Fix PR target/63209.
[official-gcc.git] / gcc / fwprop.c
blobf166bdeb3fb3ad29751717e4dca88d6da839423c
1 /* RTL-based forward propagation pass for GNU compiler.
2 Copyright (C) 2005-2014 Free Software Foundation, Inc.
3 Contributed by Paolo Bonzini and Steven Bosscher.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
27 #include "sparseset.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "flags.h"
33 #include "obstack.h"
34 #include "basic-block.h"
35 #include "df.h"
36 #include "target.h"
37 #include "cfgloop.h"
38 #include "tree-pass.h"
39 #include "domwalk.h"
40 #include "emit-rtl.h"
41 #include "rtl-iter.h"
44 /* This pass does simple forward propagation and simplification when an
45 operand of an insn can only come from a single def. This pass uses
46 df.c, so it is global. However, we only do limited analysis of
47 available expressions.
49 1) The pass tries to propagate the source of the def into the use,
50 and checks if the result is independent of the substituted value.
51 For example, the high word of a (zero_extend:DI (reg:SI M)) is always
52 zero, independent of the source register.
54 In particular, we propagate constants into the use site. Sometimes
55 RTL expansion did not put the constant in the same insn on purpose,
56 to satisfy a predicate, and the result will fail to be recognized;
57 but this happens rarely and in this case we can still create a
58 REG_EQUAL note. For multi-word operations, this
60 (set (subreg:SI (reg:DI 120) 0) (const_int 0))
61 (set (subreg:SI (reg:DI 120) 4) (const_int -1))
62 (set (subreg:SI (reg:DI 122) 0)
63 (ior:SI (subreg:SI (reg:DI 119) 0) (subreg:SI (reg:DI 120) 0)))
64 (set (subreg:SI (reg:DI 122) 4)
65 (ior:SI (subreg:SI (reg:DI 119) 4) (subreg:SI (reg:DI 120) 4)))
67 can be simplified to the much simpler
69 (set (subreg:SI (reg:DI 122) 0) (subreg:SI (reg:DI 119)))
70 (set (subreg:SI (reg:DI 122) 4) (const_int -1))
72 This particular propagation is also effective at putting together
73 complex addressing modes. We are more aggressive inside MEMs, in
74 that all definitions are propagated if the use is in a MEM; if the
75 result is a valid memory address we check address_cost to decide
76 whether the substitution is worthwhile.
78 2) The pass propagates register copies. This is not as effective as
79 the copy propagation done by CSE's canon_reg, which works by walking
80 the instruction chain, it can help the other transformations.
82 We should consider removing this optimization, and instead reorder the
83 RTL passes, because GCSE does this transformation too. With some luck,
84 the CSE pass at the end of rest_of_handle_gcse could also go away.
86 3) The pass looks for paradoxical subregs that are actually unnecessary.
87 Things like this:
89 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
90 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
91 (set (reg:SI 122) (plus:SI (subreg:SI (reg:QI 120) 0)
92 (subreg:SI (reg:QI 121) 0)))
94 are very common on machines that can only do word-sized operations.
95 For each use of a paradoxical subreg (subreg:WIDER (reg:NARROW N) 0),
96 if it has a single def and it is (subreg:NARROW (reg:WIDE M) 0),
97 we can replace the paradoxical subreg with simply (reg:WIDE M). The
98 above will simplify this to
100 (set (reg:QI 120) (subreg:QI (reg:SI 118) 0))
101 (set (reg:QI 121) (subreg:QI (reg:SI 119) 0))
102 (set (reg:SI 122) (plus:SI (reg:SI 118) (reg:SI 119)))
104 where the first two insns are now dead.
106 We used to use reaching definitions to find which uses have a
107 single reaching definition (sounds obvious...), but this is too
108 complex a problem in nasty testcases like PR33928. Now we use the
109 multiple definitions problem in df-problems.c. The similarity
110 between that problem and SSA form creation is taken further, in
111 that fwprop does a dominator walk to create its chains; however,
112 instead of creating a PHI function where multiple definitions meet
113 I just punt and record only singleton use-def chains, which is
114 all that is needed by fwprop. */
117 static int num_changes;
119 static vec<df_ref> use_def_ref;
120 static vec<df_ref> reg_defs;
121 static vec<df_ref> reg_defs_stack;
123 /* The MD bitmaps are trimmed to include only live registers to cut
124 memory usage on testcases like insn-recog.c. Track live registers
125 in the basic block and do not perform forward propagation if the
126 destination is a dead pseudo occurring in a note. */
127 static bitmap local_md;
128 static bitmap local_lr;
130 /* Return the only def in USE's use-def chain, or NULL if there is
131 more than one def in the chain. */
133 static inline df_ref
134 get_def_for_use (df_ref use)
136 return use_def_ref[DF_REF_ID (use)];
140 /* Update the reg_defs vector with non-partial definitions in DEF_REC.
141 TOP_FLAG says which artificials uses should be used, when DEF_REC
142 is an artificial def vector. LOCAL_MD is modified as after a
143 df_md_simulate_* function; we do more or less the same processing
144 done there, so we do not use those functions. */
146 #define DF_MD_GEN_FLAGS \
147 (DF_REF_PARTIAL | DF_REF_CONDITIONAL | DF_REF_MAY_CLOBBER)
149 static void
150 process_defs (df_ref def, int top_flag)
152 for (; def; def = DF_REF_NEXT_LOC (def))
154 df_ref curr_def = reg_defs[DF_REF_REGNO (def)];
155 unsigned int dregno;
157 if ((DF_REF_FLAGS (def) & DF_REF_AT_TOP) != top_flag)
158 continue;
160 dregno = DF_REF_REGNO (def);
161 if (curr_def)
162 reg_defs_stack.safe_push (curr_def);
163 else
165 /* Do not store anything if "transitioning" from NULL to NULL. But
166 otherwise, push a special entry on the stack to tell the
167 leave_block callback that the entry in reg_defs was NULL. */
168 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
170 else
171 reg_defs_stack.safe_push (def);
174 if (DF_REF_FLAGS (def) & DF_MD_GEN_FLAGS)
176 bitmap_set_bit (local_md, dregno);
177 reg_defs[dregno] = NULL;
179 else
181 bitmap_clear_bit (local_md, dregno);
182 reg_defs[dregno] = def;
188 /* Fill the use_def_ref vector with values for the uses in USE_REC,
189 taking reaching definitions info from LOCAL_MD and REG_DEFS.
190 TOP_FLAG says which artificials uses should be used, when USE_REC
191 is an artificial use vector. */
193 static void
194 process_uses (df_ref use, int top_flag)
196 for (; use; use = DF_REF_NEXT_LOC (use))
197 if ((DF_REF_FLAGS (use) & DF_REF_AT_TOP) == top_flag)
199 unsigned int uregno = DF_REF_REGNO (use);
200 if (reg_defs[uregno]
201 && !bitmap_bit_p (local_md, uregno)
202 && bitmap_bit_p (local_lr, uregno))
203 use_def_ref[DF_REF_ID (use)] = reg_defs[uregno];
207 class single_def_use_dom_walker : public dom_walker
209 public:
210 single_def_use_dom_walker (cdi_direction direction)
211 : dom_walker (direction) {}
212 virtual void before_dom_children (basic_block);
213 virtual void after_dom_children (basic_block);
216 void
217 single_def_use_dom_walker::before_dom_children (basic_block bb)
219 int bb_index = bb->index;
220 struct df_md_bb_info *md_bb_info = df_md_get_bb_info (bb_index);
221 struct df_lr_bb_info *lr_bb_info = df_lr_get_bb_info (bb_index);
222 rtx_insn *insn;
224 bitmap_copy (local_md, &md_bb_info->in);
225 bitmap_copy (local_lr, &lr_bb_info->in);
227 /* Push a marker for the leave_block callback. */
228 reg_defs_stack.safe_push (NULL);
230 process_uses (df_get_artificial_uses (bb_index), DF_REF_AT_TOP);
231 process_defs (df_get_artificial_defs (bb_index), DF_REF_AT_TOP);
233 /* We don't call df_simulate_initialize_forwards, as it may overestimate
234 the live registers if there are unused artificial defs. We prefer
235 liveness to be underestimated. */
237 FOR_BB_INSNS (bb, insn)
238 if (INSN_P (insn))
240 unsigned int uid = INSN_UID (insn);
241 process_uses (DF_INSN_UID_USES (uid), 0);
242 process_uses (DF_INSN_UID_EQ_USES (uid), 0);
243 process_defs (DF_INSN_UID_DEFS (uid), 0);
244 df_simulate_one_insn_forwards (bb, insn, local_lr);
247 process_uses (df_get_artificial_uses (bb_index), 0);
248 process_defs (df_get_artificial_defs (bb_index), 0);
251 /* Pop the definitions created in this basic block when leaving its
252 dominated parts. */
254 void
255 single_def_use_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
257 df_ref saved_def;
258 while ((saved_def = reg_defs_stack.pop ()) != NULL)
260 unsigned int dregno = DF_REF_REGNO (saved_def);
262 /* See also process_defs. */
263 if (saved_def == reg_defs[dregno])
264 reg_defs[dregno] = NULL;
265 else
266 reg_defs[dregno] = saved_def;
271 /* Build a vector holding the reaching definitions of uses reached by a
272 single dominating definition. */
274 static void
275 build_single_def_use_links (void)
277 /* We use the multiple definitions problem to compute our restricted
278 use-def chains. */
279 df_set_flags (DF_EQ_NOTES);
280 df_md_add_problem ();
281 df_note_add_problem ();
282 df_analyze ();
283 df_maybe_reorganize_use_refs (DF_REF_ORDER_BY_INSN_WITH_NOTES);
285 use_def_ref.create (DF_USES_TABLE_SIZE ());
286 use_def_ref.safe_grow_cleared (DF_USES_TABLE_SIZE ());
288 reg_defs.create (max_reg_num ());
289 reg_defs.safe_grow_cleared (max_reg_num ());
291 reg_defs_stack.create (n_basic_blocks_for_fn (cfun) * 10);
292 local_md = BITMAP_ALLOC (NULL);
293 local_lr = BITMAP_ALLOC (NULL);
295 /* Walk the dominator tree looking for single reaching definitions
296 dominating the uses. This is similar to how SSA form is built. */
297 single_def_use_dom_walker (CDI_DOMINATORS)
298 .walk (cfun->cfg->x_entry_block_ptr);
300 BITMAP_FREE (local_lr);
301 BITMAP_FREE (local_md);
302 reg_defs.release ();
303 reg_defs_stack.release ();
307 /* Do not try to replace constant addresses or addresses of local and
308 argument slots. These MEM expressions are made only once and inserted
309 in many instructions, as well as being used to control symbol table
310 output. It is not safe to clobber them.
312 There are some uncommon cases where the address is already in a register
313 for some reason, but we cannot take advantage of that because we have
314 no easy way to unshare the MEM. In addition, looking up all stack
315 addresses is costly. */
317 static bool
318 can_simplify_addr (rtx addr)
320 rtx reg;
322 if (CONSTANT_ADDRESS_P (addr))
323 return false;
325 if (GET_CODE (addr) == PLUS)
326 reg = XEXP (addr, 0);
327 else
328 reg = addr;
330 return (!REG_P (reg)
331 || (REGNO (reg) != FRAME_POINTER_REGNUM
332 && REGNO (reg) != HARD_FRAME_POINTER_REGNUM
333 && REGNO (reg) != ARG_POINTER_REGNUM));
336 /* Returns a canonical version of X for the address, from the point of view,
337 that all multiplications are represented as MULT instead of the multiply
338 by a power of 2 being represented as ASHIFT.
340 Every ASHIFT we find has been made by simplify_gen_binary and was not
341 there before, so it is not shared. So we can do this in place. */
343 static void
344 canonicalize_address (rtx x)
346 for (;;)
347 switch (GET_CODE (x))
349 case ASHIFT:
350 if (CONST_INT_P (XEXP (x, 1))
351 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x))
352 && INTVAL (XEXP (x, 1)) >= 0)
354 HOST_WIDE_INT shift = INTVAL (XEXP (x, 1));
355 PUT_CODE (x, MULT);
356 XEXP (x, 1) = gen_int_mode ((HOST_WIDE_INT) 1 << shift,
357 GET_MODE (x));
360 x = XEXP (x, 0);
361 break;
363 case PLUS:
364 if (GET_CODE (XEXP (x, 0)) == PLUS
365 || GET_CODE (XEXP (x, 0)) == ASHIFT
366 || GET_CODE (XEXP (x, 0)) == CONST)
367 canonicalize_address (XEXP (x, 0));
369 x = XEXP (x, 1);
370 break;
372 case CONST:
373 x = XEXP (x, 0);
374 break;
376 default:
377 return;
381 /* OLD is a memory address. Return whether it is good to use NEW instead,
382 for a memory access in the given MODE. */
384 static bool
385 should_replace_address (rtx old_rtx, rtx new_rtx, enum machine_mode mode,
386 addr_space_t as, bool speed)
388 int gain;
390 if (rtx_equal_p (old_rtx, new_rtx)
391 || !memory_address_addr_space_p (mode, new_rtx, as))
392 return false;
394 /* Copy propagation is always ok. */
395 if (REG_P (old_rtx) && REG_P (new_rtx))
396 return true;
398 /* Prefer the new address if it is less expensive. */
399 gain = (address_cost (old_rtx, mode, as, speed)
400 - address_cost (new_rtx, mode, as, speed));
402 /* If the addresses have equivalent cost, prefer the new address
403 if it has the highest `set_src_cost'. That has the potential of
404 eliminating the most insns without additional costs, and it
405 is the same that cse.c used to do. */
406 if (gain == 0)
407 gain = set_src_cost (new_rtx, speed) - set_src_cost (old_rtx, speed);
409 return (gain > 0);
413 /* Flags for the last parameter of propagate_rtx_1. */
415 enum {
416 /* If PR_CAN_APPEAR is true, propagate_rtx_1 always returns true;
417 if it is false, propagate_rtx_1 returns false if, for at least
418 one occurrence OLD, it failed to collapse the result to a constant.
419 For example, (mult:M (reg:M A) (minus:M (reg:M B) (reg:M A))) may
420 collapse to zero if replacing (reg:M B) with (reg:M A).
422 PR_CAN_APPEAR is disregarded inside MEMs: in that case,
423 propagate_rtx_1 just tries to make cheaper and valid memory
424 addresses. */
425 PR_CAN_APPEAR = 1,
427 /* If PR_HANDLE_MEM is not set, propagate_rtx_1 won't attempt any replacement
428 outside memory addresses. This is needed because propagate_rtx_1 does
429 not do any analysis on memory; thus it is very conservative and in general
430 it will fail if non-read-only MEMs are found in the source expression.
432 PR_HANDLE_MEM is set when the source of the propagation was not
433 another MEM. Then, it is safe not to treat non-read-only MEMs as
434 ``opaque'' objects. */
435 PR_HANDLE_MEM = 2,
437 /* Set when costs should be optimized for speed. */
438 PR_OPTIMIZE_FOR_SPEED = 4
442 /* Replace all occurrences of OLD in *PX with NEW and try to simplify the
443 resulting expression. Replace *PX with a new RTL expression if an
444 occurrence of OLD was found.
446 This is only a wrapper around simplify-rtx.c: do not add any pattern
447 matching code here. (The sole exception is the handling of LO_SUM, but
448 that is because there is no simplify_gen_* function for LO_SUM). */
450 static bool
451 propagate_rtx_1 (rtx *px, rtx old_rtx, rtx new_rtx, int flags)
453 rtx x = *px, tem = NULL_RTX, op0, op1, op2;
454 enum rtx_code code = GET_CODE (x);
455 enum machine_mode mode = GET_MODE (x);
456 enum machine_mode op_mode;
457 bool can_appear = (flags & PR_CAN_APPEAR) != 0;
458 bool valid_ops = true;
460 if (!(flags & PR_HANDLE_MEM) && MEM_P (x) && !MEM_READONLY_P (x))
462 /* If unsafe, change MEMs to CLOBBERs or SCRATCHes (to preserve whether
463 they have side effects or not). */
464 *px = (side_effects_p (x)
465 ? gen_rtx_CLOBBER (GET_MODE (x), const0_rtx)
466 : gen_rtx_SCRATCH (GET_MODE (x)));
467 return false;
470 /* If X is OLD_RTX, return NEW_RTX. But not if replacing only within an
471 address, and we are *not* inside one. */
472 if (x == old_rtx)
474 *px = new_rtx;
475 return can_appear;
478 /* If this is an expression, try recursive substitution. */
479 switch (GET_RTX_CLASS (code))
481 case RTX_UNARY:
482 op0 = XEXP (x, 0);
483 op_mode = GET_MODE (op0);
484 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
485 if (op0 == XEXP (x, 0))
486 return true;
487 tem = simplify_gen_unary (code, mode, op0, op_mode);
488 break;
490 case RTX_BIN_ARITH:
491 case RTX_COMM_ARITH:
492 op0 = XEXP (x, 0);
493 op1 = XEXP (x, 1);
494 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
495 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
496 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
497 return true;
498 tem = simplify_gen_binary (code, mode, op0, op1);
499 break;
501 case RTX_COMPARE:
502 case RTX_COMM_COMPARE:
503 op0 = XEXP (x, 0);
504 op1 = XEXP (x, 1);
505 op_mode = GET_MODE (op0) != VOIDmode ? GET_MODE (op0) : GET_MODE (op1);
506 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
507 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
508 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
509 return true;
510 tem = simplify_gen_relational (code, mode, op_mode, op0, op1);
511 break;
513 case RTX_TERNARY:
514 case RTX_BITFIELD_OPS:
515 op0 = XEXP (x, 0);
516 op1 = XEXP (x, 1);
517 op2 = XEXP (x, 2);
518 op_mode = GET_MODE (op0);
519 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
520 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
521 valid_ops &= propagate_rtx_1 (&op2, old_rtx, new_rtx, flags);
522 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1) && op2 == XEXP (x, 2))
523 return true;
524 if (op_mode == VOIDmode)
525 op_mode = GET_MODE (op0);
526 tem = simplify_gen_ternary (code, mode, op_mode, op0, op1, op2);
527 break;
529 case RTX_EXTRA:
530 /* The only case we try to handle is a SUBREG. */
531 if (code == SUBREG)
533 op0 = XEXP (x, 0);
534 valid_ops &= propagate_rtx_1 (&op0, old_rtx, new_rtx, flags);
535 if (op0 == XEXP (x, 0))
536 return true;
537 tem = simplify_gen_subreg (mode, op0, GET_MODE (SUBREG_REG (x)),
538 SUBREG_BYTE (x));
540 break;
542 case RTX_OBJ:
543 if (code == MEM && x != new_rtx)
545 rtx new_op0;
546 op0 = XEXP (x, 0);
548 /* There are some addresses that we cannot work on. */
549 if (!can_simplify_addr (op0))
550 return true;
552 op0 = new_op0 = targetm.delegitimize_address (op0);
553 valid_ops &= propagate_rtx_1 (&new_op0, old_rtx, new_rtx,
554 flags | PR_CAN_APPEAR);
556 /* Dismiss transformation that we do not want to carry on. */
557 if (!valid_ops
558 || new_op0 == op0
559 || !(GET_MODE (new_op0) == GET_MODE (op0)
560 || GET_MODE (new_op0) == VOIDmode))
561 return true;
563 canonicalize_address (new_op0);
565 /* Copy propagations are always ok. Otherwise check the costs. */
566 if (!(REG_P (old_rtx) && REG_P (new_rtx))
567 && !should_replace_address (op0, new_op0, GET_MODE (x),
568 MEM_ADDR_SPACE (x),
569 flags & PR_OPTIMIZE_FOR_SPEED))
570 return true;
572 tem = replace_equiv_address_nv (x, new_op0);
575 else if (code == LO_SUM)
577 op0 = XEXP (x, 0);
578 op1 = XEXP (x, 1);
580 /* The only simplification we do attempts to remove references to op0
581 or make it constant -- in both cases, op0's invalidity will not
582 make the result invalid. */
583 propagate_rtx_1 (&op0, old_rtx, new_rtx, flags | PR_CAN_APPEAR);
584 valid_ops &= propagate_rtx_1 (&op1, old_rtx, new_rtx, flags);
585 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
586 return true;
588 /* (lo_sum (high x) x) -> x */
589 if (GET_CODE (op0) == HIGH && rtx_equal_p (XEXP (op0, 0), op1))
590 tem = op1;
591 else
592 tem = gen_rtx_LO_SUM (mode, op0, op1);
594 /* OP1 is likely not a legitimate address, otherwise there would have
595 been no LO_SUM. We want it to disappear if it is invalid, return
596 false in that case. */
597 return memory_address_p (mode, tem);
600 else if (code == REG)
602 if (rtx_equal_p (x, old_rtx))
604 *px = new_rtx;
605 return can_appear;
608 break;
610 default:
611 break;
614 /* No change, no trouble. */
615 if (tem == NULL_RTX)
616 return true;
618 *px = tem;
620 /* The replacement we made so far is valid, if all of the recursive
621 replacements were valid, or we could simplify everything to
622 a constant. */
623 return valid_ops || can_appear || CONSTANT_P (tem);
627 /* Return true if X constains a non-constant mem. */
629 static bool
630 varying_mem_p (const_rtx x)
632 subrtx_iterator::array_type array;
633 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
634 if (MEM_P (*iter) && !MEM_READONLY_P (*iter))
635 return true;
636 return false;
640 /* Replace all occurrences of OLD in X with NEW and try to simplify the
641 resulting expression (in mode MODE). Return a new expression if it is
642 a constant, otherwise X.
644 Simplifications where occurrences of NEW collapse to a constant are always
645 accepted. All simplifications are accepted if NEW is a pseudo too.
646 Otherwise, we accept simplifications that have a lower or equal cost. */
648 static rtx
649 propagate_rtx (rtx x, enum machine_mode mode, rtx old_rtx, rtx new_rtx,
650 bool speed)
652 rtx tem;
653 bool collapsed;
654 int flags;
656 if (REG_P (new_rtx) && REGNO (new_rtx) < FIRST_PSEUDO_REGISTER)
657 return NULL_RTX;
659 flags = 0;
660 if (REG_P (new_rtx)
661 || CONSTANT_P (new_rtx)
662 || (GET_CODE (new_rtx) == SUBREG
663 && REG_P (SUBREG_REG (new_rtx))
664 && (GET_MODE_SIZE (mode)
665 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (new_rtx))))))
666 flags |= PR_CAN_APPEAR;
667 if (!varying_mem_p (new_rtx))
668 flags |= PR_HANDLE_MEM;
670 if (speed)
671 flags |= PR_OPTIMIZE_FOR_SPEED;
673 tem = x;
674 collapsed = propagate_rtx_1 (&tem, old_rtx, copy_rtx (new_rtx), flags);
675 if (tem == x || !collapsed)
676 return NULL_RTX;
678 /* gen_lowpart_common will not be able to process VOIDmode entities other
679 than CONST_INTs. */
680 if (GET_MODE (tem) == VOIDmode && !CONST_INT_P (tem))
681 return NULL_RTX;
683 if (GET_MODE (tem) == VOIDmode)
684 tem = rtl_hooks.gen_lowpart_no_emit (mode, tem);
685 else
686 gcc_assert (GET_MODE (tem) == mode);
688 return tem;
694 /* Return true if the register from reference REF is killed
695 between FROM to (but not including) TO. */
697 static bool
698 local_ref_killed_between_p (df_ref ref, rtx_insn *from, rtx_insn *to)
700 rtx_insn *insn;
702 for (insn = from; insn != to; insn = NEXT_INSN (insn))
704 df_ref def;
705 if (!INSN_P (insn))
706 continue;
708 FOR_EACH_INSN_DEF (def, insn)
709 if (DF_REF_REGNO (ref) == DF_REF_REGNO (def))
710 return true;
712 return false;
716 /* Check if the given DEF is available in INSN. This would require full
717 computation of available expressions; we check only restricted conditions:
718 - if DEF is the sole definition of its register, go ahead;
719 - in the same basic block, we check for no definitions killing the
720 definition of DEF_INSN;
721 - if USE's basic block has DEF's basic block as the sole predecessor,
722 we check if the definition is killed after DEF_INSN or before
723 TARGET_INSN insn, in their respective basic blocks. */
724 static bool
725 use_killed_between (df_ref use, rtx_insn *def_insn, rtx_insn *target_insn)
727 basic_block def_bb = BLOCK_FOR_INSN (def_insn);
728 basic_block target_bb = BLOCK_FOR_INSN (target_insn);
729 int regno;
730 df_ref def;
732 /* We used to have a def reaching a use that is _before_ the def,
733 with the def not dominating the use even though the use and def
734 are in the same basic block, when a register may be used
735 uninitialized in a loop. This should not happen anymore since
736 we do not use reaching definitions, but still we test for such
737 cases and assume that DEF is not available. */
738 if (def_bb == target_bb
739 ? DF_INSN_LUID (def_insn) >= DF_INSN_LUID (target_insn)
740 : !dominated_by_p (CDI_DOMINATORS, target_bb, def_bb))
741 return true;
743 /* Check if the reg in USE has only one definition. We already
744 know that this definition reaches use, or we wouldn't be here.
745 However, this is invalid for hard registers because if they are
746 live at the beginning of the function it does not mean that we
747 have an uninitialized access. */
748 regno = DF_REF_REGNO (use);
749 def = DF_REG_DEF_CHAIN (regno);
750 if (def
751 && DF_REF_NEXT_REG (def) == NULL
752 && regno >= FIRST_PSEUDO_REGISTER)
753 return false;
755 /* Check locally if we are in the same basic block. */
756 if (def_bb == target_bb)
757 return local_ref_killed_between_p (use, def_insn, target_insn);
759 /* Finally, if DEF_BB is the sole predecessor of TARGET_BB. */
760 if (single_pred_p (target_bb)
761 && single_pred (target_bb) == def_bb)
763 df_ref x;
765 /* See if USE is killed between DEF_INSN and the last insn in the
766 basic block containing DEF_INSN. */
767 x = df_bb_regno_last_def_find (def_bb, regno);
768 if (x && DF_INSN_LUID (DF_REF_INSN (x)) >= DF_INSN_LUID (def_insn))
769 return true;
771 /* See if USE is killed between TARGET_INSN and the first insn in the
772 basic block containing TARGET_INSN. */
773 x = df_bb_regno_first_def_find (target_bb, regno);
774 if (x && DF_INSN_LUID (DF_REF_INSN (x)) < DF_INSN_LUID (target_insn))
775 return true;
777 return false;
780 /* Otherwise assume the worst case. */
781 return true;
785 /* Check if all uses in DEF_INSN can be used in TARGET_INSN. This
786 would require full computation of available expressions;
787 we check only restricted conditions, see use_killed_between. */
788 static bool
789 all_uses_available_at (rtx_insn *def_insn, rtx_insn *target_insn)
791 df_ref use;
792 struct df_insn_info *insn_info = DF_INSN_INFO_GET (def_insn);
793 rtx def_set = single_set (def_insn);
794 rtx_insn *next;
796 gcc_assert (def_set);
798 /* If target_insn comes right after def_insn, which is very common
799 for addresses, we can use a quicker test. Ignore debug insns
800 other than target insns for this. */
801 next = NEXT_INSN (def_insn);
802 while (next && next != target_insn && DEBUG_INSN_P (next))
803 next = NEXT_INSN (next);
804 if (next == target_insn && REG_P (SET_DEST (def_set)))
806 rtx def_reg = SET_DEST (def_set);
808 /* If the insn uses the reg that it defines, the substitution is
809 invalid. */
810 FOR_EACH_INSN_INFO_USE (use, insn_info)
811 if (rtx_equal_p (DF_REF_REG (use), def_reg))
812 return false;
813 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
814 if (rtx_equal_p (DF_REF_REG (use), def_reg))
815 return false;
817 else
819 rtx def_reg = REG_P (SET_DEST (def_set)) ? SET_DEST (def_set) : NULL_RTX;
821 /* Look at all the uses of DEF_INSN, and see if they are not
822 killed between DEF_INSN and TARGET_INSN. */
823 FOR_EACH_INSN_INFO_USE (use, insn_info)
825 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
826 return false;
827 if (use_killed_between (use, def_insn, target_insn))
828 return false;
830 FOR_EACH_INSN_INFO_EQ_USE (use, insn_info)
832 if (def_reg && rtx_equal_p (DF_REF_REG (use), def_reg))
833 return false;
834 if (use_killed_between (use, def_insn, target_insn))
835 return false;
839 return true;
843 static df_ref *active_defs;
844 #ifdef ENABLE_CHECKING
845 static sparseset active_defs_check;
846 #endif
848 /* Fill the ACTIVE_DEFS array with the use->def link for the registers
849 mentioned in USE_REC. Register the valid entries in ACTIVE_DEFS_CHECK
850 too, for checking purposes. */
852 static void
853 register_active_defs (df_ref use)
855 for (; use; use = DF_REF_NEXT_LOC (use))
857 df_ref def = get_def_for_use (use);
858 int regno = DF_REF_REGNO (use);
860 #ifdef ENABLE_CHECKING
861 sparseset_set_bit (active_defs_check, regno);
862 #endif
863 active_defs[regno] = def;
868 /* Build the use->def links that we use to update the dataflow info
869 for new uses. Note that building the links is very cheap and if
870 it were done earlier, they could be used to rule out invalid
871 propagations (in addition to what is done in all_uses_available_at).
872 I'm not doing this yet, though. */
874 static void
875 update_df_init (rtx_insn *def_insn, rtx_insn *insn)
877 #ifdef ENABLE_CHECKING
878 sparseset_clear (active_defs_check);
879 #endif
880 register_active_defs (DF_INSN_USES (def_insn));
881 register_active_defs (DF_INSN_USES (insn));
882 register_active_defs (DF_INSN_EQ_USES (insn));
886 /* Update the USE_DEF_REF array for the given use, using the active definitions
887 in the ACTIVE_DEFS array to match pseudos to their def. */
889 static inline void
890 update_uses (df_ref use)
892 for (; use; use = DF_REF_NEXT_LOC (use))
894 int regno = DF_REF_REGNO (use);
896 /* Set up the use-def chain. */
897 if (DF_REF_ID (use) >= (int) use_def_ref.length ())
898 use_def_ref.safe_grow_cleared (DF_REF_ID (use) + 1);
900 #ifdef ENABLE_CHECKING
901 gcc_assert (sparseset_bit_p (active_defs_check, regno));
902 #endif
903 use_def_ref[DF_REF_ID (use)] = active_defs[regno];
908 /* Update the USE_DEF_REF array for the uses in INSN. Only update note
909 uses if NOTES_ONLY is true. */
911 static void
912 update_df (rtx_insn *insn, rtx note)
914 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
916 if (note)
918 df_uses_create (&XEXP (note, 0), insn, DF_REF_IN_NOTE);
919 df_notes_rescan (insn);
921 else
923 df_uses_create (&PATTERN (insn), insn, 0);
924 df_insn_rescan (insn);
925 update_uses (DF_INSN_INFO_USES (insn_info));
928 update_uses (DF_INSN_INFO_EQ_USES (insn_info));
932 /* Try substituting NEW into LOC, which originated from forward propagation
933 of USE's value from DEF_INSN. SET_REG_EQUAL says whether we are
934 substituting the whole SET_SRC, so we can set a REG_EQUAL note if the
935 new insn is not recognized. Return whether the substitution was
936 performed. */
938 static bool
939 try_fwprop_subst (df_ref use, rtx *loc, rtx new_rtx, rtx_insn *def_insn,
940 bool set_reg_equal)
942 rtx_insn *insn = DF_REF_INSN (use);
943 rtx set = single_set (insn);
944 rtx note = NULL_RTX;
945 bool speed = optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn));
946 int old_cost = 0;
947 bool ok;
949 update_df_init (def_insn, insn);
951 /* forward_propagate_subreg may be operating on an instruction with
952 multiple sets. If so, assume the cost of the new instruction is
953 not greater than the old one. */
954 if (set)
955 old_cost = set_src_cost (SET_SRC (set), speed);
956 if (dump_file)
958 fprintf (dump_file, "\nIn insn %d, replacing\n ", INSN_UID (insn));
959 print_inline_rtx (dump_file, *loc, 2);
960 fprintf (dump_file, "\n with ");
961 print_inline_rtx (dump_file, new_rtx, 2);
962 fprintf (dump_file, "\n");
965 validate_unshare_change (insn, loc, new_rtx, true);
966 if (!verify_changes (0))
968 if (dump_file)
969 fprintf (dump_file, "Changes to insn %d not recognized\n",
970 INSN_UID (insn));
971 ok = false;
974 else if (DF_REF_TYPE (use) == DF_REF_REG_USE
975 && set
976 && set_src_cost (SET_SRC (set), speed) > old_cost)
978 if (dump_file)
979 fprintf (dump_file, "Changes to insn %d not profitable\n",
980 INSN_UID (insn));
981 ok = false;
984 else
986 if (dump_file)
987 fprintf (dump_file, "Changed insn %d\n", INSN_UID (insn));
988 ok = true;
991 if (ok)
993 confirm_change_group ();
994 num_changes++;
996 else
998 cancel_changes (0);
1000 /* Can also record a simplified value in a REG_EQUAL note,
1001 making a new one if one does not already exist. */
1002 if (set_reg_equal)
1004 if (dump_file)
1005 fprintf (dump_file, " Setting REG_EQUAL note\n");
1007 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (new_rtx));
1011 if ((ok || note) && !CONSTANT_P (new_rtx))
1012 update_df (insn, note);
1014 return ok;
1017 /* For the given single_set INSN, containing SRC known to be a
1018 ZERO_EXTEND or SIGN_EXTEND of a register, return true if INSN
1019 is redundant due to the register being set by a LOAD_EXTEND_OP
1020 load from memory. */
1022 static bool
1023 free_load_extend (rtx src, rtx_insn *insn)
1025 rtx reg;
1026 df_ref def, use;
1028 reg = XEXP (src, 0);
1029 #ifdef LOAD_EXTEND_OP
1030 if (LOAD_EXTEND_OP (GET_MODE (reg)) != GET_CODE (src))
1031 #endif
1032 return false;
1034 FOR_EACH_INSN_USE (use, insn)
1035 if (!DF_REF_IS_ARTIFICIAL (use)
1036 && DF_REF_TYPE (use) == DF_REF_REG_USE
1037 && DF_REF_REG (use) == reg)
1038 break;
1039 if (!use)
1040 return false;
1042 def = get_def_for_use (use);
1043 if (!def)
1044 return false;
1046 if (DF_REF_IS_ARTIFICIAL (def))
1047 return false;
1049 if (NONJUMP_INSN_P (DF_REF_INSN (def)))
1051 rtx patt = PATTERN (DF_REF_INSN (def));
1053 if (GET_CODE (patt) == SET
1054 && GET_CODE (SET_SRC (patt)) == MEM
1055 && rtx_equal_p (SET_DEST (patt), reg))
1056 return true;
1058 return false;
1061 /* If USE is a subreg, see if it can be replaced by a pseudo. */
1063 static bool
1064 forward_propagate_subreg (df_ref use, rtx_insn *def_insn, rtx def_set)
1066 rtx use_reg = DF_REF_REG (use);
1067 rtx_insn *use_insn;
1068 rtx src;
1070 /* Only consider subregs... */
1071 enum machine_mode use_mode = GET_MODE (use_reg);
1072 if (GET_CODE (use_reg) != SUBREG
1073 || !REG_P (SET_DEST (def_set)))
1074 return false;
1076 /* If this is a paradoxical SUBREG... */
1077 if (GET_MODE_SIZE (use_mode)
1078 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (use_reg))))
1080 /* If this is a paradoxical SUBREG, we have no idea what value the
1081 extra bits would have. However, if the operand is equivalent to
1082 a SUBREG whose operand is the same as our mode, and all the modes
1083 are within a word, we can just use the inner operand because
1084 these SUBREGs just say how to treat the register. */
1085 use_insn = DF_REF_INSN (use);
1086 src = SET_SRC (def_set);
1087 if (GET_CODE (src) == SUBREG
1088 && REG_P (SUBREG_REG (src))
1089 && REGNO (SUBREG_REG (src)) >= FIRST_PSEUDO_REGISTER
1090 && GET_MODE (SUBREG_REG (src)) == use_mode
1091 && subreg_lowpart_p (src)
1092 && all_uses_available_at (def_insn, use_insn))
1093 return try_fwprop_subst (use, DF_REF_LOC (use), SUBREG_REG (src),
1094 def_insn, false);
1097 /* If this is a SUBREG of a ZERO_EXTEND or SIGN_EXTEND, and the SUBREG
1098 is the low part of the reg being extended then just use the inner
1099 operand. Don't do this if the ZERO_EXTEND or SIGN_EXTEND insn will
1100 be removed due to it matching a LOAD_EXTEND_OP load from memory,
1101 or due to the operation being a no-op when applied to registers.
1102 For example, if we have:
1104 A: (set (reg:DI X) (sign_extend:DI (reg:SI Y)))
1105 B: (... (subreg:SI (reg:DI X)) ...)
1107 and mode_rep_extended says that Y is already sign-extended,
1108 the backend will typically allow A to be combined with the
1109 definition of Y or, failing that, allow A to be deleted after
1110 reload through register tying. Introducing more uses of Y
1111 prevents both optimisations. */
1112 else if (subreg_lowpart_p (use_reg))
1114 use_insn = DF_REF_INSN (use);
1115 src = SET_SRC (def_set);
1116 if ((GET_CODE (src) == ZERO_EXTEND
1117 || GET_CODE (src) == SIGN_EXTEND)
1118 && REG_P (XEXP (src, 0))
1119 && REGNO (XEXP (src, 0)) >= FIRST_PSEUDO_REGISTER
1120 && GET_MODE (XEXP (src, 0)) == use_mode
1121 && !free_load_extend (src, def_insn)
1122 && (targetm.mode_rep_extended (use_mode, GET_MODE (src))
1123 != (int) GET_CODE (src))
1124 && all_uses_available_at (def_insn, use_insn))
1125 return try_fwprop_subst (use, DF_REF_LOC (use), XEXP (src, 0),
1126 def_insn, false);
1129 return false;
1132 /* Try to replace USE with SRC (defined in DEF_INSN) in __asm. */
1134 static bool
1135 forward_propagate_asm (df_ref use, rtx_insn *def_insn, rtx def_set, rtx reg)
1137 rtx_insn *use_insn = DF_REF_INSN (use);
1138 rtx src, use_pat, asm_operands, new_rtx, *loc;
1139 int speed_p, i;
1140 df_ref uses;
1142 gcc_assert ((DF_REF_FLAGS (use) & DF_REF_IN_NOTE) == 0);
1144 src = SET_SRC (def_set);
1145 use_pat = PATTERN (use_insn);
1147 /* In __asm don't replace if src might need more registers than
1148 reg, as that could increase register pressure on the __asm. */
1149 uses = DF_INSN_USES (def_insn);
1150 if (uses && DF_REF_NEXT_LOC (uses))
1151 return false;
1153 update_df_init (def_insn, use_insn);
1154 speed_p = optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn));
1155 asm_operands = NULL_RTX;
1156 switch (GET_CODE (use_pat))
1158 case ASM_OPERANDS:
1159 asm_operands = use_pat;
1160 break;
1161 case SET:
1162 if (MEM_P (SET_DEST (use_pat)))
1164 loc = &SET_DEST (use_pat);
1165 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1166 if (new_rtx)
1167 validate_unshare_change (use_insn, loc, new_rtx, true);
1169 asm_operands = SET_SRC (use_pat);
1170 break;
1171 case PARALLEL:
1172 for (i = 0; i < XVECLEN (use_pat, 0); i++)
1173 if (GET_CODE (XVECEXP (use_pat, 0, i)) == SET)
1175 if (MEM_P (SET_DEST (XVECEXP (use_pat, 0, i))))
1177 loc = &SET_DEST (XVECEXP (use_pat, 0, i));
1178 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg,
1179 src, speed_p);
1180 if (new_rtx)
1181 validate_unshare_change (use_insn, loc, new_rtx, true);
1183 asm_operands = SET_SRC (XVECEXP (use_pat, 0, i));
1185 else if (GET_CODE (XVECEXP (use_pat, 0, i)) == ASM_OPERANDS)
1186 asm_operands = XVECEXP (use_pat, 0, i);
1187 break;
1188 default:
1189 gcc_unreachable ();
1192 gcc_assert (asm_operands && GET_CODE (asm_operands) == ASM_OPERANDS);
1193 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (asm_operands); i++)
1195 loc = &ASM_OPERANDS_INPUT (asm_operands, i);
1196 new_rtx = propagate_rtx (*loc, GET_MODE (*loc), reg, src, speed_p);
1197 if (new_rtx)
1198 validate_unshare_change (use_insn, loc, new_rtx, true);
1201 if (num_changes_pending () == 0 || !apply_change_group ())
1202 return false;
1204 update_df (use_insn, NULL);
1205 num_changes++;
1206 return true;
1209 /* Try to replace USE with SRC (defined in DEF_INSN) and simplify the
1210 result. */
1212 static bool
1213 forward_propagate_and_simplify (df_ref use, rtx_insn *def_insn, rtx def_set)
1215 rtx_insn *use_insn = DF_REF_INSN (use);
1216 rtx use_set = single_set (use_insn);
1217 rtx src, reg, new_rtx, *loc;
1218 bool set_reg_equal;
1219 enum machine_mode mode;
1220 int asm_use = -1;
1222 if (INSN_CODE (use_insn) < 0)
1223 asm_use = asm_noperands (PATTERN (use_insn));
1225 if (!use_set && asm_use < 0 && !DEBUG_INSN_P (use_insn))
1226 return false;
1228 /* Do not propagate into PC, CC0, etc. */
1229 if (use_set && GET_MODE (SET_DEST (use_set)) == VOIDmode)
1230 return false;
1232 /* If def and use are subreg, check if they match. */
1233 reg = DF_REF_REG (use);
1234 if (GET_CODE (reg) == SUBREG && GET_CODE (SET_DEST (def_set)) == SUBREG)
1236 if (SUBREG_BYTE (SET_DEST (def_set)) != SUBREG_BYTE (reg))
1237 return false;
1239 /* Check if the def had a subreg, but the use has the whole reg. */
1240 else if (REG_P (reg) && GET_CODE (SET_DEST (def_set)) == SUBREG)
1241 return false;
1242 /* Check if the use has a subreg, but the def had the whole reg. Unlike the
1243 previous case, the optimization is possible and often useful indeed. */
1244 else if (GET_CODE (reg) == SUBREG && REG_P (SET_DEST (def_set)))
1245 reg = SUBREG_REG (reg);
1247 /* Make sure that we can treat REG as having the same mode as the
1248 source of DEF_SET. */
1249 if (GET_MODE (SET_DEST (def_set)) != GET_MODE (reg))
1250 return false;
1252 /* Check if the substitution is valid (last, because it's the most
1253 expensive check!). */
1254 src = SET_SRC (def_set);
1255 if (!CONSTANT_P (src) && !all_uses_available_at (def_insn, use_insn))
1256 return false;
1258 /* Check if the def is loading something from the constant pool; in this
1259 case we would undo optimization such as compress_float_constant.
1260 Still, we can set a REG_EQUAL note. */
1261 if (MEM_P (src) && MEM_READONLY_P (src))
1263 rtx x = avoid_constant_pool_reference (src);
1264 if (x != src && use_set)
1266 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1267 rtx old_rtx = note ? XEXP (note, 0) : SET_SRC (use_set);
1268 rtx new_rtx = simplify_replace_rtx (old_rtx, src, x);
1269 if (old_rtx != new_rtx)
1270 set_unique_reg_note (use_insn, REG_EQUAL, copy_rtx (new_rtx));
1272 return false;
1275 if (asm_use >= 0)
1276 return forward_propagate_asm (use, def_insn, def_set, reg);
1278 /* Else try simplifying. */
1280 if (DF_REF_TYPE (use) == DF_REF_REG_MEM_STORE)
1282 loc = &SET_DEST (use_set);
1283 set_reg_equal = false;
1285 else if (!use_set)
1287 loc = &INSN_VAR_LOCATION_LOC (use_insn);
1288 set_reg_equal = false;
1290 else
1292 rtx note = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1293 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1294 loc = &XEXP (note, 0);
1295 else
1296 loc = &SET_SRC (use_set);
1298 /* Do not replace an existing REG_EQUAL note if the insn is not
1299 recognized. Either we're already replacing in the note, or we'll
1300 separately try plugging the definition in the note and simplifying.
1301 And only install a REQ_EQUAL note when the destination is a REG
1302 that isn't mentioned in USE_SET, as the note would be invalid
1303 otherwise. We also don't want to install a note if we are merely
1304 propagating a pseudo since verifying that this pseudo isn't dead
1305 is a pain; moreover such a note won't help anything. */
1306 set_reg_equal = (note == NULL_RTX
1307 && REG_P (SET_DEST (use_set))
1308 && !REG_P (src)
1309 && !(GET_CODE (src) == SUBREG
1310 && REG_P (SUBREG_REG (src)))
1311 && !reg_mentioned_p (SET_DEST (use_set),
1312 SET_SRC (use_set)));
1315 if (GET_MODE (*loc) == VOIDmode)
1316 mode = GET_MODE (SET_DEST (use_set));
1317 else
1318 mode = GET_MODE (*loc);
1320 new_rtx = propagate_rtx (*loc, mode, reg, src,
1321 optimize_bb_for_speed_p (BLOCK_FOR_INSN (use_insn)));
1323 if (!new_rtx)
1324 return false;
1326 return try_fwprop_subst (use, loc, new_rtx, def_insn, set_reg_equal);
1330 /* Given a use USE of an insn, if it has a single reaching
1331 definition, try to forward propagate it into that insn.
1332 Return true if cfg cleanup will be needed. */
1334 static bool
1335 forward_propagate_into (df_ref use)
1337 df_ref def;
1338 rtx_insn *def_insn, *use_insn;
1339 rtx def_set;
1340 rtx parent;
1342 if (DF_REF_FLAGS (use) & DF_REF_READ_WRITE)
1343 return false;
1344 if (DF_REF_IS_ARTIFICIAL (use))
1345 return false;
1347 /* Only consider uses that have a single definition. */
1348 def = get_def_for_use (use);
1349 if (!def)
1350 return false;
1351 if (DF_REF_FLAGS (def) & DF_REF_READ_WRITE)
1352 return false;
1353 if (DF_REF_IS_ARTIFICIAL (def))
1354 return false;
1356 /* Do not propagate loop invariant definitions inside the loop. */
1357 if (DF_REF_BB (def)->loop_father != DF_REF_BB (use)->loop_father)
1358 return false;
1360 /* Check if the use is still present in the insn! */
1361 use_insn = DF_REF_INSN (use);
1362 if (DF_REF_FLAGS (use) & DF_REF_IN_NOTE)
1363 parent = find_reg_note (use_insn, REG_EQUAL, NULL_RTX);
1364 else
1365 parent = PATTERN (use_insn);
1367 if (!reg_mentioned_p (DF_REF_REG (use), parent))
1368 return false;
1370 def_insn = DF_REF_INSN (def);
1371 if (multiple_sets (def_insn))
1372 return false;
1373 def_set = single_set (def_insn);
1374 if (!def_set)
1375 return false;
1377 /* Only try one kind of propagation. If two are possible, we'll
1378 do it on the following iterations. */
1379 if (forward_propagate_and_simplify (use, def_insn, def_set)
1380 || forward_propagate_subreg (use, def_insn, def_set))
1382 if (cfun->can_throw_non_call_exceptions
1383 && find_reg_note (use_insn, REG_EH_REGION, NULL_RTX)
1384 && purge_dead_edges (DF_REF_BB (use)))
1385 return true;
1387 return false;
1391 static void
1392 fwprop_init (void)
1394 num_changes = 0;
1395 calculate_dominance_info (CDI_DOMINATORS);
1397 /* We do not always want to propagate into loops, so we have to find
1398 loops and be careful about them. Avoid CFG modifications so that
1399 we don't have to update dominance information afterwards for
1400 build_single_def_use_links. */
1401 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1403 build_single_def_use_links ();
1404 df_set_flags (DF_DEFER_INSN_RESCAN);
1406 active_defs = XNEWVEC (df_ref, max_reg_num ());
1407 #ifdef ENABLE_CHECKING
1408 active_defs_check = sparseset_alloc (max_reg_num ());
1409 #endif
1412 static void
1413 fwprop_done (void)
1415 loop_optimizer_finalize ();
1417 use_def_ref.release ();
1418 free (active_defs);
1419 #ifdef ENABLE_CHECKING
1420 sparseset_free (active_defs_check);
1421 #endif
1423 free_dominance_info (CDI_DOMINATORS);
1424 cleanup_cfg (0);
1425 delete_trivially_dead_insns (get_insns (), max_reg_num ());
1427 if (dump_file)
1428 fprintf (dump_file,
1429 "\nNumber of successful forward propagations: %d\n\n",
1430 num_changes);
1434 /* Main entry point. */
1436 static bool
1437 gate_fwprop (void)
1439 return optimize > 0 && flag_forward_propagate;
1442 static unsigned int
1443 fwprop (void)
1445 unsigned i;
1446 bool need_cleanup = false;
1448 fwprop_init ();
1450 /* Go through all the uses. df_uses_create will create new ones at the
1451 end, and we'll go through them as well.
1453 Do not forward propagate addresses into loops until after unrolling.
1454 CSE did so because it was able to fix its own mess, but we are not. */
1456 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1458 df_ref use = DF_USES_GET (i);
1459 if (use)
1460 if (DF_REF_TYPE (use) == DF_REF_REG_USE
1461 || DF_REF_BB (use)->loop_father == NULL
1462 /* The outer most loop is not really a loop. */
1463 || loop_outer (DF_REF_BB (use)->loop_father) == NULL)
1464 need_cleanup |= forward_propagate_into (use);
1467 fwprop_done ();
1468 if (need_cleanup)
1469 cleanup_cfg (0);
1470 return 0;
1473 namespace {
1475 const pass_data pass_data_rtl_fwprop =
1477 RTL_PASS, /* type */
1478 "fwprop1", /* name */
1479 OPTGROUP_NONE, /* optinfo_flags */
1480 TV_FWPROP, /* tv_id */
1481 0, /* properties_required */
1482 0, /* properties_provided */
1483 0, /* properties_destroyed */
1484 0, /* todo_flags_start */
1485 TODO_df_finish, /* todo_flags_finish */
1488 class pass_rtl_fwprop : public rtl_opt_pass
1490 public:
1491 pass_rtl_fwprop (gcc::context *ctxt)
1492 : rtl_opt_pass (pass_data_rtl_fwprop, ctxt)
1495 /* opt_pass methods: */
1496 virtual bool gate (function *) { return gate_fwprop (); }
1497 virtual unsigned int execute (function *) { return fwprop (); }
1499 }; // class pass_rtl_fwprop
1501 } // anon namespace
1503 rtl_opt_pass *
1504 make_pass_rtl_fwprop (gcc::context *ctxt)
1506 return new pass_rtl_fwprop (ctxt);
1509 static unsigned int
1510 fwprop_addr (void)
1512 unsigned i;
1513 bool need_cleanup = false;
1515 fwprop_init ();
1517 /* Go through all the uses. df_uses_create will create new ones at the
1518 end, and we'll go through them as well. */
1519 for (i = 0; i < DF_USES_TABLE_SIZE (); i++)
1521 df_ref use = DF_USES_GET (i);
1522 if (use)
1523 if (DF_REF_TYPE (use) != DF_REF_REG_USE
1524 && DF_REF_BB (use)->loop_father != NULL
1525 /* The outer most loop is not really a loop. */
1526 && loop_outer (DF_REF_BB (use)->loop_father) != NULL)
1527 need_cleanup |= forward_propagate_into (use);
1530 fwprop_done ();
1532 if (need_cleanup)
1533 cleanup_cfg (0);
1534 return 0;
1537 namespace {
1539 const pass_data pass_data_rtl_fwprop_addr =
1541 RTL_PASS, /* type */
1542 "fwprop2", /* name */
1543 OPTGROUP_NONE, /* optinfo_flags */
1544 TV_FWPROP, /* tv_id */
1545 0, /* properties_required */
1546 0, /* properties_provided */
1547 0, /* properties_destroyed */
1548 0, /* todo_flags_start */
1549 TODO_df_finish, /* todo_flags_finish */
1552 class pass_rtl_fwprop_addr : public rtl_opt_pass
1554 public:
1555 pass_rtl_fwprop_addr (gcc::context *ctxt)
1556 : rtl_opt_pass (pass_data_rtl_fwprop_addr, ctxt)
1559 /* opt_pass methods: */
1560 virtual bool gate (function *) { return gate_fwprop (); }
1561 virtual unsigned int execute (function *) { return fwprop_addr (); }
1563 }; // class pass_rtl_fwprop_addr
1565 } // anon namespace
1567 rtl_opt_pass *
1568 make_pass_rtl_fwprop_addr (gcc::context *ctxt)
1570 return new pass_rtl_fwprop_addr (ctxt);