1 /* If-conversion support.
2 Copyright (C) 2000-2019 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
22 #include "coretypes.h"
39 #include "cfgcleanup.h"
43 #include "tree-pass.h"
45 #include "shrink-wrap.h"
50 #ifndef MAX_CONDITIONAL_EXECUTE
51 #define MAX_CONDITIONAL_EXECUTE \
52 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
56 #define IFCVT_MULTIPLE_DUMPS 1
58 #define NULL_BLOCK ((basic_block) NULL)
60 /* True if after combine pass. */
61 static bool ifcvt_after_combine
;
63 /* True if the target has the cbranchcc4 optab. */
64 static bool have_cbranchcc4
;
66 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
67 static int num_possible_if_blocks
;
69 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
71 static int num_updated_if_blocks
;
73 /* # of changes made. */
74 static int num_true_changes
;
76 /* Whether conditional execution changes were made. */
77 static int cond_exec_changed_p
;
79 /* Forward references. */
80 static int count_bb_insns (const_basic_block
);
81 static bool cheap_bb_rtx_cost_p (const_basic_block
, profile_probability
, int);
82 static rtx_insn
*first_active_insn (basic_block
);
83 static rtx_insn
*last_active_insn (basic_block
, int);
84 static rtx_insn
*find_active_insn_before (basic_block
, rtx_insn
*);
85 static rtx_insn
*find_active_insn_after (basic_block
, rtx_insn
*);
86 static basic_block
block_fallthru (basic_block
);
87 static rtx
cond_exec_get_condition (rtx_insn
*);
88 static rtx
noce_get_condition (rtx_insn
*, rtx_insn
**, bool);
89 static int noce_operand_ok (const_rtx
);
90 static void merge_if_block (ce_if_block
*);
91 static int find_cond_trap (basic_block
, edge
, edge
);
92 static basic_block
find_if_header (basic_block
, int);
93 static int block_jumps_and_fallthru_p (basic_block
, basic_block
);
94 static int noce_find_if_block (basic_block
, edge
, edge
, int);
95 static int cond_exec_find_if_block (ce_if_block
*);
96 static int find_if_case_1 (basic_block
, edge
, edge
);
97 static int find_if_case_2 (basic_block
, edge
, edge
);
98 static int dead_or_predicable (basic_block
, basic_block
, basic_block
,
100 static void noce_emit_move_insn (rtx
, rtx
);
101 static rtx_insn
*block_has_only_trap (basic_block
);
103 /* Count the number of non-jump active insns in BB. */
106 count_bb_insns (const_basic_block bb
)
109 rtx_insn
*insn
= BB_HEAD (bb
);
113 if (active_insn_p (insn
) && !JUMP_P (insn
))
116 if (insn
== BB_END (bb
))
118 insn
= NEXT_INSN (insn
);
124 /* Determine whether the total insn_cost on non-jump insns in
125 basic block BB is less than MAX_COST. This function returns
126 false if the cost of any instruction could not be estimated.
128 The cost of the non-jump insns in BB is scaled by REG_BR_PROB_BASE
129 as those insns are being speculated. MAX_COST is scaled with SCALE
130 plus a small fudge factor. */
133 cheap_bb_rtx_cost_p (const_basic_block bb
,
134 profile_probability prob
, int max_cost
)
137 rtx_insn
*insn
= BB_HEAD (bb
);
138 bool speed
= optimize_bb_for_speed_p (bb
);
139 int scale
= prob
.initialized_p () ? prob
.to_reg_br_prob_base ()
142 /* Set scale to REG_BR_PROB_BASE to void the identical scaling
143 applied to insn_cost when optimizing for size. Only do
144 this after combine because if-conversion might interfere with
145 passes before combine.
147 Use optimize_function_for_speed_p instead of the pre-defined
148 variable speed to make sure it is set to same value for all
149 basic blocks in one if-conversion transformation. */
150 if (!optimize_function_for_speed_p (cfun
) && ifcvt_after_combine
)
151 scale
= REG_BR_PROB_BASE
;
152 /* Our branch probability/scaling factors are just estimates and don't
153 account for cases where we can get speculation for free and other
154 secondary benefits. So we fudge the scale factor to make speculating
155 appear a little more profitable when optimizing for performance. */
157 scale
+= REG_BR_PROB_BASE
/ 8;
164 if (NONJUMP_INSN_P (insn
))
166 int cost
= insn_cost (insn
, speed
) * REG_BR_PROB_BASE
;
170 /* If this instruction is the load or set of a "stack" register,
171 such as a floating point register on x87, then the cost of
172 speculatively executing this insn may need to include
173 the additional cost of popping its result off of the
174 register stack. Unfortunately, correctly recognizing and
175 accounting for this additional overhead is tricky, so for
176 now we simply prohibit such speculative execution. */
179 rtx set
= single_set (insn
);
180 if (set
&& STACK_REG_P (SET_DEST (set
)))
186 if (count
>= max_cost
)
189 else if (CALL_P (insn
))
192 if (insn
== BB_END (bb
))
194 insn
= NEXT_INSN (insn
);
200 /* Return the first non-jump active insn in the basic block. */
203 first_active_insn (basic_block bb
)
205 rtx_insn
*insn
= BB_HEAD (bb
);
209 if (insn
== BB_END (bb
))
211 insn
= NEXT_INSN (insn
);
214 while (NOTE_P (insn
) || DEBUG_INSN_P (insn
))
216 if (insn
== BB_END (bb
))
218 insn
= NEXT_INSN (insn
);
227 /* Return the last non-jump active (non-jump) insn in the basic block. */
230 last_active_insn (basic_block bb
, int skip_use_p
)
232 rtx_insn
*insn
= BB_END (bb
);
233 rtx_insn
*head
= BB_HEAD (bb
);
237 || DEBUG_INSN_P (insn
)
239 && NONJUMP_INSN_P (insn
)
240 && GET_CODE (PATTERN (insn
)) == USE
))
244 insn
= PREV_INSN (insn
);
253 /* Return the active insn before INSN inside basic block CURR_BB. */
256 find_active_insn_before (basic_block curr_bb
, rtx_insn
*insn
)
258 if (!insn
|| insn
== BB_HEAD (curr_bb
))
261 while ((insn
= PREV_INSN (insn
)) != NULL_RTX
)
263 if (NONJUMP_INSN_P (insn
) || JUMP_P (insn
) || CALL_P (insn
))
266 /* No other active insn all the way to the start of the basic block. */
267 if (insn
== BB_HEAD (curr_bb
))
274 /* Return the active insn after INSN inside basic block CURR_BB. */
277 find_active_insn_after (basic_block curr_bb
, rtx_insn
*insn
)
279 if (!insn
|| insn
== BB_END (curr_bb
))
282 while ((insn
= NEXT_INSN (insn
)) != NULL_RTX
)
284 if (NONJUMP_INSN_P (insn
) || JUMP_P (insn
) || CALL_P (insn
))
287 /* No other active insn all the way to the end of the basic block. */
288 if (insn
== BB_END (curr_bb
))
295 /* Return the basic block reached by falling though the basic block BB. */
298 block_fallthru (basic_block bb
)
300 edge e
= find_fallthru_edge (bb
->succs
);
302 return (e
) ? e
->dest
: NULL_BLOCK
;
305 /* Return true if RTXs A and B can be safely interchanged. */
308 rtx_interchangeable_p (const_rtx a
, const_rtx b
)
310 if (!rtx_equal_p (a
, b
))
313 if (GET_CODE (a
) != MEM
)
316 /* A dead type-unsafe memory reference is legal, but a live type-unsafe memory
317 reference is not. Interchanging a dead type-unsafe memory reference with
318 a live type-safe one creates a live type-unsafe memory reference, in other
319 words, it makes the program illegal.
320 We check here conservatively whether the two memory references have equal
321 memory attributes. */
323 return mem_attrs_eq_p (get_mem_attrs (a
), get_mem_attrs (b
));
327 /* Go through a bunch of insns, converting them to conditional
328 execution format if possible. Return TRUE if all of the non-note
329 insns were processed. */
332 cond_exec_process_insns (ce_if_block
*ce_info ATTRIBUTE_UNUSED
,
333 /* if block information */rtx_insn
*start
,
334 /* first insn to look at */rtx end
,
335 /* last insn to look at */rtx test
,
336 /* conditional execution test */profile_probability
338 /* probability of branch taken. */int mod_ok
)
340 int must_be_last
= FALSE
;
348 for (insn
= start
; ; insn
= NEXT_INSN (insn
))
350 /* dwarf2out can't cope with conditional prologues. */
351 if (NOTE_P (insn
) && NOTE_KIND (insn
) == NOTE_INSN_PROLOGUE_END
)
354 if (NOTE_P (insn
) || DEBUG_INSN_P (insn
))
357 gcc_assert (NONJUMP_INSN_P (insn
) || CALL_P (insn
));
359 /* dwarf2out can't cope with conditional unwind info. */
360 if (RTX_FRAME_RELATED_P (insn
))
363 /* Remove USE insns that get in the way. */
364 if (reload_completed
&& GET_CODE (PATTERN (insn
)) == USE
)
366 /* ??? Ug. Actually unlinking the thing is problematic,
367 given what we'd have to coordinate with our callers. */
368 SET_INSN_DELETED (insn
);
372 /* Last insn wasn't last? */
376 if (modified_in_p (test
, insn
))
383 /* Now build the conditional form of the instruction. */
384 pattern
= PATTERN (insn
);
385 xtest
= copy_rtx (test
);
387 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
389 if (GET_CODE (pattern
) == COND_EXEC
)
391 if (GET_MODE (xtest
) != GET_MODE (COND_EXEC_TEST (pattern
)))
394 xtest
= gen_rtx_AND (GET_MODE (xtest
), xtest
,
395 COND_EXEC_TEST (pattern
));
396 pattern
= COND_EXEC_CODE (pattern
);
399 pattern
= gen_rtx_COND_EXEC (VOIDmode
, xtest
, pattern
);
401 /* If the machine needs to modify the insn being conditionally executed,
402 say for example to force a constant integer operand into a temp
403 register, do so here. */
404 #ifdef IFCVT_MODIFY_INSN
405 IFCVT_MODIFY_INSN (ce_info
, pattern
, insn
);
410 validate_change (insn
, &PATTERN (insn
), pattern
, 1);
412 if (CALL_P (insn
) && prob_val
.initialized_p ())
413 validate_change (insn
, ®_NOTES (insn
),
414 gen_rtx_INT_LIST ((machine_mode
) REG_BR_PROB
,
415 prob_val
.to_reg_br_prob_note (),
416 REG_NOTES (insn
)), 1);
426 /* Return the condition for a jump. Do not do any special processing. */
429 cond_exec_get_condition (rtx_insn
*jump
)
433 if (any_condjump_p (jump
))
434 test_if
= SET_SRC (pc_set (jump
));
437 cond
= XEXP (test_if
, 0);
439 /* If this branches to JUMP_LABEL when the condition is false,
440 reverse the condition. */
441 if (GET_CODE (XEXP (test_if
, 2)) == LABEL_REF
442 && label_ref_label (XEXP (test_if
, 2)) == JUMP_LABEL (jump
))
444 enum rtx_code rev
= reversed_comparison_code (cond
, jump
);
448 cond
= gen_rtx_fmt_ee (rev
, GET_MODE (cond
), XEXP (cond
, 0),
455 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
456 to conditional execution. Return TRUE if we were successful at
457 converting the block. */
460 cond_exec_process_if_block (ce_if_block
* ce_info
,
461 /* if block information */int do_multiple_p
)
463 basic_block test_bb
= ce_info
->test_bb
; /* last test block */
464 basic_block then_bb
= ce_info
->then_bb
; /* THEN */
465 basic_block else_bb
= ce_info
->else_bb
; /* ELSE or NULL */
466 rtx test_expr
; /* expression in IF_THEN_ELSE that is tested */
467 rtx_insn
*then_start
; /* first insn in THEN block */
468 rtx_insn
*then_end
; /* last insn + 1 in THEN block */
469 rtx_insn
*else_start
= NULL
; /* first insn in ELSE block or NULL */
470 rtx_insn
*else_end
= NULL
; /* last insn + 1 in ELSE block */
471 int max
; /* max # of insns to convert. */
472 int then_mod_ok
; /* whether conditional mods are ok in THEN */
473 rtx true_expr
; /* test for else block insns */
474 rtx false_expr
; /* test for then block insns */
475 profile_probability true_prob_val
;/* probability of else block */
476 profile_probability false_prob_val
;/* probability of then block */
477 rtx_insn
*then_last_head
= NULL
; /* Last match at the head of THEN */
478 rtx_insn
*else_last_head
= NULL
; /* Last match at the head of ELSE */
479 rtx_insn
*then_first_tail
= NULL
; /* First match at the tail of THEN */
480 rtx_insn
*else_first_tail
= NULL
; /* First match at the tail of ELSE */
481 int then_n_insns
, else_n_insns
, n_insns
;
482 enum rtx_code false_code
;
485 /* If test is comprised of && or || elements, and we've failed at handling
486 all of them together, just use the last test if it is the special case of
487 && elements without an ELSE block. */
488 if (!do_multiple_p
&& ce_info
->num_multiple_test_blocks
)
490 if (else_bb
|| ! ce_info
->and_and_p
)
493 ce_info
->test_bb
= test_bb
= ce_info
->last_test_bb
;
494 ce_info
->num_multiple_test_blocks
= 0;
495 ce_info
->num_and_and_blocks
= 0;
496 ce_info
->num_or_or_blocks
= 0;
499 /* Find the conditional jump to the ELSE or JOIN part, and isolate
501 test_expr
= cond_exec_get_condition (BB_END (test_bb
));
505 /* If the conditional jump is more than just a conditional jump,
506 then we cannot do conditional execution conversion on this block. */
507 if (! onlyjump_p (BB_END (test_bb
)))
510 /* Collect the bounds of where we're to search, skipping any labels, jumps
511 and notes at the beginning and end of the block. Then count the total
512 number of insns and see if it is small enough to convert. */
513 then_start
= first_active_insn (then_bb
);
514 then_end
= last_active_insn (then_bb
, TRUE
);
515 then_n_insns
= ce_info
->num_then_insns
= count_bb_insns (then_bb
);
516 n_insns
= then_n_insns
;
517 max
= MAX_CONDITIONAL_EXECUTE
;
524 else_start
= first_active_insn (else_bb
);
525 else_end
= last_active_insn (else_bb
, TRUE
);
526 else_n_insns
= ce_info
->num_else_insns
= count_bb_insns (else_bb
);
527 n_insns
+= else_n_insns
;
529 /* Look for matching sequences at the head and tail of the two blocks,
530 and limit the range of insns to be converted if possible. */
531 n_matching
= flow_find_cross_jump (then_bb
, else_bb
,
532 &then_first_tail
, &else_first_tail
,
534 if (then_first_tail
== BB_HEAD (then_bb
))
535 then_start
= then_end
= NULL
;
536 if (else_first_tail
== BB_HEAD (else_bb
))
537 else_start
= else_end
= NULL
;
542 then_end
= find_active_insn_before (then_bb
, then_first_tail
);
544 else_end
= find_active_insn_before (else_bb
, else_first_tail
);
545 n_insns
-= 2 * n_matching
;
550 && then_n_insns
> n_matching
551 && else_n_insns
> n_matching
)
553 int longest_match
= MIN (then_n_insns
- n_matching
,
554 else_n_insns
- n_matching
);
556 = flow_find_head_matching_sequence (then_bb
, else_bb
,
565 /* We won't pass the insns in the head sequence to
566 cond_exec_process_insns, so we need to test them here
567 to make sure that they don't clobber the condition. */
568 for (insn
= BB_HEAD (then_bb
);
569 insn
!= NEXT_INSN (then_last_head
);
570 insn
= NEXT_INSN (insn
))
571 if (!LABEL_P (insn
) && !NOTE_P (insn
)
572 && !DEBUG_INSN_P (insn
)
573 && modified_in_p (test_expr
, insn
))
577 if (then_last_head
== then_end
)
578 then_start
= then_end
= NULL
;
579 if (else_last_head
== else_end
)
580 else_start
= else_end
= NULL
;
585 then_start
= find_active_insn_after (then_bb
, then_last_head
);
587 else_start
= find_active_insn_after (else_bb
, else_last_head
);
588 n_insns
-= 2 * n_matching
;
596 /* Map test_expr/test_jump into the appropriate MD tests to use on
597 the conditionally executed code. */
599 true_expr
= test_expr
;
601 false_code
= reversed_comparison_code (true_expr
, BB_END (test_bb
));
602 if (false_code
!= UNKNOWN
)
603 false_expr
= gen_rtx_fmt_ee (false_code
, GET_MODE (true_expr
),
604 XEXP (true_expr
, 0), XEXP (true_expr
, 1));
606 false_expr
= NULL_RTX
;
608 #ifdef IFCVT_MODIFY_TESTS
609 /* If the machine description needs to modify the tests, such as setting a
610 conditional execution register from a comparison, it can do so here. */
611 IFCVT_MODIFY_TESTS (ce_info
, true_expr
, false_expr
);
613 /* See if the conversion failed. */
614 if (!true_expr
|| !false_expr
)
618 note
= find_reg_note (BB_END (test_bb
), REG_BR_PROB
, NULL_RTX
);
621 true_prob_val
= profile_probability::from_reg_br_prob_note (XINT (note
, 0));
622 false_prob_val
= true_prob_val
.invert ();
626 true_prob_val
= profile_probability::uninitialized ();
627 false_prob_val
= profile_probability::uninitialized ();
630 /* If we have && or || tests, do them here. These tests are in the adjacent
631 blocks after the first block containing the test. */
632 if (ce_info
->num_multiple_test_blocks
> 0)
634 basic_block bb
= test_bb
;
635 basic_block last_test_bb
= ce_info
->last_test_bb
;
642 rtx_insn
*start
, *end
;
644 enum rtx_code f_code
;
646 bb
= block_fallthru (bb
);
647 start
= first_active_insn (bb
);
648 end
= last_active_insn (bb
, TRUE
);
650 && ! cond_exec_process_insns (ce_info
, start
, end
, false_expr
,
651 false_prob_val
, FALSE
))
654 /* If the conditional jump is more than just a conditional jump, then
655 we cannot do conditional execution conversion on this block. */
656 if (! onlyjump_p (BB_END (bb
)))
659 /* Find the conditional jump and isolate the test. */
660 t
= cond_exec_get_condition (BB_END (bb
));
664 f_code
= reversed_comparison_code (t
, BB_END (bb
));
665 if (f_code
== UNKNOWN
)
668 f
= gen_rtx_fmt_ee (f_code
, GET_MODE (t
), XEXP (t
, 0), XEXP (t
, 1));
669 if (ce_info
->and_and_p
)
671 t
= gen_rtx_AND (GET_MODE (t
), true_expr
, t
);
672 f
= gen_rtx_IOR (GET_MODE (t
), false_expr
, f
);
676 t
= gen_rtx_IOR (GET_MODE (t
), true_expr
, t
);
677 f
= gen_rtx_AND (GET_MODE (t
), false_expr
, f
);
680 /* If the machine description needs to modify the tests, such as
681 setting a conditional execution register from a comparison, it can
683 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
684 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info
, bb
, t
, f
);
686 /* See if the conversion failed. */
694 while (bb
!= last_test_bb
);
697 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
698 on then THEN block. */
699 then_mod_ok
= (else_bb
== NULL_BLOCK
);
701 /* Go through the THEN and ELSE blocks converting the insns if possible
702 to conditional execution. */
706 || ! cond_exec_process_insns (ce_info
, then_start
, then_end
,
707 false_expr
, false_prob_val
,
711 if (else_bb
&& else_end
712 && ! cond_exec_process_insns (ce_info
, else_start
, else_end
,
713 true_expr
, true_prob_val
, TRUE
))
716 /* If we cannot apply the changes, fail. Do not go through the normal fail
717 processing, since apply_change_group will call cancel_changes. */
718 if (! apply_change_group ())
720 #ifdef IFCVT_MODIFY_CANCEL
721 /* Cancel any machine dependent changes. */
722 IFCVT_MODIFY_CANCEL (ce_info
);
727 #ifdef IFCVT_MODIFY_FINAL
728 /* Do any machine dependent final modifications. */
729 IFCVT_MODIFY_FINAL (ce_info
);
732 /* Conversion succeeded. */
734 fprintf (dump_file
, "%d insn%s converted to conditional execution.\n",
735 n_insns
, (n_insns
== 1) ? " was" : "s were");
737 /* Merge the blocks! If we had matching sequences, make sure to delete one
738 copy at the appropriate location first: delete the copy in the THEN branch
739 for a tail sequence so that the remaining one is executed last for both
740 branches, and delete the copy in the ELSE branch for a head sequence so
741 that the remaining one is executed first for both branches. */
744 rtx_insn
*from
= then_first_tail
;
746 from
= find_active_insn_after (then_bb
, from
);
747 delete_insn_chain (from
, get_last_bb_insn (then_bb
), false);
750 delete_insn_chain (first_active_insn (else_bb
), else_last_head
, false);
752 merge_if_block (ce_info
);
753 cond_exec_changed_p
= TRUE
;
757 #ifdef IFCVT_MODIFY_CANCEL
758 /* Cancel any machine dependent changes. */
759 IFCVT_MODIFY_CANCEL (ce_info
);
766 static rtx
noce_emit_store_flag (struct noce_if_info
*, rtx
, int, int);
767 static int noce_try_move (struct noce_if_info
*);
768 static int noce_try_ifelse_collapse (struct noce_if_info
*);
769 static int noce_try_store_flag (struct noce_if_info
*);
770 static int noce_try_addcc (struct noce_if_info
*);
771 static int noce_try_store_flag_constants (struct noce_if_info
*);
772 static int noce_try_store_flag_mask (struct noce_if_info
*);
773 static rtx
noce_emit_cmove (struct noce_if_info
*, rtx
, enum rtx_code
, rtx
,
775 static int noce_try_cmove (struct noce_if_info
*);
776 static int noce_try_cmove_arith (struct noce_if_info
*);
777 static rtx
noce_get_alt_condition (struct noce_if_info
*, rtx
, rtx_insn
**);
778 static int noce_try_minmax (struct noce_if_info
*);
779 static int noce_try_abs (struct noce_if_info
*);
780 static int noce_try_sign_mask (struct noce_if_info
*);
782 /* Return the comparison code for reversed condition for IF_INFO,
783 or UNKNOWN if reversing the condition is not possible. */
785 static inline enum rtx_code
786 noce_reversed_cond_code (struct noce_if_info
*if_info
)
788 if (if_info
->rev_cond
)
789 return GET_CODE (if_info
->rev_cond
);
790 return reversed_comparison_code (if_info
->cond
, if_info
->jump
);
793 /* Return true if SEQ is a good candidate as a replacement for the
794 if-convertible sequence described in IF_INFO.
795 This is the default implementation that targets can override
796 through a target hook. */
799 default_noce_conversion_profitable_p (rtx_insn
*seq
,
800 struct noce_if_info
*if_info
)
802 bool speed_p
= if_info
->speed_p
;
804 /* Cost up the new sequence. */
805 unsigned int cost
= seq_cost (seq
, speed_p
);
807 if (cost
<= if_info
->original_cost
)
810 /* When compiling for size, we can make a reasonably accurately guess
811 at the size growth. When compiling for speed, use the maximum. */
812 return speed_p
&& cost
<= if_info
->max_seq_cost
;
815 /* Helper function for noce_try_store_flag*. */
818 noce_emit_store_flag (struct noce_if_info
*if_info
, rtx x
, int reversep
,
821 rtx cond
= if_info
->cond
;
825 cond_complex
= (! general_operand (XEXP (cond
, 0), VOIDmode
)
826 || ! general_operand (XEXP (cond
, 1), VOIDmode
));
828 /* If earliest == jump, or when the condition is complex, try to
829 build the store_flag insn directly. */
833 rtx set
= pc_set (if_info
->jump
);
834 cond
= XEXP (SET_SRC (set
), 0);
835 if (GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
836 && label_ref_label (XEXP (SET_SRC (set
), 2)) == JUMP_LABEL (if_info
->jump
))
837 reversep
= !reversep
;
838 if (if_info
->then_else_reversed
)
839 reversep
= !reversep
;
843 && general_operand (XEXP (if_info
->rev_cond
, 0), VOIDmode
)
844 && general_operand (XEXP (if_info
->rev_cond
, 1), VOIDmode
))
846 cond
= if_info
->rev_cond
;
851 code
= reversed_comparison_code (cond
, if_info
->jump
);
853 code
= GET_CODE (cond
);
855 if ((if_info
->cond_earliest
== if_info
->jump
|| cond_complex
)
856 && (normalize
== 0 || STORE_FLAG_VALUE
== normalize
))
858 rtx src
= gen_rtx_fmt_ee (code
, GET_MODE (x
), XEXP (cond
, 0),
860 rtx set
= gen_rtx_SET (x
, src
);
863 rtx_insn
*insn
= emit_insn (set
);
865 if (recog_memoized (insn
) >= 0)
867 rtx_insn
*seq
= get_insns ();
871 if_info
->cond_earliest
= if_info
->jump
;
879 /* Don't even try if the comparison operands or the mode of X are weird. */
880 if (cond_complex
|| !SCALAR_INT_MODE_P (GET_MODE (x
)))
883 return emit_store_flag (x
, code
, XEXP (cond
, 0),
884 XEXP (cond
, 1), VOIDmode
,
885 (code
== LTU
|| code
== LEU
886 || code
== GEU
|| code
== GTU
), normalize
);
889 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
890 X is the destination/target and Y is the value to copy. */
893 noce_emit_move_insn (rtx x
, rtx y
)
895 machine_mode outmode
;
899 if (GET_CODE (x
) != STRICT_LOW_PART
)
901 rtx_insn
*seq
, *insn
;
906 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
907 otherwise construct a suitable SET pattern ourselves. */
908 insn
= (OBJECT_P (y
) || CONSTANT_P (y
) || GET_CODE (y
) == SUBREG
)
909 ? emit_move_insn (x
, y
)
910 : emit_insn (gen_rtx_SET (x
, y
));
914 if (recog_memoized (insn
) <= 0)
916 if (GET_CODE (x
) == ZERO_EXTRACT
)
918 rtx op
= XEXP (x
, 0);
919 unsigned HOST_WIDE_INT size
= INTVAL (XEXP (x
, 1));
920 unsigned HOST_WIDE_INT start
= INTVAL (XEXP (x
, 2));
922 /* store_bit_field expects START to be relative to
923 BYTES_BIG_ENDIAN and adjusts this value for machines with
924 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
925 invoke store_bit_field again it is necessary to have the START
926 value from the first call. */
927 if (BITS_BIG_ENDIAN
!= BYTES_BIG_ENDIAN
)
930 start
= BITS_PER_UNIT
- start
- size
;
933 gcc_assert (REG_P (op
));
934 start
= BITS_PER_WORD
- start
- size
;
938 gcc_assert (start
< (MEM_P (op
) ? BITS_PER_UNIT
: BITS_PER_WORD
));
939 store_bit_field (op
, size
, start
, 0, 0, GET_MODE (x
), y
, false);
943 switch (GET_RTX_CLASS (GET_CODE (y
)))
946 ot
= code_to_optab (GET_CODE (y
));
950 target
= expand_unop (GET_MODE (y
), ot
, XEXP (y
, 0), x
, 0);
951 if (target
!= NULL_RTX
)
954 emit_move_insn (x
, target
);
963 ot
= code_to_optab (GET_CODE (y
));
967 target
= expand_binop (GET_MODE (y
), ot
,
968 XEXP (y
, 0), XEXP (y
, 1),
970 if (target
!= NULL_RTX
)
973 emit_move_insn (x
, target
);
990 inner
= XEXP (outer
, 0);
991 outmode
= GET_MODE (outer
);
992 bitpos
= SUBREG_BYTE (outer
) * BITS_PER_UNIT
;
993 store_bit_field (inner
, GET_MODE_BITSIZE (outmode
), bitpos
,
994 0, 0, outmode
, y
, false);
997 /* Return the CC reg if it is used in COND. */
1000 cc_in_cond (rtx cond
)
1002 if (have_cbranchcc4
&& cond
1003 && GET_MODE_CLASS (GET_MODE (XEXP (cond
, 0))) == MODE_CC
)
1004 return XEXP (cond
, 0);
1009 /* Return sequence of instructions generated by if conversion. This
1010 function calls end_sequence() to end the current stream, ensures
1011 that the instructions are unshared, recognizable non-jump insns.
1012 On failure, this function returns a NULL_RTX. */
1015 end_ifcvt_sequence (struct noce_if_info
*if_info
)
1018 rtx_insn
*seq
= get_insns ();
1019 rtx cc
= cc_in_cond (if_info
->cond
);
1021 set_used_flags (if_info
->x
);
1022 set_used_flags (if_info
->cond
);
1023 set_used_flags (if_info
->a
);
1024 set_used_flags (if_info
->b
);
1026 for (insn
= seq
; insn
; insn
= NEXT_INSN (insn
))
1027 set_used_flags (insn
);
1029 unshare_all_rtl_in_chain (seq
);
1032 /* Make sure that all of the instructions emitted are recognizable,
1033 and that we haven't introduced a new jump instruction.
1034 As an exercise for the reader, build a general mechanism that
1035 allows proper placement of required clobbers. */
1036 for (insn
= seq
; insn
; insn
= NEXT_INSN (insn
))
1038 || recog_memoized (insn
) == -1
1039 /* Make sure new generated code does not clobber CC. */
1040 || (cc
&& set_of (cc
, insn
)))
1046 /* Return true iff the then and else basic block (if it exists)
1047 consist of a single simple set instruction. */
1050 noce_simple_bbs (struct noce_if_info
*if_info
)
1052 if (!if_info
->then_simple
)
1055 if (if_info
->else_bb
)
1056 return if_info
->else_simple
;
1061 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
1062 "if (a == b) x = a; else x = b" into "x = b". */
1065 noce_try_move (struct noce_if_info
*if_info
)
1067 rtx cond
= if_info
->cond
;
1068 enum rtx_code code
= GET_CODE (cond
);
1072 if (code
!= NE
&& code
!= EQ
)
1075 if (!noce_simple_bbs (if_info
))
1078 /* This optimization isn't valid if either A or B could be a NaN
1079 or a signed zero. */
1080 if (HONOR_NANS (if_info
->x
)
1081 || HONOR_SIGNED_ZEROS (if_info
->x
))
1084 /* Check whether the operands of the comparison are A and in
1086 if ((rtx_equal_p (if_info
->a
, XEXP (cond
, 0))
1087 && rtx_equal_p (if_info
->b
, XEXP (cond
, 1)))
1088 || (rtx_equal_p (if_info
->a
, XEXP (cond
, 1))
1089 && rtx_equal_p (if_info
->b
, XEXP (cond
, 0))))
1091 if (!rtx_interchangeable_p (if_info
->a
, if_info
->b
))
1094 y
= (code
== EQ
) ? if_info
->a
: if_info
->b
;
1096 /* Avoid generating the move if the source is the destination. */
1097 if (! rtx_equal_p (if_info
->x
, y
))
1100 noce_emit_move_insn (if_info
->x
, y
);
1101 seq
= end_ifcvt_sequence (if_info
);
1105 emit_insn_before_setloc (seq
, if_info
->jump
,
1106 INSN_LOCATION (if_info
->insn_a
));
1108 if_info
->transform_name
= "noce_try_move";
1114 /* Try forming an IF_THEN_ELSE (cond, b, a) and collapsing that
1115 through simplify_rtx. Sometimes that can eliminate the IF_THEN_ELSE.
1116 If that is the case, emit the result into x. */
1119 noce_try_ifelse_collapse (struct noce_if_info
* if_info
)
1121 if (!noce_simple_bbs (if_info
))
1124 machine_mode mode
= GET_MODE (if_info
->x
);
1125 rtx if_then_else
= simplify_gen_ternary (IF_THEN_ELSE
, mode
, mode
,
1126 if_info
->cond
, if_info
->b
,
1129 if (GET_CODE (if_then_else
) == IF_THEN_ELSE
)
1134 noce_emit_move_insn (if_info
->x
, if_then_else
);
1135 seq
= end_ifcvt_sequence (if_info
);
1139 emit_insn_before_setloc (seq
, if_info
->jump
,
1140 INSN_LOCATION (if_info
->insn_a
));
1142 if_info
->transform_name
= "noce_try_ifelse_collapse";
1147 /* Convert "if (test) x = 1; else x = 0".
1149 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
1150 tried in noce_try_store_flag_constants after noce_try_cmove has had
1151 a go at the conversion. */
1154 noce_try_store_flag (struct noce_if_info
*if_info
)
1160 if (!noce_simple_bbs (if_info
))
1163 if (CONST_INT_P (if_info
->b
)
1164 && INTVAL (if_info
->b
) == STORE_FLAG_VALUE
1165 && if_info
->a
== const0_rtx
)
1167 else if (if_info
->b
== const0_rtx
1168 && CONST_INT_P (if_info
->a
)
1169 && INTVAL (if_info
->a
) == STORE_FLAG_VALUE
1170 && noce_reversed_cond_code (if_info
) != UNKNOWN
)
1177 target
= noce_emit_store_flag (if_info
, if_info
->x
, reversep
, 0);
1180 if (target
!= if_info
->x
)
1181 noce_emit_move_insn (if_info
->x
, target
);
1183 seq
= end_ifcvt_sequence (if_info
);
1187 emit_insn_before_setloc (seq
, if_info
->jump
,
1188 INSN_LOCATION (if_info
->insn_a
));
1189 if_info
->transform_name
= "noce_try_store_flag";
1200 /* Convert "if (test) x = -A; else x = A" into
1201 x = A; if (test) x = -x if the machine can do the
1202 conditional negate form of this cheaply.
1203 Try this before noce_try_cmove that will just load the
1204 immediates into two registers and do a conditional select
1205 between them. If the target has a conditional negate or
1206 conditional invert operation we can save a potentially
1207 expensive constant synthesis. */
1210 noce_try_inverse_constants (struct noce_if_info
*if_info
)
1212 if (!noce_simple_bbs (if_info
))
1215 if (!CONST_INT_P (if_info
->a
)
1216 || !CONST_INT_P (if_info
->b
)
1217 || !REG_P (if_info
->x
))
1220 machine_mode mode
= GET_MODE (if_info
->x
);
1222 HOST_WIDE_INT val_a
= INTVAL (if_info
->a
);
1223 HOST_WIDE_INT val_b
= INTVAL (if_info
->b
);
1225 rtx cond
= if_info
->cond
;
1233 if (val_b
!= HOST_WIDE_INT_MIN
&& val_a
== -val_b
)
1235 else if (val_a
== ~val_b
)
1243 rtx tmp
= gen_reg_rtx (mode
);
1244 noce_emit_move_insn (tmp
, if_info
->a
);
1246 target
= emit_conditional_neg_or_complement (x
, code
, mode
, cond
, tmp
, tmp
);
1250 rtx_insn
*seq
= get_insns ();
1258 if (target
!= if_info
->x
)
1259 noce_emit_move_insn (if_info
->x
, target
);
1261 seq
= end_ifcvt_sequence (if_info
);
1266 emit_insn_before_setloc (seq
, if_info
->jump
,
1267 INSN_LOCATION (if_info
->insn_a
));
1268 if_info
->transform_name
= "noce_try_inverse_constants";
1277 /* Convert "if (test) x = a; else x = b", for A and B constant.
1278 Also allow A = y + c1, B = y + c2, with a common y between A
1282 noce_try_store_flag_constants (struct noce_if_info
*if_info
)
1287 HOST_WIDE_INT itrue
, ifalse
, diff
, tmp
;
1290 machine_mode mode
= GET_MODE (if_info
->x
);
1291 rtx common
= NULL_RTX
;
1296 /* Handle cases like x := test ? y + 3 : y + 4. */
1297 if (GET_CODE (a
) == PLUS
1298 && GET_CODE (b
) == PLUS
1299 && CONST_INT_P (XEXP (a
, 1))
1300 && CONST_INT_P (XEXP (b
, 1))
1301 && rtx_equal_p (XEXP (a
, 0), XEXP (b
, 0))
1302 /* Allow expressions that are not using the result or plain
1303 registers where we handle overlap below. */
1304 && (REG_P (XEXP (a
, 0))
1305 || (noce_operand_ok (XEXP (a
, 0))
1306 && ! reg_overlap_mentioned_p (if_info
->x
, XEXP (a
, 0)))))
1308 common
= XEXP (a
, 0);
1313 if (!noce_simple_bbs (if_info
))
1319 ifalse
= INTVAL (a
);
1321 bool subtract_flag_p
= false;
1323 diff
= (unsigned HOST_WIDE_INT
) itrue
- ifalse
;
1324 /* Make sure we can represent the difference between the two values. */
1326 != ((ifalse
< 0) != (itrue
< 0) ? ifalse
< 0 : ifalse
< itrue
))
1329 diff
= trunc_int_for_mode (diff
, mode
);
1331 can_reverse
= noce_reversed_cond_code (if_info
) != UNKNOWN
;
1333 if (diff
== STORE_FLAG_VALUE
|| diff
== -STORE_FLAG_VALUE
)
1336 /* We could collapse these cases but it is easier to follow the
1337 diff/STORE_FLAG_VALUE combinations when they are listed
1341 => 4 + (test != 0). */
1342 if (diff
< 0 && STORE_FLAG_VALUE
< 0)
1345 => can_reverse | 4 + (test == 0)
1346 !can_reverse | 3 - (test != 0). */
1347 else if (diff
> 0 && STORE_FLAG_VALUE
< 0)
1349 reversep
= can_reverse
;
1350 subtract_flag_p
= !can_reverse
;
1351 /* If we need to subtract the flag and we have PLUS-immediate
1352 A and B then it is unlikely to be beneficial to play tricks
1354 if (subtract_flag_p
&& common
)
1358 => can_reverse | 3 + (test == 0)
1359 !can_reverse | 4 - (test != 0). */
1360 else if (diff
< 0 && STORE_FLAG_VALUE
> 0)
1362 reversep
= can_reverse
;
1363 subtract_flag_p
= !can_reverse
;
1364 /* If we need to subtract the flag and we have PLUS-immediate
1365 A and B then it is unlikely to be beneficial to play tricks
1367 if (subtract_flag_p
&& common
)
1371 => 4 + (test != 0). */
1372 else if (diff
> 0 && STORE_FLAG_VALUE
> 0)
1377 /* Is this (cond) ? 2^n : 0? */
1378 else if (ifalse
== 0 && pow2p_hwi (itrue
)
1379 && STORE_FLAG_VALUE
== 1)
1381 /* Is this (cond) ? 0 : 2^n? */
1382 else if (itrue
== 0 && pow2p_hwi (ifalse
) && can_reverse
1383 && STORE_FLAG_VALUE
== 1)
1388 /* Is this (cond) ? -1 : x? */
1389 else if (itrue
== -1
1390 && STORE_FLAG_VALUE
== -1)
1392 /* Is this (cond) ? x : -1? */
1393 else if (ifalse
== -1 && can_reverse
1394 && STORE_FLAG_VALUE
== -1)
1404 std::swap (itrue
, ifalse
);
1405 diff
= trunc_int_for_mode (-(unsigned HOST_WIDE_INT
) diff
, mode
);
1410 /* If we have x := test ? x + 3 : x + 4 then move the original
1411 x out of the way while we store flags. */
1412 if (common
&& rtx_equal_p (common
, if_info
->x
))
1414 common
= gen_reg_rtx (mode
);
1415 noce_emit_move_insn (common
, if_info
->x
);
1418 target
= noce_emit_store_flag (if_info
, if_info
->x
, reversep
, normalize
);
1425 /* if (test) x = 3; else x = 4;
1426 => x = 3 + (test == 0); */
1427 if (diff
== STORE_FLAG_VALUE
|| diff
== -STORE_FLAG_VALUE
)
1429 /* Add the common part now. This may allow combine to merge this
1430 with the store flag operation earlier into some sort of conditional
1431 increment/decrement if the target allows it. */
1433 target
= expand_simple_binop (mode
, PLUS
,
1435 target
, 0, OPTAB_WIDEN
);
1437 /* Always use ifalse here. It should have been swapped with itrue
1438 when appropriate when reversep is true. */
1439 target
= expand_simple_binop (mode
, subtract_flag_p
? MINUS
: PLUS
,
1440 gen_int_mode (ifalse
, mode
), target
,
1441 if_info
->x
, 0, OPTAB_WIDEN
);
1443 /* Other cases are not beneficial when the original A and B are PLUS
1450 /* if (test) x = 8; else x = 0;
1451 => x = (test != 0) << 3; */
1452 else if (ifalse
== 0 && (tmp
= exact_log2 (itrue
)) >= 0)
1454 target
= expand_simple_binop (mode
, ASHIFT
,
1455 target
, GEN_INT (tmp
), if_info
->x
, 0,
1459 /* if (test) x = -1; else x = b;
1460 => x = -(test != 0) | b; */
1461 else if (itrue
== -1)
1463 target
= expand_simple_binop (mode
, IOR
,
1464 target
, gen_int_mode (ifalse
, mode
),
1465 if_info
->x
, 0, OPTAB_WIDEN
);
1479 if (target
!= if_info
->x
)
1480 noce_emit_move_insn (if_info
->x
, target
);
1482 seq
= end_ifcvt_sequence (if_info
);
1483 if (!seq
|| !targetm
.noce_conversion_profitable_p (seq
, if_info
))
1486 emit_insn_before_setloc (seq
, if_info
->jump
,
1487 INSN_LOCATION (if_info
->insn_a
));
1488 if_info
->transform_name
= "noce_try_store_flag_constants";
1496 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1497 similarly for "foo--". */
1500 noce_try_addcc (struct noce_if_info
*if_info
)
1504 int subtract
, normalize
;
1506 if (!noce_simple_bbs (if_info
))
1509 if (GET_CODE (if_info
->a
) == PLUS
1510 && rtx_equal_p (XEXP (if_info
->a
, 0), if_info
->b
)
1511 && noce_reversed_cond_code (if_info
) != UNKNOWN
)
1513 rtx cond
= if_info
->rev_cond
;
1516 if (cond
== NULL_RTX
)
1518 cond
= if_info
->cond
;
1519 code
= reversed_comparison_code (cond
, if_info
->jump
);
1522 code
= GET_CODE (cond
);
1524 /* First try to use addcc pattern. */
1525 if (general_operand (XEXP (cond
, 0), VOIDmode
)
1526 && general_operand (XEXP (cond
, 1), VOIDmode
))
1529 target
= emit_conditional_add (if_info
->x
, code
,
1534 XEXP (if_info
->a
, 1),
1535 GET_MODE (if_info
->x
),
1536 (code
== LTU
|| code
== GEU
1537 || code
== LEU
|| code
== GTU
));
1540 if (target
!= if_info
->x
)
1541 noce_emit_move_insn (if_info
->x
, target
);
1543 seq
= end_ifcvt_sequence (if_info
);
1544 if (!seq
|| !targetm
.noce_conversion_profitable_p (seq
, if_info
))
1547 emit_insn_before_setloc (seq
, if_info
->jump
,
1548 INSN_LOCATION (if_info
->insn_a
));
1549 if_info
->transform_name
= "noce_try_addcc";
1556 /* If that fails, construct conditional increment or decrement using
1557 setcc. We're changing a branch and an increment to a comparison and
1559 if (XEXP (if_info
->a
, 1) == const1_rtx
1560 || XEXP (if_info
->a
, 1) == constm1_rtx
)
1563 if (STORE_FLAG_VALUE
== INTVAL (XEXP (if_info
->a
, 1)))
1564 subtract
= 0, normalize
= 0;
1565 else if (-STORE_FLAG_VALUE
== INTVAL (XEXP (if_info
->a
, 1)))
1566 subtract
= 1, normalize
= 0;
1568 subtract
= 0, normalize
= INTVAL (XEXP (if_info
->a
, 1));
1571 target
= noce_emit_store_flag (if_info
,
1572 gen_reg_rtx (GET_MODE (if_info
->x
)),
1576 target
= expand_simple_binop (GET_MODE (if_info
->x
),
1577 subtract
? MINUS
: PLUS
,
1578 if_info
->b
, target
, if_info
->x
,
1582 if (target
!= if_info
->x
)
1583 noce_emit_move_insn (if_info
->x
, target
);
1585 seq
= end_ifcvt_sequence (if_info
);
1586 if (!seq
|| !targetm
.noce_conversion_profitable_p (seq
, if_info
))
1589 emit_insn_before_setloc (seq
, if_info
->jump
,
1590 INSN_LOCATION (if_info
->insn_a
));
1591 if_info
->transform_name
= "noce_try_addcc";
1601 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1604 noce_try_store_flag_mask (struct noce_if_info
*if_info
)
1610 if (!noce_simple_bbs (if_info
))
1615 if ((if_info
->a
== const0_rtx
1616 && rtx_equal_p (if_info
->b
, if_info
->x
))
1617 || ((reversep
= (noce_reversed_cond_code (if_info
) != UNKNOWN
))
1618 && if_info
->b
== const0_rtx
1619 && rtx_equal_p (if_info
->a
, if_info
->x
)))
1622 target
= noce_emit_store_flag (if_info
,
1623 gen_reg_rtx (GET_MODE (if_info
->x
)),
1626 target
= expand_simple_binop (GET_MODE (if_info
->x
), AND
,
1628 target
, if_info
->x
, 0,
1633 if (target
!= if_info
->x
)
1634 noce_emit_move_insn (if_info
->x
, target
);
1636 seq
= end_ifcvt_sequence (if_info
);
1637 if (!seq
|| !targetm
.noce_conversion_profitable_p (seq
, if_info
))
1640 emit_insn_before_setloc (seq
, if_info
->jump
,
1641 INSN_LOCATION (if_info
->insn_a
));
1642 if_info
->transform_name
= "noce_try_store_flag_mask";
1653 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1656 noce_emit_cmove (struct noce_if_info
*if_info
, rtx x
, enum rtx_code code
,
1657 rtx cmp_a
, rtx cmp_b
, rtx vfalse
, rtx vtrue
)
1659 rtx target ATTRIBUTE_UNUSED
;
1660 int unsignedp ATTRIBUTE_UNUSED
;
1662 /* If earliest == jump, try to build the cmove insn directly.
1663 This is helpful when combine has created some complex condition
1664 (like for alpha's cmovlbs) that we can't hope to regenerate
1665 through the normal interface. */
1667 if (if_info
->cond_earliest
== if_info
->jump
)
1669 rtx cond
= gen_rtx_fmt_ee (code
, GET_MODE (if_info
->cond
), cmp_a
, cmp_b
);
1670 rtx if_then_else
= gen_rtx_IF_THEN_ELSE (GET_MODE (x
),
1671 cond
, vtrue
, vfalse
);
1672 rtx set
= gen_rtx_SET (x
, if_then_else
);
1675 rtx_insn
*insn
= emit_insn (set
);
1677 if (recog_memoized (insn
) >= 0)
1679 rtx_insn
*seq
= get_insns ();
1689 /* Don't even try if the comparison operands are weird
1690 except that the target supports cbranchcc4. */
1691 if (! general_operand (cmp_a
, GET_MODE (cmp_a
))
1692 || ! general_operand (cmp_b
, GET_MODE (cmp_b
)))
1694 if (!have_cbranchcc4
1695 || GET_MODE_CLASS (GET_MODE (cmp_a
)) != MODE_CC
1696 || cmp_b
!= const0_rtx
)
1700 unsignedp
= (code
== LTU
|| code
== GEU
1701 || code
== LEU
|| code
== GTU
);
1703 target
= emit_conditional_move (x
, code
, cmp_a
, cmp_b
, VOIDmode
,
1704 vtrue
, vfalse
, GET_MODE (x
),
1709 /* We might be faced with a situation like:
1712 vtrue = (subreg:M (reg:N VTRUE) BYTE)
1713 vfalse = (subreg:M (reg:N VFALSE) BYTE)
1715 We can't do a conditional move in mode M, but it's possible that we
1716 could do a conditional move in mode N instead and take a subreg of
1719 If we can't create new pseudos, though, don't bother. */
1720 if (reload_completed
)
1723 if (GET_CODE (vtrue
) == SUBREG
&& GET_CODE (vfalse
) == SUBREG
)
1725 rtx reg_vtrue
= SUBREG_REG (vtrue
);
1726 rtx reg_vfalse
= SUBREG_REG (vfalse
);
1727 poly_uint64 byte_vtrue
= SUBREG_BYTE (vtrue
);
1728 poly_uint64 byte_vfalse
= SUBREG_BYTE (vfalse
);
1729 rtx promoted_target
;
1731 if (GET_MODE (reg_vtrue
) != GET_MODE (reg_vfalse
)
1732 || maybe_ne (byte_vtrue
, byte_vfalse
)
1733 || (SUBREG_PROMOTED_VAR_P (vtrue
)
1734 != SUBREG_PROMOTED_VAR_P (vfalse
))
1735 || (SUBREG_PROMOTED_GET (vtrue
)
1736 != SUBREG_PROMOTED_GET (vfalse
)))
1739 promoted_target
= gen_reg_rtx (GET_MODE (reg_vtrue
));
1741 target
= emit_conditional_move (promoted_target
, code
, cmp_a
, cmp_b
,
1742 VOIDmode
, reg_vtrue
, reg_vfalse
,
1743 GET_MODE (reg_vtrue
), unsignedp
);
1744 /* Nope, couldn't do it in that mode either. */
1748 target
= gen_rtx_SUBREG (GET_MODE (vtrue
), promoted_target
, byte_vtrue
);
1749 SUBREG_PROMOTED_VAR_P (target
) = SUBREG_PROMOTED_VAR_P (vtrue
);
1750 SUBREG_PROMOTED_SET (target
, SUBREG_PROMOTED_GET (vtrue
));
1751 emit_move_insn (x
, target
);
1758 /* Try only simple constants and registers here. More complex cases
1759 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1760 has had a go at it. */
1763 noce_try_cmove (struct noce_if_info
*if_info
)
1769 if (!noce_simple_bbs (if_info
))
1772 if ((CONSTANT_P (if_info
->a
) || register_operand (if_info
->a
, VOIDmode
))
1773 && (CONSTANT_P (if_info
->b
) || register_operand (if_info
->b
, VOIDmode
)))
1777 code
= GET_CODE (if_info
->cond
);
1778 target
= noce_emit_cmove (if_info
, if_info
->x
, code
,
1779 XEXP (if_info
->cond
, 0),
1780 XEXP (if_info
->cond
, 1),
1781 if_info
->a
, if_info
->b
);
1785 if (target
!= if_info
->x
)
1786 noce_emit_move_insn (if_info
->x
, target
);
1788 seq
= end_ifcvt_sequence (if_info
);
1789 if (!seq
|| !targetm
.noce_conversion_profitable_p (seq
, if_info
))
1792 emit_insn_before_setloc (seq
, if_info
->jump
,
1793 INSN_LOCATION (if_info
->insn_a
));
1794 if_info
->transform_name
= "noce_try_cmove";
1798 /* If both a and b are constants try a last-ditch transformation:
1799 if (test) x = a; else x = b;
1800 => x = (-(test != 0) & (b - a)) + a;
1801 Try this only if the target-specific expansion above has failed.
1802 The target-specific expander may want to generate sequences that
1803 we don't know about, so give them a chance before trying this
1805 else if (!targetm
.have_conditional_execution ()
1806 && CONST_INT_P (if_info
->a
) && CONST_INT_P (if_info
->b
))
1808 machine_mode mode
= GET_MODE (if_info
->x
);
1809 HOST_WIDE_INT ifalse
= INTVAL (if_info
->a
);
1810 HOST_WIDE_INT itrue
= INTVAL (if_info
->b
);
1811 rtx target
= noce_emit_store_flag (if_info
, if_info
->x
, false, -1);
1818 HOST_WIDE_INT diff
= (unsigned HOST_WIDE_INT
) itrue
- ifalse
;
1819 /* Make sure we can represent the difference
1820 between the two values. */
1822 != ((ifalse
< 0) != (itrue
< 0) ? ifalse
< 0 : ifalse
< itrue
))
1828 diff
= trunc_int_for_mode (diff
, mode
);
1829 target
= expand_simple_binop (mode
, AND
,
1830 target
, gen_int_mode (diff
, mode
),
1831 if_info
->x
, 0, OPTAB_WIDEN
);
1833 target
= expand_simple_binop (mode
, PLUS
,
1834 target
, gen_int_mode (ifalse
, mode
),
1835 if_info
->x
, 0, OPTAB_WIDEN
);
1838 if (target
!= if_info
->x
)
1839 noce_emit_move_insn (if_info
->x
, target
);
1841 seq
= end_ifcvt_sequence (if_info
);
1842 if (!seq
|| !targetm
.noce_conversion_profitable_p (seq
, if_info
))
1845 emit_insn_before_setloc (seq
, if_info
->jump
,
1846 INSN_LOCATION (if_info
->insn_a
));
1847 if_info
->transform_name
= "noce_try_cmove";
1863 /* Return true if X contains a conditional code mode rtx. */
1866 contains_ccmode_rtx_p (rtx x
)
1868 subrtx_iterator::array_type array
;
1869 FOR_EACH_SUBRTX (iter
, array
, x
, ALL
)
1870 if (GET_MODE_CLASS (GET_MODE (*iter
)) == MODE_CC
)
1876 /* Helper for bb_valid_for_noce_process_p. Validate that
1877 the rtx insn INSN is a single set that does not set
1878 the conditional register CC and is in general valid for
1882 insn_valid_noce_process_p (rtx_insn
*insn
, rtx cc
)
1885 || !NONJUMP_INSN_P (insn
)
1886 || (cc
&& set_of (cc
, insn
)))
1889 rtx sset
= single_set (insn
);
1891 /* Currently support only simple single sets in test_bb. */
1893 || !noce_operand_ok (SET_DEST (sset
))
1894 || contains_ccmode_rtx_p (SET_DEST (sset
))
1895 || !noce_operand_ok (SET_SRC (sset
)))
1902 /* Return true iff the registers that the insns in BB_A set do not get
1903 used in BB_B. If TO_RENAME is non-NULL then it is a location that will be
1904 renamed later by the caller and so conflicts on it should be ignored
1905 in this function. */
1908 bbs_ok_for_cmove_arith (basic_block bb_a
, basic_block bb_b
, rtx to_rename
)
1911 bitmap bba_sets
= BITMAP_ALLOC (®_obstack
);
1916 FOR_BB_INSNS (bb_a
, a_insn
)
1918 if (!active_insn_p (a_insn
))
1921 rtx sset_a
= single_set (a_insn
);
1925 BITMAP_FREE (bba_sets
);
1928 /* Record all registers that BB_A sets. */
1929 FOR_EACH_INSN_DEF (def
, a_insn
)
1930 if (!(to_rename
&& DF_REF_REG (def
) == to_rename
))
1931 bitmap_set_bit (bba_sets
, DF_REF_REGNO (def
));
1936 FOR_BB_INSNS (bb_b
, b_insn
)
1938 if (!active_insn_p (b_insn
))
1941 rtx sset_b
= single_set (b_insn
);
1945 BITMAP_FREE (bba_sets
);
1949 /* Make sure this is a REG and not some instance
1950 of ZERO_EXTRACT or SUBREG or other dangerous stuff.
1951 If we have a memory destination then we have a pair of simple
1952 basic blocks performing an operation of the form [addr] = c ? a : b.
1953 bb_valid_for_noce_process_p will have ensured that these are
1954 the only stores present. In that case [addr] should be the location
1955 to be renamed. Assert that the callers set this up properly. */
1956 if (MEM_P (SET_DEST (sset_b
)))
1957 gcc_assert (rtx_equal_p (SET_DEST (sset_b
), to_rename
));
1958 else if (!REG_P (SET_DEST (sset_b
)))
1960 BITMAP_FREE (bba_sets
);
1964 /* If the insn uses a reg set in BB_A return false. */
1965 FOR_EACH_INSN_USE (use
, b_insn
)
1967 if (bitmap_bit_p (bba_sets
, DF_REF_REGNO (use
)))
1969 BITMAP_FREE (bba_sets
);
1976 BITMAP_FREE (bba_sets
);
1980 /* Emit copies of all the active instructions in BB except the last.
1981 This is a helper for noce_try_cmove_arith. */
1984 noce_emit_all_but_last (basic_block bb
)
1986 rtx_insn
*last
= last_active_insn (bb
, FALSE
);
1988 FOR_BB_INSNS (bb
, insn
)
1990 if (insn
!= last
&& active_insn_p (insn
))
1992 rtx_insn
*to_emit
= as_a
<rtx_insn
*> (copy_rtx (insn
));
1994 emit_insn (PATTERN (to_emit
));
1999 /* Helper for noce_try_cmove_arith. Emit the pattern TO_EMIT and return
2000 the resulting insn or NULL if it's not a valid insn. */
2003 noce_emit_insn (rtx to_emit
)
2005 gcc_assert (to_emit
);
2006 rtx_insn
*insn
= emit_insn (to_emit
);
2008 if (recog_memoized (insn
) < 0)
2014 /* Helper for noce_try_cmove_arith. Emit a copy of the insns up to
2015 and including the penultimate one in BB if it is not simple
2016 (as indicated by SIMPLE). Then emit LAST_INSN as the last
2017 insn in the block. The reason for that is that LAST_INSN may
2018 have been modified by the preparation in noce_try_cmove_arith. */
2021 noce_emit_bb (rtx last_insn
, basic_block bb
, bool simple
)
2024 noce_emit_all_but_last (bb
);
2026 if (last_insn
&& !noce_emit_insn (last_insn
))
2032 /* Try more complex cases involving conditional_move. */
2035 noce_try_cmove_arith (struct noce_if_info
*if_info
)
2041 rtx_insn
*insn_a
, *insn_b
;
2042 bool a_simple
= if_info
->then_simple
;
2043 bool b_simple
= if_info
->else_simple
;
2044 basic_block then_bb
= if_info
->then_bb
;
2045 basic_block else_bb
= if_info
->else_bb
;
2049 rtx cond
= if_info
->cond
;
2050 rtx_insn
*ifcvt_seq
;
2052 /* A conditional move from two memory sources is equivalent to a
2053 conditional on their addresses followed by a load. Don't do this
2054 early because it'll screw alias analysis. Note that we've
2055 already checked for no side effects. */
2056 if (cse_not_expected
2057 && MEM_P (a
) && MEM_P (b
)
2058 && MEM_ADDR_SPACE (a
) == MEM_ADDR_SPACE (b
))
2060 machine_mode address_mode
= get_address_mode (a
);
2064 x
= gen_reg_rtx (address_mode
);
2068 /* ??? We could handle this if we knew that a load from A or B could
2069 not trap or fault. This is also true if we've already loaded
2070 from the address along the path from ENTRY. */
2071 else if (may_trap_or_fault_p (a
) || may_trap_or_fault_p (b
))
2074 /* if (test) x = a + b; else x = c - d;
2081 code
= GET_CODE (cond
);
2082 insn_a
= if_info
->insn_a
;
2083 insn_b
= if_info
->insn_b
;
2085 machine_mode x_mode
= GET_MODE (x
);
2087 if (!can_conditionally_move_p (x_mode
))
2090 /* Possibly rearrange operands to make things come out more natural. */
2091 if (noce_reversed_cond_code (if_info
) != UNKNOWN
)
2094 if (rtx_equal_p (b
, x
))
2096 else if (general_operand (b
, GET_MODE (b
)))
2101 if (if_info
->rev_cond
)
2103 cond
= if_info
->rev_cond
;
2104 code
= GET_CODE (cond
);
2107 code
= reversed_comparison_code (cond
, if_info
->jump
);
2109 std::swap (insn_a
, insn_b
);
2110 std::swap (a_simple
, b_simple
);
2111 std::swap (then_bb
, else_bb
);
2115 if (then_bb
&& else_bb
2116 && (!bbs_ok_for_cmove_arith (then_bb
, else_bb
, if_info
->orig_x
)
2117 || !bbs_ok_for_cmove_arith (else_bb
, then_bb
, if_info
->orig_x
)))
2122 /* If one of the blocks is empty then the corresponding B or A value
2123 came from the test block. The non-empty complex block that we will
2124 emit might clobber the register used by B or A, so move it to a pseudo
2127 rtx tmp_a
= NULL_RTX
;
2128 rtx tmp_b
= NULL_RTX
;
2130 if (b_simple
|| !else_bb
)
2131 tmp_b
= gen_reg_rtx (x_mode
);
2133 if (a_simple
|| !then_bb
)
2134 tmp_a
= gen_reg_rtx (x_mode
);
2139 rtx emit_a
= NULL_RTX
;
2140 rtx emit_b
= NULL_RTX
;
2141 rtx_insn
*tmp_insn
= NULL
;
2142 bool modified_in_a
= false;
2143 bool modified_in_b
= false;
2144 /* If either operand is complex, load it into a register first.
2145 The best way to do this is to copy the original insn. In this
2146 way we preserve any clobbers etc that the insn may have had.
2147 This is of course not possible in the IS_MEM case. */
2149 if (! general_operand (a
, GET_MODE (a
)) || tmp_a
)
2154 rtx reg
= gen_reg_rtx (GET_MODE (a
));
2155 emit_a
= gen_rtx_SET (reg
, a
);
2161 a
= tmp_a
? tmp_a
: gen_reg_rtx (GET_MODE (a
));
2163 rtx_insn
*copy_of_a
= as_a
<rtx_insn
*> (copy_rtx (insn_a
));
2164 rtx set
= single_set (copy_of_a
);
2167 emit_a
= PATTERN (copy_of_a
);
2171 rtx tmp_reg
= tmp_a
? tmp_a
: gen_reg_rtx (GET_MODE (a
));
2172 emit_a
= gen_rtx_SET (tmp_reg
, a
);
2178 if (! general_operand (b
, GET_MODE (b
)) || tmp_b
)
2182 rtx reg
= gen_reg_rtx (GET_MODE (b
));
2183 emit_b
= gen_rtx_SET (reg
, b
);
2189 b
= tmp_b
? tmp_b
: gen_reg_rtx (GET_MODE (b
));
2190 rtx_insn
*copy_of_b
= as_a
<rtx_insn
*> (copy_rtx (insn_b
));
2191 rtx set
= single_set (copy_of_b
);
2194 emit_b
= PATTERN (copy_of_b
);
2198 rtx tmp_reg
= tmp_b
? tmp_b
: gen_reg_rtx (GET_MODE (b
));
2199 emit_b
= gen_rtx_SET (tmp_reg
, b
);
2205 modified_in_a
= emit_a
!= NULL_RTX
&& modified_in_p (orig_b
, emit_a
);
2206 if (tmp_b
&& then_bb
)
2208 FOR_BB_INSNS (then_bb
, tmp_insn
)
2209 /* Don't check inside insn_a. We will have changed it to emit_a
2210 with a destination that doesn't conflict. */
2211 if (!(insn_a
&& tmp_insn
== insn_a
)
2212 && modified_in_p (orig_b
, tmp_insn
))
2214 modified_in_a
= true;
2220 modified_in_b
= emit_b
!= NULL_RTX
&& modified_in_p (orig_a
, emit_b
);
2221 if (tmp_a
&& else_bb
)
2223 FOR_BB_INSNS (else_bb
, tmp_insn
)
2224 /* Don't check inside insn_b. We will have changed it to emit_b
2225 with a destination that doesn't conflict. */
2226 if (!(insn_b
&& tmp_insn
== insn_b
)
2227 && modified_in_p (orig_a
, tmp_insn
))
2229 modified_in_b
= true;
2234 /* If insn to set up A clobbers any registers B depends on, try to
2235 swap insn that sets up A with the one that sets up B. If even
2236 that doesn't help, punt. */
2237 if (modified_in_a
&& !modified_in_b
)
2239 if (!noce_emit_bb (emit_b
, else_bb
, b_simple
))
2240 goto end_seq_and_fail
;
2242 if (!noce_emit_bb (emit_a
, then_bb
, a_simple
))
2243 goto end_seq_and_fail
;
2245 else if (!modified_in_a
)
2247 if (!noce_emit_bb (emit_a
, then_bb
, a_simple
))
2248 goto end_seq_and_fail
;
2250 if (!noce_emit_bb (emit_b
, else_bb
, b_simple
))
2251 goto end_seq_and_fail
;
2254 goto end_seq_and_fail
;
2256 target
= noce_emit_cmove (if_info
, x
, code
, XEXP (cond
, 0), XEXP (cond
, 1),
2260 goto end_seq_and_fail
;
2262 /* If we're handling a memory for above, emit the load now. */
2265 rtx mem
= gen_rtx_MEM (GET_MODE (if_info
->x
), target
);
2267 /* Copy over flags as appropriate. */
2268 if (MEM_VOLATILE_P (if_info
->a
) || MEM_VOLATILE_P (if_info
->b
))
2269 MEM_VOLATILE_P (mem
) = 1;
2270 if (MEM_ALIAS_SET (if_info
->a
) == MEM_ALIAS_SET (if_info
->b
))
2271 set_mem_alias_set (mem
, MEM_ALIAS_SET (if_info
->a
));
2273 MIN (MEM_ALIGN (if_info
->a
), MEM_ALIGN (if_info
->b
)));
2275 gcc_assert (MEM_ADDR_SPACE (if_info
->a
) == MEM_ADDR_SPACE (if_info
->b
));
2276 set_mem_addr_space (mem
, MEM_ADDR_SPACE (if_info
->a
));
2278 noce_emit_move_insn (if_info
->x
, mem
);
2280 else if (target
!= x
)
2281 noce_emit_move_insn (x
, target
);
2283 ifcvt_seq
= end_ifcvt_sequence (if_info
);
2284 if (!ifcvt_seq
|| !targetm
.noce_conversion_profitable_p (ifcvt_seq
, if_info
))
2287 emit_insn_before_setloc (ifcvt_seq
, if_info
->jump
,
2288 INSN_LOCATION (if_info
->insn_a
));
2289 if_info
->transform_name
= "noce_try_cmove_arith";
2297 /* For most cases, the simplified condition we found is the best
2298 choice, but this is not the case for the min/max/abs transforms.
2299 For these we wish to know that it is A or B in the condition. */
2302 noce_get_alt_condition (struct noce_if_info
*if_info
, rtx target
,
2303 rtx_insn
**earliest
)
2309 /* If target is already mentioned in the known condition, return it. */
2310 if (reg_mentioned_p (target
, if_info
->cond
))
2312 *earliest
= if_info
->cond_earliest
;
2313 return if_info
->cond
;
2316 set
= pc_set (if_info
->jump
);
2317 cond
= XEXP (SET_SRC (set
), 0);
2319 = GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
2320 && label_ref_label (XEXP (SET_SRC (set
), 2)) == JUMP_LABEL (if_info
->jump
);
2321 if (if_info
->then_else_reversed
)
2324 /* If we're looking for a constant, try to make the conditional
2325 have that constant in it. There are two reasons why it may
2326 not have the constant we want:
2328 1. GCC may have needed to put the constant in a register, because
2329 the target can't compare directly against that constant. For
2330 this case, we look for a SET immediately before the comparison
2331 that puts a constant in that register.
2333 2. GCC may have canonicalized the conditional, for example
2334 replacing "if x < 4" with "if x <= 3". We can undo that (or
2335 make equivalent types of changes) to get the constants we need
2336 if they're off by one in the right direction. */
2338 if (CONST_INT_P (target
))
2340 enum rtx_code code
= GET_CODE (if_info
->cond
);
2341 rtx op_a
= XEXP (if_info
->cond
, 0);
2342 rtx op_b
= XEXP (if_info
->cond
, 1);
2343 rtx_insn
*prev_insn
;
2345 /* First, look to see if we put a constant in a register. */
2346 prev_insn
= prev_nonnote_insn (if_info
->cond_earliest
);
2348 && BLOCK_FOR_INSN (prev_insn
)
2349 == BLOCK_FOR_INSN (if_info
->cond_earliest
)
2350 && INSN_P (prev_insn
)
2351 && GET_CODE (PATTERN (prev_insn
)) == SET
)
2353 rtx src
= find_reg_equal_equiv_note (prev_insn
);
2355 src
= SET_SRC (PATTERN (prev_insn
));
2356 if (CONST_INT_P (src
))
2358 if (rtx_equal_p (op_a
, SET_DEST (PATTERN (prev_insn
))))
2360 else if (rtx_equal_p (op_b
, SET_DEST (PATTERN (prev_insn
))))
2363 if (CONST_INT_P (op_a
))
2365 std::swap (op_a
, op_b
);
2366 code
= swap_condition (code
);
2371 /* Now, look to see if we can get the right constant by
2372 adjusting the conditional. */
2373 if (CONST_INT_P (op_b
))
2375 HOST_WIDE_INT desired_val
= INTVAL (target
);
2376 HOST_WIDE_INT actual_val
= INTVAL (op_b
);
2381 if (desired_val
!= HOST_WIDE_INT_MAX
2382 && actual_val
== desired_val
+ 1)
2385 op_b
= GEN_INT (desired_val
);
2389 if (desired_val
!= HOST_WIDE_INT_MIN
2390 && actual_val
== desired_val
- 1)
2393 op_b
= GEN_INT (desired_val
);
2397 if (desired_val
!= HOST_WIDE_INT_MIN
2398 && actual_val
== desired_val
- 1)
2401 op_b
= GEN_INT (desired_val
);
2405 if (desired_val
!= HOST_WIDE_INT_MAX
2406 && actual_val
== desired_val
+ 1)
2409 op_b
= GEN_INT (desired_val
);
2417 /* If we made any changes, generate a new conditional that is
2418 equivalent to what we started with, but has the right
2420 if (code
!= GET_CODE (if_info
->cond
)
2421 || op_a
!= XEXP (if_info
->cond
, 0)
2422 || op_b
!= XEXP (if_info
->cond
, 1))
2424 cond
= gen_rtx_fmt_ee (code
, GET_MODE (cond
), op_a
, op_b
);
2425 *earliest
= if_info
->cond_earliest
;
2430 cond
= canonicalize_condition (if_info
->jump
, cond
, reverse
,
2431 earliest
, target
, have_cbranchcc4
, true);
2432 if (! cond
|| ! reg_mentioned_p (target
, cond
))
2435 /* We almost certainly searched back to a different place.
2436 Need to re-verify correct lifetimes. */
2438 /* X may not be mentioned in the range (cond_earliest, jump]. */
2439 for (insn
= if_info
->jump
; insn
!= *earliest
; insn
= PREV_INSN (insn
))
2440 if (INSN_P (insn
) && reg_overlap_mentioned_p (if_info
->x
, PATTERN (insn
)))
2443 /* A and B may not be modified in the range [cond_earliest, jump). */
2444 for (insn
= *earliest
; insn
!= if_info
->jump
; insn
= NEXT_INSN (insn
))
2446 && (modified_in_p (if_info
->a
, insn
)
2447 || modified_in_p (if_info
->b
, insn
)))
2453 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
2456 noce_try_minmax (struct noce_if_info
*if_info
)
2459 rtx_insn
*earliest
, *seq
;
2460 enum rtx_code code
, op
;
2463 if (!noce_simple_bbs (if_info
))
2466 /* ??? Reject modes with NaNs or signed zeros since we don't know how
2467 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
2468 to get the target to tell us... */
2469 if (HONOR_SIGNED_ZEROS (if_info
->x
)
2470 || HONOR_NANS (if_info
->x
))
2473 cond
= noce_get_alt_condition (if_info
, if_info
->a
, &earliest
);
2477 /* Verify the condition is of the form we expect, and canonicalize
2478 the comparison code. */
2479 code
= GET_CODE (cond
);
2480 if (rtx_equal_p (XEXP (cond
, 0), if_info
->a
))
2482 if (! rtx_equal_p (XEXP (cond
, 1), if_info
->b
))
2485 else if (rtx_equal_p (XEXP (cond
, 1), if_info
->a
))
2487 if (! rtx_equal_p (XEXP (cond
, 0), if_info
->b
))
2489 code
= swap_condition (code
);
2494 /* Determine what sort of operation this is. Note that the code is for
2495 a taken branch, so the code->operation mapping appears backwards. */
2528 target
= expand_simple_binop (GET_MODE (if_info
->x
), op
,
2529 if_info
->a
, if_info
->b
,
2530 if_info
->x
, unsignedp
, OPTAB_WIDEN
);
2536 if (target
!= if_info
->x
)
2537 noce_emit_move_insn (if_info
->x
, target
);
2539 seq
= end_ifcvt_sequence (if_info
);
2543 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATION (if_info
->insn_a
));
2544 if_info
->cond
= cond
;
2545 if_info
->cond_earliest
= earliest
;
2546 if_info
->rev_cond
= NULL_RTX
;
2547 if_info
->transform_name
= "noce_try_minmax";
2552 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);",
2553 "if (a < 0) x = ~a; else x = a;" to "x = one_cmpl_abs(a);",
2557 noce_try_abs (struct noce_if_info
*if_info
)
2559 rtx cond
, target
, a
, b
, c
;
2560 rtx_insn
*earliest
, *seq
;
2562 bool one_cmpl
= false;
2564 if (!noce_simple_bbs (if_info
))
2567 /* Reject modes with signed zeros. */
2568 if (HONOR_SIGNED_ZEROS (if_info
->x
))
2571 /* Recognize A and B as constituting an ABS or NABS. The canonical
2572 form is a branch around the negation, taken when the object is the
2573 first operand of a comparison against 0 that evaluates to true. */
2576 if (GET_CODE (a
) == NEG
&& rtx_equal_p (XEXP (a
, 0), b
))
2578 else if (GET_CODE (b
) == NEG
&& rtx_equal_p (XEXP (b
, 0), a
))
2583 else if (GET_CODE (a
) == NOT
&& rtx_equal_p (XEXP (a
, 0), b
))
2588 else if (GET_CODE (b
) == NOT
&& rtx_equal_p (XEXP (b
, 0), a
))
2597 cond
= noce_get_alt_condition (if_info
, b
, &earliest
);
2601 /* Verify the condition is of the form we expect. */
2602 if (rtx_equal_p (XEXP (cond
, 0), b
))
2604 else if (rtx_equal_p (XEXP (cond
, 1), b
))
2612 /* Verify that C is zero. Search one step backward for a
2613 REG_EQUAL note or a simple source if necessary. */
2617 rtx_insn
*insn
= prev_nonnote_insn (earliest
);
2619 && BLOCK_FOR_INSN (insn
) == BLOCK_FOR_INSN (earliest
)
2620 && (set
= single_set (insn
))
2621 && rtx_equal_p (SET_DEST (set
), c
))
2623 rtx note
= find_reg_equal_equiv_note (insn
);
2633 && GET_CODE (XEXP (c
, 0)) == SYMBOL_REF
2634 && CONSTANT_POOL_ADDRESS_P (XEXP (c
, 0)))
2635 c
= get_pool_constant (XEXP (c
, 0));
2637 /* Work around funny ideas get_condition has wrt canonicalization.
2638 Note that these rtx constants are known to be CONST_INT, and
2639 therefore imply integer comparisons.
2640 The one_cmpl case is more complicated, as we want to handle
2641 only x < 0 ? ~x : x or x >= 0 ? x : ~x to one_cmpl_abs (x)
2642 and x < 0 ? x : ~x or x >= 0 ? ~x : x to ~one_cmpl_abs (x),
2643 but not other cases (x > -1 is equivalent of x >= 0). */
2644 if (c
== constm1_rtx
&& GET_CODE (cond
) == GT
)
2646 else if (c
== const1_rtx
&& GET_CODE (cond
) == LT
)
2651 else if (c
== CONST0_RTX (GET_MODE (b
)))
2654 && GET_CODE (cond
) != GE
2655 && GET_CODE (cond
) != LT
)
2661 /* Determine what sort of operation this is. */
2662 switch (GET_CODE (cond
))
2681 target
= expand_one_cmpl_abs_nojump (GET_MODE (if_info
->x
), b
,
2684 target
= expand_abs_nojump (GET_MODE (if_info
->x
), b
, if_info
->x
, 1);
2686 /* ??? It's a quandary whether cmove would be better here, especially
2687 for integers. Perhaps combine will clean things up. */
2688 if (target
&& negate
)
2691 target
= expand_simple_unop (GET_MODE (target
), NOT
, target
,
2694 target
= expand_simple_unop (GET_MODE (target
), NEG
, target
,
2704 if (target
!= if_info
->x
)
2705 noce_emit_move_insn (if_info
->x
, target
);
2707 seq
= end_ifcvt_sequence (if_info
);
2711 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATION (if_info
->insn_a
));
2712 if_info
->cond
= cond
;
2713 if_info
->cond_earliest
= earliest
;
2714 if_info
->rev_cond
= NULL_RTX
;
2715 if_info
->transform_name
= "noce_try_abs";
2720 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
2723 noce_try_sign_mask (struct noce_if_info
*if_info
)
2729 bool t_unconditional
;
2731 if (!noce_simple_bbs (if_info
))
2734 cond
= if_info
->cond
;
2735 code
= GET_CODE (cond
);
2740 if (if_info
->a
== const0_rtx
)
2742 if ((code
== LT
&& c
== const0_rtx
)
2743 || (code
== LE
&& c
== constm1_rtx
))
2746 else if (if_info
->b
== const0_rtx
)
2748 if ((code
== GE
&& c
== const0_rtx
)
2749 || (code
== GT
&& c
== constm1_rtx
))
2753 if (! t
|| side_effects_p (t
))
2756 /* We currently don't handle different modes. */
2757 mode
= GET_MODE (t
);
2758 if (GET_MODE (m
) != mode
)
2761 /* This is only profitable if T is unconditionally executed/evaluated in the
2762 original insn sequence or T is cheap. The former happens if B is the
2763 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
2764 INSN_B which can happen for e.g. conditional stores to memory. For the
2765 cost computation use the block TEST_BB where the evaluation will end up
2766 after the transformation. */
2769 && (if_info
->insn_b
== NULL_RTX
2770 || BLOCK_FOR_INSN (if_info
->insn_b
) == if_info
->test_bb
));
2771 if (!(t_unconditional
2772 || (set_src_cost (t
, mode
, if_info
->speed_p
)
2773 < COSTS_N_INSNS (2))))
2777 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
2778 "(signed) m >> 31" directly. This benefits targets with specialized
2779 insns to obtain the signmask, but still uses ashr_optab otherwise. */
2780 m
= emit_store_flag (gen_reg_rtx (mode
), LT
, m
, const0_rtx
, mode
, 0, -1);
2781 t
= m
? expand_binop (mode
, and_optab
, m
, t
, NULL_RTX
, 0, OPTAB_DIRECT
)
2790 noce_emit_move_insn (if_info
->x
, t
);
2792 seq
= end_ifcvt_sequence (if_info
);
2796 emit_insn_before_setloc (seq
, if_info
->jump
, INSN_LOCATION (if_info
->insn_a
));
2797 if_info
->transform_name
= "noce_try_sign_mask";
2803 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
2807 noce_try_bitop (struct noce_if_info
*if_info
)
2809 rtx cond
, x
, a
, result
;
2811 scalar_int_mode mode
;
2816 cond
= if_info
->cond
;
2817 code
= GET_CODE (cond
);
2819 /* Check for an integer operation. */
2820 if (!is_a
<scalar_int_mode
> (GET_MODE (x
), &mode
))
2823 if (!noce_simple_bbs (if_info
))
2826 /* Check for no else condition. */
2827 if (! rtx_equal_p (x
, if_info
->b
))
2830 /* Check for a suitable condition. */
2831 if (code
!= NE
&& code
!= EQ
)
2833 if (XEXP (cond
, 1) != const0_rtx
)
2835 cond
= XEXP (cond
, 0);
2837 /* ??? We could also handle AND here. */
2838 if (GET_CODE (cond
) == ZERO_EXTRACT
)
2840 if (XEXP (cond
, 1) != const1_rtx
2841 || !CONST_INT_P (XEXP (cond
, 2))
2842 || ! rtx_equal_p (x
, XEXP (cond
, 0)))
2844 bitnum
= INTVAL (XEXP (cond
, 2));
2845 if (BITS_BIG_ENDIAN
)
2846 bitnum
= GET_MODE_BITSIZE (mode
) - 1 - bitnum
;
2847 if (bitnum
< 0 || bitnum
>= HOST_BITS_PER_WIDE_INT
)
2854 if (GET_CODE (a
) == IOR
|| GET_CODE (a
) == XOR
)
2856 /* Check for "if (X & C) x = x op C". */
2857 if (! rtx_equal_p (x
, XEXP (a
, 0))
2858 || !CONST_INT_P (XEXP (a
, 1))
2859 || (INTVAL (XEXP (a
, 1)) & GET_MODE_MASK (mode
))
2860 != HOST_WIDE_INT_1U
<< bitnum
)
2863 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2864 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2865 if (GET_CODE (a
) == IOR
)
2866 result
= (code
== NE
) ? a
: NULL_RTX
;
2867 else if (code
== NE
)
2869 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2870 result
= gen_int_mode (HOST_WIDE_INT_1
<< bitnum
, mode
);
2871 result
= simplify_gen_binary (IOR
, mode
, x
, result
);
2875 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2876 result
= gen_int_mode (~(HOST_WIDE_INT_1
<< bitnum
), mode
);
2877 result
= simplify_gen_binary (AND
, mode
, x
, result
);
2880 else if (GET_CODE (a
) == AND
)
2882 /* Check for "if (X & C) x &= ~C". */
2883 if (! rtx_equal_p (x
, XEXP (a
, 0))
2884 || !CONST_INT_P (XEXP (a
, 1))
2885 || (INTVAL (XEXP (a
, 1)) & GET_MODE_MASK (mode
))
2886 != (~(HOST_WIDE_INT_1
<< bitnum
) & GET_MODE_MASK (mode
)))
2889 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2890 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2891 result
= (code
== EQ
) ? a
: NULL_RTX
;
2899 noce_emit_move_insn (x
, result
);
2900 seq
= end_ifcvt_sequence (if_info
);
2904 emit_insn_before_setloc (seq
, if_info
->jump
,
2905 INSN_LOCATION (if_info
->insn_a
));
2907 if_info
->transform_name
= "noce_try_bitop";
2912 /* Similar to get_condition, only the resulting condition must be
2913 valid at JUMP, instead of at EARLIEST.
2915 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2916 THEN block of the caller, and we have to reverse the condition. */
2919 noce_get_condition (rtx_insn
*jump
, rtx_insn
**earliest
, bool then_else_reversed
)
2924 if (! any_condjump_p (jump
))
2927 set
= pc_set (jump
);
2929 /* If this branches to JUMP_LABEL when the condition is false,
2930 reverse the condition. */
2931 reverse
= (GET_CODE (XEXP (SET_SRC (set
), 2)) == LABEL_REF
2932 && label_ref_label (XEXP (SET_SRC (set
), 2)) == JUMP_LABEL (jump
));
2934 /* We may have to reverse because the caller's if block is not canonical,
2935 i.e. the THEN block isn't the fallthrough block for the TEST block
2936 (see find_if_header). */
2937 if (then_else_reversed
)
2940 /* If the condition variable is a register and is MODE_INT, accept it. */
2942 cond
= XEXP (SET_SRC (set
), 0);
2943 tmp
= XEXP (cond
, 0);
2944 if (REG_P (tmp
) && GET_MODE_CLASS (GET_MODE (tmp
)) == MODE_INT
2945 && (GET_MODE (tmp
) != BImode
2946 || !targetm
.small_register_classes_for_mode_p (BImode
)))
2951 cond
= gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond
)),
2952 GET_MODE (cond
), tmp
, XEXP (cond
, 1));
2956 /* Otherwise, fall back on canonicalize_condition to do the dirty
2957 work of manipulating MODE_CC values and COMPARE rtx codes. */
2958 tmp
= canonicalize_condition (jump
, cond
, reverse
, earliest
,
2959 NULL_RTX
, have_cbranchcc4
, true);
2961 /* We don't handle side-effects in the condition, like handling
2962 REG_INC notes and making sure no duplicate conditions are emitted. */
2963 if (tmp
!= NULL_RTX
&& side_effects_p (tmp
))
2969 /* Return true if OP is ok for if-then-else processing. */
2972 noce_operand_ok (const_rtx op
)
2974 if (side_effects_p (op
))
2977 /* We special-case memories, so handle any of them with
2978 no address side effects. */
2980 return ! side_effects_p (XEXP (op
, 0));
2982 return ! may_trap_p (op
);
2985 /* Return true iff basic block TEST_BB is valid for noce if-conversion.
2986 The condition used in this if-conversion is in COND.
2987 In practice, check that TEST_BB ends with a single set
2988 x := a and all previous computations
2989 in TEST_BB don't produce any values that are live after TEST_BB.
2990 In other words, all the insns in TEST_BB are there only
2991 to compute a value for x. Add the rtx cost of the insns
2992 in TEST_BB to COST. Record whether TEST_BB is a single simple
2993 set instruction in SIMPLE_P. */
2996 bb_valid_for_noce_process_p (basic_block test_bb
, rtx cond
,
2997 unsigned int *cost
, bool *simple_p
)
3002 rtx_insn
*last_insn
= last_active_insn (test_bb
, FALSE
);
3003 rtx last_set
= NULL_RTX
;
3005 rtx cc
= cc_in_cond (cond
);
3007 if (!insn_valid_noce_process_p (last_insn
, cc
))
3009 last_set
= single_set (last_insn
);
3011 rtx x
= SET_DEST (last_set
);
3012 rtx_insn
*first_insn
= first_active_insn (test_bb
);
3013 rtx first_set
= single_set (first_insn
);
3018 /* We have a single simple set, that's okay. */
3019 bool speed_p
= optimize_bb_for_speed_p (test_bb
);
3021 if (first_insn
== last_insn
)
3023 *simple_p
= noce_operand_ok (SET_DEST (first_set
));
3024 *cost
+= pattern_cost (first_set
, speed_p
);
3028 rtx_insn
*prev_last_insn
= PREV_INSN (last_insn
);
3029 gcc_assert (prev_last_insn
);
3031 /* For now, disallow setting x multiple times in test_bb. */
3032 if (REG_P (x
) && reg_set_between_p (x
, first_insn
, prev_last_insn
))
3035 bitmap test_bb_temps
= BITMAP_ALLOC (®_obstack
);
3037 /* The regs that are live out of test_bb. */
3038 bitmap test_bb_live_out
= df_get_live_out (test_bb
);
3040 int potential_cost
= pattern_cost (last_set
, speed_p
);
3042 FOR_BB_INSNS (test_bb
, insn
)
3044 if (insn
!= last_insn
)
3046 if (!active_insn_p (insn
))
3049 if (!insn_valid_noce_process_p (insn
, cc
))
3050 goto free_bitmap_and_fail
;
3052 rtx sset
= single_set (insn
);
3055 if (contains_mem_rtx_p (SET_SRC (sset
))
3056 || !REG_P (SET_DEST (sset
))
3057 || reg_overlap_mentioned_p (SET_DEST (sset
), cond
))
3058 goto free_bitmap_and_fail
;
3060 potential_cost
+= pattern_cost (sset
, speed_p
);
3061 bitmap_set_bit (test_bb_temps
, REGNO (SET_DEST (sset
)));
3065 /* If any of the intermediate results in test_bb are live after test_bb
3067 if (bitmap_intersect_p (test_bb_live_out
, test_bb_temps
))
3068 goto free_bitmap_and_fail
;
3070 BITMAP_FREE (test_bb_temps
);
3071 *cost
+= potential_cost
;
3075 free_bitmap_and_fail
:
3076 BITMAP_FREE (test_bb_temps
);
3080 /* We have something like:
3083 { i = a; j = b; k = c; }
3087 tmp_i = (x > y) ? a : i;
3088 tmp_j = (x > y) ? b : j;
3089 tmp_k = (x > y) ? c : k;
3094 Subsequent passes are expected to clean up the extra moves.
3096 Look for special cases such as writes to one register which are
3097 read back in another SET, as might occur in a swap idiom or
3106 Which we want to rewrite to:
3108 tmp_i = (x > y) ? a : i;
3109 tmp_j = (x > y) ? tmp_i : j;
3113 We can catch these when looking at (SET x y) by keeping a list of the
3114 registers we would have targeted before if-conversion and looking back
3115 through it for an overlap with Y. If we find one, we rewire the
3116 conditional set to use the temporary we introduced earlier.
3118 IF_INFO contains the useful information about the block structure and
3119 jump instructions. */
3122 noce_convert_multiple_sets (struct noce_if_info
*if_info
)
3124 basic_block test_bb
= if_info
->test_bb
;
3125 basic_block then_bb
= if_info
->then_bb
;
3126 basic_block join_bb
= if_info
->join_bb
;
3127 rtx_insn
*jump
= if_info
->jump
;
3128 rtx_insn
*cond_earliest
;
3133 /* Decompose the condition attached to the jump. */
3134 rtx cond
= noce_get_condition (jump
, &cond_earliest
, false);
3135 rtx x
= XEXP (cond
, 0);
3136 rtx y
= XEXP (cond
, 1);
3137 rtx_code cond_code
= GET_CODE (cond
);
3139 /* The true targets for a conditional move. */
3140 auto_vec
<rtx
> targets
;
3141 /* The temporaries introduced to allow us to not consider register
3143 auto_vec
<rtx
> temporaries
;
3144 /* The insns we've emitted. */
3145 auto_vec
<rtx_insn
*> unmodified_insns
;
3148 FOR_BB_INSNS (then_bb
, insn
)
3150 /* Skip over non-insns. */
3151 if (!active_insn_p (insn
))
3154 rtx set
= single_set (insn
);
3155 gcc_checking_assert (set
);
3157 rtx target
= SET_DEST (set
);
3158 rtx temp
= gen_reg_rtx (GET_MODE (target
));
3159 rtx new_val
= SET_SRC (set
);
3160 rtx old_val
= target
;
3162 /* If we were supposed to read from an earlier write in this block,
3163 we've changed the register allocation. Rewire the read. While
3164 we are looking, also try to catch a swap idiom. */
3165 for (int i
= count
- 1; i
>= 0; --i
)
3166 if (reg_overlap_mentioned_p (new_val
, targets
[i
]))
3168 /* Catch a "swap" style idiom. */
3169 if (find_reg_note (insn
, REG_DEAD
, new_val
) != NULL_RTX
)
3170 /* The write to targets[i] is only live until the read
3171 here. As the condition codes match, we can propagate
3173 new_val
= SET_SRC (single_set (unmodified_insns
[i
]));
3175 new_val
= temporaries
[i
];
3179 /* If we had a non-canonical conditional jump (i.e. one where
3180 the fallthrough is to the "else" case) we need to reverse
3181 the conditional select. */
3182 if (if_info
->then_else_reversed
)
3183 std::swap (old_val
, new_val
);
3186 /* We allow simple lowpart register subreg SET sources in
3187 bb_ok_for_noce_convert_multiple_sets. Be careful when processing
3189 (set (reg:SI r1) (reg:SI r2))
3190 (set (reg:HI r3) (subreg:HI (r1)))
3191 For the second insn new_val or old_val (r1 in this example) will be
3192 taken from the temporaries and have the wider mode which will not
3193 match with the mode of the other source of the conditional move, so
3194 we'll end up trying to emit r4:HI = cond ? (r1:SI) : (r3:HI).
3195 Wrap the two cmove operands into subregs if appropriate to prevent
3197 if (GET_MODE (new_val
) != GET_MODE (temp
))
3199 machine_mode src_mode
= GET_MODE (new_val
);
3200 machine_mode dst_mode
= GET_MODE (temp
);
3201 if (!partial_subreg_p (dst_mode
, src_mode
))
3206 new_val
= lowpart_subreg (dst_mode
, new_val
, src_mode
);
3208 if (GET_MODE (old_val
) != GET_MODE (temp
))
3210 machine_mode src_mode
= GET_MODE (old_val
);
3211 machine_mode dst_mode
= GET_MODE (temp
);
3212 if (!partial_subreg_p (dst_mode
, src_mode
))
3217 old_val
= lowpart_subreg (dst_mode
, old_val
, src_mode
);
3220 /* Actually emit the conditional move. */
3221 rtx temp_dest
= noce_emit_cmove (if_info
, temp
, cond_code
,
3222 x
, y
, new_val
, old_val
);
3224 /* If we failed to expand the conditional move, drop out and don't
3226 if (temp_dest
== NULL_RTX
)
3234 targets
.safe_push (target
);
3235 temporaries
.safe_push (temp_dest
);
3236 unmodified_insns
.safe_push (insn
);
3239 /* We must have seen some sort of insn to insert, otherwise we were
3240 given an empty BB to convert, and we can't handle that. */
3241 gcc_assert (!unmodified_insns
.is_empty ());
3243 /* Now fixup the assignments. */
3244 for (int i
= 0; i
< count
; i
++)
3245 noce_emit_move_insn (targets
[i
], temporaries
[i
]);
3247 /* Actually emit the sequence if it isn't too expensive. */
3248 rtx_insn
*seq
= get_insns ();
3250 if (!targetm
.noce_conversion_profitable_p (seq
, if_info
))
3256 for (insn
= seq
; insn
; insn
= NEXT_INSN (insn
))
3257 set_used_flags (insn
);
3259 /* Mark all our temporaries and targets as used. */
3260 for (int i
= 0; i
< count
; i
++)
3262 set_used_flags (temporaries
[i
]);
3263 set_used_flags (targets
[i
]);
3266 set_used_flags (cond
);
3270 unshare_all_rtl_in_chain (seq
);
3276 for (insn
= seq
; insn
; insn
= NEXT_INSN (insn
))
3278 || recog_memoized (insn
) == -1)
3281 emit_insn_before_setloc (seq
, if_info
->jump
,
3282 INSN_LOCATION (unmodified_insns
.last ()));
3284 /* Clean up THEN_BB and the edges in and out of it. */
3285 remove_edge (find_edge (test_bb
, join_bb
));
3286 remove_edge (find_edge (then_bb
, join_bb
));
3287 redirect_edge_and_branch_force (single_succ_edge (test_bb
), join_bb
);
3288 delete_basic_block (then_bb
);
3291 /* Maybe merge blocks now the jump is simple enough. */
3292 if (can_merge_blocks_p (test_bb
, join_bb
))
3294 merge_blocks (test_bb
, join_bb
);
3298 num_updated_if_blocks
++;
3299 if_info
->transform_name
= "noce_convert_multiple_sets";
3303 /* Return true iff basic block TEST_BB is comprised of only
3304 (SET (REG) (REG)) insns suitable for conversion to a series
3305 of conditional moves. Also check that we have more than one set
3306 (other routines can handle a single set better than we would), and
3307 fewer than PARAM_MAX_RTL_IF_CONVERSION_INSNS sets. */
3310 bb_ok_for_noce_convert_multiple_sets (basic_block test_bb
)
3314 unsigned param
= PARAM_VALUE (PARAM_MAX_RTL_IF_CONVERSION_INSNS
);
3316 FOR_BB_INSNS (test_bb
, insn
)
3318 /* Skip over notes etc. */
3319 if (!active_insn_p (insn
))
3322 /* We only handle SET insns. */
3323 rtx set
= single_set (insn
);
3324 if (set
== NULL_RTX
)
3327 rtx dest
= SET_DEST (set
);
3328 rtx src
= SET_SRC (set
);
3330 /* We can possibly relax this, but for now only handle REG to REG
3331 (including subreg) moves. This avoids any issues that might come
3332 from introducing loads/stores that might violate data-race-freedom
3338 || (GET_CODE (src
) == SUBREG
&& REG_P (SUBREG_REG (src
))
3339 && subreg_lowpart_p (src
))))
3342 /* Destination must be appropriate for a conditional write. */
3343 if (!noce_operand_ok (dest
))
3346 /* We must be able to conditionally move in this mode. */
3347 if (!can_conditionally_move_p (GET_MODE (dest
)))
3353 /* If we would only put out one conditional move, the other strategies
3354 this pass tries are better optimized and will be more appropriate.
3355 Some targets want to strictly limit the number of conditional moves
3356 that are emitted, they set this through PARAM, we need to respect
3358 return count
> 1 && count
<= param
;
3361 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3362 it without using conditional execution. Return TRUE if we were successful
3363 at converting the block. */
3366 noce_process_if_block (struct noce_if_info
*if_info
)
3368 basic_block test_bb
= if_info
->test_bb
; /* test block */
3369 basic_block then_bb
= if_info
->then_bb
; /* THEN */
3370 basic_block else_bb
= if_info
->else_bb
; /* ELSE or NULL */
3371 basic_block join_bb
= if_info
->join_bb
; /* JOIN */
3372 rtx_insn
*jump
= if_info
->jump
;
3373 rtx cond
= if_info
->cond
;
3374 rtx_insn
*insn_a
, *insn_b
;
3376 rtx orig_x
, x
, a
, b
;
3378 /* We're looking for patterns of the form
3380 (1) if (...) x = a; else x = b;
3381 (2) x = b; if (...) x = a;
3382 (3) if (...) x = a; // as if with an initial x = x.
3383 (4) if (...) { x = a; y = b; z = c; } // Like 3, for multiple SETS.
3384 The later patterns require jumps to be more expensive.
3385 For the if (...) x = a; else x = b; case we allow multiple insns
3386 inside the then and else blocks as long as their only effect is
3387 to calculate a value for x.
3388 ??? For future expansion, further expand the "multiple X" rules. */
3390 /* First look for multiple SETS. */
3392 && HAVE_conditional_move
3394 && bb_ok_for_noce_convert_multiple_sets (then_bb
))
3396 if (noce_convert_multiple_sets (if_info
))
3398 if (dump_file
&& if_info
->transform_name
)
3399 fprintf (dump_file
, "if-conversion succeeded through %s\n",
3400 if_info
->transform_name
);
3405 bool speed_p
= optimize_bb_for_speed_p (test_bb
);
3406 unsigned int then_cost
= 0, else_cost
= 0;
3407 if (!bb_valid_for_noce_process_p (then_bb
, cond
, &then_cost
,
3408 &if_info
->then_simple
))
3412 && !bb_valid_for_noce_process_p (else_bb
, cond
, &else_cost
,
3413 &if_info
->else_simple
))
3416 if (else_bb
== NULL
)
3417 if_info
->original_cost
+= then_cost
;
3419 if_info
->original_cost
+= MIN (then_cost
, else_cost
);
3421 if_info
->original_cost
+= then_cost
+ else_cost
;
3423 insn_a
= last_active_insn (then_bb
, FALSE
);
3424 set_a
= single_set (insn_a
);
3427 x
= SET_DEST (set_a
);
3428 a
= SET_SRC (set_a
);
3430 /* Look for the other potential set. Make sure we've got equivalent
3432 /* ??? This is overconservative. Storing to two different mems is
3433 as easy as conditionally computing the address. Storing to a
3434 single mem merely requires a scratch memory to use as one of the
3435 destination addresses; often the memory immediately below the
3436 stack pointer is available for this. */
3440 insn_b
= last_active_insn (else_bb
, FALSE
);
3441 set_b
= single_set (insn_b
);
3444 if (!rtx_interchangeable_p (x
, SET_DEST (set_b
)))
3449 insn_b
= if_info
->cond_earliest
;
3451 insn_b
= prev_nonnote_nondebug_insn (insn_b
);
3453 && (BLOCK_FOR_INSN (insn_b
)
3454 == BLOCK_FOR_INSN (if_info
->cond_earliest
))
3455 && !modified_in_p (x
, insn_b
));
3457 /* We're going to be moving the evaluation of B down from above
3458 COND_EARLIEST to JUMP. Make sure the relevant data is still
3461 || BLOCK_FOR_INSN (insn_b
) != BLOCK_FOR_INSN (if_info
->cond_earliest
)
3462 || !NONJUMP_INSN_P (insn_b
)
3463 || (set_b
= single_set (insn_b
)) == NULL_RTX
3464 || ! rtx_interchangeable_p (x
, SET_DEST (set_b
))
3465 || ! noce_operand_ok (SET_SRC (set_b
))
3466 || reg_overlap_mentioned_p (x
, SET_SRC (set_b
))
3467 || modified_between_p (SET_SRC (set_b
), insn_b
, jump
)
3468 /* Avoid extending the lifetime of hard registers on small
3469 register class machines. */
3470 || (REG_P (SET_SRC (set_b
))
3471 && HARD_REGISTER_P (SET_SRC (set_b
))
3472 && targetm
.small_register_classes_for_mode_p
3473 (GET_MODE (SET_SRC (set_b
))))
3474 /* Likewise with X. In particular this can happen when
3475 noce_get_condition looks farther back in the instruction
3476 stream than one might expect. */
3477 || reg_overlap_mentioned_p (x
, cond
)
3478 || reg_overlap_mentioned_p (x
, a
)
3479 || modified_between_p (x
, insn_b
, jump
))
3486 /* If x has side effects then only the if-then-else form is safe to
3487 convert. But even in that case we would need to restore any notes
3488 (such as REG_INC) at then end. That can be tricky if
3489 noce_emit_move_insn expands to more than one insn, so disable the
3490 optimization entirely for now if there are side effects. */
3491 if (side_effects_p (x
))
3494 b
= (set_b
? SET_SRC (set_b
) : x
);
3496 /* Only operate on register destinations, and even then avoid extending
3497 the lifetime of hard registers on small register class machines. */
3499 if_info
->orig_x
= orig_x
;
3501 || (HARD_REGISTER_P (x
)
3502 && targetm
.small_register_classes_for_mode_p (GET_MODE (x
))))
3504 if (GET_MODE (x
) == BLKmode
)
3507 if (GET_CODE (x
) == ZERO_EXTRACT
3508 && (!CONST_INT_P (XEXP (x
, 1))
3509 || !CONST_INT_P (XEXP (x
, 2))))
3512 x
= gen_reg_rtx (GET_MODE (GET_CODE (x
) == STRICT_LOW_PART
3513 ? XEXP (x
, 0) : x
));
3516 /* Don't operate on sources that may trap or are volatile. */
3517 if (! noce_operand_ok (a
) || ! noce_operand_ok (b
))
3521 /* Set up the info block for our subroutines. */
3522 if_info
->insn_a
= insn_a
;
3523 if_info
->insn_b
= insn_b
;
3528 /* Try optimizations in some approximation of a useful order. */
3529 /* ??? Should first look to see if X is live incoming at all. If it
3530 isn't, we don't need anything but an unconditional set. */
3532 /* Look and see if A and B are really the same. Avoid creating silly
3533 cmove constructs that no one will fix up later. */
3534 if (noce_simple_bbs (if_info
)
3535 && rtx_interchangeable_p (a
, b
))
3537 /* If we have an INSN_B, we don't have to create any new rtl. Just
3538 move the instruction that we already have. If we don't have an
3539 INSN_B, that means that A == X, and we've got a noop move. In
3540 that case don't do anything and let the code below delete INSN_A. */
3541 if (insn_b
&& else_bb
)
3545 if (else_bb
&& insn_b
== BB_END (else_bb
))
3546 BB_END (else_bb
) = PREV_INSN (insn_b
);
3547 reorder_insns (insn_b
, insn_b
, PREV_INSN (jump
));
3549 /* If there was a REG_EQUAL note, delete it since it may have been
3550 true due to this insn being after a jump. */
3551 if ((note
= find_reg_note (insn_b
, REG_EQUAL
, NULL_RTX
)) != 0)
3552 remove_note (insn_b
, note
);
3556 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
3557 x must be executed twice. */
3558 else if (insn_b
&& side_effects_p (orig_x
))
3565 if (!set_b
&& MEM_P (orig_x
))
3566 /* We want to avoid store speculation to avoid cases like
3567 if (pthread_mutex_trylock(mutex))
3569 Rather than go to much effort here, we rely on the SSA optimizers,
3570 which do a good enough job these days. */
3573 if (noce_try_move (if_info
))
3575 if (noce_try_ifelse_collapse (if_info
))
3577 if (noce_try_store_flag (if_info
))
3579 if (noce_try_bitop (if_info
))
3581 if (noce_try_minmax (if_info
))
3583 if (noce_try_abs (if_info
))
3585 if (noce_try_inverse_constants (if_info
))
3587 if (!targetm
.have_conditional_execution ()
3588 && noce_try_store_flag_constants (if_info
))
3590 if (HAVE_conditional_move
3591 && noce_try_cmove (if_info
))
3593 if (! targetm
.have_conditional_execution ())
3595 if (noce_try_addcc (if_info
))
3597 if (noce_try_store_flag_mask (if_info
))
3599 if (HAVE_conditional_move
3600 && noce_try_cmove_arith (if_info
))
3602 if (noce_try_sign_mask (if_info
))
3606 if (!else_bb
&& set_b
)
3617 if (dump_file
&& if_info
->transform_name
)
3618 fprintf (dump_file
, "if-conversion succeeded through %s\n",
3619 if_info
->transform_name
);
3621 /* If we used a temporary, fix it up now. */
3627 noce_emit_move_insn (orig_x
, x
);
3629 set_used_flags (orig_x
);
3630 unshare_all_rtl_in_chain (seq
);
3633 emit_insn_before_setloc (seq
, BB_END (test_bb
), INSN_LOCATION (insn_a
));
3636 /* The original THEN and ELSE blocks may now be removed. The test block
3637 must now jump to the join block. If the test block and the join block
3638 can be merged, do so. */
3641 delete_basic_block (else_bb
);
3645 remove_edge (find_edge (test_bb
, join_bb
));
3647 remove_edge (find_edge (then_bb
, join_bb
));
3648 redirect_edge_and_branch_force (single_succ_edge (test_bb
), join_bb
);
3649 delete_basic_block (then_bb
);
3652 if (can_merge_blocks_p (test_bb
, join_bb
))
3654 merge_blocks (test_bb
, join_bb
);
3658 num_updated_if_blocks
++;
3662 /* Check whether a block is suitable for conditional move conversion.
3663 Every insn must be a simple set of a register to a constant or a
3664 register. For each assignment, store the value in the pointer map
3665 VALS, keyed indexed by register pointer, then store the register
3666 pointer in REGS. COND is the condition we will test. */
3669 check_cond_move_block (basic_block bb
,
3670 hash_map
<rtx
, rtx
> *vals
,
3675 rtx cc
= cc_in_cond (cond
);
3677 /* We can only handle simple jumps at the end of the basic block.
3678 It is almost impossible to update the CFG otherwise. */
3680 if (JUMP_P (insn
) && !onlyjump_p (insn
))
3683 FOR_BB_INSNS (bb
, insn
)
3687 if (!NONDEBUG_INSN_P (insn
) || JUMP_P (insn
))
3689 set
= single_set (insn
);
3693 dest
= SET_DEST (set
);
3694 src
= SET_SRC (set
);
3696 || (HARD_REGISTER_P (dest
)
3697 && targetm
.small_register_classes_for_mode_p (GET_MODE (dest
))))
3700 if (!CONSTANT_P (src
) && !register_operand (src
, VOIDmode
))
3703 if (side_effects_p (src
) || side_effects_p (dest
))
3706 if (may_trap_p (src
) || may_trap_p (dest
))
3709 /* Don't try to handle this if the source register was
3710 modified earlier in the block. */
3713 || (GET_CODE (src
) == SUBREG
&& REG_P (SUBREG_REG (src
))
3714 && vals
->get (SUBREG_REG (src
))))
3717 /* Don't try to handle this if the destination register was
3718 modified earlier in the block. */
3719 if (vals
->get (dest
))
3722 /* Don't try to handle this if the condition uses the
3723 destination register. */
3724 if (reg_overlap_mentioned_p (dest
, cond
))
3727 /* Don't try to handle this if the source register is modified
3728 later in the block. */
3729 if (!CONSTANT_P (src
)
3730 && modified_between_p (src
, insn
, NEXT_INSN (BB_END (bb
))))
3733 /* Skip it if the instruction to be moved might clobber CC. */
3734 if (cc
&& set_of (cc
, insn
))
3737 vals
->put (dest
, src
);
3739 regs
->safe_push (dest
);
3745 /* Given a basic block BB suitable for conditional move conversion,
3746 a condition COND, and pointer maps THEN_VALS and ELSE_VALS containing
3747 the register values depending on COND, emit the insns in the block as
3748 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
3749 processed. The caller has started a sequence for the conversion.
3750 Return true if successful, false if something goes wrong. */
3753 cond_move_convert_if_block (struct noce_if_info
*if_infop
,
3754 basic_block bb
, rtx cond
,
3755 hash_map
<rtx
, rtx
> *then_vals
,
3756 hash_map
<rtx
, rtx
> *else_vals
,
3761 rtx cond_arg0
, cond_arg1
;
3763 code
= GET_CODE (cond
);
3764 cond_arg0
= XEXP (cond
, 0);
3765 cond_arg1
= XEXP (cond
, 1);
3767 FOR_BB_INSNS (bb
, insn
)
3769 rtx set
, target
, dest
, t
, e
;
3771 /* ??? Maybe emit conditional debug insn? */
3772 if (!NONDEBUG_INSN_P (insn
) || JUMP_P (insn
))
3774 set
= single_set (insn
);
3775 gcc_assert (set
&& REG_P (SET_DEST (set
)));
3777 dest
= SET_DEST (set
);
3779 rtx
*then_slot
= then_vals
->get (dest
);
3780 rtx
*else_slot
= else_vals
->get (dest
);
3781 t
= then_slot
? *then_slot
: NULL_RTX
;
3782 e
= else_slot
? *else_slot
: NULL_RTX
;
3786 /* If this register was set in the then block, we already
3787 handled this case there. */
3800 target
= noce_emit_cmove (if_infop
, dest
, code
, cond_arg0
, cond_arg1
,
3806 noce_emit_move_insn (dest
, target
);
3812 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
3813 it using only conditional moves. Return TRUE if we were successful at
3814 converting the block. */
3817 cond_move_process_if_block (struct noce_if_info
*if_info
)
3819 basic_block test_bb
= if_info
->test_bb
;
3820 basic_block then_bb
= if_info
->then_bb
;
3821 basic_block else_bb
= if_info
->else_bb
;
3822 basic_block join_bb
= if_info
->join_bb
;
3823 rtx_insn
*jump
= if_info
->jump
;
3824 rtx cond
= if_info
->cond
;
3825 rtx_insn
*seq
, *loc_insn
;
3828 vec
<rtx
> then_regs
= vNULL
;
3829 vec
<rtx
> else_regs
= vNULL
;
3831 int success_p
= FALSE
;
3832 int limit
= PARAM_VALUE (PARAM_MAX_RTL_IF_CONVERSION_INSNS
);
3834 /* Build a mapping for each block to the value used for each
3836 hash_map
<rtx
, rtx
> then_vals
;
3837 hash_map
<rtx
, rtx
> else_vals
;
3839 /* Make sure the blocks are suitable. */
3840 if (!check_cond_move_block (then_bb
, &then_vals
, &then_regs
, cond
)
3842 && !check_cond_move_block (else_bb
, &else_vals
, &else_regs
, cond
)))
3845 /* Make sure the blocks can be used together. If the same register
3846 is set in both blocks, and is not set to a constant in both
3847 cases, then both blocks must set it to the same register. We
3848 have already verified that if it is set to a register, that the
3849 source register does not change after the assignment. Also count
3850 the number of registers set in only one of the blocks. */
3852 FOR_EACH_VEC_ELT (then_regs
, i
, reg
)
3854 rtx
*then_slot
= then_vals
.get (reg
);
3855 rtx
*else_slot
= else_vals
.get (reg
);
3857 gcc_checking_assert (then_slot
);
3862 rtx then_val
= *then_slot
;
3863 rtx else_val
= *else_slot
;
3864 if (!CONSTANT_P (then_val
) && !CONSTANT_P (else_val
)
3865 && !rtx_equal_p (then_val
, else_val
))
3870 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
3871 FOR_EACH_VEC_ELT (else_regs
, i
, reg
)
3873 gcc_checking_assert (else_vals
.get (reg
));
3874 if (!then_vals
.get (reg
))
3878 /* Make sure it is reasonable to convert this block. What matters
3879 is the number of assignments currently made in only one of the
3880 branches, since if we convert we are going to always execute
3882 if (c
> MAX_CONDITIONAL_EXECUTE
3886 /* Try to emit the conditional moves. First do the then block,
3887 then do anything left in the else blocks. */
3889 if (!cond_move_convert_if_block (if_info
, then_bb
, cond
,
3890 &then_vals
, &else_vals
, false)
3892 && !cond_move_convert_if_block (if_info
, else_bb
, cond
,
3893 &then_vals
, &else_vals
, true)))
3898 seq
= end_ifcvt_sequence (if_info
);
3902 loc_insn
= first_active_insn (then_bb
);
3905 loc_insn
= first_active_insn (else_bb
);
3906 gcc_assert (loc_insn
);
3908 emit_insn_before_setloc (seq
, jump
, INSN_LOCATION (loc_insn
));
3912 delete_basic_block (else_bb
);
3916 remove_edge (find_edge (test_bb
, join_bb
));
3918 remove_edge (find_edge (then_bb
, join_bb
));
3919 redirect_edge_and_branch_force (single_succ_edge (test_bb
), join_bb
);
3920 delete_basic_block (then_bb
);
3923 if (can_merge_blocks_p (test_bb
, join_bb
))
3925 merge_blocks (test_bb
, join_bb
);
3929 num_updated_if_blocks
++;
3933 then_regs
.release ();
3934 else_regs
.release ();
3939 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
3940 IF-THEN-ELSE-JOIN block.
3942 If so, we'll try to convert the insns to not require the branch,
3943 using only transformations that do not require conditional execution.
3945 Return TRUE if we were successful at converting the block. */
3948 noce_find_if_block (basic_block test_bb
, edge then_edge
, edge else_edge
,
3951 basic_block then_bb
, else_bb
, join_bb
;
3952 bool then_else_reversed
= false;
3955 rtx_insn
*cond_earliest
;
3956 struct noce_if_info if_info
;
3957 bool speed_p
= optimize_bb_for_speed_p (test_bb
);
3959 /* We only ever should get here before reload. */
3960 gcc_assert (!reload_completed
);
3962 /* Recognize an IF-THEN-ELSE-JOIN block. */
3963 if (single_pred_p (then_edge
->dest
)
3964 && single_succ_p (then_edge
->dest
)
3965 && single_pred_p (else_edge
->dest
)
3966 && single_succ_p (else_edge
->dest
)
3967 && single_succ (then_edge
->dest
) == single_succ (else_edge
->dest
))
3969 then_bb
= then_edge
->dest
;
3970 else_bb
= else_edge
->dest
;
3971 join_bb
= single_succ (then_bb
);
3973 /* Recognize an IF-THEN-JOIN block. */
3974 else if (single_pred_p (then_edge
->dest
)
3975 && single_succ_p (then_edge
->dest
)
3976 && single_succ (then_edge
->dest
) == else_edge
->dest
)
3978 then_bb
= then_edge
->dest
;
3979 else_bb
= NULL_BLOCK
;
3980 join_bb
= else_edge
->dest
;
3982 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
3983 of basic blocks in cfglayout mode does not matter, so the fallthrough
3984 edge can go to any basic block (and not just to bb->next_bb, like in
3986 else if (single_pred_p (else_edge
->dest
)
3987 && single_succ_p (else_edge
->dest
)
3988 && single_succ (else_edge
->dest
) == then_edge
->dest
)
3990 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
3991 To make this work, we have to invert the THEN and ELSE blocks
3992 and reverse the jump condition. */
3993 then_bb
= else_edge
->dest
;
3994 else_bb
= NULL_BLOCK
;
3995 join_bb
= single_succ (then_bb
);
3996 then_else_reversed
= true;
3999 /* Not a form we can handle. */
4002 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
4003 if (single_succ_edge (then_bb
)->flags
& EDGE_COMPLEX
)
4006 && single_succ_edge (else_bb
)->flags
& EDGE_COMPLEX
)
4009 num_possible_if_blocks
++;
4014 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
4015 (else_bb
) ? "-ELSE" : "",
4016 pass
, test_bb
->index
, then_bb
->index
);
4019 fprintf (dump_file
, ", else %d", else_bb
->index
);
4021 fprintf (dump_file
, ", join %d\n", join_bb
->index
);
4024 /* If the conditional jump is more than just a conditional
4025 jump, then we cannot do if-conversion on this block. */
4026 jump
= BB_END (test_bb
);
4027 if (! onlyjump_p (jump
))
4030 /* If this is not a standard conditional jump, we can't parse it. */
4031 cond
= noce_get_condition (jump
, &cond_earliest
, then_else_reversed
);
4035 /* We must be comparing objects whose modes imply the size. */
4036 if (GET_MODE (XEXP (cond
, 0)) == BLKmode
)
4039 /* Initialize an IF_INFO struct to pass around. */
4040 memset (&if_info
, 0, sizeof if_info
);
4041 if_info
.test_bb
= test_bb
;
4042 if_info
.then_bb
= then_bb
;
4043 if_info
.else_bb
= else_bb
;
4044 if_info
.join_bb
= join_bb
;
4045 if_info
.cond
= cond
;
4046 rtx_insn
*rev_cond_earliest
;
4047 if_info
.rev_cond
= noce_get_condition (jump
, &rev_cond_earliest
,
4048 !then_else_reversed
);
4049 gcc_assert (if_info
.rev_cond
== NULL_RTX
4050 || rev_cond_earliest
== cond_earliest
);
4051 if_info
.cond_earliest
= cond_earliest
;
4052 if_info
.jump
= jump
;
4053 if_info
.then_else_reversed
= then_else_reversed
;
4054 if_info
.speed_p
= speed_p
;
4055 if_info
.max_seq_cost
4056 = targetm
.max_noce_ifcvt_seq_cost (then_edge
);
4057 /* We'll add in the cost of THEN_BB and ELSE_BB later, when we check
4058 that they are valid to transform. We can't easily get back to the insn
4059 for COND (and it may not exist if we had to canonicalize to get COND),
4060 and jump_insns are always given a cost of 1 by seq_cost, so treat
4061 both instructions as having cost COSTS_N_INSNS (1). */
4062 if_info
.original_cost
= COSTS_N_INSNS (2);
4065 /* Do the real work. */
4067 if (noce_process_if_block (&if_info
))
4070 if (HAVE_conditional_move
4071 && cond_move_process_if_block (&if_info
))
4078 /* Merge the blocks and mark for local life update. */
4081 merge_if_block (struct ce_if_block
* ce_info
)
4083 basic_block test_bb
= ce_info
->test_bb
; /* last test block */
4084 basic_block then_bb
= ce_info
->then_bb
; /* THEN */
4085 basic_block else_bb
= ce_info
->else_bb
; /* ELSE or NULL */
4086 basic_block join_bb
= ce_info
->join_bb
; /* join block */
4087 basic_block combo_bb
;
4089 /* All block merging is done into the lower block numbers. */
4092 df_set_bb_dirty (test_bb
);
4094 /* Merge any basic blocks to handle && and || subtests. Each of
4095 the blocks are on the fallthru path from the predecessor block. */
4096 if (ce_info
->num_multiple_test_blocks
> 0)
4098 basic_block bb
= test_bb
;
4099 basic_block last_test_bb
= ce_info
->last_test_bb
;
4100 basic_block fallthru
= block_fallthru (bb
);
4105 fallthru
= block_fallthru (bb
);
4106 merge_blocks (combo_bb
, bb
);
4109 while (bb
!= last_test_bb
);
4112 /* Merge TEST block into THEN block. Normally the THEN block won't have a
4113 label, but it might if there were || tests. That label's count should be
4114 zero, and it normally should be removed. */
4118 /* If THEN_BB has no successors, then there's a BARRIER after it.
4119 If COMBO_BB has more than one successor (THEN_BB), then that BARRIER
4120 is no longer needed, and in fact it is incorrect to leave it in
4122 if (EDGE_COUNT (then_bb
->succs
) == 0
4123 && EDGE_COUNT (combo_bb
->succs
) > 1)
4125 rtx_insn
*end
= NEXT_INSN (BB_END (then_bb
));
4126 while (end
&& NOTE_P (end
) && !NOTE_INSN_BASIC_BLOCK_P (end
))
4127 end
= NEXT_INSN (end
);
4129 if (end
&& BARRIER_P (end
))
4132 merge_blocks (combo_bb
, then_bb
);
4136 /* The ELSE block, if it existed, had a label. That label count
4137 will almost always be zero, but odd things can happen when labels
4138 get their addresses taken. */
4141 /* If ELSE_BB has no successors, then there's a BARRIER after it.
4142 If COMBO_BB has more than one successor (ELSE_BB), then that BARRIER
4143 is no longer needed, and in fact it is incorrect to leave it in
4145 if (EDGE_COUNT (else_bb
->succs
) == 0
4146 && EDGE_COUNT (combo_bb
->succs
) > 1)
4148 rtx_insn
*end
= NEXT_INSN (BB_END (else_bb
));
4149 while (end
&& NOTE_P (end
) && !NOTE_INSN_BASIC_BLOCK_P (end
))
4150 end
= NEXT_INSN (end
);
4152 if (end
&& BARRIER_P (end
))
4155 merge_blocks (combo_bb
, else_bb
);
4159 /* If there was no join block reported, that means it was not adjacent
4160 to the others, and so we cannot merge them. */
4164 rtx_insn
*last
= BB_END (combo_bb
);
4166 /* The outgoing edge for the current COMBO block should already
4167 be correct. Verify this. */
4168 if (EDGE_COUNT (combo_bb
->succs
) == 0)
4169 gcc_assert (find_reg_note (last
, REG_NORETURN
, NULL
)
4170 || (NONJUMP_INSN_P (last
)
4171 && GET_CODE (PATTERN (last
)) == TRAP_IF
4172 && (TRAP_CONDITION (PATTERN (last
))
4173 == const_true_rtx
)));
4176 /* There should still be something at the end of the THEN or ELSE
4177 blocks taking us to our final destination. */
4178 gcc_assert (JUMP_P (last
)
4179 || (EDGE_SUCC (combo_bb
, 0)->dest
4180 == EXIT_BLOCK_PTR_FOR_FN (cfun
)
4182 && SIBLING_CALL_P (last
))
4183 || ((EDGE_SUCC (combo_bb
, 0)->flags
& EDGE_EH
)
4184 && can_throw_internal (last
)));
4187 /* The JOIN block may have had quite a number of other predecessors too.
4188 Since we've already merged the TEST, THEN and ELSE blocks, we should
4189 have only one remaining edge from our if-then-else diamond. If there
4190 is more than one remaining edge, it must come from elsewhere. There
4191 may be zero incoming edges if the THEN block didn't actually join
4192 back up (as with a call to a non-return function). */
4193 else if (EDGE_COUNT (join_bb
->preds
) < 2
4194 && join_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
4196 /* We can merge the JOIN cleanly and update the dataflow try
4197 again on this pass.*/
4198 merge_blocks (combo_bb
, join_bb
);
4203 /* We cannot merge the JOIN. */
4205 /* The outgoing edge for the current COMBO block should already
4206 be correct. Verify this. */
4207 gcc_assert (single_succ_p (combo_bb
)
4208 && single_succ (combo_bb
) == join_bb
);
4210 /* Remove the jump and cruft from the end of the COMBO block. */
4211 if (join_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
4212 tidy_fallthru_edge (single_succ_edge (combo_bb
));
4215 num_updated_if_blocks
++;
4218 /* Find a block ending in a simple IF condition and try to transform it
4219 in some way. When converting a multi-block condition, put the new code
4220 in the first such block and delete the rest. Return a pointer to this
4221 first block if some transformation was done. Return NULL otherwise. */
4224 find_if_header (basic_block test_bb
, int pass
)
4226 ce_if_block ce_info
;
4230 /* The kind of block we're looking for has exactly two successors. */
4231 if (EDGE_COUNT (test_bb
->succs
) != 2)
4234 then_edge
= EDGE_SUCC (test_bb
, 0);
4235 else_edge
= EDGE_SUCC (test_bb
, 1);
4237 if (df_get_bb_dirty (then_edge
->dest
))
4239 if (df_get_bb_dirty (else_edge
->dest
))
4242 /* Neither edge should be abnormal. */
4243 if ((then_edge
->flags
& EDGE_COMPLEX
)
4244 || (else_edge
->flags
& EDGE_COMPLEX
))
4247 /* Nor exit the loop. */
4248 if ((then_edge
->flags
& EDGE_LOOP_EXIT
)
4249 || (else_edge
->flags
& EDGE_LOOP_EXIT
))
4252 /* The THEN edge is canonically the one that falls through. */
4253 if (then_edge
->flags
& EDGE_FALLTHRU
)
4255 else if (else_edge
->flags
& EDGE_FALLTHRU
)
4256 std::swap (then_edge
, else_edge
);
4258 /* Otherwise this must be a multiway branch of some sort. */
4261 memset (&ce_info
, 0, sizeof (ce_info
));
4262 ce_info
.test_bb
= test_bb
;
4263 ce_info
.then_bb
= then_edge
->dest
;
4264 ce_info
.else_bb
= else_edge
->dest
;
4265 ce_info
.pass
= pass
;
4267 #ifdef IFCVT_MACHDEP_INIT
4268 IFCVT_MACHDEP_INIT (&ce_info
);
4271 if (!reload_completed
4272 && noce_find_if_block (test_bb
, then_edge
, else_edge
, pass
))
4275 if (reload_completed
4276 && targetm
.have_conditional_execution ()
4277 && cond_exec_find_if_block (&ce_info
))
4280 if (targetm
.have_trap ()
4281 && optab_handler (ctrap_optab
, word_mode
) != CODE_FOR_nothing
4282 && find_cond_trap (test_bb
, then_edge
, else_edge
))
4285 if (dom_info_state (CDI_POST_DOMINATORS
) >= DOM_NO_FAST_QUERY
4286 && (reload_completed
|| !targetm
.have_conditional_execution ()))
4288 if (find_if_case_1 (test_bb
, then_edge
, else_edge
))
4290 if (find_if_case_2 (test_bb
, then_edge
, else_edge
))
4298 fprintf (dump_file
, "Conversion succeeded on pass %d.\n", pass
);
4299 /* Set this so we continue looking. */
4300 cond_exec_changed_p
= TRUE
;
4301 return ce_info
.test_bb
;
4304 /* Return true if a block has two edges, one of which falls through to the next
4305 block, and the other jumps to a specific block, so that we can tell if the
4306 block is part of an && test or an || test. Returns either -1 or the number
4307 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
4310 block_jumps_and_fallthru_p (basic_block cur_bb
, basic_block target_bb
)
4313 int fallthru_p
= FALSE
;
4320 if (!cur_bb
|| !target_bb
)
4323 /* If no edges, obviously it doesn't jump or fallthru. */
4324 if (EDGE_COUNT (cur_bb
->succs
) == 0)
4327 FOR_EACH_EDGE (cur_edge
, ei
, cur_bb
->succs
)
4329 if (cur_edge
->flags
& EDGE_COMPLEX
)
4330 /* Anything complex isn't what we want. */
4333 else if (cur_edge
->flags
& EDGE_FALLTHRU
)
4336 else if (cur_edge
->dest
== target_bb
)
4343 if ((jump_p
& fallthru_p
) == 0)
4346 /* Don't allow calls in the block, since this is used to group && and ||
4347 together for conditional execution support. ??? we should support
4348 conditional execution support across calls for IA-64 some day, but
4349 for now it makes the code simpler. */
4350 end
= BB_END (cur_bb
);
4351 insn
= BB_HEAD (cur_bb
);
4353 while (insn
!= NULL_RTX
)
4360 && !DEBUG_INSN_P (insn
)
4361 && GET_CODE (PATTERN (insn
)) != USE
4362 && GET_CODE (PATTERN (insn
)) != CLOBBER
)
4368 insn
= NEXT_INSN (insn
);
4374 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
4375 block. If so, we'll try to convert the insns to not require the branch.
4376 Return TRUE if we were successful at converting the block. */
4379 cond_exec_find_if_block (struct ce_if_block
* ce_info
)
4381 basic_block test_bb
= ce_info
->test_bb
;
4382 basic_block then_bb
= ce_info
->then_bb
;
4383 basic_block else_bb
= ce_info
->else_bb
;
4384 basic_block join_bb
= NULL_BLOCK
;
4389 ce_info
->last_test_bb
= test_bb
;
4391 /* We only ever should get here after reload,
4392 and if we have conditional execution. */
4393 gcc_assert (reload_completed
&& targetm
.have_conditional_execution ());
4395 /* Discover if any fall through predecessors of the current test basic block
4396 were && tests (which jump to the else block) or || tests (which jump to
4398 if (single_pred_p (test_bb
)
4399 && single_pred_edge (test_bb
)->flags
== EDGE_FALLTHRU
)
4401 basic_block bb
= single_pred (test_bb
);
4402 basic_block target_bb
;
4403 int max_insns
= MAX_CONDITIONAL_EXECUTE
;
4406 /* Determine if the preceding block is an && or || block. */
4407 if ((n_insns
= block_jumps_and_fallthru_p (bb
, else_bb
)) >= 0)
4409 ce_info
->and_and_p
= TRUE
;
4410 target_bb
= else_bb
;
4412 else if ((n_insns
= block_jumps_and_fallthru_p (bb
, then_bb
)) >= 0)
4414 ce_info
->and_and_p
= FALSE
;
4415 target_bb
= then_bb
;
4418 target_bb
= NULL_BLOCK
;
4420 if (target_bb
&& n_insns
<= max_insns
)
4422 int total_insns
= 0;
4425 ce_info
->last_test_bb
= test_bb
;
4427 /* Found at least one && or || block, look for more. */
4430 ce_info
->test_bb
= test_bb
= bb
;
4431 total_insns
+= n_insns
;
4434 if (!single_pred_p (bb
))
4437 bb
= single_pred (bb
);
4438 n_insns
= block_jumps_and_fallthru_p (bb
, target_bb
);
4440 while (n_insns
>= 0 && (total_insns
+ n_insns
) <= max_insns
);
4442 ce_info
->num_multiple_test_blocks
= blocks
;
4443 ce_info
->num_multiple_test_insns
= total_insns
;
4445 if (ce_info
->and_and_p
)
4446 ce_info
->num_and_and_blocks
= blocks
;
4448 ce_info
->num_or_or_blocks
= blocks
;
4452 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
4453 other than any || blocks which jump to the THEN block. */
4454 if ((EDGE_COUNT (then_bb
->preds
) - ce_info
->num_or_or_blocks
) != 1)
4457 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
4458 FOR_EACH_EDGE (cur_edge
, ei
, then_bb
->preds
)
4460 if (cur_edge
->flags
& EDGE_COMPLEX
)
4464 FOR_EACH_EDGE (cur_edge
, ei
, else_bb
->preds
)
4466 if (cur_edge
->flags
& EDGE_COMPLEX
)
4470 /* The THEN block of an IF-THEN combo must have zero or one successors. */
4471 if (EDGE_COUNT (then_bb
->succs
) > 0
4472 && (!single_succ_p (then_bb
)
4473 || (single_succ_edge (then_bb
)->flags
& EDGE_COMPLEX
)
4474 || (epilogue_completed
4475 && tablejump_p (BB_END (then_bb
), NULL
, NULL
))))
4478 /* If the THEN block has no successors, conditional execution can still
4479 make a conditional call. Don't do this unless the ELSE block has
4480 only one incoming edge -- the CFG manipulation is too ugly otherwise.
4481 Check for the last insn of the THEN block being an indirect jump, which
4482 is listed as not having any successors, but confuses the rest of the CE
4483 code processing. ??? we should fix this in the future. */
4484 if (EDGE_COUNT (then_bb
->succs
) == 0)
4486 if (single_pred_p (else_bb
) && else_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
4488 rtx_insn
*last_insn
= BB_END (then_bb
);
4491 && NOTE_P (last_insn
)
4492 && last_insn
!= BB_HEAD (then_bb
))
4493 last_insn
= PREV_INSN (last_insn
);
4496 && JUMP_P (last_insn
)
4497 && ! simplejump_p (last_insn
))
4501 else_bb
= NULL_BLOCK
;
4507 /* If the THEN block's successor is the other edge out of the TEST block,
4508 then we have an IF-THEN combo without an ELSE. */
4509 else if (single_succ (then_bb
) == else_bb
)
4512 else_bb
= NULL_BLOCK
;
4515 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
4516 has exactly one predecessor and one successor, and the outgoing edge
4517 is not complex, then we have an IF-THEN-ELSE combo. */
4518 else if (single_succ_p (else_bb
)
4519 && single_succ (then_bb
) == single_succ (else_bb
)
4520 && single_pred_p (else_bb
)
4521 && !(single_succ_edge (else_bb
)->flags
& EDGE_COMPLEX
)
4522 && !(epilogue_completed
4523 && tablejump_p (BB_END (else_bb
), NULL
, NULL
)))
4524 join_bb
= single_succ (else_bb
);
4526 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
4530 num_possible_if_blocks
++;
4535 "\nIF-THEN%s block found, pass %d, start block %d "
4536 "[insn %d], then %d [%d]",
4537 (else_bb
) ? "-ELSE" : "",
4540 BB_HEAD (test_bb
) ? (int)INSN_UID (BB_HEAD (test_bb
)) : -1,
4542 BB_HEAD (then_bb
) ? (int)INSN_UID (BB_HEAD (then_bb
)) : -1);
4545 fprintf (dump_file
, ", else %d [%d]",
4547 BB_HEAD (else_bb
) ? (int)INSN_UID (BB_HEAD (else_bb
)) : -1);
4549 fprintf (dump_file
, ", join %d [%d]",
4551 BB_HEAD (join_bb
) ? (int)INSN_UID (BB_HEAD (join_bb
)) : -1);
4553 if (ce_info
->num_multiple_test_blocks
> 0)
4554 fprintf (dump_file
, ", %d %s block%s last test %d [%d]",
4555 ce_info
->num_multiple_test_blocks
,
4556 (ce_info
->and_and_p
) ? "&&" : "||",
4557 (ce_info
->num_multiple_test_blocks
== 1) ? "" : "s",
4558 ce_info
->last_test_bb
->index
,
4559 ((BB_HEAD (ce_info
->last_test_bb
))
4560 ? (int)INSN_UID (BB_HEAD (ce_info
->last_test_bb
))
4563 fputc ('\n', dump_file
);
4566 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
4567 first condition for free, since we've already asserted that there's a
4568 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
4569 we checked the FALLTHRU flag, those are already adjacent to the last IF
4571 /* ??? As an enhancement, move the ELSE block. Have to deal with
4572 BLOCK notes, if by no other means than backing out the merge if they
4573 exist. Sticky enough I don't want to think about it now. */
4575 if (else_bb
&& (next
= next
->next_bb
) != else_bb
)
4577 if ((next
= next
->next_bb
) != join_bb
4578 && join_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
4586 /* Do the real work. */
4588 ce_info
->else_bb
= else_bb
;
4589 ce_info
->join_bb
= join_bb
;
4591 /* If we have && and || tests, try to first handle combining the && and ||
4592 tests into the conditional code, and if that fails, go back and handle
4593 it without the && and ||, which at present handles the && case if there
4594 was no ELSE block. */
4595 if (cond_exec_process_if_block (ce_info
, TRUE
))
4598 if (ce_info
->num_multiple_test_blocks
)
4602 if (cond_exec_process_if_block (ce_info
, FALSE
))
4609 /* Convert a branch over a trap, or a branch
4610 to a trap, into a conditional trap. */
4613 find_cond_trap (basic_block test_bb
, edge then_edge
, edge else_edge
)
4615 basic_block then_bb
= then_edge
->dest
;
4616 basic_block else_bb
= else_edge
->dest
;
4617 basic_block other_bb
, trap_bb
;
4618 rtx_insn
*trap
, *jump
;
4620 rtx_insn
*cond_earliest
;
4622 /* Locate the block with the trap instruction. */
4623 /* ??? While we look for no successors, we really ought to allow
4624 EH successors. Need to fix merge_if_block for that to work. */
4625 if ((trap
= block_has_only_trap (then_bb
)) != NULL
)
4626 trap_bb
= then_bb
, other_bb
= else_bb
;
4627 else if ((trap
= block_has_only_trap (else_bb
)) != NULL
)
4628 trap_bb
= else_bb
, other_bb
= then_bb
;
4634 fprintf (dump_file
, "\nTRAP-IF block found, start %d, trap %d\n",
4635 test_bb
->index
, trap_bb
->index
);
4638 /* If this is not a standard conditional jump, we can't parse it. */
4639 jump
= BB_END (test_bb
);
4640 cond
= noce_get_condition (jump
, &cond_earliest
, then_bb
== trap_bb
);
4644 /* If the conditional jump is more than just a conditional jump, then
4645 we cannot do if-conversion on this block. Give up for returnjump_p,
4646 changing a conditional return followed by unconditional trap for
4647 conditional trap followed by unconditional return is likely not
4648 beneficial and harder to handle. */
4649 if (! onlyjump_p (jump
) || returnjump_p (jump
))
4652 /* We must be comparing objects whose modes imply the size. */
4653 if (GET_MODE (XEXP (cond
, 0)) == BLKmode
)
4656 /* Attempt to generate the conditional trap. */
4657 rtx_insn
*seq
= gen_cond_trap (GET_CODE (cond
), copy_rtx (XEXP (cond
, 0)),
4658 copy_rtx (XEXP (cond
, 1)),
4659 TRAP_CODE (PATTERN (trap
)));
4663 /* If that results in an invalid insn, back out. */
4664 for (rtx_insn
*x
= seq
; x
; x
= NEXT_INSN (x
))
4665 if (recog_memoized (x
) < 0)
4668 /* Emit the new insns before cond_earliest. */
4669 emit_insn_before_setloc (seq
, cond_earliest
, INSN_LOCATION (trap
));
4671 /* Delete the trap block if possible. */
4672 remove_edge (trap_bb
== then_bb
? then_edge
: else_edge
);
4673 df_set_bb_dirty (test_bb
);
4674 df_set_bb_dirty (then_bb
);
4675 df_set_bb_dirty (else_bb
);
4677 if (EDGE_COUNT (trap_bb
->preds
) == 0)
4679 delete_basic_block (trap_bb
);
4683 /* Wire together the blocks again. */
4684 if (current_ir_type () == IR_RTL_CFGLAYOUT
)
4685 single_succ_edge (test_bb
)->flags
|= EDGE_FALLTHRU
;
4686 else if (trap_bb
== then_bb
)
4688 rtx lab
= JUMP_LABEL (jump
);
4689 rtx_insn
*seq
= targetm
.gen_jump (lab
);
4690 rtx_jump_insn
*newjump
= emit_jump_insn_after (seq
, jump
);
4691 LABEL_NUSES (lab
) += 1;
4692 JUMP_LABEL (newjump
) = lab
;
4693 emit_barrier_after (newjump
);
4697 if (can_merge_blocks_p (test_bb
, other_bb
))
4699 merge_blocks (test_bb
, other_bb
);
4703 num_updated_if_blocks
++;
4707 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
4711 block_has_only_trap (basic_block bb
)
4715 /* We're not the exit block. */
4716 if (bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
4719 /* The block must have no successors. */
4720 if (EDGE_COUNT (bb
->succs
) > 0)
4723 /* The only instruction in the THEN block must be the trap. */
4724 trap
= first_active_insn (bb
);
4725 if (! (trap
== BB_END (bb
)
4726 && GET_CODE (PATTERN (trap
)) == TRAP_IF
4727 && TRAP_CONDITION (PATTERN (trap
)) == const_true_rtx
))
4733 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
4734 transformable, but not necessarily the other. There need be no
4737 Return TRUE if we were successful at converting the block.
4739 Cases we'd like to look at:
4742 if (test) goto over; // x not live
4750 if (! test) goto label;
4753 if (test) goto E; // x not live
4767 (3) // This one's really only interesting for targets that can do
4768 // multiway branching, e.g. IA-64 BBB bundles. For other targets
4769 // it results in multiple branches on a cache line, which often
4770 // does not sit well with predictors.
4772 if (test1) goto E; // predicted not taken
4788 (A) Don't do (2) if the branch is predicted against the block we're
4789 eliminating. Do it anyway if we can eliminate a branch; this requires
4790 that the sole successor of the eliminated block postdominate the other
4793 (B) With CE, on (3) we can steal from both sides of the if, creating
4802 Again, this is most useful if J postdominates.
4804 (C) CE substitutes for helpful life information.
4806 (D) These heuristics need a lot of work. */
4808 /* Tests for case 1 above. */
4811 find_if_case_1 (basic_block test_bb
, edge then_edge
, edge else_edge
)
4813 basic_block then_bb
= then_edge
->dest
;
4814 basic_block else_bb
= else_edge
->dest
;
4817 profile_probability then_prob
;
4818 rtx else_target
= NULL_RTX
;
4820 /* If we are partitioning hot/cold basic blocks, we don't want to
4821 mess up unconditional or indirect jumps that cross between hot
4824 Basic block partitioning may result in some jumps that appear to
4825 be optimizable (or blocks that appear to be mergeable), but which really
4826 must be left untouched (they are required to make it safely across
4827 partition boundaries). See the comments at the top of
4828 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4830 if ((BB_END (then_bb
)
4831 && JUMP_P (BB_END (then_bb
))
4832 && CROSSING_JUMP_P (BB_END (then_bb
)))
4833 || (BB_END (test_bb
)
4834 && JUMP_P (BB_END (test_bb
))
4835 && CROSSING_JUMP_P (BB_END (test_bb
)))
4836 || (BB_END (else_bb
)
4837 && JUMP_P (BB_END (else_bb
))
4838 && CROSSING_JUMP_P (BB_END (else_bb
))))
4841 /* THEN has one successor. */
4842 if (!single_succ_p (then_bb
))
4845 /* THEN does not fall through, but is not strange either. */
4846 if (single_succ_edge (then_bb
)->flags
& (EDGE_COMPLEX
| EDGE_FALLTHRU
))
4849 /* THEN has one predecessor. */
4850 if (!single_pred_p (then_bb
))
4853 /* THEN must do something. */
4854 if (forwarder_block_p (then_bb
))
4857 num_possible_if_blocks
++;
4860 "\nIF-CASE-1 found, start %d, then %d\n",
4861 test_bb
->index
, then_bb
->index
);
4863 then_prob
= then_edge
->probability
.invert ();
4865 /* We're speculating from the THEN path, we want to make sure the cost
4866 of speculation is within reason. */
4867 if (! cheap_bb_rtx_cost_p (then_bb
, then_prob
,
4868 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge
->src
),
4869 predictable_edge_p (then_edge
)))))
4872 if (else_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
4874 rtx_insn
*jump
= BB_END (else_edge
->src
);
4875 gcc_assert (JUMP_P (jump
));
4876 else_target
= JUMP_LABEL (jump
);
4879 /* Registers set are dead, or are predicable. */
4880 if (! dead_or_predicable (test_bb
, then_bb
, else_bb
,
4881 single_succ_edge (then_bb
), 1))
4884 /* Conversion went ok, including moving the insns and fixing up the
4885 jump. Adjust the CFG to match. */
4887 /* We can avoid creating a new basic block if then_bb is immediately
4888 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
4889 through to else_bb. */
4891 if (then_bb
->next_bb
== else_bb
4892 && then_bb
->prev_bb
== test_bb
4893 && else_bb
!= EXIT_BLOCK_PTR_FOR_FN (cfun
))
4895 redirect_edge_succ (FALLTHRU_EDGE (test_bb
), else_bb
);
4898 else if (else_bb
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
4899 new_bb
= force_nonfallthru_and_redirect (FALLTHRU_EDGE (test_bb
),
4900 else_bb
, else_target
);
4902 new_bb
= redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb
),
4905 df_set_bb_dirty (test_bb
);
4906 df_set_bb_dirty (else_bb
);
4908 then_bb_index
= then_bb
->index
;
4909 delete_basic_block (then_bb
);
4911 /* Make rest of code believe that the newly created block is the THEN_BB
4912 block we removed. */
4915 df_bb_replace (then_bb_index
, new_bb
);
4916 /* This should have been done above via force_nonfallthru_and_redirect
4917 (possibly called from redirect_edge_and_branch_force). */
4918 gcc_checking_assert (BB_PARTITION (new_bb
) == BB_PARTITION (test_bb
));
4922 num_updated_if_blocks
++;
4926 /* Test for case 2 above. */
4929 find_if_case_2 (basic_block test_bb
, edge then_edge
, edge else_edge
)
4931 basic_block then_bb
= then_edge
->dest
;
4932 basic_block else_bb
= else_edge
->dest
;
4934 profile_probability then_prob
, else_prob
;
4936 /* We do not want to speculate (empty) loop latches. */
4938 && else_bb
->loop_father
->latch
== else_bb
)
4941 /* If we are partitioning hot/cold basic blocks, we don't want to
4942 mess up unconditional or indirect jumps that cross between hot
4945 Basic block partitioning may result in some jumps that appear to
4946 be optimizable (or blocks that appear to be mergeable), but which really
4947 must be left untouched (they are required to make it safely across
4948 partition boundaries). See the comments at the top of
4949 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
4951 if ((BB_END (then_bb
)
4952 && JUMP_P (BB_END (then_bb
))
4953 && CROSSING_JUMP_P (BB_END (then_bb
)))
4954 || (BB_END (test_bb
)
4955 && JUMP_P (BB_END (test_bb
))
4956 && CROSSING_JUMP_P (BB_END (test_bb
)))
4957 || (BB_END (else_bb
)
4958 && JUMP_P (BB_END (else_bb
))
4959 && CROSSING_JUMP_P (BB_END (else_bb
))))
4962 /* ELSE has one successor. */
4963 if (!single_succ_p (else_bb
))
4966 else_succ
= single_succ_edge (else_bb
);
4968 /* ELSE outgoing edge is not complex. */
4969 if (else_succ
->flags
& EDGE_COMPLEX
)
4972 /* ELSE has one predecessor. */
4973 if (!single_pred_p (else_bb
))
4976 /* THEN is not EXIT. */
4977 if (then_bb
->index
< NUM_FIXED_BLOCKS
)
4980 else_prob
= else_edge
->probability
;
4981 then_prob
= else_prob
.invert ();
4983 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
4984 if (else_prob
> then_prob
)
4986 else if (else_succ
->dest
->index
< NUM_FIXED_BLOCKS
4987 || dominated_by_p (CDI_POST_DOMINATORS
, then_bb
,
4993 num_possible_if_blocks
++;
4996 "\nIF-CASE-2 found, start %d, else %d\n",
4997 test_bb
->index
, else_bb
->index
);
4999 /* We're speculating from the ELSE path, we want to make sure the cost
5000 of speculation is within reason. */
5001 if (! cheap_bb_rtx_cost_p (else_bb
, else_prob
,
5002 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge
->src
),
5003 predictable_edge_p (else_edge
)))))
5006 /* Registers set are dead, or are predicable. */
5007 if (! dead_or_predicable (test_bb
, else_bb
, then_bb
, else_succ
, 0))
5010 /* Conversion went ok, including moving the insns and fixing up the
5011 jump. Adjust the CFG to match. */
5013 df_set_bb_dirty (test_bb
);
5014 df_set_bb_dirty (then_bb
);
5015 delete_basic_block (else_bb
);
5018 num_updated_if_blocks
++;
5020 /* ??? We may now fallthru from one of THEN's successors into a join
5021 block. Rerun cleanup_cfg? Examine things manually? Wait? */
5026 /* Used by the code above to perform the actual rtl transformations.
5027 Return TRUE if successful.
5029 TEST_BB is the block containing the conditional branch. MERGE_BB
5030 is the block containing the code to manipulate. DEST_EDGE is an
5031 edge representing a jump to the join block; after the conversion,
5032 TEST_BB should be branching to its destination.
5033 REVERSEP is true if the sense of the branch should be reversed. */
5036 dead_or_predicable (basic_block test_bb
, basic_block merge_bb
,
5037 basic_block other_bb
, edge dest_edge
, int reversep
)
5039 basic_block new_dest
= dest_edge
->dest
;
5040 rtx_insn
*head
, *end
, *jump
;
5041 rtx_insn
*earliest
= NULL
;
5043 bitmap merge_set
= NULL
;
5044 /* Number of pending changes. */
5045 int n_validated_changes
= 0;
5046 rtx new_dest_label
= NULL_RTX
;
5048 jump
= BB_END (test_bb
);
5050 /* Find the extent of the real code in the merge block. */
5051 head
= BB_HEAD (merge_bb
);
5052 end
= BB_END (merge_bb
);
5054 while (DEBUG_INSN_P (end
) && end
!= head
)
5055 end
= PREV_INSN (end
);
5057 /* If merge_bb ends with a tablejump, predicating/moving insn's
5058 into test_bb and then deleting merge_bb will result in the jumptable
5059 that follows merge_bb being removed along with merge_bb and then we
5060 get an unresolved reference to the jumptable. */
5061 if (tablejump_p (end
, NULL
, NULL
))
5065 head
= NEXT_INSN (head
);
5066 while (DEBUG_INSN_P (head
) && head
!= end
)
5067 head
= NEXT_INSN (head
);
5075 head
= NEXT_INSN (head
);
5076 while (DEBUG_INSN_P (head
) && head
!= end
)
5077 head
= NEXT_INSN (head
);
5082 if (!onlyjump_p (end
))
5089 end
= PREV_INSN (end
);
5090 while (DEBUG_INSN_P (end
) && end
!= head
)
5091 end
= PREV_INSN (end
);
5094 /* Don't move frame-related insn across the conditional branch. This
5095 can lead to one of the paths of the branch having wrong unwind info. */
5096 if (epilogue_completed
)
5098 rtx_insn
*insn
= head
;
5101 if (INSN_P (insn
) && RTX_FRAME_RELATED_P (insn
))
5105 insn
= NEXT_INSN (insn
);
5109 /* Disable handling dead code by conditional execution if the machine needs
5110 to do anything funny with the tests, etc. */
5111 #ifndef IFCVT_MODIFY_TESTS
5112 if (targetm
.have_conditional_execution ())
5114 /* In the conditional execution case, we have things easy. We know
5115 the condition is reversible. We don't have to check life info
5116 because we're going to conditionally execute the code anyway.
5117 All that's left is making sure the insns involved can actually
5122 cond
= cond_exec_get_condition (jump
);
5126 rtx note
= find_reg_note (jump
, REG_BR_PROB
, NULL_RTX
);
5127 profile_probability prob_val
5128 = (note
? profile_probability::from_reg_br_prob_note (XINT (note
, 0))
5129 : profile_probability::uninitialized ());
5133 enum rtx_code rev
= reversed_comparison_code (cond
, jump
);
5136 cond
= gen_rtx_fmt_ee (rev
, GET_MODE (cond
), XEXP (cond
, 0),
5138 prob_val
= prob_val
.invert ();
5141 if (cond_exec_process_insns (NULL
, head
, end
, cond
, prob_val
, 0)
5142 && verify_changes (0))
5143 n_validated_changes
= num_validated_changes ();
5151 /* If we allocated new pseudos (e.g. in the conditional move
5152 expander called from noce_emit_cmove), we must resize the
5154 if (max_regno
< max_reg_num ())
5155 max_regno
= max_reg_num ();
5157 /* Try the NCE path if the CE path did not result in any changes. */
5158 if (n_validated_changes
== 0)
5165 /* In the non-conditional execution case, we have to verify that there
5166 are no trapping operations, no calls, no references to memory, and
5167 that any registers modified are dead at the branch site. */
5169 if (!any_condjump_p (jump
))
5172 /* Find the extent of the conditional. */
5173 cond
= noce_get_condition (jump
, &earliest
, false);
5177 live
= BITMAP_ALLOC (®_obstack
);
5178 simulate_backwards_to_point (merge_bb
, live
, end
);
5179 success
= can_move_insns_across (head
, end
, earliest
, jump
,
5181 df_get_live_in (other_bb
), NULL
);
5186 /* Collect the set of registers set in MERGE_BB. */
5187 merge_set
= BITMAP_ALLOC (®_obstack
);
5189 FOR_BB_INSNS (merge_bb
, insn
)
5190 if (NONDEBUG_INSN_P (insn
))
5191 df_simulate_find_defs (insn
, merge_set
);
5193 /* If shrink-wrapping, disable this optimization when test_bb is
5194 the first basic block and merge_bb exits. The idea is to not
5195 move code setting up a return register as that may clobber a
5196 register used to pass function parameters, which then must be
5197 saved in caller-saved regs. A caller-saved reg requires the
5198 prologue, killing a shrink-wrap opportunity. */
5199 if ((SHRINK_WRAPPING_ENABLED
&& !epilogue_completed
)
5200 && ENTRY_BLOCK_PTR_FOR_FN (cfun
)->next_bb
== test_bb
5201 && single_succ_p (new_dest
)
5202 && single_succ (new_dest
) == EXIT_BLOCK_PTR_FOR_FN (cfun
)
5203 && bitmap_intersect_p (df_get_live_in (new_dest
), merge_set
))
5208 return_regs
= BITMAP_ALLOC (®_obstack
);
5210 /* Start off with the intersection of regs used to pass
5211 params and regs used to return values. */
5212 for (i
= 0; i
< FIRST_PSEUDO_REGISTER
; i
++)
5213 if (FUNCTION_ARG_REGNO_P (i
)
5214 && targetm
.calls
.function_value_regno_p (i
))
5215 bitmap_set_bit (return_regs
, INCOMING_REGNO (i
));
5217 bitmap_and_into (return_regs
,
5218 df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun
)));
5219 bitmap_and_into (return_regs
,
5220 df_get_live_in (EXIT_BLOCK_PTR_FOR_FN (cfun
)));
5221 if (!bitmap_empty_p (return_regs
))
5223 FOR_BB_INSNS_REVERSE (new_dest
, insn
)
5224 if (NONDEBUG_INSN_P (insn
))
5228 /* If this insn sets any reg in return_regs, add all
5229 reg uses to the set of regs we're interested in. */
5230 FOR_EACH_INSN_DEF (def
, insn
)
5231 if (bitmap_bit_p (return_regs
, DF_REF_REGNO (def
)))
5233 df_simulate_uses (insn
, return_regs
);
5237 if (bitmap_intersect_p (merge_set
, return_regs
))
5239 BITMAP_FREE (return_regs
);
5240 BITMAP_FREE (merge_set
);
5244 BITMAP_FREE (return_regs
);
5249 /* We don't want to use normal invert_jump or redirect_jump because
5250 we don't want to delete_insn called. Also, we want to do our own
5251 change group management. */
5253 old_dest
= JUMP_LABEL (jump
);
5254 if (other_bb
!= new_dest
)
5256 if (!any_condjump_p (jump
))
5259 if (JUMP_P (BB_END (dest_edge
->src
)))
5260 new_dest_label
= JUMP_LABEL (BB_END (dest_edge
->src
));
5261 else if (new_dest
== EXIT_BLOCK_PTR_FOR_FN (cfun
))
5262 new_dest_label
= ret_rtx
;
5264 new_dest_label
= block_label (new_dest
);
5266 rtx_jump_insn
*jump_insn
= as_a
<rtx_jump_insn
*> (jump
);
5268 ? ! invert_jump_1 (jump_insn
, new_dest_label
)
5269 : ! redirect_jump_1 (jump_insn
, new_dest_label
))
5273 if (verify_changes (n_validated_changes
))
5274 confirm_change_group ();
5278 if (other_bb
!= new_dest
)
5280 redirect_jump_2 (as_a
<rtx_jump_insn
*> (jump
), old_dest
, new_dest_label
,
5283 redirect_edge_succ (BRANCH_EDGE (test_bb
), new_dest
);
5286 std::swap (BRANCH_EDGE (test_bb
)->probability
,
5287 FALLTHRU_EDGE (test_bb
)->probability
);
5288 update_br_prob_note (test_bb
);
5292 /* Move the insns out of MERGE_BB to before the branch. */
5297 if (end
== BB_END (merge_bb
))
5298 BB_END (merge_bb
) = PREV_INSN (head
);
5300 /* PR 21767: when moving insns above a conditional branch, the REG_EQUAL
5301 notes being moved might become invalid. */
5307 if (! INSN_P (insn
))
5309 note
= find_reg_note (insn
, REG_EQUAL
, NULL_RTX
);
5312 remove_note (insn
, note
);
5313 } while (insn
!= end
&& (insn
= NEXT_INSN (insn
)));
5315 /* PR46315: when moving insns above a conditional branch, the REG_EQUAL
5316 notes referring to the registers being set might become invalid. */
5322 EXECUTE_IF_SET_IN_BITMAP (merge_set
, 0, i
, bi
)
5323 remove_reg_equal_equiv_notes_for_regno (i
);
5325 BITMAP_FREE (merge_set
);
5328 reorder_insns (head
, end
, PREV_INSN (earliest
));
5331 /* Remove the jump and edge if we can. */
5332 if (other_bb
== new_dest
)
5335 remove_edge (BRANCH_EDGE (test_bb
));
5336 /* ??? Can't merge blocks here, as then_bb is still in use.
5337 At minimum, the merge will get done just before bb-reorder. */
5346 BITMAP_FREE (merge_set
);
5351 /* Main entry point for all if-conversion. AFTER_COMBINE is true if
5352 we are after combine pass. */
5355 if_convert (bool after_combine
)
5362 df_live_add_problem ();
5363 df_live_set_all_dirty ();
5366 /* Record whether we are after combine pass. */
5367 ifcvt_after_combine
= after_combine
;
5368 have_cbranchcc4
= (direct_optab_handler (cbranch_optab
, CCmode
)
5369 != CODE_FOR_nothing
);
5370 num_possible_if_blocks
= 0;
5371 num_updated_if_blocks
= 0;
5372 num_true_changes
= 0;
5374 loop_optimizer_init (AVOID_CFG_MODIFICATIONS
);
5375 mark_loop_exit_edges ();
5376 loop_optimizer_finalize ();
5377 free_dominance_info (CDI_DOMINATORS
);
5379 /* Compute postdominators. */
5380 calculate_dominance_info (CDI_POST_DOMINATORS
);
5382 df_set_flags (DF_LR_RUN_DCE
);
5384 /* Go through each of the basic blocks looking for things to convert. If we
5385 have conditional execution, we make multiple passes to allow us to handle
5386 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
5391 /* Only need to do dce on the first pass. */
5392 df_clear_flags (DF_LR_RUN_DCE
);
5393 cond_exec_changed_p
= FALSE
;
5396 #ifdef IFCVT_MULTIPLE_DUMPS
5397 if (dump_file
&& pass
> 1)
5398 fprintf (dump_file
, "\n\n========== Pass %d ==========\n", pass
);
5401 FOR_EACH_BB_FN (bb
, cfun
)
5404 while (!df_get_bb_dirty (bb
)
5405 && (new_bb
= find_if_header (bb
, pass
)) != NULL
)
5409 #ifdef IFCVT_MULTIPLE_DUMPS
5410 if (dump_file
&& cond_exec_changed_p
)
5411 print_rtl_with_bb (dump_file
, get_insns (), dump_flags
);
5414 while (cond_exec_changed_p
);
5416 #ifdef IFCVT_MULTIPLE_DUMPS
5418 fprintf (dump_file
, "\n\n========== no more changes\n");
5421 free_dominance_info (CDI_POST_DOMINATORS
);
5426 clear_aux_for_blocks ();
5428 /* If we allocated new pseudos, we must resize the array for sched1. */
5429 if (max_regno
< max_reg_num ())
5430 max_regno
= max_reg_num ();
5432 /* Write the final stats. */
5433 if (dump_file
&& num_possible_if_blocks
> 0)
5436 "\n%d possible IF blocks searched.\n",
5437 num_possible_if_blocks
);
5439 "%d IF blocks converted.\n",
5440 num_updated_if_blocks
);
5442 "%d true changes made.\n\n\n",
5447 df_remove_problem (df_live
);
5449 /* Some non-cold blocks may now be only reachable from cold blocks.
5451 fixup_partitions ();
5453 checking_verify_flow_info ();
5456 /* If-conversion and CFG cleanup. */
5458 rest_of_handle_if_conversion (void)
5462 if (flag_if_conversion
)
5466 dump_reg_info (dump_file
);
5467 dump_flow_info (dump_file
, dump_flags
);
5469 cleanup_cfg (CLEANUP_EXPENSIVE
);
5471 if (num_updated_if_blocks
)
5472 /* Get rid of any dead CC-related instructions. */
5473 flags
|= CLEANUP_FORCE_FAST_DCE
;
5476 cleanup_cfg (flags
);
5482 const pass_data pass_data_rtl_ifcvt
=
5484 RTL_PASS
, /* type */
5486 OPTGROUP_NONE
, /* optinfo_flags */
5487 TV_IFCVT
, /* tv_id */
5488 0, /* properties_required */
5489 0, /* properties_provided */
5490 0, /* properties_destroyed */
5491 0, /* todo_flags_start */
5492 TODO_df_finish
, /* todo_flags_finish */
5495 class pass_rtl_ifcvt
: public rtl_opt_pass
5498 pass_rtl_ifcvt (gcc::context
*ctxt
)
5499 : rtl_opt_pass (pass_data_rtl_ifcvt
, ctxt
)
5502 /* opt_pass methods: */
5503 virtual bool gate (function
*)
5505 return (optimize
> 0) && dbg_cnt (if_conversion
);
5508 virtual unsigned int execute (function
*)
5510 return rest_of_handle_if_conversion ();
5513 }; // class pass_rtl_ifcvt
5518 make_pass_rtl_ifcvt (gcc::context
*ctxt
)
5520 return new pass_rtl_ifcvt (ctxt
);
5524 /* Rerun if-conversion, as combine may have simplified things enough
5525 to now meet sequence length restrictions. */
5529 const pass_data pass_data_if_after_combine
=
5531 RTL_PASS
, /* type */
5533 OPTGROUP_NONE
, /* optinfo_flags */
5534 TV_IFCVT
, /* tv_id */
5535 0, /* properties_required */
5536 0, /* properties_provided */
5537 0, /* properties_destroyed */
5538 0, /* todo_flags_start */
5539 TODO_df_finish
, /* todo_flags_finish */
5542 class pass_if_after_combine
: public rtl_opt_pass
5545 pass_if_after_combine (gcc::context
*ctxt
)
5546 : rtl_opt_pass (pass_data_if_after_combine
, ctxt
)
5549 /* opt_pass methods: */
5550 virtual bool gate (function
*)
5552 return optimize
> 0 && flag_if_conversion
5553 && dbg_cnt (if_after_combine
);
5556 virtual unsigned int execute (function
*)
5562 }; // class pass_if_after_combine
5567 make_pass_if_after_combine (gcc::context
*ctxt
)
5569 return new pass_if_after_combine (ctxt
);
5575 const pass_data pass_data_if_after_reload
=
5577 RTL_PASS
, /* type */
5579 OPTGROUP_NONE
, /* optinfo_flags */
5580 TV_IFCVT2
, /* tv_id */
5581 0, /* properties_required */
5582 0, /* properties_provided */
5583 0, /* properties_destroyed */
5584 0, /* todo_flags_start */
5585 TODO_df_finish
, /* todo_flags_finish */
5588 class pass_if_after_reload
: public rtl_opt_pass
5591 pass_if_after_reload (gcc::context
*ctxt
)
5592 : rtl_opt_pass (pass_data_if_after_reload
, ctxt
)
5595 /* opt_pass methods: */
5596 virtual bool gate (function
*)
5598 return optimize
> 0 && flag_if_conversion2
5599 && dbg_cnt (if_after_reload
);
5602 virtual unsigned int execute (function
*)
5608 }; // class pass_if_after_reload
5613 make_pass_if_after_reload (gcc::context
*ctxt
)
5615 return new pass_if_after_reload (ctxt
);