[Ada] Add special bypass for obsolete code pattern
[official-gcc.git] / gcc / graphite-scop-detection.c
blob489d0b93b42f02a02be7051896fb390914b8c6ac
1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2019 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #define USES_ISL
24 #include "config.h"
26 #ifdef HAVE_isl
28 #include "system.h"
29 #include "coretypes.h"
30 #include "backend.h"
31 #include "cfghooks.h"
32 #include "domwalk.h"
33 #include "params.h"
34 #include "tree.h"
35 #include "gimple.h"
36 #include "ssa.h"
37 #include "fold-const.h"
38 #include "gimple-iterator.h"
39 #include "tree-cfg.h"
40 #include "tree-ssa-loop-manip.h"
41 #include "tree-ssa-loop-niter.h"
42 #include "tree-ssa-loop.h"
43 #include "tree-into-ssa.h"
44 #include "tree-ssa.h"
45 #include "cfgloop.h"
46 #include "tree-data-ref.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-pass.h"
49 #include "tree-ssa-propagate.h"
50 #include "gimple-pretty-print.h"
51 #include "cfganal.h"
52 #include "graphite.h"
54 class debug_printer
56 private:
57 FILE *dump_file;
59 public:
60 void
61 set_dump_file (FILE *f)
63 gcc_assert (f);
64 dump_file = f;
67 friend debug_printer &
68 operator<< (debug_printer &output, int i)
70 fprintf (output.dump_file, "%d", i);
71 return output;
73 friend debug_printer &
74 operator<< (debug_printer &output, const char *s)
76 fprintf (output.dump_file, "%s", s);
77 return output;
79 } dp;
81 #define DEBUG_PRINT(args) do \
82 { \
83 if (dump_file && (dump_flags & TDF_DETAILS)) { args; } \
84 } while (0)
86 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
87 different colors. If there are not enough colors, paint the
88 remaining SCoPs in gray.
90 Special nodes:
91 - "*" after the node number denotes the entry of a SCoP,
92 - "#" after the node number denotes the exit of a SCoP,
93 - "()" around the node number denotes the entry or the
94 exit nodes of the SCOP. These are not part of SCoP. */
96 DEBUG_FUNCTION void
97 dot_all_sese (FILE *file, vec<sese_l>& scops)
99 /* Disable debugging while printing graph. */
100 dump_flags_t tmp_dump_flags = dump_flags;
101 dump_flags = TDF_NONE;
103 fprintf (file, "digraph all {\n");
105 basic_block bb;
106 FOR_ALL_BB_FN (bb, cfun)
108 int part_of_scop = false;
110 /* Use HTML for every bb label. So we are able to print bbs
111 which are part of two different SCoPs, with two different
112 background colors. */
113 fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
114 bb->index);
115 fprintf (file, "CELLSPACING=\"0\">\n");
117 /* Select color for SCoP. */
118 sese_l *region;
119 int i;
120 FOR_EACH_VEC_ELT (scops, i, region)
122 bool sese_in_region = bb_in_sese_p (bb, *region);
123 if (sese_in_region || (region->exit->dest == bb)
124 || (region->entry->dest == bb))
126 const char *color;
127 switch (i % 17)
129 case 0: /* red */
130 color = "#e41a1c";
131 break;
132 case 1: /* blue */
133 color = "#377eb8";
134 break;
135 case 2: /* green */
136 color = "#4daf4a";
137 break;
138 case 3: /* purple */
139 color = "#984ea3";
140 break;
141 case 4: /* orange */
142 color = "#ff7f00";
143 break;
144 case 5: /* yellow */
145 color = "#ffff33";
146 break;
147 case 6: /* brown */
148 color = "#a65628";
149 break;
150 case 7: /* rose */
151 color = "#f781bf";
152 break;
153 case 8:
154 color = "#8dd3c7";
155 break;
156 case 9:
157 color = "#ffffb3";
158 break;
159 case 10:
160 color = "#bebada";
161 break;
162 case 11:
163 color = "#fb8072";
164 break;
165 case 12:
166 color = "#80b1d3";
167 break;
168 case 13:
169 color = "#fdb462";
170 break;
171 case 14:
172 color = "#b3de69";
173 break;
174 case 15:
175 color = "#fccde5";
176 break;
177 case 16:
178 color = "#bc80bd";
179 break;
180 default: /* gray */
181 color = "#999999";
184 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">",
185 color);
187 if (!sese_in_region)
188 fprintf (file, " (");
190 if (bb == region->entry->dest && bb == region->exit->dest)
191 fprintf (file, " %d*# ", bb->index);
192 else if (bb == region->entry->dest)
193 fprintf (file, " %d* ", bb->index);
194 else if (bb == region->exit->dest)
195 fprintf (file, " %d# ", bb->index);
196 else
197 fprintf (file, " %d ", bb->index);
199 fprintf (file, "{lp_%d}", bb->loop_father->num);
201 if (!sese_in_region)
202 fprintf (file, ")");
204 fprintf (file, "</TD></TR>\n");
205 part_of_scop = true;
209 if (!part_of_scop)
211 fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
212 fprintf (file, " %d {lp_%d} </TD></TR>\n", bb->index,
213 bb->loop_father->num);
215 fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
218 FOR_ALL_BB_FN (bb, cfun)
220 edge e;
221 edge_iterator ei;
222 FOR_EACH_EDGE (e, ei, bb->succs)
223 fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
226 fputs ("}\n\n", file);
228 /* Enable debugging again. */
229 dump_flags = tmp_dump_flags;
232 /* Display SCoP on stderr. */
234 DEBUG_FUNCTION void
235 dot_sese (sese_l& scop)
237 vec<sese_l> scops;
238 scops.create (1);
240 if (scop)
241 scops.safe_push (scop);
243 dot_all_sese (stderr, scops);
245 scops.release ();
248 DEBUG_FUNCTION void
249 dot_cfg ()
251 vec<sese_l> scops;
252 scops.create (1);
253 dot_all_sese (stderr, scops);
254 scops.release ();
257 /* Returns a COND_EXPR statement when BB has a single predecessor, the
258 edge between BB and its predecessor is not a loop exit edge, and
259 the last statement of the single predecessor is a COND_EXPR. */
261 static gcond *
262 single_pred_cond_non_loop_exit (basic_block bb)
264 if (single_pred_p (bb))
266 edge e = single_pred_edge (bb);
267 basic_block pred = e->src;
268 gimple *stmt;
270 if (loop_depth (pred->loop_father) > loop_depth (bb->loop_father))
271 return NULL;
273 stmt = last_stmt (pred);
275 if (stmt && gimple_code (stmt) == GIMPLE_COND)
276 return as_a<gcond *> (stmt);
279 return NULL;
282 namespace
285 /* Build the maximal scop containing LOOPs and add it to SCOPS. */
287 class scop_detection
289 public:
290 scop_detection () : scops (vNULL) {}
292 ~scop_detection ()
294 scops.release ();
297 /* A marker for invalid sese_l. */
298 static sese_l invalid_sese;
300 /* Return the SCOPS in this SCOP_DETECTION. */
302 vec<sese_l>
303 get_scops ()
305 return scops;
308 /* Return an sese_l around the LOOP. */
310 sese_l get_sese (loop_p loop);
312 /* Merge scops at same loop depth and returns the new sese.
313 Returns a new SESE when merge was successful, INVALID_SESE otherwise. */
315 sese_l merge_sese (sese_l first, sese_l second) const;
317 /* Build scop outer->inner if possible. */
319 void build_scop_depth (loop_p loop);
321 /* Return true when BEGIN is the preheader edge of a loop with a single exit
322 END. */
324 static bool region_has_one_loop (sese_l s);
326 /* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END. */
328 void add_scop (sese_l s);
330 /* Returns true if S1 subsumes/surrounds S2. */
331 static bool subsumes (sese_l s1, sese_l s2);
333 /* Remove a SCoP which is subsumed by S1. */
334 void remove_subscops (sese_l s1);
336 /* Returns true if S1 intersects with S2. Since we already know that S1 does
337 not subsume S2 or vice-versa, we only check for entry bbs. */
339 static bool intersects (sese_l s1, sese_l s2);
341 /* Remove one of the scops when it intersects with any other. */
343 void remove_intersecting_scops (sese_l s1);
345 /* Return true when a statement in SCOP cannot be represented by Graphite. */
347 bool harmful_loop_in_region (sese_l scop) const;
349 /* Return true only when STMT is simple enough for being handled by Graphite.
350 This depends on SCOP, as the parameters are initialized relatively to
351 this basic block, the linear functions are initialized based on the
352 outermost loop containing STMT inside the SCOP. BB is the place where we
353 try to evaluate the STMT. */
355 bool stmt_simple_for_scop_p (sese_l scop, gimple *stmt,
356 basic_block bb) const;
358 /* Something like "n * m" is not allowed. */
360 static bool graphite_can_represent_init (tree e);
362 /* Return true when SCEV can be represented in the polyhedral model.
364 An expression can be represented, if it can be expressed as an
365 affine expression. For loops (i, j) and parameters (m, n) all
366 affine expressions are of the form:
368 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
370 1 i + 20 j + (-2) m + 25
372 Something like "i * n" or "n * m" is not allowed. */
374 static bool graphite_can_represent_scev (sese_l scop, tree scev);
376 /* Return true when EXPR can be represented in the polyhedral model.
378 This means an expression can be represented, if it is linear with respect
379 to the loops and the strides are non parametric. LOOP is the place where
380 the expr will be evaluated. SCOP defines the region we analyse. */
382 static bool graphite_can_represent_expr (sese_l scop, loop_p loop,
383 tree expr);
385 /* Return true if the data references of STMT can be represented by Graphite.
386 We try to analyze the data references in a loop contained in the SCOP. */
388 static bool stmt_has_simple_data_refs_p (sese_l scop, gimple *stmt);
390 /* Remove the close phi node at GSI and replace its rhs with the rhs
391 of PHI. */
393 static void remove_duplicate_close_phi (gphi *phi, gphi_iterator *gsi);
395 /* Returns true when Graphite can represent LOOP in SCOP.
396 FIXME: For the moment, graphite cannot be used on loops that iterate using
397 induction variables that wrap. */
399 static bool can_represent_loop (loop_p loop, sese_l scop);
401 /* Returns the number of pbbs that are in loops contained in SCOP. */
403 static int nb_pbbs_in_loops (scop_p scop);
405 private:
406 vec<sese_l> scops;
409 sese_l scop_detection::invalid_sese (NULL, NULL);
411 /* Return an sese_l around the LOOP. */
413 sese_l
414 scop_detection::get_sese (loop_p loop)
416 if (!loop)
417 return invalid_sese;
419 edge scop_begin = loop_preheader_edge (loop);
420 edge scop_end = single_exit (loop);
421 if (!scop_end || (scop_end->flags & (EDGE_COMPLEX|EDGE_FAKE)))
422 return invalid_sese;
424 return sese_l (scop_begin, scop_end);
427 /* Merge scops at same loop depth and returns the new sese.
428 Returns a new SESE when merge was successful, INVALID_SESE otherwise. */
430 sese_l
431 scop_detection::merge_sese (sese_l first, sese_l second) const
433 /* In the trivial case first/second may be NULL. */
434 if (!first)
435 return second;
436 if (!second)
437 return first;
439 DEBUG_PRINT (dp << "[scop-detection] try merging sese s1: ";
440 print_sese (dump_file, first);
441 dp << "[scop-detection] try merging sese s2: ";
442 print_sese (dump_file, second));
444 auto_bitmap worklist, in_sese_region;
445 bitmap_set_bit (worklist, get_entry_bb (first)->index);
446 bitmap_set_bit (worklist, get_exit_bb (first)->index);
447 bitmap_set_bit (worklist, get_entry_bb (second)->index);
448 bitmap_set_bit (worklist, get_exit_bb (second)->index);
449 edge entry = NULL, exit = NULL;
451 /* We can optimize the case of adding a loop entry dest or exit
452 src to the worklist (for single-exit loops) by skipping
453 directly to the exit dest / entry src. in_sese_region
454 doesn't have to cover all blocks in the region but merely
455 its border it acts more like a visited bitmap. */
458 int index = bitmap_first_set_bit (worklist);
459 bitmap_clear_bit (worklist, index);
460 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, index);
461 edge_iterator ei;
462 edge e;
464 /* With fake exit edges we can end up with no possible exit. */
465 if (index == EXIT_BLOCK)
467 DEBUG_PRINT (dp << "[scop-detection-fail] cannot merge seses.\n");
468 return invalid_sese;
471 bitmap_set_bit (in_sese_region, bb->index);
473 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
474 FOR_EACH_EDGE (e, ei, bb->preds)
475 if (e->src == dom
476 && (! entry
477 || dominated_by_p (CDI_DOMINATORS, entry->dest, bb)))
479 if (entry
480 && ! bitmap_bit_p (in_sese_region, entry->src->index))
481 bitmap_set_bit (worklist, entry->src->index);
482 entry = e;
484 else if (! bitmap_bit_p (in_sese_region, e->src->index))
485 bitmap_set_bit (worklist, e->src->index);
487 basic_block pdom = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
488 FOR_EACH_EDGE (e, ei, bb->succs)
489 if (e->dest == pdom
490 && (! exit
491 || dominated_by_p (CDI_POST_DOMINATORS, exit->src, bb)))
493 if (exit
494 && ! bitmap_bit_p (in_sese_region, exit->dest->index))
495 bitmap_set_bit (worklist, exit->dest->index);
496 exit = e;
498 else if (! bitmap_bit_p (in_sese_region, e->dest->index))
499 bitmap_set_bit (worklist, e->dest->index);
501 while (! bitmap_empty_p (worklist));
503 sese_l combined (entry, exit);
505 DEBUG_PRINT (dp << "[merged-sese] s1: "; print_sese (dump_file, combined));
507 return combined;
510 /* Build scop outer->inner if possible. */
512 void
513 scop_detection::build_scop_depth (loop_p loop)
515 sese_l s = invalid_sese;
516 loop = loop->inner;
517 while (loop)
519 sese_l next = get_sese (loop);
520 if (! next
521 || harmful_loop_in_region (next))
523 if (s)
524 add_scop (s);
525 build_scop_depth (loop);
526 s = invalid_sese;
528 else if (! s)
529 s = next;
530 else
532 sese_l combined = merge_sese (s, next);
533 if (! combined
534 || harmful_loop_in_region (combined))
536 add_scop (s);
537 s = next;
539 else
540 s = combined;
542 loop = loop->next;
544 if (s)
545 add_scop (s);
548 /* Returns true when Graphite can represent LOOP in SCOP.
549 FIXME: For the moment, graphite cannot be used on loops that iterate using
550 induction variables that wrap. */
552 bool
553 scop_detection::can_represent_loop (loop_p loop, sese_l scop)
555 tree niter;
556 struct tree_niter_desc niter_desc;
558 /* We can only handle do {} while () style loops correctly. */
559 edge exit = single_exit (loop);
560 if (!exit
561 || !single_pred_p (loop->latch)
562 || exit->src != single_pred (loop->latch)
563 || !empty_block_p (loop->latch))
564 return false;
566 return !(loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
567 && number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
568 && niter_desc.control.no_overflow
569 && (niter = number_of_latch_executions (loop))
570 && !chrec_contains_undetermined (niter)
571 && graphite_can_represent_expr (scop, loop, niter);
574 /* Return true when BEGIN is the preheader edge of a loop with a single exit
575 END. */
577 bool
578 scop_detection::region_has_one_loop (sese_l s)
580 edge begin = s.entry;
581 edge end = s.exit;
582 /* Check for a single perfectly nested loop. */
583 if (begin->dest->loop_father->inner)
584 return false;
586 /* Otherwise, check whether we have adjacent loops. */
587 return (single_pred_p (end->src)
588 && begin->dest->loop_father == single_pred (end->src)->loop_father);
591 /* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END. */
593 void
594 scop_detection::add_scop (sese_l s)
596 gcc_assert (s);
598 /* If the exit edge is fake discard the SCoP for now as we're removing the
599 fake edges again after analysis. */
600 if (s.exit->flags & EDGE_FAKE)
602 DEBUG_PRINT (dp << "[scop-detection-fail] Discarding infinite loop SCoP: ";
603 print_sese (dump_file, s));
604 return;
607 /* Include the BB with the loop-closed SSA PHI nodes, we need this
608 block in the region for code-generating out-of-SSA copies.
609 canonicalize_loop_closed_ssa makes sure that is in proper shape. */
610 if (s.exit->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
611 && loop_exit_edge_p (s.exit->src->loop_father, s.exit))
613 gcc_assert (single_pred_p (s.exit->dest)
614 && single_succ_p (s.exit->dest)
615 && sese_trivially_empty_bb_p (s.exit->dest));
616 s.exit = single_succ_edge (s.exit->dest);
619 /* Do not add scops with only one loop. */
620 if (region_has_one_loop (s))
622 DEBUG_PRINT (dp << "[scop-detection-fail] Discarding one loop SCoP: ";
623 print_sese (dump_file, s));
624 return;
627 if (get_exit_bb (s) == EXIT_BLOCK_PTR_FOR_FN (cfun))
629 DEBUG_PRINT (dp << "[scop-detection-fail] "
630 << "Discarding SCoP exiting to return: ";
631 print_sese (dump_file, s));
632 return;
635 /* Remove all the scops which are subsumed by s. */
636 remove_subscops (s);
638 /* Remove intersecting scops. FIXME: It will be a good idea to keep
639 the non-intersecting part of the scop already in the list. */
640 remove_intersecting_scops (s);
642 scops.safe_push (s);
643 DEBUG_PRINT (dp << "[scop-detection] Adding SCoP: "; print_sese (dump_file, s));
646 /* Return true when a statement in SCOP cannot be represented by Graphite. */
648 bool
649 scop_detection::harmful_loop_in_region (sese_l scop) const
651 basic_block exit_bb = get_exit_bb (scop);
652 basic_block entry_bb = get_entry_bb (scop);
654 DEBUG_PRINT (dp << "[checking-harmful-bbs] ";
655 print_sese (dump_file, scop));
656 gcc_assert (dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb));
658 auto_vec<basic_block> worklist;
659 auto_bitmap loops;
661 worklist.safe_push (entry_bb);
662 while (! worklist.is_empty ())
664 basic_block bb = worklist.pop ();
665 DEBUG_PRINT (dp << "Visiting bb_" << bb->index << "\n");
667 /* The basic block should not be part of an irreducible loop. */
668 if (bb->flags & BB_IRREDUCIBLE_LOOP)
669 return true;
671 /* Check for unstructured control flow: CFG not generated by structured
672 if-then-else. */
673 if (bb->succs->length () > 1)
675 edge e;
676 edge_iterator ei;
677 FOR_EACH_EDGE (e, ei, bb->succs)
678 if (!dominated_by_p (CDI_POST_DOMINATORS, bb, e->dest)
679 && !dominated_by_p (CDI_DOMINATORS, e->dest, bb))
680 return true;
683 /* Collect all loops in the current region. */
684 loop_p loop = bb->loop_father;
685 if (loop_in_sese_p (loop, scop))
686 bitmap_set_bit (loops, loop->num);
688 /* Check for harmful statements in basic blocks part of the region. */
689 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
690 !gsi_end_p (gsi); gsi_next (&gsi))
691 if (!stmt_simple_for_scop_p (scop, gsi_stmt (gsi), bb))
692 return true;
694 for (basic_block dom = first_dom_son (CDI_DOMINATORS, bb);
695 dom;
696 dom = next_dom_son (CDI_DOMINATORS, dom))
697 if (dom != scop.exit->dest)
698 worklist.safe_push (dom);
701 /* Go through all loops and check that they are still valid in the combined
702 scop. */
703 unsigned j;
704 bitmap_iterator bi;
705 EXECUTE_IF_SET_IN_BITMAP (loops, 0, j, bi)
707 loop_p loop = (*current_loops->larray)[j];
708 gcc_assert (loop->num == (int) j);
710 /* Check if the loop nests are to be optimized for speed. */
711 if (! loop->inner
712 && ! optimize_loop_for_speed_p (loop))
714 DEBUG_PRINT (dp << "[scop-detection-fail] loop_"
715 << loop->num << " is not on a hot path.\n");
716 return true;
719 if (! can_represent_loop (loop, scop))
721 DEBUG_PRINT (dp << "[scop-detection-fail] cannot represent loop_"
722 << loop->num << "\n");
723 return true;
726 /* Check if all loop nests have at least one data reference.
727 ??? This check is expensive and loops premature at this point.
728 If important to retain we can pre-compute this for all innermost
729 loops and reject those when we build a SESE region for a loop
730 during SESE discovery. */
731 if (! loop->inner
732 && ! loop_nest_has_data_refs (loop))
734 DEBUG_PRINT (dp << "[scop-detection-fail] loop_" << loop->num
735 << "does not have any data reference.\n");
736 return true;
740 return false;
743 /* Returns true if S1 subsumes/surrounds S2. */
744 bool
745 scop_detection::subsumes (sese_l s1, sese_l s2)
747 if (dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
748 get_entry_bb (s1))
749 && dominated_by_p (CDI_POST_DOMINATORS, s2.exit->dest,
750 s1.exit->dest))
751 return true;
752 return false;
755 /* Remove a SCoP which is subsumed by S1. */
756 void
757 scop_detection::remove_subscops (sese_l s1)
759 int j;
760 sese_l *s2;
761 FOR_EACH_VEC_ELT_REVERSE (scops, j, s2)
763 if (subsumes (s1, *s2))
765 DEBUG_PRINT (dp << "Removing sub-SCoP";
766 print_sese (dump_file, *s2));
767 scops.unordered_remove (j);
772 /* Returns true if S1 intersects with S2. Since we already know that S1 does
773 not subsume S2 or vice-versa, we only check for entry bbs. */
775 bool
776 scop_detection::intersects (sese_l s1, sese_l s2)
778 if (dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
779 get_entry_bb (s1))
780 && !dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
781 get_exit_bb (s1)))
782 return true;
783 if ((s1.exit == s2.entry) || (s2.exit == s1.entry))
784 return true;
786 return false;
789 /* Remove one of the scops when it intersects with any other. */
791 void
792 scop_detection::remove_intersecting_scops (sese_l s1)
794 int j;
795 sese_l *s2;
796 FOR_EACH_VEC_ELT_REVERSE (scops, j, s2)
798 if (intersects (s1, *s2))
800 DEBUG_PRINT (dp << "Removing intersecting SCoP";
801 print_sese (dump_file, *s2);
802 dp << "Intersects with:";
803 print_sese (dump_file, s1));
804 scops.unordered_remove (j);
809 /* Something like "n * m" is not allowed. */
811 bool
812 scop_detection::graphite_can_represent_init (tree e)
814 switch (TREE_CODE (e))
816 case POLYNOMIAL_CHREC:
817 return graphite_can_represent_init (CHREC_LEFT (e))
818 && graphite_can_represent_init (CHREC_RIGHT (e));
820 case MULT_EXPR:
821 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
822 return graphite_can_represent_init (TREE_OPERAND (e, 0))
823 && tree_fits_shwi_p (TREE_OPERAND (e, 1));
824 else
825 return graphite_can_represent_init (TREE_OPERAND (e, 1))
826 && tree_fits_shwi_p (TREE_OPERAND (e, 0));
828 case PLUS_EXPR:
829 case POINTER_PLUS_EXPR:
830 case MINUS_EXPR:
831 return graphite_can_represent_init (TREE_OPERAND (e, 0))
832 && graphite_can_represent_init (TREE_OPERAND (e, 1));
834 case NEGATE_EXPR:
835 case BIT_NOT_EXPR:
836 CASE_CONVERT:
837 case NON_LVALUE_EXPR:
838 return graphite_can_represent_init (TREE_OPERAND (e, 0));
840 default:
841 break;
844 return true;
847 /* Return true when SCEV can be represented in the polyhedral model.
849 An expression can be represented, if it can be expressed as an
850 affine expression. For loops (i, j) and parameters (m, n) all
851 affine expressions are of the form:
853 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
855 1 i + 20 j + (-2) m + 25
857 Something like "i * n" or "n * m" is not allowed. */
859 bool
860 scop_detection::graphite_can_represent_scev (sese_l scop, tree scev)
862 if (chrec_contains_undetermined (scev))
863 return false;
865 switch (TREE_CODE (scev))
867 case NEGATE_EXPR:
868 case BIT_NOT_EXPR:
869 CASE_CONVERT:
870 case NON_LVALUE_EXPR:
871 return graphite_can_represent_scev (scop, TREE_OPERAND (scev, 0));
873 case PLUS_EXPR:
874 case POINTER_PLUS_EXPR:
875 case MINUS_EXPR:
876 return graphite_can_represent_scev (scop, TREE_OPERAND (scev, 0))
877 && graphite_can_represent_scev (scop, TREE_OPERAND (scev, 1));
879 case MULT_EXPR:
880 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
881 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
882 && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
883 && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
884 && graphite_can_represent_init (scev)
885 && graphite_can_represent_scev (scop, TREE_OPERAND (scev, 0))
886 && graphite_can_represent_scev (scop, TREE_OPERAND (scev, 1));
888 case POLYNOMIAL_CHREC:
889 /* Check for constant strides. With a non constant stride of
890 'n' we would have a value of 'iv * n'. Also check that the
891 initial value can represented: for example 'n * m' cannot be
892 represented. */
893 gcc_assert (loop_in_sese_p (get_loop (cfun,
894 CHREC_VARIABLE (scev)), scop));
895 if (!evolution_function_right_is_integer_cst (scev)
896 || !graphite_can_represent_init (scev))
897 return false;
898 return graphite_can_represent_scev (scop, CHREC_LEFT (scev));
900 case ADDR_EXPR:
901 /* We cannot encode addresses for ISL. */
902 return false;
904 default:
905 break;
908 /* Only affine functions can be represented. */
909 if (tree_contains_chrecs (scev, NULL) || !scev_is_linear_expression (scev))
910 return false;
912 return true;
915 /* Return true when EXPR can be represented in the polyhedral model.
917 This means an expression can be represented, if it is linear with respect to
918 the loops and the strides are non parametric. LOOP is the place where the
919 expr will be evaluated. SCOP defines the region we analyse. */
921 bool
922 scop_detection::graphite_can_represent_expr (sese_l scop, loop_p loop,
923 tree expr)
925 tree scev = cached_scalar_evolution_in_region (scop, loop, expr);
926 return graphite_can_represent_scev (scop, scev);
929 /* Return true if the data references of STMT can be represented by Graphite.
930 We try to analyze the data references in a loop contained in the SCOP. */
932 bool
933 scop_detection::stmt_has_simple_data_refs_p (sese_l scop, gimple *stmt)
935 edge nest = scop.entry;
936 loop_p loop = loop_containing_stmt (stmt);
937 if (!loop_in_sese_p (loop, scop))
938 loop = NULL;
940 auto_vec<data_reference_p> drs;
941 if (! graphite_find_data_references_in_stmt (nest, loop, stmt, &drs))
942 return false;
944 int j;
945 data_reference_p dr;
946 FOR_EACH_VEC_ELT (drs, j, dr)
948 for (unsigned i = 0; i < DR_NUM_DIMENSIONS (dr); ++i)
949 if (! graphite_can_represent_scev (scop, DR_ACCESS_FN (dr, i)))
950 return false;
953 return true;
956 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
957 Calls have side-effects, except those to const or pure
958 functions. */
960 static bool
961 stmt_has_side_effects (gimple *stmt)
963 if (gimple_has_volatile_ops (stmt)
964 || (gimple_code (stmt) == GIMPLE_CALL
965 && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
966 || (gimple_code (stmt) == GIMPLE_ASM))
968 DEBUG_PRINT (dp << "[scop-detection-fail] "
969 << "Statement has side-effects:\n";
970 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS | TDF_MEMSYMS));
971 return true;
973 return false;
976 /* Return true only when STMT is simple enough for being handled by Graphite.
977 This depends on SCOP, as the parameters are initialized relatively to
978 this basic block, the linear functions are initialized based on the outermost
979 loop containing STMT inside the SCOP. BB is the place where we try to
980 evaluate the STMT. */
982 bool
983 scop_detection::stmt_simple_for_scop_p (sese_l scop, gimple *stmt,
984 basic_block bb) const
986 gcc_assert (scop);
988 if (is_gimple_debug (stmt))
989 return true;
991 if (stmt_has_side_effects (stmt))
992 return false;
994 if (!stmt_has_simple_data_refs_p (scop, stmt))
996 DEBUG_PRINT (dp << "[scop-detection-fail] "
997 << "Graphite cannot handle data-refs in stmt:\n";
998 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS|TDF_MEMSYMS););
999 return false;
1002 switch (gimple_code (stmt))
1004 case GIMPLE_LABEL:
1005 return true;
1007 case GIMPLE_COND:
1009 /* We can handle all binary comparisons. Inequalities are
1010 also supported as they can be represented with union of
1011 polyhedra. */
1012 enum tree_code code = gimple_cond_code (stmt);
1013 if (!(code == LT_EXPR
1014 || code == GT_EXPR
1015 || code == LE_EXPR
1016 || code == GE_EXPR
1017 || code == EQ_EXPR
1018 || code == NE_EXPR))
1020 DEBUG_PRINT (dp << "[scop-detection-fail] "
1021 << "Graphite cannot handle cond stmt:\n";
1022 print_gimple_stmt (dump_file, stmt, 0,
1023 TDF_VOPS | TDF_MEMSYMS));
1024 return false;
1027 loop_p loop = bb->loop_father;
1028 for (unsigned i = 0; i < 2; ++i)
1030 tree op = gimple_op (stmt, i);
1031 if (!graphite_can_represent_expr (scop, loop, op)
1032 /* We can only constrain on integer type. */
1033 || ! INTEGRAL_TYPE_P (TREE_TYPE (op)))
1035 DEBUG_PRINT (dp << "[scop-detection-fail] "
1036 << "Graphite cannot represent stmt:\n";
1037 print_gimple_stmt (dump_file, stmt, 0,
1038 TDF_VOPS | TDF_MEMSYMS));
1039 return false;
1043 return true;
1046 case GIMPLE_ASSIGN:
1047 case GIMPLE_CALL:
1049 tree op, lhs = gimple_get_lhs (stmt);
1050 ssa_op_iter i;
1051 /* If we are not going to instantiate the stmt do not require
1052 its operands to be instantiatable at this point. */
1053 if (lhs
1054 && TREE_CODE (lhs) == SSA_NAME
1055 && scev_analyzable_p (lhs, scop))
1056 return true;
1057 /* Verify that if we can analyze operands at their def site we
1058 also can represent them when analyzed at their uses. */
1059 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
1060 if (scev_analyzable_p (op, scop)
1061 && chrec_contains_undetermined
1062 (cached_scalar_evolution_in_region (scop,
1063 bb->loop_father, op)))
1065 DEBUG_PRINT (dp << "[scop-detection-fail] "
1066 << "Graphite cannot code-gen stmt:\n";
1067 print_gimple_stmt (dump_file, stmt, 0,
1068 TDF_VOPS | TDF_MEMSYMS));
1069 return false;
1071 return true;
1074 default:
1075 /* These nodes cut a new scope. */
1076 DEBUG_PRINT (
1077 dp << "[scop-detection-fail] "
1078 << "Gimple stmt not handled in Graphite:\n";
1079 print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS | TDF_MEMSYMS));
1080 return false;
1084 /* Returns the number of pbbs that are in loops contained in SCOP. */
1087 scop_detection::nb_pbbs_in_loops (scop_p scop)
1089 int i;
1090 poly_bb_p pbb;
1091 int res = 0;
1093 FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
1094 if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), scop->scop_info->region))
1095 res++;
1097 return res;
1100 /* Assigns the parameter NAME an index in REGION. */
1102 static void
1103 assign_parameter_index_in_region (tree name, sese_info_p region)
1105 gcc_assert (TREE_CODE (name) == SSA_NAME
1106 && INTEGRAL_TYPE_P (TREE_TYPE (name))
1107 && ! defined_in_sese_p (name, region->region));
1108 int i;
1109 tree p;
1110 FOR_EACH_VEC_ELT (region->params, i, p)
1111 if (p == name)
1112 return;
1114 region->params.safe_push (name);
1117 /* In the context of sese S, scan the expression E and translate it to
1118 a linear expression C. When parsing a symbolic multiplication, K
1119 represents the constant multiplier of an expression containing
1120 parameters. */
1122 static void
1123 scan_tree_for_params (sese_info_p s, tree e)
1125 if (e == chrec_dont_know)
1126 return;
1128 switch (TREE_CODE (e))
1130 case POLYNOMIAL_CHREC:
1131 scan_tree_for_params (s, CHREC_LEFT (e));
1132 break;
1134 case MULT_EXPR:
1135 if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
1136 scan_tree_for_params (s, TREE_OPERAND (e, 0));
1137 else
1138 scan_tree_for_params (s, TREE_OPERAND (e, 1));
1139 break;
1141 case PLUS_EXPR:
1142 case POINTER_PLUS_EXPR:
1143 case MINUS_EXPR:
1144 scan_tree_for_params (s, TREE_OPERAND (e, 0));
1145 scan_tree_for_params (s, TREE_OPERAND (e, 1));
1146 break;
1148 case NEGATE_EXPR:
1149 case BIT_NOT_EXPR:
1150 CASE_CONVERT:
1151 case NON_LVALUE_EXPR:
1152 scan_tree_for_params (s, TREE_OPERAND (e, 0));
1153 break;
1155 case SSA_NAME:
1156 assign_parameter_index_in_region (e, s);
1157 break;
1159 case INTEGER_CST:
1160 case ADDR_EXPR:
1161 case REAL_CST:
1162 case COMPLEX_CST:
1163 case VECTOR_CST:
1164 break;
1166 default:
1167 gcc_unreachable ();
1168 break;
1172 /* Find parameters with respect to REGION in BB. We are looking in memory
1173 access functions, conditions and loop bounds. */
1175 static void
1176 find_params_in_bb (sese_info_p region, gimple_poly_bb_p gbb)
1178 /* Find parameters in the access functions of data references. */
1179 int i;
1180 data_reference_p dr;
1181 FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb), i, dr)
1182 for (unsigned j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
1183 scan_tree_for_params (region, DR_ACCESS_FN (dr, j));
1185 /* Find parameters in conditional statements. */
1186 gimple *stmt;
1187 FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb), i, stmt)
1189 loop_p loop = gimple_bb (stmt)->loop_father;
1190 tree lhs = cached_scalar_evolution_in_region (region->region, loop,
1191 gimple_cond_lhs (stmt));
1192 tree rhs = cached_scalar_evolution_in_region (region->region, loop,
1193 gimple_cond_rhs (stmt));
1194 gcc_assert (!chrec_contains_undetermined (lhs)
1195 && !chrec_contains_undetermined (rhs));
1197 scan_tree_for_params (region, lhs);
1198 scan_tree_for_params (region, rhs);
1202 /* Record the parameters used in the SCOP BBs. A variable is a parameter
1203 in a scop if it does not vary during the execution of that scop. */
1205 static void
1206 find_scop_parameters (scop_p scop)
1208 unsigned i;
1209 sese_info_p region = scop->scop_info;
1211 /* Parameters used in loop bounds are processed during gather_bbs. */
1213 /* Find the parameters used in data accesses. */
1214 poly_bb_p pbb;
1215 FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
1216 find_params_in_bb (region, PBB_BLACK_BOX (pbb));
1218 int nbp = sese_nb_params (region);
1219 scop_set_nb_params (scop, nbp);
1222 static void
1223 add_write (vec<tree> *writes, tree def)
1225 writes->safe_push (def);
1226 DEBUG_PRINT (dp << "Adding scalar write: ";
1227 print_generic_expr (dump_file, def);
1228 dp << "\nFrom stmt: ";
1229 print_gimple_stmt (dump_file,
1230 SSA_NAME_DEF_STMT (def), 0));
1233 static void
1234 add_read (vec<scalar_use> *reads, tree use, gimple *use_stmt)
1236 DEBUG_PRINT (dp << "Adding scalar read: ";
1237 print_generic_expr (dump_file, use);
1238 dp << "\nFrom stmt: ";
1239 print_gimple_stmt (dump_file, use_stmt, 0));
1240 reads->safe_push (std::make_pair (use_stmt, use));
1244 /* Record DEF if it is used in other bbs different than DEF_BB in the SCOP. */
1246 static void
1247 build_cross_bb_scalars_def (scop_p scop, tree def, basic_block def_bb,
1248 vec<tree> *writes)
1250 if (!is_gimple_reg (def))
1251 return;
1253 bool scev_analyzable = scev_analyzable_p (def, scop->scop_info->region);
1255 gimple *use_stmt;
1256 imm_use_iterator imm_iter;
1257 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
1258 /* Do not gather scalar variables that can be analyzed by SCEV as they can
1259 be generated out of the induction variables. */
1260 if ((! scev_analyzable
1261 /* But gather SESE liveouts as we otherwise fail to rewrite their
1262 exit PHIs. */
1263 || ! bb_in_sese_p (gimple_bb (use_stmt), scop->scop_info->region))
1264 && (def_bb != gimple_bb (use_stmt) && !is_gimple_debug (use_stmt)))
1266 add_write (writes, def);
1267 /* This is required by the FOR_EACH_IMM_USE_STMT when we want to break
1268 before all the uses have been visited. */
1269 BREAK_FROM_IMM_USE_STMT (imm_iter);
1273 /* Record USE if it is defined in other bbs different than USE_STMT
1274 in the SCOP. */
1276 static void
1277 build_cross_bb_scalars_use (scop_p scop, tree use, gimple *use_stmt,
1278 vec<scalar_use> *reads)
1280 if (!is_gimple_reg (use))
1281 return;
1283 /* Do not gather scalar variables that can be analyzed by SCEV as they can be
1284 generated out of the induction variables. */
1285 if (scev_analyzable_p (use, scop->scop_info->region))
1286 return;
1288 gimple *def_stmt = SSA_NAME_DEF_STMT (use);
1289 if (gimple_bb (def_stmt) != gimple_bb (use_stmt))
1290 add_read (reads, use, use_stmt);
1293 /* Generates a polyhedral black box only if the bb contains interesting
1294 information. */
1296 static gimple_poly_bb_p
1297 try_generate_gimple_bb (scop_p scop, basic_block bb)
1299 vec<data_reference_p> drs = vNULL;
1300 vec<tree> writes = vNULL;
1301 vec<scalar_use> reads = vNULL;
1303 sese_l region = scop->scop_info->region;
1304 edge nest = region.entry;
1305 loop_p loop = bb->loop_father;
1306 if (!loop_in_sese_p (loop, region))
1307 loop = NULL;
1309 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
1310 gsi_next (&gsi))
1312 gimple *stmt = gsi_stmt (gsi);
1313 if (is_gimple_debug (stmt))
1314 continue;
1316 graphite_find_data_references_in_stmt (nest, loop, stmt, &drs);
1318 tree def = gimple_get_lhs (stmt);
1319 if (def)
1320 build_cross_bb_scalars_def (scop, def, gimple_bb (stmt), &writes);
1322 ssa_op_iter iter;
1323 tree use;
1324 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
1325 build_cross_bb_scalars_use (scop, use, stmt, &reads);
1328 /* Handle defs and uses in PHIs. Those need special treatment given
1329 that we have to present ISL with sth that looks like we've rewritten
1330 the IL out-of-SSA. */
1331 for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
1332 gsi_next (&psi))
1334 gphi *phi = psi.phi ();
1335 tree res = gimple_phi_result (phi);
1336 if (virtual_operand_p (res)
1337 || scev_analyzable_p (res, scop->scop_info->region))
1338 continue;
1339 /* To simulate out-of-SSA the block containing the PHI node has
1340 reads of the PHI destination. And to preserve SSA dependences
1341 we also write to it (the out-of-SSA decl and the SSA result
1342 are coalesced for dependence purposes which is good enough). */
1343 add_read (&reads, res, phi);
1344 add_write (&writes, res);
1346 basic_block bb_for_succs = bb;
1347 if (bb_for_succs == bb_for_succs->loop_father->latch
1348 && bb_in_sese_p (bb_for_succs, scop->scop_info->region)
1349 && sese_trivially_empty_bb_p (bb_for_succs))
1350 bb_for_succs = NULL;
1351 while (bb_for_succs)
1353 basic_block latch = NULL;
1354 edge_iterator ei;
1355 edge e;
1356 FOR_EACH_EDGE (e, ei, bb_for_succs->succs)
1358 for (gphi_iterator psi = gsi_start_phis (e->dest); !gsi_end_p (psi);
1359 gsi_next (&psi))
1361 gphi *phi = psi.phi ();
1362 tree res = gimple_phi_result (phi);
1363 if (virtual_operand_p (res))
1364 continue;
1365 /* To simulate out-of-SSA the predecessor of edges into PHI nodes
1366 has a copy from the PHI argument to the PHI destination. */
1367 if (! scev_analyzable_p (res, scop->scop_info->region))
1368 add_write (&writes, res);
1369 tree use = PHI_ARG_DEF_FROM_EDGE (phi, e);
1370 if (TREE_CODE (use) == SSA_NAME
1371 && ! SSA_NAME_IS_DEFAULT_DEF (use)
1372 && gimple_bb (SSA_NAME_DEF_STMT (use)) != bb_for_succs
1373 && ! scev_analyzable_p (use, scop->scop_info->region))
1374 add_read (&reads, use, phi);
1376 if (e->dest == bb_for_succs->loop_father->latch
1377 && bb_in_sese_p (e->dest, scop->scop_info->region)
1378 && sese_trivially_empty_bb_p (e->dest))
1379 latch = e->dest;
1381 /* Handle empty latch block PHIs here, otherwise we confuse ISL
1382 with extra conditional code where it then peels off the last
1383 iteration just because of that. It would be simplest if we
1384 just didn't force simple latches (thus remove the forwarder). */
1385 bb_for_succs = latch;
1388 /* For the region exit block add reads for all live-out vars. */
1389 if (bb == scop->scop_info->region.exit->src)
1391 sese_build_liveouts (scop->scop_info);
1392 unsigned i;
1393 bitmap_iterator bi;
1394 EXECUTE_IF_SET_IN_BITMAP (scop->scop_info->liveout, 0, i, bi)
1396 tree use = ssa_name (i);
1397 add_read (&reads, use, NULL);
1401 if (drs.is_empty () && writes.is_empty () && reads.is_empty ())
1402 return NULL;
1404 return new_gimple_poly_bb (bb, drs, reads, writes);
1407 /* Compute alias-sets for all data references in DRS. */
1409 static bool
1410 build_alias_set (scop_p scop)
1412 int num_vertices = scop->drs.length ();
1413 struct graph *g = new_graph (num_vertices);
1414 dr_info *dr1, *dr2;
1415 int i, j;
1416 int *all_vertices;
1418 struct loop *nest
1419 = find_common_loop (scop->scop_info->region.entry->dest->loop_father,
1420 scop->scop_info->region.exit->src->loop_father);
1422 FOR_EACH_VEC_ELT (scop->drs, i, dr1)
1423 for (j = i+1; scop->drs.iterate (j, &dr2); j++)
1424 if (dr_may_alias_p (dr1->dr, dr2->dr, nest))
1426 /* Dependences in the same alias set need to be handled
1427 by just looking at DR_ACCESS_FNs. */
1428 if (DR_NUM_DIMENSIONS (dr1->dr) == 0
1429 || DR_NUM_DIMENSIONS (dr1->dr) != DR_NUM_DIMENSIONS (dr2->dr)
1430 || ! operand_equal_p (DR_BASE_OBJECT (dr1->dr),
1431 DR_BASE_OBJECT (dr2->dr),
1432 OEP_ADDRESS_OF)
1433 || ! types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (dr1->dr)),
1434 TREE_TYPE (DR_BASE_OBJECT (dr2->dr))))
1436 free_graph (g);
1437 return false;
1439 add_edge (g, i, j);
1440 add_edge (g, j, i);
1443 all_vertices = XNEWVEC (int, num_vertices);
1444 for (i = 0; i < num_vertices; i++)
1445 all_vertices[i] = i;
1447 scop->max_alias_set
1448 = graphds_dfs (g, all_vertices, num_vertices, NULL, true, NULL) + 1;
1449 free (all_vertices);
1451 for (i = 0; i < g->n_vertices; i++)
1452 scop->drs[i].alias_set = g->vertices[i].component + 1;
1454 free_graph (g);
1455 return true;
1458 /* Gather BBs and conditions for a SCOP. */
1459 class gather_bbs : public dom_walker
1461 public:
1462 gather_bbs (cdi_direction, scop_p, int *);
1464 virtual edge before_dom_children (basic_block);
1465 virtual void after_dom_children (basic_block);
1467 private:
1468 auto_vec<gimple *, 3> conditions, cases;
1469 scop_p scop;
1472 gather_bbs::gather_bbs (cdi_direction direction, scop_p scop, int *bb_to_rpo)
1473 : dom_walker (direction, ALL_BLOCKS, bb_to_rpo), scop (scop)
1477 /* Call-back for dom_walk executed before visiting the dominated
1478 blocks. */
1480 edge
1481 gather_bbs::before_dom_children (basic_block bb)
1483 sese_info_p region = scop->scop_info;
1484 if (!bb_in_sese_p (bb, region->region))
1485 return dom_walker::STOP;
1487 /* For loops fully contained in the region record parameters in the
1488 loop bounds. */
1489 loop_p loop = bb->loop_father;
1490 if (loop->header == bb
1491 && loop_in_sese_p (loop, region->region))
1493 tree nb_iters = number_of_latch_executions (loop);
1494 if (chrec_contains_symbols (nb_iters))
1496 nb_iters = cached_scalar_evolution_in_region (region->region,
1497 loop, nb_iters);
1498 scan_tree_for_params (region, nb_iters);
1502 if (gcond *stmt = single_pred_cond_non_loop_exit (bb))
1504 edge e = single_pred_edge (bb);
1505 /* Make sure the condition is in the region and thus was verified
1506 to be handled. */
1507 if (e != region->region.entry)
1509 conditions.safe_push (stmt);
1510 if (e->flags & EDGE_TRUE_VALUE)
1511 cases.safe_push (stmt);
1512 else
1513 cases.safe_push (NULL);
1517 scop->scop_info->bbs.safe_push (bb);
1519 gimple_poly_bb_p gbb = try_generate_gimple_bb (scop, bb);
1520 if (!gbb)
1521 return NULL;
1523 GBB_CONDITIONS (gbb) = conditions.copy ();
1524 GBB_CONDITION_CASES (gbb) = cases.copy ();
1526 poly_bb_p pbb = new_poly_bb (scop, gbb);
1527 scop->pbbs.safe_push (pbb);
1529 int i;
1530 data_reference_p dr;
1531 FOR_EACH_VEC_ELT (gbb->data_refs, i, dr)
1533 DEBUG_PRINT (dp << "Adding memory ";
1534 if (dr->is_read)
1535 dp << "read: ";
1536 else
1537 dp << "write: ";
1538 print_generic_expr (dump_file, dr->ref);
1539 dp << "\nFrom stmt: ";
1540 print_gimple_stmt (dump_file, dr->stmt, 0));
1542 scop->drs.safe_push (dr_info (dr, pbb));
1545 return NULL;
1548 /* Call-back for dom_walk executed after visiting the dominated
1549 blocks. */
1551 void
1552 gather_bbs::after_dom_children (basic_block bb)
1554 if (!bb_in_sese_p (bb, scop->scop_info->region))
1555 return;
1557 if (single_pred_cond_non_loop_exit (bb))
1559 edge e = single_pred_edge (bb);
1560 if (e != scop->scop_info->region.entry)
1562 conditions.pop ();
1563 cases.pop ();
1569 /* Compute sth like an execution order, dominator order with first executing
1570 edges that stay inside the current loop, delaying processing exit edges. */
1572 static int *bb_to_rpo;
1574 /* Helper for qsort, sorting after order above. */
1576 static int
1577 cmp_pbbs (const void *pa, const void *pb)
1579 poly_bb_p bb1 = *((const poly_bb_p *)pa);
1580 poly_bb_p bb2 = *((const poly_bb_p *)pb);
1581 if (bb_to_rpo[bb1->black_box->bb->index]
1582 < bb_to_rpo[bb2->black_box->bb->index])
1583 return -1;
1584 else if (bb_to_rpo[bb1->black_box->bb->index]
1585 > bb_to_rpo[bb2->black_box->bb->index])
1586 return 1;
1587 else
1588 return 0;
1591 /* Find Static Control Parts (SCoP) in the current function and pushes
1592 them to SCOPS. */
1594 void
1595 build_scops (vec<scop_p> *scops)
1597 if (dump_file)
1598 dp.set_dump_file (dump_file);
1600 scop_detection sb;
1601 sb.build_scop_depth (current_loops->tree_root);
1603 /* Now create scops from the lightweight SESEs. */
1604 vec<sese_l> scops_l = sb.get_scops ();
1606 /* Domwalk needs a bb to RPO mapping. Compute it once here. */
1607 int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
1608 int postorder_num = pre_and_rev_post_order_compute (NULL, postorder, true);
1609 bb_to_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1610 for (int i = 0; i < postorder_num; ++i)
1611 bb_to_rpo[postorder[i]] = i;
1612 free (postorder);
1614 int i;
1615 sese_l *s;
1616 FOR_EACH_VEC_ELT (scops_l, i, s)
1618 scop_p scop = new_scop (s->entry, s->exit);
1620 /* Record all basic blocks and their conditions in REGION. */
1621 gather_bbs (CDI_DOMINATORS, scop, bb_to_rpo).walk (s->entry->dest);
1623 /* Sort pbbs after execution order for initial schedule generation. */
1624 scop->pbbs.qsort (cmp_pbbs);
1626 if (! build_alias_set (scop))
1628 DEBUG_PRINT (dp << "[scop-detection-fail] cannot handle dependences\n");
1629 free_scop (scop);
1630 continue;
1633 /* Do not optimize a scop containing only PBBs that do not belong
1634 to any loops. */
1635 if (sb.nb_pbbs_in_loops (scop) == 0)
1637 DEBUG_PRINT (dp << "[scop-detection-fail] no data references.\n");
1638 free_scop (scop);
1639 continue;
1642 unsigned max_arrays = PARAM_VALUE (PARAM_GRAPHITE_MAX_ARRAYS_PER_SCOP);
1643 if (max_arrays > 0
1644 && scop->drs.length () >= max_arrays)
1646 DEBUG_PRINT (dp << "[scop-detection-fail] too many data references: "
1647 << scop->drs.length ()
1648 << " is larger than --param graphite-max-arrays-per-scop="
1649 << max_arrays << ".\n");
1650 free_scop (scop);
1651 continue;
1654 find_scop_parameters (scop);
1655 graphite_dim_t max_dim = PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS);
1656 if (max_dim > 0
1657 && scop_nb_params (scop) > max_dim)
1659 DEBUG_PRINT (dp << "[scop-detection-fail] too many parameters: "
1660 << scop_nb_params (scop)
1661 << " larger than --param graphite-max-nb-scop-params="
1662 << max_dim << ".\n");
1663 free_scop (scop);
1664 continue;
1667 scops->safe_push (scop);
1670 free (bb_to_rpo);
1671 bb_to_rpo = NULL;
1672 DEBUG_PRINT (dp << "number of SCoPs: " << (scops ? scops->length () : 0););
1675 #endif /* HAVE_isl */