* inclhack.def (aix_once_init_[12]): New fixes.
[official-gcc.git] / libgo / go / math / lgamma.go
blob8f6d7b99fc5e98b82ad262cbb8d058359e40a414
1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package math
7 /*
8 Floating-point logarithm of the Gamma function.
9 */
11 // The original C code and the long comment below are
12 // from FreeBSD's /usr/src/lib/msun/src/e_lgamma_r.c and
13 // came with this notice. The go code is a simplified
14 // version of the original C.
16 // ====================================================
17 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
19 // Developed at SunPro, a Sun Microsystems, Inc. business.
20 // Permission to use, copy, modify, and distribute this
21 // software is freely granted, provided that this notice
22 // is preserved.
23 // ====================================================
25 // __ieee754_lgamma_r(x, signgamp)
26 // Reentrant version of the logarithm of the Gamma function
27 // with user provided pointer for the sign of Gamma(x).
29 // Method:
30 // 1. Argument Reduction for 0 < x <= 8
31 // Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
32 // reduce x to a number in [1.5,2.5] by
33 // lgamma(1+s) = log(s) + lgamma(s)
34 // for example,
35 // lgamma(7.3) = log(6.3) + lgamma(6.3)
36 // = log(6.3*5.3) + lgamma(5.3)
37 // = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
38 // 2. Polynomial approximation of lgamma around its
39 // minimum (ymin=1.461632144968362245) to maintain monotonicity.
40 // On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
41 // Let z = x-ymin;
42 // lgamma(x) = -1.214862905358496078218 + z**2*poly(z)
43 // poly(z) is a 14 degree polynomial.
44 // 2. Rational approximation in the primary interval [2,3]
45 // We use the following approximation:
46 // s = x-2.0;
47 // lgamma(x) = 0.5*s + s*P(s)/Q(s)
48 // with accuracy
49 // |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
50 // Our algorithms are based on the following observation
52 // zeta(2)-1 2 zeta(3)-1 3
53 // lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
54 // 2 3
56 // where Euler = 0.5772156649... is the Euler constant, which
57 // is very close to 0.5.
59 // 3. For x>=8, we have
60 // lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
61 // (better formula:
62 // lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
63 // Let z = 1/x, then we approximation
64 // f(z) = lgamma(x) - (x-0.5)(log(x)-1)
65 // by
66 // 3 5 11
67 // w = w0 + w1*z + w2*z + w3*z + ... + w6*z
68 // where
69 // |w - f(z)| < 2**-58.74
71 // 4. For negative x, since (G is gamma function)
72 // -x*G(-x)*G(x) = pi/sin(pi*x),
73 // we have
74 // G(x) = pi/(sin(pi*x)*(-x)*G(-x))
75 // since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0
76 // Hence, for x<0, signgam = sign(sin(pi*x)) and
77 // lgamma(x) = log(|Gamma(x)|)
78 // = log(pi/(|x*sin(pi*x)|)) - lgamma(-x);
79 // Note: one should avoid computing pi*(-x) directly in the
80 // computation of sin(pi*(-x)).
82 // 5. Special Cases
83 // lgamma(2+s) ~ s*(1-Euler) for tiny s
84 // lgamma(1)=lgamma(2)=0
85 // lgamma(x) ~ -log(x) for tiny x
86 // lgamma(0) = lgamma(inf) = inf
87 // lgamma(-integer) = +-inf
91 // Lgamma returns the natural logarithm and sign (-1 or +1) of Gamma(x).
93 // Special cases are:
94 // Lgamma(+Inf) = +Inf
95 // Lgamma(0) = +Inf
96 // Lgamma(-integer) = +Inf
97 // Lgamma(-Inf) = -Inf
98 // Lgamma(NaN) = NaN
99 func Lgamma(x float64) (lgamma float64, sign int) {
100 const (
101 Ymin = 1.461632144968362245
102 Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15
103 Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15
104 Two58 = 1 << 58 // 0x4390000000000000 ~2.8823e+17
105 Tiny = 1.0 / (1 << 70) // 0x3b90000000000000 ~8.47033e-22
106 A0 = 7.72156649015328655494e-02 // 0x3FB3C467E37DB0C8
107 A1 = 3.22467033424113591611e-01 // 0x3FD4A34CC4A60FAD
108 A2 = 6.73523010531292681824e-02 // 0x3FB13E001A5562A7
109 A3 = 2.05808084325167332806e-02 // 0x3F951322AC92547B
110 A4 = 7.38555086081402883957e-03 // 0x3F7E404FB68FEFE8
111 A5 = 2.89051383673415629091e-03 // 0x3F67ADD8CCB7926B
112 A6 = 1.19270763183362067845e-03 // 0x3F538A94116F3F5D
113 A7 = 5.10069792153511336608e-04 // 0x3F40B6C689B99C00
114 A8 = 2.20862790713908385557e-04 // 0x3F2CF2ECED10E54D
115 A9 = 1.08011567247583939954e-04 // 0x3F1C5088987DFB07
116 A10 = 2.52144565451257326939e-05 // 0x3EFA7074428CFA52
117 A11 = 4.48640949618915160150e-05 // 0x3F07858E90A45837
118 Tc = 1.46163214496836224576e+00 // 0x3FF762D86356BE3F
119 Tf = -1.21486290535849611461e-01 // 0xBFBF19B9BCC38A42
120 // Tt = -(tail of Tf)
121 Tt = -3.63867699703950536541e-18 // 0xBC50C7CAA48A971F
122 T0 = 4.83836122723810047042e-01 // 0x3FDEF72BC8EE38A2
123 T1 = -1.47587722994593911752e-01 // 0xBFC2E4278DC6C509
124 T2 = 6.46249402391333854778e-02 // 0x3FB08B4294D5419B
125 T3 = -3.27885410759859649565e-02 // 0xBFA0C9A8DF35B713
126 T4 = 1.79706750811820387126e-02 // 0x3F9266E7970AF9EC
127 T5 = -1.03142241298341437450e-02 // 0xBF851F9FBA91EC6A
128 T6 = 6.10053870246291332635e-03 // 0x3F78FCE0E370E344
129 T7 = -3.68452016781138256760e-03 // 0xBF6E2EFFB3E914D7
130 T8 = 2.25964780900612472250e-03 // 0x3F6282D32E15C915
131 T9 = -1.40346469989232843813e-03 // 0xBF56FE8EBF2D1AF1
132 T10 = 8.81081882437654011382e-04 // 0x3F4CDF0CEF61A8E9
133 T11 = -5.38595305356740546715e-04 // 0xBF41A6109C73E0EC
134 T12 = 3.15632070903625950361e-04 // 0x3F34AF6D6C0EBBF7
135 T13 = -3.12754168375120860518e-04 // 0xBF347F24ECC38C38
136 T14 = 3.35529192635519073543e-04 // 0x3F35FD3EE8C2D3F4
137 U0 = -7.72156649015328655494e-02 // 0xBFB3C467E37DB0C8
138 U1 = 6.32827064025093366517e-01 // 0x3FE4401E8B005DFF
139 U2 = 1.45492250137234768737e+00 // 0x3FF7475CD119BD6F
140 U3 = 9.77717527963372745603e-01 // 0x3FEF497644EA8450
141 U4 = 2.28963728064692451092e-01 // 0x3FCD4EAEF6010924
142 U5 = 1.33810918536787660377e-02 // 0x3F8B678BBF2BAB09
143 V1 = 2.45597793713041134822e+00 // 0x4003A5D7C2BD619C
144 V2 = 2.12848976379893395361e+00 // 0x40010725A42B18F5
145 V3 = 7.69285150456672783825e-01 // 0x3FE89DFBE45050AF
146 V4 = 1.04222645593369134254e-01 // 0x3FBAAE55D6537C88
147 V5 = 3.21709242282423911810e-03 // 0x3F6A5ABB57D0CF61
148 S0 = -7.72156649015328655494e-02 // 0xBFB3C467E37DB0C8
149 S1 = 2.14982415960608852501e-01 // 0x3FCB848B36E20878
150 S2 = 3.25778796408930981787e-01 // 0x3FD4D98F4F139F59
151 S3 = 1.46350472652464452805e-01 // 0x3FC2BB9CBEE5F2F7
152 S4 = 2.66422703033638609560e-02 // 0x3F9B481C7E939961
153 S5 = 1.84028451407337715652e-03 // 0x3F5E26B67368F239
154 S6 = 3.19475326584100867617e-05 // 0x3F00BFECDD17E945
155 R1 = 1.39200533467621045958e+00 // 0x3FF645A762C4AB74
156 R2 = 7.21935547567138069525e-01 // 0x3FE71A1893D3DCDC
157 R3 = 1.71933865632803078993e-01 // 0x3FC601EDCCFBDF27
158 R4 = 1.86459191715652901344e-02 // 0x3F9317EA742ED475
159 R5 = 7.77942496381893596434e-04 // 0x3F497DDACA41A95B
160 R6 = 7.32668430744625636189e-06 // 0x3EDEBAF7A5B38140
161 W0 = 4.18938533204672725052e-01 // 0x3FDACFE390C97D69
162 W1 = 8.33333333333329678849e-02 // 0x3FB555555555553B
163 W2 = -2.77777777728775536470e-03 // 0xBF66C16C16B02E5C
164 W3 = 7.93650558643019558500e-04 // 0x3F4A019F98CF38B6
165 W4 = -5.95187557450339963135e-04 // 0xBF4380CB8C0FE741
166 W5 = 8.36339918996282139126e-04 // 0x3F4B67BA4CDAD5D1
167 W6 = -1.63092934096575273989e-03 // 0xBF5AB89D0B9E43E4
169 // TODO(rsc): Remove manual inlining of IsNaN, IsInf
170 // when compiler does it for us
171 // special cases
172 sign = 1
173 switch {
174 case x != x: // IsNaN(x):
175 lgamma = x
176 return
177 case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0):
178 lgamma = x
179 return
180 case x == 0:
181 lgamma = Inf(1)
182 return
185 neg := false
186 if x < 0 {
187 x = -x
188 neg = true
191 if x < Tiny { // if |x| < 2**-70, return -log(|x|)
192 if neg {
193 sign = -1
195 lgamma = -Log(x)
196 return
198 var nadj float64
199 if neg {
200 if x >= Two52 { // |x| >= 2**52, must be -integer
201 lgamma = Inf(1)
202 return
204 t := sinPi(x)
205 if t == 0 {
206 lgamma = Inf(1) // -integer
207 return
209 nadj = Log(Pi / Abs(t*x))
210 if t < 0 {
211 sign = -1
215 switch {
216 case x == 1 || x == 2: // purge off 1 and 2
217 lgamma = 0
218 return
219 case x < 2: // use lgamma(x) = lgamma(x+1) - log(x)
220 var y float64
221 var i int
222 if x <= 0.9 {
223 lgamma = -Log(x)
224 switch {
225 case x >= (Ymin - 1 + 0.27): // 0.7316 <= x <= 0.9
226 y = 1 - x
227 i = 0
228 case x >= (Ymin - 1 - 0.27): // 0.2316 <= x < 0.7316
229 y = x - (Tc - 1)
230 i = 1
231 default: // 0 < x < 0.2316
232 y = x
233 i = 2
235 } else {
236 lgamma = 0
237 switch {
238 case x >= (Ymin + 0.27): // 1.7316 <= x < 2
239 y = 2 - x
240 i = 0
241 case x >= (Ymin - 0.27): // 1.2316 <= x < 1.7316
242 y = x - Tc
243 i = 1
244 default: // 0.9 < x < 1.2316
245 y = x - 1
246 i = 2
249 switch i {
250 case 0:
251 z := y * y
252 p1 := A0 + z*(A2+z*(A4+z*(A6+z*(A8+z*A10))))
253 p2 := z * (A1 + z*(A3+z*(A5+z*(A7+z*(A9+z*A11)))))
254 p := y*p1 + p2
255 lgamma += (p - 0.5*y)
256 case 1:
257 z := y * y
258 w := z * y
259 p1 := T0 + w*(T3+w*(T6+w*(T9+w*T12))) // parallel comp
260 p2 := T1 + w*(T4+w*(T7+w*(T10+w*T13)))
261 p3 := T2 + w*(T5+w*(T8+w*(T11+w*T14)))
262 p := z*p1 - (Tt - w*(p2+y*p3))
263 lgamma += (Tf + p)
264 case 2:
265 p1 := y * (U0 + y*(U1+y*(U2+y*(U3+y*(U4+y*U5)))))
266 p2 := 1 + y*(V1+y*(V2+y*(V3+y*(V4+y*V5))))
267 lgamma += (-0.5*y + p1/p2)
269 case x < 8: // 2 <= x < 8
270 i := int(x)
271 y := x - float64(i)
272 p := y * (S0 + y*(S1+y*(S2+y*(S3+y*(S4+y*(S5+y*S6))))))
273 q := 1 + y*(R1+y*(R2+y*(R3+y*(R4+y*(R5+y*R6)))))
274 lgamma = 0.5*y + p/q
275 z := 1.0 // Lgamma(1+s) = Log(s) + Lgamma(s)
276 switch i {
277 case 7:
278 z *= (y + 6)
279 fallthrough
280 case 6:
281 z *= (y + 5)
282 fallthrough
283 case 5:
284 z *= (y + 4)
285 fallthrough
286 case 4:
287 z *= (y + 3)
288 fallthrough
289 case 3:
290 z *= (y + 2)
291 lgamma += Log(z)
293 case x < Two58: // 8 <= x < 2**58
294 t := Log(x)
295 z := 1 / x
296 y := z * z
297 w := W0 + z*(W1+y*(W2+y*(W3+y*(W4+y*(W5+y*W6)))))
298 lgamma = (x-0.5)*(t-1) + w
299 default: // 2**58 <= x <= Inf
300 lgamma = x * (Log(x) - 1)
302 if neg {
303 lgamma = nadj - lgamma
305 return
308 // sinPi(x) is a helper function for negative x
309 func sinPi(x float64) float64 {
310 const (
311 Two52 = 1 << 52 // 0x4330000000000000 ~4.5036e+15
312 Two53 = 1 << 53 // 0x4340000000000000 ~9.0072e+15
314 if x < 0.25 {
315 return -Sin(Pi * x)
318 // argument reduction
319 z := Floor(x)
320 var n int
321 if z != x { // inexact
322 x = Mod(x, 2)
323 n = int(x * 4)
324 } else {
325 if x >= Two53 { // x must be even
326 x = 0
327 n = 0
328 } else {
329 if x < Two52 {
330 z = x + Two52 // exact
332 n = int(1 & Float64bits(z))
333 x = float64(n)
334 n <<= 2
337 switch n {
338 case 0:
339 x = Sin(Pi * x)
340 case 1, 2:
341 x = Cos(Pi * (0.5 - x))
342 case 3, 4:
343 x = Sin(Pi * (1 - x))
344 case 5, 6:
345 x = -Cos(Pi * (x - 1.5))
346 default:
347 x = Sin(Pi * (x - 2))
349 return -x