Fix PR target/63209.
[official-gcc.git] / gcc / gcse.c
blobb7c4788a4f7d6eed1ceb1762a67b1b4ad5dc99b5
1 /* Partial redundancy elimination / Hoisting for RTL.
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* TODO
21 - reordering of memory allocation and freeing to be more space efficient
22 - calc rough register pressure information and use the info to drive all
23 kinds of code motion (including code hoisting) in a unified way.
26 /* References searched while implementing this.
28 Compilers Principles, Techniques and Tools
29 Aho, Sethi, Ullman
30 Addison-Wesley, 1988
32 Global Optimization by Suppression of Partial Redundancies
33 E. Morel, C. Renvoise
34 communications of the acm, Vol. 22, Num. 2, Feb. 1979
36 A Portable Machine-Independent Global Optimizer - Design and Measurements
37 Frederick Chow
38 Stanford Ph.D. thesis, Dec. 1983
40 A Fast Algorithm for Code Movement Optimization
41 D.M. Dhamdhere
42 SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
44 A Solution to a Problem with Morel and Renvoise's
45 Global Optimization by Suppression of Partial Redundancies
46 K-H Drechsler, M.P. Stadel
47 ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
49 Practical Adaptation of the Global Optimization
50 Algorithm of Morel and Renvoise
51 D.M. Dhamdhere
52 ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
54 Efficiently Computing Static Single Assignment Form and the Control
55 Dependence Graph
56 R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
57 ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
59 Lazy Code Motion
60 J. Knoop, O. Ruthing, B. Steffen
61 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
63 What's In a Region? Or Computing Control Dependence Regions in Near-Linear
64 Time for Reducible Flow Control
65 Thomas Ball
66 ACM Letters on Programming Languages and Systems,
67 Vol. 2, Num. 1-4, Mar-Dec 1993
69 An Efficient Representation for Sparse Sets
70 Preston Briggs, Linda Torczon
71 ACM Letters on Programming Languages and Systems,
72 Vol. 2, Num. 1-4, Mar-Dec 1993
74 A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
75 K-H Drechsler, M.P. Stadel
76 ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
78 Partial Dead Code Elimination
79 J. Knoop, O. Ruthing, B. Steffen
80 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
82 Effective Partial Redundancy Elimination
83 P. Briggs, K.D. Cooper
84 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
86 The Program Structure Tree: Computing Control Regions in Linear Time
87 R. Johnson, D. Pearson, K. Pingali
88 ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
90 Optimal Code Motion: Theory and Practice
91 J. Knoop, O. Ruthing, B. Steffen
92 ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
94 The power of assignment motion
95 J. Knoop, O. Ruthing, B. Steffen
96 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
98 Global code motion / global value numbering
99 C. Click
100 ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
102 Value Driven Redundancy Elimination
103 L.T. Simpson
104 Rice University Ph.D. thesis, Apr. 1996
106 Value Numbering
107 L.T. Simpson
108 Massively Scalar Compiler Project, Rice University, Sep. 1996
110 High Performance Compilers for Parallel Computing
111 Michael Wolfe
112 Addison-Wesley, 1996
114 Advanced Compiler Design and Implementation
115 Steven Muchnick
116 Morgan Kaufmann, 1997
118 Building an Optimizing Compiler
119 Robert Morgan
120 Digital Press, 1998
122 People wishing to speed up the code here should read:
123 Elimination Algorithms for Data Flow Analysis
124 B.G. Ryder, M.C. Paull
125 ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
127 How to Analyze Large Programs Efficiently and Informatively
128 D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
129 ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
131 People wishing to do something different can find various possibilities
132 in the above papers and elsewhere.
135 #include "config.h"
136 #include "system.h"
137 #include "coretypes.h"
138 #include "tm.h"
139 #include "diagnostic-core.h"
140 #include "toplev.h"
142 #include "hard-reg-set.h"
143 #include "rtl.h"
144 #include "tree.h"
145 #include "tm_p.h"
146 #include "regs.h"
147 #include "ira.h"
148 #include "flags.h"
149 #include "insn-config.h"
150 #include "recog.h"
151 #include "basic-block.h"
152 #include "function.h"
153 #include "expr.h"
154 #include "except.h"
155 #include "ggc.h"
156 #include "params.h"
157 #include "cselib.h"
158 #include "intl.h"
159 #include "obstack.h"
160 #include "tree-pass.h"
161 #include "hash-table.h"
162 #include "df.h"
163 #include "dbgcnt.h"
164 #include "target.h"
165 #include "gcse.h"
167 /* We support GCSE via Partial Redundancy Elimination. PRE optimizations
168 are a superset of those done by classic GCSE.
170 Two passes of copy/constant propagation are done around PRE or hoisting
171 because the first one enables more GCSE and the second one helps to clean
172 up the copies that PRE and HOIST create. This is needed more for PRE than
173 for HOIST because code hoisting will try to use an existing register
174 containing the common subexpression rather than create a new one. This is
175 harder to do for PRE because of the code motion (which HOIST doesn't do).
177 Expressions we are interested in GCSE-ing are of the form
178 (set (pseudo-reg) (expression)).
179 Function want_to_gcse_p says what these are.
181 In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
182 This allows PRE to hoist expressions that are expressed in multiple insns,
183 such as complex address calculations (e.g. for PIC code, or loads with a
184 high part and a low part).
186 PRE handles moving invariant expressions out of loops (by treating them as
187 partially redundant).
189 **********************
191 We used to support multiple passes but there are diminishing returns in
192 doing so. The first pass usually makes 90% of the changes that are doable.
193 A second pass can make a few more changes made possible by the first pass.
194 Experiments show any further passes don't make enough changes to justify
195 the expense.
197 A study of spec92 using an unlimited number of passes:
198 [1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
199 [6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
200 [12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
202 It was found doing copy propagation between each pass enables further
203 substitutions.
205 This study was done before expressions in REG_EQUAL notes were added as
206 candidate expressions for optimization, and before the GIMPLE optimizers
207 were added. Probably, multiple passes is even less efficient now than
208 at the time when the study was conducted.
210 PRE is quite expensive in complicated functions because the DFA can take
211 a while to converge. Hence we only perform one pass.
213 **********************
215 The steps for PRE are:
217 1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
219 2) Perform the data flow analysis for PRE.
221 3) Delete the redundant instructions
223 4) Insert the required copies [if any] that make the partially
224 redundant instructions fully redundant.
226 5) For other reaching expressions, insert an instruction to copy the value
227 to a newly created pseudo that will reach the redundant instruction.
229 The deletion is done first so that when we do insertions we
230 know which pseudo reg to use.
232 Various papers have argued that PRE DFA is expensive (O(n^2)) and others
233 argue it is not. The number of iterations for the algorithm to converge
234 is typically 2-4 so I don't view it as that expensive (relatively speaking).
236 PRE GCSE depends heavily on the second CPROP pass to clean up the copies
237 we create. To make an expression reach the place where it's redundant,
238 the result of the expression is copied to a new register, and the redundant
239 expression is deleted by replacing it with this new register. Classic GCSE
240 doesn't have this problem as much as it computes the reaching defs of
241 each register in each block and thus can try to use an existing
242 register. */
244 /* GCSE global vars. */
246 struct target_gcse default_target_gcse;
247 #if SWITCHABLE_TARGET
248 struct target_gcse *this_target_gcse = &default_target_gcse;
249 #endif
251 /* Set to non-zero if CSE should run after all GCSE optimizations are done. */
252 int flag_rerun_cse_after_global_opts;
254 /* An obstack for our working variables. */
255 static struct obstack gcse_obstack;
257 /* Hash table of expressions. */
259 struct expr
261 /* The expression. */
262 rtx expr;
263 /* Index in the available expression bitmaps. */
264 int bitmap_index;
265 /* Next entry with the same hash. */
266 struct expr *next_same_hash;
267 /* List of anticipatable occurrences in basic blocks in the function.
268 An "anticipatable occurrence" is one that is the first occurrence in the
269 basic block, the operands are not modified in the basic block prior
270 to the occurrence and the output is not used between the start of
271 the block and the occurrence. */
272 struct occr *antic_occr;
273 /* List of available occurrence in basic blocks in the function.
274 An "available occurrence" is one that is the last occurrence in the
275 basic block and the operands are not modified by following statements in
276 the basic block [including this insn]. */
277 struct occr *avail_occr;
278 /* Non-null if the computation is PRE redundant.
279 The value is the newly created pseudo-reg to record a copy of the
280 expression in all the places that reach the redundant copy. */
281 rtx reaching_reg;
282 /* Maximum distance in instructions this expression can travel.
283 We avoid moving simple expressions for more than a few instructions
284 to keep register pressure under control.
285 A value of "0" removes restrictions on how far the expression can
286 travel. */
287 int max_distance;
290 /* Occurrence of an expression.
291 There is one per basic block. If a pattern appears more than once the
292 last appearance is used [or first for anticipatable expressions]. */
294 struct occr
296 /* Next occurrence of this expression. */
297 struct occr *next;
298 /* The insn that computes the expression. */
299 rtx_insn *insn;
300 /* Nonzero if this [anticipatable] occurrence has been deleted. */
301 char deleted_p;
302 /* Nonzero if this [available] occurrence has been copied to
303 reaching_reg. */
304 /* ??? This is mutually exclusive with deleted_p, so they could share
305 the same byte. */
306 char copied_p;
309 typedef struct occr *occr_t;
311 /* Expression hash tables.
312 Each hash table is an array of buckets.
313 ??? It is known that if it were an array of entries, structure elements
314 `next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
315 not clear whether in the final analysis a sufficient amount of memory would
316 be saved as the size of the available expression bitmaps would be larger
317 [one could build a mapping table without holes afterwards though].
318 Someday I'll perform the computation and figure it out. */
320 struct hash_table_d
322 /* The table itself.
323 This is an array of `expr_hash_table_size' elements. */
324 struct expr **table;
326 /* Size of the hash table, in elements. */
327 unsigned int size;
329 /* Number of hash table elements. */
330 unsigned int n_elems;
333 /* Expression hash table. */
334 static struct hash_table_d expr_hash_table;
336 /* This is a list of expressions which are MEMs and will be used by load
337 or store motion.
338 Load motion tracks MEMs which aren't killed by anything except itself,
339 i.e. loads and stores to a single location.
340 We can then allow movement of these MEM refs with a little special
341 allowance. (all stores copy the same value to the reaching reg used
342 for the loads). This means all values used to store into memory must have
343 no side effects so we can re-issue the setter value. */
345 struct ls_expr
347 struct expr * expr; /* Gcse expression reference for LM. */
348 rtx pattern; /* Pattern of this mem. */
349 rtx pattern_regs; /* List of registers mentioned by the mem. */
350 rtx_insn_list *loads; /* INSN list of loads seen. */
351 rtx_insn_list *stores; /* INSN list of stores seen. */
352 struct ls_expr * next; /* Next in the list. */
353 int invalid; /* Invalid for some reason. */
354 int index; /* If it maps to a bitmap index. */
355 unsigned int hash_index; /* Index when in a hash table. */
356 rtx reaching_reg; /* Register to use when re-writing. */
359 /* Head of the list of load/store memory refs. */
360 static struct ls_expr * pre_ldst_mems = NULL;
362 struct pre_ldst_expr_hasher : typed_noop_remove <ls_expr>
364 typedef ls_expr value_type;
365 typedef value_type compare_type;
366 static inline hashval_t hash (const value_type *);
367 static inline bool equal (const value_type *, const compare_type *);
370 /* Hashtable helpers. */
371 inline hashval_t
372 pre_ldst_expr_hasher::hash (const value_type *x)
374 int do_not_record_p = 0;
375 return
376 hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
379 static int expr_equiv_p (const_rtx, const_rtx);
381 inline bool
382 pre_ldst_expr_hasher::equal (const value_type *ptr1,
383 const compare_type *ptr2)
385 return expr_equiv_p (ptr1->pattern, ptr2->pattern);
388 /* Hashtable for the load/store memory refs. */
389 static hash_table<pre_ldst_expr_hasher> *pre_ldst_table;
391 /* Bitmap containing one bit for each register in the program.
392 Used when performing GCSE to track which registers have been set since
393 the start of the basic block. */
394 static regset reg_set_bitmap;
396 /* Array, indexed by basic block number for a list of insns which modify
397 memory within that block. */
398 static vec<rtx_insn *> *modify_mem_list;
399 static bitmap modify_mem_list_set;
401 typedef struct modify_pair_s
403 rtx dest; /* A MEM. */
404 rtx dest_addr; /* The canonical address of `dest'. */
405 } modify_pair;
408 /* This array parallels modify_mem_list, except that it stores MEMs
409 being set and their canonicalized memory addresses. */
410 static vec<modify_pair> *canon_modify_mem_list;
412 /* Bitmap indexed by block numbers to record which blocks contain
413 function calls. */
414 static bitmap blocks_with_calls;
416 /* Various variables for statistics gathering. */
418 /* Memory used in a pass.
419 This isn't intended to be absolutely precise. Its intent is only
420 to keep an eye on memory usage. */
421 static int bytes_used;
423 /* GCSE substitutions made. */
424 static int gcse_subst_count;
425 /* Number of copy instructions created. */
426 static int gcse_create_count;
428 /* Doing code hoisting. */
429 static bool doing_code_hoisting_p = false;
431 /* For available exprs */
432 static sbitmap *ae_kill;
434 /* Data stored for each basic block. */
435 struct bb_data
437 /* Maximal register pressure inside basic block for given register class
438 (defined only for the pressure classes). */
439 int max_reg_pressure[N_REG_CLASSES];
440 /* Recorded register pressure of basic block before trying to hoist
441 an expression. Will be used to restore the register pressure
442 if the expression should not be hoisted. */
443 int old_pressure;
444 /* Recorded register live_in info of basic block during code hoisting
445 process. BACKUP is used to record live_in info before trying to
446 hoist an expression, and will be used to restore LIVE_IN if the
447 expression should not be hoisted. */
448 bitmap live_in, backup;
451 #define BB_DATA(bb) ((struct bb_data *) (bb)->aux)
453 static basic_block curr_bb;
455 /* Current register pressure for each pressure class. */
456 static int curr_reg_pressure[N_REG_CLASSES];
459 static void compute_can_copy (void);
460 static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
461 static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
462 static void *gcse_alloc (unsigned long);
463 static void alloc_gcse_mem (void);
464 static void free_gcse_mem (void);
465 static void hash_scan_insn (rtx_insn *, struct hash_table_d *);
466 static void hash_scan_set (rtx, rtx_insn *, struct hash_table_d *);
467 static void hash_scan_clobber (rtx, rtx_insn *, struct hash_table_d *);
468 static void hash_scan_call (rtx, rtx_insn *, struct hash_table_d *);
469 static int want_to_gcse_p (rtx, int *);
470 static int oprs_unchanged_p (const_rtx, const rtx_insn *, int);
471 static int oprs_anticipatable_p (const_rtx, const rtx_insn *);
472 static int oprs_available_p (const_rtx, const rtx_insn *);
473 static void insert_expr_in_table (rtx, enum machine_mode, rtx_insn *, int, int,
474 int, struct hash_table_d *);
475 static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
476 static void record_last_reg_set_info (rtx, int);
477 static void record_last_mem_set_info (rtx_insn *);
478 static void record_last_set_info (rtx, const_rtx, void *);
479 static void compute_hash_table (struct hash_table_d *);
480 static void alloc_hash_table (struct hash_table_d *);
481 static void free_hash_table (struct hash_table_d *);
482 static void compute_hash_table_work (struct hash_table_d *);
483 static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
484 static void compute_transp (const_rtx, int, sbitmap *);
485 static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
486 struct hash_table_d *);
487 static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
488 static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
489 static void canon_list_insert (rtx, const_rtx, void *);
490 static void alloc_pre_mem (int, int);
491 static void free_pre_mem (void);
492 static struct edge_list *compute_pre_data (void);
493 static int pre_expr_reaches_here_p (basic_block, struct expr *,
494 basic_block);
495 static void insert_insn_end_basic_block (struct expr *, basic_block);
496 static void pre_insert_copy_insn (struct expr *, rtx_insn *);
497 static void pre_insert_copies (void);
498 static int pre_delete (void);
499 static int pre_gcse (struct edge_list *);
500 static int one_pre_gcse_pass (void);
501 static void add_label_notes (rtx, rtx);
502 static void alloc_code_hoist_mem (int, int);
503 static void free_code_hoist_mem (void);
504 static void compute_code_hoist_vbeinout (void);
505 static void compute_code_hoist_data (void);
506 static int should_hoist_expr_to_dom (basic_block, struct expr *, basic_block,
507 sbitmap, int, int *, enum reg_class,
508 int *, bitmap, rtx_insn *);
509 static int hoist_code (void);
510 static enum reg_class get_regno_pressure_class (int regno, int *nregs);
511 static enum reg_class get_pressure_class_and_nregs (rtx_insn *insn, int *nregs);
512 static int one_code_hoisting_pass (void);
513 static rtx_insn *process_insert_insn (struct expr *);
514 static int pre_edge_insert (struct edge_list *, struct expr **);
515 static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
516 basic_block, char *);
517 static struct ls_expr * ldst_entry (rtx);
518 static void free_ldst_entry (struct ls_expr *);
519 static void free_ld_motion_mems (void);
520 static void print_ldst_list (FILE *);
521 static struct ls_expr * find_rtx_in_ldst (rtx);
522 static int simple_mem (const_rtx);
523 static void invalidate_any_buried_refs (rtx);
524 static void compute_ld_motion_mems (void);
525 static void trim_ld_motion_mems (void);
526 static void update_ld_motion_stores (struct expr *);
527 static void clear_modify_mem_tables (void);
528 static void free_modify_mem_tables (void);
529 static rtx gcse_emit_move_after (rtx, rtx, rtx_insn *);
530 static bool is_too_expensive (const char *);
532 #define GNEW(T) ((T *) gmalloc (sizeof (T)))
533 #define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
535 #define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
536 #define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
538 #define GNEWVAR(T, S) ((T *) gmalloc ((S)))
539 #define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
541 #define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
542 #define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
544 /* Misc. utilities. */
546 #define can_copy \
547 (this_target_gcse->x_can_copy)
548 #define can_copy_init_p \
549 (this_target_gcse->x_can_copy_init_p)
551 /* Compute which modes support reg/reg copy operations. */
553 static void
554 compute_can_copy (void)
556 int i;
557 #ifndef AVOID_CCMODE_COPIES
558 rtx reg, insn;
559 #endif
560 memset (can_copy, 0, NUM_MACHINE_MODES);
562 start_sequence ();
563 for (i = 0; i < NUM_MACHINE_MODES; i++)
564 if (GET_MODE_CLASS (i) == MODE_CC)
566 #ifdef AVOID_CCMODE_COPIES
567 can_copy[i] = 0;
568 #else
569 reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
570 insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
571 if (recog (PATTERN (insn), insn, NULL) >= 0)
572 can_copy[i] = 1;
573 #endif
575 else
576 can_copy[i] = 1;
578 end_sequence ();
581 /* Returns whether the mode supports reg/reg copy operations. */
583 bool
584 can_copy_p (enum machine_mode mode)
586 if (! can_copy_init_p)
588 compute_can_copy ();
589 can_copy_init_p = true;
592 return can_copy[mode] != 0;
595 /* Cover function to xmalloc to record bytes allocated. */
597 static void *
598 gmalloc (size_t size)
600 bytes_used += size;
601 return xmalloc (size);
604 /* Cover function to xcalloc to record bytes allocated. */
606 static void *
607 gcalloc (size_t nelem, size_t elsize)
609 bytes_used += nelem * elsize;
610 return xcalloc (nelem, elsize);
613 /* Cover function to obstack_alloc. */
615 static void *
616 gcse_alloc (unsigned long size)
618 bytes_used += size;
619 return obstack_alloc (&gcse_obstack, size);
622 /* Allocate memory for the reg/memory set tracking tables.
623 This is called at the start of each pass. */
625 static void
626 alloc_gcse_mem (void)
628 /* Allocate vars to track sets of regs. */
629 reg_set_bitmap = ALLOC_REG_SET (NULL);
631 /* Allocate array to keep a list of insns which modify memory in each
632 basic block. The two typedefs are needed to work around the
633 pre-processor limitation with template types in macro arguments. */
634 typedef vec<rtx_insn *> vec_rtx_heap;
635 typedef vec<modify_pair> vec_modify_pair_heap;
636 modify_mem_list = GCNEWVEC (vec_rtx_heap, last_basic_block_for_fn (cfun));
637 canon_modify_mem_list = GCNEWVEC (vec_modify_pair_heap,
638 last_basic_block_for_fn (cfun));
639 modify_mem_list_set = BITMAP_ALLOC (NULL);
640 blocks_with_calls = BITMAP_ALLOC (NULL);
643 /* Free memory allocated by alloc_gcse_mem. */
645 static void
646 free_gcse_mem (void)
648 FREE_REG_SET (reg_set_bitmap);
650 free_modify_mem_tables ();
651 BITMAP_FREE (modify_mem_list_set);
652 BITMAP_FREE (blocks_with_calls);
655 /* Compute the local properties of each recorded expression.
657 Local properties are those that are defined by the block, irrespective of
658 other blocks.
660 An expression is transparent in a block if its operands are not modified
661 in the block.
663 An expression is computed (locally available) in a block if it is computed
664 at least once and expression would contain the same value if the
665 computation was moved to the end of the block.
667 An expression is locally anticipatable in a block if it is computed at
668 least once and expression would contain the same value if the computation
669 was moved to the beginning of the block.
671 We call this routine for pre and code hoisting. They all compute
672 basically the same information and thus can easily share this code.
674 TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
675 properties. If NULL, then it is not necessary to compute or record that
676 particular property.
678 TABLE controls which hash table to look at. */
680 static void
681 compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
682 struct hash_table_d *table)
684 unsigned int i;
686 /* Initialize any bitmaps that were passed in. */
687 if (transp)
689 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
692 if (comp)
693 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
694 if (antloc)
695 bitmap_vector_clear (antloc, last_basic_block_for_fn (cfun));
697 for (i = 0; i < table->size; i++)
699 struct expr *expr;
701 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
703 int indx = expr->bitmap_index;
704 struct occr *occr;
706 /* The expression is transparent in this block if it is not killed.
707 We start by assuming all are transparent [none are killed], and
708 then reset the bits for those that are. */
709 if (transp)
710 compute_transp (expr->expr, indx, transp);
712 /* The occurrences recorded in antic_occr are exactly those that
713 we want to set to nonzero in ANTLOC. */
714 if (antloc)
715 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
717 bitmap_set_bit (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
719 /* While we're scanning the table, this is a good place to
720 initialize this. */
721 occr->deleted_p = 0;
724 /* The occurrences recorded in avail_occr are exactly those that
725 we want to set to nonzero in COMP. */
726 if (comp)
727 for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
729 bitmap_set_bit (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
731 /* While we're scanning the table, this is a good place to
732 initialize this. */
733 occr->copied_p = 0;
736 /* While we're scanning the table, this is a good place to
737 initialize this. */
738 expr->reaching_reg = 0;
743 /* Hash table support. */
745 struct reg_avail_info
747 basic_block last_bb;
748 int first_set;
749 int last_set;
752 static struct reg_avail_info *reg_avail_info;
753 static basic_block current_bb;
755 /* See whether X, the source of a set, is something we want to consider for
756 GCSE. */
758 static int
759 want_to_gcse_p (rtx x, int *max_distance_ptr)
761 #ifdef STACK_REGS
762 /* On register stack architectures, don't GCSE constants from the
763 constant pool, as the benefits are often swamped by the overhead
764 of shuffling the register stack between basic blocks. */
765 if (IS_STACK_MODE (GET_MODE (x)))
766 x = avoid_constant_pool_reference (x);
767 #endif
769 /* GCSE'ing constants:
771 We do not specifically distinguish between constant and non-constant
772 expressions in PRE and Hoist. We use set_src_cost below to limit
773 the maximum distance simple expressions can travel.
775 Nevertheless, constants are much easier to GCSE, and, hence,
776 it is easy to overdo the optimizations. Usually, excessive PRE and
777 Hoisting of constant leads to increased register pressure.
779 RA can deal with this by rematerialing some of the constants.
780 Therefore, it is important that the back-end generates sets of constants
781 in a way that allows reload rematerialize them under high register
782 pressure, i.e., a pseudo register with REG_EQUAL to constant
783 is set only once. Failing to do so will result in IRA/reload
784 spilling such constants under high register pressure instead of
785 rematerializing them. */
787 switch (GET_CODE (x))
789 case REG:
790 case SUBREG:
791 case CALL:
792 return 0;
794 CASE_CONST_ANY:
795 if (!doing_code_hoisting_p)
796 /* Do not PRE constants. */
797 return 0;
799 /* FALLTHRU */
801 default:
802 if (doing_code_hoisting_p)
803 /* PRE doesn't implement max_distance restriction. */
805 int cost;
806 int max_distance;
808 gcc_assert (!optimize_function_for_speed_p (cfun)
809 && optimize_function_for_size_p (cfun));
810 cost = set_src_cost (x, 0);
812 if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
814 max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
815 if (max_distance == 0)
816 return 0;
818 gcc_assert (max_distance > 0);
820 else
821 max_distance = 0;
823 if (max_distance_ptr)
824 *max_distance_ptr = max_distance;
827 return can_assign_to_reg_without_clobbers_p (x);
831 /* Used internally by can_assign_to_reg_without_clobbers_p. */
833 static GTY(()) rtx_insn *test_insn;
835 /* Return true if we can assign X to a pseudo register such that the
836 resulting insn does not result in clobbering a hard register as a
837 side-effect.
839 Additionally, if the target requires it, check that the resulting insn
840 can be copied. If it cannot, this means that X is special and probably
841 has hidden side-effects we don't want to mess with.
843 This function is typically used by code motion passes, to verify
844 that it is safe to insert an insn without worrying about clobbering
845 maybe live hard regs. */
847 bool
848 can_assign_to_reg_without_clobbers_p (rtx x)
850 int num_clobbers = 0;
851 int icode;
852 bool can_assign = false;
854 /* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
855 if (general_operand (x, GET_MODE (x)))
856 return 1;
857 else if (GET_MODE (x) == VOIDmode)
858 return 0;
860 /* Otherwise, check if we can make a valid insn from it. First initialize
861 our test insn if we haven't already. */
862 if (test_insn == 0)
864 test_insn
865 = make_insn_raw (gen_rtx_SET (VOIDmode,
866 gen_rtx_REG (word_mode,
867 FIRST_PSEUDO_REGISTER * 2),
868 const0_rtx));
869 SET_NEXT_INSN (test_insn) = SET_PREV_INSN (test_insn) = 0;
870 INSN_LOCATION (test_insn) = UNKNOWN_LOCATION;
873 /* Now make an insn like the one we would make when GCSE'ing and see if
874 valid. */
875 PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
876 SET_SRC (PATTERN (test_insn)) = x;
878 icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
880 /* If the test insn is valid and doesn't need clobbers, and the target also
881 has no objections, we're good. */
882 if (icode >= 0
883 && (num_clobbers == 0 || !added_clobbers_hard_reg_p (icode))
884 && ! (targetm.cannot_copy_insn_p
885 && targetm.cannot_copy_insn_p (test_insn)))
886 can_assign = true;
888 /* Make sure test_insn doesn't have any pointers into GC space. */
889 SET_SRC (PATTERN (test_insn)) = NULL_RTX;
891 return can_assign;
894 /* Return nonzero if the operands of expression X are unchanged from the
895 start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
896 or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
898 static int
899 oprs_unchanged_p (const_rtx x, const rtx_insn *insn, int avail_p)
901 int i, j;
902 enum rtx_code code;
903 const char *fmt;
905 if (x == 0)
906 return 1;
908 code = GET_CODE (x);
909 switch (code)
911 case REG:
913 struct reg_avail_info *info = &reg_avail_info[REGNO (x)];
915 if (info->last_bb != current_bb)
916 return 1;
917 if (avail_p)
918 return info->last_set < DF_INSN_LUID (insn);
919 else
920 return info->first_set >= DF_INSN_LUID (insn);
923 case MEM:
924 if (! flag_gcse_lm
925 || load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
926 x, avail_p))
927 return 0;
928 else
929 return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
931 case PRE_DEC:
932 case PRE_INC:
933 case POST_DEC:
934 case POST_INC:
935 case PRE_MODIFY:
936 case POST_MODIFY:
937 return 0;
939 case PC:
940 case CC0: /*FIXME*/
941 case CONST:
942 CASE_CONST_ANY:
943 case SYMBOL_REF:
944 case LABEL_REF:
945 case ADDR_VEC:
946 case ADDR_DIFF_VEC:
947 return 1;
949 default:
950 break;
953 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
955 if (fmt[i] == 'e')
957 /* If we are about to do the last recursive call needed at this
958 level, change it into iteration. This function is called enough
959 to be worth it. */
960 if (i == 0)
961 return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
963 else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
964 return 0;
966 else if (fmt[i] == 'E')
967 for (j = 0; j < XVECLEN (x, i); j++)
968 if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
969 return 0;
972 return 1;
975 /* Info passed from load_killed_in_block_p to mems_conflict_for_gcse_p. */
977 struct mem_conflict_info
979 /* A memory reference for a load instruction, mems_conflict_for_gcse_p will
980 see if a memory store conflicts with this memory load. */
981 const_rtx mem;
983 /* True if mems_conflict_for_gcse_p finds a conflict between two memory
984 references. */
985 bool conflict;
988 /* DEST is the output of an instruction. If it is a memory reference and
989 possibly conflicts with the load found in DATA, then communicate this
990 information back through DATA. */
992 static void
993 mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
994 void *data)
996 struct mem_conflict_info *mci = (struct mem_conflict_info *) data;
998 while (GET_CODE (dest) == SUBREG
999 || GET_CODE (dest) == ZERO_EXTRACT
1000 || GET_CODE (dest) == STRICT_LOW_PART)
1001 dest = XEXP (dest, 0);
1003 /* If DEST is not a MEM, then it will not conflict with the load. Note
1004 that function calls are assumed to clobber memory, but are handled
1005 elsewhere. */
1006 if (! MEM_P (dest))
1007 return;
1009 /* If we are setting a MEM in our list of specially recognized MEMs,
1010 don't mark as killed this time. */
1011 if (pre_ldst_mems != NULL && expr_equiv_p (dest, mci->mem))
1013 if (!find_rtx_in_ldst (dest))
1014 mci->conflict = true;
1015 return;
1018 if (true_dependence (dest, GET_MODE (dest), mci->mem))
1019 mci->conflict = true;
1022 /* Return nonzero if the expression in X (a memory reference) is killed
1023 in block BB before or after the insn with the LUID in UID_LIMIT.
1024 AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
1025 before UID_LIMIT.
1027 To check the entire block, set UID_LIMIT to max_uid + 1 and
1028 AVAIL_P to 0. */
1030 static int
1031 load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x,
1032 int avail_p)
1034 vec<rtx_insn *> list = modify_mem_list[bb->index];
1035 rtx_insn *setter;
1036 unsigned ix;
1038 /* If this is a readonly then we aren't going to be changing it. */
1039 if (MEM_READONLY_P (x))
1040 return 0;
1042 FOR_EACH_VEC_ELT_REVERSE (list, ix, setter)
1044 struct mem_conflict_info mci;
1046 /* Ignore entries in the list that do not apply. */
1047 if ((avail_p
1048 && DF_INSN_LUID (setter) < uid_limit)
1049 || (! avail_p
1050 && DF_INSN_LUID (setter) > uid_limit))
1051 continue;
1053 /* If SETTER is a call everything is clobbered. Note that calls
1054 to pure functions are never put on the list, so we need not
1055 worry about them. */
1056 if (CALL_P (setter))
1057 return 1;
1059 /* SETTER must be an INSN of some kind that sets memory. Call
1060 note_stores to examine each hunk of memory that is modified. */
1061 mci.mem = x;
1062 mci.conflict = false;
1063 note_stores (PATTERN (setter), mems_conflict_for_gcse_p, &mci);
1064 if (mci.conflict)
1065 return 1;
1067 return 0;
1070 /* Return nonzero if the operands of expression X are unchanged from
1071 the start of INSN's basic block up to but not including INSN. */
1073 static int
1074 oprs_anticipatable_p (const_rtx x, const rtx_insn *insn)
1076 return oprs_unchanged_p (x, insn, 0);
1079 /* Return nonzero if the operands of expression X are unchanged from
1080 INSN to the end of INSN's basic block. */
1082 static int
1083 oprs_available_p (const_rtx x, const rtx_insn *insn)
1085 return oprs_unchanged_p (x, insn, 1);
1088 /* Hash expression X.
1090 MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
1091 indicating if a volatile operand is found or if the expression contains
1092 something we don't want to insert in the table. HASH_TABLE_SIZE is
1093 the current size of the hash table to be probed. */
1095 static unsigned int
1096 hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
1097 int hash_table_size)
1099 unsigned int hash;
1101 *do_not_record_p = 0;
1103 hash = hash_rtx (x, mode, do_not_record_p, NULL, /*have_reg_qty=*/false);
1104 return hash % hash_table_size;
1107 /* Return nonzero if exp1 is equivalent to exp2. */
1109 static int
1110 expr_equiv_p (const_rtx x, const_rtx y)
1112 return exp_equiv_p (x, y, 0, true);
1115 /* Insert expression X in INSN in the hash TABLE.
1116 If it is already present, record it as the last occurrence in INSN's
1117 basic block.
1119 MODE is the mode of the value X is being stored into.
1120 It is only used if X is a CONST_INT.
1122 ANTIC_P is nonzero if X is an anticipatable expression.
1123 AVAIL_P is nonzero if X is an available expression.
1125 MAX_DISTANCE is the maximum distance in instructions this expression can
1126 be moved. */
1128 static void
1129 insert_expr_in_table (rtx x, enum machine_mode mode, rtx_insn *insn,
1130 int antic_p,
1131 int avail_p, int max_distance, struct hash_table_d *table)
1133 int found, do_not_record_p;
1134 unsigned int hash;
1135 struct expr *cur_expr, *last_expr = NULL;
1136 struct occr *antic_occr, *avail_occr;
1138 hash = hash_expr (x, mode, &do_not_record_p, table->size);
1140 /* Do not insert expression in table if it contains volatile operands,
1141 or if hash_expr determines the expression is something we don't want
1142 to or can't handle. */
1143 if (do_not_record_p)
1144 return;
1146 cur_expr = table->table[hash];
1147 found = 0;
1149 while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
1151 /* If the expression isn't found, save a pointer to the end of
1152 the list. */
1153 last_expr = cur_expr;
1154 cur_expr = cur_expr->next_same_hash;
1157 if (! found)
1159 cur_expr = GOBNEW (struct expr);
1160 bytes_used += sizeof (struct expr);
1161 if (table->table[hash] == NULL)
1162 /* This is the first pattern that hashed to this index. */
1163 table->table[hash] = cur_expr;
1164 else
1165 /* Add EXPR to end of this hash chain. */
1166 last_expr->next_same_hash = cur_expr;
1168 /* Set the fields of the expr element. */
1169 cur_expr->expr = x;
1170 cur_expr->bitmap_index = table->n_elems++;
1171 cur_expr->next_same_hash = NULL;
1172 cur_expr->antic_occr = NULL;
1173 cur_expr->avail_occr = NULL;
1174 gcc_assert (max_distance >= 0);
1175 cur_expr->max_distance = max_distance;
1177 else
1178 gcc_assert (cur_expr->max_distance == max_distance);
1180 /* Now record the occurrence(s). */
1181 if (antic_p)
1183 antic_occr = cur_expr->antic_occr;
1185 if (antic_occr
1186 && BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
1187 antic_occr = NULL;
1189 if (antic_occr)
1190 /* Found another instance of the expression in the same basic block.
1191 Prefer the currently recorded one. We want the first one in the
1192 block and the block is scanned from start to end. */
1193 ; /* nothing to do */
1194 else
1196 /* First occurrence of this expression in this basic block. */
1197 antic_occr = GOBNEW (struct occr);
1198 bytes_used += sizeof (struct occr);
1199 antic_occr->insn = insn;
1200 antic_occr->next = cur_expr->antic_occr;
1201 antic_occr->deleted_p = 0;
1202 cur_expr->antic_occr = antic_occr;
1206 if (avail_p)
1208 avail_occr = cur_expr->avail_occr;
1210 if (avail_occr
1211 && BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
1213 /* Found another instance of the expression in the same basic block.
1214 Prefer this occurrence to the currently recorded one. We want
1215 the last one in the block and the block is scanned from start
1216 to end. */
1217 avail_occr->insn = insn;
1219 else
1221 /* First occurrence of this expression in this basic block. */
1222 avail_occr = GOBNEW (struct occr);
1223 bytes_used += sizeof (struct occr);
1224 avail_occr->insn = insn;
1225 avail_occr->next = cur_expr->avail_occr;
1226 avail_occr->deleted_p = 0;
1227 cur_expr->avail_occr = avail_occr;
1232 /* Scan SET present in INSN and add an entry to the hash TABLE. */
1234 static void
1235 hash_scan_set (rtx set, rtx_insn *insn, struct hash_table_d *table)
1237 rtx src = SET_SRC (set);
1238 rtx dest = SET_DEST (set);
1239 rtx note;
1241 if (GET_CODE (src) == CALL)
1242 hash_scan_call (src, insn, table);
1244 else if (REG_P (dest))
1246 unsigned int regno = REGNO (dest);
1247 int max_distance = 0;
1249 /* See if a REG_EQUAL note shows this equivalent to a simpler expression.
1251 This allows us to do a single GCSE pass and still eliminate
1252 redundant constants, addresses or other expressions that are
1253 constructed with multiple instructions.
1255 However, keep the original SRC if INSN is a simple reg-reg move.
1256 In this case, there will almost always be a REG_EQUAL note on the
1257 insn that sets SRC. By recording the REG_EQUAL value here as SRC
1258 for INSN, we miss copy propagation opportunities and we perform the
1259 same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
1260 do more than one PRE GCSE pass.
1262 Note that this does not impede profitable constant propagations. We
1263 "look through" reg-reg sets in lookup_avail_set. */
1264 note = find_reg_equal_equiv_note (insn);
1265 if (note != 0
1266 && REG_NOTE_KIND (note) == REG_EQUAL
1267 && !REG_P (src)
1268 && want_to_gcse_p (XEXP (note, 0), NULL))
1269 src = XEXP (note, 0), set = gen_rtx_SET (VOIDmode, dest, src);
1271 /* Only record sets of pseudo-regs in the hash table. */
1272 if (regno >= FIRST_PSEUDO_REGISTER
1273 /* Don't GCSE something if we can't do a reg/reg copy. */
1274 && can_copy_p (GET_MODE (dest))
1275 /* GCSE commonly inserts instruction after the insn. We can't
1276 do that easily for EH edges so disable GCSE on these for now. */
1277 /* ??? We can now easily create new EH landing pads at the
1278 gimple level, for splitting edges; there's no reason we
1279 can't do the same thing at the rtl level. */
1280 && !can_throw_internal (insn)
1281 /* Is SET_SRC something we want to gcse? */
1282 && want_to_gcse_p (src, &max_distance)
1283 /* Don't CSE a nop. */
1284 && ! set_noop_p (set)
1285 /* Don't GCSE if it has attached REG_EQUIV note.
1286 At this point this only function parameters should have
1287 REG_EQUIV notes and if the argument slot is used somewhere
1288 explicitly, it means address of parameter has been taken,
1289 so we should not extend the lifetime of the pseudo. */
1290 && (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
1292 /* An expression is not anticipatable if its operands are
1293 modified before this insn or if this is not the only SET in
1294 this insn. The latter condition does not have to mean that
1295 SRC itself is not anticipatable, but we just will not be
1296 able to handle code motion of insns with multiple sets. */
1297 int antic_p = oprs_anticipatable_p (src, insn)
1298 && !multiple_sets (insn);
1299 /* An expression is not available if its operands are
1300 subsequently modified, including this insn. It's also not
1301 available if this is a branch, because we can't insert
1302 a set after the branch. */
1303 int avail_p = (oprs_available_p (src, insn)
1304 && ! JUMP_P (insn));
1306 insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
1307 max_distance, table);
1310 /* In case of store we want to consider the memory value as available in
1311 the REG stored in that memory. This makes it possible to remove
1312 redundant loads from due to stores to the same location. */
1313 else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
1315 unsigned int regno = REGNO (src);
1316 int max_distance = 0;
1318 /* Only record sets of pseudo-regs in the hash table. */
1319 if (regno >= FIRST_PSEUDO_REGISTER
1320 /* Don't GCSE something if we can't do a reg/reg copy. */
1321 && can_copy_p (GET_MODE (src))
1322 /* GCSE commonly inserts instruction after the insn. We can't
1323 do that easily for EH edges so disable GCSE on these for now. */
1324 && !can_throw_internal (insn)
1325 /* Is SET_DEST something we want to gcse? */
1326 && want_to_gcse_p (dest, &max_distance)
1327 /* Don't CSE a nop. */
1328 && ! set_noop_p (set)
1329 /* Don't GCSE if it has attached REG_EQUIV note.
1330 At this point this only function parameters should have
1331 REG_EQUIV notes and if the argument slot is used somewhere
1332 explicitly, it means address of parameter has been taken,
1333 so we should not extend the lifetime of the pseudo. */
1334 && ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
1335 || ! MEM_P (XEXP (note, 0))))
1337 /* Stores are never anticipatable. */
1338 int antic_p = 0;
1339 /* An expression is not available if its operands are
1340 subsequently modified, including this insn. It's also not
1341 available if this is a branch, because we can't insert
1342 a set after the branch. */
1343 int avail_p = oprs_available_p (dest, insn)
1344 && ! JUMP_P (insn);
1346 /* Record the memory expression (DEST) in the hash table. */
1347 insert_expr_in_table (dest, GET_MODE (dest), insn,
1348 antic_p, avail_p, max_distance, table);
1353 static void
1354 hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1355 struct hash_table_d *table ATTRIBUTE_UNUSED)
1357 /* Currently nothing to do. */
1360 static void
1361 hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx_insn *insn ATTRIBUTE_UNUSED,
1362 struct hash_table_d *table ATTRIBUTE_UNUSED)
1364 /* Currently nothing to do. */
1367 /* Process INSN and add hash table entries as appropriate. */
1369 static void
1370 hash_scan_insn (rtx_insn *insn, struct hash_table_d *table)
1372 rtx pat = PATTERN (insn);
1373 int i;
1375 /* Pick out the sets of INSN and for other forms of instructions record
1376 what's been modified. */
1378 if (GET_CODE (pat) == SET)
1379 hash_scan_set (pat, insn, table);
1381 else if (GET_CODE (pat) == CLOBBER)
1382 hash_scan_clobber (pat, insn, table);
1384 else if (GET_CODE (pat) == CALL)
1385 hash_scan_call (pat, insn, table);
1387 else if (GET_CODE (pat) == PARALLEL)
1388 for (i = 0; i < XVECLEN (pat, 0); i++)
1390 rtx x = XVECEXP (pat, 0, i);
1392 if (GET_CODE (x) == SET)
1393 hash_scan_set (x, insn, table);
1394 else if (GET_CODE (x) == CLOBBER)
1395 hash_scan_clobber (x, insn, table);
1396 else if (GET_CODE (x) == CALL)
1397 hash_scan_call (x, insn, table);
1401 /* Dump the hash table TABLE to file FILE under the name NAME. */
1403 static void
1404 dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
1406 int i;
1407 /* Flattened out table, so it's printed in proper order. */
1408 struct expr **flat_table;
1409 unsigned int *hash_val;
1410 struct expr *expr;
1412 flat_table = XCNEWVEC (struct expr *, table->n_elems);
1413 hash_val = XNEWVEC (unsigned int, table->n_elems);
1415 for (i = 0; i < (int) table->size; i++)
1416 for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
1418 flat_table[expr->bitmap_index] = expr;
1419 hash_val[expr->bitmap_index] = i;
1422 fprintf (file, "%s hash table (%d buckets, %d entries)\n",
1423 name, table->size, table->n_elems);
1425 for (i = 0; i < (int) table->n_elems; i++)
1426 if (flat_table[i] != 0)
1428 expr = flat_table[i];
1429 fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
1430 expr->bitmap_index, hash_val[i], expr->max_distance);
1431 print_rtl (file, expr->expr);
1432 fprintf (file, "\n");
1435 fprintf (file, "\n");
1437 free (flat_table);
1438 free (hash_val);
1441 /* Record register first/last/block set information for REGNO in INSN.
1443 first_set records the first place in the block where the register
1444 is set and is used to compute "anticipatability".
1446 last_set records the last place in the block where the register
1447 is set and is used to compute "availability".
1449 last_bb records the block for which first_set and last_set are
1450 valid, as a quick test to invalidate them. */
1452 static void
1453 record_last_reg_set_info (rtx insn, int regno)
1455 struct reg_avail_info *info = &reg_avail_info[regno];
1456 int luid = DF_INSN_LUID (insn);
1458 info->last_set = luid;
1459 if (info->last_bb != current_bb)
1461 info->last_bb = current_bb;
1462 info->first_set = luid;
1466 /* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
1467 Note we store a pair of elements in the list, so they have to be
1468 taken off pairwise. */
1470 static void
1471 canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx x ATTRIBUTE_UNUSED,
1472 void * v_insn)
1474 rtx dest_addr, insn;
1475 int bb;
1476 modify_pair pair;
1478 while (GET_CODE (dest) == SUBREG
1479 || GET_CODE (dest) == ZERO_EXTRACT
1480 || GET_CODE (dest) == STRICT_LOW_PART)
1481 dest = XEXP (dest, 0);
1483 /* If DEST is not a MEM, then it will not conflict with a load. Note
1484 that function calls are assumed to clobber memory, but are handled
1485 elsewhere. */
1487 if (! MEM_P (dest))
1488 return;
1490 dest_addr = get_addr (XEXP (dest, 0));
1491 dest_addr = canon_rtx (dest_addr);
1492 insn = (rtx) v_insn;
1493 bb = BLOCK_FOR_INSN (insn)->index;
1495 pair.dest = dest;
1496 pair.dest_addr = dest_addr;
1497 canon_modify_mem_list[bb].safe_push (pair);
1500 /* Record memory modification information for INSN. We do not actually care
1501 about the memory location(s) that are set, or even how they are set (consider
1502 a CALL_INSN). We merely need to record which insns modify memory. */
1504 static void
1505 record_last_mem_set_info (rtx_insn *insn)
1507 int bb;
1509 if (! flag_gcse_lm)
1510 return;
1512 /* load_killed_in_block_p will handle the case of calls clobbering
1513 everything. */
1514 bb = BLOCK_FOR_INSN (insn)->index;
1515 modify_mem_list[bb].safe_push (insn);
1516 bitmap_set_bit (modify_mem_list_set, bb);
1518 if (CALL_P (insn))
1519 bitmap_set_bit (blocks_with_calls, bb);
1520 else
1521 note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
1524 /* Called from compute_hash_table via note_stores to handle one
1525 SET or CLOBBER in an insn. DATA is really the instruction in which
1526 the SET is taking place. */
1528 static void
1529 record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
1531 rtx_insn *last_set_insn = (rtx_insn *) data;
1533 if (GET_CODE (dest) == SUBREG)
1534 dest = SUBREG_REG (dest);
1536 if (REG_P (dest))
1537 record_last_reg_set_info (last_set_insn, REGNO (dest));
1538 else if (MEM_P (dest)
1539 /* Ignore pushes, they clobber nothing. */
1540 && ! push_operand (dest, GET_MODE (dest)))
1541 record_last_mem_set_info (last_set_insn);
1544 /* Top level function to create an expression hash table.
1546 Expression entries are placed in the hash table if
1547 - they are of the form (set (pseudo-reg) src),
1548 - src is something we want to perform GCSE on,
1549 - none of the operands are subsequently modified in the block
1551 Currently src must be a pseudo-reg or a const_int.
1553 TABLE is the table computed. */
1555 static void
1556 compute_hash_table_work (struct hash_table_d *table)
1558 int i;
1560 /* re-Cache any INSN_LIST nodes we have allocated. */
1561 clear_modify_mem_tables ();
1562 /* Some working arrays used to track first and last set in each block. */
1563 reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
1565 for (i = 0; i < max_reg_num (); ++i)
1566 reg_avail_info[i].last_bb = NULL;
1568 FOR_EACH_BB_FN (current_bb, cfun)
1570 rtx_insn *insn;
1571 unsigned int regno;
1573 /* First pass over the instructions records information used to
1574 determine when registers and memory are first and last set. */
1575 FOR_BB_INSNS (current_bb, insn)
1577 if (!NONDEBUG_INSN_P (insn))
1578 continue;
1580 if (CALL_P (insn))
1582 hard_reg_set_iterator hrsi;
1583 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call,
1584 0, regno, hrsi)
1585 record_last_reg_set_info (insn, regno);
1587 if (! RTL_CONST_OR_PURE_CALL_P (insn))
1588 record_last_mem_set_info (insn);
1591 note_stores (PATTERN (insn), record_last_set_info, insn);
1594 /* The next pass builds the hash table. */
1595 FOR_BB_INSNS (current_bb, insn)
1596 if (NONDEBUG_INSN_P (insn))
1597 hash_scan_insn (insn, table);
1600 free (reg_avail_info);
1601 reg_avail_info = NULL;
1604 /* Allocate space for the set/expr hash TABLE.
1605 It is used to determine the number of buckets to use. */
1607 static void
1608 alloc_hash_table (struct hash_table_d *table)
1610 int n;
1612 n = get_max_insn_count ();
1614 table->size = n / 4;
1615 if (table->size < 11)
1616 table->size = 11;
1618 /* Attempt to maintain efficient use of hash table.
1619 Making it an odd number is simplest for now.
1620 ??? Later take some measurements. */
1621 table->size |= 1;
1622 n = table->size * sizeof (struct expr *);
1623 table->table = GNEWVAR (struct expr *, n);
1626 /* Free things allocated by alloc_hash_table. */
1628 static void
1629 free_hash_table (struct hash_table_d *table)
1631 free (table->table);
1634 /* Compute the expression hash table TABLE. */
1636 static void
1637 compute_hash_table (struct hash_table_d *table)
1639 /* Initialize count of number of entries in hash table. */
1640 table->n_elems = 0;
1641 memset (table->table, 0, table->size * sizeof (struct expr *));
1643 compute_hash_table_work (table);
1646 /* Expression tracking support. */
1648 /* Clear canon_modify_mem_list and modify_mem_list tables. */
1649 static void
1650 clear_modify_mem_tables (void)
1652 unsigned i;
1653 bitmap_iterator bi;
1655 EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
1657 modify_mem_list[i].release ();
1658 canon_modify_mem_list[i].release ();
1660 bitmap_clear (modify_mem_list_set);
1661 bitmap_clear (blocks_with_calls);
1664 /* Release memory used by modify_mem_list_set. */
1666 static void
1667 free_modify_mem_tables (void)
1669 clear_modify_mem_tables ();
1670 free (modify_mem_list);
1671 free (canon_modify_mem_list);
1672 modify_mem_list = 0;
1673 canon_modify_mem_list = 0;
1676 /* For each block, compute whether X is transparent. X is either an
1677 expression or an assignment [though we don't care which, for this context
1678 an assignment is treated as an expression]. For each block where an
1679 element of X is modified, reset the INDX bit in BMAP. */
1681 static void
1682 compute_transp (const_rtx x, int indx, sbitmap *bmap)
1684 int i, j;
1685 enum rtx_code code;
1686 const char *fmt;
1688 /* repeat is used to turn tail-recursion into iteration since GCC
1689 can't do it when there's no return value. */
1690 repeat:
1692 if (x == 0)
1693 return;
1695 code = GET_CODE (x);
1696 switch (code)
1698 case REG:
1700 df_ref def;
1701 for (def = DF_REG_DEF_CHAIN (REGNO (x));
1702 def;
1703 def = DF_REF_NEXT_REG (def))
1704 bitmap_clear_bit (bmap[DF_REF_BB (def)->index], indx);
1707 return;
1709 case MEM:
1710 if (! MEM_READONLY_P (x))
1712 bitmap_iterator bi;
1713 unsigned bb_index;
1714 rtx x_addr;
1716 x_addr = get_addr (XEXP (x, 0));
1717 x_addr = canon_rtx (x_addr);
1719 /* First handle all the blocks with calls. We don't need to
1720 do any list walking for them. */
1721 EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
1723 bitmap_clear_bit (bmap[bb_index], indx);
1726 /* Now iterate over the blocks which have memory modifications
1727 but which do not have any calls. */
1728 EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
1729 blocks_with_calls,
1730 0, bb_index, bi)
1732 vec<modify_pair> list
1733 = canon_modify_mem_list[bb_index];
1734 modify_pair *pair;
1735 unsigned ix;
1737 FOR_EACH_VEC_ELT_REVERSE (list, ix, pair)
1739 rtx dest = pair->dest;
1740 rtx dest_addr = pair->dest_addr;
1742 if (canon_true_dependence (dest, GET_MODE (dest),
1743 dest_addr, x, x_addr))
1745 bitmap_clear_bit (bmap[bb_index], indx);
1746 break;
1752 x = XEXP (x, 0);
1753 goto repeat;
1755 case PC:
1756 case CC0: /*FIXME*/
1757 case CONST:
1758 CASE_CONST_ANY:
1759 case SYMBOL_REF:
1760 case LABEL_REF:
1761 case ADDR_VEC:
1762 case ADDR_DIFF_VEC:
1763 return;
1765 default:
1766 break;
1769 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
1771 if (fmt[i] == 'e')
1773 /* If we are about to do the last recursive call
1774 needed at this level, change it into iteration.
1775 This function is called enough to be worth it. */
1776 if (i == 0)
1778 x = XEXP (x, i);
1779 goto repeat;
1782 compute_transp (XEXP (x, i), indx, bmap);
1784 else if (fmt[i] == 'E')
1785 for (j = 0; j < XVECLEN (x, i); j++)
1786 compute_transp (XVECEXP (x, i, j), indx, bmap);
1790 /* Compute PRE+LCM working variables. */
1792 /* Local properties of expressions. */
1794 /* Nonzero for expressions that are transparent in the block. */
1795 static sbitmap *transp;
1797 /* Nonzero for expressions that are computed (available) in the block. */
1798 static sbitmap *comp;
1800 /* Nonzero for expressions that are locally anticipatable in the block. */
1801 static sbitmap *antloc;
1803 /* Nonzero for expressions where this block is an optimal computation
1804 point. */
1805 static sbitmap *pre_optimal;
1807 /* Nonzero for expressions which are redundant in a particular block. */
1808 static sbitmap *pre_redundant;
1810 /* Nonzero for expressions which should be inserted on a specific edge. */
1811 static sbitmap *pre_insert_map;
1813 /* Nonzero for expressions which should be deleted in a specific block. */
1814 static sbitmap *pre_delete_map;
1816 /* Allocate vars used for PRE analysis. */
1818 static void
1819 alloc_pre_mem (int n_blocks, int n_exprs)
1821 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
1822 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
1823 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
1825 pre_optimal = NULL;
1826 pre_redundant = NULL;
1827 pre_insert_map = NULL;
1828 pre_delete_map = NULL;
1829 ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
1831 /* pre_insert and pre_delete are allocated later. */
1834 /* Free vars used for PRE analysis. */
1836 static void
1837 free_pre_mem (void)
1839 sbitmap_vector_free (transp);
1840 sbitmap_vector_free (comp);
1842 /* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
1844 if (pre_optimal)
1845 sbitmap_vector_free (pre_optimal);
1846 if (pre_redundant)
1847 sbitmap_vector_free (pre_redundant);
1848 if (pre_insert_map)
1849 sbitmap_vector_free (pre_insert_map);
1850 if (pre_delete_map)
1851 sbitmap_vector_free (pre_delete_map);
1853 transp = comp = NULL;
1854 pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
1857 /* Remove certain expressions from anticipatable and transparent
1858 sets of basic blocks that have incoming abnormal edge.
1859 For PRE remove potentially trapping expressions to avoid placing
1860 them on abnormal edges. For hoisting remove memory references that
1861 can be clobbered by calls. */
1863 static void
1864 prune_expressions (bool pre_p)
1866 sbitmap prune_exprs;
1867 struct expr *expr;
1868 unsigned int ui;
1869 basic_block bb;
1871 prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
1872 bitmap_clear (prune_exprs);
1873 for (ui = 0; ui < expr_hash_table.size; ui++)
1875 for (expr = expr_hash_table.table[ui]; expr; expr = expr->next_same_hash)
1877 /* Note potentially trapping expressions. */
1878 if (may_trap_p (expr->expr))
1880 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1881 continue;
1884 if (!pre_p && MEM_P (expr->expr))
1885 /* Note memory references that can be clobbered by a call.
1886 We do not split abnormal edges in hoisting, so would
1887 a memory reference get hoisted along an abnormal edge,
1888 it would be placed /before/ the call. Therefore, only
1889 constant memory references can be hoisted along abnormal
1890 edges. */
1892 if (GET_CODE (XEXP (expr->expr, 0)) == SYMBOL_REF
1893 && CONSTANT_POOL_ADDRESS_P (XEXP (expr->expr, 0)))
1894 continue;
1896 if (MEM_READONLY_P (expr->expr)
1897 && !MEM_VOLATILE_P (expr->expr)
1898 && MEM_NOTRAP_P (expr->expr))
1899 /* Constant memory reference, e.g., a PIC address. */
1900 continue;
1902 /* ??? Optimally, we would use interprocedural alias
1903 analysis to determine if this mem is actually killed
1904 by this call. */
1906 bitmap_set_bit (prune_exprs, expr->bitmap_index);
1911 FOR_EACH_BB_FN (bb, cfun)
1913 edge e;
1914 edge_iterator ei;
1916 /* If the current block is the destination of an abnormal edge, we
1917 kill all trapping (for PRE) and memory (for hoist) expressions
1918 because we won't be able to properly place the instruction on
1919 the edge. So make them neither anticipatable nor transparent.
1920 This is fairly conservative.
1922 ??? For hoisting it may be necessary to check for set-and-jump
1923 instructions here, not just for abnormal edges. The general problem
1924 is that when an expression cannot not be placed right at the end of
1925 a basic block we should account for any side-effects of a subsequent
1926 jump instructions that could clobber the expression. It would
1927 be best to implement this check along the lines of
1928 should_hoist_expr_to_dom where the target block is already known
1929 and, hence, there's no need to conservatively prune expressions on
1930 "intermediate" set-and-jump instructions. */
1931 FOR_EACH_EDGE (e, ei, bb->preds)
1932 if ((e->flags & EDGE_ABNORMAL)
1933 && (pre_p || CALL_P (BB_END (e->src))))
1935 bitmap_and_compl (antloc[bb->index],
1936 antloc[bb->index], prune_exprs);
1937 bitmap_and_compl (transp[bb->index],
1938 transp[bb->index], prune_exprs);
1939 break;
1943 sbitmap_free (prune_exprs);
1946 /* It may be necessary to insert a large number of insns on edges to
1947 make the existing occurrences of expressions fully redundant. This
1948 routine examines the set of insertions and deletions and if the ratio
1949 of insertions to deletions is too high for a particular expression, then
1950 the expression is removed from the insertion/deletion sets.
1952 N_ELEMS is the number of elements in the hash table. */
1954 static void
1955 prune_insertions_deletions (int n_elems)
1957 sbitmap_iterator sbi;
1958 sbitmap prune_exprs;
1960 /* We always use I to iterate over blocks/edges and J to iterate over
1961 expressions. */
1962 unsigned int i, j;
1964 /* Counts for the number of times an expression needs to be inserted and
1965 number of times an expression can be removed as a result. */
1966 int *insertions = GCNEWVEC (int, n_elems);
1967 int *deletions = GCNEWVEC (int, n_elems);
1969 /* Set of expressions which require too many insertions relative to
1970 the number of deletions achieved. We will prune these out of the
1971 insertion/deletion sets. */
1972 prune_exprs = sbitmap_alloc (n_elems);
1973 bitmap_clear (prune_exprs);
1975 /* Iterate over the edges counting the number of times each expression
1976 needs to be inserted. */
1977 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
1979 EXECUTE_IF_SET_IN_BITMAP (pre_insert_map[i], 0, j, sbi)
1980 insertions[j]++;
1983 /* Similarly for deletions, but those occur in blocks rather than on
1984 edges. */
1985 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
1987 EXECUTE_IF_SET_IN_BITMAP (pre_delete_map[i], 0, j, sbi)
1988 deletions[j]++;
1991 /* Now that we have accurate counts, iterate over the elements in the
1992 hash table and see if any need too many insertions relative to the
1993 number of evaluations that can be removed. If so, mark them in
1994 PRUNE_EXPRS. */
1995 for (j = 0; j < (unsigned) n_elems; j++)
1996 if (deletions[j]
1997 && ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
1998 bitmap_set_bit (prune_exprs, j);
2000 /* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
2001 EXECUTE_IF_SET_IN_BITMAP (prune_exprs, 0, j, sbi)
2003 for (i = 0; i < (unsigned) n_edges_for_fn (cfun); i++)
2004 bitmap_clear_bit (pre_insert_map[i], j);
2006 for (i = 0; i < (unsigned) last_basic_block_for_fn (cfun); i++)
2007 bitmap_clear_bit (pre_delete_map[i], j);
2010 sbitmap_free (prune_exprs);
2011 free (insertions);
2012 free (deletions);
2015 /* Top level routine to do the dataflow analysis needed by PRE. */
2017 static struct edge_list *
2018 compute_pre_data (void)
2020 struct edge_list *edge_list;
2021 basic_block bb;
2023 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2024 prune_expressions (true);
2025 bitmap_vector_clear (ae_kill, last_basic_block_for_fn (cfun));
2027 /* Compute ae_kill for each basic block using:
2029 ~(TRANSP | COMP)
2032 FOR_EACH_BB_FN (bb, cfun)
2034 bitmap_ior (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
2035 bitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
2038 edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
2039 ae_kill, &pre_insert_map, &pre_delete_map);
2040 sbitmap_vector_free (antloc);
2041 antloc = NULL;
2042 sbitmap_vector_free (ae_kill);
2043 ae_kill = NULL;
2045 prune_insertions_deletions (expr_hash_table.n_elems);
2047 return edge_list;
2050 /* PRE utilities */
2052 /* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
2053 block BB.
2055 VISITED is a pointer to a working buffer for tracking which BB's have
2056 been visited. It is NULL for the top-level call.
2058 We treat reaching expressions that go through blocks containing the same
2059 reaching expression as "not reaching". E.g. if EXPR is generated in blocks
2060 2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
2061 2 as not reaching. The intent is to improve the probability of finding
2062 only one reaching expression and to reduce register lifetimes by picking
2063 the closest such expression. */
2065 static int
2066 pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr,
2067 basic_block bb, char *visited)
2069 edge pred;
2070 edge_iterator ei;
2072 FOR_EACH_EDGE (pred, ei, bb->preds)
2074 basic_block pred_bb = pred->src;
2076 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
2077 /* Has predecessor has already been visited? */
2078 || visited[pred_bb->index])
2079 ;/* Nothing to do. */
2081 /* Does this predecessor generate this expression? */
2082 else if (bitmap_bit_p (comp[pred_bb->index], expr->bitmap_index))
2084 /* Is this the occurrence we're looking for?
2085 Note that there's only one generating occurrence per block
2086 so we just need to check the block number. */
2087 if (occr_bb == pred_bb)
2088 return 1;
2090 visited[pred_bb->index] = 1;
2092 /* Ignore this predecessor if it kills the expression. */
2093 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
2094 visited[pred_bb->index] = 1;
2096 /* Neither gen nor kill. */
2097 else
2099 visited[pred_bb->index] = 1;
2100 if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
2101 return 1;
2105 /* All paths have been checked. */
2106 return 0;
2109 /* The wrapper for pre_expr_reaches_here_work that ensures that any
2110 memory allocated for that function is returned. */
2112 static int
2113 pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
2115 int rval;
2116 char *visited = XCNEWVEC (char, last_basic_block_for_fn (cfun));
2118 rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
2120 free (visited);
2121 return rval;
2124 /* Generate RTL to copy an EXPR to its `reaching_reg' and return it. */
2126 static rtx_insn *
2127 process_insert_insn (struct expr *expr)
2129 rtx reg = expr->reaching_reg;
2130 /* Copy the expression to make sure we don't have any sharing issues. */
2131 rtx exp = copy_rtx (expr->expr);
2132 rtx_insn *pat;
2134 start_sequence ();
2136 /* If the expression is something that's an operand, like a constant,
2137 just copy it to a register. */
2138 if (general_operand (exp, GET_MODE (reg)))
2139 emit_move_insn (reg, exp);
2141 /* Otherwise, make a new insn to compute this expression and make sure the
2142 insn will be recognized (this also adds any needed CLOBBERs). */
2143 else
2145 rtx_insn *insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
2147 if (insn_invalid_p (insn, false))
2148 gcc_unreachable ();
2151 pat = get_insns ();
2152 end_sequence ();
2154 return pat;
2157 /* Add EXPR to the end of basic block BB.
2159 This is used by both the PRE and code hoisting. */
2161 static void
2162 insert_insn_end_basic_block (struct expr *expr, basic_block bb)
2164 rtx_insn *insn = BB_END (bb);
2165 rtx_insn *new_insn;
2166 rtx reg = expr->reaching_reg;
2167 int regno = REGNO (reg);
2168 rtx_insn *pat, *pat_end;
2170 pat = process_insert_insn (expr);
2171 gcc_assert (pat && INSN_P (pat));
2173 pat_end = pat;
2174 while (NEXT_INSN (pat_end) != NULL_RTX)
2175 pat_end = NEXT_INSN (pat_end);
2177 /* If the last insn is a jump, insert EXPR in front [taking care to
2178 handle cc0, etc. properly]. Similarly we need to care trapping
2179 instructions in presence of non-call exceptions. */
2181 if (JUMP_P (insn)
2182 || (NONJUMP_INSN_P (insn)
2183 && (!single_succ_p (bb)
2184 || single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
2186 #ifdef HAVE_cc0
2187 /* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
2188 if cc0 isn't set. */
2189 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2190 if (note)
2191 insn = safe_as_a <rtx_insn *> (XEXP (note, 0));
2192 else
2194 rtx_insn *maybe_cc0_setter = prev_nonnote_insn (insn);
2195 if (maybe_cc0_setter
2196 && INSN_P (maybe_cc0_setter)
2197 && sets_cc0_p (PATTERN (maybe_cc0_setter)))
2198 insn = maybe_cc0_setter;
2200 #endif
2201 /* FIXME: What if something in cc0/jump uses value set in new insn? */
2202 new_insn = emit_insn_before_noloc (pat, insn, bb);
2205 /* Likewise if the last insn is a call, as will happen in the presence
2206 of exception handling. */
2207 else if (CALL_P (insn)
2208 && (!single_succ_p (bb)
2209 || single_succ_edge (bb)->flags & EDGE_ABNORMAL))
2211 /* Keeping in mind targets with small register classes and parameters
2212 in registers, we search backward and place the instructions before
2213 the first parameter is loaded. Do this for everyone for consistency
2214 and a presumption that we'll get better code elsewhere as well. */
2216 /* Since different machines initialize their parameter registers
2217 in different orders, assume nothing. Collect the set of all
2218 parameter registers. */
2219 insn = find_first_parameter_load (insn, BB_HEAD (bb));
2221 /* If we found all the parameter loads, then we want to insert
2222 before the first parameter load.
2224 If we did not find all the parameter loads, then we might have
2225 stopped on the head of the block, which could be a CODE_LABEL.
2226 If we inserted before the CODE_LABEL, then we would be putting
2227 the insn in the wrong basic block. In that case, put the insn
2228 after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
2229 while (LABEL_P (insn)
2230 || NOTE_INSN_BASIC_BLOCK_P (insn))
2231 insn = NEXT_INSN (insn);
2233 new_insn = emit_insn_before_noloc (pat, insn, bb);
2235 else
2236 new_insn = emit_insn_after_noloc (pat, insn, bb);
2238 while (1)
2240 if (INSN_P (pat))
2241 add_label_notes (PATTERN (pat), new_insn);
2242 if (pat == pat_end)
2243 break;
2244 pat = NEXT_INSN (pat);
2247 gcse_create_count++;
2249 if (dump_file)
2251 fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
2252 bb->index, INSN_UID (new_insn));
2253 fprintf (dump_file, "copying expression %d to reg %d\n",
2254 expr->bitmap_index, regno);
2258 /* Insert partially redundant expressions on edges in the CFG to make
2259 the expressions fully redundant. */
2261 static int
2262 pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
2264 int e, i, j, num_edges, set_size, did_insert = 0;
2265 sbitmap *inserted;
2267 /* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
2268 if it reaches any of the deleted expressions. */
2270 set_size = pre_insert_map[0]->size;
2271 num_edges = NUM_EDGES (edge_list);
2272 inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
2273 bitmap_vector_clear (inserted, num_edges);
2275 for (e = 0; e < num_edges; e++)
2277 int indx;
2278 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
2280 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
2282 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
2284 for (j = indx;
2285 insert && j < (int) expr_hash_table.n_elems;
2286 j++, insert >>= 1)
2287 if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
2289 struct expr *expr = index_map[j];
2290 struct occr *occr;
2292 /* Now look at each deleted occurrence of this expression. */
2293 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2295 if (! occr->deleted_p)
2296 continue;
2298 /* Insert this expression on this edge if it would
2299 reach the deleted occurrence in BB. */
2300 if (!bitmap_bit_p (inserted[e], j))
2302 rtx_insn *insn;
2303 edge eg = INDEX_EDGE (edge_list, e);
2305 /* We can't insert anything on an abnormal and
2306 critical edge, so we insert the insn at the end of
2307 the previous block. There are several alternatives
2308 detailed in Morgans book P277 (sec 10.5) for
2309 handling this situation. This one is easiest for
2310 now. */
2312 if (eg->flags & EDGE_ABNORMAL)
2313 insert_insn_end_basic_block (index_map[j], bb);
2314 else
2316 insn = process_insert_insn (index_map[j]);
2317 insert_insn_on_edge (insn, eg);
2320 if (dump_file)
2322 fprintf (dump_file, "PRE: edge (%d,%d), ",
2323 bb->index,
2324 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
2325 fprintf (dump_file, "copy expression %d\n",
2326 expr->bitmap_index);
2329 update_ld_motion_stores (expr);
2330 bitmap_set_bit (inserted[e], j);
2331 did_insert = 1;
2332 gcse_create_count++;
2339 sbitmap_vector_free (inserted);
2340 return did_insert;
2343 /* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
2344 Given "old_reg <- expr" (INSN), instead of adding after it
2345 reaching_reg <- old_reg
2346 it's better to do the following:
2347 reaching_reg <- expr
2348 old_reg <- reaching_reg
2349 because this way copy propagation can discover additional PRE
2350 opportunities. But if this fails, we try the old way.
2351 When "expr" is a store, i.e.
2352 given "MEM <- old_reg", instead of adding after it
2353 reaching_reg <- old_reg
2354 it's better to add it before as follows:
2355 reaching_reg <- old_reg
2356 MEM <- reaching_reg. */
2358 static void
2359 pre_insert_copy_insn (struct expr *expr, rtx_insn *insn)
2361 rtx reg = expr->reaching_reg;
2362 int regno = REGNO (reg);
2363 int indx = expr->bitmap_index;
2364 rtx pat = PATTERN (insn);
2365 rtx set, first_set, new_insn;
2366 rtx old_reg;
2367 int i;
2369 /* This block matches the logic in hash_scan_insn. */
2370 switch (GET_CODE (pat))
2372 case SET:
2373 set = pat;
2374 break;
2376 case PARALLEL:
2377 /* Search through the parallel looking for the set whose
2378 source was the expression that we're interested in. */
2379 first_set = NULL_RTX;
2380 set = NULL_RTX;
2381 for (i = 0; i < XVECLEN (pat, 0); i++)
2383 rtx x = XVECEXP (pat, 0, i);
2384 if (GET_CODE (x) == SET)
2386 /* If the source was a REG_EQUAL or REG_EQUIV note, we
2387 may not find an equivalent expression, but in this
2388 case the PARALLEL will have a single set. */
2389 if (first_set == NULL_RTX)
2390 first_set = x;
2391 if (expr_equiv_p (SET_SRC (x), expr->expr))
2393 set = x;
2394 break;
2399 gcc_assert (first_set);
2400 if (set == NULL_RTX)
2401 set = first_set;
2402 break;
2404 default:
2405 gcc_unreachable ();
2408 if (REG_P (SET_DEST (set)))
2410 old_reg = SET_DEST (set);
2411 /* Check if we can modify the set destination in the original insn. */
2412 if (validate_change (insn, &SET_DEST (set), reg, 0))
2414 new_insn = gen_move_insn (old_reg, reg);
2415 new_insn = emit_insn_after (new_insn, insn);
2417 else
2419 new_insn = gen_move_insn (reg, old_reg);
2420 new_insn = emit_insn_after (new_insn, insn);
2423 else /* This is possible only in case of a store to memory. */
2425 old_reg = SET_SRC (set);
2426 new_insn = gen_move_insn (reg, old_reg);
2428 /* Check if we can modify the set source in the original insn. */
2429 if (validate_change (insn, &SET_SRC (set), reg, 0))
2430 new_insn = emit_insn_before (new_insn, insn);
2431 else
2432 new_insn = emit_insn_after (new_insn, insn);
2435 gcse_create_count++;
2437 if (dump_file)
2438 fprintf (dump_file,
2439 "PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
2440 BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
2441 INSN_UID (insn), regno);
2444 /* Copy available expressions that reach the redundant expression
2445 to `reaching_reg'. */
2447 static void
2448 pre_insert_copies (void)
2450 unsigned int i, added_copy;
2451 struct expr *expr;
2452 struct occr *occr;
2453 struct occr *avail;
2455 /* For each available expression in the table, copy the result to
2456 `reaching_reg' if the expression reaches a deleted one.
2458 ??? The current algorithm is rather brute force.
2459 Need to do some profiling. */
2461 for (i = 0; i < expr_hash_table.size; i++)
2462 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2464 /* If the basic block isn't reachable, PPOUT will be TRUE. However,
2465 we don't want to insert a copy here because the expression may not
2466 really be redundant. So only insert an insn if the expression was
2467 deleted. This test also avoids further processing if the
2468 expression wasn't deleted anywhere. */
2469 if (expr->reaching_reg == NULL)
2470 continue;
2472 /* Set when we add a copy for that expression. */
2473 added_copy = 0;
2475 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2477 if (! occr->deleted_p)
2478 continue;
2480 for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
2482 rtx_insn *insn = avail->insn;
2484 /* No need to handle this one if handled already. */
2485 if (avail->copied_p)
2486 continue;
2488 /* Don't handle this one if it's a redundant one. */
2489 if (INSN_DELETED_P (insn))
2490 continue;
2492 /* Or if the expression doesn't reach the deleted one. */
2493 if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
2494 expr,
2495 BLOCK_FOR_INSN (occr->insn)))
2496 continue;
2498 added_copy = 1;
2500 /* Copy the result of avail to reaching_reg. */
2501 pre_insert_copy_insn (expr, insn);
2502 avail->copied_p = 1;
2506 if (added_copy)
2507 update_ld_motion_stores (expr);
2511 struct set_data
2513 rtx_insn *insn;
2514 const_rtx set;
2515 int nsets;
2518 /* Increment number of sets and record set in DATA. */
2520 static void
2521 record_set_data (rtx dest, const_rtx set, void *data)
2523 struct set_data *s = (struct set_data *)data;
2525 if (GET_CODE (set) == SET)
2527 /* We allow insns having multiple sets, where all but one are
2528 dead as single set insns. In the common case only a single
2529 set is present, so we want to avoid checking for REG_UNUSED
2530 notes unless necessary. */
2531 if (s->nsets == 1
2532 && find_reg_note (s->insn, REG_UNUSED, SET_DEST (s->set))
2533 && !side_effects_p (s->set))
2534 s->nsets = 0;
2536 if (!s->nsets)
2538 /* Record this set. */
2539 s->nsets += 1;
2540 s->set = set;
2542 else if (!find_reg_note (s->insn, REG_UNUSED, dest)
2543 || side_effects_p (set))
2544 s->nsets += 1;
2548 static const_rtx
2549 single_set_gcse (rtx_insn *insn)
2551 struct set_data s;
2552 rtx pattern;
2554 gcc_assert (INSN_P (insn));
2556 /* Optimize common case. */
2557 pattern = PATTERN (insn);
2558 if (GET_CODE (pattern) == SET)
2559 return pattern;
2561 s.insn = insn;
2562 s.nsets = 0;
2563 note_stores (pattern, record_set_data, &s);
2565 /* Considered invariant insns have exactly one set. */
2566 gcc_assert (s.nsets == 1);
2567 return s.set;
2570 /* Emit move from SRC to DEST noting the equivalence with expression computed
2571 in INSN. */
2573 static rtx
2574 gcse_emit_move_after (rtx dest, rtx src, rtx_insn *insn)
2576 rtx_insn *new_rtx;
2577 const_rtx set = single_set_gcse (insn);
2578 rtx set2;
2579 rtx note;
2580 rtx eqv = NULL_RTX;
2582 /* This should never fail since we're creating a reg->reg copy
2583 we've verified to be valid. */
2585 new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
2587 /* Note the equivalence for local CSE pass. Take the note from the old
2588 set if there was one. Otherwise record the SET_SRC from the old set
2589 unless DEST is also an operand of the SET_SRC. */
2590 set2 = single_set (new_rtx);
2591 if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
2592 return new_rtx;
2593 if ((note = find_reg_equal_equiv_note (insn)))
2594 eqv = XEXP (note, 0);
2595 else if (! REG_P (dest)
2596 || ! reg_mentioned_p (dest, SET_SRC (set)))
2597 eqv = SET_SRC (set);
2599 if (eqv != NULL_RTX)
2600 set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
2602 return new_rtx;
2605 /* Delete redundant computations.
2606 Deletion is done by changing the insn to copy the `reaching_reg' of
2607 the expression into the result of the SET. It is left to later passes
2608 to propagate the copy or eliminate it.
2610 Return nonzero if a change is made. */
2612 static int
2613 pre_delete (void)
2615 unsigned int i;
2616 int changed;
2617 struct expr *expr;
2618 struct occr *occr;
2620 changed = 0;
2621 for (i = 0; i < expr_hash_table.size; i++)
2622 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2624 int indx = expr->bitmap_index;
2626 /* We only need to search antic_occr since we require ANTLOC != 0. */
2627 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
2629 rtx_insn *insn = occr->insn;
2630 rtx set;
2631 basic_block bb = BLOCK_FOR_INSN (insn);
2633 /* We only delete insns that have a single_set. */
2634 if (bitmap_bit_p (pre_delete_map[bb->index], indx)
2635 && (set = single_set (insn)) != 0
2636 && dbg_cnt (pre_insn))
2638 /* Create a pseudo-reg to store the result of reaching
2639 expressions into. Get the mode for the new pseudo from
2640 the mode of the original destination pseudo. */
2641 if (expr->reaching_reg == NULL)
2642 expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
2644 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg, insn);
2645 delete_insn (insn);
2646 occr->deleted_p = 1;
2647 changed = 1;
2648 gcse_subst_count++;
2650 if (dump_file)
2652 fprintf (dump_file,
2653 "PRE: redundant insn %d (expression %d) in ",
2654 INSN_UID (insn), indx);
2655 fprintf (dump_file, "bb %d, reaching reg is %d\n",
2656 bb->index, REGNO (expr->reaching_reg));
2662 return changed;
2665 /* Perform GCSE optimizations using PRE.
2666 This is called by one_pre_gcse_pass after all the dataflow analysis
2667 has been done.
2669 This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
2670 lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
2671 Compiler Design and Implementation.
2673 ??? A new pseudo reg is created to hold the reaching expression. The nice
2674 thing about the classical approach is that it would try to use an existing
2675 reg. If the register can't be adequately optimized [i.e. we introduce
2676 reload problems], one could add a pass here to propagate the new register
2677 through the block.
2679 ??? We don't handle single sets in PARALLELs because we're [currently] not
2680 able to copy the rest of the parallel when we insert copies to create full
2681 redundancies from partial redundancies. However, there's no reason why we
2682 can't handle PARALLELs in the cases where there are no partial
2683 redundancies. */
2685 static int
2686 pre_gcse (struct edge_list *edge_list)
2688 unsigned int i;
2689 int did_insert, changed;
2690 struct expr **index_map;
2691 struct expr *expr;
2693 /* Compute a mapping from expression number (`bitmap_index') to
2694 hash table entry. */
2696 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
2697 for (i = 0; i < expr_hash_table.size; i++)
2698 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
2699 index_map[expr->bitmap_index] = expr;
2701 /* Delete the redundant insns first so that
2702 - we know what register to use for the new insns and for the other
2703 ones with reaching expressions
2704 - we know which insns are redundant when we go to create copies */
2706 changed = pre_delete ();
2707 did_insert = pre_edge_insert (edge_list, index_map);
2709 /* In other places with reaching expressions, copy the expression to the
2710 specially allocated pseudo-reg that reaches the redundant expr. */
2711 pre_insert_copies ();
2712 if (did_insert)
2714 commit_edge_insertions ();
2715 changed = 1;
2718 free (index_map);
2719 return changed;
2722 /* Top level routine to perform one PRE GCSE pass.
2724 Return nonzero if a change was made. */
2726 static int
2727 one_pre_gcse_pass (void)
2729 int changed = 0;
2731 gcse_subst_count = 0;
2732 gcse_create_count = 0;
2734 /* Return if there's nothing to do, or it is too expensive. */
2735 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
2736 || is_too_expensive (_("PRE disabled")))
2737 return 0;
2739 /* We need alias. */
2740 init_alias_analysis ();
2742 bytes_used = 0;
2743 gcc_obstack_init (&gcse_obstack);
2744 alloc_gcse_mem ();
2746 alloc_hash_table (&expr_hash_table);
2747 add_noreturn_fake_exit_edges ();
2748 if (flag_gcse_lm)
2749 compute_ld_motion_mems ();
2751 compute_hash_table (&expr_hash_table);
2752 if (flag_gcse_lm)
2753 trim_ld_motion_mems ();
2754 if (dump_file)
2755 dump_hash_table (dump_file, "Expression", &expr_hash_table);
2757 if (expr_hash_table.n_elems > 0)
2759 struct edge_list *edge_list;
2760 alloc_pre_mem (last_basic_block_for_fn (cfun), expr_hash_table.n_elems);
2761 edge_list = compute_pre_data ();
2762 changed |= pre_gcse (edge_list);
2763 free_edge_list (edge_list);
2764 free_pre_mem ();
2767 if (flag_gcse_lm)
2768 free_ld_motion_mems ();
2769 remove_fake_exit_edges ();
2770 free_hash_table (&expr_hash_table);
2772 free_gcse_mem ();
2773 obstack_free (&gcse_obstack, NULL);
2775 /* We are finished with alias. */
2776 end_alias_analysis ();
2778 if (dump_file)
2780 fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
2781 current_function_name (), n_basic_blocks_for_fn (cfun),
2782 bytes_used);
2783 fprintf (dump_file, "%d substs, %d insns created\n",
2784 gcse_subst_count, gcse_create_count);
2787 return changed;
2790 /* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
2791 to INSN. If such notes are added to an insn which references a
2792 CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
2793 that note, because the following loop optimization pass requires
2794 them. */
2796 /* ??? If there was a jump optimization pass after gcse and before loop,
2797 then we would not need to do this here, because jump would add the
2798 necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
2800 static void
2801 add_label_notes (rtx x, rtx insn)
2803 enum rtx_code code = GET_CODE (x);
2804 int i, j;
2805 const char *fmt;
2807 if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
2809 /* This code used to ignore labels that referred to dispatch tables to
2810 avoid flow generating (slightly) worse code.
2812 We no longer ignore such label references (see LABEL_REF handling in
2813 mark_jump_label for additional information). */
2815 /* There's no reason for current users to emit jump-insns with
2816 such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
2817 notes. */
2818 gcc_assert (!JUMP_P (insn));
2819 add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
2821 if (LABEL_P (XEXP (x, 0)))
2822 LABEL_NUSES (XEXP (x, 0))++;
2824 return;
2827 for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
2829 if (fmt[i] == 'e')
2830 add_label_notes (XEXP (x, i), insn);
2831 else if (fmt[i] == 'E')
2832 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2833 add_label_notes (XVECEXP (x, i, j), insn);
2837 /* Code Hoisting variables and subroutines. */
2839 /* Very busy expressions. */
2840 static sbitmap *hoist_vbein;
2841 static sbitmap *hoist_vbeout;
2843 /* ??? We could compute post dominators and run this algorithm in
2844 reverse to perform tail merging, doing so would probably be
2845 more effective than the tail merging code in jump.c.
2847 It's unclear if tail merging could be run in parallel with
2848 code hoisting. It would be nice. */
2850 /* Allocate vars used for code hoisting analysis. */
2852 static void
2853 alloc_code_hoist_mem (int n_blocks, int n_exprs)
2855 antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
2856 transp = sbitmap_vector_alloc (n_blocks, n_exprs);
2857 comp = sbitmap_vector_alloc (n_blocks, n_exprs);
2859 hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
2860 hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
2863 /* Free vars used for code hoisting analysis. */
2865 static void
2866 free_code_hoist_mem (void)
2868 sbitmap_vector_free (antloc);
2869 sbitmap_vector_free (transp);
2870 sbitmap_vector_free (comp);
2872 sbitmap_vector_free (hoist_vbein);
2873 sbitmap_vector_free (hoist_vbeout);
2875 free_dominance_info (CDI_DOMINATORS);
2878 /* Compute the very busy expressions at entry/exit from each block.
2880 An expression is very busy if all paths from a given point
2881 compute the expression. */
2883 static void
2884 compute_code_hoist_vbeinout (void)
2886 int changed, passes;
2887 basic_block bb;
2889 bitmap_vector_clear (hoist_vbeout, last_basic_block_for_fn (cfun));
2890 bitmap_vector_clear (hoist_vbein, last_basic_block_for_fn (cfun));
2892 passes = 0;
2893 changed = 1;
2895 while (changed)
2897 changed = 0;
2899 /* We scan the blocks in the reverse order to speed up
2900 the convergence. */
2901 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2903 if (bb->next_bb != EXIT_BLOCK_PTR_FOR_FN (cfun))
2905 bitmap_intersection_of_succs (hoist_vbeout[bb->index],
2906 hoist_vbein, bb);
2908 /* Include expressions in VBEout that are calculated
2909 in BB and available at its end. */
2910 bitmap_ior (hoist_vbeout[bb->index],
2911 hoist_vbeout[bb->index], comp[bb->index]);
2914 changed |= bitmap_or_and (hoist_vbein[bb->index],
2915 antloc[bb->index],
2916 hoist_vbeout[bb->index],
2917 transp[bb->index]);
2920 passes++;
2923 if (dump_file)
2925 fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
2927 FOR_EACH_BB_FN (bb, cfun)
2929 fprintf (dump_file, "vbein (%d): ", bb->index);
2930 dump_bitmap_file (dump_file, hoist_vbein[bb->index]);
2931 fprintf (dump_file, "vbeout(%d): ", bb->index);
2932 dump_bitmap_file (dump_file, hoist_vbeout[bb->index]);
2937 /* Top level routine to do the dataflow analysis needed by code hoisting. */
2939 static void
2940 compute_code_hoist_data (void)
2942 compute_local_properties (transp, comp, antloc, &expr_hash_table);
2943 prune_expressions (false);
2944 compute_code_hoist_vbeinout ();
2945 calculate_dominance_info (CDI_DOMINATORS);
2946 if (dump_file)
2947 fprintf (dump_file, "\n");
2950 /* Update register pressure for BB when hoisting an expression from
2951 instruction FROM, if live ranges of inputs are shrunk. Also
2952 maintain live_in information if live range of register referred
2953 in FROM is shrunk.
2955 Return 0 if register pressure doesn't change, otherwise return
2956 the number by which register pressure is decreased.
2958 NOTE: Register pressure won't be increased in this function. */
2960 static int
2961 update_bb_reg_pressure (basic_block bb, rtx_insn *from)
2963 rtx dreg;
2964 rtx_insn *insn;
2965 basic_block succ_bb;
2966 df_ref use, op_ref;
2967 edge succ;
2968 edge_iterator ei;
2969 int decreased_pressure = 0;
2970 int nregs;
2971 enum reg_class pressure_class;
2973 FOR_EACH_INSN_USE (use, from)
2975 dreg = DF_REF_REAL_REG (use);
2976 /* The live range of register is shrunk only if it isn't:
2977 1. referred on any path from the end of this block to EXIT, or
2978 2. referred by insns other than FROM in this block. */
2979 FOR_EACH_EDGE (succ, ei, bb->succs)
2981 succ_bb = succ->dest;
2982 if (succ_bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
2983 continue;
2985 if (bitmap_bit_p (BB_DATA (succ_bb)->live_in, REGNO (dreg)))
2986 break;
2988 if (succ != NULL)
2989 continue;
2991 op_ref = DF_REG_USE_CHAIN (REGNO (dreg));
2992 for (; op_ref; op_ref = DF_REF_NEXT_REG (op_ref))
2994 if (!DF_REF_INSN_INFO (op_ref))
2995 continue;
2997 insn = DF_REF_INSN (op_ref);
2998 if (BLOCK_FOR_INSN (insn) == bb
2999 && NONDEBUG_INSN_P (insn) && insn != from)
3000 break;
3003 pressure_class = get_regno_pressure_class (REGNO (dreg), &nregs);
3004 /* Decrease register pressure and update live_in information for
3005 this block. */
3006 if (!op_ref && pressure_class != NO_REGS)
3008 decreased_pressure += nregs;
3009 BB_DATA (bb)->max_reg_pressure[pressure_class] -= nregs;
3010 bitmap_clear_bit (BB_DATA (bb)->live_in, REGNO (dreg));
3013 return decreased_pressure;
3016 /* Determine if the expression EXPR should be hoisted to EXPR_BB up in
3017 flow graph, if it can reach BB unimpared. Stop the search if the
3018 expression would need to be moved more than DISTANCE instructions.
3020 DISTANCE is the number of instructions through which EXPR can be
3021 hoisted up in flow graph.
3023 BB_SIZE points to an array which contains the number of instructions
3024 for each basic block.
3026 PRESSURE_CLASS and NREGS are register class and number of hard registers
3027 for storing EXPR.
3029 HOISTED_BBS points to a bitmap indicating basic blocks through which
3030 EXPR is hoisted.
3032 FROM is the instruction from which EXPR is hoisted.
3034 It's unclear exactly what Muchnick meant by "unimpared". It seems
3035 to me that the expression must either be computed or transparent in
3036 *every* block in the path(s) from EXPR_BB to BB. Any other definition
3037 would allow the expression to be hoisted out of loops, even if
3038 the expression wasn't a loop invariant.
3040 Contrast this to reachability for PRE where an expression is
3041 considered reachable if *any* path reaches instead of *all*
3042 paths. */
3044 static int
3045 should_hoist_expr_to_dom (basic_block expr_bb, struct expr *expr,
3046 basic_block bb, sbitmap visited, int distance,
3047 int *bb_size, enum reg_class pressure_class,
3048 int *nregs, bitmap hoisted_bbs, rtx_insn *from)
3050 unsigned int i;
3051 edge pred;
3052 edge_iterator ei;
3053 sbitmap_iterator sbi;
3054 int visited_allocated_locally = 0;
3055 int decreased_pressure = 0;
3057 if (flag_ira_hoist_pressure)
3059 /* Record old information of basic block BB when it is visited
3060 at the first time. */
3061 if (!bitmap_bit_p (hoisted_bbs, bb->index))
3063 struct bb_data *data = BB_DATA (bb);
3064 bitmap_copy (data->backup, data->live_in);
3065 data->old_pressure = data->max_reg_pressure[pressure_class];
3067 decreased_pressure = update_bb_reg_pressure (bb, from);
3069 /* Terminate the search if distance, for which EXPR is allowed to move,
3070 is exhausted. */
3071 if (distance > 0)
3073 if (flag_ira_hoist_pressure)
3075 /* Prefer to hoist EXPR if register pressure is decreased. */
3076 if (decreased_pressure > *nregs)
3077 distance += bb_size[bb->index];
3078 /* Let EXPR be hoisted through basic block at no cost if one
3079 of following conditions is satisfied:
3081 1. The basic block has low register pressure.
3082 2. Register pressure won't be increases after hoisting EXPR.
3084 Constant expressions is handled conservatively, because
3085 hoisting constant expression aggressively results in worse
3086 code. This decision is made by the observation of CSiBE
3087 on ARM target, while it has no obvious effect on other
3088 targets like x86, x86_64, mips and powerpc. */
3089 else if (CONST_INT_P (expr->expr)
3090 || (BB_DATA (bb)->max_reg_pressure[pressure_class]
3091 >= ira_class_hard_regs_num[pressure_class]
3092 && decreased_pressure < *nregs))
3093 distance -= bb_size[bb->index];
3095 else
3096 distance -= bb_size[bb->index];
3098 if (distance <= 0)
3099 return 0;
3101 else
3102 gcc_assert (distance == 0);
3104 if (visited == NULL)
3106 visited_allocated_locally = 1;
3107 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
3108 bitmap_clear (visited);
3111 FOR_EACH_EDGE (pred, ei, bb->preds)
3113 basic_block pred_bb = pred->src;
3115 if (pred->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
3116 break;
3117 else if (pred_bb == expr_bb)
3118 continue;
3119 else if (bitmap_bit_p (visited, pred_bb->index))
3120 continue;
3121 else if (! bitmap_bit_p (transp[pred_bb->index], expr->bitmap_index))
3122 break;
3123 /* Not killed. */
3124 else
3126 bitmap_set_bit (visited, pred_bb->index);
3127 if (! should_hoist_expr_to_dom (expr_bb, expr, pred_bb,
3128 visited, distance, bb_size,
3129 pressure_class, nregs,
3130 hoisted_bbs, from))
3131 break;
3134 if (visited_allocated_locally)
3136 /* If EXPR can be hoisted to expr_bb, record basic blocks through
3137 which EXPR is hoisted in hoisted_bbs. */
3138 if (flag_ira_hoist_pressure && !pred)
3140 /* Record the basic block from which EXPR is hoisted. */
3141 bitmap_set_bit (visited, bb->index);
3142 EXECUTE_IF_SET_IN_BITMAP (visited, 0, i, sbi)
3143 bitmap_set_bit (hoisted_bbs, i);
3145 sbitmap_free (visited);
3148 return (pred == NULL);
3151 /* Find occurrence in BB. */
3153 static struct occr *
3154 find_occr_in_bb (struct occr *occr, basic_block bb)
3156 /* Find the right occurrence of this expression. */
3157 while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
3158 occr = occr->next;
3160 return occr;
3163 /* Actually perform code hoisting.
3165 The code hoisting pass can hoist multiple computations of the same
3166 expression along dominated path to a dominating basic block, like
3167 from b2/b3 to b1 as depicted below:
3169 b1 ------
3170 /\ |
3171 / \ |
3172 bx by distance
3173 / \ |
3174 / \ |
3175 b2 b3 ------
3177 Unfortunately code hoisting generally extends the live range of an
3178 output pseudo register, which increases register pressure and hurts
3179 register allocation. To address this issue, an attribute MAX_DISTANCE
3180 is computed and attached to each expression. The attribute is computed
3181 from rtx cost of the corresponding expression and it's used to control
3182 how long the expression can be hoisted up in flow graph. As the
3183 expression is hoisted up in flow graph, GCC decreases its DISTANCE
3184 and stops the hoist if DISTANCE reaches 0. Code hoisting can decrease
3185 register pressure if live ranges of inputs are shrunk.
3187 Option "-fira-hoist-pressure" implements register pressure directed
3188 hoist based on upper method. The rationale is:
3189 1. Calculate register pressure for each basic block by reusing IRA
3190 facility.
3191 2. When expression is hoisted through one basic block, GCC checks
3192 the change of live ranges for inputs/output. The basic block's
3193 register pressure will be increased because of extended live
3194 range of output. However, register pressure will be decreased
3195 if the live ranges of inputs are shrunk.
3196 3. After knowing how hoisting affects register pressure, GCC prefers
3197 to hoist the expression if it can decrease register pressure, by
3198 increasing DISTANCE of the corresponding expression.
3199 4. If hoisting the expression increases register pressure, GCC checks
3200 register pressure of the basic block and decrease DISTANCE only if
3201 the register pressure is high. In other words, expression will be
3202 hoisted through at no cost if the basic block has low register
3203 pressure.
3204 5. Update register pressure information for basic blocks through
3205 which expression is hoisted. */
3207 static int
3208 hoist_code (void)
3210 basic_block bb, dominated;
3211 vec<basic_block> dom_tree_walk;
3212 unsigned int dom_tree_walk_index;
3213 vec<basic_block> domby;
3214 unsigned int i, j, k;
3215 struct expr **index_map;
3216 struct expr *expr;
3217 int *to_bb_head;
3218 int *bb_size;
3219 int changed = 0;
3220 struct bb_data *data;
3221 /* Basic blocks that have occurrences reachable from BB. */
3222 bitmap from_bbs;
3223 /* Basic blocks through which expr is hoisted. */
3224 bitmap hoisted_bbs = NULL;
3225 bitmap_iterator bi;
3227 /* Compute a mapping from expression number (`bitmap_index') to
3228 hash table entry. */
3230 index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
3231 for (i = 0; i < expr_hash_table.size; i++)
3232 for (expr = expr_hash_table.table[i]; expr; expr = expr->next_same_hash)
3233 index_map[expr->bitmap_index] = expr;
3235 /* Calculate sizes of basic blocks and note how far
3236 each instruction is from the start of its block. We then use this
3237 data to restrict distance an expression can travel. */
3239 to_bb_head = XCNEWVEC (int, get_max_uid ());
3240 bb_size = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3242 FOR_EACH_BB_FN (bb, cfun)
3244 rtx_insn *insn;
3245 int to_head;
3247 to_head = 0;
3248 FOR_BB_INSNS (bb, insn)
3250 /* Don't count debug instructions to avoid them affecting
3251 decision choices. */
3252 if (NONDEBUG_INSN_P (insn))
3253 to_bb_head[INSN_UID (insn)] = to_head++;
3256 bb_size[bb->index] = to_head;
3259 gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs) == 1
3260 && (EDGE_SUCC (ENTRY_BLOCK_PTR_FOR_FN (cfun), 0)->dest
3261 == ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb));
3263 from_bbs = BITMAP_ALLOC (NULL);
3264 if (flag_ira_hoist_pressure)
3265 hoisted_bbs = BITMAP_ALLOC (NULL);
3267 dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
3268 ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb);
3270 /* Walk over each basic block looking for potentially hoistable
3271 expressions, nothing gets hoisted from the entry block. */
3272 FOR_EACH_VEC_ELT (dom_tree_walk, dom_tree_walk_index, bb)
3274 domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
3276 if (domby.length () == 0)
3277 continue;
3279 /* Examine each expression that is very busy at the exit of this
3280 block. These are the potentially hoistable expressions. */
3281 for (i = 0; i < SBITMAP_SIZE (hoist_vbeout[bb->index]); i++)
3283 if (bitmap_bit_p (hoist_vbeout[bb->index], i))
3285 int nregs = 0;
3286 enum reg_class pressure_class = NO_REGS;
3287 /* Current expression. */
3288 struct expr *expr = index_map[i];
3289 /* Number of occurrences of EXPR that can be hoisted to BB. */
3290 int hoistable = 0;
3291 /* Occurrences reachable from BB. */
3292 vec<occr_t> occrs_to_hoist = vNULL;
3293 /* We want to insert the expression into BB only once, so
3294 note when we've inserted it. */
3295 int insn_inserted_p;
3296 occr_t occr;
3298 /* If an expression is computed in BB and is available at end of
3299 BB, hoist all occurrences dominated by BB to BB. */
3300 if (bitmap_bit_p (comp[bb->index], i))
3302 occr = find_occr_in_bb (expr->antic_occr, bb);
3304 if (occr)
3306 /* An occurrence might've been already deleted
3307 while processing a dominator of BB. */
3308 if (!occr->deleted_p)
3310 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3311 hoistable++;
3314 else
3315 hoistable++;
3318 /* We've found a potentially hoistable expression, now
3319 we look at every block BB dominates to see if it
3320 computes the expression. */
3321 FOR_EACH_VEC_ELT (domby, j, dominated)
3323 int max_distance;
3325 /* Ignore self dominance. */
3326 if (bb == dominated)
3327 continue;
3328 /* We've found a dominated block, now see if it computes
3329 the busy expression and whether or not moving that
3330 expression to the "beginning" of that block is safe. */
3331 if (!bitmap_bit_p (antloc[dominated->index], i))
3332 continue;
3334 occr = find_occr_in_bb (expr->antic_occr, dominated);
3335 gcc_assert (occr);
3337 /* An occurrence might've been already deleted
3338 while processing a dominator of BB. */
3339 if (occr->deleted_p)
3340 continue;
3341 gcc_assert (NONDEBUG_INSN_P (occr->insn));
3343 max_distance = expr->max_distance;
3344 if (max_distance > 0)
3345 /* Adjust MAX_DISTANCE to account for the fact that
3346 OCCR won't have to travel all of DOMINATED, but
3347 only part of it. */
3348 max_distance += (bb_size[dominated->index]
3349 - to_bb_head[INSN_UID (occr->insn)]);
3351 pressure_class = get_pressure_class_and_nregs (occr->insn,
3352 &nregs);
3354 /* Note if the expression should be hoisted from the dominated
3355 block to BB if it can reach DOMINATED unimpared.
3357 Keep track of how many times this expression is hoistable
3358 from a dominated block into BB. */
3359 if (should_hoist_expr_to_dom (bb, expr, dominated, NULL,
3360 max_distance, bb_size,
3361 pressure_class, &nregs,
3362 hoisted_bbs, occr->insn))
3364 hoistable++;
3365 occrs_to_hoist.safe_push (occr);
3366 bitmap_set_bit (from_bbs, dominated->index);
3370 /* If we found more than one hoistable occurrence of this
3371 expression, then note it in the vector of expressions to
3372 hoist. It makes no sense to hoist things which are computed
3373 in only one BB, and doing so tends to pessimize register
3374 allocation. One could increase this value to try harder
3375 to avoid any possible code expansion due to register
3376 allocation issues; however experiments have shown that
3377 the vast majority of hoistable expressions are only movable
3378 from two successors, so raising this threshold is likely
3379 to nullify any benefit we get from code hoisting. */
3380 if (hoistable > 1 && dbg_cnt (hoist_insn))
3382 /* If (hoistable != vec::length), then there is
3383 an occurrence of EXPR in BB itself. Don't waste
3384 time looking for LCA in this case. */
3385 if ((unsigned) hoistable == occrs_to_hoist.length ())
3387 basic_block lca;
3389 lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
3390 from_bbs);
3391 if (lca != bb)
3392 /* Punt, it's better to hoist these occurrences to
3393 LCA. */
3394 occrs_to_hoist.release ();
3397 else
3398 /* Punt, no point hoisting a single occurrence. */
3399 occrs_to_hoist.release ();
3401 if (flag_ira_hoist_pressure
3402 && !occrs_to_hoist.is_empty ())
3404 /* Increase register pressure of basic blocks to which
3405 expr is hoisted because of extended live range of
3406 output. */
3407 data = BB_DATA (bb);
3408 data->max_reg_pressure[pressure_class] += nregs;
3409 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3411 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3412 data->max_reg_pressure[pressure_class] += nregs;
3415 else if (flag_ira_hoist_pressure)
3417 /* Restore register pressure and live_in info for basic
3418 blocks recorded in hoisted_bbs when expr will not be
3419 hoisted. */
3420 EXECUTE_IF_SET_IN_BITMAP (hoisted_bbs, 0, k, bi)
3422 data = BB_DATA (BASIC_BLOCK_FOR_FN (cfun, k));
3423 bitmap_copy (data->live_in, data->backup);
3424 data->max_reg_pressure[pressure_class]
3425 = data->old_pressure;
3429 if (flag_ira_hoist_pressure)
3430 bitmap_clear (hoisted_bbs);
3432 insn_inserted_p = 0;
3434 /* Walk through occurrences of I'th expressions we want
3435 to hoist to BB and make the transformations. */
3436 FOR_EACH_VEC_ELT (occrs_to_hoist, j, occr)
3438 rtx_insn *insn;
3439 const_rtx set;
3441 gcc_assert (!occr->deleted_p);
3443 insn = occr->insn;
3444 set = single_set_gcse (insn);
3446 /* Create a pseudo-reg to store the result of reaching
3447 expressions into. Get the mode for the new pseudo
3448 from the mode of the original destination pseudo.
3450 It is important to use new pseudos whenever we
3451 emit a set. This will allow reload to use
3452 rematerialization for such registers. */
3453 if (!insn_inserted_p)
3454 expr->reaching_reg
3455 = gen_reg_rtx_and_attrs (SET_DEST (set));
3457 gcse_emit_move_after (SET_DEST (set), expr->reaching_reg,
3458 insn);
3459 delete_insn (insn);
3460 occr->deleted_p = 1;
3461 changed = 1;
3462 gcse_subst_count++;
3464 if (!insn_inserted_p)
3466 insert_insn_end_basic_block (expr, bb);
3467 insn_inserted_p = 1;
3471 occrs_to_hoist.release ();
3472 bitmap_clear (from_bbs);
3475 domby.release ();
3478 dom_tree_walk.release ();
3479 BITMAP_FREE (from_bbs);
3480 if (flag_ira_hoist_pressure)
3481 BITMAP_FREE (hoisted_bbs);
3483 free (bb_size);
3484 free (to_bb_head);
3485 free (index_map);
3487 return changed;
3490 /* Return pressure class and number of needed hard registers (through
3491 *NREGS) of register REGNO. */
3492 static enum reg_class
3493 get_regno_pressure_class (int regno, int *nregs)
3495 if (regno >= FIRST_PSEUDO_REGISTER)
3497 enum reg_class pressure_class;
3499 pressure_class = reg_allocno_class (regno);
3500 pressure_class = ira_pressure_class_translate[pressure_class];
3501 *nregs
3502 = ira_reg_class_max_nregs[pressure_class][PSEUDO_REGNO_MODE (regno)];
3503 return pressure_class;
3505 else if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno)
3506 && ! TEST_HARD_REG_BIT (eliminable_regset, regno))
3508 *nregs = 1;
3509 return ira_pressure_class_translate[REGNO_REG_CLASS (regno)];
3511 else
3513 *nregs = 0;
3514 return NO_REGS;
3518 /* Return pressure class and number of hard registers (through *NREGS)
3519 for destination of INSN. */
3520 static enum reg_class
3521 get_pressure_class_and_nregs (rtx_insn *insn, int *nregs)
3523 rtx reg;
3524 enum reg_class pressure_class;
3525 const_rtx set = single_set_gcse (insn);
3527 reg = SET_DEST (set);
3528 if (GET_CODE (reg) == SUBREG)
3529 reg = SUBREG_REG (reg);
3530 if (MEM_P (reg))
3532 *nregs = 0;
3533 pressure_class = NO_REGS;
3535 else
3537 gcc_assert (REG_P (reg));
3538 pressure_class = reg_allocno_class (REGNO (reg));
3539 pressure_class = ira_pressure_class_translate[pressure_class];
3540 *nregs
3541 = ira_reg_class_max_nregs[pressure_class][GET_MODE (SET_SRC (set))];
3543 return pressure_class;
3546 /* Increase (if INCR_P) or decrease current register pressure for
3547 register REGNO. */
3548 static void
3549 change_pressure (int regno, bool incr_p)
3551 int nregs;
3552 enum reg_class pressure_class;
3554 pressure_class = get_regno_pressure_class (regno, &nregs);
3555 if (! incr_p)
3556 curr_reg_pressure[pressure_class] -= nregs;
3557 else
3559 curr_reg_pressure[pressure_class] += nregs;
3560 if (BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3561 < curr_reg_pressure[pressure_class])
3562 BB_DATA (curr_bb)->max_reg_pressure[pressure_class]
3563 = curr_reg_pressure[pressure_class];
3567 /* Calculate register pressure for each basic block by walking insns
3568 from last to first. */
3569 static void
3570 calculate_bb_reg_pressure (void)
3572 int i;
3573 unsigned int j;
3574 rtx_insn *insn;
3575 basic_block bb;
3576 bitmap curr_regs_live;
3577 bitmap_iterator bi;
3580 ira_setup_eliminable_regset ();
3581 curr_regs_live = BITMAP_ALLOC (&reg_obstack);
3582 FOR_EACH_BB_FN (bb, cfun)
3584 curr_bb = bb;
3585 BB_DATA (bb)->live_in = BITMAP_ALLOC (NULL);
3586 BB_DATA (bb)->backup = BITMAP_ALLOC (NULL);
3587 bitmap_copy (BB_DATA (bb)->live_in, df_get_live_in (bb));
3588 bitmap_copy (curr_regs_live, df_get_live_out (bb));
3589 for (i = 0; i < ira_pressure_classes_num; i++)
3590 curr_reg_pressure[ira_pressure_classes[i]] = 0;
3591 EXECUTE_IF_SET_IN_BITMAP (curr_regs_live, 0, j, bi)
3592 change_pressure (j, true);
3594 FOR_BB_INSNS_REVERSE (bb, insn)
3596 rtx dreg;
3597 int regno;
3598 df_ref def, use;
3600 if (! NONDEBUG_INSN_P (insn))
3601 continue;
3603 FOR_EACH_INSN_DEF (def, insn)
3605 dreg = DF_REF_REAL_REG (def);
3606 gcc_assert (REG_P (dreg));
3607 regno = REGNO (dreg);
3608 if (!(DF_REF_FLAGS (def)
3609 & (DF_REF_PARTIAL | DF_REF_CONDITIONAL)))
3611 if (bitmap_clear_bit (curr_regs_live, regno))
3612 change_pressure (regno, false);
3616 FOR_EACH_INSN_USE (use, insn)
3618 dreg = DF_REF_REAL_REG (use);
3619 gcc_assert (REG_P (dreg));
3620 regno = REGNO (dreg);
3621 if (bitmap_set_bit (curr_regs_live, regno))
3622 change_pressure (regno, true);
3626 BITMAP_FREE (curr_regs_live);
3628 if (dump_file == NULL)
3629 return;
3631 fprintf (dump_file, "\nRegister Pressure: \n");
3632 FOR_EACH_BB_FN (bb, cfun)
3634 fprintf (dump_file, " Basic block %d: \n", bb->index);
3635 for (i = 0; (int) i < ira_pressure_classes_num; i++)
3637 enum reg_class pressure_class;
3639 pressure_class = ira_pressure_classes[i];
3640 if (BB_DATA (bb)->max_reg_pressure[pressure_class] == 0)
3641 continue;
3643 fprintf (dump_file, " %s=%d\n", reg_class_names[pressure_class],
3644 BB_DATA (bb)->max_reg_pressure[pressure_class]);
3647 fprintf (dump_file, "\n");
3650 /* Top level routine to perform one code hoisting (aka unification) pass
3652 Return nonzero if a change was made. */
3654 static int
3655 one_code_hoisting_pass (void)
3657 int changed = 0;
3659 gcse_subst_count = 0;
3660 gcse_create_count = 0;
3662 /* Return if there's nothing to do, or it is too expensive. */
3663 if (n_basic_blocks_for_fn (cfun) <= NUM_FIXED_BLOCKS + 1
3664 || is_too_expensive (_("GCSE disabled")))
3665 return 0;
3667 doing_code_hoisting_p = true;
3669 /* Calculate register pressure for each basic block. */
3670 if (flag_ira_hoist_pressure)
3672 regstat_init_n_sets_and_refs ();
3673 ira_set_pseudo_classes (false, dump_file);
3674 alloc_aux_for_blocks (sizeof (struct bb_data));
3675 calculate_bb_reg_pressure ();
3676 regstat_free_n_sets_and_refs ();
3679 /* We need alias. */
3680 init_alias_analysis ();
3682 bytes_used = 0;
3683 gcc_obstack_init (&gcse_obstack);
3684 alloc_gcse_mem ();
3686 alloc_hash_table (&expr_hash_table);
3687 compute_hash_table (&expr_hash_table);
3688 if (dump_file)
3689 dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
3691 if (expr_hash_table.n_elems > 0)
3693 alloc_code_hoist_mem (last_basic_block_for_fn (cfun),
3694 expr_hash_table.n_elems);
3695 compute_code_hoist_data ();
3696 changed = hoist_code ();
3697 free_code_hoist_mem ();
3700 if (flag_ira_hoist_pressure)
3702 free_aux_for_blocks ();
3703 free_reg_info ();
3705 free_hash_table (&expr_hash_table);
3706 free_gcse_mem ();
3707 obstack_free (&gcse_obstack, NULL);
3709 /* We are finished with alias. */
3710 end_alias_analysis ();
3712 if (dump_file)
3714 fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
3715 current_function_name (), n_basic_blocks_for_fn (cfun),
3716 bytes_used);
3717 fprintf (dump_file, "%d substs, %d insns created\n",
3718 gcse_subst_count, gcse_create_count);
3721 doing_code_hoisting_p = false;
3723 return changed;
3726 /* Here we provide the things required to do store motion towards the exit.
3727 In order for this to be effective, gcse also needed to be taught how to
3728 move a load when it is killed only by a store to itself.
3730 int i;
3731 float a[10];
3733 void foo(float scale)
3735 for (i=0; i<10; i++)
3736 a[i] *= scale;
3739 'i' is both loaded and stored to in the loop. Normally, gcse cannot move
3740 the load out since its live around the loop, and stored at the bottom
3741 of the loop.
3743 The 'Load Motion' referred to and implemented in this file is
3744 an enhancement to gcse which when using edge based LCM, recognizes
3745 this situation and allows gcse to move the load out of the loop.
3747 Once gcse has hoisted the load, store motion can then push this
3748 load towards the exit, and we end up with no loads or stores of 'i'
3749 in the loop. */
3751 /* This will search the ldst list for a matching expression. If it
3752 doesn't find one, we create one and initialize it. */
3754 static struct ls_expr *
3755 ldst_entry (rtx x)
3757 int do_not_record_p = 0;
3758 struct ls_expr * ptr;
3759 unsigned int hash;
3760 ls_expr **slot;
3761 struct ls_expr e;
3763 hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
3764 NULL, /*have_reg_qty=*/false);
3766 e.pattern = x;
3767 slot = pre_ldst_table->find_slot_with_hash (&e, hash, INSERT);
3768 if (*slot)
3769 return *slot;
3771 ptr = XNEW (struct ls_expr);
3773 ptr->next = pre_ldst_mems;
3774 ptr->expr = NULL;
3775 ptr->pattern = x;
3776 ptr->pattern_regs = NULL_RTX;
3777 ptr->loads = NULL;
3778 ptr->stores = NULL;
3779 ptr->reaching_reg = NULL_RTX;
3780 ptr->invalid = 0;
3781 ptr->index = 0;
3782 ptr->hash_index = hash;
3783 pre_ldst_mems = ptr;
3784 *slot = ptr;
3786 return ptr;
3789 /* Free up an individual ldst entry. */
3791 static void
3792 free_ldst_entry (struct ls_expr * ptr)
3794 free_INSN_LIST_list (& ptr->loads);
3795 free_INSN_LIST_list (& ptr->stores);
3797 free (ptr);
3800 /* Free up all memory associated with the ldst list. */
3802 static void
3803 free_ld_motion_mems (void)
3805 delete pre_ldst_table;
3806 pre_ldst_table = NULL;
3808 while (pre_ldst_mems)
3810 struct ls_expr * tmp = pre_ldst_mems;
3812 pre_ldst_mems = pre_ldst_mems->next;
3814 free_ldst_entry (tmp);
3817 pre_ldst_mems = NULL;
3820 /* Dump debugging info about the ldst list. */
3822 static void
3823 print_ldst_list (FILE * file)
3825 struct ls_expr * ptr;
3827 fprintf (file, "LDST list: \n");
3829 for (ptr = pre_ldst_mems; ptr != NULL; ptr = ptr->next)
3831 fprintf (file, " Pattern (%3d): ", ptr->index);
3833 print_rtl (file, ptr->pattern);
3835 fprintf (file, "\n Loads : ");
3837 if (ptr->loads)
3838 print_rtl (file, ptr->loads);
3839 else
3840 fprintf (file, "(nil)");
3842 fprintf (file, "\n Stores : ");
3844 if (ptr->stores)
3845 print_rtl (file, ptr->stores);
3846 else
3847 fprintf (file, "(nil)");
3849 fprintf (file, "\n\n");
3852 fprintf (file, "\n");
3855 /* Returns 1 if X is in the list of ldst only expressions. */
3857 static struct ls_expr *
3858 find_rtx_in_ldst (rtx x)
3860 struct ls_expr e;
3861 ls_expr **slot;
3862 if (!pre_ldst_table)
3863 return NULL;
3864 e.pattern = x;
3865 slot = pre_ldst_table->find_slot (&e, NO_INSERT);
3866 if (!slot || (*slot)->invalid)
3867 return NULL;
3868 return *slot;
3871 /* Load Motion for loads which only kill themselves. */
3873 /* Return true if x, a MEM, is a simple access with no side effects.
3874 These are the types of loads we consider for the ld_motion list,
3875 otherwise we let the usual aliasing take care of it. */
3877 static int
3878 simple_mem (const_rtx x)
3880 if (MEM_VOLATILE_P (x))
3881 return 0;
3883 if (GET_MODE (x) == BLKmode)
3884 return 0;
3886 /* If we are handling exceptions, we must be careful with memory references
3887 that may trap. If we are not, the behavior is undefined, so we may just
3888 continue. */
3889 if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
3890 return 0;
3892 if (side_effects_p (x))
3893 return 0;
3895 /* Do not consider function arguments passed on stack. */
3896 if (reg_mentioned_p (stack_pointer_rtx, x))
3897 return 0;
3899 if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
3900 return 0;
3902 return 1;
3905 /* Make sure there isn't a buried reference in this pattern anywhere.
3906 If there is, invalidate the entry for it since we're not capable
3907 of fixing it up just yet.. We have to be sure we know about ALL
3908 loads since the aliasing code will allow all entries in the
3909 ld_motion list to not-alias itself. If we miss a load, we will get
3910 the wrong value since gcse might common it and we won't know to
3911 fix it up. */
3913 static void
3914 invalidate_any_buried_refs (rtx x)
3916 const char * fmt;
3917 int i, j;
3918 struct ls_expr * ptr;
3920 /* Invalidate it in the list. */
3921 if (MEM_P (x) && simple_mem (x))
3923 ptr = ldst_entry (x);
3924 ptr->invalid = 1;
3927 /* Recursively process the insn. */
3928 fmt = GET_RTX_FORMAT (GET_CODE (x));
3930 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3932 if (fmt[i] == 'e')
3933 invalidate_any_buried_refs (XEXP (x, i));
3934 else if (fmt[i] == 'E')
3935 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3936 invalidate_any_buried_refs (XVECEXP (x, i, j));
3940 /* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
3941 being defined as MEM loads and stores to symbols, with no side effects
3942 and no registers in the expression. For a MEM destination, we also
3943 check that the insn is still valid if we replace the destination with a
3944 REG, as is done in update_ld_motion_stores. If there are any uses/defs
3945 which don't match this criteria, they are invalidated and trimmed out
3946 later. */
3948 static void
3949 compute_ld_motion_mems (void)
3951 struct ls_expr * ptr;
3952 basic_block bb;
3953 rtx_insn *insn;
3955 pre_ldst_mems = NULL;
3956 pre_ldst_table = new hash_table<pre_ldst_expr_hasher> (13);
3958 FOR_EACH_BB_FN (bb, cfun)
3960 FOR_BB_INSNS (bb, insn)
3962 if (NONDEBUG_INSN_P (insn))
3964 if (GET_CODE (PATTERN (insn)) == SET)
3966 rtx src = SET_SRC (PATTERN (insn));
3967 rtx dest = SET_DEST (PATTERN (insn));
3968 rtx note = find_reg_equal_equiv_note (insn);
3969 rtx src_eq;
3971 /* Check for a simple LOAD... */
3972 if (MEM_P (src) && simple_mem (src))
3974 ptr = ldst_entry (src);
3975 if (REG_P (dest))
3976 ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
3977 else
3978 ptr->invalid = 1;
3980 else
3982 /* Make sure there isn't a buried load somewhere. */
3983 invalidate_any_buried_refs (src);
3986 if (note != 0 && REG_NOTE_KIND (note) == REG_EQUAL)
3987 src_eq = XEXP (note, 0);
3988 else
3989 src_eq = NULL_RTX;
3991 if (src_eq != NULL_RTX
3992 && !(MEM_P (src_eq) && simple_mem (src_eq)))
3993 invalidate_any_buried_refs (src_eq);
3995 /* Check for stores. Don't worry about aliased ones, they
3996 will block any movement we might do later. We only care
3997 about this exact pattern since those are the only
3998 circumstance that we will ignore the aliasing info. */
3999 if (MEM_P (dest) && simple_mem (dest))
4001 ptr = ldst_entry (dest);
4003 if (! MEM_P (src)
4004 && GET_CODE (src) != ASM_OPERANDS
4005 /* Check for REG manually since want_to_gcse_p
4006 returns 0 for all REGs. */
4007 && can_assign_to_reg_without_clobbers_p (src))
4008 ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
4009 else
4010 ptr->invalid = 1;
4013 else
4014 invalidate_any_buried_refs (PATTERN (insn));
4020 /* Remove any references that have been either invalidated or are not in the
4021 expression list for pre gcse. */
4023 static void
4024 trim_ld_motion_mems (void)
4026 struct ls_expr * * last = & pre_ldst_mems;
4027 struct ls_expr * ptr = pre_ldst_mems;
4029 while (ptr != NULL)
4031 struct expr * expr;
4033 /* Delete if entry has been made invalid. */
4034 if (! ptr->invalid)
4036 /* Delete if we cannot find this mem in the expression list. */
4037 unsigned int hash = ptr->hash_index % expr_hash_table.size;
4039 for (expr = expr_hash_table.table[hash];
4040 expr != NULL;
4041 expr = expr->next_same_hash)
4042 if (expr_equiv_p (expr->expr, ptr->pattern))
4043 break;
4045 else
4046 expr = (struct expr *) 0;
4048 if (expr)
4050 /* Set the expression field if we are keeping it. */
4051 ptr->expr = expr;
4052 last = & ptr->next;
4053 ptr = ptr->next;
4055 else
4057 *last = ptr->next;
4058 pre_ldst_table->remove_elt_with_hash (ptr, ptr->hash_index);
4059 free_ldst_entry (ptr);
4060 ptr = * last;
4064 /* Show the world what we've found. */
4065 if (dump_file && pre_ldst_mems != NULL)
4066 print_ldst_list (dump_file);
4069 /* This routine will take an expression which we are replacing with
4070 a reaching register, and update any stores that are needed if
4071 that expression is in the ld_motion list. Stores are updated by
4072 copying their SRC to the reaching register, and then storing
4073 the reaching register into the store location. These keeps the
4074 correct value in the reaching register for the loads. */
4076 static void
4077 update_ld_motion_stores (struct expr * expr)
4079 struct ls_expr * mem_ptr;
4081 if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
4083 /* We can try to find just the REACHED stores, but is shouldn't
4084 matter to set the reaching reg everywhere... some might be
4085 dead and should be eliminated later. */
4087 /* We replace (set mem expr) with (set reg expr) (set mem reg)
4088 where reg is the reaching reg used in the load. We checked in
4089 compute_ld_motion_mems that we can replace (set mem expr) with
4090 (set reg expr) in that insn. */
4091 rtx list = mem_ptr->stores;
4093 for ( ; list != NULL_RTX; list = XEXP (list, 1))
4095 rtx_insn *insn = as_a <rtx_insn *> (XEXP (list, 0));
4096 rtx pat = PATTERN (insn);
4097 rtx src = SET_SRC (pat);
4098 rtx reg = expr->reaching_reg;
4099 rtx copy;
4101 /* If we've already copied it, continue. */
4102 if (expr->reaching_reg == src)
4103 continue;
4105 if (dump_file)
4107 fprintf (dump_file, "PRE: store updated with reaching reg ");
4108 print_rtl (dump_file, reg);
4109 fprintf (dump_file, ":\n ");
4110 print_inline_rtx (dump_file, insn, 8);
4111 fprintf (dump_file, "\n");
4114 copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
4115 emit_insn_before (copy, insn);
4116 SET_SRC (pat) = reg;
4117 df_insn_rescan (insn);
4119 /* un-recognize this pattern since it's probably different now. */
4120 INSN_CODE (insn) = -1;
4121 gcse_create_count++;
4126 /* Return true if the graph is too expensive to optimize. PASS is the
4127 optimization about to be performed. */
4129 static bool
4130 is_too_expensive (const char *pass)
4132 /* Trying to perform global optimizations on flow graphs which have
4133 a high connectivity will take a long time and is unlikely to be
4134 particularly useful.
4136 In normal circumstances a cfg should have about twice as many
4137 edges as blocks. But we do not want to punish small functions
4138 which have a couple switch statements. Rather than simply
4139 threshold the number of blocks, uses something with a more
4140 graceful degradation. */
4141 if (n_edges_for_fn (cfun) > 20000 + n_basic_blocks_for_fn (cfun) * 4)
4143 warning (OPT_Wdisabled_optimization,
4144 "%s: %d basic blocks and %d edges/basic block",
4145 pass, n_basic_blocks_for_fn (cfun),
4146 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun));
4148 return true;
4151 /* If allocating memory for the dataflow bitmaps would take up too much
4152 storage it's better just to disable the optimization. */
4153 if ((n_basic_blocks_for_fn (cfun)
4154 * SBITMAP_SET_SIZE (max_reg_num ())
4155 * sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
4157 warning (OPT_Wdisabled_optimization,
4158 "%s: %d basic blocks and %d registers",
4159 pass, n_basic_blocks_for_fn (cfun), max_reg_num ());
4161 return true;
4164 return false;
4167 static unsigned int
4168 execute_rtl_pre (void)
4170 int changed;
4171 delete_unreachable_blocks ();
4172 df_analyze ();
4173 changed = one_pre_gcse_pass ();
4174 flag_rerun_cse_after_global_opts |= changed;
4175 if (changed)
4176 cleanup_cfg (0);
4177 return 0;
4180 static unsigned int
4181 execute_rtl_hoist (void)
4183 int changed;
4184 delete_unreachable_blocks ();
4185 df_analyze ();
4186 changed = one_code_hoisting_pass ();
4187 flag_rerun_cse_after_global_opts |= changed;
4188 if (changed)
4189 cleanup_cfg (0);
4190 return 0;
4193 namespace {
4195 const pass_data pass_data_rtl_pre =
4197 RTL_PASS, /* type */
4198 "rtl pre", /* name */
4199 OPTGROUP_NONE, /* optinfo_flags */
4200 TV_PRE, /* tv_id */
4201 PROP_cfglayout, /* properties_required */
4202 0, /* properties_provided */
4203 0, /* properties_destroyed */
4204 0, /* todo_flags_start */
4205 TODO_df_finish, /* todo_flags_finish */
4208 class pass_rtl_pre : public rtl_opt_pass
4210 public:
4211 pass_rtl_pre (gcc::context *ctxt)
4212 : rtl_opt_pass (pass_data_rtl_pre, ctxt)
4215 /* opt_pass methods: */
4216 virtual bool gate (function *);
4217 virtual unsigned int execute (function *) { return execute_rtl_pre (); }
4219 }; // class pass_rtl_pre
4221 /* We do not construct an accurate cfg in functions which call
4222 setjmp, so none of these passes runs if the function calls
4223 setjmp.
4224 FIXME: Should just handle setjmp via REG_SETJMP notes. */
4226 bool
4227 pass_rtl_pre::gate (function *fun)
4229 return optimize > 0 && flag_gcse
4230 && !fun->calls_setjmp
4231 && optimize_function_for_speed_p (fun)
4232 && dbg_cnt (pre);
4235 } // anon namespace
4237 rtl_opt_pass *
4238 make_pass_rtl_pre (gcc::context *ctxt)
4240 return new pass_rtl_pre (ctxt);
4243 namespace {
4245 const pass_data pass_data_rtl_hoist =
4247 RTL_PASS, /* type */
4248 "hoist", /* name */
4249 OPTGROUP_NONE, /* optinfo_flags */
4250 TV_HOIST, /* tv_id */
4251 PROP_cfglayout, /* properties_required */
4252 0, /* properties_provided */
4253 0, /* properties_destroyed */
4254 0, /* todo_flags_start */
4255 TODO_df_finish, /* todo_flags_finish */
4258 class pass_rtl_hoist : public rtl_opt_pass
4260 public:
4261 pass_rtl_hoist (gcc::context *ctxt)
4262 : rtl_opt_pass (pass_data_rtl_hoist, ctxt)
4265 /* opt_pass methods: */
4266 virtual bool gate (function *);
4267 virtual unsigned int execute (function *) { return execute_rtl_hoist (); }
4269 }; // class pass_rtl_hoist
4271 bool
4272 pass_rtl_hoist::gate (function *)
4274 return optimize > 0 && flag_gcse
4275 && !cfun->calls_setjmp
4276 /* It does not make sense to run code hoisting unless we are optimizing
4277 for code size -- it rarely makes programs faster, and can make then
4278 bigger if we did PRE (when optimizing for space, we don't run PRE). */
4279 && optimize_function_for_size_p (cfun)
4280 && dbg_cnt (hoist);
4283 } // anon namespace
4285 rtl_opt_pass *
4286 make_pass_rtl_hoist (gcc::context *ctxt)
4288 return new pass_rtl_hoist (ctxt);
4291 #include "gt-gcse.h"