil>\n"); \
476 /* Define the vec<T, va_gc> debug functions. */ \
477 DEBUG_FUNCTION void \
478 debug (vec<T, va_gc> &ref) \
480 debug_helper <T> (ref); \
482 DEBUG_FUNCTION void \
483 debug (vec<T, va_gc> *ptr) \
485 if (ptr) \
486 debug (*ptr); \
487 else \
488 fprintf (stderr, "<nil>\n"); \
491 /* Default-construct N elements in DST. */
493 template <typename T>
494 inline void
495 vec_default_construct (T *dst, unsigned n)
497 #ifdef BROKEN_VALUE_INITIALIZATION
498 /* Versions of GCC before 4.4 sometimes leave certain objects
499 uninitialized when value initialized, though if the type has
500 user defined default ctor, that ctor is invoked. As a workaround
501 perform clearing first and then the value initialization, which
502 fixes the case when value initialization doesn't initialize due to
503 the bugs and should initialize to all zeros, but still allows
504 vectors for types with user defined default ctor that initializes
505 some or all elements to non-zero. If T has no user defined
506 default ctor and some non-static data members have user defined
507 default ctors that initialize to non-zero the workaround will
508 still not work properly; in that case we just need to provide
509 user defined default ctor. */
510 memset (dst, '\0', sizeof (T) * n);
511 #endif
512 for ( ; n; ++dst, --n)
513 ::new (static_cast<void*>(dst)) T ();
516 /* Copy-construct N elements in DST from *SRC. */
518 template <typename T>
519 inline void
520 vec_copy_construct (T *dst, const T *src, unsigned n)
522 for ( ; n; ++dst, ++src, --n)
523 ::new (static_cast<void*>(dst)) T (*src);
526 /* Type to provide NULL values for vec<T, A, L>. This is used to
527 provide nil initializers for vec instances. Since vec must be
528 a POD, we cannot have proper ctor/dtor for it. To initialize
529 a vec instance, you can assign it the value vNULL. This isn't
530 needed for file-scope and function-local static vectors, which
531 are zero-initialized by default. */
532 struct vnull
534 template <typename T, typename A, typename L>
535 CONSTEXPR operator vec<T, A, L> () { return vec<T, A, L>(); }
537 extern vnull vNULL;
540 /* Embeddable vector. These vectors are suitable to be embedded
541 in other data structures so that they can be pre-allocated in a
542 contiguous memory block.
544 Embeddable vectors are implemented using the trailing array idiom,
545 thus they are not resizeable without changing the address of the
546 vector object itself. This means you cannot have variables or
547 fields of embeddable vector type -- always use a pointer to a
548 vector. The one exception is the final field of a structure, which
549 could be a vector type.
551 You will have to use the embedded_size & embedded_init calls to
552 create such objects, and they will not be resizeable (so the 'safe'
553 allocation variants are not available).
555 Properties:
557 - The whole vector and control data are allocated in a single
558 contiguous block. It uses the trailing-vector idiom, so
559 allocation must reserve enough space for all the elements
560 in the vector plus its control data.
561 - The vector cannot be re-allocated.
562 - The vector cannot grow nor shrink.
563 - No indirections needed for access/manipulation.
564 - It requires 2 words of storage (prior to vector allocation). */
566 template<typename T, typename A>
567 struct GTY((user)) vec<T, A, vl_embed>
569 public:
570 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
571 unsigned length (void) const { return m_vecpfx.m_num; }
572 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
573 T *address (void) { return m_vecdata; }
574 const T *address (void) const { return m_vecdata; }
575 T *begin () { return address (); }
576 const T *begin () const { return address (); }
577 T *end () { return address () + length (); }
578 const T *end () const { return address () + length (); }
579 const T &operator[] (unsigned) const;
580 T &operator[] (unsigned);
581 T &last (void);
582 bool space (unsigned) const;
583 bool iterate (unsigned, T *) const;
584 bool iterate (unsigned, T **) const;
585 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
586 void splice (const vec &);
587 void splice (const vec *src);
588 T *quick_push (const T &);
589 T &pop (void);
590 void truncate (unsigned);
591 void quick_insert (unsigned, const T &);
592 void ordered_remove (unsigned);
593 void unordered_remove (unsigned);
594 void block_remove (unsigned, unsigned);
595 void qsort (int (*) (const void *, const void *));
596 void sort (int (*) (const void *, const void *, void *), void *);
597 T *bsearch (const void *key, int (*compar)(const void *, const void *));
598 T *bsearch (const void *key,
599 int (*compar)(const void *, const void *, void *), void *);
600 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
601 bool contains (const T &search) const;
602 static size_t embedded_size (unsigned);
603 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
604 void quick_grow (unsigned len);
605 void quick_grow_cleared (unsigned len);
607 /* vec class can access our internal data and functions. */
608 template <typename, typename, typename> friend struct vec;
610 /* The allocator types also need access to our internals. */
611 friend struct va_gc;
612 friend struct va_gc_atomic;
613 friend struct va_heap;
615 /* FIXME - These fields should be private, but we need to cater to
616 compilers that have stricter notions of PODness for types. */
617 vec_prefix m_vecpfx;
618 T m_vecdata[1];
622 /* Convenience wrapper functions to use when dealing with pointers to
623 embedded vectors. Some functionality for these vectors must be
624 provided via free functions for these reasons:
626 1- The pointer may be NULL (e.g., before initial allocation).
628 2- When the vector needs to grow, it must be reallocated, so
629 the pointer will change its value.
631 Because of limitations with the current GC machinery, all vectors
632 in GC memory *must* be pointers. */
635 /* If V contains no room for NELEMS elements, return false. Otherwise,
636 return true. */
637 template<typename T, typename A>
638 inline bool
639 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
641 return v ? v->space (nelems) : nelems == 0;
645 /* If V is NULL, return 0. Otherwise, return V->length(). */
646 template<typename T, typename A>
647 inline unsigned
648 vec_safe_length (const vec<T, A, vl_embed> *v)
650 return v ? v->length () : 0;
654 /* If V is NULL, return NULL. Otherwise, return V->address(). */
655 template<typename T, typename A>
656 inline T *
657 vec_safe_address (vec<T, A, vl_embed> *v)
659 return v ? v->address () : NULL;
663 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
664 template<typename T, typename A>
665 inline bool
666 vec_safe_is_empty (vec<T, A, vl_embed> *v)
668 return v ? v->is_empty () : true;
671 /* If V does not have space for NELEMS elements, call
672 V->reserve(NELEMS, EXACT). */
673 template<typename T, typename A>
674 inline bool
675 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
676 CXX_MEM_STAT_INFO)
678 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
679 if (extend)
680 A::reserve (v, nelems, exact PASS_MEM_STAT);
681 return extend;
684 template<typename T, typename A>
685 inline bool
686 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
687 CXX_MEM_STAT_INFO)
689 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
693 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
694 is 0, V is initialized to NULL. */
696 template<typename T, typename A>
697 inline void
698 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
700 v = NULL;
701 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
705 /* Free the GC memory allocated by vector V and set it to NULL. */
707 template<typename T, typename A>
708 inline void
709 vec_free (vec<T, A, vl_embed> *&v)
711 A::release (v);
715 /* Grow V to length LEN. Allocate it, if necessary. */
716 template<typename T, typename A>
717 inline void
718 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
720 unsigned oldlen = vec_safe_length (v);
721 gcc_checking_assert (len >= oldlen);
722 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
723 v->quick_grow (len);
727 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
728 template<typename T, typename A>
729 inline void
730 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
732 unsigned oldlen = vec_safe_length (v);
733 vec_safe_grow (v, len PASS_MEM_STAT);
734 vec_default_construct (v->address () + oldlen, len - oldlen);
738 /* Assume V is not NULL. */
740 template<typename T>
741 inline void
742 vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v,
743 unsigned len CXX_MEM_STAT_INFO)
745 v->safe_grow_cleared (len PASS_MEM_STAT);
749 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
750 template<typename T, typename A>
751 inline bool
752 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
754 if (v)
755 return v->iterate (ix, ptr);
756 else
758 *ptr = 0;
759 return false;
763 template<typename T, typename A>
764 inline bool
765 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
767 if (v)
768 return v->iterate (ix, ptr);
769 else
771 *ptr = 0;
772 return false;
777 /* If V has no room for one more element, reallocate it. Then call
778 V->quick_push(OBJ). */
779 template<typename T, typename A>
780 inline T *
781 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
783 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
784 return v->quick_push (obj);
788 /* if V has no room for one more element, reallocate it. Then call
789 V->quick_insert(IX, OBJ). */
790 template<typename T, typename A>
791 inline void
792 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
793 CXX_MEM_STAT_INFO)
795 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
796 v->quick_insert (ix, obj);
800 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
801 template<typename T, typename A>
802 inline void
803 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
805 if (v)
806 v->truncate (size);
810 /* If SRC is not NULL, return a pointer to a copy of it. */
811 template<typename T, typename A>
812 inline vec<T, A, vl_embed> *
813 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
815 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
818 /* Copy the elements from SRC to the end of DST as if by memcpy.
819 Reallocate DST, if necessary. */
820 template<typename T, typename A>
821 inline void
822 vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
823 CXX_MEM_STAT_INFO)
825 unsigned src_len = vec_safe_length (src);
826 if (src_len)
828 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
829 PASS_MEM_STAT);
830 dst->splice (*src);
834 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
835 size of the vector and so should be used with care. */
837 template<typename T, typename A>
838 inline bool
839 vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
841 return v ? v->contains (search) : false;
844 /* Index into vector. Return the IX'th element. IX must be in the
845 domain of the vector. */
847 template<typename T, typename A>
848 inline const T &
849 vec<T, A, vl_embed>::operator[] (unsigned ix) const
851 gcc_checking_assert (ix < m_vecpfx.m_num);
852 return m_vecdata[ix];
855 template<typename T, typename A>
856 inline T &
857 vec<T, A, vl_embed>::operator[] (unsigned ix)
859 gcc_checking_assert (ix < m_vecpfx.m_num);
860 return m_vecdata[ix];
864 /* Get the final element of the vector, which must not be empty. */
866 template<typename T, typename A>
867 inline T &
868 vec<T, A, vl_embed>::last (void)
870 gcc_checking_assert (m_vecpfx.m_num > 0);
871 return (*this)[m_vecpfx.m_num - 1];
875 /* If this vector has space for NELEMS additional entries, return
876 true. You usually only need to use this if you are doing your
877 own vector reallocation, for instance on an embedded vector. This
878 returns true in exactly the same circumstances that vec::reserve
879 will. */
881 template<typename T, typename A>
882 inline bool
883 vec<T, A, vl_embed>::space (unsigned nelems) const
885 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
889 /* Return iteration condition and update PTR to point to the IX'th
890 element of this vector. Use this to iterate over the elements of a
891 vector as follows,
893 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
894 continue; */
896 template<typename T, typename A>
897 inline bool
898 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
900 if (ix < m_vecpfx.m_num)
902 *ptr = m_vecdata[ix];
903 return true;
905 else
907 *ptr = 0;
908 return false;
913 /* Return iteration condition and update *PTR to point to the
914 IX'th element of this vector. Use this to iterate over the
915 elements of a vector as follows,
917 for (ix = 0; v->iterate (ix, &ptr); ix++)
918 continue;
920 This variant is for vectors of objects. */
922 template<typename T, typename A>
923 inline bool
924 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
926 if (ix < m_vecpfx.m_num)
928 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
929 return true;
931 else
933 *ptr = 0;
934 return false;
939 /* Return a pointer to a copy of this vector. */
941 template<typename T, typename A>
942 inline vec<T, A, vl_embed> *
943 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
945 vec<T, A, vl_embed> *new_vec = NULL;
946 unsigned len = length ();
947 if (len)
949 vec_alloc (new_vec, len PASS_MEM_STAT);
950 new_vec->embedded_init (len, len);
951 vec_copy_construct (new_vec->address (), m_vecdata, len);
953 return new_vec;
957 /* Copy the elements from SRC to the end of this vector as if by memcpy.
958 The vector must have sufficient headroom available. */
960 template<typename T, typename A>
961 inline void
962 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
964 unsigned len = src.length ();
965 if (len)
967 gcc_checking_assert (space (len));
968 vec_copy_construct (end (), src.address (), len);
969 m_vecpfx.m_num += len;
973 template<typename T, typename A>
974 inline void
975 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
977 if (src)
978 splice (*src);
982 /* Push OBJ (a new element) onto the end of the vector. There must be
983 sufficient space in the vector. Return a pointer to the slot
984 where OBJ was inserted. */
986 template<typename T, typename A>
987 inline T *
988 vec<T, A, vl_embed>::quick_push (const T &obj)
990 gcc_checking_assert (space (1));
991 T *slot = &m_vecdata[m_vecpfx.m_num++];
992 *slot = obj;
993 return slot;
997 /* Pop and return the last element off the end of the vector. */
999 template<typename T, typename A>
1000 inline T &
1001 vec<T, A, vl_embed>::pop (void)
1003 gcc_checking_assert (length () > 0);
1004 return m_vecdata[--m_vecpfx.m_num];
1008 /* Set the length of the vector to SIZE. The new length must be less
1009 than or equal to the current length. This is an O(1) operation. */
1011 template<typename T, typename A>
1012 inline void
1013 vec<T, A, vl_embed>::truncate (unsigned size)
1015 gcc_checking_assert (length () >= size);
1016 m_vecpfx.m_num = size;
1020 /* Insert an element, OBJ, at the IXth position of this vector. There
1021 must be sufficient space. */
1023 template<typename T, typename A>
1024 inline void
1025 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
1027 gcc_checking_assert (length () < allocated ());
1028 gcc_checking_assert (ix <= length ());
1029 T *slot = &m_vecdata[ix];
1030 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
1031 *slot = obj;
1035 /* Remove an element from the IXth position of this vector. Ordering of
1036 remaining elements is preserved. This is an O(N) operation due to
1037 memmove. */
1039 template<typename T, typename A>
1040 inline void
1041 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
1043 gcc_checking_assert (ix < length ());
1044 T *slot = &m_vecdata[ix];
1045 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
1049 /* Remove elements in [START, END) from VEC for which COND holds. Ordering of
1050 remaining elements is preserved. This is an O(N) operation. */
1052 #define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \
1053 elem_ptr, start, end, cond) \
1055 gcc_assert ((end) <= (vec).length ()); \
1056 for (read_index = write_index = (start); read_index < (end); \
1057 ++read_index) \
1059 elem_ptr = &(vec)[read_index]; \
1060 bool remove_p = (cond); \
1061 if (remove_p) \
1062 continue; \
1064 if (read_index != write_index) \
1065 (vec)[write_index] = (vec)[read_index]; \
1067 write_index++; \
1070 if (read_index - write_index > 0) \
1071 (vec).block_remove (write_index, read_index - write_index); \
1075 /* Remove elements from VEC for which COND holds. Ordering of remaining
1076 elements is preserved. This is an O(N) operation. */
1078 #define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \
1079 cond) \
1080 VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \
1081 elem_ptr, 0, (vec).length (), (cond))
1083 /* Remove an element from the IXth position of this vector. Ordering of
1084 remaining elements is destroyed. This is an O(1) operation. */
1086 template<typename T, typename A>
1087 inline void
1088 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
1090 gcc_checking_assert (ix < length ());
1091 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
1095 /* Remove LEN elements starting at the IXth. Ordering is retained.
1096 This is an O(N) operation due to memmove. */
1098 template<typename T, typename A>
1099 inline void
1100 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
1102 gcc_checking_assert (ix + len <= length ());
1103 T *slot = &m_vecdata[ix];
1104 m_vecpfx.m_num -= len;
1105 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
1109 /* Sort the contents of this vector with qsort. CMP is the comparison
1110 function to pass to qsort. */
1112 template<typename T, typename A>
1113 inline void
1114 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
1116 if (length () > 1)
1117 gcc_qsort (address (), length (), sizeof (T), cmp);
1120 /* Sort the contents of this vector with qsort. CMP is the comparison
1121 function to pass to qsort. */
1123 template<typename T, typename A>
1124 inline void
1125 vec<T, A, vl_embed>::sort (int (*cmp) (const void *, const void *, void *),
1126 void *data)
1128 if (length () > 1)
1129 gcc_sort_r (address (), length (), sizeof (T), cmp, data);
1133 /* Search the contents of the sorted vector with a binary search.
1134 CMP is the comparison function to pass to bsearch. */
1136 template<typename T, typename A>
1137 inline T *
1138 vec<T, A, vl_embed>::bsearch (const void *key,
1139 int (*compar) (const void *, const void *))
1141 const void *base = this->address ();
1142 size_t nmemb = this->length ();
1143 size_t size = sizeof (T);
1144 /* The following is a copy of glibc stdlib-bsearch.h. */
1145 size_t l, u, idx;
1146 const void *p;
1147 int comparison;
1149 l = 0;
1150 u = nmemb;
1151 while (l < u)
1153 idx = (l + u) / 2;
1154 p = (const void *) (((const char *) base) + (idx * size));
1155 comparison = (*compar) (key, p);
1156 if (comparison < 0)
1157 u = idx;
1158 else if (comparison > 0)
1159 l = idx + 1;
1160 else
1161 return (T *)const_cast<void *>(p);
1164 return NULL;
1167 /* Search the contents of the sorted vector with a binary search.
1168 CMP is the comparison function to pass to bsearch. */
1170 template<typename T, typename A>
1171 inline T *
1172 vec<T, A, vl_embed>::bsearch (const void *key,
1173 int (*compar) (const void *, const void *,
1174 void *), void *data)
1176 const void *base = this->address ();
1177 size_t nmemb = this->length ();
1178 size_t size = sizeof (T);
1179 /* The following is a copy of glibc stdlib-bsearch.h. */
1180 size_t l, u, idx;
1181 const void *p;
1182 int comparison;
1184 l = 0;
1185 u = nmemb;
1186 while (l < u)
1188 idx = (l + u) / 2;
1189 p = (const void *) (((const char *) base) + (idx * size));
1190 comparison = (*compar) (key, p, data);
1191 if (comparison < 0)
1192 u = idx;
1193 else if (comparison > 0)
1194 l = idx + 1;
1195 else
1196 return (T *)const_cast<void *>(p);
1199 return NULL;
1202 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
1203 size of the vector and so should be used with care. */
1205 template<typename T, typename A>
1206 inline bool
1207 vec<T, A, vl_embed>::contains (const T &search) const
1209 unsigned int len = length ();
1210 for (unsigned int i = 0; i < len; i++)
1211 if ((*this)[i] == search)
1212 return true;
1214 return false;
1217 /* Find and return the first position in which OBJ could be inserted
1218 without changing the ordering of this vector. LESSTHAN is a
1219 function that returns true if the first argument is strictly less
1220 than the second. */
1222 template<typename T, typename A>
1223 unsigned
1224 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1225 const
1227 unsigned int len = length ();
1228 unsigned int half, middle;
1229 unsigned int first = 0;
1230 while (len > 0)
1232 half = len / 2;
1233 middle = first;
1234 middle += half;
1235 T middle_elem = (*this)[middle];
1236 if (lessthan (middle_elem, obj))
1238 first = middle;
1239 ++first;
1240 len = len - half - 1;
1242 else
1243 len = half;
1245 return first;
1249 /* Return the number of bytes needed to embed an instance of an
1250 embeddable vec inside another data structure.
1252 Use these methods to determine the required size and initialization
1253 of a vector V of type T embedded within another structure (as the
1254 final member):
1256 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1257 void v->embedded_init (unsigned alloc, unsigned num);
1259 These allow the caller to perform the memory allocation. */
1261 template<typename T, typename A>
1262 inline size_t
1263 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1265 typedef vec<T, A, vl_embed> vec_embedded;
1266 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1270 /* Initialize the vector to contain room for ALLOC elements and
1271 NUM active elements. */
1273 template<typename T, typename A>
1274 inline void
1275 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1277 m_vecpfx.m_alloc = alloc;
1278 m_vecpfx.m_using_auto_storage = aut;
1279 m_vecpfx.m_num = num;
1283 /* Grow the vector to a specific length. LEN must be as long or longer than
1284 the current length. The new elements are uninitialized. */
1286 template<typename T, typename A>
1287 inline void
1288 vec<T, A, vl_embed>::quick_grow (unsigned len)
1290 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1291 m_vecpfx.m_num = len;
1295 /* Grow the vector to a specific length. LEN must be as long or longer than
1296 the current length. The new elements are initialized to zero. */
1298 template<typename T, typename A>
1299 inline void
1300 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1302 unsigned oldlen = length ();
1303 size_t growby = len - oldlen;
1304 quick_grow (len);
1305 if (growby != 0)
1306 vec_default_construct (address () + oldlen, growby);
1309 /* Garbage collection support for vec<T, A, vl_embed>. */
1311 template<typename T>
1312 void
1313 gt_ggc_mx (vec<T, va_gc> *v)
1315 extern void gt_ggc_mx (T &);
1316 for (unsigned i = 0; i < v->length (); i++)
1317 gt_ggc_mx ((*v)[i]);
1320 template<typename T>
1321 void
1322 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1324 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1325 be traversed. */
1329 /* PCH support for vec<T, A, vl_embed>. */
1331 template<typename T, typename A>
1332 void
1333 gt_pch_nx (vec<T, A, vl_embed> *v)
1335 extern void gt_pch_nx (T &);
1336 for (unsigned i = 0; i < v->length (); i++)
1337 gt_pch_nx ((*v)[i]);
1340 template<typename T, typename A>
1341 void
1342 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1344 for (unsigned i = 0; i < v->length (); i++)
1345 op (&((*v)[i]), cookie);
1348 template<typename T, typename A>
1349 void
1350 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1352 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1353 for (unsigned i = 0; i < v->length (); i++)
1354 gt_pch_nx (&((*v)[i]), op, cookie);
1358 /* Space efficient vector. These vectors can grow dynamically and are
1359 allocated together with their control data. They are suited to be
1360 included in data structures. Prior to initial allocation, they
1361 only take a single word of storage.
1363 These vectors are implemented as a pointer to an embeddable vector.
1364 The semantics allow for this pointer to be NULL to represent empty
1365 vectors. This way, empty vectors occupy minimal space in the
1366 structure containing them.
1368 Properties:
1370 - The whole vector and control data are allocated in a single
1371 contiguous block.
1372 - The whole vector may be re-allocated.
1373 - Vector data may grow and shrink.
1374 - Access and manipulation requires a pointer test and
1375 indirection.
1376 - It requires 1 word of storage (prior to vector allocation).
1379 Limitations:
1381 These vectors must be PODs because they are stored in unions.
1382 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1383 As long as we use C++03, we cannot have constructors nor
1384 destructors in classes that are stored in unions. */
1386 template<typename T>
1387 struct vec<T, va_heap, vl_ptr>
1389 public:
1390 /* Memory allocation and deallocation for the embedded vector.
1391 Needed because we cannot have proper ctors/dtors defined. */
1392 void create (unsigned nelems CXX_MEM_STAT_INFO);
1393 void release (void);
1395 /* Vector operations. */
1396 bool exists (void) const
1397 { return m_vec != NULL; }
1399 bool is_empty (void) const
1400 { return m_vec ? m_vec->is_empty () : true; }
1402 unsigned length (void) const
1403 { return m_vec ? m_vec->length () : 0; }
1405 T *address (void)
1406 { return m_vec ? m_vec->m_vecdata : NULL; }
1408 const T *address (void) const
1409 { return m_vec ? m_vec->m_vecdata : NULL; }
1411 T *begin () { return address (); }
1412 const T *begin () const { return address (); }
1413 T *end () { return begin () + length (); }
1414 const T *end () const { return begin () + length (); }
1415 const T &operator[] (unsigned ix) const
1416 { return (*m_vec)[ix]; }
1418 bool operator!=(const vec &other) const
1419 { return !(*this == other); }
1421 bool operator==(const vec &other) const
1422 { return address () == other.address (); }
1424 T &operator[] (unsigned ix)
1425 { return (*m_vec)[ix]; }
1427 T &last (void)
1428 { return m_vec->last (); }
1430 bool space (int nelems) const
1431 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1433 bool iterate (unsigned ix, T *p) const;
1434 bool iterate (unsigned ix, T **p) const;
1435 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1436 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1437 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1438 void splice (const vec &);
1439 void safe_splice (const vec & CXX_MEM_STAT_INFO);
1440 T *quick_push (const T &);
1441 T *safe_push (const T &CXX_MEM_STAT_INFO);
1442 T &pop (void);
1443 void truncate (unsigned);
1444 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1445 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1446 void quick_grow (unsigned);
1447 void quick_grow_cleared (unsigned);
1448 void quick_insert (unsigned, const T &);
1449 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1450 void ordered_remove (unsigned);
1451 void unordered_remove (unsigned);
1452 void block_remove (unsigned, unsigned);
1453 void qsort (int (*) (const void *, const void *));
1454 void sort (int (*) (const void *, const void *, void *), void *);
1455 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1456 T *bsearch (const void *key,
1457 int (*compar)(const void *, const void *, void *), void *);
1458 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1459 bool contains (const T &search) const;
1460 void reverse (void);
1462 bool using_auto_storage () const;
1464 /* FIXME - This field should be private, but we need to cater to
1465 compilers that have stricter notions of PODness for types. */
1466 vec<T, va_heap, vl_embed> *m_vec;
1470 /* auto_vec is a subclass of vec that automatically manages creating and
1471 releasing the internal vector. If N is non zero then it has N elements of
1472 internal storage. The default is no internal storage, and you probably only
1473 want to ask for internal storage for vectors on the stack because if the
1474 size of the vector is larger than the internal storage that space is wasted.
1476 template<typename T, size_t N = 0>
1477 class auto_vec : public vec<T, va_heap>
1479 public:
1480 auto_vec ()
1482 m_auto.embedded_init (MAX (N, 2), 0, 1);
1483 this->m_vec = &m_auto;
1486 auto_vec (size_t s)
1488 if (s > N)
1490 this->create (s);
1491 return;
1494 m_auto.embedded_init (MAX (N, 2), 0, 1);
1495 this->m_vec = &m_auto;
1498 ~auto_vec ()
1500 this->release ();
1503 private:
1504 vec<T, va_heap, vl_embed> m_auto;
1505 T m_data[MAX (N - 1, 1)];
1508 /* auto_vec is a sub class of vec whose storage is released when it is
1509 destroyed. */
1510 template<typename T>
1511 class auto_vec<T, 0> : public vec<T, va_heap>
1513 public:
1514 auto_vec () { this->m_vec = NULL; }
1515 auto_vec (size_t n) { this->create (n); }
1516 ~auto_vec () { this->release (); }
1520 /* Allocate heap memory for pointer V and create the internal vector
1521 with space for NELEMS elements. If NELEMS is 0, the internal
1522 vector is initialized to empty. */
1524 template<typename T>
1525 inline void
1526 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1528 v = new vec<T>;
1529 v->create (nelems PASS_MEM_STAT);
1533 /* A subclass of auto_vec <char *> that frees all of its elements on
1534 deletion. */
1536 class auto_string_vec : public auto_vec <char *>
1538 public:
1539 ~auto_string_vec ();
1542 /* Conditionally allocate heap memory for VEC and its internal vector. */
1544 template<typename T>
1545 inline void
1546 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1548 if (!vec)
1549 vec_alloc (vec, nelems PASS_MEM_STAT);
1553 /* Free the heap memory allocated by vector V and set it to NULL. */
1555 template<typename T>
1556 inline void
1557 vec_free (vec<T> *&v)
1559 if (v == NULL)
1560 return;
1562 v->release ();
1563 delete v;
1564 v = NULL;
1568 /* Return iteration condition and update PTR to point to the IX'th
1569 element of this vector. Use this to iterate over the elements of a
1570 vector as follows,
1572 for (ix = 0; v.iterate (ix, &ptr); ix++)
1573 continue; */
1575 template<typename T>
1576 inline bool
1577 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1579 if (m_vec)
1580 return m_vec->iterate (ix, ptr);
1581 else
1583 *ptr = 0;
1584 return false;
1589 /* Return iteration condition and update *PTR to point to the
1590 IX'th element of this vector. Use this to iterate over the
1591 elements of a vector as follows,
1593 for (ix = 0; v->iterate (ix, &ptr); ix++)
1594 continue;
1596 This variant is for vectors of objects. */
1598 template<typename T>
1599 inline bool
1600 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1602 if (m_vec)
1603 return m_vec->iterate (ix, ptr);
1604 else
1606 *ptr = 0;
1607 return false;
1612 /* Convenience macro for forward iteration. */
1613 #define FOR_EACH_VEC_ELT(V, I, P) \
1614 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1616 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1617 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1619 /* Likewise, but start from FROM rather than 0. */
1620 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1621 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1623 /* Convenience macro for reverse iteration. */
1624 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1625 for (I = (V).length () - 1; \
1626 (V).iterate ((I), &(P)); \
1627 (I)--)
1629 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1630 for (I = vec_safe_length (V) - 1; \
1631 vec_safe_iterate ((V), (I), &(P)); \
1632 (I)--)
1634 /* auto_string_vec's dtor, freeing all contained strings, automatically
1635 chaining up to ~auto_vec <char *>, which frees the internal buffer. */
1637 inline
1638 auto_string_vec::~auto_string_vec ()
1640 int i;
1641 char *str;
1642 FOR_EACH_VEC_ELT (*this, i, str)
1643 free (str);
1647 /* Return a copy of this vector. */
1649 template<typename T>
1650 inline vec<T, va_heap, vl_ptr>
1651 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1653 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1654 if (length ())
1655 new_vec.m_vec = m_vec->copy ();
1656 return new_vec;
1660 /* Ensure that the vector has at least RESERVE slots available (if
1661 EXACT is false), or exactly RESERVE slots available (if EXACT is
1662 true).
1664 This may create additional headroom if EXACT is false.
1666 Note that this can cause the embedded vector to be reallocated.
1667 Returns true iff reallocation actually occurred. */
1669 template<typename T>
1670 inline bool
1671 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1673 if (space (nelems))
1674 return false;
1676 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1677 this is necessary because it doesn't have enough information to know the
1678 embedded vector is in auto storage, and so should not be freed. */
1679 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1680 unsigned int oldsize = 0;
1681 bool handle_auto_vec = m_vec && using_auto_storage ();
1682 if (handle_auto_vec)
1684 m_vec = NULL;
1685 oldsize = oldvec->length ();
1686 nelems += oldsize;
1689 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1690 if (handle_auto_vec)
1692 vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
1693 m_vec->m_vecpfx.m_num = oldsize;
1696 return true;
1700 /* Ensure that this vector has exactly NELEMS slots available. This
1701 will not create additional headroom. Note this can cause the
1702 embedded vector to be reallocated. Returns true iff reallocation
1703 actually occurred. */
1705 template<typename T>
1706 inline bool
1707 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1709 return reserve (nelems, true PASS_MEM_STAT);
1713 /* Create the internal vector and reserve NELEMS for it. This is
1714 exactly like vec::reserve, but the internal vector is
1715 unconditionally allocated from scratch. The old one, if it
1716 existed, is lost. */
1718 template<typename T>
1719 inline void
1720 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1722 m_vec = NULL;
1723 if (nelems > 0)
1724 reserve_exact (nelems PASS_MEM_STAT);
1728 /* Free the memory occupied by the embedded vector. */
1730 template<typename T>
1731 inline void
1732 vec<T, va_heap, vl_ptr>::release (void)
1734 if (!m_vec)
1735 return;
1737 if (using_auto_storage ())
1739 m_vec->m_vecpfx.m_num = 0;
1740 return;
1743 va_heap::release (m_vec);
1746 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1747 SRC and this vector must be allocated with the same memory
1748 allocation mechanism. This vector is assumed to have sufficient
1749 headroom available. */
1751 template<typename T>
1752 inline void
1753 vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
1755 if (src.length ())
1756 m_vec->splice (*(src.m_vec));
1760 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1761 SRC and this vector must be allocated with the same mechanism.
1762 If there is not enough headroom in this vector, it will be reallocated
1763 as needed. */
1765 template<typename T>
1766 inline void
1767 vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
1768 MEM_STAT_DECL)
1770 if (src.length ())
1772 reserve_exact (src.length ());
1773 splice (src);
1778 /* Push OBJ (a new element) onto the end of the vector. There must be
1779 sufficient space in the vector. Return a pointer to the slot
1780 where OBJ was inserted. */
1782 template<typename T>
1783 inline T *
1784 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1786 return m_vec->quick_push (obj);
1790 /* Push a new element OBJ onto the end of this vector. Reallocates
1791 the embedded vector, if needed. Return a pointer to the slot where
1792 OBJ was inserted. */
1794 template<typename T>
1795 inline T *
1796 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1798 reserve (1, false PASS_MEM_STAT);
1799 return quick_push (obj);
1803 /* Pop and return the last element off the end of the vector. */
1805 template<typename T>
1806 inline T &
1807 vec<T, va_heap, vl_ptr>::pop (void)
1809 return m_vec->pop ();
1813 /* Set the length of the vector to LEN. The new length must be less
1814 than or equal to the current length. This is an O(1) operation. */
1816 template<typename T>
1817 inline void
1818 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1820 if (m_vec)
1821 m_vec->truncate (size);
1822 else
1823 gcc_checking_assert (size == 0);
1827 /* Grow the vector to a specific length. LEN must be as long or
1828 longer than the current length. The new elements are
1829 uninitialized. Reallocate the internal vector, if needed. */
1831 template<typename T>
1832 inline void
1833 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1835 unsigned oldlen = length ();
1836 gcc_checking_assert (oldlen <= len);
1837 reserve_exact (len - oldlen PASS_MEM_STAT);
1838 if (m_vec)
1839 m_vec->quick_grow (len);
1840 else
1841 gcc_checking_assert (len == 0);
1845 /* Grow the embedded vector to a specific length. LEN must be as
1846 long or longer than the current length. The new elements are
1847 initialized to zero. Reallocate the internal vector, if needed. */
1849 template<typename T>
1850 inline void
1851 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1853 unsigned oldlen = length ();
1854 size_t growby = len - oldlen;
1855 safe_grow (len PASS_MEM_STAT);
1856 if (growby != 0)
1857 vec_default_construct (address () + oldlen, growby);
1861 /* Same as vec::safe_grow but without reallocation of the internal vector.
1862 If the vector cannot be extended, a runtime assertion will be triggered. */
1864 template<typename T>
1865 inline void
1866 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1868 gcc_checking_assert (m_vec);
1869 m_vec->quick_grow (len);
1873 /* Same as vec::quick_grow_cleared but without reallocation of the
1874 internal vector. If the vector cannot be extended, a runtime
1875 assertion will be triggered. */
1877 template<typename T>
1878 inline void
1879 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1881 gcc_checking_assert (m_vec);
1882 m_vec->quick_grow_cleared (len);
1886 /* Insert an element, OBJ, at the IXth position of this vector. There
1887 must be sufficient space. */
1889 template<typename T>
1890 inline void
1891 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1893 m_vec->quick_insert (ix, obj);
1897 /* Insert an element, OBJ, at the IXth position of the vector.
1898 Reallocate the embedded vector, if necessary. */
1900 template<typename T>
1901 inline void
1902 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1904 reserve (1, false PASS_MEM_STAT);
1905 quick_insert (ix, obj);
1909 /* Remove an element from the IXth position of this vector. Ordering of
1910 remaining elements is preserved. This is an O(N) operation due to
1911 a memmove. */
1913 template<typename T>
1914 inline void
1915 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1917 m_vec->ordered_remove (ix);
1921 /* Remove an element from the IXth position of this vector. Ordering
1922 of remaining elements is destroyed. This is an O(1) operation. */
1924 template<typename T>
1925 inline void
1926 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1928 m_vec->unordered_remove (ix);
1932 /* Remove LEN elements starting at the IXth. Ordering is retained.
1933 This is an O(N) operation due to memmove. */
1935 template<typename T>
1936 inline void
1937 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1939 m_vec->block_remove (ix, len);
1943 /* Sort the contents of this vector with qsort. CMP is the comparison
1944 function to pass to qsort. */
1946 template<typename T>
1947 inline void
1948 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1950 if (m_vec)
1951 m_vec->qsort (cmp);
1954 /* Sort the contents of this vector with qsort. CMP is the comparison
1955 function to pass to qsort. */
1957 template<typename T>
1958 inline void
1959 vec<T, va_heap, vl_ptr>::sort (int (*cmp) (const void *, const void *,
1960 void *), void *data)
1962 if (m_vec)
1963 m_vec->sort (cmp, data);
1967 /* Search the contents of the sorted vector with a binary search.
1968 CMP is the comparison function to pass to bsearch. */
1970 template<typename T>
1971 inline T *
1972 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1973 int (*cmp) (const void *, const void *))
1975 if (m_vec)
1976 return m_vec->bsearch (key, cmp);
1977 return NULL;
1980 /* Search the contents of the sorted vector with a binary search.
1981 CMP is the comparison function to pass to bsearch. */
1983 template<typename T>
1984 inline T *
1985 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1986 int (*cmp) (const void *, const void *,
1987 void *), void *data)
1989 if (m_vec)
1990 return m_vec->bsearch (key, cmp, data);
1991 return NULL;
1995 /* Find and return the first position in which OBJ could be inserted
1996 without changing the ordering of this vector. LESSTHAN is a
1997 function that returns true if the first argument is strictly less
1998 than the second. */
2000 template<typename T>
2001 inline unsigned
2002 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
2003 bool (*lessthan)(const T &, const T &))
2004 const
2006 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
2009 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
2010 size of the vector and so should be used with care. */
2012 template<typename T>
2013 inline bool
2014 vec<T, va_heap, vl_ptr>::contains (const T &search) const
2016 return m_vec ? m_vec->contains (search) : false;
2019 /* Reverse content of the vector. */
2021 template<typename T>
2022 inline void
2023 vec<T, va_heap, vl_ptr>::reverse (void)
2025 unsigned l = length ();
2026 T *ptr = address ();
2028 for (unsigned i = 0; i < l / 2; i++)
2029 std::swap (ptr[i], ptr[l - i - 1]);
2032 template<typename T>
2033 inline bool
2034 vec<T, va_heap, vl_ptr>::using_auto_storage () const
2036 return m_vec->m_vecpfx.m_using_auto_storage;
2039 /* Release VEC and call release of all element vectors. */
2041 template<typename T>
2042 inline void
2043 release_vec_vec (vec<vec<T> > &vec)
2045 for (unsigned i = 0; i < vec.length (); i++)
2046 vec[i].release ();
2048 vec.release ();
2051 #if (GCC_VERSION >= 3000)
2052 # pragma GCC poison m_vec m_vecpfx m_vecdata
2053 #endif
2055 #endif // GCC_VEC_H