[Ada] Add special bypass for obsolete code pattern
[official-gcc.git] / gcc / lra-constraints.c
blobf258407593745663febfbcd3b8e58c074a0a372b
1 /* Code for RTL transformations to satisfy insn constraints.
2 Copyright (C) 2010-2019 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
22 /* This file contains code for 3 passes: constraint pass,
23 inheritance/split pass, and pass for undoing failed inheritance and
24 split.
26 The major goal of constraint pass is to transform RTL to satisfy
27 insn and address constraints by:
28 o choosing insn alternatives;
29 o generating *reload insns* (or reloads in brief) and *reload
30 pseudos* which will get necessary hard registers later;
31 o substituting pseudos with equivalent values and removing the
32 instructions that initialized those pseudos.
34 The constraint pass has biggest and most complicated code in LRA.
35 There are a lot of important details like:
36 o reuse of input reload pseudos to simplify reload pseudo
37 allocations;
38 o some heuristics to choose insn alternative to improve the
39 inheritance;
40 o early clobbers etc.
42 The pass is mimicking former reload pass in alternative choosing
43 because the reload pass is oriented to current machine description
44 model. It might be changed if the machine description model is
45 changed.
47 There is special code for preventing all LRA and this pass cycling
48 in case of bugs.
50 On the first iteration of the pass we process every instruction and
51 choose an alternative for each one. On subsequent iterations we try
52 to avoid reprocessing instructions if we can be sure that the old
53 choice is still valid.
55 The inheritance/spilt pass is to transform code to achieve
56 ineheritance and live range splitting. It is done on backward
57 traversal of EBBs.
59 The inheritance optimization goal is to reuse values in hard
60 registers. There is analogous optimization in old reload pass. The
61 inheritance is achieved by following transformation:
63 reload_p1 <- p reload_p1 <- p
64 ... new_p <- reload_p1
65 ... => ...
66 reload_p2 <- p reload_p2 <- new_p
68 where p is spilled and not changed between the insns. Reload_p1 is
69 also called *original pseudo* and new_p is called *inheritance
70 pseudo*.
72 The subsequent assignment pass will try to assign the same (or
73 another if it is not possible) hard register to new_p as to
74 reload_p1 or reload_p2.
76 If the assignment pass fails to assign a hard register to new_p,
77 this file will undo the inheritance and restore the original code.
78 This is because implementing the above sequence with a spilled
79 new_p would make the code much worse. The inheritance is done in
80 EBB scope. The above is just a simplified example to get an idea
81 of the inheritance as the inheritance is also done for non-reload
82 insns.
84 Splitting (transformation) is also done in EBB scope on the same
85 pass as the inheritance:
87 r <- ... or ... <- r r <- ... or ... <- r
88 ... s <- r (new insn -- save)
89 ... =>
90 ... r <- s (new insn -- restore)
91 ... <- r ... <- r
93 The *split pseudo* s is assigned to the hard register of the
94 original pseudo or hard register r.
96 Splitting is done:
97 o In EBBs with high register pressure for global pseudos (living
98 in at least 2 BBs) and assigned to hard registers when there
99 are more one reloads needing the hard registers;
100 o for pseudos needing save/restore code around calls.
102 If the split pseudo still has the same hard register as the
103 original pseudo after the subsequent assignment pass or the
104 original pseudo was split, the opposite transformation is done on
105 the same pass for undoing inheritance. */
107 #undef REG_OK_STRICT
109 #include "config.h"
110 #include "system.h"
111 #include "coretypes.h"
112 #include "backend.h"
113 #include "target.h"
114 #include "rtl.h"
115 #include "tree.h"
116 #include "predict.h"
117 #include "df.h"
118 #include "memmodel.h"
119 #include "tm_p.h"
120 #include "expmed.h"
121 #include "optabs.h"
122 #include "regs.h"
123 #include "ira.h"
124 #include "recog.h"
125 #include "output.h"
126 #include "addresses.h"
127 #include "expr.h"
128 #include "cfgrtl.h"
129 #include "rtl-error.h"
130 #include "params.h"
131 #include "lra.h"
132 #include "lra-int.h"
133 #include "print-rtl.h"
135 /* Value of LRA_CURR_RELOAD_NUM at the beginning of BB of the current
136 insn. Remember that LRA_CURR_RELOAD_NUM is the number of emitted
137 reload insns. */
138 static int bb_reload_num;
140 /* The current insn being processed and corresponding its single set
141 (NULL otherwise), its data (basic block, the insn data, the insn
142 static data, and the mode of each operand). */
143 static rtx_insn *curr_insn;
144 static rtx curr_insn_set;
145 static basic_block curr_bb;
146 static lra_insn_recog_data_t curr_id;
147 static struct lra_static_insn_data *curr_static_id;
148 static machine_mode curr_operand_mode[MAX_RECOG_OPERANDS];
149 /* Mode of the register substituted by its equivalence with VOIDmode
150 (e.g. constant) and whose subreg is given operand of the current
151 insn. VOIDmode in all other cases. */
152 static machine_mode original_subreg_reg_mode[MAX_RECOG_OPERANDS];
156 /* Start numbers for new registers and insns at the current constraints
157 pass start. */
158 static int new_regno_start;
159 static int new_insn_uid_start;
161 /* If LOC is nonnull, strip any outer subreg from it. */
162 static inline rtx *
163 strip_subreg (rtx *loc)
165 return loc && GET_CODE (*loc) == SUBREG ? &SUBREG_REG (*loc) : loc;
168 /* Return hard regno of REGNO or if it is was not assigned to a hard
169 register, use a hard register from its allocno class. */
170 static int
171 get_try_hard_regno (int regno)
173 int hard_regno;
174 enum reg_class rclass;
176 if ((hard_regno = regno) >= FIRST_PSEUDO_REGISTER)
177 hard_regno = lra_get_regno_hard_regno (regno);
178 if (hard_regno >= 0)
179 return hard_regno;
180 rclass = lra_get_allocno_class (regno);
181 if (rclass == NO_REGS)
182 return -1;
183 return ira_class_hard_regs[rclass][0];
186 /* Return the hard regno of X after removing its subreg. If X is not
187 a register or a subreg of a register, return -1. If X is a pseudo,
188 use its assignment. If FINAL_P return the final hard regno which will
189 be after elimination. */
190 static int
191 get_hard_regno (rtx x, bool final_p)
193 rtx reg;
194 int hard_regno;
196 reg = x;
197 if (SUBREG_P (x))
198 reg = SUBREG_REG (x);
199 if (! REG_P (reg))
200 return -1;
201 if (! HARD_REGISTER_NUM_P (hard_regno = REGNO (reg)))
202 hard_regno = lra_get_regno_hard_regno (hard_regno);
203 if (hard_regno < 0)
204 return -1;
205 if (final_p)
206 hard_regno = lra_get_elimination_hard_regno (hard_regno);
207 if (SUBREG_P (x))
208 hard_regno += subreg_regno_offset (hard_regno, GET_MODE (reg),
209 SUBREG_BYTE (x), GET_MODE (x));
210 return hard_regno;
213 /* If REGNO is a hard register or has been allocated a hard register,
214 return the class of that register. If REGNO is a reload pseudo
215 created by the current constraints pass, return its allocno class.
216 Return NO_REGS otherwise. */
217 static enum reg_class
218 get_reg_class (int regno)
220 int hard_regno;
222 if (! HARD_REGISTER_NUM_P (hard_regno = regno))
223 hard_regno = lra_get_regno_hard_regno (regno);
224 if (hard_regno >= 0)
226 hard_regno = lra_get_elimination_hard_regno (hard_regno);
227 return REGNO_REG_CLASS (hard_regno);
229 if (regno >= new_regno_start)
230 return lra_get_allocno_class (regno);
231 return NO_REGS;
234 /* Return true if REG satisfies (or will satisfy) reg class constraint
235 CL. Use elimination first if REG is a hard register. If REG is a
236 reload pseudo created by this constraints pass, assume that it will
237 be allocated a hard register from its allocno class, but allow that
238 class to be narrowed to CL if it is currently a superset of CL.
240 If NEW_CLASS is nonnull, set *NEW_CLASS to the new allocno class of
241 REGNO (reg), or NO_REGS if no change in its class was needed. */
242 static bool
243 in_class_p (rtx reg, enum reg_class cl, enum reg_class *new_class)
245 enum reg_class rclass, common_class;
246 machine_mode reg_mode;
247 int class_size, hard_regno, nregs, i, j;
248 int regno = REGNO (reg);
250 if (new_class != NULL)
251 *new_class = NO_REGS;
252 if (regno < FIRST_PSEUDO_REGISTER)
254 rtx final_reg = reg;
255 rtx *final_loc = &final_reg;
257 lra_eliminate_reg_if_possible (final_loc);
258 return TEST_HARD_REG_BIT (reg_class_contents[cl], REGNO (*final_loc));
260 reg_mode = GET_MODE (reg);
261 rclass = get_reg_class (regno);
262 if (regno < new_regno_start
263 /* Do not allow the constraints for reload instructions to
264 influence the classes of new pseudos. These reloads are
265 typically moves that have many alternatives, and restricting
266 reload pseudos for one alternative may lead to situations
267 where other reload pseudos are no longer allocatable. */
268 || (INSN_UID (curr_insn) >= new_insn_uid_start
269 && curr_insn_set != NULL
270 && ((OBJECT_P (SET_SRC (curr_insn_set))
271 && ! CONSTANT_P (SET_SRC (curr_insn_set)))
272 || (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
273 && OBJECT_P (SUBREG_REG (SET_SRC (curr_insn_set)))
274 && ! CONSTANT_P (SUBREG_REG (SET_SRC (curr_insn_set)))))))
275 /* When we don't know what class will be used finally for reload
276 pseudos, we use ALL_REGS. */
277 return ((regno >= new_regno_start && rclass == ALL_REGS)
278 || (rclass != NO_REGS && ira_class_subset_p[rclass][cl]
279 && ! hard_reg_set_subset_p (reg_class_contents[cl],
280 lra_no_alloc_regs)));
281 else
283 common_class = ira_reg_class_subset[rclass][cl];
284 if (new_class != NULL)
285 *new_class = common_class;
286 if (hard_reg_set_subset_p (reg_class_contents[common_class],
287 lra_no_alloc_regs))
288 return false;
289 /* Check that there are enough allocatable regs. */
290 class_size = ira_class_hard_regs_num[common_class];
291 for (i = 0; i < class_size; i++)
293 hard_regno = ira_class_hard_regs[common_class][i];
294 nregs = hard_regno_nregs (hard_regno, reg_mode);
295 if (nregs == 1)
296 return true;
297 for (j = 0; j < nregs; j++)
298 if (TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno + j)
299 || ! TEST_HARD_REG_BIT (reg_class_contents[common_class],
300 hard_regno + j))
301 break;
302 if (j >= nregs)
303 return true;
305 return false;
309 /* Return true if REGNO satisfies a memory constraint. */
310 static bool
311 in_mem_p (int regno)
313 return get_reg_class (regno) == NO_REGS;
316 /* Return 1 if ADDR is a valid memory address for mode MODE in address
317 space AS, and check that each pseudo has the proper kind of hard
318 reg. */
319 static int
320 valid_address_p (machine_mode mode ATTRIBUTE_UNUSED,
321 rtx addr, addr_space_t as)
323 #ifdef GO_IF_LEGITIMATE_ADDRESS
324 lra_assert (ADDR_SPACE_GENERIC_P (as));
325 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
326 return 0;
328 win:
329 return 1;
330 #else
331 return targetm.addr_space.legitimate_address_p (mode, addr, 0, as);
332 #endif
335 namespace {
336 /* Temporarily eliminates registers in an address (for the lifetime of
337 the object). */
338 class address_eliminator {
339 public:
340 address_eliminator (struct address_info *ad);
341 ~address_eliminator ();
343 private:
344 struct address_info *m_ad;
345 rtx *m_base_loc;
346 rtx m_base_reg;
347 rtx *m_index_loc;
348 rtx m_index_reg;
352 address_eliminator::address_eliminator (struct address_info *ad)
353 : m_ad (ad),
354 m_base_loc (strip_subreg (ad->base_term)),
355 m_base_reg (NULL_RTX),
356 m_index_loc (strip_subreg (ad->index_term)),
357 m_index_reg (NULL_RTX)
359 if (m_base_loc != NULL)
361 m_base_reg = *m_base_loc;
362 /* If we have non-legitimate address which is decomposed not in
363 the way we expected, don't do elimination here. In such case
364 the address will be reloaded and elimination will be done in
365 reload insn finally. */
366 if (REG_P (m_base_reg))
367 lra_eliminate_reg_if_possible (m_base_loc);
368 if (m_ad->base_term2 != NULL)
369 *m_ad->base_term2 = *m_ad->base_term;
371 if (m_index_loc != NULL)
373 m_index_reg = *m_index_loc;
374 if (REG_P (m_index_reg))
375 lra_eliminate_reg_if_possible (m_index_loc);
379 address_eliminator::~address_eliminator ()
381 if (m_base_loc && *m_base_loc != m_base_reg)
383 *m_base_loc = m_base_reg;
384 if (m_ad->base_term2 != NULL)
385 *m_ad->base_term2 = *m_ad->base_term;
387 if (m_index_loc && *m_index_loc != m_index_reg)
388 *m_index_loc = m_index_reg;
391 /* Return true if the eliminated form of AD is a legitimate target address. */
392 static bool
393 valid_address_p (struct address_info *ad)
395 address_eliminator eliminator (ad);
396 return valid_address_p (ad->mode, *ad->outer, ad->as);
399 /* Return true if the eliminated form of memory reference OP satisfies
400 extra (special) memory constraint CONSTRAINT. */
401 static bool
402 satisfies_memory_constraint_p (rtx op, enum constraint_num constraint)
404 struct address_info ad;
406 decompose_mem_address (&ad, op);
407 address_eliminator eliminator (&ad);
408 return constraint_satisfied_p (op, constraint);
411 /* Return true if the eliminated form of address AD satisfies extra
412 address constraint CONSTRAINT. */
413 static bool
414 satisfies_address_constraint_p (struct address_info *ad,
415 enum constraint_num constraint)
417 address_eliminator eliminator (ad);
418 return constraint_satisfied_p (*ad->outer, constraint);
421 /* Return true if the eliminated form of address OP satisfies extra
422 address constraint CONSTRAINT. */
423 static bool
424 satisfies_address_constraint_p (rtx op, enum constraint_num constraint)
426 struct address_info ad;
428 decompose_lea_address (&ad, &op);
429 return satisfies_address_constraint_p (&ad, constraint);
432 /* Initiate equivalences for LRA. As we keep original equivalences
433 before any elimination, we need to make copies otherwise any change
434 in insns might change the equivalences. */
435 void
436 lra_init_equiv (void)
438 ira_expand_reg_equiv ();
439 for (int i = FIRST_PSEUDO_REGISTER; i < max_reg_num (); i++)
441 rtx res;
443 if ((res = ira_reg_equiv[i].memory) != NULL_RTX)
444 ira_reg_equiv[i].memory = copy_rtx (res);
445 if ((res = ira_reg_equiv[i].invariant) != NULL_RTX)
446 ira_reg_equiv[i].invariant = copy_rtx (res);
450 static rtx loc_equivalence_callback (rtx, const_rtx, void *);
452 /* Update equivalence for REGNO. We need to this as the equivalence
453 might contain other pseudos which are changed by their
454 equivalences. */
455 static void
456 update_equiv (int regno)
458 rtx x;
460 if ((x = ira_reg_equiv[regno].memory) != NULL_RTX)
461 ira_reg_equiv[regno].memory
462 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
463 NULL_RTX);
464 if ((x = ira_reg_equiv[regno].invariant) != NULL_RTX)
465 ira_reg_equiv[regno].invariant
466 = simplify_replace_fn_rtx (x, NULL_RTX, loc_equivalence_callback,
467 NULL_RTX);
470 /* If we have decided to substitute X with another value, return that
471 value, otherwise return X. */
472 static rtx
473 get_equiv (rtx x)
475 int regno;
476 rtx res;
478 if (! REG_P (x) || (regno = REGNO (x)) < FIRST_PSEUDO_REGISTER
479 || ! ira_reg_equiv[regno].defined_p
480 || ! ira_reg_equiv[regno].profitable_p
481 || lra_get_regno_hard_regno (regno) >= 0)
482 return x;
483 if ((res = ira_reg_equiv[regno].memory) != NULL_RTX)
485 if (targetm.cannot_substitute_mem_equiv_p (res))
486 return x;
487 return res;
489 if ((res = ira_reg_equiv[regno].constant) != NULL_RTX)
490 return res;
491 if ((res = ira_reg_equiv[regno].invariant) != NULL_RTX)
492 return res;
493 gcc_unreachable ();
496 /* If we have decided to substitute X with the equivalent value,
497 return that value after elimination for INSN, otherwise return
498 X. */
499 static rtx
500 get_equiv_with_elimination (rtx x, rtx_insn *insn)
502 rtx res = get_equiv (x);
504 if (x == res || CONSTANT_P (res))
505 return res;
506 return lra_eliminate_regs_1 (insn, res, GET_MODE (res),
507 false, false, 0, true);
510 /* Set up curr_operand_mode. */
511 static void
512 init_curr_operand_mode (void)
514 int nop = curr_static_id->n_operands;
515 for (int i = 0; i < nop; i++)
517 machine_mode mode = GET_MODE (*curr_id->operand_loc[i]);
518 if (mode == VOIDmode)
520 /* The .md mode for address operands is the mode of the
521 addressed value rather than the mode of the address itself. */
522 if (curr_id->icode >= 0 && curr_static_id->operand[i].is_address)
523 mode = Pmode;
524 else
525 mode = curr_static_id->operand[i].mode;
527 curr_operand_mode[i] = mode;
533 /* The page contains code to reuse input reloads. */
535 /* Structure describes input reload of the current insns. */
536 struct input_reload
538 /* True for input reload of matched operands. */
539 bool match_p;
540 /* Reloaded value. */
541 rtx input;
542 /* Reload pseudo used. */
543 rtx reg;
546 /* The number of elements in the following array. */
547 static int curr_insn_input_reloads_num;
548 /* Array containing info about input reloads. It is used to find the
549 same input reload and reuse the reload pseudo in this case. */
550 static struct input_reload curr_insn_input_reloads[LRA_MAX_INSN_RELOADS];
552 /* Initiate data concerning reuse of input reloads for the current
553 insn. */
554 static void
555 init_curr_insn_input_reloads (void)
557 curr_insn_input_reloads_num = 0;
560 /* Create a new pseudo using MODE, RCLASS, ORIGINAL or reuse already
561 created input reload pseudo (only if TYPE is not OP_OUT). Don't
562 reuse pseudo if IN_SUBREG_P is true and the reused pseudo should be
563 wrapped up in SUBREG. The result pseudo is returned through
564 RESULT_REG. Return TRUE if we created a new pseudo, FALSE if we
565 reused the already created input reload pseudo. Use TITLE to
566 describe new registers for debug purposes. */
567 static bool
568 get_reload_reg (enum op_type type, machine_mode mode, rtx original,
569 enum reg_class rclass, bool in_subreg_p,
570 const char *title, rtx *result_reg)
572 int i, regno;
573 enum reg_class new_class;
574 bool unique_p = false;
576 if (type == OP_OUT)
578 *result_reg
579 = lra_create_new_reg_with_unique_value (mode, original, rclass, title);
580 return true;
582 /* Prevent reuse value of expression with side effects,
583 e.g. volatile memory. */
584 if (! side_effects_p (original))
585 for (i = 0; i < curr_insn_input_reloads_num; i++)
587 if (! curr_insn_input_reloads[i].match_p
588 && rtx_equal_p (curr_insn_input_reloads[i].input, original)
589 && in_class_p (curr_insn_input_reloads[i].reg, rclass, &new_class))
591 rtx reg = curr_insn_input_reloads[i].reg;
592 regno = REGNO (reg);
593 /* If input is equal to original and both are VOIDmode,
594 GET_MODE (reg) might be still different from mode.
595 Ensure we don't return *result_reg with wrong mode. */
596 if (GET_MODE (reg) != mode)
598 if (in_subreg_p)
599 continue;
600 if (maybe_lt (GET_MODE_SIZE (GET_MODE (reg)),
601 GET_MODE_SIZE (mode)))
602 continue;
603 reg = lowpart_subreg (mode, reg, GET_MODE (reg));
604 if (reg == NULL_RTX || GET_CODE (reg) != SUBREG)
605 continue;
607 *result_reg = reg;
608 if (lra_dump_file != NULL)
610 fprintf (lra_dump_file, " Reuse r%d for reload ", regno);
611 dump_value_slim (lra_dump_file, original, 1);
613 if (new_class != lra_get_allocno_class (regno))
614 lra_change_class (regno, new_class, ", change to", false);
615 if (lra_dump_file != NULL)
616 fprintf (lra_dump_file, "\n");
617 return false;
619 /* If we have an input reload with a different mode, make sure it
620 will get a different hard reg. */
621 else if (REG_P (original)
622 && REG_P (curr_insn_input_reloads[i].input)
623 && REGNO (original) == REGNO (curr_insn_input_reloads[i].input)
624 && (GET_MODE (original)
625 != GET_MODE (curr_insn_input_reloads[i].input)))
626 unique_p = true;
628 *result_reg = (unique_p
629 ? lra_create_new_reg_with_unique_value
630 : lra_create_new_reg) (mode, original, rclass, title);
631 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
632 curr_insn_input_reloads[curr_insn_input_reloads_num].input = original;
633 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = false;
634 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = *result_reg;
635 return true;
639 /* The page contains major code to choose the current insn alternative
640 and generate reloads for it. */
642 /* Return the offset from REGNO of the least significant register
643 in (reg:MODE REGNO).
645 This function is used to tell whether two registers satisfy
646 a matching constraint. (reg:MODE1 REGNO1) matches (reg:MODE2 REGNO2) if:
648 REGNO1 + lra_constraint_offset (REGNO1, MODE1)
649 == REGNO2 + lra_constraint_offset (REGNO2, MODE2) */
651 lra_constraint_offset (int regno, machine_mode mode)
653 lra_assert (regno < FIRST_PSEUDO_REGISTER);
655 scalar_int_mode int_mode;
656 if (WORDS_BIG_ENDIAN
657 && is_a <scalar_int_mode> (mode, &int_mode)
658 && GET_MODE_SIZE (int_mode) > UNITS_PER_WORD)
659 return hard_regno_nregs (regno, mode) - 1;
660 return 0;
663 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
664 if they are the same hard reg, and has special hacks for
665 auto-increment and auto-decrement. This is specifically intended for
666 process_alt_operands to use in determining whether two operands
667 match. X is the operand whose number is the lower of the two.
669 It is supposed that X is the output operand and Y is the input
670 operand. Y_HARD_REGNO is the final hard regno of register Y or
671 register in subreg Y as we know it now. Otherwise, it is a
672 negative value. */
673 static bool
674 operands_match_p (rtx x, rtx y, int y_hard_regno)
676 int i;
677 RTX_CODE code = GET_CODE (x);
678 const char *fmt;
680 if (x == y)
681 return true;
682 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
683 && (REG_P (y) || (GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y)))))
685 int j;
687 i = get_hard_regno (x, false);
688 if (i < 0)
689 goto slow;
691 if ((j = y_hard_regno) < 0)
692 goto slow;
694 i += lra_constraint_offset (i, GET_MODE (x));
695 j += lra_constraint_offset (j, GET_MODE (y));
697 return i == j;
700 /* If two operands must match, because they are really a single
701 operand of an assembler insn, then two post-increments are invalid
702 because the assembler insn would increment only once. On the
703 other hand, a post-increment matches ordinary indexing if the
704 post-increment is the output operand. */
705 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
706 return operands_match_p (XEXP (x, 0), y, y_hard_regno);
708 /* Two pre-increments are invalid because the assembler insn would
709 increment only once. On the other hand, a pre-increment matches
710 ordinary indexing if the pre-increment is the input operand. */
711 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
712 || GET_CODE (y) == PRE_MODIFY)
713 return operands_match_p (x, XEXP (y, 0), -1);
715 slow:
717 if (code == REG && REG_P (y))
718 return REGNO (x) == REGNO (y);
720 if (code == REG && GET_CODE (y) == SUBREG && REG_P (SUBREG_REG (y))
721 && x == SUBREG_REG (y))
722 return true;
723 if (GET_CODE (y) == REG && code == SUBREG && REG_P (SUBREG_REG (x))
724 && SUBREG_REG (x) == y)
725 return true;
727 /* Now we have disposed of all the cases in which different rtx
728 codes can match. */
729 if (code != GET_CODE (y))
730 return false;
732 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
733 if (GET_MODE (x) != GET_MODE (y))
734 return false;
736 switch (code)
738 CASE_CONST_UNIQUE:
739 return false;
741 case LABEL_REF:
742 return label_ref_label (x) == label_ref_label (y);
743 case SYMBOL_REF:
744 return XSTR (x, 0) == XSTR (y, 0);
746 default:
747 break;
750 /* Compare the elements. If any pair of corresponding elements fail
751 to match, return false for the whole things. */
753 fmt = GET_RTX_FORMAT (code);
754 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
756 int val, j;
757 switch (fmt[i])
759 case 'w':
760 if (XWINT (x, i) != XWINT (y, i))
761 return false;
762 break;
764 case 'i':
765 if (XINT (x, i) != XINT (y, i))
766 return false;
767 break;
769 case 'p':
770 if (maybe_ne (SUBREG_BYTE (x), SUBREG_BYTE (y)))
771 return false;
772 break;
774 case 'e':
775 val = operands_match_p (XEXP (x, i), XEXP (y, i), -1);
776 if (val == 0)
777 return false;
778 break;
780 case '0':
781 break;
783 case 'E':
784 if (XVECLEN (x, i) != XVECLEN (y, i))
785 return false;
786 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
788 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j), -1);
789 if (val == 0)
790 return false;
792 break;
794 /* It is believed that rtx's at this level will never
795 contain anything but integers and other rtx's, except for
796 within LABEL_REFs and SYMBOL_REFs. */
797 default:
798 gcc_unreachable ();
801 return true;
804 /* True if X is a constant that can be forced into the constant pool.
805 MODE is the mode of the operand, or VOIDmode if not known. */
806 #define CONST_POOL_OK_P(MODE, X) \
807 ((MODE) != VOIDmode \
808 && CONSTANT_P (X) \
809 && GET_CODE (X) != HIGH \
810 && GET_MODE_SIZE (MODE).is_constant () \
811 && !targetm.cannot_force_const_mem (MODE, X))
813 /* True if C is a non-empty register class that has too few registers
814 to be safely used as a reload target class. */
815 #define SMALL_REGISTER_CLASS_P(C) \
816 (ira_class_hard_regs_num [(C)] == 1 \
817 || (ira_class_hard_regs_num [(C)] >= 1 \
818 && targetm.class_likely_spilled_p (C)))
820 /* If REG is a reload pseudo, try to make its class satisfying CL. */
821 static void
822 narrow_reload_pseudo_class (rtx reg, enum reg_class cl)
824 enum reg_class rclass;
826 /* Do not make more accurate class from reloads generated. They are
827 mostly moves with a lot of constraints. Making more accurate
828 class may results in very narrow class and impossibility of find
829 registers for several reloads of one insn. */
830 if (INSN_UID (curr_insn) >= new_insn_uid_start)
831 return;
832 if (GET_CODE (reg) == SUBREG)
833 reg = SUBREG_REG (reg);
834 if (! REG_P (reg) || (int) REGNO (reg) < new_regno_start)
835 return;
836 if (in_class_p (reg, cl, &rclass) && rclass != cl)
837 lra_change_class (REGNO (reg), rclass, " Change to", true);
840 /* Searches X for any reference to a reg with the same value as REGNO,
841 returning the rtx of the reference found if any. Otherwise,
842 returns NULL_RTX. */
843 static rtx
844 regno_val_use_in (unsigned int regno, rtx x)
846 const char *fmt;
847 int i, j;
848 rtx tem;
850 if (REG_P (x) && lra_reg_info[REGNO (x)].val == lra_reg_info[regno].val)
851 return x;
853 fmt = GET_RTX_FORMAT (GET_CODE (x));
854 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
856 if (fmt[i] == 'e')
858 if ((tem = regno_val_use_in (regno, XEXP (x, i))))
859 return tem;
861 else if (fmt[i] == 'E')
862 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
863 if ((tem = regno_val_use_in (regno , XVECEXP (x, i, j))))
864 return tem;
867 return NULL_RTX;
870 /* Return true if all current insn non-output operands except INS (it
871 has a negaitve end marker) do not use pseudos with the same value
872 as REGNO. */
873 static bool
874 check_conflict_input_operands (int regno, signed char *ins)
876 int in;
877 int n_operands = curr_static_id->n_operands;
879 for (int nop = 0; nop < n_operands; nop++)
880 if (! curr_static_id->operand[nop].is_operator
881 && curr_static_id->operand[nop].type != OP_OUT)
883 for (int i = 0; (in = ins[i]) >= 0; i++)
884 if (in == nop)
885 break;
886 if (in < 0
887 && regno_val_use_in (regno, *curr_id->operand_loc[nop]) != NULL_RTX)
888 return false;
890 return true;
893 /* Generate reloads for matching OUT and INS (array of input operand
894 numbers with end marker -1) with reg class GOAL_CLASS, considering
895 output operands OUTS (similar array to INS) needing to be in different
896 registers. Add input and output reloads correspondingly to the lists
897 *BEFORE and *AFTER. OUT might be negative. In this case we generate
898 input reloads for matched input operands INS. EARLY_CLOBBER_P is a flag
899 that the output operand is early clobbered for chosen alternative. */
900 static void
901 match_reload (signed char out, signed char *ins, signed char *outs,
902 enum reg_class goal_class, rtx_insn **before,
903 rtx_insn **after, bool early_clobber_p)
905 bool out_conflict;
906 int i, in;
907 rtx new_in_reg, new_out_reg, reg;
908 machine_mode inmode, outmode;
909 rtx in_rtx = *curr_id->operand_loc[ins[0]];
910 rtx out_rtx = out < 0 ? in_rtx : *curr_id->operand_loc[out];
912 inmode = curr_operand_mode[ins[0]];
913 outmode = out < 0 ? inmode : curr_operand_mode[out];
914 push_to_sequence (*before);
915 if (inmode != outmode)
917 /* process_alt_operands has already checked that the mode sizes
918 are ordered. */
919 if (partial_subreg_p (outmode, inmode))
921 reg = new_in_reg
922 = lra_create_new_reg_with_unique_value (inmode, in_rtx,
923 goal_class, "");
924 new_out_reg = gen_lowpart_SUBREG (outmode, reg);
925 LRA_SUBREG_P (new_out_reg) = 1;
926 /* If the input reg is dying here, we can use the same hard
927 register for REG and IN_RTX. We do it only for original
928 pseudos as reload pseudos can die although original
929 pseudos still live where reload pseudos dies. */
930 if (REG_P (in_rtx) && (int) REGNO (in_rtx) < lra_new_regno_start
931 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
932 && (!early_clobber_p
933 || check_conflict_input_operands(REGNO (in_rtx), ins)))
934 lra_assign_reg_val (REGNO (in_rtx), REGNO (reg));
936 else
938 reg = new_out_reg
939 = lra_create_new_reg_with_unique_value (outmode, out_rtx,
940 goal_class, "");
941 new_in_reg = gen_lowpart_SUBREG (inmode, reg);
942 /* NEW_IN_REG is non-paradoxical subreg. We don't want
943 NEW_OUT_REG living above. We add clobber clause for
944 this. This is just a temporary clobber. We can remove
945 it at the end of LRA work. */
946 rtx_insn *clobber = emit_clobber (new_out_reg);
947 LRA_TEMP_CLOBBER_P (PATTERN (clobber)) = 1;
948 LRA_SUBREG_P (new_in_reg) = 1;
949 if (GET_CODE (in_rtx) == SUBREG)
951 rtx subreg_reg = SUBREG_REG (in_rtx);
953 /* If SUBREG_REG is dying here and sub-registers IN_RTX
954 and NEW_IN_REG are similar, we can use the same hard
955 register for REG and SUBREG_REG. */
956 if (REG_P (subreg_reg)
957 && (int) REGNO (subreg_reg) < lra_new_regno_start
958 && GET_MODE (subreg_reg) == outmode
959 && known_eq (SUBREG_BYTE (in_rtx), SUBREG_BYTE (new_in_reg))
960 && find_regno_note (curr_insn, REG_DEAD, REGNO (subreg_reg))
961 && (! early_clobber_p
962 || check_conflict_input_operands (REGNO (subreg_reg),
963 ins)))
964 lra_assign_reg_val (REGNO (subreg_reg), REGNO (reg));
968 else
970 /* Pseudos have values -- see comments for lra_reg_info.
971 Different pseudos with the same value do not conflict even if
972 they live in the same place. When we create a pseudo we
973 assign value of original pseudo (if any) from which we
974 created the new pseudo. If we create the pseudo from the
975 input pseudo, the new pseudo will have no conflict with the
976 input pseudo which is wrong when the input pseudo lives after
977 the insn and as the new pseudo value is changed by the insn
978 output. Therefore we create the new pseudo from the output
979 except the case when we have single matched dying input
980 pseudo.
982 We cannot reuse the current output register because we might
983 have a situation like "a <- a op b", where the constraints
984 force the second input operand ("b") to match the output
985 operand ("a"). "b" must then be copied into a new register
986 so that it doesn't clobber the current value of "a".
988 We cannot use the same value if the output pseudo is
989 early clobbered or the input pseudo is mentioned in the
990 output, e.g. as an address part in memory, because
991 output reload will actually extend the pseudo liveness.
992 We don't care about eliminable hard regs here as we are
993 interesting only in pseudos. */
995 /* Matching input's register value is the same as one of the other
996 output operand. Output operands in a parallel insn must be in
997 different registers. */
998 out_conflict = false;
999 if (REG_P (in_rtx))
1001 for (i = 0; outs[i] >= 0; i++)
1003 rtx other_out_rtx = *curr_id->operand_loc[outs[i]];
1004 if (REG_P (other_out_rtx)
1005 && (regno_val_use_in (REGNO (in_rtx), other_out_rtx)
1006 != NULL_RTX))
1008 out_conflict = true;
1009 break;
1014 new_in_reg = new_out_reg
1015 = (! early_clobber_p && ins[1] < 0 && REG_P (in_rtx)
1016 && (int) REGNO (in_rtx) < lra_new_regno_start
1017 && find_regno_note (curr_insn, REG_DEAD, REGNO (in_rtx))
1018 && (! early_clobber_p
1019 || check_conflict_input_operands (REGNO (in_rtx), ins))
1020 && (out < 0
1021 || regno_val_use_in (REGNO (in_rtx), out_rtx) == NULL_RTX)
1022 && !out_conflict
1023 ? lra_create_new_reg (inmode, in_rtx, goal_class, "")
1024 : lra_create_new_reg_with_unique_value (outmode, out_rtx,
1025 goal_class, ""));
1027 /* In operand can be got from transformations before processing insn
1028 constraints. One example of such transformations is subreg
1029 reloading (see function simplify_operand_subreg). The new
1030 pseudos created by the transformations might have inaccurate
1031 class (ALL_REGS) and we should make their classes more
1032 accurate. */
1033 narrow_reload_pseudo_class (in_rtx, goal_class);
1034 lra_emit_move (copy_rtx (new_in_reg), in_rtx);
1035 *before = get_insns ();
1036 end_sequence ();
1037 /* Add the new pseudo to consider values of subsequent input reload
1038 pseudos. */
1039 lra_assert (curr_insn_input_reloads_num < LRA_MAX_INSN_RELOADS);
1040 curr_insn_input_reloads[curr_insn_input_reloads_num].input = in_rtx;
1041 curr_insn_input_reloads[curr_insn_input_reloads_num].match_p = true;
1042 curr_insn_input_reloads[curr_insn_input_reloads_num++].reg = new_in_reg;
1043 for (i = 0; (in = ins[i]) >= 0; i++)
1045 lra_assert
1046 (GET_MODE (*curr_id->operand_loc[in]) == VOIDmode
1047 || GET_MODE (new_in_reg) == GET_MODE (*curr_id->operand_loc[in]));
1048 *curr_id->operand_loc[in] = new_in_reg;
1050 lra_update_dups (curr_id, ins);
1051 if (out < 0)
1052 return;
1053 /* See a comment for the input operand above. */
1054 narrow_reload_pseudo_class (out_rtx, goal_class);
1055 if (find_reg_note (curr_insn, REG_UNUSED, out_rtx) == NULL_RTX)
1057 start_sequence ();
1058 lra_emit_move (out_rtx, copy_rtx (new_out_reg));
1059 emit_insn (*after);
1060 *after = get_insns ();
1061 end_sequence ();
1063 *curr_id->operand_loc[out] = new_out_reg;
1064 lra_update_dup (curr_id, out);
1067 /* Return register class which is union of all reg classes in insn
1068 constraint alternative string starting with P. */
1069 static enum reg_class
1070 reg_class_from_constraints (const char *p)
1072 int c, len;
1073 enum reg_class op_class = NO_REGS;
1076 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
1078 case '#':
1079 case ',':
1080 return op_class;
1082 case 'g':
1083 op_class = reg_class_subunion[op_class][GENERAL_REGS];
1084 break;
1086 default:
1087 enum constraint_num cn = lookup_constraint (p);
1088 enum reg_class cl = reg_class_for_constraint (cn);
1089 if (cl == NO_REGS)
1091 if (insn_extra_address_constraint (cn))
1092 op_class
1093 = (reg_class_subunion
1094 [op_class][base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1095 ADDRESS, SCRATCH)]);
1096 break;
1099 op_class = reg_class_subunion[op_class][cl];
1100 break;
1102 while ((p += len), c);
1103 return op_class;
1106 /* If OP is a register, return the class of the register as per
1107 get_reg_class, otherwise return NO_REGS. */
1108 static inline enum reg_class
1109 get_op_class (rtx op)
1111 return REG_P (op) ? get_reg_class (REGNO (op)) : NO_REGS;
1114 /* Return generated insn mem_pseudo:=val if TO_P or val:=mem_pseudo
1115 otherwise. If modes of MEM_PSEUDO and VAL are different, use
1116 SUBREG for VAL to make them equal. */
1117 static rtx_insn *
1118 emit_spill_move (bool to_p, rtx mem_pseudo, rtx val)
1120 if (GET_MODE (mem_pseudo) != GET_MODE (val))
1122 /* Usually size of mem_pseudo is greater than val size but in
1123 rare cases it can be less as it can be defined by target
1124 dependent macro HARD_REGNO_CALLER_SAVE_MODE. */
1125 if (! MEM_P (val))
1127 val = gen_lowpart_SUBREG (GET_MODE (mem_pseudo),
1128 GET_CODE (val) == SUBREG
1129 ? SUBREG_REG (val) : val);
1130 LRA_SUBREG_P (val) = 1;
1132 else
1134 mem_pseudo = gen_lowpart_SUBREG (GET_MODE (val), mem_pseudo);
1135 LRA_SUBREG_P (mem_pseudo) = 1;
1138 return to_p ? gen_move_insn (mem_pseudo, val)
1139 : gen_move_insn (val, mem_pseudo);
1142 /* Process a special case insn (register move), return true if we
1143 don't need to process it anymore. INSN should be a single set
1144 insn. Set up that RTL was changed through CHANGE_P and that hook
1145 TARGET_SECONDARY_MEMORY_NEEDED says to use secondary memory through
1146 SEC_MEM_P. */
1147 static bool
1148 check_and_process_move (bool *change_p, bool *sec_mem_p ATTRIBUTE_UNUSED)
1150 int sregno, dregno;
1151 rtx dest, src, dreg, sreg, new_reg, scratch_reg;
1152 rtx_insn *before;
1153 enum reg_class dclass, sclass, secondary_class;
1154 secondary_reload_info sri;
1156 lra_assert (curr_insn_set != NULL_RTX);
1157 dreg = dest = SET_DEST (curr_insn_set);
1158 sreg = src = SET_SRC (curr_insn_set);
1159 if (GET_CODE (dest) == SUBREG)
1160 dreg = SUBREG_REG (dest);
1161 if (GET_CODE (src) == SUBREG)
1162 sreg = SUBREG_REG (src);
1163 if (! (REG_P (dreg) || MEM_P (dreg)) || ! (REG_P (sreg) || MEM_P (sreg)))
1164 return false;
1165 sclass = dclass = NO_REGS;
1166 if (REG_P (dreg))
1167 dclass = get_reg_class (REGNO (dreg));
1168 gcc_assert (dclass < LIM_REG_CLASSES);
1169 if (dclass == ALL_REGS)
1170 /* ALL_REGS is used for new pseudos created by transformations
1171 like reload of SUBREG_REG (see function
1172 simplify_operand_subreg). We don't know their class yet. We
1173 should figure out the class from processing the insn
1174 constraints not in this fast path function. Even if ALL_REGS
1175 were a right class for the pseudo, secondary_... hooks usually
1176 are not define for ALL_REGS. */
1177 return false;
1178 if (REG_P (sreg))
1179 sclass = get_reg_class (REGNO (sreg));
1180 gcc_assert (sclass < LIM_REG_CLASSES);
1181 if (sclass == ALL_REGS)
1182 /* See comments above. */
1183 return false;
1184 if (sclass == NO_REGS && dclass == NO_REGS)
1185 return false;
1186 if (targetm.secondary_memory_needed (GET_MODE (src), sclass, dclass)
1187 && ((sclass != NO_REGS && dclass != NO_REGS)
1188 || (GET_MODE (src)
1189 != targetm.secondary_memory_needed_mode (GET_MODE (src)))))
1191 *sec_mem_p = true;
1192 return false;
1194 if (! REG_P (dreg) || ! REG_P (sreg))
1195 return false;
1196 sri.prev_sri = NULL;
1197 sri.icode = CODE_FOR_nothing;
1198 sri.extra_cost = 0;
1199 secondary_class = NO_REGS;
1200 /* Set up hard register for a reload pseudo for hook
1201 secondary_reload because some targets just ignore unassigned
1202 pseudos in the hook. */
1203 if (dclass != NO_REGS && lra_get_regno_hard_regno (REGNO (dreg)) < 0)
1205 dregno = REGNO (dreg);
1206 reg_renumber[dregno] = ira_class_hard_regs[dclass][0];
1208 else
1209 dregno = -1;
1210 if (sclass != NO_REGS && lra_get_regno_hard_regno (REGNO (sreg)) < 0)
1212 sregno = REGNO (sreg);
1213 reg_renumber[sregno] = ira_class_hard_regs[sclass][0];
1215 else
1216 sregno = -1;
1217 if (sclass != NO_REGS)
1218 secondary_class
1219 = (enum reg_class) targetm.secondary_reload (false, dest,
1220 (reg_class_t) sclass,
1221 GET_MODE (src), &sri);
1222 if (sclass == NO_REGS
1223 || ((secondary_class != NO_REGS || sri.icode != CODE_FOR_nothing)
1224 && dclass != NO_REGS))
1226 enum reg_class old_sclass = secondary_class;
1227 secondary_reload_info old_sri = sri;
1229 sri.prev_sri = NULL;
1230 sri.icode = CODE_FOR_nothing;
1231 sri.extra_cost = 0;
1232 secondary_class
1233 = (enum reg_class) targetm.secondary_reload (true, src,
1234 (reg_class_t) dclass,
1235 GET_MODE (src), &sri);
1236 /* Check the target hook consistency. */
1237 lra_assert
1238 ((secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1239 || (old_sclass == NO_REGS && old_sri.icode == CODE_FOR_nothing)
1240 || (secondary_class == old_sclass && sri.icode == old_sri.icode));
1242 if (sregno >= 0)
1243 reg_renumber [sregno] = -1;
1244 if (dregno >= 0)
1245 reg_renumber [dregno] = -1;
1246 if (secondary_class == NO_REGS && sri.icode == CODE_FOR_nothing)
1247 return false;
1248 *change_p = true;
1249 new_reg = NULL_RTX;
1250 if (secondary_class != NO_REGS)
1251 new_reg = lra_create_new_reg_with_unique_value (GET_MODE (src), NULL_RTX,
1252 secondary_class,
1253 "secondary");
1254 start_sequence ();
1255 if (sri.icode == CODE_FOR_nothing)
1256 lra_emit_move (new_reg, src);
1257 else
1259 enum reg_class scratch_class;
1261 scratch_class = (reg_class_from_constraints
1262 (insn_data[sri.icode].operand[2].constraint));
1263 scratch_reg = (lra_create_new_reg_with_unique_value
1264 (insn_data[sri.icode].operand[2].mode, NULL_RTX,
1265 scratch_class, "scratch"));
1266 emit_insn (GEN_FCN (sri.icode) (new_reg != NULL_RTX ? new_reg : dest,
1267 src, scratch_reg));
1269 before = get_insns ();
1270 end_sequence ();
1271 lra_process_new_insns (curr_insn, before, NULL, "Inserting the move");
1272 if (new_reg != NULL_RTX)
1273 SET_SRC (curr_insn_set) = new_reg;
1274 else
1276 if (lra_dump_file != NULL)
1278 fprintf (lra_dump_file, "Deleting move %u\n", INSN_UID (curr_insn));
1279 dump_insn_slim (lra_dump_file, curr_insn);
1281 lra_set_insn_deleted (curr_insn);
1282 return true;
1284 return false;
1287 /* The following data describe the result of process_alt_operands.
1288 The data are used in curr_insn_transform to generate reloads. */
1290 /* The chosen reg classes which should be used for the corresponding
1291 operands. */
1292 static enum reg_class goal_alt[MAX_RECOG_OPERANDS];
1293 /* True if the operand should be the same as another operand and that
1294 other operand does not need a reload. */
1295 static bool goal_alt_match_win[MAX_RECOG_OPERANDS];
1296 /* True if the operand does not need a reload. */
1297 static bool goal_alt_win[MAX_RECOG_OPERANDS];
1298 /* True if the operand can be offsetable memory. */
1299 static bool goal_alt_offmemok[MAX_RECOG_OPERANDS];
1300 /* The number of an operand to which given operand can be matched to. */
1301 static int goal_alt_matches[MAX_RECOG_OPERANDS];
1302 /* The number of elements in the following array. */
1303 static int goal_alt_dont_inherit_ops_num;
1304 /* Numbers of operands whose reload pseudos should not be inherited. */
1305 static int goal_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1306 /* True if the insn commutative operands should be swapped. */
1307 static bool goal_alt_swapped;
1308 /* The chosen insn alternative. */
1309 static int goal_alt_number;
1311 /* True if the corresponding operand is the result of an equivalence
1312 substitution. */
1313 static bool equiv_substition_p[MAX_RECOG_OPERANDS];
1315 /* The following five variables are used to choose the best insn
1316 alternative. They reflect final characteristics of the best
1317 alternative. */
1319 /* Number of necessary reloads and overall cost reflecting the
1320 previous value and other unpleasantness of the best alternative. */
1321 static int best_losers, best_overall;
1322 /* Overall number hard registers used for reloads. For example, on
1323 some targets we need 2 general registers to reload DFmode and only
1324 one floating point register. */
1325 static int best_reload_nregs;
1326 /* Overall number reflecting distances of previous reloading the same
1327 value. The distances are counted from the current BB start. It is
1328 used to improve inheritance chances. */
1329 static int best_reload_sum;
1331 /* True if the current insn should have no correspondingly input or
1332 output reloads. */
1333 static bool no_input_reloads_p, no_output_reloads_p;
1335 /* True if we swapped the commutative operands in the current
1336 insn. */
1337 static int curr_swapped;
1339 /* if CHECK_ONLY_P is false, arrange for address element *LOC to be a
1340 register of class CL. Add any input reloads to list BEFORE. AFTER
1341 is nonnull if *LOC is an automodified value; handle that case by
1342 adding the required output reloads to list AFTER. Return true if
1343 the RTL was changed.
1345 if CHECK_ONLY_P is true, check that the *LOC is a correct address
1346 register. Return false if the address register is correct. */
1347 static bool
1348 process_addr_reg (rtx *loc, bool check_only_p, rtx_insn **before, rtx_insn **after,
1349 enum reg_class cl)
1351 int regno;
1352 enum reg_class rclass, new_class;
1353 rtx reg;
1354 rtx new_reg;
1355 machine_mode mode;
1356 bool subreg_p, before_p = false;
1358 subreg_p = GET_CODE (*loc) == SUBREG;
1359 if (subreg_p)
1361 reg = SUBREG_REG (*loc);
1362 mode = GET_MODE (reg);
1364 /* For mode with size bigger than ptr_mode, there unlikely to be "mov"
1365 between two registers with different classes, but there normally will
1366 be "mov" which transfers element of vector register into the general
1367 register, and this normally will be a subreg which should be reloaded
1368 as a whole. This is particularly likely to be triggered when
1369 -fno-split-wide-types specified. */
1370 if (!REG_P (reg)
1371 || in_class_p (reg, cl, &new_class)
1372 || known_le (GET_MODE_SIZE (mode), GET_MODE_SIZE (ptr_mode)))
1373 loc = &SUBREG_REG (*loc);
1376 reg = *loc;
1377 mode = GET_MODE (reg);
1378 if (! REG_P (reg))
1380 if (check_only_p)
1381 return true;
1382 /* Always reload memory in an address even if the target supports
1383 such addresses. */
1384 new_reg = lra_create_new_reg_with_unique_value (mode, reg, cl, "address");
1385 before_p = true;
1387 else
1389 regno = REGNO (reg);
1390 rclass = get_reg_class (regno);
1391 if (! check_only_p
1392 && (*loc = get_equiv_with_elimination (reg, curr_insn)) != reg)
1394 if (lra_dump_file != NULL)
1396 fprintf (lra_dump_file,
1397 "Changing pseudo %d in address of insn %u on equiv ",
1398 REGNO (reg), INSN_UID (curr_insn));
1399 dump_value_slim (lra_dump_file, *loc, 1);
1400 fprintf (lra_dump_file, "\n");
1402 *loc = copy_rtx (*loc);
1404 if (*loc != reg || ! in_class_p (reg, cl, &new_class))
1406 if (check_only_p)
1407 return true;
1408 reg = *loc;
1409 if (get_reload_reg (after == NULL ? OP_IN : OP_INOUT,
1410 mode, reg, cl, subreg_p, "address", &new_reg))
1411 before_p = true;
1413 else if (new_class != NO_REGS && rclass != new_class)
1415 if (check_only_p)
1416 return true;
1417 lra_change_class (regno, new_class, " Change to", true);
1418 return false;
1420 else
1421 return false;
1423 if (before_p)
1425 push_to_sequence (*before);
1426 lra_emit_move (new_reg, reg);
1427 *before = get_insns ();
1428 end_sequence ();
1430 *loc = new_reg;
1431 if (after != NULL)
1433 start_sequence ();
1434 lra_emit_move (before_p ? copy_rtx (reg) : reg, new_reg);
1435 emit_insn (*after);
1436 *after = get_insns ();
1437 end_sequence ();
1439 return true;
1442 /* Insert move insn in simplify_operand_subreg. BEFORE returns
1443 the insn to be inserted before curr insn. AFTER returns the
1444 the insn to be inserted after curr insn. ORIGREG and NEWREG
1445 are the original reg and new reg for reload. */
1446 static void
1447 insert_move_for_subreg (rtx_insn **before, rtx_insn **after, rtx origreg,
1448 rtx newreg)
1450 if (before)
1452 push_to_sequence (*before);
1453 lra_emit_move (newreg, origreg);
1454 *before = get_insns ();
1455 end_sequence ();
1457 if (after)
1459 start_sequence ();
1460 lra_emit_move (origreg, newreg);
1461 emit_insn (*after);
1462 *after = get_insns ();
1463 end_sequence ();
1467 static int valid_address_p (machine_mode mode, rtx addr, addr_space_t as);
1468 static bool process_address (int, bool, rtx_insn **, rtx_insn **);
1470 /* Make reloads for subreg in operand NOP with internal subreg mode
1471 REG_MODE, add new reloads for further processing. Return true if
1472 any change was done. */
1473 static bool
1474 simplify_operand_subreg (int nop, machine_mode reg_mode)
1476 int hard_regno;
1477 rtx_insn *before, *after;
1478 machine_mode mode, innermode;
1479 rtx reg, new_reg;
1480 rtx operand = *curr_id->operand_loc[nop];
1481 enum reg_class regclass;
1482 enum op_type type;
1484 before = after = NULL;
1486 if (GET_CODE (operand) != SUBREG)
1487 return false;
1489 mode = GET_MODE (operand);
1490 reg = SUBREG_REG (operand);
1491 innermode = GET_MODE (reg);
1492 type = curr_static_id->operand[nop].type;
1493 if (MEM_P (reg))
1495 const bool addr_was_valid
1496 = valid_address_p (innermode, XEXP (reg, 0), MEM_ADDR_SPACE (reg));
1497 alter_subreg (curr_id->operand_loc[nop], false);
1498 rtx subst = *curr_id->operand_loc[nop];
1499 lra_assert (MEM_P (subst));
1500 const bool addr_is_valid = valid_address_p (GET_MODE (subst),
1501 XEXP (subst, 0),
1502 MEM_ADDR_SPACE (subst));
1503 if (!addr_was_valid
1504 || addr_is_valid
1505 || ((get_constraint_type (lookup_constraint
1506 (curr_static_id->operand[nop].constraint))
1507 != CT_SPECIAL_MEMORY)
1508 /* We still can reload address and if the address is
1509 valid, we can remove subreg without reloading its
1510 inner memory. */
1511 && valid_address_p (GET_MODE (subst),
1512 regno_reg_rtx
1513 [ira_class_hard_regs
1514 [base_reg_class (GET_MODE (subst),
1515 MEM_ADDR_SPACE (subst),
1516 ADDRESS, SCRATCH)][0]],
1517 MEM_ADDR_SPACE (subst))))
1519 /* If we change the address for a paradoxical subreg of memory, the
1520 new address might violate the necessary alignment or the access
1521 might be slow; take this into consideration. We need not worry
1522 about accesses beyond allocated memory for paradoxical memory
1523 subregs as we don't substitute such equiv memory (see processing
1524 equivalences in function lra_constraints) and because for spilled
1525 pseudos we allocate stack memory enough for the biggest
1526 corresponding paradoxical subreg.
1528 However, do not blindly simplify a (subreg (mem ...)) for
1529 WORD_REGISTER_OPERATIONS targets as this may lead to loading junk
1530 data into a register when the inner is narrower than outer or
1531 missing important data from memory when the inner is wider than
1532 outer. This rule only applies to modes that are no wider than
1533 a word.
1535 If valid memory becomes invalid after subreg elimination
1536 and address might be different we still have to reload
1537 memory.
1539 if ((! addr_was_valid
1540 || addr_is_valid
1541 || known_eq (GET_MODE_SIZE (mode), GET_MODE_SIZE (innermode)))
1542 && !(maybe_ne (GET_MODE_PRECISION (mode),
1543 GET_MODE_PRECISION (innermode))
1544 && known_le (GET_MODE_SIZE (mode), UNITS_PER_WORD)
1545 && known_le (GET_MODE_SIZE (innermode), UNITS_PER_WORD)
1546 && WORD_REGISTER_OPERATIONS)
1547 && (!(MEM_ALIGN (subst) < GET_MODE_ALIGNMENT (mode)
1548 && targetm.slow_unaligned_access (mode, MEM_ALIGN (subst)))
1549 || (MEM_ALIGN (reg) < GET_MODE_ALIGNMENT (innermode)
1550 && targetm.slow_unaligned_access (innermode,
1551 MEM_ALIGN (reg)))))
1552 return true;
1554 *curr_id->operand_loc[nop] = operand;
1556 /* But if the address was not valid, we cannot reload the MEM without
1557 reloading the address first. */
1558 if (!addr_was_valid)
1559 process_address (nop, false, &before, &after);
1561 /* INNERMODE is fast, MODE slow. Reload the mem in INNERMODE. */
1562 enum reg_class rclass
1563 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1564 if (get_reload_reg (curr_static_id->operand[nop].type, innermode,
1565 reg, rclass, TRUE, "slow/invalid mem", &new_reg))
1567 bool insert_before, insert_after;
1568 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1570 insert_before = (type != OP_OUT
1571 || partial_subreg_p (mode, innermode));
1572 insert_after = type != OP_IN;
1573 insert_move_for_subreg (insert_before ? &before : NULL,
1574 insert_after ? &after : NULL,
1575 reg, new_reg);
1577 SUBREG_REG (operand) = new_reg;
1579 /* Convert to MODE. */
1580 reg = operand;
1581 rclass
1582 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1583 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1584 rclass, TRUE, "slow/invalid mem", &new_reg))
1586 bool insert_before, insert_after;
1587 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1589 insert_before = type != OP_OUT;
1590 insert_after = type != OP_IN;
1591 insert_move_for_subreg (insert_before ? &before : NULL,
1592 insert_after ? &after : NULL,
1593 reg, new_reg);
1595 *curr_id->operand_loc[nop] = new_reg;
1596 lra_process_new_insns (curr_insn, before, after,
1597 "Inserting slow/invalid mem reload");
1598 return true;
1601 /* If the address was valid and became invalid, prefer to reload
1602 the memory. Typical case is when the index scale should
1603 correspond the memory. */
1604 *curr_id->operand_loc[nop] = operand;
1605 /* Do not return false here as the MEM_P (reg) will be processed
1606 later in this function. */
1608 else if (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER)
1610 alter_subreg (curr_id->operand_loc[nop], false);
1611 return true;
1613 else if (CONSTANT_P (reg))
1615 /* Try to simplify subreg of constant. It is usually result of
1616 equivalence substitution. */
1617 if (innermode == VOIDmode
1618 && (innermode = original_subreg_reg_mode[nop]) == VOIDmode)
1619 innermode = curr_static_id->operand[nop].mode;
1620 if ((new_reg = simplify_subreg (mode, reg, innermode,
1621 SUBREG_BYTE (operand))) != NULL_RTX)
1623 *curr_id->operand_loc[nop] = new_reg;
1624 return true;
1627 /* Put constant into memory when we have mixed modes. It generates
1628 a better code in most cases as it does not need a secondary
1629 reload memory. It also prevents LRA looping when LRA is using
1630 secondary reload memory again and again. */
1631 if (CONSTANT_P (reg) && CONST_POOL_OK_P (reg_mode, reg)
1632 && SCALAR_INT_MODE_P (reg_mode) != SCALAR_INT_MODE_P (mode))
1634 SUBREG_REG (operand) = force_const_mem (reg_mode, reg);
1635 alter_subreg (curr_id->operand_loc[nop], false);
1636 return true;
1638 /* Force a reload of the SUBREG_REG if this is a constant or PLUS or
1639 if there may be a problem accessing OPERAND in the outer
1640 mode. */
1641 if ((REG_P (reg)
1642 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1643 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1644 /* Don't reload paradoxical subregs because we could be looping
1645 having repeatedly final regno out of hard regs range. */
1646 && (hard_regno_nregs (hard_regno, innermode)
1647 >= hard_regno_nregs (hard_regno, mode))
1648 && simplify_subreg_regno (hard_regno, innermode,
1649 SUBREG_BYTE (operand), mode) < 0
1650 /* Don't reload subreg for matching reload. It is actually
1651 valid subreg in LRA. */
1652 && ! LRA_SUBREG_P (operand))
1653 || CONSTANT_P (reg) || GET_CODE (reg) == PLUS || MEM_P (reg))
1655 enum reg_class rclass;
1657 if (REG_P (reg))
1658 /* There is a big probability that we will get the same class
1659 for the new pseudo and we will get the same insn which
1660 means infinite looping. So spill the new pseudo. */
1661 rclass = NO_REGS;
1662 else
1663 /* The class will be defined later in curr_insn_transform. */
1664 rclass
1665 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1667 if (get_reload_reg (curr_static_id->operand[nop].type, reg_mode, reg,
1668 rclass, TRUE, "subreg reg", &new_reg))
1670 bool insert_before, insert_after;
1671 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1673 insert_before = (type != OP_OUT
1674 || read_modify_subreg_p (operand));
1675 insert_after = (type != OP_IN);
1676 insert_move_for_subreg (insert_before ? &before : NULL,
1677 insert_after ? &after : NULL,
1678 reg, new_reg);
1680 SUBREG_REG (operand) = new_reg;
1681 lra_process_new_insns (curr_insn, before, after,
1682 "Inserting subreg reload");
1683 return true;
1685 /* Force a reload for a paradoxical subreg. For paradoxical subreg,
1686 IRA allocates hardreg to the inner pseudo reg according to its mode
1687 instead of the outermode, so the size of the hardreg may not be enough
1688 to contain the outermode operand, in that case we may need to insert
1689 reload for the reg. For the following two types of paradoxical subreg,
1690 we need to insert reload:
1691 1. If the op_type is OP_IN, and the hardreg could not be paired with
1692 other hardreg to contain the outermode operand
1693 (checked by in_hard_reg_set_p), we need to insert the reload.
1694 2. If the op_type is OP_OUT or OP_INOUT.
1696 Here is a paradoxical subreg example showing how the reload is generated:
1698 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1699 (subreg:TI (reg:DI 107 [ __comp ]) 0)) {*movti_internal_rex64}
1701 In IRA, reg107 is allocated to a DImode hardreg. We use x86-64 as example
1702 here, if reg107 is assigned to hardreg R15, because R15 is the last
1703 hardreg, compiler cannot find another hardreg to pair with R15 to
1704 contain TImode data. So we insert a TImode reload reg180 for it.
1705 After reload is inserted:
1707 (insn 283 0 0 (set (subreg:DI (reg:TI 180 [orig:107 __comp ] [107]) 0)
1708 (reg:DI 107 [ __comp ])) -1
1709 (insn 5 4 7 2 (set (reg:TI 106 [ __comp ])
1710 (subreg:TI (reg:TI 180 [orig:107 __comp ] [107]) 0)) {*movti_internal_rex64}
1712 Two reload hard registers will be allocated to reg180 to save TImode data
1713 in LRA_assign.
1715 For LRA pseudos this should normally be handled by the biggest_mode
1716 mechanism. However, it's possible for new uses of an LRA pseudo
1717 to be introduced after we've allocated it, such as when undoing
1718 inheritance, and the allocated register might not then be appropriate
1719 for the new uses. */
1720 else if (REG_P (reg)
1721 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
1722 && (hard_regno = lra_get_regno_hard_regno (REGNO (reg))) >= 0
1723 && (hard_regno_nregs (hard_regno, innermode)
1724 < hard_regno_nregs (hard_regno, mode))
1725 && (regclass = lra_get_allocno_class (REGNO (reg)))
1726 && (type != OP_IN
1727 || !in_hard_reg_set_p (reg_class_contents[regclass],
1728 mode, hard_regno)
1729 || overlaps_hard_reg_set_p (lra_no_alloc_regs,
1730 mode, hard_regno)))
1732 /* The class will be defined later in curr_insn_transform. */
1733 enum reg_class rclass
1734 = (enum reg_class) targetm.preferred_reload_class (reg, ALL_REGS);
1736 if (get_reload_reg (curr_static_id->operand[nop].type, mode, reg,
1737 rclass, TRUE, "paradoxical subreg", &new_reg))
1739 rtx subreg;
1740 bool insert_before, insert_after;
1742 PUT_MODE (new_reg, mode);
1743 subreg = gen_lowpart_SUBREG (innermode, new_reg);
1744 bitmap_set_bit (&lra_subreg_reload_pseudos, REGNO (new_reg));
1746 insert_before = (type != OP_OUT);
1747 insert_after = (type != OP_IN);
1748 insert_move_for_subreg (insert_before ? &before : NULL,
1749 insert_after ? &after : NULL,
1750 reg, subreg);
1752 SUBREG_REG (operand) = new_reg;
1753 lra_process_new_insns (curr_insn, before, after,
1754 "Inserting paradoxical subreg reload");
1755 return true;
1757 return false;
1760 /* Return TRUE if X refers for a hard register from SET. */
1761 static bool
1762 uses_hard_regs_p (rtx x, HARD_REG_SET set)
1764 int i, j, x_hard_regno;
1765 machine_mode mode;
1766 const char *fmt;
1767 enum rtx_code code;
1769 if (x == NULL_RTX)
1770 return false;
1771 code = GET_CODE (x);
1772 mode = GET_MODE (x);
1774 if (code == SUBREG)
1776 /* For all SUBREGs we want to check whether the full multi-register
1777 overlaps the set. For normal SUBREGs this means 'get_hard_regno' of
1778 the inner register, for paradoxical SUBREGs this means the
1779 'get_hard_regno' of the full SUBREG and for complete SUBREGs either is
1780 fine. Use the wider mode for all cases. */
1781 rtx subreg = SUBREG_REG (x);
1782 mode = wider_subreg_mode (x);
1783 if (mode == GET_MODE (subreg))
1785 x = subreg;
1786 code = GET_CODE (x);
1790 if (REG_P (x) || SUBREG_P (x))
1792 x_hard_regno = get_hard_regno (x, true);
1793 return (x_hard_regno >= 0
1794 && overlaps_hard_reg_set_p (set, mode, x_hard_regno));
1796 if (MEM_P (x))
1798 struct address_info ad;
1800 decompose_mem_address (&ad, x);
1801 if (ad.base_term != NULL && uses_hard_regs_p (*ad.base_term, set))
1802 return true;
1803 if (ad.index_term != NULL && uses_hard_regs_p (*ad.index_term, set))
1804 return true;
1806 fmt = GET_RTX_FORMAT (code);
1807 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1809 if (fmt[i] == 'e')
1811 if (uses_hard_regs_p (XEXP (x, i), set))
1812 return true;
1814 else if (fmt[i] == 'E')
1816 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1817 if (uses_hard_regs_p (XVECEXP (x, i, j), set))
1818 return true;
1821 return false;
1824 /* Return true if OP is a spilled pseudo. */
1825 static inline bool
1826 spilled_pseudo_p (rtx op)
1828 return (REG_P (op)
1829 && REGNO (op) >= FIRST_PSEUDO_REGISTER && in_mem_p (REGNO (op)));
1832 /* Return true if X is a general constant. */
1833 static inline bool
1834 general_constant_p (rtx x)
1836 return CONSTANT_P (x) && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (x));
1839 static bool
1840 reg_in_class_p (rtx reg, enum reg_class cl)
1842 if (cl == NO_REGS)
1843 return get_reg_class (REGNO (reg)) == NO_REGS;
1844 return in_class_p (reg, cl, NULL);
1847 /* Return true if SET of RCLASS contains no hard regs which can be
1848 used in MODE. */
1849 static bool
1850 prohibited_class_reg_set_mode_p (enum reg_class rclass,
1851 HARD_REG_SET &set,
1852 machine_mode mode)
1854 HARD_REG_SET temp;
1856 lra_assert (hard_reg_set_subset_p (reg_class_contents[rclass], set));
1857 COPY_HARD_REG_SET (temp, set);
1858 AND_COMPL_HARD_REG_SET (temp, lra_no_alloc_regs);
1859 return (hard_reg_set_subset_p
1860 (temp, ira_prohibited_class_mode_regs[rclass][mode]));
1864 /* Used to check validity info about small class input operands. It
1865 should be incremented at start of processing an insn
1866 alternative. */
1867 static unsigned int curr_small_class_check = 0;
1869 /* Update number of used inputs of class OP_CLASS for operand NOP
1870 of alternative NALT. Return true if we have more such class operands
1871 than the number of available regs. */
1872 static bool
1873 update_and_check_small_class_inputs (int nop, int nalt,
1874 enum reg_class op_class)
1876 static unsigned int small_class_check[LIM_REG_CLASSES];
1877 static int small_class_input_nums[LIM_REG_CLASSES];
1879 if (SMALL_REGISTER_CLASS_P (op_class)
1880 /* We are interesting in classes became small because of fixing
1881 some hard regs, e.g. by an user through GCC options. */
1882 && hard_reg_set_intersect_p (reg_class_contents[op_class],
1883 ira_no_alloc_regs)
1884 && (curr_static_id->operand[nop].type != OP_OUT
1885 || TEST_BIT (curr_static_id->operand[nop].early_clobber_alts, nalt)))
1887 if (small_class_check[op_class] == curr_small_class_check)
1888 small_class_input_nums[op_class]++;
1889 else
1891 small_class_check[op_class] = curr_small_class_check;
1892 small_class_input_nums[op_class] = 1;
1894 if (small_class_input_nums[op_class] > ira_class_hard_regs_num[op_class])
1895 return true;
1897 return false;
1900 /* Major function to choose the current insn alternative and what
1901 operands should be reloaded and how. If ONLY_ALTERNATIVE is not
1902 negative we should consider only this alternative. Return false if
1903 we cannot choose the alternative or find how to reload the
1904 operands. */
1905 static bool
1906 process_alt_operands (int only_alternative)
1908 bool ok_p = false;
1909 int nop, overall, nalt;
1910 int n_alternatives = curr_static_id->n_alternatives;
1911 int n_operands = curr_static_id->n_operands;
1912 /* LOSERS counts the operands that don't fit this alternative and
1913 would require loading. */
1914 int losers;
1915 int addr_losers;
1916 /* REJECT is a count of how undesirable this alternative says it is
1917 if any reloading is required. If the alternative matches exactly
1918 then REJECT is ignored, but otherwise it gets this much counted
1919 against it in addition to the reloading needed. */
1920 int reject;
1921 /* This is defined by '!' or '?' alternative constraint and added to
1922 reject. But in some cases it can be ignored. */
1923 int static_reject;
1924 int op_reject;
1925 /* The number of elements in the following array. */
1926 int early_clobbered_regs_num;
1927 /* Numbers of operands which are early clobber registers. */
1928 int early_clobbered_nops[MAX_RECOG_OPERANDS];
1929 enum reg_class curr_alt[MAX_RECOG_OPERANDS];
1930 HARD_REG_SET curr_alt_set[MAX_RECOG_OPERANDS];
1931 bool curr_alt_match_win[MAX_RECOG_OPERANDS];
1932 bool curr_alt_win[MAX_RECOG_OPERANDS];
1933 bool curr_alt_offmemok[MAX_RECOG_OPERANDS];
1934 int curr_alt_matches[MAX_RECOG_OPERANDS];
1935 /* The number of elements in the following array. */
1936 int curr_alt_dont_inherit_ops_num;
1937 /* Numbers of operands whose reload pseudos should not be inherited. */
1938 int curr_alt_dont_inherit_ops[MAX_RECOG_OPERANDS];
1939 rtx op;
1940 /* The register when the operand is a subreg of register, otherwise the
1941 operand itself. */
1942 rtx no_subreg_reg_operand[MAX_RECOG_OPERANDS];
1943 /* The register if the operand is a register or subreg of register,
1944 otherwise NULL. */
1945 rtx operand_reg[MAX_RECOG_OPERANDS];
1946 int hard_regno[MAX_RECOG_OPERANDS];
1947 machine_mode biggest_mode[MAX_RECOG_OPERANDS];
1948 int reload_nregs, reload_sum;
1949 bool costly_p;
1950 enum reg_class cl;
1952 /* Calculate some data common for all alternatives to speed up the
1953 function. */
1954 for (nop = 0; nop < n_operands; nop++)
1956 rtx reg;
1958 op = no_subreg_reg_operand[nop] = *curr_id->operand_loc[nop];
1959 /* The real hard regno of the operand after the allocation. */
1960 hard_regno[nop] = get_hard_regno (op, true);
1962 operand_reg[nop] = reg = op;
1963 biggest_mode[nop] = GET_MODE (op);
1964 if (GET_CODE (op) == SUBREG)
1966 biggest_mode[nop] = wider_subreg_mode (op);
1967 operand_reg[nop] = reg = SUBREG_REG (op);
1969 if (! REG_P (reg))
1970 operand_reg[nop] = NULL_RTX;
1971 else if (REGNO (reg) >= FIRST_PSEUDO_REGISTER
1972 || ((int) REGNO (reg)
1973 == lra_get_elimination_hard_regno (REGNO (reg))))
1974 no_subreg_reg_operand[nop] = reg;
1975 else
1976 operand_reg[nop] = no_subreg_reg_operand[nop]
1977 /* Just use natural mode for elimination result. It should
1978 be enough for extra constraints hooks. */
1979 = regno_reg_rtx[hard_regno[nop]];
1982 /* The constraints are made of several alternatives. Each operand's
1983 constraint looks like foo,bar,... with commas separating the
1984 alternatives. The first alternatives for all operands go
1985 together, the second alternatives go together, etc.
1987 First loop over alternatives. */
1988 alternative_mask preferred = curr_id->preferred_alternatives;
1989 if (only_alternative >= 0)
1990 preferred &= ALTERNATIVE_BIT (only_alternative);
1992 for (nalt = 0; nalt < n_alternatives; nalt++)
1994 /* Loop over operands for one constraint alternative. */
1995 if (!TEST_BIT (preferred, nalt))
1996 continue;
1998 bool matching_early_clobber[MAX_RECOG_OPERANDS];
1999 curr_small_class_check++;
2000 overall = losers = addr_losers = 0;
2001 static_reject = reject = reload_nregs = reload_sum = 0;
2002 for (nop = 0; nop < n_operands; nop++)
2004 int inc = (curr_static_id
2005 ->operand_alternative[nalt * n_operands + nop].reject);
2006 if (lra_dump_file != NULL && inc != 0)
2007 fprintf (lra_dump_file,
2008 " Staticly defined alt reject+=%d\n", inc);
2009 static_reject += inc;
2010 matching_early_clobber[nop] = 0;
2012 reject += static_reject;
2013 early_clobbered_regs_num = 0;
2015 for (nop = 0; nop < n_operands; nop++)
2017 const char *p;
2018 char *end;
2019 int len, c, m, i, opalt_num, this_alternative_matches;
2020 bool win, did_match, offmemok, early_clobber_p;
2021 /* false => this operand can be reloaded somehow for this
2022 alternative. */
2023 bool badop;
2024 /* true => this operand can be reloaded if the alternative
2025 allows regs. */
2026 bool winreg;
2027 /* True if a constant forced into memory would be OK for
2028 this operand. */
2029 bool constmemok;
2030 enum reg_class this_alternative, this_costly_alternative;
2031 HARD_REG_SET this_alternative_set, this_costly_alternative_set;
2032 bool this_alternative_match_win, this_alternative_win;
2033 bool this_alternative_offmemok;
2034 bool scratch_p;
2035 machine_mode mode;
2036 enum constraint_num cn;
2038 opalt_num = nalt * n_operands + nop;
2039 if (curr_static_id->operand_alternative[opalt_num].anything_ok)
2041 /* Fast track for no constraints at all. */
2042 curr_alt[nop] = NO_REGS;
2043 CLEAR_HARD_REG_SET (curr_alt_set[nop]);
2044 curr_alt_win[nop] = true;
2045 curr_alt_match_win[nop] = false;
2046 curr_alt_offmemok[nop] = false;
2047 curr_alt_matches[nop] = -1;
2048 continue;
2051 op = no_subreg_reg_operand[nop];
2052 mode = curr_operand_mode[nop];
2054 win = did_match = winreg = offmemok = constmemok = false;
2055 badop = true;
2057 early_clobber_p = false;
2058 p = curr_static_id->operand_alternative[opalt_num].constraint;
2060 this_costly_alternative = this_alternative = NO_REGS;
2061 /* We update set of possible hard regs besides its class
2062 because reg class might be inaccurate. For example,
2063 union of LO_REGS (l), HI_REGS(h), and STACK_REG(k) in ARM
2064 is translated in HI_REGS because classes are merged by
2065 pairs and there is no accurate intermediate class. */
2066 CLEAR_HARD_REG_SET (this_alternative_set);
2067 CLEAR_HARD_REG_SET (this_costly_alternative_set);
2068 this_alternative_win = false;
2069 this_alternative_match_win = false;
2070 this_alternative_offmemok = false;
2071 this_alternative_matches = -1;
2073 /* An empty constraint should be excluded by the fast
2074 track. */
2075 lra_assert (*p != 0 && *p != ',');
2077 op_reject = 0;
2078 /* Scan this alternative's specs for this operand; set WIN
2079 if the operand fits any letter in this alternative.
2080 Otherwise, clear BADOP if this operand could fit some
2081 letter after reloads, or set WINREG if this operand could
2082 fit after reloads provided the constraint allows some
2083 registers. */
2084 costly_p = false;
2087 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
2089 case '\0':
2090 len = 0;
2091 break;
2092 case ',':
2093 c = '\0';
2094 break;
2096 case '&':
2097 early_clobber_p = true;
2098 break;
2100 case '$':
2101 op_reject += LRA_MAX_REJECT;
2102 break;
2103 case '^':
2104 op_reject += LRA_LOSER_COST_FACTOR;
2105 break;
2107 case '#':
2108 /* Ignore rest of this alternative. */
2109 c = '\0';
2110 break;
2112 case '0': case '1': case '2': case '3': case '4':
2113 case '5': case '6': case '7': case '8': case '9':
2115 int m_hregno;
2116 bool match_p;
2118 m = strtoul (p, &end, 10);
2119 p = end;
2120 len = 0;
2121 lra_assert (nop > m);
2123 /* Reject matches if we don't know which operand is
2124 bigger. This situation would arguably be a bug in
2125 an .md pattern, but could also occur in a user asm. */
2126 if (!ordered_p (GET_MODE_SIZE (biggest_mode[m]),
2127 GET_MODE_SIZE (biggest_mode[nop])))
2128 break;
2130 /* Don't match wrong asm insn operands for proper
2131 diagnostic later. */
2132 if (INSN_CODE (curr_insn) < 0
2133 && (curr_operand_mode[m] == BLKmode
2134 || curr_operand_mode[nop] == BLKmode)
2135 && curr_operand_mode[m] != curr_operand_mode[nop])
2136 break;
2138 m_hregno = get_hard_regno (*curr_id->operand_loc[m], false);
2139 /* We are supposed to match a previous operand.
2140 If we do, we win if that one did. If we do
2141 not, count both of the operands as losers.
2142 (This is too conservative, since most of the
2143 time only a single reload insn will be needed
2144 to make the two operands win. As a result,
2145 this alternative may be rejected when it is
2146 actually desirable.) */
2147 match_p = false;
2148 if (operands_match_p (*curr_id->operand_loc[nop],
2149 *curr_id->operand_loc[m], m_hregno))
2151 /* We should reject matching of an early
2152 clobber operand if the matching operand is
2153 not dying in the insn. */
2154 if (!TEST_BIT (curr_static_id->operand[m]
2155 .early_clobber_alts, nalt)
2156 || operand_reg[nop] == NULL_RTX
2157 || (find_regno_note (curr_insn, REG_DEAD,
2158 REGNO (op))
2159 || REGNO (op) == REGNO (operand_reg[m])))
2160 match_p = true;
2162 if (match_p)
2164 /* If we are matching a non-offsettable
2165 address where an offsettable address was
2166 expected, then we must reject this
2167 combination, because we can't reload
2168 it. */
2169 if (curr_alt_offmemok[m]
2170 && MEM_P (*curr_id->operand_loc[m])
2171 && curr_alt[m] == NO_REGS && ! curr_alt_win[m])
2172 continue;
2174 else
2176 /* If the operands do not match and one
2177 operand is INOUT, we can not match them.
2178 Try other possibilities, e.g. other
2179 alternatives or commutative operand
2180 exchange. */
2181 if (curr_static_id->operand[nop].type == OP_INOUT
2182 || curr_static_id->operand[m].type == OP_INOUT)
2183 break;
2184 /* Operands don't match. If the operands are
2185 different user defined explicit hard
2186 registers, then we cannot make them match
2187 when one is early clobber operand. */
2188 if ((REG_P (*curr_id->operand_loc[nop])
2189 || SUBREG_P (*curr_id->operand_loc[nop]))
2190 && (REG_P (*curr_id->operand_loc[m])
2191 || SUBREG_P (*curr_id->operand_loc[m])))
2193 rtx nop_reg = *curr_id->operand_loc[nop];
2194 if (SUBREG_P (nop_reg))
2195 nop_reg = SUBREG_REG (nop_reg);
2196 rtx m_reg = *curr_id->operand_loc[m];
2197 if (SUBREG_P (m_reg))
2198 m_reg = SUBREG_REG (m_reg);
2200 if (REG_P (nop_reg)
2201 && HARD_REGISTER_P (nop_reg)
2202 && REG_USERVAR_P (nop_reg)
2203 && REG_P (m_reg)
2204 && HARD_REGISTER_P (m_reg)
2205 && REG_USERVAR_P (m_reg))
2207 int i;
2209 for (i = 0; i < early_clobbered_regs_num; i++)
2210 if (m == early_clobbered_nops[i])
2211 break;
2212 if (i < early_clobbered_regs_num
2213 || early_clobber_p)
2214 break;
2217 /* Both operands must allow a reload register,
2218 otherwise we cannot make them match. */
2219 if (curr_alt[m] == NO_REGS)
2220 break;
2221 /* Retroactively mark the operand we had to
2222 match as a loser, if it wasn't already and
2223 it wasn't matched to a register constraint
2224 (e.g it might be matched by memory). */
2225 if (curr_alt_win[m]
2226 && (operand_reg[m] == NULL_RTX
2227 || hard_regno[m] < 0))
2229 losers++;
2230 reload_nregs
2231 += (ira_reg_class_max_nregs[curr_alt[m]]
2232 [GET_MODE (*curr_id->operand_loc[m])]);
2235 /* Prefer matching earlyclobber alternative as
2236 it results in less hard regs required for
2237 the insn than a non-matching earlyclobber
2238 alternative. */
2239 if (TEST_BIT (curr_static_id->operand[m]
2240 .early_clobber_alts, nalt))
2242 if (lra_dump_file != NULL)
2243 fprintf
2244 (lra_dump_file,
2245 " %d Matching earlyclobber alt:"
2246 " reject--\n",
2247 nop);
2248 if (!matching_early_clobber[m])
2250 reject--;
2251 matching_early_clobber[m] = 1;
2254 /* Otherwise we prefer no matching
2255 alternatives because it gives more freedom
2256 in RA. */
2257 else if (operand_reg[nop] == NULL_RTX
2258 || (find_regno_note (curr_insn, REG_DEAD,
2259 REGNO (operand_reg[nop]))
2260 == NULL_RTX))
2262 if (lra_dump_file != NULL)
2263 fprintf
2264 (lra_dump_file,
2265 " %d Matching alt: reject+=2\n",
2266 nop);
2267 reject += 2;
2270 /* If we have to reload this operand and some
2271 previous operand also had to match the same
2272 thing as this operand, we don't know how to do
2273 that. */
2274 if (!match_p || !curr_alt_win[m])
2276 for (i = 0; i < nop; i++)
2277 if (curr_alt_matches[i] == m)
2278 break;
2279 if (i < nop)
2280 break;
2282 else
2283 did_match = true;
2285 this_alternative_matches = m;
2286 /* This can be fixed with reloads if the operand
2287 we are supposed to match can be fixed with
2288 reloads. */
2289 badop = false;
2290 this_alternative = curr_alt[m];
2291 COPY_HARD_REG_SET (this_alternative_set, curr_alt_set[m]);
2292 winreg = this_alternative != NO_REGS;
2293 break;
2296 case 'g':
2297 if (MEM_P (op)
2298 || general_constant_p (op)
2299 || spilled_pseudo_p (op))
2300 win = true;
2301 cl = GENERAL_REGS;
2302 goto reg;
2304 default:
2305 cn = lookup_constraint (p);
2306 switch (get_constraint_type (cn))
2308 case CT_REGISTER:
2309 cl = reg_class_for_constraint (cn);
2310 if (cl != NO_REGS)
2311 goto reg;
2312 break;
2314 case CT_CONST_INT:
2315 if (CONST_INT_P (op)
2316 && insn_const_int_ok_for_constraint (INTVAL (op), cn))
2317 win = true;
2318 break;
2320 case CT_MEMORY:
2321 if (MEM_P (op)
2322 && satisfies_memory_constraint_p (op, cn))
2323 win = true;
2324 else if (spilled_pseudo_p (op))
2325 win = true;
2327 /* If we didn't already win, we can reload constants
2328 via force_const_mem or put the pseudo value into
2329 memory, or make other memory by reloading the
2330 address like for 'o'. */
2331 if (CONST_POOL_OK_P (mode, op)
2332 || MEM_P (op) || REG_P (op)
2333 /* We can restore the equiv insn by a
2334 reload. */
2335 || equiv_substition_p[nop])
2336 badop = false;
2337 constmemok = true;
2338 offmemok = true;
2339 break;
2341 case CT_ADDRESS:
2342 /* An asm operand with an address constraint
2343 that doesn't satisfy address_operand has
2344 is_address cleared, so that we don't try to
2345 make a non-address fit. */
2346 if (!curr_static_id->operand[nop].is_address)
2347 break;
2348 /* If we didn't already win, we can reload the address
2349 into a base register. */
2350 if (satisfies_address_constraint_p (op, cn))
2351 win = true;
2352 cl = base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
2353 ADDRESS, SCRATCH);
2354 badop = false;
2355 goto reg;
2357 case CT_FIXED_FORM:
2358 if (constraint_satisfied_p (op, cn))
2359 win = true;
2360 break;
2362 case CT_SPECIAL_MEMORY:
2363 if (MEM_P (op)
2364 && satisfies_memory_constraint_p (op, cn))
2365 win = true;
2366 else if (spilled_pseudo_p (op))
2367 win = true;
2368 break;
2370 break;
2372 reg:
2373 if (mode == BLKmode)
2374 break;
2375 this_alternative = reg_class_subunion[this_alternative][cl];
2376 IOR_HARD_REG_SET (this_alternative_set,
2377 reg_class_contents[cl]);
2378 if (costly_p)
2380 this_costly_alternative
2381 = reg_class_subunion[this_costly_alternative][cl];
2382 IOR_HARD_REG_SET (this_costly_alternative_set,
2383 reg_class_contents[cl]);
2385 winreg = true;
2386 if (REG_P (op))
2388 if (hard_regno[nop] >= 0
2389 && in_hard_reg_set_p (this_alternative_set,
2390 mode, hard_regno[nop]))
2391 win = true;
2392 else if (hard_regno[nop] < 0
2393 && in_class_p (op, this_alternative, NULL))
2394 win = true;
2396 break;
2398 if (c != ' ' && c != '\t')
2399 costly_p = c == '*';
2401 while ((p += len), c);
2403 scratch_p = (operand_reg[nop] != NULL_RTX
2404 && lra_former_scratch_p (REGNO (operand_reg[nop])));
2405 /* Record which operands fit this alternative. */
2406 if (win)
2408 this_alternative_win = true;
2409 if (operand_reg[nop] != NULL_RTX)
2411 if (hard_regno[nop] >= 0)
2413 if (in_hard_reg_set_p (this_costly_alternative_set,
2414 mode, hard_regno[nop]))
2416 if (lra_dump_file != NULL)
2417 fprintf (lra_dump_file,
2418 " %d Costly set: reject++\n",
2419 nop);
2420 reject++;
2423 else
2425 /* Prefer won reg to spilled pseudo under other
2426 equal conditions for possibe inheritance. */
2427 if (! scratch_p)
2429 if (lra_dump_file != NULL)
2430 fprintf
2431 (lra_dump_file,
2432 " %d Non pseudo reload: reject++\n",
2433 nop);
2434 reject++;
2436 if (in_class_p (operand_reg[nop],
2437 this_costly_alternative, NULL))
2439 if (lra_dump_file != NULL)
2440 fprintf
2441 (lra_dump_file,
2442 " %d Non pseudo costly reload:"
2443 " reject++\n",
2444 nop);
2445 reject++;
2448 /* We simulate the behavior of old reload here.
2449 Although scratches need hard registers and it
2450 might result in spilling other pseudos, no reload
2451 insns are generated for the scratches. So it
2452 might cost something but probably less than old
2453 reload pass believes. */
2454 if (scratch_p)
2456 if (lra_dump_file != NULL)
2457 fprintf (lra_dump_file,
2458 " %d Scratch win: reject+=2\n",
2459 nop);
2460 reject += 2;
2464 else if (did_match)
2465 this_alternative_match_win = true;
2466 else
2468 int const_to_mem = 0;
2469 bool no_regs_p;
2471 reject += op_reject;
2472 /* Never do output reload of stack pointer. It makes
2473 impossible to do elimination when SP is changed in
2474 RTL. */
2475 if (op == stack_pointer_rtx && ! frame_pointer_needed
2476 && curr_static_id->operand[nop].type != OP_IN)
2477 goto fail;
2479 /* If this alternative asks for a specific reg class, see if there
2480 is at least one allocatable register in that class. */
2481 no_regs_p
2482 = (this_alternative == NO_REGS
2483 || (hard_reg_set_subset_p
2484 (reg_class_contents[this_alternative],
2485 lra_no_alloc_regs)));
2487 /* For asms, verify that the class for this alternative is possible
2488 for the mode that is specified. */
2489 if (!no_regs_p && INSN_CODE (curr_insn) < 0)
2491 int i;
2492 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2493 if (targetm.hard_regno_mode_ok (i, mode)
2494 && in_hard_reg_set_p (reg_class_contents[this_alternative],
2495 mode, i))
2496 break;
2497 if (i == FIRST_PSEUDO_REGISTER)
2498 winreg = false;
2501 /* If this operand accepts a register, and if the
2502 register class has at least one allocatable register,
2503 then this operand can be reloaded. */
2504 if (winreg && !no_regs_p)
2505 badop = false;
2507 if (badop)
2509 if (lra_dump_file != NULL)
2510 fprintf (lra_dump_file,
2511 " alt=%d: Bad operand -- refuse\n",
2512 nalt);
2513 goto fail;
2516 if (this_alternative != NO_REGS)
2518 HARD_REG_SET available_regs;
2520 COPY_HARD_REG_SET (available_regs,
2521 reg_class_contents[this_alternative]);
2522 AND_COMPL_HARD_REG_SET
2523 (available_regs,
2524 ira_prohibited_class_mode_regs[this_alternative][mode]);
2525 AND_COMPL_HARD_REG_SET (available_regs, lra_no_alloc_regs);
2526 if (hard_reg_set_empty_p (available_regs))
2528 /* There are no hard regs holding a value of given
2529 mode. */
2530 if (offmemok)
2532 this_alternative = NO_REGS;
2533 if (lra_dump_file != NULL)
2534 fprintf (lra_dump_file,
2535 " %d Using memory because of"
2536 " a bad mode: reject+=2\n",
2537 nop);
2538 reject += 2;
2540 else
2542 if (lra_dump_file != NULL)
2543 fprintf (lra_dump_file,
2544 " alt=%d: Wrong mode -- refuse\n",
2545 nalt);
2546 goto fail;
2551 /* If not assigned pseudo has a class which a subset of
2552 required reg class, it is a less costly alternative
2553 as the pseudo still can get a hard reg of necessary
2554 class. */
2555 if (! no_regs_p && REG_P (op) && hard_regno[nop] < 0
2556 && (cl = get_reg_class (REGNO (op))) != NO_REGS
2557 && ira_class_subset_p[this_alternative][cl])
2559 if (lra_dump_file != NULL)
2560 fprintf
2561 (lra_dump_file,
2562 " %d Super set class reg: reject-=3\n", nop);
2563 reject -= 3;
2566 this_alternative_offmemok = offmemok;
2567 if (this_costly_alternative != NO_REGS)
2569 if (lra_dump_file != NULL)
2570 fprintf (lra_dump_file,
2571 " %d Costly loser: reject++\n", nop);
2572 reject++;
2574 /* If the operand is dying, has a matching constraint,
2575 and satisfies constraints of the matched operand
2576 which failed to satisfy the own constraints, most probably
2577 the reload for this operand will be gone. */
2578 if (this_alternative_matches >= 0
2579 && !curr_alt_win[this_alternative_matches]
2580 && REG_P (op)
2581 && find_regno_note (curr_insn, REG_DEAD, REGNO (op))
2582 && (hard_regno[nop] >= 0
2583 ? in_hard_reg_set_p (this_alternative_set,
2584 mode, hard_regno[nop])
2585 : in_class_p (op, this_alternative, NULL)))
2587 if (lra_dump_file != NULL)
2588 fprintf
2589 (lra_dump_file,
2590 " %d Dying matched operand reload: reject++\n",
2591 nop);
2592 reject++;
2594 else
2596 /* Strict_low_part requires to reload the register
2597 not the sub-register. In this case we should
2598 check that a final reload hard reg can hold the
2599 value mode. */
2600 if (curr_static_id->operand[nop].strict_low
2601 && REG_P (op)
2602 && hard_regno[nop] < 0
2603 && GET_CODE (*curr_id->operand_loc[nop]) == SUBREG
2604 && ira_class_hard_regs_num[this_alternative] > 0
2605 && (!targetm.hard_regno_mode_ok
2606 (ira_class_hard_regs[this_alternative][0],
2607 GET_MODE (*curr_id->operand_loc[nop]))))
2609 if (lra_dump_file != NULL)
2610 fprintf
2611 (lra_dump_file,
2612 " alt=%d: Strict low subreg reload -- refuse\n",
2613 nalt);
2614 goto fail;
2616 losers++;
2618 if (operand_reg[nop] != NULL_RTX
2619 /* Output operands and matched input operands are
2620 not inherited. The following conditions do not
2621 exactly describe the previous statement but they
2622 are pretty close. */
2623 && curr_static_id->operand[nop].type != OP_OUT
2624 && (this_alternative_matches < 0
2625 || curr_static_id->operand[nop].type != OP_IN))
2627 int last_reload = (lra_reg_info[ORIGINAL_REGNO
2628 (operand_reg[nop])]
2629 .last_reload);
2631 /* The value of reload_sum has sense only if we
2632 process insns in their order. It happens only on
2633 the first constraints sub-pass when we do most of
2634 reload work. */
2635 if (lra_constraint_iter == 1 && last_reload > bb_reload_num)
2636 reload_sum += last_reload - bb_reload_num;
2638 /* If this is a constant that is reloaded into the
2639 desired class by copying it to memory first, count
2640 that as another reload. This is consistent with
2641 other code and is required to avoid choosing another
2642 alternative when the constant is moved into memory.
2643 Note that the test here is precisely the same as in
2644 the code below that calls force_const_mem. */
2645 if (CONST_POOL_OK_P (mode, op)
2646 && ((targetm.preferred_reload_class
2647 (op, this_alternative) == NO_REGS)
2648 || no_input_reloads_p))
2650 const_to_mem = 1;
2651 if (! no_regs_p)
2652 losers++;
2655 /* Alternative loses if it requires a type of reload not
2656 permitted for this insn. We can always reload
2657 objects with a REG_UNUSED note. */
2658 if ((curr_static_id->operand[nop].type != OP_IN
2659 && no_output_reloads_p
2660 && ! find_reg_note (curr_insn, REG_UNUSED, op))
2661 || (curr_static_id->operand[nop].type != OP_OUT
2662 && no_input_reloads_p && ! const_to_mem)
2663 || (this_alternative_matches >= 0
2664 && (no_input_reloads_p
2665 || (no_output_reloads_p
2666 && (curr_static_id->operand
2667 [this_alternative_matches].type != OP_IN)
2668 && ! find_reg_note (curr_insn, REG_UNUSED,
2669 no_subreg_reg_operand
2670 [this_alternative_matches])))))
2672 if (lra_dump_file != NULL)
2673 fprintf
2674 (lra_dump_file,
2675 " alt=%d: No input/otput reload -- refuse\n",
2676 nalt);
2677 goto fail;
2680 /* Alternative loses if it required class pseudo cannot
2681 hold value of required mode. Such insns can be
2682 described by insn definitions with mode iterators. */
2683 if (GET_MODE (*curr_id->operand_loc[nop]) != VOIDmode
2684 && ! hard_reg_set_empty_p (this_alternative_set)
2685 /* It is common practice for constraints to use a
2686 class which does not have actually enough regs to
2687 hold the value (e.g. x86 AREG for mode requiring
2688 more one general reg). Therefore we have 2
2689 conditions to check that the reload pseudo cannot
2690 hold the mode value. */
2691 && (!targetm.hard_regno_mode_ok
2692 (ira_class_hard_regs[this_alternative][0],
2693 GET_MODE (*curr_id->operand_loc[nop])))
2694 /* The above condition is not enough as the first
2695 reg in ira_class_hard_regs can be not aligned for
2696 multi-words mode values. */
2697 && (prohibited_class_reg_set_mode_p
2698 (this_alternative, this_alternative_set,
2699 GET_MODE (*curr_id->operand_loc[nop]))))
2701 if (lra_dump_file != NULL)
2702 fprintf (lra_dump_file,
2703 " alt=%d: reload pseudo for op %d "
2704 "cannot hold the mode value -- refuse\n",
2705 nalt, nop);
2706 goto fail;
2709 /* Check strong discouragement of reload of non-constant
2710 into class THIS_ALTERNATIVE. */
2711 if (! CONSTANT_P (op) && ! no_regs_p
2712 && (targetm.preferred_reload_class
2713 (op, this_alternative) == NO_REGS
2714 || (curr_static_id->operand[nop].type == OP_OUT
2715 && (targetm.preferred_output_reload_class
2716 (op, this_alternative) == NO_REGS))))
2718 if (lra_dump_file != NULL)
2719 fprintf (lra_dump_file,
2720 " %d Non-prefered reload: reject+=%d\n",
2721 nop, LRA_MAX_REJECT);
2722 reject += LRA_MAX_REJECT;
2725 if (! (MEM_P (op) && offmemok)
2726 && ! (const_to_mem && constmemok))
2728 /* We prefer to reload pseudos over reloading other
2729 things, since such reloads may be able to be
2730 eliminated later. So bump REJECT in other cases.
2731 Don't do this in the case where we are forcing a
2732 constant into memory and it will then win since
2733 we don't want to have a different alternative
2734 match then. */
2735 if (! (REG_P (op) && REGNO (op) >= FIRST_PSEUDO_REGISTER))
2737 if (lra_dump_file != NULL)
2738 fprintf
2739 (lra_dump_file,
2740 " %d Non-pseudo reload: reject+=2\n",
2741 nop);
2742 reject += 2;
2745 if (! no_regs_p)
2746 reload_nregs
2747 += ira_reg_class_max_nregs[this_alternative][mode];
2749 if (SMALL_REGISTER_CLASS_P (this_alternative))
2751 if (lra_dump_file != NULL)
2752 fprintf
2753 (lra_dump_file,
2754 " %d Small class reload: reject+=%d\n",
2755 nop, LRA_LOSER_COST_FACTOR / 2);
2756 reject += LRA_LOSER_COST_FACTOR / 2;
2760 /* We are trying to spill pseudo into memory. It is
2761 usually more costly than moving to a hard register
2762 although it might takes the same number of
2763 reloads.
2765 Non-pseudo spill may happen also. Suppose a target allows both
2766 register and memory in the operand constraint alternatives,
2767 then it's typical that an eliminable register has a substition
2768 of "base + offset" which can either be reloaded by a simple
2769 "new_reg <= base + offset" which will match the register
2770 constraint, or a similar reg addition followed by further spill
2771 to and reload from memory which will match the memory
2772 constraint, but this memory spill will be much more costly
2773 usually.
2775 Code below increases the reject for both pseudo and non-pseudo
2776 spill. */
2777 if (no_regs_p
2778 && !(MEM_P (op) && offmemok)
2779 && !(REG_P (op) && hard_regno[nop] < 0))
2781 if (lra_dump_file != NULL)
2782 fprintf
2783 (lra_dump_file,
2784 " %d Spill %spseudo into memory: reject+=3\n",
2785 nop, REG_P (op) ? "" : "Non-");
2786 reject += 3;
2787 if (VECTOR_MODE_P (mode))
2789 /* Spilling vectors into memory is usually more
2790 costly as they contain big values. */
2791 if (lra_dump_file != NULL)
2792 fprintf
2793 (lra_dump_file,
2794 " %d Spill vector pseudo: reject+=2\n",
2795 nop);
2796 reject += 2;
2800 /* When we use an operand requiring memory in given
2801 alternative, the insn should write *and* read the
2802 value to/from memory it is costly in comparison with
2803 an insn alternative which does not use memory
2804 (e.g. register or immediate operand). We exclude
2805 memory operand for such case as we can satisfy the
2806 memory constraints by reloading address. */
2807 if (no_regs_p && offmemok && !MEM_P (op))
2809 if (lra_dump_file != NULL)
2810 fprintf
2811 (lra_dump_file,
2812 " Using memory insn operand %d: reject+=3\n",
2813 nop);
2814 reject += 3;
2817 /* If reload requires moving value through secondary
2818 memory, it will need one more insn at least. */
2819 if (this_alternative != NO_REGS
2820 && REG_P (op) && (cl = get_reg_class (REGNO (op))) != NO_REGS
2821 && ((curr_static_id->operand[nop].type != OP_OUT
2822 && targetm.secondary_memory_needed (GET_MODE (op), cl,
2823 this_alternative))
2824 || (curr_static_id->operand[nop].type != OP_IN
2825 && (targetm.secondary_memory_needed
2826 (GET_MODE (op), this_alternative, cl)))))
2827 losers++;
2829 if (MEM_P (op) && offmemok)
2830 addr_losers++;
2831 else
2833 /* Input reloads can be inherited more often than
2834 output reloads can be removed, so penalize output
2835 reloads. */
2836 if (!REG_P (op) || curr_static_id->operand[nop].type != OP_IN)
2838 if (lra_dump_file != NULL)
2839 fprintf
2840 (lra_dump_file,
2841 " %d Non input pseudo reload: reject++\n",
2842 nop);
2843 reject++;
2846 if (curr_static_id->operand[nop].type == OP_INOUT)
2848 if (lra_dump_file != NULL)
2849 fprintf
2850 (lra_dump_file,
2851 " %d Input/Output reload: reject+=%d\n",
2852 nop, LRA_LOSER_COST_FACTOR);
2853 reject += LRA_LOSER_COST_FACTOR;
2858 if (early_clobber_p && ! scratch_p)
2860 if (lra_dump_file != NULL)
2861 fprintf (lra_dump_file,
2862 " %d Early clobber: reject++\n", nop);
2863 reject++;
2865 /* ??? We check early clobbers after processing all operands
2866 (see loop below) and there we update the costs more.
2867 Should we update the cost (may be approximately) here
2868 because of early clobber register reloads or it is a rare
2869 or non-important thing to be worth to do it. */
2870 overall = (losers * LRA_LOSER_COST_FACTOR + reject
2871 - (addr_losers == losers ? static_reject : 0));
2872 if ((best_losers == 0 || losers != 0) && best_overall < overall)
2874 if (lra_dump_file != NULL)
2875 fprintf (lra_dump_file,
2876 " alt=%d,overall=%d,losers=%d -- refuse\n",
2877 nalt, overall, losers);
2878 goto fail;
2881 if (update_and_check_small_class_inputs (nop, nalt,
2882 this_alternative))
2884 if (lra_dump_file != NULL)
2885 fprintf (lra_dump_file,
2886 " alt=%d, not enough small class regs -- refuse\n",
2887 nalt);
2888 goto fail;
2890 curr_alt[nop] = this_alternative;
2891 COPY_HARD_REG_SET (curr_alt_set[nop], this_alternative_set);
2892 curr_alt_win[nop] = this_alternative_win;
2893 curr_alt_match_win[nop] = this_alternative_match_win;
2894 curr_alt_offmemok[nop] = this_alternative_offmemok;
2895 curr_alt_matches[nop] = this_alternative_matches;
2897 if (this_alternative_matches >= 0
2898 && !did_match && !this_alternative_win)
2899 curr_alt_win[this_alternative_matches] = false;
2901 if (early_clobber_p && operand_reg[nop] != NULL_RTX)
2902 early_clobbered_nops[early_clobbered_regs_num++] = nop;
2905 if (curr_insn_set != NULL_RTX && n_operands == 2
2906 /* Prevent processing non-move insns. */
2907 && (GET_CODE (SET_SRC (curr_insn_set)) == SUBREG
2908 || SET_SRC (curr_insn_set) == no_subreg_reg_operand[1])
2909 && ((! curr_alt_win[0] && ! curr_alt_win[1]
2910 && REG_P (no_subreg_reg_operand[0])
2911 && REG_P (no_subreg_reg_operand[1])
2912 && (reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2913 || reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0])))
2914 || (! curr_alt_win[0] && curr_alt_win[1]
2915 && REG_P (no_subreg_reg_operand[1])
2916 /* Check that we reload memory not the memory
2917 address. */
2918 && ! (curr_alt_offmemok[0]
2919 && MEM_P (no_subreg_reg_operand[0]))
2920 && reg_in_class_p (no_subreg_reg_operand[1], curr_alt[0]))
2921 || (curr_alt_win[0] && ! curr_alt_win[1]
2922 && REG_P (no_subreg_reg_operand[0])
2923 /* Check that we reload memory not the memory
2924 address. */
2925 && ! (curr_alt_offmemok[1]
2926 && MEM_P (no_subreg_reg_operand[1]))
2927 && reg_in_class_p (no_subreg_reg_operand[0], curr_alt[1])
2928 && (! CONST_POOL_OK_P (curr_operand_mode[1],
2929 no_subreg_reg_operand[1])
2930 || (targetm.preferred_reload_class
2931 (no_subreg_reg_operand[1],
2932 (enum reg_class) curr_alt[1]) != NO_REGS))
2933 /* If it is a result of recent elimination in move
2934 insn we can transform it into an add still by
2935 using this alternative. */
2936 && GET_CODE (no_subreg_reg_operand[1]) != PLUS
2937 /* Likewise if the source has been replaced with an
2938 equivalent value. This only happens once -- the reload
2939 will use the equivalent value instead of the register it
2940 replaces -- so there should be no danger of cycling. */
2941 && !equiv_substition_p[1])))
2943 /* We have a move insn and a new reload insn will be similar
2944 to the current insn. We should avoid such situation as
2945 it results in LRA cycling. */
2946 if (lra_dump_file != NULL)
2947 fprintf (lra_dump_file,
2948 " Cycle danger: overall += LRA_MAX_REJECT\n");
2949 overall += LRA_MAX_REJECT;
2951 ok_p = true;
2952 curr_alt_dont_inherit_ops_num = 0;
2953 for (nop = 0; nop < early_clobbered_regs_num; nop++)
2955 int i, j, clobbered_hard_regno, first_conflict_j, last_conflict_j;
2956 HARD_REG_SET temp_set;
2958 i = early_clobbered_nops[nop];
2959 if ((! curr_alt_win[i] && ! curr_alt_match_win[i])
2960 || hard_regno[i] < 0)
2961 continue;
2962 lra_assert (operand_reg[i] != NULL_RTX);
2963 clobbered_hard_regno = hard_regno[i];
2964 CLEAR_HARD_REG_SET (temp_set);
2965 add_to_hard_reg_set (&temp_set, biggest_mode[i], clobbered_hard_regno);
2966 first_conflict_j = last_conflict_j = -1;
2967 for (j = 0; j < n_operands; j++)
2968 if (j == i
2969 /* We don't want process insides of match_operator and
2970 match_parallel because otherwise we would process
2971 their operands once again generating a wrong
2972 code. */
2973 || curr_static_id->operand[j].is_operator)
2974 continue;
2975 else if ((curr_alt_matches[j] == i && curr_alt_match_win[j])
2976 || (curr_alt_matches[i] == j && curr_alt_match_win[i]))
2977 continue;
2978 /* If we don't reload j-th operand, check conflicts. */
2979 else if ((curr_alt_win[j] || curr_alt_match_win[j])
2980 && uses_hard_regs_p (*curr_id->operand_loc[j], temp_set))
2982 if (first_conflict_j < 0)
2983 first_conflict_j = j;
2984 last_conflict_j = j;
2985 /* Both the earlyclobber operand and conflicting operand
2986 cannot both be user defined hard registers. */
2987 if (HARD_REGISTER_P (operand_reg[i])
2988 && REG_USERVAR_P (operand_reg[i])
2989 && operand_reg[j] != NULL_RTX
2990 && HARD_REGISTER_P (operand_reg[j])
2991 && REG_USERVAR_P (operand_reg[j]))
2992 fatal_insn ("unable to generate reloads for "
2993 "impossible constraints:", curr_insn);
2995 if (last_conflict_j < 0)
2996 continue;
2998 /* If an earlyclobber operand conflicts with another non-matching
2999 operand (ie, they have been assigned the same hard register),
3000 then it is better to reload the other operand, as there may
3001 exist yet another operand with a matching constraint associated
3002 with the earlyclobber operand. However, if one of the operands
3003 is an explicit use of a hard register, then we must reload the
3004 other non-hard register operand. */
3005 if (HARD_REGISTER_P (operand_reg[i])
3006 || (first_conflict_j == last_conflict_j
3007 && operand_reg[last_conflict_j] != NULL_RTX
3008 && !curr_alt_match_win[last_conflict_j]
3009 && !HARD_REGISTER_P (operand_reg[last_conflict_j])))
3011 curr_alt_win[last_conflict_j] = false;
3012 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++]
3013 = last_conflict_j;
3014 losers++;
3015 if (lra_dump_file != NULL)
3016 fprintf
3017 (lra_dump_file,
3018 " %d Conflict early clobber reload: reject--\n",
3021 else
3023 /* We need to reload early clobbered register and the
3024 matched registers. */
3025 for (j = 0; j < n_operands; j++)
3026 if (curr_alt_matches[j] == i)
3028 curr_alt_match_win[j] = false;
3029 losers++;
3030 overall += LRA_LOSER_COST_FACTOR;
3032 if (! curr_alt_match_win[i])
3033 curr_alt_dont_inherit_ops[curr_alt_dont_inherit_ops_num++] = i;
3034 else
3036 /* Remember pseudos used for match reloads are never
3037 inherited. */
3038 lra_assert (curr_alt_matches[i] >= 0);
3039 curr_alt_win[curr_alt_matches[i]] = false;
3041 curr_alt_win[i] = curr_alt_match_win[i] = false;
3042 losers++;
3043 if (lra_dump_file != NULL)
3044 fprintf
3045 (lra_dump_file,
3046 " %d Matched conflict early clobber reloads: "
3047 "reject--\n",
3050 /* Early clobber was already reflected in REJECT. */
3051 if (!matching_early_clobber[i])
3053 lra_assert (reject > 0);
3054 reject--;
3055 matching_early_clobber[i] = 1;
3057 overall += LRA_LOSER_COST_FACTOR - 1;
3059 if (lra_dump_file != NULL)
3060 fprintf (lra_dump_file, " alt=%d,overall=%d,losers=%d,rld_nregs=%d\n",
3061 nalt, overall, losers, reload_nregs);
3063 /* If this alternative can be made to work by reloading, and it
3064 needs less reloading than the others checked so far, record
3065 it as the chosen goal for reloading. */
3066 if ((best_losers != 0 && losers == 0)
3067 || (((best_losers == 0 && losers == 0)
3068 || (best_losers != 0 && losers != 0))
3069 && (best_overall > overall
3070 || (best_overall == overall
3071 /* If the cost of the reloads is the same,
3072 prefer alternative which requires minimal
3073 number of reload regs. */
3074 && (reload_nregs < best_reload_nregs
3075 || (reload_nregs == best_reload_nregs
3076 && (best_reload_sum < reload_sum
3077 || (best_reload_sum == reload_sum
3078 && nalt < goal_alt_number))))))))
3080 for (nop = 0; nop < n_operands; nop++)
3082 goal_alt_win[nop] = curr_alt_win[nop];
3083 goal_alt_match_win[nop] = curr_alt_match_win[nop];
3084 goal_alt_matches[nop] = curr_alt_matches[nop];
3085 goal_alt[nop] = curr_alt[nop];
3086 goal_alt_offmemok[nop] = curr_alt_offmemok[nop];
3088 goal_alt_dont_inherit_ops_num = curr_alt_dont_inherit_ops_num;
3089 for (nop = 0; nop < curr_alt_dont_inherit_ops_num; nop++)
3090 goal_alt_dont_inherit_ops[nop] = curr_alt_dont_inherit_ops[nop];
3091 goal_alt_swapped = curr_swapped;
3092 best_overall = overall;
3093 best_losers = losers;
3094 best_reload_nregs = reload_nregs;
3095 best_reload_sum = reload_sum;
3096 goal_alt_number = nalt;
3098 if (losers == 0)
3099 /* Everything is satisfied. Do not process alternatives
3100 anymore. */
3101 break;
3102 fail:
3105 return ok_p;
3108 /* Make reload base reg from address AD. */
3109 static rtx
3110 base_to_reg (struct address_info *ad)
3112 enum reg_class cl;
3113 int code = -1;
3114 rtx new_inner = NULL_RTX;
3115 rtx new_reg = NULL_RTX;
3116 rtx_insn *insn;
3117 rtx_insn *last_insn = get_last_insn();
3119 lra_assert (ad->disp == ad->disp_term);
3120 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3121 get_index_code (ad));
3122 new_reg = lra_create_new_reg (GET_MODE (*ad->base), NULL_RTX,
3123 cl, "base");
3124 new_inner = simplify_gen_binary (PLUS, GET_MODE (new_reg), new_reg,
3125 ad->disp_term == NULL
3126 ? const0_rtx
3127 : *ad->disp_term);
3128 if (!valid_address_p (ad->mode, new_inner, ad->as))
3129 return NULL_RTX;
3130 insn = emit_insn (gen_rtx_SET (new_reg, *ad->base));
3131 code = recog_memoized (insn);
3132 if (code < 0)
3134 delete_insns_since (last_insn);
3135 return NULL_RTX;
3138 return new_inner;
3141 /* Make reload base reg + DISP from address AD. Return the new pseudo. */
3142 static rtx
3143 base_plus_disp_to_reg (struct address_info *ad, rtx disp)
3145 enum reg_class cl;
3146 rtx new_reg;
3148 lra_assert (ad->base == ad->base_term);
3149 cl = base_reg_class (ad->mode, ad->as, ad->base_outer_code,
3150 get_index_code (ad));
3151 new_reg = lra_create_new_reg (GET_MODE (*ad->base_term), NULL_RTX,
3152 cl, "base + disp");
3153 lra_emit_add (new_reg, *ad->base_term, disp);
3154 return new_reg;
3157 /* Make reload of index part of address AD. Return the new
3158 pseudo. */
3159 static rtx
3160 index_part_to_reg (struct address_info *ad)
3162 rtx new_reg;
3164 new_reg = lra_create_new_reg (GET_MODE (*ad->index), NULL_RTX,
3165 INDEX_REG_CLASS, "index term");
3166 expand_mult (GET_MODE (*ad->index), *ad->index_term,
3167 GEN_INT (get_index_scale (ad)), new_reg, 1);
3168 return new_reg;
3171 /* Return true if we can add a displacement to address AD, even if that
3172 makes the address invalid. The fix-up code requires any new address
3173 to be the sum of the BASE_TERM, INDEX and DISP_TERM fields. */
3174 static bool
3175 can_add_disp_p (struct address_info *ad)
3177 return (!ad->autoinc_p
3178 && ad->segment == NULL
3179 && ad->base == ad->base_term
3180 && ad->disp == ad->disp_term);
3183 /* Make equiv substitution in address AD. Return true if a substitution
3184 was made. */
3185 static bool
3186 equiv_address_substitution (struct address_info *ad)
3188 rtx base_reg, new_base_reg, index_reg, new_index_reg, *base_term, *index_term;
3189 poly_int64 disp;
3190 HOST_WIDE_INT scale;
3191 bool change_p;
3193 base_term = strip_subreg (ad->base_term);
3194 if (base_term == NULL)
3195 base_reg = new_base_reg = NULL_RTX;
3196 else
3198 base_reg = *base_term;
3199 new_base_reg = get_equiv_with_elimination (base_reg, curr_insn);
3201 index_term = strip_subreg (ad->index_term);
3202 if (index_term == NULL)
3203 index_reg = new_index_reg = NULL_RTX;
3204 else
3206 index_reg = *index_term;
3207 new_index_reg = get_equiv_with_elimination (index_reg, curr_insn);
3209 if (base_reg == new_base_reg && index_reg == new_index_reg)
3210 return false;
3211 disp = 0;
3212 change_p = false;
3213 if (lra_dump_file != NULL)
3215 fprintf (lra_dump_file, "Changing address in insn %d ",
3216 INSN_UID (curr_insn));
3217 dump_value_slim (lra_dump_file, *ad->outer, 1);
3219 if (base_reg != new_base_reg)
3221 poly_int64 offset;
3222 if (REG_P (new_base_reg))
3224 *base_term = new_base_reg;
3225 change_p = true;
3227 else if (GET_CODE (new_base_reg) == PLUS
3228 && REG_P (XEXP (new_base_reg, 0))
3229 && poly_int_rtx_p (XEXP (new_base_reg, 1), &offset)
3230 && can_add_disp_p (ad))
3232 disp += offset;
3233 *base_term = XEXP (new_base_reg, 0);
3234 change_p = true;
3236 if (ad->base_term2 != NULL)
3237 *ad->base_term2 = *ad->base_term;
3239 if (index_reg != new_index_reg)
3241 poly_int64 offset;
3242 if (REG_P (new_index_reg))
3244 *index_term = new_index_reg;
3245 change_p = true;
3247 else if (GET_CODE (new_index_reg) == PLUS
3248 && REG_P (XEXP (new_index_reg, 0))
3249 && poly_int_rtx_p (XEXP (new_index_reg, 1), &offset)
3250 && can_add_disp_p (ad)
3251 && (scale = get_index_scale (ad)))
3253 disp += offset * scale;
3254 *index_term = XEXP (new_index_reg, 0);
3255 change_p = true;
3258 if (maybe_ne (disp, 0))
3260 if (ad->disp != NULL)
3261 *ad->disp = plus_constant (GET_MODE (*ad->inner), *ad->disp, disp);
3262 else
3264 *ad->inner = plus_constant (GET_MODE (*ad->inner), *ad->inner, disp);
3265 update_address (ad);
3267 change_p = true;
3269 if (lra_dump_file != NULL)
3271 if (! change_p)
3272 fprintf (lra_dump_file, " -- no change\n");
3273 else
3275 fprintf (lra_dump_file, " on equiv ");
3276 dump_value_slim (lra_dump_file, *ad->outer, 1);
3277 fprintf (lra_dump_file, "\n");
3280 return change_p;
3283 /* Major function to make reloads for an address in operand NOP or
3284 check its correctness (If CHECK_ONLY_P is true). The supported
3285 cases are:
3287 1) an address that existed before LRA started, at which point it
3288 must have been valid. These addresses are subject to elimination
3289 and may have become invalid due to the elimination offset being out
3290 of range.
3292 2) an address created by forcing a constant to memory
3293 (force_const_to_mem). The initial form of these addresses might
3294 not be valid, and it is this function's job to make them valid.
3296 3) a frame address formed from a register and a (possibly zero)
3297 constant offset. As above, these addresses might not be valid and
3298 this function must make them so.
3300 Add reloads to the lists *BEFORE and *AFTER. We might need to add
3301 reloads to *AFTER because of inc/dec, {pre, post} modify in the
3302 address. Return true for any RTL change.
3304 The function is a helper function which does not produce all
3305 transformations (when CHECK_ONLY_P is false) which can be
3306 necessary. It does just basic steps. To do all necessary
3307 transformations use function process_address. */
3308 static bool
3309 process_address_1 (int nop, bool check_only_p,
3310 rtx_insn **before, rtx_insn **after)
3312 struct address_info ad;
3313 rtx new_reg;
3314 HOST_WIDE_INT scale;
3315 rtx op = *curr_id->operand_loc[nop];
3316 const char *constraint = curr_static_id->operand[nop].constraint;
3317 enum constraint_num cn = lookup_constraint (constraint);
3318 bool change_p = false;
3320 if (MEM_P (op)
3321 && GET_MODE (op) == BLKmode
3322 && GET_CODE (XEXP (op, 0)) == SCRATCH)
3323 return false;
3325 if (insn_extra_address_constraint (cn)
3326 /* When we find an asm operand with an address constraint that
3327 doesn't satisfy address_operand to begin with, we clear
3328 is_address, so that we don't try to make a non-address fit.
3329 If the asm statement got this far, it's because other
3330 constraints are available, and we'll use them, disregarding
3331 the unsatisfiable address ones. */
3332 && curr_static_id->operand[nop].is_address)
3333 decompose_lea_address (&ad, curr_id->operand_loc[nop]);
3334 /* Do not attempt to decompose arbitrary addresses generated by combine
3335 for asm operands with loose constraints, e.g 'X'. */
3336 else if (MEM_P (op)
3337 && !(INSN_CODE (curr_insn) < 0
3338 && get_constraint_type (cn) == CT_FIXED_FORM
3339 && constraint_satisfied_p (op, cn)))
3340 decompose_mem_address (&ad, op);
3341 else if (GET_CODE (op) == SUBREG
3342 && MEM_P (SUBREG_REG (op)))
3343 decompose_mem_address (&ad, SUBREG_REG (op));
3344 else
3345 return false;
3346 /* If INDEX_REG_CLASS is assigned to base_term already and isn't to
3347 index_term, swap them so to avoid assigning INDEX_REG_CLASS to both
3348 when INDEX_REG_CLASS is a single register class. */
3349 if (ad.base_term != NULL
3350 && ad.index_term != NULL
3351 && ira_class_hard_regs_num[INDEX_REG_CLASS] == 1
3352 && REG_P (*ad.base_term)
3353 && REG_P (*ad.index_term)
3354 && in_class_p (*ad.base_term, INDEX_REG_CLASS, NULL)
3355 && ! in_class_p (*ad.index_term, INDEX_REG_CLASS, NULL))
3357 std::swap (ad.base, ad.index);
3358 std::swap (ad.base_term, ad.index_term);
3360 if (! check_only_p)
3361 change_p = equiv_address_substitution (&ad);
3362 if (ad.base_term != NULL
3363 && (process_addr_reg
3364 (ad.base_term, check_only_p, before,
3365 (ad.autoinc_p
3366 && !(REG_P (*ad.base_term)
3367 && find_regno_note (curr_insn, REG_DEAD,
3368 REGNO (*ad.base_term)) != NULL_RTX)
3369 ? after : NULL),
3370 base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3371 get_index_code (&ad)))))
3373 change_p = true;
3374 if (ad.base_term2 != NULL)
3375 *ad.base_term2 = *ad.base_term;
3377 if (ad.index_term != NULL
3378 && process_addr_reg (ad.index_term, check_only_p,
3379 before, NULL, INDEX_REG_CLASS))
3380 change_p = true;
3382 /* Target hooks sometimes don't treat extra-constraint addresses as
3383 legitimate address_operands, so handle them specially. */
3384 if (insn_extra_address_constraint (cn)
3385 && satisfies_address_constraint_p (&ad, cn))
3386 return change_p;
3388 if (check_only_p)
3389 return change_p;
3391 /* There are three cases where the shape of *AD.INNER may now be invalid:
3393 1) the original address was valid, but either elimination or
3394 equiv_address_substitution was applied and that made
3395 the address invalid.
3397 2) the address is an invalid symbolic address created by
3398 force_const_to_mem.
3400 3) the address is a frame address with an invalid offset.
3402 4) the address is a frame address with an invalid base.
3404 All these cases involve a non-autoinc address, so there is no
3405 point revalidating other types. */
3406 if (ad.autoinc_p || valid_address_p (&ad))
3407 return change_p;
3409 /* Any index existed before LRA started, so we can assume that the
3410 presence and shape of the index is valid. */
3411 push_to_sequence (*before);
3412 lra_assert (ad.disp == ad.disp_term);
3413 if (ad.base == NULL)
3415 if (ad.index == NULL)
3417 rtx_insn *insn;
3418 rtx_insn *last = get_last_insn ();
3419 int code = -1;
3420 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3421 SCRATCH, SCRATCH);
3422 rtx addr = *ad.inner;
3424 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3425 if (HAVE_lo_sum)
3427 /* addr => lo_sum (new_base, addr), case (2) above. */
3428 insn = emit_insn (gen_rtx_SET
3429 (new_reg,
3430 gen_rtx_HIGH (Pmode, copy_rtx (addr))));
3431 code = recog_memoized (insn);
3432 if (code >= 0)
3434 *ad.inner = gen_rtx_LO_SUM (Pmode, new_reg, addr);
3435 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3437 /* Try to put lo_sum into register. */
3438 insn = emit_insn (gen_rtx_SET
3439 (new_reg,
3440 gen_rtx_LO_SUM (Pmode, new_reg, addr)));
3441 code = recog_memoized (insn);
3442 if (code >= 0)
3444 *ad.inner = new_reg;
3445 if (! valid_address_p (ad.mode, *ad.outer, ad.as))
3447 *ad.inner = addr;
3448 code = -1;
3454 if (code < 0)
3455 delete_insns_since (last);
3458 if (code < 0)
3460 /* addr => new_base, case (2) above. */
3461 lra_emit_move (new_reg, addr);
3463 for (insn = last == NULL_RTX ? get_insns () : NEXT_INSN (last);
3464 insn != NULL_RTX;
3465 insn = NEXT_INSN (insn))
3466 if (recog_memoized (insn) < 0)
3467 break;
3468 if (insn != NULL_RTX)
3470 /* Do nothing if we cannot generate right insns.
3471 This is analogous to reload pass behavior. */
3472 delete_insns_since (last);
3473 end_sequence ();
3474 return false;
3476 *ad.inner = new_reg;
3479 else
3481 /* index * scale + disp => new base + index * scale,
3482 case (1) above. */
3483 enum reg_class cl = base_reg_class (ad.mode, ad.as, PLUS,
3484 GET_CODE (*ad.index));
3486 lra_assert (INDEX_REG_CLASS != NO_REGS);
3487 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "disp");
3488 lra_emit_move (new_reg, *ad.disp);
3489 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3490 new_reg, *ad.index);
3493 else if (ad.index == NULL)
3495 int regno;
3496 enum reg_class cl;
3497 rtx set;
3498 rtx_insn *insns, *last_insn;
3499 /* Try to reload base into register only if the base is invalid
3500 for the address but with valid offset, case (4) above. */
3501 start_sequence ();
3502 new_reg = base_to_reg (&ad);
3504 /* base + disp => new base, cases (1) and (3) above. */
3505 /* Another option would be to reload the displacement into an
3506 index register. However, postreload has code to optimize
3507 address reloads that have the same base and different
3508 displacements, so reloading into an index register would
3509 not necessarily be a win. */
3510 if (new_reg == NULL_RTX)
3512 /* See if the target can split the displacement into a
3513 legitimate new displacement from a local anchor. */
3514 gcc_assert (ad.disp == ad.disp_term);
3515 poly_int64 orig_offset;
3516 rtx offset1, offset2;
3517 if (poly_int_rtx_p (*ad.disp, &orig_offset)
3518 && targetm.legitimize_address_displacement (&offset1, &offset2,
3519 orig_offset,
3520 ad.mode))
3522 new_reg = base_plus_disp_to_reg (&ad, offset1);
3523 new_reg = gen_rtx_PLUS (GET_MODE (new_reg), new_reg, offset2);
3525 else
3526 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3528 insns = get_insns ();
3529 last_insn = get_last_insn ();
3530 /* If we generated at least two insns, try last insn source as
3531 an address. If we succeed, we generate one less insn. */
3532 if (REG_P (new_reg)
3533 && last_insn != insns
3534 && (set = single_set (last_insn)) != NULL_RTX
3535 && GET_CODE (SET_SRC (set)) == PLUS
3536 && REG_P (XEXP (SET_SRC (set), 0))
3537 && CONSTANT_P (XEXP (SET_SRC (set), 1)))
3539 *ad.inner = SET_SRC (set);
3540 if (valid_address_p (ad.mode, *ad.outer, ad.as))
3542 *ad.base_term = XEXP (SET_SRC (set), 0);
3543 *ad.disp_term = XEXP (SET_SRC (set), 1);
3544 cl = base_reg_class (ad.mode, ad.as, ad.base_outer_code,
3545 get_index_code (&ad));
3546 regno = REGNO (*ad.base_term);
3547 if (regno >= FIRST_PSEUDO_REGISTER
3548 && cl != lra_get_allocno_class (regno))
3549 lra_change_class (regno, cl, " Change to", true);
3550 new_reg = SET_SRC (set);
3551 delete_insns_since (PREV_INSN (last_insn));
3554 end_sequence ();
3555 emit_insn (insns);
3556 *ad.inner = new_reg;
3558 else if (ad.disp_term != NULL)
3560 /* base + scale * index + disp => new base + scale * index,
3561 case (1) above. */
3562 gcc_assert (ad.disp == ad.disp_term);
3563 new_reg = base_plus_disp_to_reg (&ad, *ad.disp);
3564 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3565 new_reg, *ad.index);
3567 else if ((scale = get_index_scale (&ad)) == 1)
3569 /* The last transformation to one reg will be made in
3570 curr_insn_transform function. */
3571 end_sequence ();
3572 return false;
3574 else if (scale != 0)
3576 /* base + scale * index => base + new_reg,
3577 case (1) above.
3578 Index part of address may become invalid. For example, we
3579 changed pseudo on the equivalent memory and a subreg of the
3580 pseudo onto the memory of different mode for which the scale is
3581 prohibitted. */
3582 new_reg = index_part_to_reg (&ad);
3583 *ad.inner = simplify_gen_binary (PLUS, GET_MODE (new_reg),
3584 *ad.base_term, new_reg);
3586 else
3588 enum reg_class cl = base_reg_class (ad.mode, ad.as,
3589 SCRATCH, SCRATCH);
3590 rtx addr = *ad.inner;
3592 new_reg = lra_create_new_reg (Pmode, NULL_RTX, cl, "addr");
3593 /* addr => new_base. */
3594 lra_emit_move (new_reg, addr);
3595 *ad.inner = new_reg;
3597 *before = get_insns ();
3598 end_sequence ();
3599 return true;
3602 /* If CHECK_ONLY_P is false, do address reloads until it is necessary.
3603 Use process_address_1 as a helper function. Return true for any
3604 RTL changes.
3606 If CHECK_ONLY_P is true, just check address correctness. Return
3607 false if the address correct. */
3608 static bool
3609 process_address (int nop, bool check_only_p,
3610 rtx_insn **before, rtx_insn **after)
3612 bool res = false;
3614 while (process_address_1 (nop, check_only_p, before, after))
3616 if (check_only_p)
3617 return true;
3618 res = true;
3620 return res;
3623 /* Emit insns to reload VALUE into a new register. VALUE is an
3624 auto-increment or auto-decrement RTX whose operand is a register or
3625 memory location; so reloading involves incrementing that location.
3626 IN is either identical to VALUE, or some cheaper place to reload
3627 value being incremented/decremented from.
3629 INC_AMOUNT is the number to increment or decrement by (always
3630 positive and ignored for POST_MODIFY/PRE_MODIFY).
3632 Return pseudo containing the result. */
3633 static rtx
3634 emit_inc (enum reg_class new_rclass, rtx in, rtx value, poly_int64 inc_amount)
3636 /* REG or MEM to be copied and incremented. */
3637 rtx incloc = XEXP (value, 0);
3638 /* Nonzero if increment after copying. */
3639 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
3640 || GET_CODE (value) == POST_MODIFY);
3641 rtx_insn *last;
3642 rtx inc;
3643 rtx_insn *add_insn;
3644 int code;
3645 rtx real_in = in == value ? incloc : in;
3646 rtx result;
3647 bool plus_p = true;
3649 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
3651 lra_assert (GET_CODE (XEXP (value, 1)) == PLUS
3652 || GET_CODE (XEXP (value, 1)) == MINUS);
3653 lra_assert (rtx_equal_p (XEXP (XEXP (value, 1), 0), XEXP (value, 0)));
3654 plus_p = GET_CODE (XEXP (value, 1)) == PLUS;
3655 inc = XEXP (XEXP (value, 1), 1);
3657 else
3659 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
3660 inc_amount = -inc_amount;
3662 inc = gen_int_mode (inc_amount, GET_MODE (value));
3665 if (! post && REG_P (incloc))
3666 result = incloc;
3667 else
3668 result = lra_create_new_reg (GET_MODE (value), value, new_rclass,
3669 "INC/DEC result");
3671 if (real_in != result)
3673 /* First copy the location to the result register. */
3674 lra_assert (REG_P (result));
3675 emit_insn (gen_move_insn (result, real_in));
3678 /* We suppose that there are insns to add/sub with the constant
3679 increment permitted in {PRE/POST)_{DEC/INC/MODIFY}. At least the
3680 old reload worked with this assumption. If the assumption
3681 becomes wrong, we should use approach in function
3682 base_plus_disp_to_reg. */
3683 if (in == value)
3685 /* See if we can directly increment INCLOC. */
3686 last = get_last_insn ();
3687 add_insn = emit_insn (plus_p
3688 ? gen_add2_insn (incloc, inc)
3689 : gen_sub2_insn (incloc, inc));
3691 code = recog_memoized (add_insn);
3692 if (code >= 0)
3694 if (! post && result != incloc)
3695 emit_insn (gen_move_insn (result, incloc));
3696 return result;
3698 delete_insns_since (last);
3701 /* If couldn't do the increment directly, must increment in RESULT.
3702 The way we do this depends on whether this is pre- or
3703 post-increment. For pre-increment, copy INCLOC to the reload
3704 register, increment it there, then save back. */
3705 if (! post)
3707 if (real_in != result)
3708 emit_insn (gen_move_insn (result, real_in));
3709 if (plus_p)
3710 emit_insn (gen_add2_insn (result, inc));
3711 else
3712 emit_insn (gen_sub2_insn (result, inc));
3713 if (result != incloc)
3714 emit_insn (gen_move_insn (incloc, result));
3716 else
3718 /* Post-increment.
3720 Because this might be a jump insn or a compare, and because
3721 RESULT may not be available after the insn in an input
3722 reload, we must do the incrementing before the insn being
3723 reloaded for.
3725 We have already copied IN to RESULT. Increment the copy in
3726 RESULT, save that back, then decrement RESULT so it has
3727 the original value. */
3728 if (plus_p)
3729 emit_insn (gen_add2_insn (result, inc));
3730 else
3731 emit_insn (gen_sub2_insn (result, inc));
3732 emit_insn (gen_move_insn (incloc, result));
3733 /* Restore non-modified value for the result. We prefer this
3734 way because it does not require an additional hard
3735 register. */
3736 if (plus_p)
3738 poly_int64 offset;
3739 if (poly_int_rtx_p (inc, &offset))
3740 emit_insn (gen_add2_insn (result,
3741 gen_int_mode (-offset,
3742 GET_MODE (result))));
3743 else
3744 emit_insn (gen_sub2_insn (result, inc));
3746 else
3747 emit_insn (gen_add2_insn (result, inc));
3749 return result;
3752 /* Return true if the current move insn does not need processing as we
3753 already know that it satisfies its constraints. */
3754 static bool
3755 simple_move_p (void)
3757 rtx dest, src;
3758 enum reg_class dclass, sclass;
3760 lra_assert (curr_insn_set != NULL_RTX);
3761 dest = SET_DEST (curr_insn_set);
3762 src = SET_SRC (curr_insn_set);
3764 /* If the instruction has multiple sets we need to process it even if it
3765 is single_set. This can happen if one or more of the SETs are dead.
3766 See PR73650. */
3767 if (multiple_sets (curr_insn))
3768 return false;
3770 return ((dclass = get_op_class (dest)) != NO_REGS
3771 && (sclass = get_op_class (src)) != NO_REGS
3772 /* The backend guarantees that register moves of cost 2
3773 never need reloads. */
3774 && targetm.register_move_cost (GET_MODE (src), sclass, dclass) == 2);
3777 /* Swap operands NOP and NOP + 1. */
3778 static inline void
3779 swap_operands (int nop)
3781 std::swap (curr_operand_mode[nop], curr_operand_mode[nop + 1]);
3782 std::swap (original_subreg_reg_mode[nop], original_subreg_reg_mode[nop + 1]);
3783 std::swap (*curr_id->operand_loc[nop], *curr_id->operand_loc[nop + 1]);
3784 std::swap (equiv_substition_p[nop], equiv_substition_p[nop + 1]);
3785 /* Swap the duplicates too. */
3786 lra_update_dup (curr_id, nop);
3787 lra_update_dup (curr_id, nop + 1);
3790 /* Main entry point of the constraint code: search the body of the
3791 current insn to choose the best alternative. It is mimicking insn
3792 alternative cost calculation model of former reload pass. That is
3793 because machine descriptions were written to use this model. This
3794 model can be changed in future. Make commutative operand exchange
3795 if it is chosen.
3797 if CHECK_ONLY_P is false, do RTL changes to satisfy the
3798 constraints. Return true if any change happened during function
3799 call.
3801 If CHECK_ONLY_P is true then don't do any transformation. Just
3802 check that the insn satisfies all constraints. If the insn does
3803 not satisfy any constraint, return true. */
3804 static bool
3805 curr_insn_transform (bool check_only_p)
3807 int i, j, k;
3808 int n_operands;
3809 int n_alternatives;
3810 int n_outputs;
3811 int commutative;
3812 signed char goal_alt_matched[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
3813 signed char match_inputs[MAX_RECOG_OPERANDS + 1];
3814 signed char outputs[MAX_RECOG_OPERANDS + 1];
3815 rtx_insn *before, *after;
3816 bool alt_p = false;
3817 /* Flag that the insn has been changed through a transformation. */
3818 bool change_p;
3819 bool sec_mem_p;
3820 bool use_sec_mem_p;
3821 int max_regno_before;
3822 int reused_alternative_num;
3824 curr_insn_set = single_set (curr_insn);
3825 if (curr_insn_set != NULL_RTX && simple_move_p ())
3827 /* We assume that the corresponding insn alternative has no
3828 earlier clobbers. If it is not the case, don't define move
3829 cost equal to 2 for the corresponding register classes. */
3830 lra_set_used_insn_alternative (curr_insn, LRA_NON_CLOBBERED_ALT);
3831 return false;
3834 no_input_reloads_p = no_output_reloads_p = false;
3835 goal_alt_number = -1;
3836 change_p = sec_mem_p = false;
3837 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output
3838 reloads; neither are insns that SET cc0. Insns that use CC0 are
3839 not allowed to have any input reloads. */
3840 if (JUMP_P (curr_insn) || CALL_P (curr_insn))
3841 no_output_reloads_p = true;
3843 if (HAVE_cc0 && reg_referenced_p (cc0_rtx, PATTERN (curr_insn)))
3844 no_input_reloads_p = true;
3845 if (HAVE_cc0 && reg_set_p (cc0_rtx, PATTERN (curr_insn)))
3846 no_output_reloads_p = true;
3848 n_operands = curr_static_id->n_operands;
3849 n_alternatives = curr_static_id->n_alternatives;
3851 /* Just return "no reloads" if insn has no operands with
3852 constraints. */
3853 if (n_operands == 0 || n_alternatives == 0)
3854 return false;
3856 max_regno_before = max_reg_num ();
3858 for (i = 0; i < n_operands; i++)
3860 goal_alt_matched[i][0] = -1;
3861 goal_alt_matches[i] = -1;
3864 commutative = curr_static_id->commutative;
3866 /* Now see what we need for pseudos that didn't get hard regs or got
3867 the wrong kind of hard reg. For this, we must consider all the
3868 operands together against the register constraints. */
3870 best_losers = best_overall = INT_MAX;
3871 best_reload_sum = 0;
3873 curr_swapped = false;
3874 goal_alt_swapped = false;
3876 if (! check_only_p)
3877 /* Make equivalence substitution and memory subreg elimination
3878 before address processing because an address legitimacy can
3879 depend on memory mode. */
3880 for (i = 0; i < n_operands; i++)
3882 rtx op, subst, old;
3883 bool op_change_p = false;
3885 if (curr_static_id->operand[i].is_operator)
3886 continue;
3888 old = op = *curr_id->operand_loc[i];
3889 if (GET_CODE (old) == SUBREG)
3890 old = SUBREG_REG (old);
3891 subst = get_equiv_with_elimination (old, curr_insn);
3892 original_subreg_reg_mode[i] = VOIDmode;
3893 equiv_substition_p[i] = false;
3894 if (subst != old)
3896 equiv_substition_p[i] = true;
3897 subst = copy_rtx (subst);
3898 lra_assert (REG_P (old));
3899 if (GET_CODE (op) != SUBREG)
3900 *curr_id->operand_loc[i] = subst;
3901 else
3903 SUBREG_REG (op) = subst;
3904 if (GET_MODE (subst) == VOIDmode)
3905 original_subreg_reg_mode[i] = GET_MODE (old);
3907 if (lra_dump_file != NULL)
3909 fprintf (lra_dump_file,
3910 "Changing pseudo %d in operand %i of insn %u on equiv ",
3911 REGNO (old), i, INSN_UID (curr_insn));
3912 dump_value_slim (lra_dump_file, subst, 1);
3913 fprintf (lra_dump_file, "\n");
3915 op_change_p = change_p = true;
3917 if (simplify_operand_subreg (i, GET_MODE (old)) || op_change_p)
3919 change_p = true;
3920 lra_update_dup (curr_id, i);
3924 /* Reload address registers and displacements. We do it before
3925 finding an alternative because of memory constraints. */
3926 before = after = NULL;
3927 for (i = 0; i < n_operands; i++)
3928 if (! curr_static_id->operand[i].is_operator
3929 && process_address (i, check_only_p, &before, &after))
3931 if (check_only_p)
3932 return true;
3933 change_p = true;
3934 lra_update_dup (curr_id, i);
3937 if (change_p)
3938 /* If we've changed the instruction then any alternative that
3939 we chose previously may no longer be valid. */
3940 lra_set_used_insn_alternative (curr_insn, LRA_UNKNOWN_ALT);
3942 if (! check_only_p && curr_insn_set != NULL_RTX
3943 && check_and_process_move (&change_p, &sec_mem_p))
3944 return change_p;
3946 try_swapped:
3948 reused_alternative_num = check_only_p ? LRA_UNKNOWN_ALT : curr_id->used_insn_alternative;
3949 if (lra_dump_file != NULL && reused_alternative_num >= 0)
3950 fprintf (lra_dump_file, "Reusing alternative %d for insn #%u\n",
3951 reused_alternative_num, INSN_UID (curr_insn));
3953 if (process_alt_operands (reused_alternative_num))
3954 alt_p = true;
3956 if (check_only_p)
3957 return ! alt_p || best_losers != 0;
3959 /* If insn is commutative (it's safe to exchange a certain pair of
3960 operands) then we need to try each alternative twice, the second
3961 time matching those two operands as if we had exchanged them. To
3962 do this, really exchange them in operands.
3964 If we have just tried the alternatives the second time, return
3965 operands to normal and drop through. */
3967 if (reused_alternative_num < 0 && commutative >= 0)
3969 curr_swapped = !curr_swapped;
3970 if (curr_swapped)
3972 swap_operands (commutative);
3973 goto try_swapped;
3975 else
3976 swap_operands (commutative);
3979 if (! alt_p && ! sec_mem_p)
3981 /* No alternative works with reloads?? */
3982 if (INSN_CODE (curr_insn) >= 0)
3983 fatal_insn ("unable to generate reloads for:", curr_insn);
3984 error_for_asm (curr_insn,
3985 "inconsistent operand constraints in an %<asm%>");
3986 lra_asm_error_p = true;
3987 /* Avoid further trouble with this insn. Don't generate use
3988 pattern here as we could use the insn SP offset. */
3989 lra_set_insn_deleted (curr_insn);
3990 return true;
3993 /* If the best alternative is with operands 1 and 2 swapped, swap
3994 them. Update the operand numbers of any reloads already
3995 pushed. */
3997 if (goal_alt_swapped)
3999 if (lra_dump_file != NULL)
4000 fprintf (lra_dump_file, " Commutative operand exchange in insn %u\n",
4001 INSN_UID (curr_insn));
4003 /* Swap the duplicates too. */
4004 swap_operands (commutative);
4005 change_p = true;
4008 /* Some targets' TARGET_SECONDARY_MEMORY_NEEDED (e.g. x86) are defined
4009 too conservatively. So we use the secondary memory only if there
4010 is no any alternative without reloads. */
4011 use_sec_mem_p = false;
4012 if (! alt_p)
4013 use_sec_mem_p = true;
4014 else if (sec_mem_p)
4016 for (i = 0; i < n_operands; i++)
4017 if (! goal_alt_win[i] && ! goal_alt_match_win[i])
4018 break;
4019 use_sec_mem_p = i < n_operands;
4022 if (use_sec_mem_p)
4024 int in = -1, out = -1;
4025 rtx new_reg, src, dest, rld;
4026 machine_mode sec_mode, rld_mode;
4028 lra_assert (curr_insn_set != NULL_RTX && sec_mem_p);
4029 dest = SET_DEST (curr_insn_set);
4030 src = SET_SRC (curr_insn_set);
4031 for (i = 0; i < n_operands; i++)
4032 if (*curr_id->operand_loc[i] == dest)
4033 out = i;
4034 else if (*curr_id->operand_loc[i] == src)
4035 in = i;
4036 for (i = 0; i < curr_static_id->n_dups; i++)
4037 if (out < 0 && *curr_id->dup_loc[i] == dest)
4038 out = curr_static_id->dup_num[i];
4039 else if (in < 0 && *curr_id->dup_loc[i] == src)
4040 in = curr_static_id->dup_num[i];
4041 lra_assert (out >= 0 && in >= 0
4042 && curr_static_id->operand[out].type == OP_OUT
4043 && curr_static_id->operand[in].type == OP_IN);
4044 rld = partial_subreg_p (GET_MODE (src), GET_MODE (dest)) ? src : dest;
4045 rld_mode = GET_MODE (rld);
4046 sec_mode = targetm.secondary_memory_needed_mode (rld_mode);
4047 new_reg = lra_create_new_reg (sec_mode, NULL_RTX,
4048 NO_REGS, "secondary");
4049 /* If the mode is changed, it should be wider. */
4050 lra_assert (!partial_subreg_p (sec_mode, rld_mode));
4051 if (sec_mode != rld_mode)
4053 /* If the target says specifically to use another mode for
4054 secondary memory moves we cannot reuse the original
4055 insn. */
4056 after = emit_spill_move (false, new_reg, dest);
4057 lra_process_new_insns (curr_insn, NULL, after,
4058 "Inserting the sec. move");
4059 /* We may have non null BEFORE here (e.g. after address
4060 processing. */
4061 push_to_sequence (before);
4062 before = emit_spill_move (true, new_reg, src);
4063 emit_insn (before);
4064 before = get_insns ();
4065 end_sequence ();
4066 lra_process_new_insns (curr_insn, before, NULL, "Changing on");
4067 lra_set_insn_deleted (curr_insn);
4069 else if (dest == rld)
4071 *curr_id->operand_loc[out] = new_reg;
4072 lra_update_dup (curr_id, out);
4073 after = emit_spill_move (false, new_reg, dest);
4074 lra_process_new_insns (curr_insn, NULL, after,
4075 "Inserting the sec. move");
4077 else
4079 *curr_id->operand_loc[in] = new_reg;
4080 lra_update_dup (curr_id, in);
4081 /* See comments above. */
4082 push_to_sequence (before);
4083 before = emit_spill_move (true, new_reg, src);
4084 emit_insn (before);
4085 before = get_insns ();
4086 end_sequence ();
4087 lra_process_new_insns (curr_insn, before, NULL,
4088 "Inserting the sec. move");
4090 lra_update_insn_regno_info (curr_insn);
4091 return true;
4094 lra_assert (goal_alt_number >= 0);
4095 lra_set_used_insn_alternative (curr_insn, goal_alt_number);
4097 if (lra_dump_file != NULL)
4099 const char *p;
4101 fprintf (lra_dump_file, " Choosing alt %d in insn %u:",
4102 goal_alt_number, INSN_UID (curr_insn));
4103 for (i = 0; i < n_operands; i++)
4105 p = (curr_static_id->operand_alternative
4106 [goal_alt_number * n_operands + i].constraint);
4107 if (*p == '\0')
4108 continue;
4109 fprintf (lra_dump_file, " (%d) ", i);
4110 for (; *p != '\0' && *p != ',' && *p != '#'; p++)
4111 fputc (*p, lra_dump_file);
4113 if (INSN_CODE (curr_insn) >= 0
4114 && (p = get_insn_name (INSN_CODE (curr_insn))) != NULL)
4115 fprintf (lra_dump_file, " {%s}", p);
4116 if (maybe_ne (curr_id->sp_offset, 0))
4118 fprintf (lra_dump_file, " (sp_off=");
4119 print_dec (curr_id->sp_offset, lra_dump_file);
4120 fprintf (lra_dump_file, ")");
4122 fprintf (lra_dump_file, "\n");
4125 /* Right now, for any pair of operands I and J that are required to
4126 match, with J < I, goal_alt_matches[I] is J. Add I to
4127 goal_alt_matched[J]. */
4129 for (i = 0; i < n_operands; i++)
4130 if ((j = goal_alt_matches[i]) >= 0)
4132 for (k = 0; goal_alt_matched[j][k] >= 0; k++)
4134 /* We allow matching one output operand and several input
4135 operands. */
4136 lra_assert (k == 0
4137 || (curr_static_id->operand[j].type == OP_OUT
4138 && curr_static_id->operand[i].type == OP_IN
4139 && (curr_static_id->operand
4140 [goal_alt_matched[j][0]].type == OP_IN)));
4141 goal_alt_matched[j][k] = i;
4142 goal_alt_matched[j][k + 1] = -1;
4145 for (i = 0; i < n_operands; i++)
4146 goal_alt_win[i] |= goal_alt_match_win[i];
4148 /* Any constants that aren't allowed and can't be reloaded into
4149 registers are here changed into memory references. */
4150 for (i = 0; i < n_operands; i++)
4151 if (goal_alt_win[i])
4153 int regno;
4154 enum reg_class new_class;
4155 rtx reg = *curr_id->operand_loc[i];
4157 if (GET_CODE (reg) == SUBREG)
4158 reg = SUBREG_REG (reg);
4160 if (REG_P (reg) && (regno = REGNO (reg)) >= FIRST_PSEUDO_REGISTER)
4162 bool ok_p = in_class_p (reg, goal_alt[i], &new_class);
4164 if (new_class != NO_REGS && get_reg_class (regno) != new_class)
4166 lra_assert (ok_p);
4167 lra_change_class (regno, new_class, " Change to", true);
4171 else
4173 const char *constraint;
4174 char c;
4175 rtx op = *curr_id->operand_loc[i];
4176 rtx subreg = NULL_RTX;
4177 machine_mode mode = curr_operand_mode[i];
4179 if (GET_CODE (op) == SUBREG)
4181 subreg = op;
4182 op = SUBREG_REG (op);
4183 mode = GET_MODE (op);
4186 if (CONST_POOL_OK_P (mode, op)
4187 && ((targetm.preferred_reload_class
4188 (op, (enum reg_class) goal_alt[i]) == NO_REGS)
4189 || no_input_reloads_p))
4191 rtx tem = force_const_mem (mode, op);
4193 change_p = true;
4194 if (subreg != NULL_RTX)
4195 tem = gen_rtx_SUBREG (mode, tem, SUBREG_BYTE (subreg));
4197 *curr_id->operand_loc[i] = tem;
4198 lra_update_dup (curr_id, i);
4199 process_address (i, false, &before, &after);
4201 /* If the alternative accepts constant pool refs directly
4202 there will be no reload needed at all. */
4203 if (subreg != NULL_RTX)
4204 continue;
4205 /* Skip alternatives before the one requested. */
4206 constraint = (curr_static_id->operand_alternative
4207 [goal_alt_number * n_operands + i].constraint);
4208 for (;
4209 (c = *constraint) && c != ',' && c != '#';
4210 constraint += CONSTRAINT_LEN (c, constraint))
4212 enum constraint_num cn = lookup_constraint (constraint);
4213 if ((insn_extra_memory_constraint (cn)
4214 || insn_extra_special_memory_constraint (cn))
4215 && satisfies_memory_constraint_p (tem, cn))
4216 break;
4218 if (c == '\0' || c == ',' || c == '#')
4219 continue;
4221 goal_alt_win[i] = true;
4225 n_outputs = 0;
4226 outputs[0] = -1;
4227 for (i = 0; i < n_operands; i++)
4229 int regno;
4230 bool optional_p = false;
4231 rtx old, new_reg;
4232 rtx op = *curr_id->operand_loc[i];
4234 if (goal_alt_win[i])
4236 if (goal_alt[i] == NO_REGS
4237 && REG_P (op)
4238 /* When we assign NO_REGS it means that we will not
4239 assign a hard register to the scratch pseudo by
4240 assigment pass and the scratch pseudo will be
4241 spilled. Spilled scratch pseudos are transformed
4242 back to scratches at the LRA end. */
4243 && lra_former_scratch_operand_p (curr_insn, i)
4244 && lra_former_scratch_p (REGNO (op)))
4246 int regno = REGNO (op);
4247 lra_change_class (regno, NO_REGS, " Change to", true);
4248 if (lra_get_regno_hard_regno (regno) >= 0)
4249 /* We don't have to mark all insn affected by the
4250 spilled pseudo as there is only one such insn, the
4251 current one. */
4252 reg_renumber[regno] = -1;
4253 lra_assert (bitmap_single_bit_set_p
4254 (&lra_reg_info[REGNO (op)].insn_bitmap));
4256 /* We can do an optional reload. If the pseudo got a hard
4257 reg, we might improve the code through inheritance. If
4258 it does not get a hard register we coalesce memory/memory
4259 moves later. Ignore move insns to avoid cycling. */
4260 if (! lra_simple_p
4261 && lra_undo_inheritance_iter < LRA_MAX_INHERITANCE_PASSES
4262 && goal_alt[i] != NO_REGS && REG_P (op)
4263 && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER
4264 && regno < new_regno_start
4265 && ! lra_former_scratch_p (regno)
4266 && reg_renumber[regno] < 0
4267 /* Check that the optional reload pseudo will be able to
4268 hold given mode value. */
4269 && ! (prohibited_class_reg_set_mode_p
4270 (goal_alt[i], reg_class_contents[goal_alt[i]],
4271 PSEUDO_REGNO_MODE (regno)))
4272 && (curr_insn_set == NULL_RTX
4273 || !((REG_P (SET_SRC (curr_insn_set))
4274 || MEM_P (SET_SRC (curr_insn_set))
4275 || GET_CODE (SET_SRC (curr_insn_set)) == SUBREG)
4276 && (REG_P (SET_DEST (curr_insn_set))
4277 || MEM_P (SET_DEST (curr_insn_set))
4278 || GET_CODE (SET_DEST (curr_insn_set)) == SUBREG))))
4279 optional_p = true;
4280 else if (goal_alt_matched[i][0] != -1
4281 && curr_static_id->operand[i].type == OP_OUT
4282 && (curr_static_id->operand_alternative
4283 [goal_alt_number * n_operands + i].earlyclobber)
4284 && REG_P (op))
4286 for (j = 0; goal_alt_matched[i][j] != -1; j++)
4288 rtx op2 = *curr_id->operand_loc[goal_alt_matched[i][j]];
4290 if (REG_P (op2) && REGNO (op) != REGNO (op2))
4291 break;
4293 if (goal_alt_matched[i][j] != -1)
4295 /* Generate reloads for different output and matched
4296 input registers. This is the easiest way to avoid
4297 creation of non-existing register conflicts in
4298 lra-lives.c. */
4299 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i], &before,
4300 &after, TRUE);
4301 outputs[n_outputs++] = i;
4302 outputs[n_outputs] = -1;
4304 continue;
4306 else
4307 continue;
4310 /* Operands that match previous ones have already been handled. */
4311 if (goal_alt_matches[i] >= 0)
4312 continue;
4314 /* We should not have an operand with a non-offsettable address
4315 appearing where an offsettable address will do. It also may
4316 be a case when the address should be special in other words
4317 not a general one (e.g. it needs no index reg). */
4318 if (goal_alt_matched[i][0] == -1 && goal_alt_offmemok[i] && MEM_P (op))
4320 enum reg_class rclass;
4321 rtx *loc = &XEXP (op, 0);
4322 enum rtx_code code = GET_CODE (*loc);
4324 push_to_sequence (before);
4325 rclass = base_reg_class (GET_MODE (op), MEM_ADDR_SPACE (op),
4326 MEM, SCRATCH);
4327 if (GET_RTX_CLASS (code) == RTX_AUTOINC)
4328 new_reg = emit_inc (rclass, *loc, *loc,
4329 /* This value does not matter for MODIFY. */
4330 GET_MODE_SIZE (GET_MODE (op)));
4331 else if (get_reload_reg (OP_IN, Pmode, *loc, rclass, FALSE,
4332 "offsetable address", &new_reg))
4334 rtx addr = *loc;
4335 enum rtx_code code = GET_CODE (addr);
4337 if (code == AND && CONST_INT_P (XEXP (addr, 1)))
4338 /* (and ... (const_int -X)) is used to align to X bytes. */
4339 addr = XEXP (*loc, 0);
4340 lra_emit_move (new_reg, addr);
4341 if (addr != *loc)
4342 emit_move_insn (new_reg, gen_rtx_AND (GET_MODE (new_reg), new_reg, XEXP (*loc, 1)));
4344 before = get_insns ();
4345 end_sequence ();
4346 *loc = new_reg;
4347 lra_update_dup (curr_id, i);
4349 else if (goal_alt_matched[i][0] == -1)
4351 machine_mode mode;
4352 rtx reg, *loc;
4353 int hard_regno;
4354 enum op_type type = curr_static_id->operand[i].type;
4356 loc = curr_id->operand_loc[i];
4357 mode = curr_operand_mode[i];
4358 if (GET_CODE (*loc) == SUBREG)
4360 reg = SUBREG_REG (*loc);
4361 poly_int64 byte = SUBREG_BYTE (*loc);
4362 if (REG_P (reg)
4363 /* Strict_low_part requires reloading the register and not
4364 just the subreg. Likewise for a strict subreg no wider
4365 than a word for WORD_REGISTER_OPERATIONS targets. */
4366 && (curr_static_id->operand[i].strict_low
4367 || (!paradoxical_subreg_p (mode, GET_MODE (reg))
4368 && (hard_regno
4369 = get_try_hard_regno (REGNO (reg))) >= 0
4370 && (simplify_subreg_regno
4371 (hard_regno,
4372 GET_MODE (reg), byte, mode) < 0)
4373 && (goal_alt[i] == NO_REGS
4374 || (simplify_subreg_regno
4375 (ira_class_hard_regs[goal_alt[i]][0],
4376 GET_MODE (reg), byte, mode) >= 0)))
4377 || (partial_subreg_p (mode, GET_MODE (reg))
4378 && known_le (GET_MODE_SIZE (GET_MODE (reg)),
4379 UNITS_PER_WORD)
4380 && WORD_REGISTER_OPERATIONS)))
4382 /* An OP_INOUT is required when reloading a subreg of a
4383 mode wider than a word to ensure that data beyond the
4384 word being reloaded is preserved. Also automatically
4385 ensure that strict_low_part reloads are made into
4386 OP_INOUT which should already be true from the backend
4387 constraints. */
4388 if (type == OP_OUT
4389 && (curr_static_id->operand[i].strict_low
4390 || read_modify_subreg_p (*loc)))
4391 type = OP_INOUT;
4392 loc = &SUBREG_REG (*loc);
4393 mode = GET_MODE (*loc);
4396 old = *loc;
4397 if (get_reload_reg (type, mode, old, goal_alt[i],
4398 loc != curr_id->operand_loc[i], "", &new_reg)
4399 && type != OP_OUT)
4401 push_to_sequence (before);
4402 lra_emit_move (new_reg, old);
4403 before = get_insns ();
4404 end_sequence ();
4406 *loc = new_reg;
4407 if (type != OP_IN
4408 && find_reg_note (curr_insn, REG_UNUSED, old) == NULL_RTX)
4410 start_sequence ();
4411 lra_emit_move (type == OP_INOUT ? copy_rtx (old) : old, new_reg);
4412 emit_insn (after);
4413 after = get_insns ();
4414 end_sequence ();
4415 *loc = new_reg;
4417 for (j = 0; j < goal_alt_dont_inherit_ops_num; j++)
4418 if (goal_alt_dont_inherit_ops[j] == i)
4420 lra_set_regno_unique_value (REGNO (new_reg));
4421 break;
4423 lra_update_dup (curr_id, i);
4425 else if (curr_static_id->operand[i].type == OP_IN
4426 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4427 == OP_OUT
4428 || (curr_static_id->operand[goal_alt_matched[i][0]].type
4429 == OP_INOUT
4430 && (operands_match_p
4431 (*curr_id->operand_loc[i],
4432 *curr_id->operand_loc[goal_alt_matched[i][0]],
4433 -1)))))
4435 /* generate reloads for input and matched outputs. */
4436 match_inputs[0] = i;
4437 match_inputs[1] = -1;
4438 match_reload (goal_alt_matched[i][0], match_inputs, outputs,
4439 goal_alt[i], &before, &after,
4440 curr_static_id->operand_alternative
4441 [goal_alt_number * n_operands + goal_alt_matched[i][0]]
4442 .earlyclobber);
4444 else if ((curr_static_id->operand[i].type == OP_OUT
4445 || (curr_static_id->operand[i].type == OP_INOUT
4446 && (operands_match_p
4447 (*curr_id->operand_loc[i],
4448 *curr_id->operand_loc[goal_alt_matched[i][0]],
4449 -1))))
4450 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4451 == OP_IN))
4452 /* Generate reloads for output and matched inputs. */
4453 match_reload (i, goal_alt_matched[i], outputs, goal_alt[i], &before,
4454 &after, curr_static_id->operand_alternative
4455 [goal_alt_number * n_operands + i].earlyclobber);
4456 else if (curr_static_id->operand[i].type == OP_IN
4457 && (curr_static_id->operand[goal_alt_matched[i][0]].type
4458 == OP_IN))
4460 /* Generate reloads for matched inputs. */
4461 match_inputs[0] = i;
4462 for (j = 0; (k = goal_alt_matched[i][j]) >= 0; j++)
4463 match_inputs[j + 1] = k;
4464 match_inputs[j + 1] = -1;
4465 match_reload (-1, match_inputs, outputs, goal_alt[i], &before,
4466 &after, false);
4468 else
4469 /* We must generate code in any case when function
4470 process_alt_operands decides that it is possible. */
4471 gcc_unreachable ();
4473 /* Memorise processed outputs so that output remaining to be processed
4474 can avoid using the same register value (see match_reload). */
4475 if (curr_static_id->operand[i].type == OP_OUT)
4477 outputs[n_outputs++] = i;
4478 outputs[n_outputs] = -1;
4481 if (optional_p)
4483 rtx reg = op;
4485 lra_assert (REG_P (reg));
4486 regno = REGNO (reg);
4487 op = *curr_id->operand_loc[i]; /* Substitution. */
4488 if (GET_CODE (op) == SUBREG)
4489 op = SUBREG_REG (op);
4490 gcc_assert (REG_P (op) && (int) REGNO (op) >= new_regno_start);
4491 bitmap_set_bit (&lra_optional_reload_pseudos, REGNO (op));
4492 lra_reg_info[REGNO (op)].restore_rtx = reg;
4493 if (lra_dump_file != NULL)
4494 fprintf (lra_dump_file,
4495 " Making reload reg %d for reg %d optional\n",
4496 REGNO (op), regno);
4499 if (before != NULL_RTX || after != NULL_RTX
4500 || max_regno_before != max_reg_num ())
4501 change_p = true;
4502 if (change_p)
4504 lra_update_operator_dups (curr_id);
4505 /* Something changes -- process the insn. */
4506 lra_update_insn_regno_info (curr_insn);
4508 lra_process_new_insns (curr_insn, before, after, "Inserting insn reload");
4509 return change_p;
4512 /* Return true if INSN satisfies all constraints. In other words, no
4513 reload insns are needed. */
4514 bool
4515 lra_constrain_insn (rtx_insn *insn)
4517 int saved_new_regno_start = new_regno_start;
4518 int saved_new_insn_uid_start = new_insn_uid_start;
4519 bool change_p;
4521 curr_insn = insn;
4522 curr_id = lra_get_insn_recog_data (curr_insn);
4523 curr_static_id = curr_id->insn_static_data;
4524 new_insn_uid_start = get_max_uid ();
4525 new_regno_start = max_reg_num ();
4526 change_p = curr_insn_transform (true);
4527 new_regno_start = saved_new_regno_start;
4528 new_insn_uid_start = saved_new_insn_uid_start;
4529 return ! change_p;
4532 /* Return true if X is in LIST. */
4533 static bool
4534 in_list_p (rtx x, rtx list)
4536 for (; list != NULL_RTX; list = XEXP (list, 1))
4537 if (XEXP (list, 0) == x)
4538 return true;
4539 return false;
4542 /* Return true if X contains an allocatable hard register (if
4543 HARD_REG_P) or a (spilled if SPILLED_P) pseudo. */
4544 static bool
4545 contains_reg_p (rtx x, bool hard_reg_p, bool spilled_p)
4547 int i, j;
4548 const char *fmt;
4549 enum rtx_code code;
4551 code = GET_CODE (x);
4552 if (REG_P (x))
4554 int regno = REGNO (x);
4555 HARD_REG_SET alloc_regs;
4557 if (hard_reg_p)
4559 if (regno >= FIRST_PSEUDO_REGISTER)
4560 regno = lra_get_regno_hard_regno (regno);
4561 if (regno < 0)
4562 return false;
4563 COMPL_HARD_REG_SET (alloc_regs, lra_no_alloc_regs);
4564 return overlaps_hard_reg_set_p (alloc_regs, GET_MODE (x), regno);
4566 else
4568 if (regno < FIRST_PSEUDO_REGISTER)
4569 return false;
4570 if (! spilled_p)
4571 return true;
4572 return lra_get_regno_hard_regno (regno) < 0;
4575 fmt = GET_RTX_FORMAT (code);
4576 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4578 if (fmt[i] == 'e')
4580 if (contains_reg_p (XEXP (x, i), hard_reg_p, spilled_p))
4581 return true;
4583 else if (fmt[i] == 'E')
4585 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4586 if (contains_reg_p (XVECEXP (x, i, j), hard_reg_p, spilled_p))
4587 return true;
4590 return false;
4593 /* Process all regs in location *LOC and change them on equivalent
4594 substitution. Return true if any change was done. */
4595 static bool
4596 loc_equivalence_change_p (rtx *loc)
4598 rtx subst, reg, x = *loc;
4599 bool result = false;
4600 enum rtx_code code = GET_CODE (x);
4601 const char *fmt;
4602 int i, j;
4604 if (code == SUBREG)
4606 reg = SUBREG_REG (x);
4607 if ((subst = get_equiv_with_elimination (reg, curr_insn)) != reg
4608 && GET_MODE (subst) == VOIDmode)
4610 /* We cannot reload debug location. Simplify subreg here
4611 while we know the inner mode. */
4612 *loc = simplify_gen_subreg (GET_MODE (x), subst,
4613 GET_MODE (reg), SUBREG_BYTE (x));
4614 return true;
4617 if (code == REG && (subst = get_equiv_with_elimination (x, curr_insn)) != x)
4619 *loc = subst;
4620 return true;
4623 /* Scan all the operand sub-expressions. */
4624 fmt = GET_RTX_FORMAT (code);
4625 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4627 if (fmt[i] == 'e')
4628 result = loc_equivalence_change_p (&XEXP (x, i)) || result;
4629 else if (fmt[i] == 'E')
4630 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4631 result
4632 = loc_equivalence_change_p (&XVECEXP (x, i, j)) || result;
4634 return result;
4637 /* Similar to loc_equivalence_change_p, but for use as
4638 simplify_replace_fn_rtx callback. DATA is insn for which the
4639 elimination is done. If it null we don't do the elimination. */
4640 static rtx
4641 loc_equivalence_callback (rtx loc, const_rtx, void *data)
4643 if (!REG_P (loc))
4644 return NULL_RTX;
4646 rtx subst = (data == NULL
4647 ? get_equiv (loc) : get_equiv_with_elimination (loc, (rtx_insn *) data));
4648 if (subst != loc)
4649 return subst;
4651 return NULL_RTX;
4654 /* Maximum number of generated reload insns per an insn. It is for
4655 preventing this pass cycling in a bug case. */
4656 #define MAX_RELOAD_INSNS_NUMBER LRA_MAX_INSN_RELOADS
4658 /* The current iteration number of this LRA pass. */
4659 int lra_constraint_iter;
4661 /* True if we substituted equiv which needs checking register
4662 allocation correctness because the equivalent value contains
4663 allocatable hard registers or when we restore multi-register
4664 pseudo. */
4665 bool lra_risky_transformations_p;
4667 /* Return true if REGNO is referenced in more than one block. */
4668 static bool
4669 multi_block_pseudo_p (int regno)
4671 basic_block bb = NULL;
4672 unsigned int uid;
4673 bitmap_iterator bi;
4675 if (regno < FIRST_PSEUDO_REGISTER)
4676 return false;
4678 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
4679 if (bb == NULL)
4680 bb = BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn);
4681 else if (BLOCK_FOR_INSN (lra_insn_recog_data[uid]->insn) != bb)
4682 return true;
4683 return false;
4686 /* Return true if LIST contains a deleted insn. */
4687 static bool
4688 contains_deleted_insn_p (rtx_insn_list *list)
4690 for (; list != NULL_RTX; list = list->next ())
4691 if (NOTE_P (list->insn ())
4692 && NOTE_KIND (list->insn ()) == NOTE_INSN_DELETED)
4693 return true;
4694 return false;
4697 /* Return true if X contains a pseudo dying in INSN. */
4698 static bool
4699 dead_pseudo_p (rtx x, rtx_insn *insn)
4701 int i, j;
4702 const char *fmt;
4703 enum rtx_code code;
4705 if (REG_P (x))
4706 return (insn != NULL_RTX
4707 && find_regno_note (insn, REG_DEAD, REGNO (x)) != NULL_RTX);
4708 code = GET_CODE (x);
4709 fmt = GET_RTX_FORMAT (code);
4710 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4712 if (fmt[i] == 'e')
4714 if (dead_pseudo_p (XEXP (x, i), insn))
4715 return true;
4717 else if (fmt[i] == 'E')
4719 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4720 if (dead_pseudo_p (XVECEXP (x, i, j), insn))
4721 return true;
4724 return false;
4727 /* Return true if INSN contains a dying pseudo in INSN right hand
4728 side. */
4729 static bool
4730 insn_rhs_dead_pseudo_p (rtx_insn *insn)
4732 rtx set = single_set (insn);
4734 gcc_assert (set != NULL);
4735 return dead_pseudo_p (SET_SRC (set), insn);
4738 /* Return true if any init insn of REGNO contains a dying pseudo in
4739 insn right hand side. */
4740 static bool
4741 init_insn_rhs_dead_pseudo_p (int regno)
4743 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4745 if (insns == NULL)
4746 return false;
4747 for (; insns != NULL_RTX; insns = insns->next ())
4748 if (insn_rhs_dead_pseudo_p (insns->insn ()))
4749 return true;
4750 return false;
4753 /* Return TRUE if REGNO has a reverse equivalence. The equivalence is
4754 reverse only if we have one init insn with given REGNO as a
4755 source. */
4756 static bool
4757 reverse_equiv_p (int regno)
4759 rtx_insn_list *insns = ira_reg_equiv[regno].init_insns;
4760 rtx set;
4762 if (insns == NULL)
4763 return false;
4764 if (! INSN_P (insns->insn ())
4765 || insns->next () != NULL)
4766 return false;
4767 if ((set = single_set (insns->insn ())) == NULL_RTX)
4768 return false;
4769 return REG_P (SET_SRC (set)) && (int) REGNO (SET_SRC (set)) == regno;
4772 /* Return TRUE if REGNO was reloaded in an equivalence init insn. We
4773 call this function only for non-reverse equivalence. */
4774 static bool
4775 contains_reloaded_insn_p (int regno)
4777 rtx set;
4778 rtx_insn_list *list = ira_reg_equiv[regno].init_insns;
4780 for (; list != NULL; list = list->next ())
4781 if ((set = single_set (list->insn ())) == NULL_RTX
4782 || ! REG_P (SET_DEST (set))
4783 || (int) REGNO (SET_DEST (set)) != regno)
4784 return true;
4785 return false;
4788 /* Entry function of LRA constraint pass. Return true if the
4789 constraint pass did change the code. */
4790 bool
4791 lra_constraints (bool first_p)
4793 bool changed_p;
4794 int i, hard_regno, new_insns_num;
4795 unsigned int min_len, new_min_len, uid;
4796 rtx set, x, reg, dest_reg;
4797 basic_block last_bb;
4798 bitmap_iterator bi;
4800 lra_constraint_iter++;
4801 if (lra_dump_file != NULL)
4802 fprintf (lra_dump_file, "\n********** Local #%d: **********\n\n",
4803 lra_constraint_iter);
4804 changed_p = false;
4805 if (pic_offset_table_rtx
4806 && REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
4807 lra_risky_transformations_p = true;
4808 else
4809 /* On the first iteration we should check IRA assignment
4810 correctness. In rare cases, the assignments can be wrong as
4811 early clobbers operands are ignored in IRA or usages of
4812 paradoxical sub-registers are not taken into account by
4813 IRA. */
4814 lra_risky_transformations_p = first_p;
4815 new_insn_uid_start = get_max_uid ();
4816 new_regno_start = first_p ? lra_constraint_new_regno_start : max_reg_num ();
4817 /* Mark used hard regs for target stack size calulations. */
4818 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4819 if (lra_reg_info[i].nrefs != 0
4820 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
4822 int j, nregs;
4824 nregs = hard_regno_nregs (hard_regno, lra_reg_info[i].biggest_mode);
4825 for (j = 0; j < nregs; j++)
4826 df_set_regs_ever_live (hard_regno + j, true);
4828 /* Do elimination before the equivalence processing as we can spill
4829 some pseudos during elimination. */
4830 lra_eliminate (false, first_p);
4831 auto_bitmap equiv_insn_bitmap (&reg_obstack);
4832 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4833 if (lra_reg_info[i].nrefs != 0)
4835 ira_reg_equiv[i].profitable_p = true;
4836 reg = regno_reg_rtx[i];
4837 if (lra_get_regno_hard_regno (i) < 0 && (x = get_equiv (reg)) != reg)
4839 bool pseudo_p = contains_reg_p (x, false, false);
4841 /* After RTL transformation, we cannot guarantee that
4842 pseudo in the substitution was not reloaded which might
4843 make equivalence invalid. For example, in reverse
4844 equiv of p0
4846 p0 <- ...
4848 equiv_mem <- p0
4850 the memory address register was reloaded before the 2nd
4851 insn. */
4852 if ((! first_p && pseudo_p)
4853 /* We don't use DF for compilation speed sake. So it
4854 is problematic to update live info when we use an
4855 equivalence containing pseudos in more than one
4856 BB. */
4857 || (pseudo_p && multi_block_pseudo_p (i))
4858 /* If an init insn was deleted for some reason, cancel
4859 the equiv. We could update the equiv insns after
4860 transformations including an equiv insn deletion
4861 but it is not worthy as such cases are extremely
4862 rare. */
4863 || contains_deleted_insn_p (ira_reg_equiv[i].init_insns)
4864 /* If it is not a reverse equivalence, we check that a
4865 pseudo in rhs of the init insn is not dying in the
4866 insn. Otherwise, the live info at the beginning of
4867 the corresponding BB might be wrong after we
4868 removed the insn. When the equiv can be a
4869 constant, the right hand side of the init insn can
4870 be a pseudo. */
4871 || (! reverse_equiv_p (i)
4872 && (init_insn_rhs_dead_pseudo_p (i)
4873 /* If we reloaded the pseudo in an equivalence
4874 init insn, we cannot remove the equiv init
4875 insns and the init insns might write into
4876 const memory in this case. */
4877 || contains_reloaded_insn_p (i)))
4878 /* Prevent access beyond equivalent memory for
4879 paradoxical subregs. */
4880 || (MEM_P (x)
4881 && maybe_gt (GET_MODE_SIZE (lra_reg_info[i].biggest_mode),
4882 GET_MODE_SIZE (GET_MODE (x))))
4883 || (pic_offset_table_rtx
4884 && ((CONST_POOL_OK_P (PSEUDO_REGNO_MODE (i), x)
4885 && (targetm.preferred_reload_class
4886 (x, lra_get_allocno_class (i)) == NO_REGS))
4887 || contains_symbol_ref_p (x))))
4888 ira_reg_equiv[i].defined_p = false;
4889 if (contains_reg_p (x, false, true))
4890 ira_reg_equiv[i].profitable_p = false;
4891 if (get_equiv (reg) != reg)
4892 bitmap_ior_into (equiv_insn_bitmap, &lra_reg_info[i].insn_bitmap);
4895 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
4896 update_equiv (i);
4897 /* We should add all insns containing pseudos which should be
4898 substituted by their equivalences. */
4899 EXECUTE_IF_SET_IN_BITMAP (equiv_insn_bitmap, 0, uid, bi)
4900 lra_push_insn_by_uid (uid);
4901 min_len = lra_insn_stack_length ();
4902 new_insns_num = 0;
4903 last_bb = NULL;
4904 changed_p = false;
4905 while ((new_min_len = lra_insn_stack_length ()) != 0)
4907 curr_insn = lra_pop_insn ();
4908 --new_min_len;
4909 curr_bb = BLOCK_FOR_INSN (curr_insn);
4910 if (curr_bb != last_bb)
4912 last_bb = curr_bb;
4913 bb_reload_num = lra_curr_reload_num;
4915 if (min_len > new_min_len)
4917 min_len = new_min_len;
4918 new_insns_num = 0;
4920 if (new_insns_num > MAX_RELOAD_INSNS_NUMBER)
4921 internal_error
4922 ("maximum number of generated reload insns per insn achieved (%d)",
4923 MAX_RELOAD_INSNS_NUMBER);
4924 new_insns_num++;
4925 if (DEBUG_INSN_P (curr_insn))
4927 /* We need to check equivalence in debug insn and change
4928 pseudo to the equivalent value if necessary. */
4929 curr_id = lra_get_insn_recog_data (curr_insn);
4930 if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn)))
4932 rtx old = *curr_id->operand_loc[0];
4933 *curr_id->operand_loc[0]
4934 = simplify_replace_fn_rtx (old, NULL_RTX,
4935 loc_equivalence_callback, curr_insn);
4936 if (old != *curr_id->operand_loc[0])
4938 lra_update_insn_regno_info (curr_insn);
4939 changed_p = true;
4943 else if (INSN_P (curr_insn))
4945 if ((set = single_set (curr_insn)) != NULL_RTX)
4947 dest_reg = SET_DEST (set);
4948 /* The equivalence pseudo could be set up as SUBREG in a
4949 case when it is a call restore insn in a mode
4950 different from the pseudo mode. */
4951 if (GET_CODE (dest_reg) == SUBREG)
4952 dest_reg = SUBREG_REG (dest_reg);
4953 if ((REG_P (dest_reg)
4954 && (x = get_equiv (dest_reg)) != dest_reg
4955 /* Remove insns which set up a pseudo whose value
4956 cannot be changed. Such insns might be not in
4957 init_insns because we don't update equiv data
4958 during insn transformations.
4960 As an example, let suppose that a pseudo got
4961 hard register and on the 1st pass was not
4962 changed to equivalent constant. We generate an
4963 additional insn setting up the pseudo because of
4964 secondary memory movement. Then the pseudo is
4965 spilled and we use the equiv constant. In this
4966 case we should remove the additional insn and
4967 this insn is not init_insns list. */
4968 && (! MEM_P (x) || MEM_READONLY_P (x)
4969 /* Check that this is actually an insn setting
4970 up the equivalence. */
4971 || in_list_p (curr_insn,
4972 ira_reg_equiv
4973 [REGNO (dest_reg)].init_insns)))
4974 || (((x = get_equiv (SET_SRC (set))) != SET_SRC (set))
4975 && in_list_p (curr_insn,
4976 ira_reg_equiv
4977 [REGNO (SET_SRC (set))].init_insns)))
4979 /* This is equiv init insn of pseudo which did not get a
4980 hard register -- remove the insn. */
4981 if (lra_dump_file != NULL)
4983 fprintf (lra_dump_file,
4984 " Removing equiv init insn %i (freq=%d)\n",
4985 INSN_UID (curr_insn),
4986 REG_FREQ_FROM_BB (BLOCK_FOR_INSN (curr_insn)));
4987 dump_insn_slim (lra_dump_file, curr_insn);
4989 if (contains_reg_p (x, true, false))
4990 lra_risky_transformations_p = true;
4991 lra_set_insn_deleted (curr_insn);
4992 continue;
4995 curr_id = lra_get_insn_recog_data (curr_insn);
4996 curr_static_id = curr_id->insn_static_data;
4997 init_curr_insn_input_reloads ();
4998 init_curr_operand_mode ();
4999 if (curr_insn_transform (false))
5000 changed_p = true;
5001 /* Check non-transformed insns too for equiv change as USE
5002 or CLOBBER don't need reloads but can contain pseudos
5003 being changed on their equivalences. */
5004 else if (bitmap_bit_p (equiv_insn_bitmap, INSN_UID (curr_insn))
5005 && loc_equivalence_change_p (&PATTERN (curr_insn)))
5007 lra_update_insn_regno_info (curr_insn);
5008 changed_p = true;
5013 /* If we used a new hard regno, changed_p should be true because the
5014 hard reg is assigned to a new pseudo. */
5015 if (flag_checking && !changed_p)
5017 for (i = FIRST_PSEUDO_REGISTER; i < new_regno_start; i++)
5018 if (lra_reg_info[i].nrefs != 0
5019 && (hard_regno = lra_get_regno_hard_regno (i)) >= 0)
5021 int j, nregs = hard_regno_nregs (hard_regno,
5022 PSEUDO_REGNO_MODE (i));
5024 for (j = 0; j < nregs; j++)
5025 lra_assert (df_regs_ever_live_p (hard_regno + j));
5028 return changed_p;
5031 static void initiate_invariants (void);
5032 static void finish_invariants (void);
5034 /* Initiate the LRA constraint pass. It is done once per
5035 function. */
5036 void
5037 lra_constraints_init (void)
5039 initiate_invariants ();
5042 /* Finalize the LRA constraint pass. It is done once per
5043 function. */
5044 void
5045 lra_constraints_finish (void)
5047 finish_invariants ();
5052 /* Structure describes invariants for ineheritance. */
5053 struct lra_invariant
5055 /* The order number of the invariant. */
5056 int num;
5057 /* The invariant RTX. */
5058 rtx invariant_rtx;
5059 /* The origin insn of the invariant. */
5060 rtx_insn *insn;
5063 typedef lra_invariant invariant_t;
5064 typedef invariant_t *invariant_ptr_t;
5065 typedef const invariant_t *const_invariant_ptr_t;
5067 /* Pointer to the inheritance invariants. */
5068 static vec<invariant_ptr_t> invariants;
5070 /* Allocation pool for the invariants. */
5071 static object_allocator<lra_invariant> *invariants_pool;
5073 /* Hash table for the invariants. */
5074 static htab_t invariant_table;
5076 /* Hash function for INVARIANT. */
5077 static hashval_t
5078 invariant_hash (const void *invariant)
5080 rtx inv = ((const_invariant_ptr_t) invariant)->invariant_rtx;
5081 return lra_rtx_hash (inv);
5084 /* Equal function for invariants INVARIANT1 and INVARIANT2. */
5085 static int
5086 invariant_eq_p (const void *invariant1, const void *invariant2)
5088 rtx inv1 = ((const_invariant_ptr_t) invariant1)->invariant_rtx;
5089 rtx inv2 = ((const_invariant_ptr_t) invariant2)->invariant_rtx;
5091 return rtx_equal_p (inv1, inv2);
5094 /* Insert INVARIANT_RTX into the table if it is not there yet. Return
5095 invariant which is in the table. */
5096 static invariant_ptr_t
5097 insert_invariant (rtx invariant_rtx)
5099 void **entry_ptr;
5100 invariant_t invariant;
5101 invariant_ptr_t invariant_ptr;
5103 invariant.invariant_rtx = invariant_rtx;
5104 entry_ptr = htab_find_slot (invariant_table, &invariant, INSERT);
5105 if (*entry_ptr == NULL)
5107 invariant_ptr = invariants_pool->allocate ();
5108 invariant_ptr->invariant_rtx = invariant_rtx;
5109 invariant_ptr->insn = NULL;
5110 invariants.safe_push (invariant_ptr);
5111 *entry_ptr = (void *) invariant_ptr;
5113 return (invariant_ptr_t) *entry_ptr;
5116 /* Initiate the invariant table. */
5117 static void
5118 initiate_invariants (void)
5120 invariants.create (100);
5121 invariants_pool
5122 = new object_allocator<lra_invariant> ("Inheritance invariants");
5123 invariant_table = htab_create (100, invariant_hash, invariant_eq_p, NULL);
5126 /* Finish the invariant table. */
5127 static void
5128 finish_invariants (void)
5130 htab_delete (invariant_table);
5131 delete invariants_pool;
5132 invariants.release ();
5135 /* Make the invariant table empty. */
5136 static void
5137 clear_invariants (void)
5139 htab_empty (invariant_table);
5140 invariants_pool->release ();
5141 invariants.truncate (0);
5146 /* This page contains code to do inheritance/split
5147 transformations. */
5149 /* Number of reloads passed so far in current EBB. */
5150 static int reloads_num;
5152 /* Number of calls passed so far in current EBB. */
5153 static int calls_num;
5155 /* Current reload pseudo check for validity of elements in
5156 USAGE_INSNS. */
5157 static int curr_usage_insns_check;
5159 /* Info about last usage of registers in EBB to do inheritance/split
5160 transformation. Inheritance transformation is done from a spilled
5161 pseudo and split transformations from a hard register or a pseudo
5162 assigned to a hard register. */
5163 struct usage_insns
5165 /* If the value is equal to CURR_USAGE_INSNS_CHECK, then the member
5166 value INSNS is valid. The insns is chain of optional debug insns
5167 and a finishing non-debug insn using the corresponding reg. The
5168 value is also used to mark the registers which are set up in the
5169 current insn. The negated insn uid is used for this. */
5170 int check;
5171 /* Value of global reloads_num at the last insn in INSNS. */
5172 int reloads_num;
5173 /* Value of global reloads_nums at the last insn in INSNS. */
5174 int calls_num;
5175 /* It can be true only for splitting. And it means that the restore
5176 insn should be put after insn given by the following member. */
5177 bool after_p;
5178 /* Next insns in the current EBB which use the original reg and the
5179 original reg value is not changed between the current insn and
5180 the next insns. In order words, e.g. for inheritance, if we need
5181 to use the original reg value again in the next insns we can try
5182 to use the value in a hard register from a reload insn of the
5183 current insn. */
5184 rtx insns;
5187 /* Map: regno -> corresponding pseudo usage insns. */
5188 static struct usage_insns *usage_insns;
5190 static void
5191 setup_next_usage_insn (int regno, rtx insn, int reloads_num, bool after_p)
5193 usage_insns[regno].check = curr_usage_insns_check;
5194 usage_insns[regno].insns = insn;
5195 usage_insns[regno].reloads_num = reloads_num;
5196 usage_insns[regno].calls_num = calls_num;
5197 usage_insns[regno].after_p = after_p;
5200 /* The function is used to form list REGNO usages which consists of
5201 optional debug insns finished by a non-debug insn using REGNO.
5202 RELOADS_NUM is current number of reload insns processed so far. */
5203 static void
5204 add_next_usage_insn (int regno, rtx_insn *insn, int reloads_num)
5206 rtx next_usage_insns;
5208 if (usage_insns[regno].check == curr_usage_insns_check
5209 && (next_usage_insns = usage_insns[regno].insns) != NULL_RTX
5210 && DEBUG_INSN_P (insn))
5212 /* Check that we did not add the debug insn yet. */
5213 if (next_usage_insns != insn
5214 && (GET_CODE (next_usage_insns) != INSN_LIST
5215 || XEXP (next_usage_insns, 0) != insn))
5216 usage_insns[regno].insns = gen_rtx_INSN_LIST (VOIDmode, insn,
5217 next_usage_insns);
5219 else if (NONDEBUG_INSN_P (insn))
5220 setup_next_usage_insn (regno, insn, reloads_num, false);
5221 else
5222 usage_insns[regno].check = 0;
5225 /* Return first non-debug insn in list USAGE_INSNS. */
5226 static rtx_insn *
5227 skip_usage_debug_insns (rtx usage_insns)
5229 rtx insn;
5231 /* Skip debug insns. */
5232 for (insn = usage_insns;
5233 insn != NULL_RTX && GET_CODE (insn) == INSN_LIST;
5234 insn = XEXP (insn, 1))
5236 return safe_as_a <rtx_insn *> (insn);
5239 /* Return true if we need secondary memory moves for insn in
5240 USAGE_INSNS after inserting inherited pseudo of class INHER_CL
5241 into the insn. */
5242 static bool
5243 check_secondary_memory_needed_p (enum reg_class inher_cl ATTRIBUTE_UNUSED,
5244 rtx usage_insns ATTRIBUTE_UNUSED)
5246 rtx_insn *insn;
5247 rtx set, dest;
5248 enum reg_class cl;
5250 if (inher_cl == ALL_REGS
5251 || (insn = skip_usage_debug_insns (usage_insns)) == NULL_RTX)
5252 return false;
5253 lra_assert (INSN_P (insn));
5254 if ((set = single_set (insn)) == NULL_RTX || ! REG_P (SET_DEST (set)))
5255 return false;
5256 dest = SET_DEST (set);
5257 if (! REG_P (dest))
5258 return false;
5259 lra_assert (inher_cl != NO_REGS);
5260 cl = get_reg_class (REGNO (dest));
5261 return (cl != NO_REGS && cl != ALL_REGS
5262 && targetm.secondary_memory_needed (GET_MODE (dest), inher_cl, cl));
5265 /* Registers involved in inheritance/split in the current EBB
5266 (inheritance/split pseudos and original registers). */
5267 static bitmap_head check_only_regs;
5269 /* Reload pseudos cannot be involded in invariant inheritance in the
5270 current EBB. */
5271 static bitmap_head invalid_invariant_regs;
5273 /* Do inheritance transformations for insn INSN, which defines (if
5274 DEF_P) or uses ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which
5275 instruction in the EBB next uses ORIGINAL_REGNO; it has the same
5276 form as the "insns" field of usage_insns. Return true if we
5277 succeed in such transformation.
5279 The transformations look like:
5281 p <- ... i <- ...
5282 ... p <- i (new insn)
5283 ... =>
5284 <- ... p ... <- ... i ...
5286 ... i <- p (new insn)
5287 <- ... p ... <- ... i ...
5288 ... =>
5289 <- ... p ... <- ... i ...
5290 where p is a spilled original pseudo and i is a new inheritance pseudo.
5293 The inheritance pseudo has the smallest class of two classes CL and
5294 class of ORIGINAL REGNO. */
5295 static bool
5296 inherit_reload_reg (bool def_p, int original_regno,
5297 enum reg_class cl, rtx_insn *insn, rtx next_usage_insns)
5299 if (optimize_function_for_size_p (cfun))
5300 return false;
5302 enum reg_class rclass = lra_get_allocno_class (original_regno);
5303 rtx original_reg = regno_reg_rtx[original_regno];
5304 rtx new_reg, usage_insn;
5305 rtx_insn *new_insns;
5307 lra_assert (! usage_insns[original_regno].after_p);
5308 if (lra_dump_file != NULL)
5309 fprintf (lra_dump_file,
5310 " <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<\n");
5311 if (! ira_reg_classes_intersect_p[cl][rclass])
5313 if (lra_dump_file != NULL)
5315 fprintf (lra_dump_file,
5316 " Rejecting inheritance for %d "
5317 "because of disjoint classes %s and %s\n",
5318 original_regno, reg_class_names[cl],
5319 reg_class_names[rclass]);
5320 fprintf (lra_dump_file,
5321 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5323 return false;
5325 if ((ira_class_subset_p[cl][rclass] && cl != rclass)
5326 /* We don't use a subset of two classes because it can be
5327 NO_REGS. This transformation is still profitable in most
5328 cases even if the classes are not intersected as register
5329 move is probably cheaper than a memory load. */
5330 || ira_class_hard_regs_num[cl] < ira_class_hard_regs_num[rclass])
5332 if (lra_dump_file != NULL)
5333 fprintf (lra_dump_file, " Use smallest class of %s and %s\n",
5334 reg_class_names[cl], reg_class_names[rclass]);
5336 rclass = cl;
5338 if (check_secondary_memory_needed_p (rclass, next_usage_insns))
5340 /* Reject inheritance resulting in secondary memory moves.
5341 Otherwise, there is a danger in LRA cycling. Also such
5342 transformation will be unprofitable. */
5343 if (lra_dump_file != NULL)
5345 rtx_insn *insn = skip_usage_debug_insns (next_usage_insns);
5346 rtx set = single_set (insn);
5348 lra_assert (set != NULL_RTX);
5350 rtx dest = SET_DEST (set);
5352 lra_assert (REG_P (dest));
5353 fprintf (lra_dump_file,
5354 " Rejecting inheritance for insn %d(%s)<-%d(%s) "
5355 "as secondary mem is needed\n",
5356 REGNO (dest), reg_class_names[get_reg_class (REGNO (dest))],
5357 original_regno, reg_class_names[rclass]);
5358 fprintf (lra_dump_file,
5359 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5361 return false;
5363 new_reg = lra_create_new_reg (GET_MODE (original_reg), original_reg,
5364 rclass, "inheritance");
5365 start_sequence ();
5366 if (def_p)
5367 lra_emit_move (original_reg, new_reg);
5368 else
5369 lra_emit_move (new_reg, original_reg);
5370 new_insns = get_insns ();
5371 end_sequence ();
5372 if (NEXT_INSN (new_insns) != NULL_RTX)
5374 if (lra_dump_file != NULL)
5376 fprintf (lra_dump_file,
5377 " Rejecting inheritance %d->%d "
5378 "as it results in 2 or more insns:\n",
5379 original_regno, REGNO (new_reg));
5380 dump_rtl_slim (lra_dump_file, new_insns, NULL, -1, 0);
5381 fprintf (lra_dump_file,
5382 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5384 return false;
5386 lra_substitute_pseudo_within_insn (insn, original_regno, new_reg, false);
5387 lra_update_insn_regno_info (insn);
5388 if (! def_p)
5389 /* We now have a new usage insn for original regno. */
5390 setup_next_usage_insn (original_regno, new_insns, reloads_num, false);
5391 if (lra_dump_file != NULL)
5392 fprintf (lra_dump_file, " Original reg change %d->%d (bb%d):\n",
5393 original_regno, REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5394 lra_reg_info[REGNO (new_reg)].restore_rtx = regno_reg_rtx[original_regno];
5395 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5396 bitmap_set_bit (&check_only_regs, original_regno);
5397 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5398 if (def_p)
5399 lra_process_new_insns (insn, NULL, new_insns,
5400 "Add original<-inheritance");
5401 else
5402 lra_process_new_insns (insn, new_insns, NULL,
5403 "Add inheritance<-original");
5404 while (next_usage_insns != NULL_RTX)
5406 if (GET_CODE (next_usage_insns) != INSN_LIST)
5408 usage_insn = next_usage_insns;
5409 lra_assert (NONDEBUG_INSN_P (usage_insn));
5410 next_usage_insns = NULL;
5412 else
5414 usage_insn = XEXP (next_usage_insns, 0);
5415 lra_assert (DEBUG_INSN_P (usage_insn));
5416 next_usage_insns = XEXP (next_usage_insns, 1);
5418 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5419 DEBUG_INSN_P (usage_insn));
5420 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5421 if (lra_dump_file != NULL)
5423 basic_block bb = BLOCK_FOR_INSN (usage_insn);
5424 fprintf (lra_dump_file,
5425 " Inheritance reuse change %d->%d (bb%d):\n",
5426 original_regno, REGNO (new_reg),
5427 bb ? bb->index : -1);
5428 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5431 if (lra_dump_file != NULL)
5432 fprintf (lra_dump_file,
5433 " >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>\n");
5434 return true;
5437 /* Return true if we need a caller save/restore for pseudo REGNO which
5438 was assigned to a hard register. */
5439 static inline bool
5440 need_for_call_save_p (int regno)
5442 lra_assert (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] >= 0);
5443 return (usage_insns[regno].calls_num < calls_num
5444 && (overlaps_hard_reg_set_p
5445 ((flag_ipa_ra &&
5446 ! hard_reg_set_empty_p (lra_reg_info[regno].actual_call_used_reg_set))
5447 ? lra_reg_info[regno].actual_call_used_reg_set
5448 : call_used_reg_set,
5449 PSEUDO_REGNO_MODE (regno), reg_renumber[regno])
5450 || (targetm.hard_regno_call_part_clobbered
5451 (lra_reg_info[regno].call_insn,
5452 reg_renumber[regno], PSEUDO_REGNO_MODE (regno)))));
5455 /* Global registers occurring in the current EBB. */
5456 static bitmap_head ebb_global_regs;
5458 /* Return true if we need a split for hard register REGNO or pseudo
5459 REGNO which was assigned to a hard register.
5460 POTENTIAL_RELOAD_HARD_REGS contains hard registers which might be
5461 used for reloads since the EBB end. It is an approximation of the
5462 used hard registers in the split range. The exact value would
5463 require expensive calculations. If we were aggressive with
5464 splitting because of the approximation, the split pseudo will save
5465 the same hard register assignment and will be removed in the undo
5466 pass. We still need the approximation because too aggressive
5467 splitting would result in too inaccurate cost calculation in the
5468 assignment pass because of too many generated moves which will be
5469 probably removed in the undo pass. */
5470 static inline bool
5471 need_for_split_p (HARD_REG_SET potential_reload_hard_regs, int regno)
5473 int hard_regno = regno < FIRST_PSEUDO_REGISTER ? regno : reg_renumber[regno];
5475 lra_assert (hard_regno >= 0);
5476 return ((TEST_HARD_REG_BIT (potential_reload_hard_regs, hard_regno)
5477 /* Don't split eliminable hard registers, otherwise we can
5478 split hard registers like hard frame pointer, which
5479 lives on BB start/end according to DF-infrastructure,
5480 when there is a pseudo assigned to the register and
5481 living in the same BB. */
5482 && (regno >= FIRST_PSEUDO_REGISTER
5483 || ! TEST_HARD_REG_BIT (eliminable_regset, hard_regno))
5484 && ! TEST_HARD_REG_BIT (lra_no_alloc_regs, hard_regno)
5485 /* Don't split call clobbered hard regs living through
5486 calls, otherwise we might have a check problem in the
5487 assign sub-pass as in the most cases (exception is a
5488 situation when lra_risky_transformations_p value is
5489 true) the assign pass assumes that all pseudos living
5490 through calls are assigned to call saved hard regs. */
5491 && (regno >= FIRST_PSEUDO_REGISTER
5492 || ! TEST_HARD_REG_BIT (call_used_reg_set, regno)
5493 || usage_insns[regno].calls_num == calls_num)
5494 /* We need at least 2 reloads to make pseudo splitting
5495 profitable. We should provide hard regno splitting in
5496 any case to solve 1st insn scheduling problem when
5497 moving hard register definition up might result in
5498 impossibility to find hard register for reload pseudo of
5499 small register class. */
5500 && (usage_insns[regno].reloads_num
5501 + (regno < FIRST_PSEUDO_REGISTER ? 0 : 3) < reloads_num)
5502 && (regno < FIRST_PSEUDO_REGISTER
5503 /* For short living pseudos, spilling + inheritance can
5504 be considered a substitution for splitting.
5505 Therefore we do not splitting for local pseudos. It
5506 decreases also aggressiveness of splitting. The
5507 minimal number of references is chosen taking into
5508 account that for 2 references splitting has no sense
5509 as we can just spill the pseudo. */
5510 || (regno >= FIRST_PSEUDO_REGISTER
5511 && lra_reg_info[regno].nrefs > 3
5512 && bitmap_bit_p (&ebb_global_regs, regno))))
5513 || (regno >= FIRST_PSEUDO_REGISTER && need_for_call_save_p (regno)));
5516 /* Return class for the split pseudo created from original pseudo with
5517 ALLOCNO_CLASS and MODE which got a hard register HARD_REGNO. We
5518 choose subclass of ALLOCNO_CLASS which contains HARD_REGNO and
5519 results in no secondary memory movements. */
5520 static enum reg_class
5521 choose_split_class (enum reg_class allocno_class,
5522 int hard_regno ATTRIBUTE_UNUSED,
5523 machine_mode mode ATTRIBUTE_UNUSED)
5525 int i;
5526 enum reg_class cl, best_cl = NO_REGS;
5527 enum reg_class hard_reg_class ATTRIBUTE_UNUSED
5528 = REGNO_REG_CLASS (hard_regno);
5530 if (! targetm.secondary_memory_needed (mode, allocno_class, allocno_class)
5531 && TEST_HARD_REG_BIT (reg_class_contents[allocno_class], hard_regno))
5532 return allocno_class;
5533 for (i = 0;
5534 (cl = reg_class_subclasses[allocno_class][i]) != LIM_REG_CLASSES;
5535 i++)
5536 if (! targetm.secondary_memory_needed (mode, cl, hard_reg_class)
5537 && ! targetm.secondary_memory_needed (mode, hard_reg_class, cl)
5538 && TEST_HARD_REG_BIT (reg_class_contents[cl], hard_regno)
5539 && (best_cl == NO_REGS
5540 || ira_class_hard_regs_num[best_cl] < ira_class_hard_regs_num[cl]))
5541 best_cl = cl;
5542 return best_cl;
5545 /* Copy any equivalence information from ORIGINAL_REGNO to NEW_REGNO.
5546 It only makes sense to call this function if NEW_REGNO is always
5547 equal to ORIGINAL_REGNO. */
5549 static void
5550 lra_copy_reg_equiv (unsigned int new_regno, unsigned int original_regno)
5552 if (!ira_reg_equiv[original_regno].defined_p)
5553 return;
5555 ira_expand_reg_equiv ();
5556 ira_reg_equiv[new_regno].defined_p = true;
5557 if (ira_reg_equiv[original_regno].memory)
5558 ira_reg_equiv[new_regno].memory
5559 = copy_rtx (ira_reg_equiv[original_regno].memory);
5560 if (ira_reg_equiv[original_regno].constant)
5561 ira_reg_equiv[new_regno].constant
5562 = copy_rtx (ira_reg_equiv[original_regno].constant);
5563 if (ira_reg_equiv[original_regno].invariant)
5564 ira_reg_equiv[new_regno].invariant
5565 = copy_rtx (ira_reg_equiv[original_regno].invariant);
5568 /* Do split transformations for insn INSN, which defines or uses
5569 ORIGINAL_REGNO. NEXT_USAGE_INSNS specifies which instruction in
5570 the EBB next uses ORIGINAL_REGNO; it has the same form as the
5571 "insns" field of usage_insns. If TO is not NULL, we don't use
5572 usage_insns, we put restore insns after TO insn. It is a case when
5573 we call it from lra_split_hard_reg_for, outside the inheritance
5574 pass.
5576 The transformations look like:
5578 p <- ... p <- ...
5579 ... s <- p (new insn -- save)
5580 ... =>
5581 ... p <- s (new insn -- restore)
5582 <- ... p ... <- ... p ...
5584 <- ... p ... <- ... p ...
5585 ... s <- p (new insn -- save)
5586 ... =>
5587 ... p <- s (new insn -- restore)
5588 <- ... p ... <- ... p ...
5590 where p is an original pseudo got a hard register or a hard
5591 register and s is a new split pseudo. The save is put before INSN
5592 if BEFORE_P is true. Return true if we succeed in such
5593 transformation. */
5594 static bool
5595 split_reg (bool before_p, int original_regno, rtx_insn *insn,
5596 rtx next_usage_insns, rtx_insn *to)
5598 enum reg_class rclass;
5599 rtx original_reg;
5600 int hard_regno, nregs;
5601 rtx new_reg, usage_insn;
5602 rtx_insn *restore, *save;
5603 bool after_p;
5604 bool call_save_p;
5605 machine_mode mode;
5607 if (original_regno < FIRST_PSEUDO_REGISTER)
5609 rclass = ira_allocno_class_translate[REGNO_REG_CLASS (original_regno)];
5610 hard_regno = original_regno;
5611 call_save_p = false;
5612 nregs = 1;
5613 mode = lra_reg_info[hard_regno].biggest_mode;
5614 machine_mode reg_rtx_mode = GET_MODE (regno_reg_rtx[hard_regno]);
5615 /* A reg can have a biggest_mode of VOIDmode if it was only ever seen
5616 as part of a multi-word register. In that case, or if the biggest
5617 mode was larger than a register, just use the reg_rtx. Otherwise,
5618 limit the size to that of the biggest access in the function. */
5619 if (mode == VOIDmode
5620 || paradoxical_subreg_p (mode, reg_rtx_mode))
5622 original_reg = regno_reg_rtx[hard_regno];
5623 mode = reg_rtx_mode;
5625 else
5626 original_reg = gen_rtx_REG (mode, hard_regno);
5628 else
5630 mode = PSEUDO_REGNO_MODE (original_regno);
5631 hard_regno = reg_renumber[original_regno];
5632 nregs = hard_regno_nregs (hard_regno, mode);
5633 rclass = lra_get_allocno_class (original_regno);
5634 original_reg = regno_reg_rtx[original_regno];
5635 call_save_p = need_for_call_save_p (original_regno);
5637 lra_assert (hard_regno >= 0);
5638 if (lra_dump_file != NULL)
5639 fprintf (lra_dump_file,
5640 " ((((((((((((((((((((((((((((((((((((((((((((((((\n");
5642 if (call_save_p)
5644 mode = HARD_REGNO_CALLER_SAVE_MODE (hard_regno,
5645 hard_regno_nregs (hard_regno, mode),
5646 mode);
5647 new_reg = lra_create_new_reg (mode, NULL_RTX, NO_REGS, "save");
5649 else
5651 rclass = choose_split_class (rclass, hard_regno, mode);
5652 if (rclass == NO_REGS)
5654 if (lra_dump_file != NULL)
5656 fprintf (lra_dump_file,
5657 " Rejecting split of %d(%s): "
5658 "no good reg class for %d(%s)\n",
5659 original_regno,
5660 reg_class_names[lra_get_allocno_class (original_regno)],
5661 hard_regno,
5662 reg_class_names[REGNO_REG_CLASS (hard_regno)]);
5663 fprintf
5664 (lra_dump_file,
5665 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5667 return false;
5669 /* Split_if_necessary can split hard registers used as part of a
5670 multi-register mode but splits each register individually. The
5671 mode used for each independent register may not be supported
5672 so reject the split. Splitting the wider mode should theoretically
5673 be possible but is not implemented. */
5674 if (!targetm.hard_regno_mode_ok (hard_regno, mode))
5676 if (lra_dump_file != NULL)
5678 fprintf (lra_dump_file,
5679 " Rejecting split of %d(%s): unsuitable mode %s\n",
5680 original_regno,
5681 reg_class_names[lra_get_allocno_class (original_regno)],
5682 GET_MODE_NAME (mode));
5683 fprintf
5684 (lra_dump_file,
5685 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5687 return false;
5689 new_reg = lra_create_new_reg (mode, original_reg, rclass, "split");
5690 reg_renumber[REGNO (new_reg)] = hard_regno;
5692 int new_regno = REGNO (new_reg);
5693 save = emit_spill_move (true, new_reg, original_reg);
5694 if (NEXT_INSN (save) != NULL_RTX && !call_save_p)
5696 if (lra_dump_file != NULL)
5698 fprintf
5699 (lra_dump_file,
5700 " Rejecting split %d->%d resulting in > 2 save insns:\n",
5701 original_regno, new_regno);
5702 dump_rtl_slim (lra_dump_file, save, NULL, -1, 0);
5703 fprintf (lra_dump_file,
5704 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5706 return false;
5708 restore = emit_spill_move (false, new_reg, original_reg);
5709 if (NEXT_INSN (restore) != NULL_RTX && !call_save_p)
5711 if (lra_dump_file != NULL)
5713 fprintf (lra_dump_file,
5714 " Rejecting split %d->%d "
5715 "resulting in > 2 restore insns:\n",
5716 original_regno, new_regno);
5717 dump_rtl_slim (lra_dump_file, restore, NULL, -1, 0);
5718 fprintf (lra_dump_file,
5719 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5721 return false;
5723 /* Transfer equivalence information to the spill register, so that
5724 if we fail to allocate the spill register, we have the option of
5725 rematerializing the original value instead of spilling to the stack. */
5726 if (!HARD_REGISTER_NUM_P (original_regno)
5727 && mode == PSEUDO_REGNO_MODE (original_regno))
5728 lra_copy_reg_equiv (new_regno, original_regno);
5729 lra_reg_info[new_regno].restore_rtx = regno_reg_rtx[original_regno];
5730 bitmap_set_bit (&lra_split_regs, new_regno);
5731 if (to != NULL)
5733 lra_assert (next_usage_insns == NULL);
5734 usage_insn = to;
5735 after_p = TRUE;
5737 else
5739 /* We need check_only_regs only inside the inheritance pass. */
5740 bitmap_set_bit (&check_only_regs, new_regno);
5741 bitmap_set_bit (&check_only_regs, original_regno);
5742 after_p = usage_insns[original_regno].after_p;
5743 for (;;)
5745 if (GET_CODE (next_usage_insns) != INSN_LIST)
5747 usage_insn = next_usage_insns;
5748 break;
5750 usage_insn = XEXP (next_usage_insns, 0);
5751 lra_assert (DEBUG_INSN_P (usage_insn));
5752 next_usage_insns = XEXP (next_usage_insns, 1);
5753 lra_substitute_pseudo (&usage_insn, original_regno, new_reg, false,
5754 true);
5755 lra_update_insn_regno_info (as_a <rtx_insn *> (usage_insn));
5756 if (lra_dump_file != NULL)
5758 fprintf (lra_dump_file, " Split reuse change %d->%d:\n",
5759 original_regno, new_regno);
5760 dump_insn_slim (lra_dump_file, as_a <rtx_insn *> (usage_insn));
5764 lra_assert (NOTE_P (usage_insn) || NONDEBUG_INSN_P (usage_insn));
5765 lra_assert (usage_insn != insn || (after_p && before_p));
5766 lra_process_new_insns (as_a <rtx_insn *> (usage_insn),
5767 after_p ? NULL : restore,
5768 after_p ? restore : NULL,
5769 call_save_p
5770 ? "Add reg<-save" : "Add reg<-split");
5771 lra_process_new_insns (insn, before_p ? save : NULL,
5772 before_p ? NULL : save,
5773 call_save_p
5774 ? "Add save<-reg" : "Add split<-reg");
5775 if (nregs > 1)
5776 /* If we are trying to split multi-register. We should check
5777 conflicts on the next assignment sub-pass. IRA can allocate on
5778 sub-register levels, LRA do this on pseudos level right now and
5779 this discrepancy may create allocation conflicts after
5780 splitting. */
5781 lra_risky_transformations_p = true;
5782 if (lra_dump_file != NULL)
5783 fprintf (lra_dump_file,
5784 " ))))))))))))))))))))))))))))))))))))))))))))))))\n");
5785 return true;
5788 /* Split a hard reg for reload pseudo REGNO having RCLASS and living
5789 in the range [FROM, TO]. Return true if did a split. Otherwise,
5790 return false. */
5791 bool
5792 spill_hard_reg_in_range (int regno, enum reg_class rclass, rtx_insn *from, rtx_insn *to)
5794 int i, hard_regno;
5795 int rclass_size;
5796 rtx_insn *insn;
5797 unsigned int uid;
5798 bitmap_iterator bi;
5799 HARD_REG_SET ignore;
5801 lra_assert (from != NULL && to != NULL);
5802 CLEAR_HARD_REG_SET (ignore);
5803 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi)
5805 lra_insn_recog_data_t id = lra_insn_recog_data[uid];
5806 struct lra_static_insn_data *static_id = id->insn_static_data;
5807 struct lra_insn_reg *reg;
5809 for (reg = id->regs; reg != NULL; reg = reg->next)
5810 if (reg->regno < FIRST_PSEUDO_REGISTER)
5811 SET_HARD_REG_BIT (ignore, reg->regno);
5812 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
5813 SET_HARD_REG_BIT (ignore, reg->regno);
5815 rclass_size = ira_class_hard_regs_num[rclass];
5816 for (i = 0; i < rclass_size; i++)
5818 hard_regno = ira_class_hard_regs[rclass][i];
5819 if (! TEST_HARD_REG_BIT (lra_reg_info[regno].conflict_hard_regs, hard_regno)
5820 || TEST_HARD_REG_BIT (ignore, hard_regno))
5821 continue;
5822 for (insn = from; insn != NEXT_INSN (to); insn = NEXT_INSN (insn))
5824 struct lra_static_insn_data *static_id;
5825 struct lra_insn_reg *reg;
5827 if (!INSN_P (insn))
5828 continue;
5829 if (bitmap_bit_p (&lra_reg_info[hard_regno].insn_bitmap,
5830 INSN_UID (insn)))
5831 break;
5832 static_id = lra_get_insn_recog_data (insn)->insn_static_data;
5833 for (reg = static_id->hard_regs; reg != NULL; reg = reg->next)
5834 if (reg->regno == hard_regno)
5835 break;
5836 if (reg != NULL)
5837 break;
5839 if (insn != NEXT_INSN (to))
5840 continue;
5841 if (split_reg (TRUE, hard_regno, from, NULL, to))
5842 return true;
5844 return false;
5847 /* Recognize that we need a split transformation for insn INSN, which
5848 defines or uses REGNO in its insn biggest MODE (we use it only if
5849 REGNO is a hard register). POTENTIAL_RELOAD_HARD_REGS contains
5850 hard registers which might be used for reloads since the EBB end.
5851 Put the save before INSN if BEFORE_P is true. MAX_UID is maximla
5852 uid before starting INSN processing. Return true if we succeed in
5853 such transformation. */
5854 static bool
5855 split_if_necessary (int regno, machine_mode mode,
5856 HARD_REG_SET potential_reload_hard_regs,
5857 bool before_p, rtx_insn *insn, int max_uid)
5859 bool res = false;
5860 int i, nregs = 1;
5861 rtx next_usage_insns;
5863 if (regno < FIRST_PSEUDO_REGISTER)
5864 nregs = hard_regno_nregs (regno, mode);
5865 for (i = 0; i < nregs; i++)
5866 if (usage_insns[regno + i].check == curr_usage_insns_check
5867 && (next_usage_insns = usage_insns[regno + i].insns) != NULL_RTX
5868 /* To avoid processing the register twice or more. */
5869 && ((GET_CODE (next_usage_insns) != INSN_LIST
5870 && INSN_UID (next_usage_insns) < max_uid)
5871 || (GET_CODE (next_usage_insns) == INSN_LIST
5872 && (INSN_UID (XEXP (next_usage_insns, 0)) < max_uid)))
5873 && need_for_split_p (potential_reload_hard_regs, regno + i)
5874 && split_reg (before_p, regno + i, insn, next_usage_insns, NULL))
5875 res = true;
5876 return res;
5879 /* Return TRUE if rtx X is considered as an invariant for
5880 inheritance. */
5881 static bool
5882 invariant_p (const_rtx x)
5884 machine_mode mode;
5885 const char *fmt;
5886 enum rtx_code code;
5887 int i, j;
5889 if (side_effects_p (x))
5890 return false;
5892 code = GET_CODE (x);
5893 mode = GET_MODE (x);
5894 if (code == SUBREG)
5896 x = SUBREG_REG (x);
5897 code = GET_CODE (x);
5898 mode = wider_subreg_mode (mode, GET_MODE (x));
5901 if (MEM_P (x))
5902 return false;
5904 if (REG_P (x))
5906 int i, nregs, regno = REGNO (x);
5908 if (regno >= FIRST_PSEUDO_REGISTER || regno == STACK_POINTER_REGNUM
5909 || TEST_HARD_REG_BIT (eliminable_regset, regno)
5910 || GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
5911 return false;
5912 nregs = hard_regno_nregs (regno, mode);
5913 for (i = 0; i < nregs; i++)
5914 if (! fixed_regs[regno + i]
5915 /* A hard register may be clobbered in the current insn
5916 but we can ignore this case because if the hard
5917 register is used it should be set somewhere after the
5918 clobber. */
5919 || bitmap_bit_p (&invalid_invariant_regs, regno + i))
5920 return false;
5922 fmt = GET_RTX_FORMAT (code);
5923 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5925 if (fmt[i] == 'e')
5927 if (! invariant_p (XEXP (x, i)))
5928 return false;
5930 else if (fmt[i] == 'E')
5932 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5933 if (! invariant_p (XVECEXP (x, i, j)))
5934 return false;
5937 return true;
5940 /* We have 'dest_reg <- invariant'. Let us try to make an invariant
5941 inheritance transformation (using dest_reg instead invariant in a
5942 subsequent insn). */
5943 static bool
5944 process_invariant_for_inheritance (rtx dst_reg, rtx invariant_rtx)
5946 invariant_ptr_t invariant_ptr;
5947 rtx_insn *insn, *new_insns;
5948 rtx insn_set, insn_reg, new_reg;
5949 int insn_regno;
5950 bool succ_p = false;
5951 int dst_regno = REGNO (dst_reg);
5952 machine_mode dst_mode = GET_MODE (dst_reg);
5953 enum reg_class cl = lra_get_allocno_class (dst_regno), insn_reg_cl;
5955 invariant_ptr = insert_invariant (invariant_rtx);
5956 if ((insn = invariant_ptr->insn) != NULL_RTX)
5958 /* We have a subsequent insn using the invariant. */
5959 insn_set = single_set (insn);
5960 lra_assert (insn_set != NULL);
5961 insn_reg = SET_DEST (insn_set);
5962 lra_assert (REG_P (insn_reg));
5963 insn_regno = REGNO (insn_reg);
5964 insn_reg_cl = lra_get_allocno_class (insn_regno);
5966 if (dst_mode == GET_MODE (insn_reg)
5967 /* We should consider only result move reg insns which are
5968 cheap. */
5969 && targetm.register_move_cost (dst_mode, cl, insn_reg_cl) == 2
5970 && targetm.register_move_cost (dst_mode, cl, cl) == 2)
5972 if (lra_dump_file != NULL)
5973 fprintf (lra_dump_file,
5974 " [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[\n");
5975 new_reg = lra_create_new_reg (dst_mode, dst_reg,
5976 cl, "invariant inheritance");
5977 bitmap_set_bit (&lra_inheritance_pseudos, REGNO (new_reg));
5978 bitmap_set_bit (&check_only_regs, REGNO (new_reg));
5979 lra_reg_info[REGNO (new_reg)].restore_rtx = PATTERN (insn);
5980 start_sequence ();
5981 lra_emit_move (new_reg, dst_reg);
5982 new_insns = get_insns ();
5983 end_sequence ();
5984 lra_process_new_insns (curr_insn, NULL, new_insns,
5985 "Add invariant inheritance<-original");
5986 start_sequence ();
5987 lra_emit_move (SET_DEST (insn_set), new_reg);
5988 new_insns = get_insns ();
5989 end_sequence ();
5990 lra_process_new_insns (insn, NULL, new_insns,
5991 "Changing reload<-inheritance");
5992 lra_set_insn_deleted (insn);
5993 succ_p = true;
5994 if (lra_dump_file != NULL)
5996 fprintf (lra_dump_file,
5997 " Invariant inheritance reuse change %d (bb%d):\n",
5998 REGNO (new_reg), BLOCK_FOR_INSN (insn)->index);
5999 dump_insn_slim (lra_dump_file, insn);
6000 fprintf (lra_dump_file,
6001 " ]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]\n");
6005 invariant_ptr->insn = curr_insn;
6006 return succ_p;
6009 /* Check only registers living at the current program point in the
6010 current EBB. */
6011 static bitmap_head live_regs;
6013 /* Update live info in EBB given by its HEAD and TAIL insns after
6014 inheritance/split transformation. The function removes dead moves
6015 too. */
6016 static void
6017 update_ebb_live_info (rtx_insn *head, rtx_insn *tail)
6019 unsigned int j;
6020 int i, regno;
6021 bool live_p;
6022 rtx_insn *prev_insn;
6023 rtx set;
6024 bool remove_p;
6025 basic_block last_bb, prev_bb, curr_bb;
6026 bitmap_iterator bi;
6027 struct lra_insn_reg *reg;
6028 edge e;
6029 edge_iterator ei;
6031 last_bb = BLOCK_FOR_INSN (tail);
6032 prev_bb = NULL;
6033 for (curr_insn = tail;
6034 curr_insn != PREV_INSN (head);
6035 curr_insn = prev_insn)
6037 prev_insn = PREV_INSN (curr_insn);
6038 /* We need to process empty blocks too. They contain
6039 NOTE_INSN_BASIC_BLOCK referring for the basic block. */
6040 if (NOTE_P (curr_insn) && NOTE_KIND (curr_insn) != NOTE_INSN_BASIC_BLOCK)
6041 continue;
6042 curr_bb = BLOCK_FOR_INSN (curr_insn);
6043 if (curr_bb != prev_bb)
6045 if (prev_bb != NULL)
6047 /* Update df_get_live_in (prev_bb): */
6048 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
6049 if (bitmap_bit_p (&live_regs, j))
6050 bitmap_set_bit (df_get_live_in (prev_bb), j);
6051 else
6052 bitmap_clear_bit (df_get_live_in (prev_bb), j);
6054 if (curr_bb != last_bb)
6056 /* Update df_get_live_out (curr_bb): */
6057 EXECUTE_IF_SET_IN_BITMAP (&check_only_regs, 0, j, bi)
6059 live_p = bitmap_bit_p (&live_regs, j);
6060 if (! live_p)
6061 FOR_EACH_EDGE (e, ei, curr_bb->succs)
6062 if (bitmap_bit_p (df_get_live_in (e->dest), j))
6064 live_p = true;
6065 break;
6067 if (live_p)
6068 bitmap_set_bit (df_get_live_out (curr_bb), j);
6069 else
6070 bitmap_clear_bit (df_get_live_out (curr_bb), j);
6073 prev_bb = curr_bb;
6074 bitmap_and (&live_regs, &check_only_regs, df_get_live_out (curr_bb));
6076 if (! NONDEBUG_INSN_P (curr_insn))
6077 continue;
6078 curr_id = lra_get_insn_recog_data (curr_insn);
6079 curr_static_id = curr_id->insn_static_data;
6080 remove_p = false;
6081 if ((set = single_set (curr_insn)) != NULL_RTX
6082 && REG_P (SET_DEST (set))
6083 && (regno = REGNO (SET_DEST (set))) >= FIRST_PSEUDO_REGISTER
6084 && SET_DEST (set) != pic_offset_table_rtx
6085 && bitmap_bit_p (&check_only_regs, regno)
6086 && ! bitmap_bit_p (&live_regs, regno))
6087 remove_p = true;
6088 /* See which defined values die here. */
6089 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6090 if (reg->type == OP_OUT && ! reg->subreg_p)
6091 bitmap_clear_bit (&live_regs, reg->regno);
6092 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6093 if (reg->type == OP_OUT && ! reg->subreg_p)
6094 bitmap_clear_bit (&live_regs, reg->regno);
6095 if (curr_id->arg_hard_regs != NULL)
6096 /* Make clobbered argument hard registers die. */
6097 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6098 if (regno >= FIRST_PSEUDO_REGISTER)
6099 bitmap_clear_bit (&live_regs, regno - FIRST_PSEUDO_REGISTER);
6100 /* Mark each used value as live. */
6101 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6102 if (reg->type != OP_OUT
6103 && bitmap_bit_p (&check_only_regs, reg->regno))
6104 bitmap_set_bit (&live_regs, reg->regno);
6105 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6106 if (reg->type != OP_OUT
6107 && bitmap_bit_p (&check_only_regs, reg->regno))
6108 bitmap_set_bit (&live_regs, reg->regno);
6109 if (curr_id->arg_hard_regs != NULL)
6110 /* Make used argument hard registers live. */
6111 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6112 if (regno < FIRST_PSEUDO_REGISTER
6113 && bitmap_bit_p (&check_only_regs, regno))
6114 bitmap_set_bit (&live_regs, regno);
6115 /* It is quite important to remove dead move insns because it
6116 means removing dead store. We don't need to process them for
6117 constraints. */
6118 if (remove_p)
6120 if (lra_dump_file != NULL)
6122 fprintf (lra_dump_file, " Removing dead insn:\n ");
6123 dump_insn_slim (lra_dump_file, curr_insn);
6125 lra_set_insn_deleted (curr_insn);
6130 /* The structure describes info to do an inheritance for the current
6131 insn. We need to collect such info first before doing the
6132 transformations because the transformations change the insn
6133 internal representation. */
6134 struct to_inherit
6136 /* Original regno. */
6137 int regno;
6138 /* Subsequent insns which can inherit original reg value. */
6139 rtx insns;
6142 /* Array containing all info for doing inheritance from the current
6143 insn. */
6144 static struct to_inherit to_inherit[LRA_MAX_INSN_RELOADS];
6146 /* Number elements in the previous array. */
6147 static int to_inherit_num;
6149 /* Add inheritance info REGNO and INSNS. Their meaning is described in
6150 structure to_inherit. */
6151 static void
6152 add_to_inherit (int regno, rtx insns)
6154 int i;
6156 for (i = 0; i < to_inherit_num; i++)
6157 if (to_inherit[i].regno == regno)
6158 return;
6159 lra_assert (to_inherit_num < LRA_MAX_INSN_RELOADS);
6160 to_inherit[to_inherit_num].regno = regno;
6161 to_inherit[to_inherit_num++].insns = insns;
6164 /* Return the last non-debug insn in basic block BB, or the block begin
6165 note if none. */
6166 static rtx_insn *
6167 get_last_insertion_point (basic_block bb)
6169 rtx_insn *insn;
6171 FOR_BB_INSNS_REVERSE (bb, insn)
6172 if (NONDEBUG_INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
6173 return insn;
6174 gcc_unreachable ();
6177 /* Set up RES by registers living on edges FROM except the edge (FROM,
6178 TO) or by registers set up in a jump insn in BB FROM. */
6179 static void
6180 get_live_on_other_edges (basic_block from, basic_block to, bitmap res)
6182 rtx_insn *last;
6183 struct lra_insn_reg *reg;
6184 edge e;
6185 edge_iterator ei;
6187 lra_assert (to != NULL);
6188 bitmap_clear (res);
6189 FOR_EACH_EDGE (e, ei, from->succs)
6190 if (e->dest != to)
6191 bitmap_ior_into (res, df_get_live_in (e->dest));
6192 last = get_last_insertion_point (from);
6193 if (! JUMP_P (last))
6194 return;
6195 curr_id = lra_get_insn_recog_data (last);
6196 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6197 if (reg->type != OP_IN)
6198 bitmap_set_bit (res, reg->regno);
6201 /* Used as a temporary results of some bitmap calculations. */
6202 static bitmap_head temp_bitmap;
6204 /* We split for reloads of small class of hard regs. The following
6205 defines how many hard regs the class should have to be qualified as
6206 small. The code is mostly oriented to x86/x86-64 architecture
6207 where some insns need to use only specific register or pair of
6208 registers and these register can live in RTL explicitly, e.g. for
6209 parameter passing. */
6210 static const int max_small_class_regs_num = 2;
6212 /* Do inheritance/split transformations in EBB starting with HEAD and
6213 finishing on TAIL. We process EBB insns in the reverse order.
6214 Return true if we did any inheritance/split transformation in the
6215 EBB.
6217 We should avoid excessive splitting which results in worse code
6218 because of inaccurate cost calculations for spilling new split
6219 pseudos in such case. To achieve this we do splitting only if
6220 register pressure is high in given basic block and there are reload
6221 pseudos requiring hard registers. We could do more register
6222 pressure calculations at any given program point to avoid necessary
6223 splitting even more but it is to expensive and the current approach
6224 works well enough. */
6225 static bool
6226 inherit_in_ebb (rtx_insn *head, rtx_insn *tail)
6228 int i, src_regno, dst_regno, nregs;
6229 bool change_p, succ_p, update_reloads_num_p;
6230 rtx_insn *prev_insn, *last_insn;
6231 rtx next_usage_insns, curr_set;
6232 enum reg_class cl;
6233 struct lra_insn_reg *reg;
6234 basic_block last_processed_bb, curr_bb = NULL;
6235 HARD_REG_SET potential_reload_hard_regs, live_hard_regs;
6236 bitmap to_process;
6237 unsigned int j;
6238 bitmap_iterator bi;
6239 bool head_p, after_p;
6241 change_p = false;
6242 curr_usage_insns_check++;
6243 clear_invariants ();
6244 reloads_num = calls_num = 0;
6245 bitmap_clear (&check_only_regs);
6246 bitmap_clear (&invalid_invariant_regs);
6247 last_processed_bb = NULL;
6248 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6249 COPY_HARD_REG_SET (live_hard_regs, eliminable_regset);
6250 IOR_HARD_REG_SET (live_hard_regs, lra_no_alloc_regs);
6251 /* We don't process new insns generated in the loop. */
6252 for (curr_insn = tail; curr_insn != PREV_INSN (head); curr_insn = prev_insn)
6254 prev_insn = PREV_INSN (curr_insn);
6255 if (BLOCK_FOR_INSN (curr_insn) != NULL)
6256 curr_bb = BLOCK_FOR_INSN (curr_insn);
6257 if (last_processed_bb != curr_bb)
6259 /* We are at the end of BB. Add qualified living
6260 pseudos for potential splitting. */
6261 to_process = df_get_live_out (curr_bb);
6262 if (last_processed_bb != NULL)
6264 /* We are somewhere in the middle of EBB. */
6265 get_live_on_other_edges (curr_bb, last_processed_bb,
6266 &temp_bitmap);
6267 to_process = &temp_bitmap;
6269 last_processed_bb = curr_bb;
6270 last_insn = get_last_insertion_point (curr_bb);
6271 after_p = (! JUMP_P (last_insn)
6272 && (! CALL_P (last_insn)
6273 || (find_reg_note (last_insn,
6274 REG_NORETURN, NULL_RTX) == NULL_RTX
6275 && ! SIBLING_CALL_P (last_insn))));
6276 CLEAR_HARD_REG_SET (potential_reload_hard_regs);
6277 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6279 if ((int) j >= lra_constraint_new_regno_start)
6280 break;
6281 if (j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6283 if (j < FIRST_PSEUDO_REGISTER)
6284 SET_HARD_REG_BIT (live_hard_regs, j);
6285 else
6286 add_to_hard_reg_set (&live_hard_regs,
6287 PSEUDO_REGNO_MODE (j),
6288 reg_renumber[j]);
6289 setup_next_usage_insn (j, last_insn, reloads_num, after_p);
6293 src_regno = dst_regno = -1;
6294 curr_set = single_set (curr_insn);
6295 if (curr_set != NULL_RTX && REG_P (SET_DEST (curr_set)))
6296 dst_regno = REGNO (SET_DEST (curr_set));
6297 if (curr_set != NULL_RTX && REG_P (SET_SRC (curr_set)))
6298 src_regno = REGNO (SET_SRC (curr_set));
6299 update_reloads_num_p = true;
6300 if (src_regno < lra_constraint_new_regno_start
6301 && src_regno >= FIRST_PSEUDO_REGISTER
6302 && reg_renumber[src_regno] < 0
6303 && dst_regno >= lra_constraint_new_regno_start
6304 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS)
6306 /* 'reload_pseudo <- original_pseudo'. */
6307 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6308 reloads_num++;
6309 update_reloads_num_p = false;
6310 succ_p = false;
6311 if (usage_insns[src_regno].check == curr_usage_insns_check
6312 && (next_usage_insns = usage_insns[src_regno].insns) != NULL_RTX)
6313 succ_p = inherit_reload_reg (false, src_regno, cl,
6314 curr_insn, next_usage_insns);
6315 if (succ_p)
6316 change_p = true;
6317 else
6318 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6319 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6320 IOR_HARD_REG_SET (potential_reload_hard_regs,
6321 reg_class_contents[cl]);
6323 else if (src_regno < 0
6324 && dst_regno >= lra_constraint_new_regno_start
6325 && invariant_p (SET_SRC (curr_set))
6326 && (cl = lra_get_allocno_class (dst_regno)) != NO_REGS
6327 && ! bitmap_bit_p (&invalid_invariant_regs, dst_regno)
6328 && ! bitmap_bit_p (&invalid_invariant_regs,
6329 ORIGINAL_REGNO(regno_reg_rtx[dst_regno])))
6331 /* 'reload_pseudo <- invariant'. */
6332 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6333 reloads_num++;
6334 update_reloads_num_p = false;
6335 if (process_invariant_for_inheritance (SET_DEST (curr_set), SET_SRC (curr_set)))
6336 change_p = true;
6337 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6338 IOR_HARD_REG_SET (potential_reload_hard_regs,
6339 reg_class_contents[cl]);
6341 else if (src_regno >= lra_constraint_new_regno_start
6342 && dst_regno < lra_constraint_new_regno_start
6343 && dst_regno >= FIRST_PSEUDO_REGISTER
6344 && reg_renumber[dst_regno] < 0
6345 && (cl = lra_get_allocno_class (src_regno)) != NO_REGS
6346 && usage_insns[dst_regno].check == curr_usage_insns_check
6347 && (next_usage_insns
6348 = usage_insns[dst_regno].insns) != NULL_RTX)
6350 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6351 reloads_num++;
6352 update_reloads_num_p = false;
6353 /* 'original_pseudo <- reload_pseudo'. */
6354 if (! JUMP_P (curr_insn)
6355 && inherit_reload_reg (true, dst_regno, cl,
6356 curr_insn, next_usage_insns))
6357 change_p = true;
6358 /* Invalidate. */
6359 usage_insns[dst_regno].check = 0;
6360 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6361 IOR_HARD_REG_SET (potential_reload_hard_regs,
6362 reg_class_contents[cl]);
6364 else if (INSN_P (curr_insn))
6366 int iter;
6367 int max_uid = get_max_uid ();
6369 curr_id = lra_get_insn_recog_data (curr_insn);
6370 curr_static_id = curr_id->insn_static_data;
6371 to_inherit_num = 0;
6372 /* Process insn definitions. */
6373 for (iter = 0; iter < 2; iter++)
6374 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6375 reg != NULL;
6376 reg = reg->next)
6377 if (reg->type != OP_IN
6378 && (dst_regno = reg->regno) < lra_constraint_new_regno_start)
6380 if (dst_regno >= FIRST_PSEUDO_REGISTER && reg->type == OP_OUT
6381 && reg_renumber[dst_regno] < 0 && ! reg->subreg_p
6382 && usage_insns[dst_regno].check == curr_usage_insns_check
6383 && (next_usage_insns
6384 = usage_insns[dst_regno].insns) != NULL_RTX)
6386 struct lra_insn_reg *r;
6388 for (r = curr_id->regs; r != NULL; r = r->next)
6389 if (r->type != OP_OUT && r->regno == dst_regno)
6390 break;
6391 /* Don't do inheritance if the pseudo is also
6392 used in the insn. */
6393 if (r == NULL)
6394 /* We cannot do inheritance right now
6395 because the current insn reg info (chain
6396 regs) can change after that. */
6397 add_to_inherit (dst_regno, next_usage_insns);
6399 /* We cannot process one reg twice here because of
6400 usage_insns invalidation. */
6401 if ((dst_regno < FIRST_PSEUDO_REGISTER
6402 || reg_renumber[dst_regno] >= 0)
6403 && ! reg->subreg_p && reg->type != OP_IN)
6405 HARD_REG_SET s;
6407 if (split_if_necessary (dst_regno, reg->biggest_mode,
6408 potential_reload_hard_regs,
6409 false, curr_insn, max_uid))
6410 change_p = true;
6411 CLEAR_HARD_REG_SET (s);
6412 if (dst_regno < FIRST_PSEUDO_REGISTER)
6413 add_to_hard_reg_set (&s, reg->biggest_mode, dst_regno);
6414 else
6415 add_to_hard_reg_set (&s, PSEUDO_REGNO_MODE (dst_regno),
6416 reg_renumber[dst_regno]);
6417 AND_COMPL_HARD_REG_SET (live_hard_regs, s);
6418 AND_COMPL_HARD_REG_SET (potential_reload_hard_regs, s);
6420 /* We should invalidate potential inheritance or
6421 splitting for the current insn usages to the next
6422 usage insns (see code below) as the output pseudo
6423 prevents this. */
6424 if ((dst_regno >= FIRST_PSEUDO_REGISTER
6425 && reg_renumber[dst_regno] < 0)
6426 || (reg->type == OP_OUT && ! reg->subreg_p
6427 && (dst_regno < FIRST_PSEUDO_REGISTER
6428 || reg_renumber[dst_regno] >= 0)))
6430 /* Invalidate and mark definitions. */
6431 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6432 usage_insns[dst_regno].check = -(int) INSN_UID (curr_insn);
6433 else
6435 nregs = hard_regno_nregs (dst_regno,
6436 reg->biggest_mode);
6437 for (i = 0; i < nregs; i++)
6438 usage_insns[dst_regno + i].check
6439 = -(int) INSN_UID (curr_insn);
6443 /* Process clobbered call regs. */
6444 if (curr_id->arg_hard_regs != NULL)
6445 for (i = 0; (dst_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6446 if (dst_regno >= FIRST_PSEUDO_REGISTER)
6447 usage_insns[dst_regno - FIRST_PSEUDO_REGISTER].check
6448 = -(int) INSN_UID (curr_insn);
6449 if (! JUMP_P (curr_insn))
6450 for (i = 0; i < to_inherit_num; i++)
6451 if (inherit_reload_reg (true, to_inherit[i].regno,
6452 ALL_REGS, curr_insn,
6453 to_inherit[i].insns))
6454 change_p = true;
6455 if (CALL_P (curr_insn))
6457 rtx cheap, pat, dest;
6458 rtx_insn *restore;
6459 int regno, hard_regno;
6461 calls_num++;
6462 if ((cheap = find_reg_note (curr_insn,
6463 REG_RETURNED, NULL_RTX)) != NULL_RTX
6464 && ((cheap = XEXP (cheap, 0)), true)
6465 && (regno = REGNO (cheap)) >= FIRST_PSEUDO_REGISTER
6466 && (hard_regno = reg_renumber[regno]) >= 0
6467 && usage_insns[regno].check == curr_usage_insns_check
6468 /* If there are pending saves/restores, the
6469 optimization is not worth. */
6470 && usage_insns[regno].calls_num == calls_num - 1
6471 && TEST_HARD_REG_BIT (call_used_reg_set, hard_regno))
6473 /* Restore the pseudo from the call result as
6474 REG_RETURNED note says that the pseudo value is
6475 in the call result and the pseudo is an argument
6476 of the call. */
6477 pat = PATTERN (curr_insn);
6478 if (GET_CODE (pat) == PARALLEL)
6479 pat = XVECEXP (pat, 0, 0);
6480 dest = SET_DEST (pat);
6481 /* For multiple return values dest is PARALLEL.
6482 Currently we handle only single return value case. */
6483 if (REG_P (dest))
6485 start_sequence ();
6486 emit_move_insn (cheap, copy_rtx (dest));
6487 restore = get_insns ();
6488 end_sequence ();
6489 lra_process_new_insns (curr_insn, NULL, restore,
6490 "Inserting call parameter restore");
6491 /* We don't need to save/restore of the pseudo from
6492 this call. */
6493 usage_insns[regno].calls_num = calls_num;
6494 bitmap_set_bit (&check_only_regs, regno);
6498 to_inherit_num = 0;
6499 /* Process insn usages. */
6500 for (iter = 0; iter < 2; iter++)
6501 for (reg = iter == 0 ? curr_id->regs : curr_static_id->hard_regs;
6502 reg != NULL;
6503 reg = reg->next)
6504 if ((reg->type != OP_OUT
6505 || (reg->type == OP_OUT && reg->subreg_p))
6506 && (src_regno = reg->regno) < lra_constraint_new_regno_start)
6508 if (src_regno >= FIRST_PSEUDO_REGISTER
6509 && reg_renumber[src_regno] < 0 && reg->type == OP_IN)
6511 if (usage_insns[src_regno].check == curr_usage_insns_check
6512 && (next_usage_insns
6513 = usage_insns[src_regno].insns) != NULL_RTX
6514 && NONDEBUG_INSN_P (curr_insn))
6515 add_to_inherit (src_regno, next_usage_insns);
6516 else if (usage_insns[src_regno].check
6517 != -(int) INSN_UID (curr_insn))
6518 /* Add usages but only if the reg is not set up
6519 in the same insn. */
6520 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6522 else if (src_regno < FIRST_PSEUDO_REGISTER
6523 || reg_renumber[src_regno] >= 0)
6525 bool before_p;
6526 rtx_insn *use_insn = curr_insn;
6528 before_p = (JUMP_P (curr_insn)
6529 || (CALL_P (curr_insn) && reg->type == OP_IN));
6530 if (NONDEBUG_INSN_P (curr_insn)
6531 && (! JUMP_P (curr_insn) || reg->type == OP_IN)
6532 && split_if_necessary (src_regno, reg->biggest_mode,
6533 potential_reload_hard_regs,
6534 before_p, curr_insn, max_uid))
6536 if (reg->subreg_p)
6537 lra_risky_transformations_p = true;
6538 change_p = true;
6539 /* Invalidate. */
6540 usage_insns[src_regno].check = 0;
6541 if (before_p)
6542 use_insn = PREV_INSN (curr_insn);
6544 if (NONDEBUG_INSN_P (curr_insn))
6546 if (src_regno < FIRST_PSEUDO_REGISTER)
6547 add_to_hard_reg_set (&live_hard_regs,
6548 reg->biggest_mode, src_regno);
6549 else
6550 add_to_hard_reg_set (&live_hard_regs,
6551 PSEUDO_REGNO_MODE (src_regno),
6552 reg_renumber[src_regno]);
6554 if (src_regno >= FIRST_PSEUDO_REGISTER)
6555 add_next_usage_insn (src_regno, use_insn, reloads_num);
6556 else
6558 for (i = 0; i < hard_regno_nregs (src_regno, reg->biggest_mode); i++)
6559 add_next_usage_insn (src_regno + i, use_insn, reloads_num);
6563 /* Process used call regs. */
6564 if (curr_id->arg_hard_regs != NULL)
6565 for (i = 0; (src_regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6566 if (src_regno < FIRST_PSEUDO_REGISTER)
6568 SET_HARD_REG_BIT (live_hard_regs, src_regno);
6569 add_next_usage_insn (src_regno, curr_insn, reloads_num);
6571 for (i = 0; i < to_inherit_num; i++)
6573 src_regno = to_inherit[i].regno;
6574 if (inherit_reload_reg (false, src_regno, ALL_REGS,
6575 curr_insn, to_inherit[i].insns))
6576 change_p = true;
6577 else
6578 setup_next_usage_insn (src_regno, curr_insn, reloads_num, false);
6581 if (update_reloads_num_p
6582 && NONDEBUG_INSN_P (curr_insn) && curr_set != NULL_RTX)
6584 int regno = -1;
6585 if ((REG_P (SET_DEST (curr_set))
6586 && (regno = REGNO (SET_DEST (curr_set))) >= lra_constraint_new_regno_start
6587 && reg_renumber[regno] < 0
6588 && (cl = lra_get_allocno_class (regno)) != NO_REGS)
6589 || (REG_P (SET_SRC (curr_set))
6590 && (regno = REGNO (SET_SRC (curr_set))) >= lra_constraint_new_regno_start
6591 && reg_renumber[regno] < 0
6592 && (cl = lra_get_allocno_class (regno)) != NO_REGS))
6594 if (ira_class_hard_regs_num[cl] <= max_small_class_regs_num)
6595 reloads_num++;
6596 if (hard_reg_set_subset_p (reg_class_contents[cl], live_hard_regs))
6597 IOR_HARD_REG_SET (potential_reload_hard_regs,
6598 reg_class_contents[cl]);
6601 if (NONDEBUG_INSN_P (curr_insn))
6603 int regno;
6605 /* Invalidate invariants with changed regs. */
6606 curr_id = lra_get_insn_recog_data (curr_insn);
6607 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6608 if (reg->type != OP_IN)
6610 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6611 bitmap_set_bit (&invalid_invariant_regs,
6612 ORIGINAL_REGNO (regno_reg_rtx[reg->regno]));
6614 curr_static_id = curr_id->insn_static_data;
6615 for (reg = curr_static_id->hard_regs; reg != NULL; reg = reg->next)
6616 if (reg->type != OP_IN)
6617 bitmap_set_bit (&invalid_invariant_regs, reg->regno);
6618 if (curr_id->arg_hard_regs != NULL)
6619 for (i = 0; (regno = curr_id->arg_hard_regs[i]) >= 0; i++)
6620 if (regno >= FIRST_PSEUDO_REGISTER)
6621 bitmap_set_bit (&invalid_invariant_regs,
6622 regno - FIRST_PSEUDO_REGISTER);
6624 /* We reached the start of the current basic block. */
6625 if (prev_insn == NULL_RTX || prev_insn == PREV_INSN (head)
6626 || BLOCK_FOR_INSN (prev_insn) != curr_bb)
6628 /* We reached the beginning of the current block -- do
6629 rest of spliting in the current BB. */
6630 to_process = df_get_live_in (curr_bb);
6631 if (BLOCK_FOR_INSN (head) != curr_bb)
6633 /* We are somewhere in the middle of EBB. */
6634 get_live_on_other_edges (EDGE_PRED (curr_bb, 0)->src,
6635 curr_bb, &temp_bitmap);
6636 to_process = &temp_bitmap;
6638 head_p = true;
6639 EXECUTE_IF_SET_IN_BITMAP (to_process, 0, j, bi)
6641 if ((int) j >= lra_constraint_new_regno_start)
6642 break;
6643 if (((int) j < FIRST_PSEUDO_REGISTER || reg_renumber[j] >= 0)
6644 && usage_insns[j].check == curr_usage_insns_check
6645 && (next_usage_insns = usage_insns[j].insns) != NULL_RTX)
6647 if (need_for_split_p (potential_reload_hard_regs, j))
6649 if (lra_dump_file != NULL && head_p)
6651 fprintf (lra_dump_file,
6652 " ----------------------------------\n");
6653 head_p = false;
6655 if (split_reg (false, j, bb_note (curr_bb),
6656 next_usage_insns, NULL))
6657 change_p = true;
6659 usage_insns[j].check = 0;
6664 return change_p;
6667 /* This value affects EBB forming. If probability of edge from EBB to
6668 a BB is not greater than the following value, we don't add the BB
6669 to EBB. */
6670 #define EBB_PROBABILITY_CUTOFF \
6671 ((REG_BR_PROB_BASE * LRA_INHERITANCE_EBB_PROBABILITY_CUTOFF) / 100)
6673 /* Current number of inheritance/split iteration. */
6674 int lra_inheritance_iter;
6676 /* Entry function for inheritance/split pass. */
6677 void
6678 lra_inheritance (void)
6680 int i;
6681 basic_block bb, start_bb;
6682 edge e;
6684 lra_inheritance_iter++;
6685 if (lra_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
6686 return;
6687 timevar_push (TV_LRA_INHERITANCE);
6688 if (lra_dump_file != NULL)
6689 fprintf (lra_dump_file, "\n********** Inheritance #%d: **********\n\n",
6690 lra_inheritance_iter);
6691 curr_usage_insns_check = 0;
6692 usage_insns = XNEWVEC (struct usage_insns, lra_constraint_new_regno_start);
6693 for (i = 0; i < lra_constraint_new_regno_start; i++)
6694 usage_insns[i].check = 0;
6695 bitmap_initialize (&check_only_regs, &reg_obstack);
6696 bitmap_initialize (&invalid_invariant_regs, &reg_obstack);
6697 bitmap_initialize (&live_regs, &reg_obstack);
6698 bitmap_initialize (&temp_bitmap, &reg_obstack);
6699 bitmap_initialize (&ebb_global_regs, &reg_obstack);
6700 FOR_EACH_BB_FN (bb, cfun)
6702 start_bb = bb;
6703 if (lra_dump_file != NULL)
6704 fprintf (lra_dump_file, "EBB");
6705 /* Form a EBB starting with BB. */
6706 bitmap_clear (&ebb_global_regs);
6707 bitmap_ior_into (&ebb_global_regs, df_get_live_in (bb));
6708 for (;;)
6710 if (lra_dump_file != NULL)
6711 fprintf (lra_dump_file, " %d", bb->index);
6712 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
6713 || LABEL_P (BB_HEAD (bb->next_bb)))
6714 break;
6715 e = find_fallthru_edge (bb->succs);
6716 if (! e)
6717 break;
6718 if (e->probability.initialized_p ()
6719 && e->probability.to_reg_br_prob_base () < EBB_PROBABILITY_CUTOFF)
6720 break;
6721 bb = bb->next_bb;
6723 bitmap_ior_into (&ebb_global_regs, df_get_live_out (bb));
6724 if (lra_dump_file != NULL)
6725 fprintf (lra_dump_file, "\n");
6726 if (inherit_in_ebb (BB_HEAD (start_bb), BB_END (bb)))
6727 /* Remember that the EBB head and tail can change in
6728 inherit_in_ebb. */
6729 update_ebb_live_info (BB_HEAD (start_bb), BB_END (bb));
6731 bitmap_release (&ebb_global_regs);
6732 bitmap_release (&temp_bitmap);
6733 bitmap_release (&live_regs);
6734 bitmap_release (&invalid_invariant_regs);
6735 bitmap_release (&check_only_regs);
6736 free (usage_insns);
6738 timevar_pop (TV_LRA_INHERITANCE);
6743 /* This page contains code to undo failed inheritance/split
6744 transformations. */
6746 /* Current number of iteration undoing inheritance/split. */
6747 int lra_undo_inheritance_iter;
6749 /* Fix BB live info LIVE after removing pseudos created on pass doing
6750 inheritance/split which are REMOVED_PSEUDOS. */
6751 static void
6752 fix_bb_live_info (bitmap live, bitmap removed_pseudos)
6754 unsigned int regno;
6755 bitmap_iterator bi;
6757 EXECUTE_IF_SET_IN_BITMAP (removed_pseudos, 0, regno, bi)
6758 if (bitmap_clear_bit (live, regno)
6759 && REG_P (lra_reg_info[regno].restore_rtx))
6760 bitmap_set_bit (live, REGNO (lra_reg_info[regno].restore_rtx));
6763 /* Return regno of the (subreg of) REG. Otherwise, return a negative
6764 number. */
6765 static int
6766 get_regno (rtx reg)
6768 if (GET_CODE (reg) == SUBREG)
6769 reg = SUBREG_REG (reg);
6770 if (REG_P (reg))
6771 return REGNO (reg);
6772 return -1;
6775 /* Delete a move INSN with destination reg DREGNO and a previous
6776 clobber insn with the same regno. The inheritance/split code can
6777 generate moves with preceding clobber and when we delete such moves
6778 we should delete the clobber insn too to keep the correct life
6779 info. */
6780 static void
6781 delete_move_and_clobber (rtx_insn *insn, int dregno)
6783 rtx_insn *prev_insn = PREV_INSN (insn);
6785 lra_set_insn_deleted (insn);
6786 lra_assert (dregno >= 0);
6787 if (prev_insn != NULL && NONDEBUG_INSN_P (prev_insn)
6788 && GET_CODE (PATTERN (prev_insn)) == CLOBBER
6789 && dregno == get_regno (XEXP (PATTERN (prev_insn), 0)))
6790 lra_set_insn_deleted (prev_insn);
6793 /* Remove inheritance/split pseudos which are in REMOVE_PSEUDOS and
6794 return true if we did any change. The undo transformations for
6795 inheritance looks like
6796 i <- i2
6797 p <- i => p <- i2
6798 or removing
6799 p <- i, i <- p, and i <- i3
6800 where p is original pseudo from which inheritance pseudo i was
6801 created, i and i3 are removed inheritance pseudos, i2 is another
6802 not removed inheritance pseudo. All split pseudos or other
6803 occurrences of removed inheritance pseudos are changed on the
6804 corresponding original pseudos.
6806 The function also schedules insns changed and created during
6807 inheritance/split pass for processing by the subsequent constraint
6808 pass. */
6809 static bool
6810 remove_inheritance_pseudos (bitmap remove_pseudos)
6812 basic_block bb;
6813 int regno, sregno, prev_sregno, dregno;
6814 rtx restore_rtx;
6815 rtx set, prev_set;
6816 rtx_insn *prev_insn;
6817 bool change_p, done_p;
6819 change_p = ! bitmap_empty_p (remove_pseudos);
6820 /* We cannot finish the function right away if CHANGE_P is true
6821 because we need to marks insns affected by previous
6822 inheritance/split pass for processing by the subsequent
6823 constraint pass. */
6824 FOR_EACH_BB_FN (bb, cfun)
6826 fix_bb_live_info (df_get_live_in (bb), remove_pseudos);
6827 fix_bb_live_info (df_get_live_out (bb), remove_pseudos);
6828 FOR_BB_INSNS_REVERSE (bb, curr_insn)
6830 if (! INSN_P (curr_insn))
6831 continue;
6832 done_p = false;
6833 sregno = dregno = -1;
6834 if (change_p && NONDEBUG_INSN_P (curr_insn)
6835 && (set = single_set (curr_insn)) != NULL_RTX)
6837 dregno = get_regno (SET_DEST (set));
6838 sregno = get_regno (SET_SRC (set));
6841 if (sregno >= 0 && dregno >= 0)
6843 if (bitmap_bit_p (remove_pseudos, dregno)
6844 && ! REG_P (lra_reg_info[dregno].restore_rtx))
6846 /* invariant inheritance pseudo <- original pseudo */
6847 if (lra_dump_file != NULL)
6849 fprintf (lra_dump_file, " Removing invariant inheritance:\n");
6850 dump_insn_slim (lra_dump_file, curr_insn);
6851 fprintf (lra_dump_file, "\n");
6853 delete_move_and_clobber (curr_insn, dregno);
6854 done_p = true;
6856 else if (bitmap_bit_p (remove_pseudos, sregno)
6857 && ! REG_P (lra_reg_info[sregno].restore_rtx))
6859 /* reload pseudo <- invariant inheritance pseudo */
6860 start_sequence ();
6861 /* We cannot just change the source. It might be
6862 an insn different from the move. */
6863 emit_insn (lra_reg_info[sregno].restore_rtx);
6864 rtx_insn *new_insns = get_insns ();
6865 end_sequence ();
6866 lra_assert (single_set (new_insns) != NULL
6867 && SET_DEST (set) == SET_DEST (single_set (new_insns)));
6868 lra_process_new_insns (curr_insn, NULL, new_insns,
6869 "Changing reload<-invariant inheritance");
6870 delete_move_and_clobber (curr_insn, dregno);
6871 done_p = true;
6873 else if ((bitmap_bit_p (remove_pseudos, sregno)
6874 && (get_regno (lra_reg_info[sregno].restore_rtx) == dregno
6875 || (bitmap_bit_p (remove_pseudos, dregno)
6876 && get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6877 && (get_regno (lra_reg_info[sregno].restore_rtx)
6878 == get_regno (lra_reg_info[dregno].restore_rtx)))))
6879 || (bitmap_bit_p (remove_pseudos, dregno)
6880 && get_regno (lra_reg_info[dregno].restore_rtx) == sregno))
6881 /* One of the following cases:
6882 original <- removed inheritance pseudo
6883 removed inherit pseudo <- another removed inherit pseudo
6884 removed inherit pseudo <- original pseudo
6886 removed_split_pseudo <- original_reg
6887 original_reg <- removed_split_pseudo */
6889 if (lra_dump_file != NULL)
6891 fprintf (lra_dump_file, " Removing %s:\n",
6892 bitmap_bit_p (&lra_split_regs, sregno)
6893 || bitmap_bit_p (&lra_split_regs, dregno)
6894 ? "split" : "inheritance");
6895 dump_insn_slim (lra_dump_file, curr_insn);
6897 delete_move_and_clobber (curr_insn, dregno);
6898 done_p = true;
6900 else if (bitmap_bit_p (remove_pseudos, sregno)
6901 && bitmap_bit_p (&lra_inheritance_pseudos, sregno))
6903 /* Search the following pattern:
6904 inherit_or_split_pseudo1 <- inherit_or_split_pseudo2
6905 original_pseudo <- inherit_or_split_pseudo1
6906 where the 2nd insn is the current insn and
6907 inherit_or_split_pseudo2 is not removed. If it is found,
6908 change the current insn onto:
6909 original_pseudo <- inherit_or_split_pseudo2. */
6910 for (prev_insn = PREV_INSN (curr_insn);
6911 prev_insn != NULL_RTX && ! NONDEBUG_INSN_P (prev_insn);
6912 prev_insn = PREV_INSN (prev_insn))
6914 if (prev_insn != NULL_RTX && BLOCK_FOR_INSN (prev_insn) == bb
6915 && (prev_set = single_set (prev_insn)) != NULL_RTX
6916 /* There should be no subregs in insn we are
6917 searching because only the original reg might
6918 be in subreg when we changed the mode of
6919 load/store for splitting. */
6920 && REG_P (SET_DEST (prev_set))
6921 && REG_P (SET_SRC (prev_set))
6922 && (int) REGNO (SET_DEST (prev_set)) == sregno
6923 && ((prev_sregno = REGNO (SET_SRC (prev_set)))
6924 >= FIRST_PSEUDO_REGISTER)
6925 && (lra_reg_info[prev_sregno].restore_rtx == NULL_RTX
6927 /* As we consider chain of inheritance or
6928 splitting described in above comment we should
6929 check that sregno and prev_sregno were
6930 inheritance/split pseudos created from the
6931 same original regno. */
6932 (get_regno (lra_reg_info[sregno].restore_rtx) >= 0
6933 && (get_regno (lra_reg_info[sregno].restore_rtx)
6934 == get_regno (lra_reg_info[prev_sregno].restore_rtx))))
6935 && ! bitmap_bit_p (remove_pseudos, prev_sregno))
6937 lra_assert (GET_MODE (SET_SRC (prev_set))
6938 == GET_MODE (regno_reg_rtx[sregno]));
6939 /* Although we have a single set, the insn can
6940 contain more one sregno register occurrence
6941 as a source. Change all occurrences. */
6942 lra_substitute_pseudo_within_insn (curr_insn, sregno,
6943 SET_SRC (prev_set),
6944 false);
6945 /* As we are finishing with processing the insn
6946 here, check the destination too as it might
6947 inheritance pseudo for another pseudo. */
6948 if (bitmap_bit_p (remove_pseudos, dregno)
6949 && bitmap_bit_p (&lra_inheritance_pseudos, dregno)
6950 && (restore_rtx
6951 = lra_reg_info[dregno].restore_rtx) != NULL_RTX)
6953 if (GET_CODE (SET_DEST (set)) == SUBREG)
6954 SUBREG_REG (SET_DEST (set)) = restore_rtx;
6955 else
6956 SET_DEST (set) = restore_rtx;
6958 lra_push_insn_and_update_insn_regno_info (curr_insn);
6959 lra_set_used_insn_alternative_by_uid
6960 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
6961 done_p = true;
6962 if (lra_dump_file != NULL)
6964 fprintf (lra_dump_file, " Change reload insn:\n");
6965 dump_insn_slim (lra_dump_file, curr_insn);
6970 if (! done_p)
6972 struct lra_insn_reg *reg;
6973 bool restored_regs_p = false;
6974 bool kept_regs_p = false;
6976 curr_id = lra_get_insn_recog_data (curr_insn);
6977 for (reg = curr_id->regs; reg != NULL; reg = reg->next)
6979 regno = reg->regno;
6980 restore_rtx = lra_reg_info[regno].restore_rtx;
6981 if (restore_rtx != NULL_RTX)
6983 if (change_p && bitmap_bit_p (remove_pseudos, regno))
6985 lra_substitute_pseudo_within_insn
6986 (curr_insn, regno, restore_rtx, false);
6987 restored_regs_p = true;
6989 else
6990 kept_regs_p = true;
6993 if (NONDEBUG_INSN_P (curr_insn) && kept_regs_p)
6995 /* The instruction has changed since the previous
6996 constraints pass. */
6997 lra_push_insn_and_update_insn_regno_info (curr_insn);
6998 lra_set_used_insn_alternative_by_uid
6999 (INSN_UID (curr_insn), LRA_UNKNOWN_ALT);
7001 else if (restored_regs_p)
7002 /* The instruction has been restored to the form that
7003 it had during the previous constraints pass. */
7004 lra_update_insn_regno_info (curr_insn);
7005 if (restored_regs_p && lra_dump_file != NULL)
7007 fprintf (lra_dump_file, " Insn after restoring regs:\n");
7008 dump_insn_slim (lra_dump_file, curr_insn);
7013 return change_p;
7016 /* If optional reload pseudos failed to get a hard register or was not
7017 inherited, it is better to remove optional reloads. We do this
7018 transformation after undoing inheritance to figure out necessity to
7019 remove optional reloads easier. Return true if we do any
7020 change. */
7021 static bool
7022 undo_optional_reloads (void)
7024 bool change_p, keep_p;
7025 unsigned int regno, uid;
7026 bitmap_iterator bi, bi2;
7027 rtx_insn *insn;
7028 rtx set, src, dest;
7029 auto_bitmap removed_optional_reload_pseudos (&reg_obstack);
7031 bitmap_copy (removed_optional_reload_pseudos, &lra_optional_reload_pseudos);
7032 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
7034 keep_p = false;
7035 /* Keep optional reloads from previous subpasses. */
7036 if (lra_reg_info[regno].restore_rtx == NULL_RTX
7037 /* If the original pseudo changed its allocation, just
7038 removing the optional pseudo is dangerous as the original
7039 pseudo will have longer live range. */
7040 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] >= 0)
7041 keep_p = true;
7042 else if (reg_renumber[regno] >= 0)
7043 EXECUTE_IF_SET_IN_BITMAP (&lra_reg_info[regno].insn_bitmap, 0, uid, bi2)
7045 insn = lra_insn_recog_data[uid]->insn;
7046 if ((set = single_set (insn)) == NULL_RTX)
7047 continue;
7048 src = SET_SRC (set);
7049 dest = SET_DEST (set);
7050 if (! REG_P (src) || ! REG_P (dest))
7051 continue;
7052 if (REGNO (dest) == regno
7053 /* Ignore insn for optional reloads itself. */
7054 && REGNO (lra_reg_info[regno].restore_rtx) != REGNO (src)
7055 /* Check only inheritance on last inheritance pass. */
7056 && (int) REGNO (src) >= new_regno_start
7057 /* Check that the optional reload was inherited. */
7058 && bitmap_bit_p (&lra_inheritance_pseudos, REGNO (src)))
7060 keep_p = true;
7061 break;
7064 if (keep_p)
7066 bitmap_clear_bit (removed_optional_reload_pseudos, regno);
7067 if (lra_dump_file != NULL)
7068 fprintf (lra_dump_file, "Keep optional reload reg %d\n", regno);
7071 change_p = ! bitmap_empty_p (removed_optional_reload_pseudos);
7072 auto_bitmap insn_bitmap (&reg_obstack);
7073 EXECUTE_IF_SET_IN_BITMAP (removed_optional_reload_pseudos, 0, regno, bi)
7075 if (lra_dump_file != NULL)
7076 fprintf (lra_dump_file, "Remove optional reload reg %d\n", regno);
7077 bitmap_copy (insn_bitmap, &lra_reg_info[regno].insn_bitmap);
7078 EXECUTE_IF_SET_IN_BITMAP (insn_bitmap, 0, uid, bi2)
7080 insn = lra_insn_recog_data[uid]->insn;
7081 if ((set = single_set (insn)) != NULL_RTX)
7083 src = SET_SRC (set);
7084 dest = SET_DEST (set);
7085 if (REG_P (src) && REG_P (dest)
7086 && ((REGNO (src) == regno
7087 && (REGNO (lra_reg_info[regno].restore_rtx)
7088 == REGNO (dest)))
7089 || (REGNO (dest) == regno
7090 && (REGNO (lra_reg_info[regno].restore_rtx)
7091 == REGNO (src)))))
7093 if (lra_dump_file != NULL)
7095 fprintf (lra_dump_file, " Deleting move %u\n",
7096 INSN_UID (insn));
7097 dump_insn_slim (lra_dump_file, insn);
7099 delete_move_and_clobber (insn, REGNO (dest));
7100 continue;
7102 /* We should not worry about generation memory-memory
7103 moves here as if the corresponding inheritance did
7104 not work (inheritance pseudo did not get a hard reg),
7105 we remove the inheritance pseudo and the optional
7106 reload. */
7108 lra_substitute_pseudo_within_insn
7109 (insn, regno, lra_reg_info[regno].restore_rtx, false);
7110 lra_update_insn_regno_info (insn);
7111 if (lra_dump_file != NULL)
7113 fprintf (lra_dump_file,
7114 " Restoring original insn:\n");
7115 dump_insn_slim (lra_dump_file, insn);
7119 /* Clear restore_regnos. */
7120 EXECUTE_IF_SET_IN_BITMAP (&lra_optional_reload_pseudos, 0, regno, bi)
7121 lra_reg_info[regno].restore_rtx = NULL_RTX;
7122 return change_p;
7125 /* Entry function for undoing inheritance/split transformation. Return true
7126 if we did any RTL change in this pass. */
7127 bool
7128 lra_undo_inheritance (void)
7130 unsigned int regno;
7131 int hard_regno;
7132 int n_all_inherit, n_inherit, n_all_split, n_split;
7133 rtx restore_rtx;
7134 bitmap_iterator bi;
7135 bool change_p;
7137 lra_undo_inheritance_iter++;
7138 if (lra_undo_inheritance_iter > LRA_MAX_INHERITANCE_PASSES)
7139 return false;
7140 if (lra_dump_file != NULL)
7141 fprintf (lra_dump_file,
7142 "\n********** Undoing inheritance #%d: **********\n\n",
7143 lra_undo_inheritance_iter);
7144 auto_bitmap remove_pseudos (&reg_obstack);
7145 n_inherit = n_all_inherit = 0;
7146 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7147 if (lra_reg_info[regno].restore_rtx != NULL_RTX)
7149 n_all_inherit++;
7150 if (reg_renumber[regno] < 0
7151 /* If the original pseudo changed its allocation, just
7152 removing inheritance is dangerous as for changing
7153 allocation we used shorter live-ranges. */
7154 && (! REG_P (lra_reg_info[regno].restore_rtx)
7155 || reg_renumber[REGNO (lra_reg_info[regno].restore_rtx)] < 0))
7156 bitmap_set_bit (remove_pseudos, regno);
7157 else
7158 n_inherit++;
7160 if (lra_dump_file != NULL && n_all_inherit != 0)
7161 fprintf (lra_dump_file, "Inherit %d out of %d (%.2f%%)\n",
7162 n_inherit, n_all_inherit,
7163 (double) n_inherit / n_all_inherit * 100);
7164 n_split = n_all_split = 0;
7165 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7166 if ((restore_rtx = lra_reg_info[regno].restore_rtx) != NULL_RTX)
7168 int restore_regno = REGNO (restore_rtx);
7170 n_all_split++;
7171 hard_regno = (restore_regno >= FIRST_PSEUDO_REGISTER
7172 ? reg_renumber[restore_regno] : restore_regno);
7173 if (hard_regno < 0 || reg_renumber[regno] == hard_regno)
7174 bitmap_set_bit (remove_pseudos, regno);
7175 else
7177 n_split++;
7178 if (lra_dump_file != NULL)
7179 fprintf (lra_dump_file, " Keep split r%d (orig=r%d)\n",
7180 regno, restore_regno);
7183 if (lra_dump_file != NULL && n_all_split != 0)
7184 fprintf (lra_dump_file, "Split %d out of %d (%.2f%%)\n",
7185 n_split, n_all_split,
7186 (double) n_split / n_all_split * 100);
7187 change_p = remove_inheritance_pseudos (remove_pseudos);
7188 /* Clear restore_regnos. */
7189 EXECUTE_IF_SET_IN_BITMAP (&lra_inheritance_pseudos, 0, regno, bi)
7190 lra_reg_info[regno].restore_rtx = NULL_RTX;
7191 EXECUTE_IF_SET_IN_BITMAP (&lra_split_regs, 0, regno, bi)
7192 lra_reg_info[regno].restore_rtx = NULL_RTX;
7193 change_p = undo_optional_reloads () || change_p;
7194 return change_p;