* inclhack.def (aix_once_init_[12]): New fixes.
[official-gcc.git] / libgo / go / math / jn.go
blob1878df5b5a2682e39a21bd094eb59ae72177b901
1 // Copyright 2010 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 package math
7 /*
8 Bessel function of the first and second kinds of order n.
9 */
11 // The original C code and the long comment below are
12 // from FreeBSD's /usr/src/lib/msun/src/e_jn.c and
13 // came with this notice. The go code is a simplified
14 // version of the original C.
16 // ====================================================
17 // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
19 // Developed at SunPro, a Sun Microsystems, Inc. business.
20 // Permission to use, copy, modify, and distribute this
21 // software is freely granted, provided that this notice
22 // is preserved.
23 // ====================================================
25 // __ieee754_jn(n, x), __ieee754_yn(n, x)
26 // floating point Bessel's function of the 1st and 2nd kind
27 // of order n
29 // Special cases:
30 // y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
31 // y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
32 // Note 2. About jn(n,x), yn(n,x)
33 // For n=0, j0(x) is called,
34 // for n=1, j1(x) is called,
35 // for n<x, forward recursion is used starting
36 // from values of j0(x) and j1(x).
37 // for n>x, a continued fraction approximation to
38 // j(n,x)/j(n-1,x) is evaluated and then backward
39 // recursion is used starting from a supposed value
40 // for j(n,x). The resulting value of j(0,x) is
41 // compared with the actual value to correct the
42 // supposed value of j(n,x).
44 // yn(n,x) is similar in all respects, except
45 // that forward recursion is used for all
46 // values of n>1.
48 // Jn returns the order-n Bessel function of the first kind.
50 // Special cases are:
51 // Jn(n, ±Inf) = 0
52 // Jn(n, NaN) = NaN
53 func Jn(n int, x float64) float64 {
54 const (
55 TwoM29 = 1.0 / (1 << 29) // 2**-29 0x3e10000000000000
56 Two302 = 1 << 302 // 2**302 0x52D0000000000000
58 // TODO(rsc): Remove manual inlining of IsNaN, IsInf
59 // when compiler does it for us
60 // special cases
61 switch {
62 case x != x: // IsNaN(x)
63 return x
64 case x < -MaxFloat64 || x > MaxFloat64: // IsInf(x, 0):
65 return 0
67 // J(-n, x) = (-1)**n * J(n, x), J(n, -x) = (-1)**n * J(n, x)
68 // Thus, J(-n, x) = J(n, -x)
70 if n == 0 {
71 return J0(x)
73 if x == 0 {
74 return 0
76 if n < 0 {
77 n, x = -n, -x
79 if n == 1 {
80 return J1(x)
82 sign := false
83 if x < 0 {
84 x = -x
85 if n&1 == 1 {
86 sign = true // odd n and negative x
89 var b float64
90 if float64(n) <= x {
91 // Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
92 if x >= Two302 { // x > 2**302
94 // (x >> n**2)
95 // Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
96 // Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
97 // Let s=sin(x), c=cos(x),
98 // xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
100 // n sin(xn)*sqt2 cos(xn)*sqt2
101 // ----------------------------------
102 // 0 s-c c+s
103 // 1 -s-c -c+s
104 // 2 -s+c -c-s
105 // 3 s+c c-s
107 var temp float64
108 switch n & 3 {
109 case 0:
110 temp = Cos(x) + Sin(x)
111 case 1:
112 temp = -Cos(x) + Sin(x)
113 case 2:
114 temp = -Cos(x) - Sin(x)
115 case 3:
116 temp = Cos(x) - Sin(x)
118 b = (1 / SqrtPi) * temp / Sqrt(x)
119 } else {
120 b = J1(x)
121 for i, a := 1, J0(x); i < n; i++ {
122 a, b = b, b*(float64(i+i)/x)-a // avoid underflow
125 } else {
126 if x < TwoM29 { // x < 2**-29
127 // x is tiny, return the first Taylor expansion of J(n,x)
128 // J(n,x) = 1/n!*(x/2)**n - ...
130 if n > 33 { // underflow
131 b = 0
132 } else {
133 temp := x * 0.5
134 b = temp
135 a := 1.0
136 for i := 2; i <= n; i++ {
137 a *= float64(i) // a = n!
138 b *= temp // b = (x/2)**n
140 b /= a
142 } else {
143 // use backward recurrence
144 // x x**2 x**2
145 // J(n,x)/J(n-1,x) = ---- ------ ------ .....
146 // 2n - 2(n+1) - 2(n+2)
148 // 1 1 1
149 // (for large x) = ---- ------ ------ .....
150 // 2n 2(n+1) 2(n+2)
151 // -- - ------ - ------ -
152 // x x x
154 // Let w = 2n/x and h=2/x, then the above quotient
155 // is equal to the continued fraction:
156 // 1
157 // = -----------------------
158 // 1
159 // w - -----------------
160 // 1
161 // w+h - ---------
162 // w+2h - ...
164 // To determine how many terms needed, let
165 // Q(0) = w, Q(1) = w(w+h) - 1,
166 // Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
167 // When Q(k) > 1e4 good for single
168 // When Q(k) > 1e9 good for double
169 // When Q(k) > 1e17 good for quadruple
171 // determine k
172 w := float64(n+n) / x
173 h := 2 / x
174 q0 := w
175 z := w + h
176 q1 := w*z - 1
177 k := 1
178 for q1 < 1e9 {
179 k += 1
180 z += h
181 q0, q1 = q1, z*q1-q0
183 m := n + n
184 t := 0.0
185 for i := 2 * (n + k); i >= m; i -= 2 {
186 t = 1 / (float64(i)/x - t)
188 a := t
189 b = 1
190 // estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n)
191 // Hence, if n*(log(2n/x)) > ...
192 // single 8.8722839355e+01
193 // double 7.09782712893383973096e+02
194 // long double 1.1356523406294143949491931077970765006170e+04
195 // then recurrent value may overflow and the result is
196 // likely underflow to zero
198 tmp := float64(n)
199 v := 2 / x
200 tmp = tmp * Log(Abs(v*tmp))
201 if tmp < 7.09782712893383973096e+02 {
202 for i := n - 1; i > 0; i-- {
203 di := float64(i + i)
204 a, b = b, b*di/x-a
205 di -= 2
207 } else {
208 for i := n - 1; i > 0; i-- {
209 di := float64(i + i)
210 a, b = b, b*di/x-a
211 di -= 2
212 // scale b to avoid spurious overflow
213 if b > 1e100 {
214 a /= b
215 t /= b
216 b = 1
220 b = t * J0(x) / b
223 if sign {
224 return -b
226 return b
229 // Yn returns the order-n Bessel function of the second kind.
231 // Special cases are:
232 // Yn(n, +Inf) = 0
233 // Yn(n > 0, 0) = -Inf
234 // Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
235 // Y1(n, x < 0) = NaN
236 // Y1(n, NaN) = NaN
237 func Yn(n int, x float64) float64 {
238 const Two302 = 1 << 302 // 2**302 0x52D0000000000000
239 // TODO(rsc): Remove manual inlining of IsNaN, IsInf
240 // when compiler does it for us
241 // special cases
242 switch {
243 case x < 0 || x != x: // x < 0 || IsNaN(x):
244 return NaN()
245 case x > MaxFloat64: // IsInf(x, 1)
246 return 0
249 if n == 0 {
250 return Y0(x)
252 if x == 0 {
253 if n < 0 && n&1 == 1 {
254 return Inf(1)
256 return Inf(-1)
258 sign := false
259 if n < 0 {
260 n = -n
261 if n&1 == 1 {
262 sign = true // sign true if n < 0 && |n| odd
265 if n == 1 {
266 if sign {
267 return -Y1(x)
269 return Y1(x)
271 var b float64
272 if x >= Two302 { // x > 2**302
273 // (x >> n**2)
274 // Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
275 // Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
276 // Let s=sin(x), c=cos(x),
277 // xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
279 // n sin(xn)*sqt2 cos(xn)*sqt2
280 // ----------------------------------
281 // 0 s-c c+s
282 // 1 -s-c -c+s
283 // 2 -s+c -c-s
284 // 3 s+c c-s
286 var temp float64
287 switch n & 3 {
288 case 0:
289 temp = Sin(x) - Cos(x)
290 case 1:
291 temp = -Sin(x) - Cos(x)
292 case 2:
293 temp = -Sin(x) + Cos(x)
294 case 3:
295 temp = Sin(x) + Cos(x)
297 b = (1 / SqrtPi) * temp / Sqrt(x)
298 } else {
299 a := Y0(x)
300 b = Y1(x)
301 // quit if b is -inf
302 for i := 1; i < n && b >= -MaxFloat64; i++ { // for i := 1; i < n && !IsInf(b, -1); i++ {
303 a, b = b, (float64(i+i)/x)*b-a
306 if sign {
307 return -b
309 return b