1 /* Detection of Static Control Parts (SCoP) for Graphite.
2 Copyright (C) 2009-2019 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
4 Tobias Grosser <grosser@fim.uni-passau.de>.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
29 #include "coretypes.h"
37 #include "fold-const.h"
38 #include "gimple-iterator.h"
40 #include "tree-ssa-loop-manip.h"
41 #include "tree-ssa-loop-niter.h"
42 #include "tree-ssa-loop.h"
43 #include "tree-into-ssa.h"
46 #include "tree-data-ref.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-pass.h"
49 #include "tree-ssa-propagate.h"
50 #include "gimple-pretty-print.h"
61 set_dump_file (FILE *f
)
67 friend debug_printer
&
68 operator<< (debug_printer
&output
, int i
)
70 fprintf (output
.dump_file
, "%d", i
);
73 friend debug_printer
&
74 operator<< (debug_printer
&output
, const char *s
)
76 fprintf (output
.dump_file
, "%s", s
);
81 #define DEBUG_PRINT(args) do \
83 if (dump_file && (dump_flags & TDF_DETAILS)) { args; } \
86 /* Pretty print to FILE all the SCoPs in DOT format and mark them with
87 different colors. If there are not enough colors, paint the
88 remaining SCoPs in gray.
91 - "*" after the node number denotes the entry of a SCoP,
92 - "#" after the node number denotes the exit of a SCoP,
93 - "()" around the node number denotes the entry or the
94 exit nodes of the SCOP. These are not part of SCoP. */
97 dot_all_sese (FILE *file
, vec
<sese_l
>& scops
)
99 /* Disable debugging while printing graph. */
100 dump_flags_t tmp_dump_flags
= dump_flags
;
101 dump_flags
= TDF_NONE
;
103 fprintf (file
, "digraph all {\n");
106 FOR_ALL_BB_FN (bb
, cfun
)
108 int part_of_scop
= false;
110 /* Use HTML for every bb label. So we are able to print bbs
111 which are part of two different SCoPs, with two different
112 background colors. */
113 fprintf (file
, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
115 fprintf (file
, "CELLSPACING=\"0\">\n");
117 /* Select color for SCoP. */
120 FOR_EACH_VEC_ELT (scops
, i
, region
)
122 bool sese_in_region
= bb_in_sese_p (bb
, *region
);
123 if (sese_in_region
|| (region
->exit
->dest
== bb
)
124 || (region
->entry
->dest
== bb
))
184 fprintf (file
, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">",
188 fprintf (file
, " (");
190 if (bb
== region
->entry
->dest
&& bb
== region
->exit
->dest
)
191 fprintf (file
, " %d*# ", bb
->index
);
192 else if (bb
== region
->entry
->dest
)
193 fprintf (file
, " %d* ", bb
->index
);
194 else if (bb
== region
->exit
->dest
)
195 fprintf (file
, " %d# ", bb
->index
);
197 fprintf (file
, " %d ", bb
->index
);
199 fprintf (file
, "{lp_%d}", bb
->loop_father
->num
);
204 fprintf (file
, "</TD></TR>\n");
211 fprintf (file
, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
212 fprintf (file
, " %d {lp_%d} </TD></TR>\n", bb
->index
,
213 bb
->loop_father
->num
);
215 fprintf (file
, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
218 FOR_ALL_BB_FN (bb
, cfun
)
222 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
223 fprintf (file
, "%d -> %d;\n", bb
->index
, e
->dest
->index
);
226 fputs ("}\n\n", file
);
228 /* Enable debugging again. */
229 dump_flags
= tmp_dump_flags
;
232 /* Display SCoP on stderr. */
235 dot_sese (sese_l
& scop
)
241 scops
.safe_push (scop
);
243 dot_all_sese (stderr
, scops
);
253 dot_all_sese (stderr
, scops
);
257 /* Returns a COND_EXPR statement when BB has a single predecessor, the
258 edge between BB and its predecessor is not a loop exit edge, and
259 the last statement of the single predecessor is a COND_EXPR. */
262 single_pred_cond_non_loop_exit (basic_block bb
)
264 if (single_pred_p (bb
))
266 edge e
= single_pred_edge (bb
);
267 basic_block pred
= e
->src
;
270 if (loop_depth (pred
->loop_father
) > loop_depth (bb
->loop_father
))
273 stmt
= last_stmt (pred
);
275 if (stmt
&& gimple_code (stmt
) == GIMPLE_COND
)
276 return as_a
<gcond
*> (stmt
);
285 /* Build the maximal scop containing LOOPs and add it to SCOPS. */
290 scop_detection () : scops (vNULL
) {}
297 /* A marker for invalid sese_l. */
298 static sese_l invalid_sese
;
300 /* Return the SCOPS in this SCOP_DETECTION. */
308 /* Return an sese_l around the LOOP. */
310 sese_l
get_sese (loop_p loop
);
312 /* Merge scops at same loop depth and returns the new sese.
313 Returns a new SESE when merge was successful, INVALID_SESE otherwise. */
315 sese_l
merge_sese (sese_l first
, sese_l second
) const;
317 /* Build scop outer->inner if possible. */
319 void build_scop_depth (loop_p loop
);
321 /* Return true when BEGIN is the preheader edge of a loop with a single exit
324 static bool region_has_one_loop (sese_l s
);
326 /* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END. */
328 void add_scop (sese_l s
);
330 /* Returns true if S1 subsumes/surrounds S2. */
331 static bool subsumes (sese_l s1
, sese_l s2
);
333 /* Remove a SCoP which is subsumed by S1. */
334 void remove_subscops (sese_l s1
);
336 /* Returns true if S1 intersects with S2. Since we already know that S1 does
337 not subsume S2 or vice-versa, we only check for entry bbs. */
339 static bool intersects (sese_l s1
, sese_l s2
);
341 /* Remove one of the scops when it intersects with any other. */
343 void remove_intersecting_scops (sese_l s1
);
345 /* Return true when a statement in SCOP cannot be represented by Graphite. */
347 bool harmful_loop_in_region (sese_l scop
) const;
349 /* Return true only when STMT is simple enough for being handled by Graphite.
350 This depends on SCOP, as the parameters are initialized relatively to
351 this basic block, the linear functions are initialized based on the
352 outermost loop containing STMT inside the SCOP. BB is the place where we
353 try to evaluate the STMT. */
355 bool stmt_simple_for_scop_p (sese_l scop
, gimple
*stmt
,
356 basic_block bb
) const;
358 /* Something like "n * m" is not allowed. */
360 static bool graphite_can_represent_init (tree e
);
362 /* Return true when SCEV can be represented in the polyhedral model.
364 An expression can be represented, if it can be expressed as an
365 affine expression. For loops (i, j) and parameters (m, n) all
366 affine expressions are of the form:
368 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
370 1 i + 20 j + (-2) m + 25
372 Something like "i * n" or "n * m" is not allowed. */
374 static bool graphite_can_represent_scev (sese_l scop
, tree scev
);
376 /* Return true when EXPR can be represented in the polyhedral model.
378 This means an expression can be represented, if it is linear with respect
379 to the loops and the strides are non parametric. LOOP is the place where
380 the expr will be evaluated. SCOP defines the region we analyse. */
382 static bool graphite_can_represent_expr (sese_l scop
, loop_p loop
,
385 /* Return true if the data references of STMT can be represented by Graphite.
386 We try to analyze the data references in a loop contained in the SCOP. */
388 static bool stmt_has_simple_data_refs_p (sese_l scop
, gimple
*stmt
);
390 /* Remove the close phi node at GSI and replace its rhs with the rhs
393 static void remove_duplicate_close_phi (gphi
*phi
, gphi_iterator
*gsi
);
395 /* Returns true when Graphite can represent LOOP in SCOP.
396 FIXME: For the moment, graphite cannot be used on loops that iterate using
397 induction variables that wrap. */
399 static bool can_represent_loop (loop_p loop
, sese_l scop
);
401 /* Returns the number of pbbs that are in loops contained in SCOP. */
403 static int nb_pbbs_in_loops (scop_p scop
);
409 sese_l
scop_detection::invalid_sese (NULL
, NULL
);
411 /* Return an sese_l around the LOOP. */
414 scop_detection::get_sese (loop_p loop
)
419 edge scop_begin
= loop_preheader_edge (loop
);
420 edge scop_end
= single_exit (loop
);
421 if (!scop_end
|| (scop_end
->flags
& (EDGE_COMPLEX
|EDGE_FAKE
)))
424 return sese_l (scop_begin
, scop_end
);
427 /* Merge scops at same loop depth and returns the new sese.
428 Returns a new SESE when merge was successful, INVALID_SESE otherwise. */
431 scop_detection::merge_sese (sese_l first
, sese_l second
) const
433 /* In the trivial case first/second may be NULL. */
439 DEBUG_PRINT (dp
<< "[scop-detection] try merging sese s1: ";
440 print_sese (dump_file
, first
);
441 dp
<< "[scop-detection] try merging sese s2: ";
442 print_sese (dump_file
, second
));
444 auto_bitmap worklist
, in_sese_region
;
445 bitmap_set_bit (worklist
, get_entry_bb (first
)->index
);
446 bitmap_set_bit (worklist
, get_exit_bb (first
)->index
);
447 bitmap_set_bit (worklist
, get_entry_bb (second
)->index
);
448 bitmap_set_bit (worklist
, get_exit_bb (second
)->index
);
449 edge entry
= NULL
, exit
= NULL
;
451 /* We can optimize the case of adding a loop entry dest or exit
452 src to the worklist (for single-exit loops) by skipping
453 directly to the exit dest / entry src. in_sese_region
454 doesn't have to cover all blocks in the region but merely
455 its border it acts more like a visited bitmap. */
458 int index
= bitmap_first_set_bit (worklist
);
459 bitmap_clear_bit (worklist
, index
);
460 basic_block bb
= BASIC_BLOCK_FOR_FN (cfun
, index
);
464 /* With fake exit edges we can end up with no possible exit. */
465 if (index
== EXIT_BLOCK
)
467 DEBUG_PRINT (dp
<< "[scop-detection-fail] cannot merge seses.\n");
471 bitmap_set_bit (in_sese_region
, bb
->index
);
473 basic_block dom
= get_immediate_dominator (CDI_DOMINATORS
, bb
);
474 FOR_EACH_EDGE (e
, ei
, bb
->preds
)
477 || dominated_by_p (CDI_DOMINATORS
, entry
->dest
, bb
)))
480 && ! bitmap_bit_p (in_sese_region
, entry
->src
->index
))
481 bitmap_set_bit (worklist
, entry
->src
->index
);
484 else if (! bitmap_bit_p (in_sese_region
, e
->src
->index
))
485 bitmap_set_bit (worklist
, e
->src
->index
);
487 basic_block pdom
= get_immediate_dominator (CDI_POST_DOMINATORS
, bb
);
488 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
491 || dominated_by_p (CDI_POST_DOMINATORS
, exit
->src
, bb
)))
494 && ! bitmap_bit_p (in_sese_region
, exit
->dest
->index
))
495 bitmap_set_bit (worklist
, exit
->dest
->index
);
498 else if (! bitmap_bit_p (in_sese_region
, e
->dest
->index
))
499 bitmap_set_bit (worklist
, e
->dest
->index
);
501 while (! bitmap_empty_p (worklist
));
503 sese_l
combined (entry
, exit
);
505 DEBUG_PRINT (dp
<< "[merged-sese] s1: "; print_sese (dump_file
, combined
));
510 /* Build scop outer->inner if possible. */
513 scop_detection::build_scop_depth (loop_p loop
)
515 sese_l s
= invalid_sese
;
519 sese_l next
= get_sese (loop
);
521 || harmful_loop_in_region (next
))
525 build_scop_depth (loop
);
532 sese_l combined
= merge_sese (s
, next
);
534 || harmful_loop_in_region (combined
))
548 /* Returns true when Graphite can represent LOOP in SCOP.
549 FIXME: For the moment, graphite cannot be used on loops that iterate using
550 induction variables that wrap. */
553 scop_detection::can_represent_loop (loop_p loop
, sese_l scop
)
556 struct tree_niter_desc niter_desc
;
558 /* We can only handle do {} while () style loops correctly. */
559 edge exit
= single_exit (loop
);
561 || !single_pred_p (loop
->latch
)
562 || exit
->src
!= single_pred (loop
->latch
)
563 || !empty_block_p (loop
->latch
))
566 return !(loop_preheader_edge (loop
)->flags
& EDGE_IRREDUCIBLE_LOOP
)
567 && number_of_iterations_exit (loop
, single_exit (loop
), &niter_desc
, false)
568 && niter_desc
.control
.no_overflow
569 && (niter
= number_of_latch_executions (loop
))
570 && !chrec_contains_undetermined (niter
)
571 && graphite_can_represent_expr (scop
, loop
, niter
);
574 /* Return true when BEGIN is the preheader edge of a loop with a single exit
578 scop_detection::region_has_one_loop (sese_l s
)
580 edge begin
= s
.entry
;
582 /* Check for a single perfectly nested loop. */
583 if (begin
->dest
->loop_father
->inner
)
586 /* Otherwise, check whether we have adjacent loops. */
587 return (single_pred_p (end
->src
)
588 && begin
->dest
->loop_father
== single_pred (end
->src
)->loop_father
);
591 /* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END. */
594 scop_detection::add_scop (sese_l s
)
598 /* If the exit edge is fake discard the SCoP for now as we're removing the
599 fake edges again after analysis. */
600 if (s
.exit
->flags
& EDGE_FAKE
)
602 DEBUG_PRINT (dp
<< "[scop-detection-fail] Discarding infinite loop SCoP: ";
603 print_sese (dump_file
, s
));
607 /* Include the BB with the loop-closed SSA PHI nodes, we need this
608 block in the region for code-generating out-of-SSA copies.
609 canonicalize_loop_closed_ssa makes sure that is in proper shape. */
610 if (s
.exit
->dest
!= EXIT_BLOCK_PTR_FOR_FN (cfun
)
611 && loop_exit_edge_p (s
.exit
->src
->loop_father
, s
.exit
))
613 gcc_assert (single_pred_p (s
.exit
->dest
)
614 && single_succ_p (s
.exit
->dest
)
615 && sese_trivially_empty_bb_p (s
.exit
->dest
));
616 s
.exit
= single_succ_edge (s
.exit
->dest
);
619 /* Do not add scops with only one loop. */
620 if (region_has_one_loop (s
))
622 DEBUG_PRINT (dp
<< "[scop-detection-fail] Discarding one loop SCoP: ";
623 print_sese (dump_file
, s
));
627 if (get_exit_bb (s
) == EXIT_BLOCK_PTR_FOR_FN (cfun
))
629 DEBUG_PRINT (dp
<< "[scop-detection-fail] "
630 << "Discarding SCoP exiting to return: ";
631 print_sese (dump_file
, s
));
635 /* Remove all the scops which are subsumed by s. */
638 /* Remove intersecting scops. FIXME: It will be a good idea to keep
639 the non-intersecting part of the scop already in the list. */
640 remove_intersecting_scops (s
);
643 DEBUG_PRINT (dp
<< "[scop-detection] Adding SCoP: "; print_sese (dump_file
, s
));
646 /* Return true when a statement in SCOP cannot be represented by Graphite. */
649 scop_detection::harmful_loop_in_region (sese_l scop
) const
651 basic_block exit_bb
= get_exit_bb (scop
);
652 basic_block entry_bb
= get_entry_bb (scop
);
654 DEBUG_PRINT (dp
<< "[checking-harmful-bbs] ";
655 print_sese (dump_file
, scop
));
656 gcc_assert (dominated_by_p (CDI_DOMINATORS
, exit_bb
, entry_bb
));
658 auto_vec
<basic_block
> worklist
;
661 worklist
.safe_push (entry_bb
);
662 while (! worklist
.is_empty ())
664 basic_block bb
= worklist
.pop ();
665 DEBUG_PRINT (dp
<< "Visiting bb_" << bb
->index
<< "\n");
667 /* The basic block should not be part of an irreducible loop. */
668 if (bb
->flags
& BB_IRREDUCIBLE_LOOP
)
671 /* Check for unstructured control flow: CFG not generated by structured
673 if (bb
->succs
->length () > 1)
677 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
678 if (!dominated_by_p (CDI_POST_DOMINATORS
, bb
, e
->dest
)
679 && !dominated_by_p (CDI_DOMINATORS
, e
->dest
, bb
))
683 /* Collect all loops in the current region. */
684 loop_p loop
= bb
->loop_father
;
685 if (loop_in_sese_p (loop
, scop
))
686 bitmap_set_bit (loops
, loop
->num
);
688 /* Check for harmful statements in basic blocks part of the region. */
689 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
);
690 !gsi_end_p (gsi
); gsi_next (&gsi
))
691 if (!stmt_simple_for_scop_p (scop
, gsi_stmt (gsi
), bb
))
694 for (basic_block dom
= first_dom_son (CDI_DOMINATORS
, bb
);
696 dom
= next_dom_son (CDI_DOMINATORS
, dom
))
697 if (dom
!= scop
.exit
->dest
)
698 worklist
.safe_push (dom
);
701 /* Go through all loops and check that they are still valid in the combined
705 EXECUTE_IF_SET_IN_BITMAP (loops
, 0, j
, bi
)
707 loop_p loop
= (*current_loops
->larray
)[j
];
708 gcc_assert (loop
->num
== (int) j
);
710 /* Check if the loop nests are to be optimized for speed. */
712 && ! optimize_loop_for_speed_p (loop
))
714 DEBUG_PRINT (dp
<< "[scop-detection-fail] loop_"
715 << loop
->num
<< " is not on a hot path.\n");
719 if (! can_represent_loop (loop
, scop
))
721 DEBUG_PRINT (dp
<< "[scop-detection-fail] cannot represent loop_"
722 << loop
->num
<< "\n");
726 /* Check if all loop nests have at least one data reference.
727 ??? This check is expensive and loops premature at this point.
728 If important to retain we can pre-compute this for all innermost
729 loops and reject those when we build a SESE region for a loop
730 during SESE discovery. */
732 && ! loop_nest_has_data_refs (loop
))
734 DEBUG_PRINT (dp
<< "[scop-detection-fail] loop_" << loop
->num
735 << "does not have any data reference.\n");
743 /* Returns true if S1 subsumes/surrounds S2. */
745 scop_detection::subsumes (sese_l s1
, sese_l s2
)
747 if (dominated_by_p (CDI_DOMINATORS
, get_entry_bb (s2
),
749 && dominated_by_p (CDI_POST_DOMINATORS
, s2
.exit
->dest
,
755 /* Remove a SCoP which is subsumed by S1. */
757 scop_detection::remove_subscops (sese_l s1
)
761 FOR_EACH_VEC_ELT_REVERSE (scops
, j
, s2
)
763 if (subsumes (s1
, *s2
))
765 DEBUG_PRINT (dp
<< "Removing sub-SCoP";
766 print_sese (dump_file
, *s2
));
767 scops
.unordered_remove (j
);
772 /* Returns true if S1 intersects with S2. Since we already know that S1 does
773 not subsume S2 or vice-versa, we only check for entry bbs. */
776 scop_detection::intersects (sese_l s1
, sese_l s2
)
778 if (dominated_by_p (CDI_DOMINATORS
, get_entry_bb (s2
),
780 && !dominated_by_p (CDI_DOMINATORS
, get_entry_bb (s2
),
783 if ((s1
.exit
== s2
.entry
) || (s2
.exit
== s1
.entry
))
789 /* Remove one of the scops when it intersects with any other. */
792 scop_detection::remove_intersecting_scops (sese_l s1
)
796 FOR_EACH_VEC_ELT_REVERSE (scops
, j
, s2
)
798 if (intersects (s1
, *s2
))
800 DEBUG_PRINT (dp
<< "Removing intersecting SCoP";
801 print_sese (dump_file
, *s2
);
802 dp
<< "Intersects with:";
803 print_sese (dump_file
, s1
));
804 scops
.unordered_remove (j
);
809 /* Something like "n * m" is not allowed. */
812 scop_detection::graphite_can_represent_init (tree e
)
814 switch (TREE_CODE (e
))
816 case POLYNOMIAL_CHREC
:
817 return graphite_can_represent_init (CHREC_LEFT (e
))
818 && graphite_can_represent_init (CHREC_RIGHT (e
));
821 if (chrec_contains_symbols (TREE_OPERAND (e
, 0)))
822 return graphite_can_represent_init (TREE_OPERAND (e
, 0))
823 && tree_fits_shwi_p (TREE_OPERAND (e
, 1));
825 return graphite_can_represent_init (TREE_OPERAND (e
, 1))
826 && tree_fits_shwi_p (TREE_OPERAND (e
, 0));
829 case POINTER_PLUS_EXPR
:
831 return graphite_can_represent_init (TREE_OPERAND (e
, 0))
832 && graphite_can_represent_init (TREE_OPERAND (e
, 1));
837 case NON_LVALUE_EXPR
:
838 return graphite_can_represent_init (TREE_OPERAND (e
, 0));
847 /* Return true when SCEV can be represented in the polyhedral model.
849 An expression can be represented, if it can be expressed as an
850 affine expression. For loops (i, j) and parameters (m, n) all
851 affine expressions are of the form:
853 x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
855 1 i + 20 j + (-2) m + 25
857 Something like "i * n" or "n * m" is not allowed. */
860 scop_detection::graphite_can_represent_scev (sese_l scop
, tree scev
)
862 if (chrec_contains_undetermined (scev
))
865 switch (TREE_CODE (scev
))
870 case NON_LVALUE_EXPR
:
871 return graphite_can_represent_scev (scop
, TREE_OPERAND (scev
, 0));
874 case POINTER_PLUS_EXPR
:
876 return graphite_can_represent_scev (scop
, TREE_OPERAND (scev
, 0))
877 && graphite_can_represent_scev (scop
, TREE_OPERAND (scev
, 1));
880 return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev
, 0)))
881 && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev
, 1)))
882 && !(chrec_contains_symbols (TREE_OPERAND (scev
, 0))
883 && chrec_contains_symbols (TREE_OPERAND (scev
, 1)))
884 && graphite_can_represent_init (scev
)
885 && graphite_can_represent_scev (scop
, TREE_OPERAND (scev
, 0))
886 && graphite_can_represent_scev (scop
, TREE_OPERAND (scev
, 1));
888 case POLYNOMIAL_CHREC
:
889 /* Check for constant strides. With a non constant stride of
890 'n' we would have a value of 'iv * n'. Also check that the
891 initial value can represented: for example 'n * m' cannot be
893 gcc_assert (loop_in_sese_p (get_loop (cfun
,
894 CHREC_VARIABLE (scev
)), scop
));
895 if (!evolution_function_right_is_integer_cst (scev
)
896 || !graphite_can_represent_init (scev
))
898 return graphite_can_represent_scev (scop
, CHREC_LEFT (scev
));
901 /* We cannot encode addresses for ISL. */
908 /* Only affine functions can be represented. */
909 if (tree_contains_chrecs (scev
, NULL
) || !scev_is_linear_expression (scev
))
915 /* Return true when EXPR can be represented in the polyhedral model.
917 This means an expression can be represented, if it is linear with respect to
918 the loops and the strides are non parametric. LOOP is the place where the
919 expr will be evaluated. SCOP defines the region we analyse. */
922 scop_detection::graphite_can_represent_expr (sese_l scop
, loop_p loop
,
925 tree scev
= cached_scalar_evolution_in_region (scop
, loop
, expr
);
926 return graphite_can_represent_scev (scop
, scev
);
929 /* Return true if the data references of STMT can be represented by Graphite.
930 We try to analyze the data references in a loop contained in the SCOP. */
933 scop_detection::stmt_has_simple_data_refs_p (sese_l scop
, gimple
*stmt
)
935 edge nest
= scop
.entry
;
936 loop_p loop
= loop_containing_stmt (stmt
);
937 if (!loop_in_sese_p (loop
, scop
))
940 auto_vec
<data_reference_p
> drs
;
941 if (! graphite_find_data_references_in_stmt (nest
, loop
, stmt
, &drs
))
946 FOR_EACH_VEC_ELT (drs
, j
, dr
)
948 for (unsigned i
= 0; i
< DR_NUM_DIMENSIONS (dr
); ++i
)
949 if (! graphite_can_represent_scev (scop
, DR_ACCESS_FN (dr
, i
)))
956 /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
957 Calls have side-effects, except those to const or pure
961 stmt_has_side_effects (gimple
*stmt
)
963 if (gimple_has_volatile_ops (stmt
)
964 || (gimple_code (stmt
) == GIMPLE_CALL
965 && !(gimple_call_flags (stmt
) & (ECF_CONST
| ECF_PURE
)))
966 || (gimple_code (stmt
) == GIMPLE_ASM
))
968 DEBUG_PRINT (dp
<< "[scop-detection-fail] "
969 << "Statement has side-effects:\n";
970 print_gimple_stmt (dump_file
, stmt
, 0, TDF_VOPS
| TDF_MEMSYMS
));
976 /* Return true only when STMT is simple enough for being handled by Graphite.
977 This depends on SCOP, as the parameters are initialized relatively to
978 this basic block, the linear functions are initialized based on the outermost
979 loop containing STMT inside the SCOP. BB is the place where we try to
980 evaluate the STMT. */
983 scop_detection::stmt_simple_for_scop_p (sese_l scop
, gimple
*stmt
,
984 basic_block bb
) const
988 if (is_gimple_debug (stmt
))
991 if (stmt_has_side_effects (stmt
))
994 if (!stmt_has_simple_data_refs_p (scop
, stmt
))
996 DEBUG_PRINT (dp
<< "[scop-detection-fail] "
997 << "Graphite cannot handle data-refs in stmt:\n";
998 print_gimple_stmt (dump_file
, stmt
, 0, TDF_VOPS
|TDF_MEMSYMS
););
1002 switch (gimple_code (stmt
))
1009 /* We can handle all binary comparisons. Inequalities are
1010 also supported as they can be represented with union of
1012 enum tree_code code
= gimple_cond_code (stmt
);
1013 if (!(code
== LT_EXPR
1018 || code
== NE_EXPR
))
1020 DEBUG_PRINT (dp
<< "[scop-detection-fail] "
1021 << "Graphite cannot handle cond stmt:\n";
1022 print_gimple_stmt (dump_file
, stmt
, 0,
1023 TDF_VOPS
| TDF_MEMSYMS
));
1027 loop_p loop
= bb
->loop_father
;
1028 for (unsigned i
= 0; i
< 2; ++i
)
1030 tree op
= gimple_op (stmt
, i
);
1031 if (!graphite_can_represent_expr (scop
, loop
, op
)
1032 /* We can only constrain on integer type. */
1033 || ! INTEGRAL_TYPE_P (TREE_TYPE (op
)))
1035 DEBUG_PRINT (dp
<< "[scop-detection-fail] "
1036 << "Graphite cannot represent stmt:\n";
1037 print_gimple_stmt (dump_file
, stmt
, 0,
1038 TDF_VOPS
| TDF_MEMSYMS
));
1049 tree op
, lhs
= gimple_get_lhs (stmt
);
1051 /* If we are not going to instantiate the stmt do not require
1052 its operands to be instantiatable at this point. */
1054 && TREE_CODE (lhs
) == SSA_NAME
1055 && scev_analyzable_p (lhs
, scop
))
1057 /* Verify that if we can analyze operands at their def site we
1058 also can represent them when analyzed at their uses. */
1059 FOR_EACH_SSA_TREE_OPERAND (op
, stmt
, i
, SSA_OP_USE
)
1060 if (scev_analyzable_p (op
, scop
)
1061 && chrec_contains_undetermined
1062 (cached_scalar_evolution_in_region (scop
,
1063 bb
->loop_father
, op
)))
1065 DEBUG_PRINT (dp
<< "[scop-detection-fail] "
1066 << "Graphite cannot code-gen stmt:\n";
1067 print_gimple_stmt (dump_file
, stmt
, 0,
1068 TDF_VOPS
| TDF_MEMSYMS
));
1075 /* These nodes cut a new scope. */
1077 dp
<< "[scop-detection-fail] "
1078 << "Gimple stmt not handled in Graphite:\n";
1079 print_gimple_stmt (dump_file
, stmt
, 0, TDF_VOPS
| TDF_MEMSYMS
));
1084 /* Returns the number of pbbs that are in loops contained in SCOP. */
1087 scop_detection::nb_pbbs_in_loops (scop_p scop
)
1093 FOR_EACH_VEC_ELT (scop
->pbbs
, i
, pbb
)
1094 if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb
)), scop
->scop_info
->region
))
1100 /* Assigns the parameter NAME an index in REGION. */
1103 assign_parameter_index_in_region (tree name
, sese_info_p region
)
1105 gcc_assert (TREE_CODE (name
) == SSA_NAME
1106 && INTEGRAL_TYPE_P (TREE_TYPE (name
))
1107 && ! defined_in_sese_p (name
, region
->region
));
1110 FOR_EACH_VEC_ELT (region
->params
, i
, p
)
1114 region
->params
.safe_push (name
);
1117 /* In the context of sese S, scan the expression E and translate it to
1118 a linear expression C. When parsing a symbolic multiplication, K
1119 represents the constant multiplier of an expression containing
1123 scan_tree_for_params (sese_info_p s
, tree e
)
1125 if (e
== chrec_dont_know
)
1128 switch (TREE_CODE (e
))
1130 case POLYNOMIAL_CHREC
:
1131 scan_tree_for_params (s
, CHREC_LEFT (e
));
1135 if (chrec_contains_symbols (TREE_OPERAND (e
, 0)))
1136 scan_tree_for_params (s
, TREE_OPERAND (e
, 0));
1138 scan_tree_for_params (s
, TREE_OPERAND (e
, 1));
1142 case POINTER_PLUS_EXPR
:
1144 scan_tree_for_params (s
, TREE_OPERAND (e
, 0));
1145 scan_tree_for_params (s
, TREE_OPERAND (e
, 1));
1151 case NON_LVALUE_EXPR
:
1152 scan_tree_for_params (s
, TREE_OPERAND (e
, 0));
1156 assign_parameter_index_in_region (e
, s
);
1172 /* Find parameters with respect to REGION in BB. We are looking in memory
1173 access functions, conditions and loop bounds. */
1176 find_params_in_bb (sese_info_p region
, gimple_poly_bb_p gbb
)
1178 /* Find parameters in the access functions of data references. */
1180 data_reference_p dr
;
1181 FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb
), i
, dr
)
1182 for (unsigned j
= 0; j
< DR_NUM_DIMENSIONS (dr
); j
++)
1183 scan_tree_for_params (region
, DR_ACCESS_FN (dr
, j
));
1185 /* Find parameters in conditional statements. */
1187 FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb
), i
, stmt
)
1189 loop_p loop
= gimple_bb (stmt
)->loop_father
;
1190 tree lhs
= cached_scalar_evolution_in_region (region
->region
, loop
,
1191 gimple_cond_lhs (stmt
));
1192 tree rhs
= cached_scalar_evolution_in_region (region
->region
, loop
,
1193 gimple_cond_rhs (stmt
));
1194 gcc_assert (!chrec_contains_undetermined (lhs
)
1195 && !chrec_contains_undetermined (rhs
));
1197 scan_tree_for_params (region
, lhs
);
1198 scan_tree_for_params (region
, rhs
);
1202 /* Record the parameters used in the SCOP BBs. A variable is a parameter
1203 in a scop if it does not vary during the execution of that scop. */
1206 find_scop_parameters (scop_p scop
)
1209 sese_info_p region
= scop
->scop_info
;
1211 /* Parameters used in loop bounds are processed during gather_bbs. */
1213 /* Find the parameters used in data accesses. */
1215 FOR_EACH_VEC_ELT (scop
->pbbs
, i
, pbb
)
1216 find_params_in_bb (region
, PBB_BLACK_BOX (pbb
));
1218 int nbp
= sese_nb_params (region
);
1219 scop_set_nb_params (scop
, nbp
);
1223 add_write (vec
<tree
> *writes
, tree def
)
1225 writes
->safe_push (def
);
1226 DEBUG_PRINT (dp
<< "Adding scalar write: ";
1227 print_generic_expr (dump_file
, def
);
1228 dp
<< "\nFrom stmt: ";
1229 print_gimple_stmt (dump_file
,
1230 SSA_NAME_DEF_STMT (def
), 0));
1234 add_read (vec
<scalar_use
> *reads
, tree use
, gimple
*use_stmt
)
1236 DEBUG_PRINT (dp
<< "Adding scalar read: ";
1237 print_generic_expr (dump_file
, use
);
1238 dp
<< "\nFrom stmt: ";
1239 print_gimple_stmt (dump_file
, use_stmt
, 0));
1240 reads
->safe_push (std::make_pair (use_stmt
, use
));
1244 /* Record DEF if it is used in other bbs different than DEF_BB in the SCOP. */
1247 build_cross_bb_scalars_def (scop_p scop
, tree def
, basic_block def_bb
,
1250 if (!is_gimple_reg (def
))
1253 bool scev_analyzable
= scev_analyzable_p (def
, scop
->scop_info
->region
);
1256 imm_use_iterator imm_iter
;
1257 FOR_EACH_IMM_USE_STMT (use_stmt
, imm_iter
, def
)
1258 /* Do not gather scalar variables that can be analyzed by SCEV as they can
1259 be generated out of the induction variables. */
1260 if ((! scev_analyzable
1261 /* But gather SESE liveouts as we otherwise fail to rewrite their
1263 || ! bb_in_sese_p (gimple_bb (use_stmt
), scop
->scop_info
->region
))
1264 && (def_bb
!= gimple_bb (use_stmt
) && !is_gimple_debug (use_stmt
)))
1266 add_write (writes
, def
);
1267 /* This is required by the FOR_EACH_IMM_USE_STMT when we want to break
1268 before all the uses have been visited. */
1269 BREAK_FROM_IMM_USE_STMT (imm_iter
);
1273 /* Record USE if it is defined in other bbs different than USE_STMT
1277 build_cross_bb_scalars_use (scop_p scop
, tree use
, gimple
*use_stmt
,
1278 vec
<scalar_use
> *reads
)
1280 if (!is_gimple_reg (use
))
1283 /* Do not gather scalar variables that can be analyzed by SCEV as they can be
1284 generated out of the induction variables. */
1285 if (scev_analyzable_p (use
, scop
->scop_info
->region
))
1288 gimple
*def_stmt
= SSA_NAME_DEF_STMT (use
);
1289 if (gimple_bb (def_stmt
) != gimple_bb (use_stmt
))
1290 add_read (reads
, use
, use_stmt
);
1293 /* Generates a polyhedral black box only if the bb contains interesting
1296 static gimple_poly_bb_p
1297 try_generate_gimple_bb (scop_p scop
, basic_block bb
)
1299 vec
<data_reference_p
> drs
= vNULL
;
1300 vec
<tree
> writes
= vNULL
;
1301 vec
<scalar_use
> reads
= vNULL
;
1303 sese_l region
= scop
->scop_info
->region
;
1304 edge nest
= region
.entry
;
1305 loop_p loop
= bb
->loop_father
;
1306 if (!loop_in_sese_p (loop
, region
))
1309 for (gimple_stmt_iterator gsi
= gsi_start_bb (bb
); !gsi_end_p (gsi
);
1312 gimple
*stmt
= gsi_stmt (gsi
);
1313 if (is_gimple_debug (stmt
))
1316 graphite_find_data_references_in_stmt (nest
, loop
, stmt
, &drs
);
1318 tree def
= gimple_get_lhs (stmt
);
1320 build_cross_bb_scalars_def (scop
, def
, gimple_bb (stmt
), &writes
);
1324 FOR_EACH_SSA_TREE_OPERAND (use
, stmt
, iter
, SSA_OP_USE
)
1325 build_cross_bb_scalars_use (scop
, use
, stmt
, &reads
);
1328 /* Handle defs and uses in PHIs. Those need special treatment given
1329 that we have to present ISL with sth that looks like we've rewritten
1330 the IL out-of-SSA. */
1331 for (gphi_iterator psi
= gsi_start_phis (bb
); !gsi_end_p (psi
);
1334 gphi
*phi
= psi
.phi ();
1335 tree res
= gimple_phi_result (phi
);
1336 if (virtual_operand_p (res
)
1337 || scev_analyzable_p (res
, scop
->scop_info
->region
))
1339 /* To simulate out-of-SSA the block containing the PHI node has
1340 reads of the PHI destination. And to preserve SSA dependences
1341 we also write to it (the out-of-SSA decl and the SSA result
1342 are coalesced for dependence purposes which is good enough). */
1343 add_read (&reads
, res
, phi
);
1344 add_write (&writes
, res
);
1346 basic_block bb_for_succs
= bb
;
1347 if (bb_for_succs
== bb_for_succs
->loop_father
->latch
1348 && bb_in_sese_p (bb_for_succs
, scop
->scop_info
->region
)
1349 && sese_trivially_empty_bb_p (bb_for_succs
))
1350 bb_for_succs
= NULL
;
1351 while (bb_for_succs
)
1353 basic_block latch
= NULL
;
1356 FOR_EACH_EDGE (e
, ei
, bb_for_succs
->succs
)
1358 for (gphi_iterator psi
= gsi_start_phis (e
->dest
); !gsi_end_p (psi
);
1361 gphi
*phi
= psi
.phi ();
1362 tree res
= gimple_phi_result (phi
);
1363 if (virtual_operand_p (res
))
1365 /* To simulate out-of-SSA the predecessor of edges into PHI nodes
1366 has a copy from the PHI argument to the PHI destination. */
1367 if (! scev_analyzable_p (res
, scop
->scop_info
->region
))
1368 add_write (&writes
, res
);
1369 tree use
= PHI_ARG_DEF_FROM_EDGE (phi
, e
);
1370 if (TREE_CODE (use
) == SSA_NAME
1371 && ! SSA_NAME_IS_DEFAULT_DEF (use
)
1372 && gimple_bb (SSA_NAME_DEF_STMT (use
)) != bb_for_succs
1373 && ! scev_analyzable_p (use
, scop
->scop_info
->region
))
1374 add_read (&reads
, use
, phi
);
1376 if (e
->dest
== bb_for_succs
->loop_father
->latch
1377 && bb_in_sese_p (e
->dest
, scop
->scop_info
->region
)
1378 && sese_trivially_empty_bb_p (e
->dest
))
1381 /* Handle empty latch block PHIs here, otherwise we confuse ISL
1382 with extra conditional code where it then peels off the last
1383 iteration just because of that. It would be simplest if we
1384 just didn't force simple latches (thus remove the forwarder). */
1385 bb_for_succs
= latch
;
1388 /* For the region exit block add reads for all live-out vars. */
1389 if (bb
== scop
->scop_info
->region
.exit
->src
)
1391 sese_build_liveouts (scop
->scop_info
);
1394 EXECUTE_IF_SET_IN_BITMAP (scop
->scop_info
->liveout
, 0, i
, bi
)
1396 tree use
= ssa_name (i
);
1397 add_read (&reads
, use
, NULL
);
1401 if (drs
.is_empty () && writes
.is_empty () && reads
.is_empty ())
1404 return new_gimple_poly_bb (bb
, drs
, reads
, writes
);
1407 /* Compute alias-sets for all data references in DRS. */
1410 build_alias_set (scop_p scop
)
1412 int num_vertices
= scop
->drs
.length ();
1413 struct graph
*g
= new_graph (num_vertices
);
1419 = find_common_loop (scop
->scop_info
->region
.entry
->dest
->loop_father
,
1420 scop
->scop_info
->region
.exit
->src
->loop_father
);
1422 FOR_EACH_VEC_ELT (scop
->drs
, i
, dr1
)
1423 for (j
= i
+1; scop
->drs
.iterate (j
, &dr2
); j
++)
1424 if (dr_may_alias_p (dr1
->dr
, dr2
->dr
, nest
))
1426 /* Dependences in the same alias set need to be handled
1427 by just looking at DR_ACCESS_FNs. */
1428 if (DR_NUM_DIMENSIONS (dr1
->dr
) == 0
1429 || DR_NUM_DIMENSIONS (dr1
->dr
) != DR_NUM_DIMENSIONS (dr2
->dr
)
1430 || ! operand_equal_p (DR_BASE_OBJECT (dr1
->dr
),
1431 DR_BASE_OBJECT (dr2
->dr
),
1433 || ! types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (dr1
->dr
)),
1434 TREE_TYPE (DR_BASE_OBJECT (dr2
->dr
))))
1443 all_vertices
= XNEWVEC (int, num_vertices
);
1444 for (i
= 0; i
< num_vertices
; i
++)
1445 all_vertices
[i
] = i
;
1448 = graphds_dfs (g
, all_vertices
, num_vertices
, NULL
, true, NULL
) + 1;
1449 free (all_vertices
);
1451 for (i
= 0; i
< g
->n_vertices
; i
++)
1452 scop
->drs
[i
].alias_set
= g
->vertices
[i
].component
+ 1;
1458 /* Gather BBs and conditions for a SCOP. */
1459 class gather_bbs
: public dom_walker
1462 gather_bbs (cdi_direction
, scop_p
, int *);
1464 virtual edge
before_dom_children (basic_block
);
1465 virtual void after_dom_children (basic_block
);
1468 auto_vec
<gimple
*, 3> conditions
, cases
;
1472 gather_bbs::gather_bbs (cdi_direction direction
, scop_p scop
, int *bb_to_rpo
)
1473 : dom_walker (direction
, ALL_BLOCKS
, bb_to_rpo
), scop (scop
)
1477 /* Call-back for dom_walk executed before visiting the dominated
1481 gather_bbs::before_dom_children (basic_block bb
)
1483 sese_info_p region
= scop
->scop_info
;
1484 if (!bb_in_sese_p (bb
, region
->region
))
1485 return dom_walker::STOP
;
1487 /* For loops fully contained in the region record parameters in the
1489 loop_p loop
= bb
->loop_father
;
1490 if (loop
->header
== bb
1491 && loop_in_sese_p (loop
, region
->region
))
1493 tree nb_iters
= number_of_latch_executions (loop
);
1494 if (chrec_contains_symbols (nb_iters
))
1496 nb_iters
= cached_scalar_evolution_in_region (region
->region
,
1498 scan_tree_for_params (region
, nb_iters
);
1502 if (gcond
*stmt
= single_pred_cond_non_loop_exit (bb
))
1504 edge e
= single_pred_edge (bb
);
1505 /* Make sure the condition is in the region and thus was verified
1507 if (e
!= region
->region
.entry
)
1509 conditions
.safe_push (stmt
);
1510 if (e
->flags
& EDGE_TRUE_VALUE
)
1511 cases
.safe_push (stmt
);
1513 cases
.safe_push (NULL
);
1517 scop
->scop_info
->bbs
.safe_push (bb
);
1519 gimple_poly_bb_p gbb
= try_generate_gimple_bb (scop
, bb
);
1523 GBB_CONDITIONS (gbb
) = conditions
.copy ();
1524 GBB_CONDITION_CASES (gbb
) = cases
.copy ();
1526 poly_bb_p pbb
= new_poly_bb (scop
, gbb
);
1527 scop
->pbbs
.safe_push (pbb
);
1530 data_reference_p dr
;
1531 FOR_EACH_VEC_ELT (gbb
->data_refs
, i
, dr
)
1533 DEBUG_PRINT (dp
<< "Adding memory ";
1538 print_generic_expr (dump_file
, dr
->ref
);
1539 dp
<< "\nFrom stmt: ";
1540 print_gimple_stmt (dump_file
, dr
->stmt
, 0));
1542 scop
->drs
.safe_push (dr_info (dr
, pbb
));
1548 /* Call-back for dom_walk executed after visiting the dominated
1552 gather_bbs::after_dom_children (basic_block bb
)
1554 if (!bb_in_sese_p (bb
, scop
->scop_info
->region
))
1557 if (single_pred_cond_non_loop_exit (bb
))
1559 edge e
= single_pred_edge (bb
);
1560 if (e
!= scop
->scop_info
->region
.entry
)
1569 /* Compute sth like an execution order, dominator order with first executing
1570 edges that stay inside the current loop, delaying processing exit edges. */
1572 static int *bb_to_rpo
;
1574 /* Helper for qsort, sorting after order above. */
1577 cmp_pbbs (const void *pa
, const void *pb
)
1579 poly_bb_p bb1
= *((const poly_bb_p
*)pa
);
1580 poly_bb_p bb2
= *((const poly_bb_p
*)pb
);
1581 if (bb_to_rpo
[bb1
->black_box
->bb
->index
]
1582 < bb_to_rpo
[bb2
->black_box
->bb
->index
])
1584 else if (bb_to_rpo
[bb1
->black_box
->bb
->index
]
1585 > bb_to_rpo
[bb2
->black_box
->bb
->index
])
1591 /* Find Static Control Parts (SCoP) in the current function and pushes
1595 build_scops (vec
<scop_p
> *scops
)
1598 dp
.set_dump_file (dump_file
);
1601 sb
.build_scop_depth (current_loops
->tree_root
);
1603 /* Now create scops from the lightweight SESEs. */
1604 vec
<sese_l
> scops_l
= sb
.get_scops ();
1606 /* Domwalk needs a bb to RPO mapping. Compute it once here. */
1607 int *postorder
= XNEWVEC (int, n_basic_blocks_for_fn (cfun
));
1608 int postorder_num
= pre_and_rev_post_order_compute (NULL
, postorder
, true);
1609 bb_to_rpo
= XNEWVEC (int, last_basic_block_for_fn (cfun
));
1610 for (int i
= 0; i
< postorder_num
; ++i
)
1611 bb_to_rpo
[postorder
[i
]] = i
;
1616 FOR_EACH_VEC_ELT (scops_l
, i
, s
)
1618 scop_p scop
= new_scop (s
->entry
, s
->exit
);
1620 /* Record all basic blocks and their conditions in REGION. */
1621 gather_bbs (CDI_DOMINATORS
, scop
, bb_to_rpo
).walk (s
->entry
->dest
);
1623 /* Sort pbbs after execution order for initial schedule generation. */
1624 scop
->pbbs
.qsort (cmp_pbbs
);
1626 if (! build_alias_set (scop
))
1628 DEBUG_PRINT (dp
<< "[scop-detection-fail] cannot handle dependences\n");
1633 /* Do not optimize a scop containing only PBBs that do not belong
1635 if (sb
.nb_pbbs_in_loops (scop
) == 0)
1637 DEBUG_PRINT (dp
<< "[scop-detection-fail] no data references.\n");
1642 unsigned max_arrays
= PARAM_VALUE (PARAM_GRAPHITE_MAX_ARRAYS_PER_SCOP
);
1644 && scop
->drs
.length () >= max_arrays
)
1646 DEBUG_PRINT (dp
<< "[scop-detection-fail] too many data references: "
1647 << scop
->drs
.length ()
1648 << " is larger than --param graphite-max-arrays-per-scop="
1649 << max_arrays
<< ".\n");
1654 find_scop_parameters (scop
);
1655 graphite_dim_t max_dim
= PARAM_VALUE (PARAM_GRAPHITE_MAX_NB_SCOP_PARAMS
);
1657 && scop_nb_params (scop
) > max_dim
)
1659 DEBUG_PRINT (dp
<< "[scop-detection-fail] too many parameters: "
1660 << scop_nb_params (scop
)
1661 << " larger than --param graphite-max-nb-scop-params="
1662 << max_dim
<< ".\n");
1667 scops
->safe_push (scop
);
1672 DEBUG_PRINT (dp
<< "number of SCoPs: " << (scops
? scops
->length () : 0););
1675 #endif /* HAVE_isl */