1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005, 2006, 2007, 2008, 2010
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #ifndef _TREE_FLOW_INLINE_H
23 #define _TREE_FLOW_INLINE_H 1
25 /* Inline functions for manipulating various data structures defined in
26 tree-flow.h. See tree-flow.h for documentation. */
28 /* Return true when gimple SSA form was built.
29 gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
30 infrastructure is initialized. Check for presence of the datastructures
33 gimple_in_ssa_p (const struct function
*fun
)
35 return fun
&& fun
->gimple_df
&& fun
->gimple_df
->in_ssa_p
;
38 /* Array of all variables referenced in the function. */
40 gimple_referenced_vars (const struct function
*fun
)
44 return fun
->gimple_df
->referenced_vars
;
47 /* Artificial variable used for the virtual operand FUD chain. */
49 gimple_vop (const struct function
*fun
)
51 gcc_checking_assert (fun
&& fun
->gimple_df
);
52 return fun
->gimple_df
->vop
;
55 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
58 first_htab_element (htab_iterator
*hti
, htab_t table
)
61 hti
->slot
= table
->entries
;
62 hti
->limit
= hti
->slot
+ htab_size (table
);
66 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
68 } while (++(hti
->slot
) < hti
->limit
);
70 if (hti
->slot
< hti
->limit
)
75 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
76 or NULL if we have reached the end. */
79 end_htab_p (const htab_iterator
*hti
)
81 if (hti
->slot
>= hti
->limit
)
86 /* Advance the hashtable iterator pointed to by HTI to the next element of the
90 next_htab_element (htab_iterator
*hti
)
92 while (++(hti
->slot
) < hti
->limit
)
95 if (x
!= HTAB_EMPTY_ENTRY
&& x
!= HTAB_DELETED_ENTRY
)
101 /* Get the variable with uid UID from the list of referenced vars. */
104 referenced_var (unsigned int uid
)
106 tree var
= referenced_var_lookup (cfun
, uid
);
107 gcc_assert (var
|| uid
== 0);
111 /* Initialize ITER to point to the first referenced variable in the
112 referenced_vars hashtable, and return that variable. */
115 first_referenced_var (struct function
*fn
, referenced_var_iterator
*iter
)
117 return (tree
) first_htab_element (&iter
->hti
,
118 gimple_referenced_vars (fn
));
121 /* Return true if we have hit the end of the referenced variables ITER is
122 iterating through. */
125 end_referenced_vars_p (const referenced_var_iterator
*iter
)
127 return end_htab_p (&iter
->hti
);
130 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
131 and return that variable. */
134 next_referenced_var (referenced_var_iterator
*iter
)
136 return (tree
) next_htab_element (&iter
->hti
);
139 /* Return the variable annotation for T, which must be a _DECL node.
140 Return NULL if the variable annotation doesn't already exist. */
141 static inline var_ann_t
142 var_ann (const_tree t
)
144 const var_ann_t
*p
= DECL_VAR_ANN_PTR (t
);
145 return p
? *p
: NULL
;
148 /* Return the variable annotation for T, which must be a _DECL node.
149 Create the variable annotation if it doesn't exist. */
150 static inline var_ann_t
151 get_var_ann (tree var
)
153 var_ann_t
*p
= DECL_VAR_ANN_PTR (var
);
154 gcc_checking_assert (p
);
155 return *p
? *p
: create_var_ann (var
);
158 /* Get the number of the next statement uid to be allocated. */
159 static inline unsigned int
160 gimple_stmt_max_uid (struct function
*fn
)
162 return fn
->last_stmt_uid
;
165 /* Set the number of the next statement uid to be allocated. */
167 set_gimple_stmt_max_uid (struct function
*fn
, unsigned int maxid
)
169 fn
->last_stmt_uid
= maxid
;
172 /* Set the number of the next statement uid to be allocated. */
173 static inline unsigned int
174 inc_gimple_stmt_max_uid (struct function
*fn
)
176 return fn
->last_stmt_uid
++;
179 /* Return the line number for EXPR, or return -1 if we have no line
180 number information for it. */
182 get_lineno (const_gimple stmt
)
189 loc
= gimple_location (stmt
);
190 if (loc
== UNKNOWN_LOCATION
)
193 return LOCATION_LINE (loc
);
196 /* Delink an immediate_uses node from its chain. */
198 delink_imm_use (ssa_use_operand_t
*linknode
)
200 /* Return if this node is not in a list. */
201 if (linknode
->prev
== NULL
)
204 linknode
->prev
->next
= linknode
->next
;
205 linknode
->next
->prev
= linknode
->prev
;
206 linknode
->prev
= NULL
;
207 linknode
->next
= NULL
;
210 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
212 link_imm_use_to_list (ssa_use_operand_t
*linknode
, ssa_use_operand_t
*list
)
214 /* Link the new node at the head of the list. If we are in the process of
215 traversing the list, we won't visit any new nodes added to it. */
216 linknode
->prev
= list
;
217 linknode
->next
= list
->next
;
218 list
->next
->prev
= linknode
;
219 list
->next
= linknode
;
222 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
224 link_imm_use (ssa_use_operand_t
*linknode
, tree def
)
226 ssa_use_operand_t
*root
;
228 if (!def
|| TREE_CODE (def
) != SSA_NAME
)
229 linknode
->prev
= NULL
;
232 root
= &(SSA_NAME_IMM_USE_NODE (def
));
234 gcc_checking_assert (*(linknode
->use
) == def
);
235 link_imm_use_to_list (linknode
, root
);
239 /* Set the value of a use pointed to by USE to VAL. */
241 set_ssa_use_from_ptr (use_operand_p use
, tree val
)
243 delink_imm_use (use
);
245 link_imm_use (use
, val
);
248 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
251 link_imm_use_stmt (ssa_use_operand_t
*linknode
, tree def
, gimple stmt
)
254 link_imm_use (linknode
, def
);
256 link_imm_use (linknode
, NULL
);
257 linknode
->loc
.stmt
= stmt
;
260 /* Relink a new node in place of an old node in the list. */
262 relink_imm_use (ssa_use_operand_t
*node
, ssa_use_operand_t
*old
)
264 /* The node one had better be in the same list. */
265 gcc_checking_assert (*(old
->use
) == *(node
->use
));
266 node
->prev
= old
->prev
;
267 node
->next
= old
->next
;
270 old
->prev
->next
= node
;
271 old
->next
->prev
= node
;
272 /* Remove the old node from the list. */
277 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
280 relink_imm_use_stmt (ssa_use_operand_t
*linknode
, ssa_use_operand_t
*old
,
284 relink_imm_use (linknode
, old
);
286 link_imm_use (linknode
, NULL
);
287 linknode
->loc
.stmt
= stmt
;
291 /* Return true is IMM has reached the end of the immediate use list. */
293 end_readonly_imm_use_p (const imm_use_iterator
*imm
)
295 return (imm
->imm_use
== imm
->end_p
);
298 /* Initialize iterator IMM to process the list for VAR. */
299 static inline use_operand_p
300 first_readonly_imm_use (imm_use_iterator
*imm
, tree var
)
302 imm
->end_p
= &(SSA_NAME_IMM_USE_NODE (var
));
303 imm
->imm_use
= imm
->end_p
->next
;
304 #ifdef ENABLE_CHECKING
305 imm
->iter_node
.next
= imm
->imm_use
->next
;
307 if (end_readonly_imm_use_p (imm
))
308 return NULL_USE_OPERAND_P
;
312 /* Bump IMM to the next use in the list. */
313 static inline use_operand_p
314 next_readonly_imm_use (imm_use_iterator
*imm
)
316 use_operand_p old
= imm
->imm_use
;
318 #ifdef ENABLE_CHECKING
319 /* If this assertion fails, it indicates the 'next' pointer has changed
320 since the last bump. This indicates that the list is being modified
321 via stmt changes, or SET_USE, or somesuch thing, and you need to be
322 using the SAFE version of the iterator. */
323 gcc_assert (imm
->iter_node
.next
== old
->next
);
324 imm
->iter_node
.next
= old
->next
->next
;
327 imm
->imm_use
= old
->next
;
328 if (end_readonly_imm_use_p (imm
))
329 return NULL_USE_OPERAND_P
;
334 extern bool has_zero_uses_1 (const ssa_use_operand_t
*head
);
335 extern bool single_imm_use_1 (const ssa_use_operand_t
*head
,
336 use_operand_p
*use_p
, gimple
*stmt
);
338 /* Return true if VAR has no nondebug uses. */
340 has_zero_uses (const_tree var
)
342 const ssa_use_operand_t
*const ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
344 /* A single use_operand means there is no items in the list. */
345 if (ptr
== ptr
->next
)
348 /* If there are debug stmts, we have to look at each use and see
349 whether there are any nondebug uses. */
350 if (!MAY_HAVE_DEBUG_STMTS
)
353 return has_zero_uses_1 (ptr
);
356 /* Return true if VAR has a single nondebug use. */
358 has_single_use (const_tree var
)
360 const ssa_use_operand_t
*const ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
362 /* If there aren't any uses whatsoever, we're done. */
363 if (ptr
== ptr
->next
)
366 /* If there's a single use, check that it's not a debug stmt. */
367 if (ptr
== ptr
->next
->next
)
368 return !is_gimple_debug (USE_STMT (ptr
->next
));
370 /* If there are debug stmts, we have to look at each of them. */
371 if (!MAY_HAVE_DEBUG_STMTS
)
374 return single_imm_use_1 (ptr
, NULL
, NULL
);
378 /* If VAR has only a single immediate nondebug use, return true, and
379 set USE_P and STMT to the use pointer and stmt of occurrence. */
381 single_imm_use (const_tree var
, use_operand_p
*use_p
, gimple
*stmt
)
383 const ssa_use_operand_t
*const ptr
= &(SSA_NAME_IMM_USE_NODE (var
));
385 /* If there aren't any uses whatsoever, we're done. */
386 if (ptr
== ptr
->next
)
389 *use_p
= NULL_USE_OPERAND_P
;
394 /* If there's a single use, check that it's not a debug stmt. */
395 if (ptr
== ptr
->next
->next
)
397 if (!is_gimple_debug (USE_STMT (ptr
->next
)))
400 *stmt
= ptr
->next
->loc
.stmt
;
407 /* If there are debug stmts, we have to look at each of them. */
408 if (!MAY_HAVE_DEBUG_STMTS
)
411 return single_imm_use_1 (ptr
, use_p
, stmt
);
414 /* Return the number of nondebug immediate uses of VAR. */
415 static inline unsigned int
416 num_imm_uses (const_tree var
)
418 const ssa_use_operand_t
*const start
= &(SSA_NAME_IMM_USE_NODE (var
));
419 const ssa_use_operand_t
*ptr
;
420 unsigned int num
= 0;
422 if (!MAY_HAVE_DEBUG_STMTS
)
423 for (ptr
= start
->next
; ptr
!= start
; ptr
= ptr
->next
)
426 for (ptr
= start
->next
; ptr
!= start
; ptr
= ptr
->next
)
427 if (!is_gimple_debug (USE_STMT (ptr
)))
433 /* Return the tree pointed-to by USE. */
435 get_use_from_ptr (use_operand_p use
)
440 /* Return the tree pointed-to by DEF. */
442 get_def_from_ptr (def_operand_p def
)
447 /* Return a use_operand_p pointer for argument I of PHI node GS. */
449 static inline use_operand_p
450 gimple_phi_arg_imm_use_ptr (gimple gs
, int i
)
452 return &gimple_phi_arg (gs
, i
)->imm_use
;
455 /* Return the tree operand for argument I of PHI node GS. */
458 gimple_phi_arg_def (gimple gs
, size_t index
)
460 struct phi_arg_d
*pd
= gimple_phi_arg (gs
, index
);
461 return get_use_from_ptr (&pd
->imm_use
);
464 /* Return a pointer to the tree operand for argument I of PHI node GS. */
467 gimple_phi_arg_def_ptr (gimple gs
, size_t index
)
469 return &gimple_phi_arg (gs
, index
)->def
;
472 /* Return the edge associated with argument I of phi node GS. */
475 gimple_phi_arg_edge (gimple gs
, size_t i
)
477 return EDGE_PRED (gimple_bb (gs
), i
);
480 /* Return the source location of gimple argument I of phi node GS. */
482 static inline source_location
483 gimple_phi_arg_location (gimple gs
, size_t i
)
485 return gimple_phi_arg (gs
, i
)->locus
;
488 /* Return the source location of the argument on edge E of phi node GS. */
490 static inline source_location
491 gimple_phi_arg_location_from_edge (gimple gs
, edge e
)
493 return gimple_phi_arg (gs
, e
->dest_idx
)->locus
;
496 /* Set the source location of gimple argument I of phi node GS to LOC. */
499 gimple_phi_arg_set_location (gimple gs
, size_t i
, source_location loc
)
501 gimple_phi_arg (gs
, i
)->locus
= loc
;
504 /* Return TRUE if argument I of phi node GS has a location record. */
507 gimple_phi_arg_has_location (gimple gs
, size_t i
)
509 return gimple_phi_arg_location (gs
, i
) != UNKNOWN_LOCATION
;
513 /* Return the PHI nodes for basic block BB, or NULL if there are no
515 static inline gimple_seq
516 phi_nodes (const_basic_block bb
)
518 gcc_checking_assert (!(bb
->flags
& BB_RTL
));
521 return bb
->il
.gimple
->phi_nodes
;
524 /* Set PHI nodes of a basic block BB to SEQ. */
527 set_phi_nodes (basic_block bb
, gimple_seq seq
)
529 gimple_stmt_iterator i
;
531 gcc_checking_assert (!(bb
->flags
& BB_RTL
));
532 bb
->il
.gimple
->phi_nodes
= seq
;
534 for (i
= gsi_start (seq
); !gsi_end_p (i
); gsi_next (&i
))
535 gimple_set_bb (gsi_stmt (i
), bb
);
538 /* Return the phi argument which contains the specified use. */
541 phi_arg_index_from_use (use_operand_p use
)
543 struct phi_arg_d
*element
, *root
;
547 /* Since the use is the first thing in a PHI argument element, we can
548 calculate its index based on casting it to an argument, and performing
549 pointer arithmetic. */
551 phi
= USE_STMT (use
);
553 element
= (struct phi_arg_d
*)use
;
554 root
= gimple_phi_arg (phi
, 0);
555 index
= element
- root
;
557 /* Make sure the calculation doesn't have any leftover bytes. If it does,
558 then imm_use is likely not the first element in phi_arg_d. */
559 gcc_checking_assert ((((char *)element
- (char *)root
)
560 % sizeof (struct phi_arg_d
)) == 0
561 && index
< gimple_phi_capacity (phi
));
566 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
569 set_is_used (tree var
)
571 var_ann_t ann
= get_var_ann (var
);
575 /* Clear VAR's used flag. */
578 clear_is_used (tree var
)
580 var_ann_t ann
= var_ann (var
);
584 /* Return true if VAR is marked as used. */
589 var_ann_t ann
= var_ann (var
);
593 /* Return true if T (assumed to be a DECL) is a global variable.
594 A variable is considered global if its storage is not automatic. */
597 is_global_var (const_tree t
)
599 return (TREE_STATIC (t
) || DECL_EXTERNAL (t
));
603 /* Return true if VAR may be aliased. A variable is considered as
604 maybe aliased if it has its address taken by the local TU
605 or possibly by another TU and might be modified through a pointer. */
608 may_be_aliased (const_tree var
)
610 return (TREE_CODE (var
) != CONST_DECL
611 && !((TREE_STATIC (var
) || TREE_PUBLIC (var
) || DECL_EXTERNAL (var
))
612 && TREE_READONLY (var
)
613 && !TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (var
)))
614 && (TREE_PUBLIC (var
)
615 || DECL_EXTERNAL (var
)
616 || TREE_ADDRESSABLE (var
)));
620 /* PHI nodes should contain only ssa_names and invariants. A test
621 for ssa_name is definitely simpler; don't let invalid contents
622 slip in in the meantime. */
625 phi_ssa_name_p (const_tree t
)
627 if (TREE_CODE (t
) == SSA_NAME
)
629 gcc_checking_assert (is_gimple_min_invariant (t
));
634 /* Returns the loop of the statement STMT. */
636 static inline struct loop
*
637 loop_containing_stmt (gimple stmt
)
639 basic_block bb
= gimple_bb (stmt
);
643 return bb
->loop_father
;
647 /* ----------------------------------------------------------------------- */
649 /* The following set of routines are used to iterator over various type of
652 /* Return true if PTR is finished iterating. */
654 op_iter_done (const ssa_op_iter
*ptr
)
659 /* Get the next iterator use value for PTR. */
660 static inline use_operand_p
661 op_iter_next_use (ssa_op_iter
*ptr
)
664 gcc_checking_assert (ptr
->iter_type
== ssa_op_iter_use
);
667 use_p
= USE_OP_PTR (ptr
->uses
);
668 ptr
->uses
= ptr
->uses
->next
;
671 if (ptr
->phi_i
< ptr
->num_phi
)
673 return PHI_ARG_DEF_PTR (ptr
->phi_stmt
, (ptr
->phi_i
)++);
676 return NULL_USE_OPERAND_P
;
679 /* Get the next iterator def value for PTR. */
680 static inline def_operand_p
681 op_iter_next_def (ssa_op_iter
*ptr
)
684 gcc_checking_assert (ptr
->iter_type
== ssa_op_iter_def
);
687 def_p
= DEF_OP_PTR (ptr
->defs
);
688 ptr
->defs
= ptr
->defs
->next
;
692 return NULL_DEF_OPERAND_P
;
695 /* Get the next iterator tree value for PTR. */
697 op_iter_next_tree (ssa_op_iter
*ptr
)
700 gcc_checking_assert (ptr
->iter_type
== ssa_op_iter_tree
);
703 val
= USE_OP (ptr
->uses
);
704 ptr
->uses
= ptr
->uses
->next
;
709 val
= DEF_OP (ptr
->defs
);
710 ptr
->defs
= ptr
->defs
->next
;
720 /* This functions clears the iterator PTR, and marks it done. This is normally
721 used to prevent warnings in the compile about might be uninitialized
725 clear_and_done_ssa_iter (ssa_op_iter
*ptr
)
729 ptr
->iter_type
= ssa_op_iter_none
;
732 ptr
->phi_stmt
= NULL
;
736 /* Initialize the iterator PTR to the virtual defs in STMT. */
738 op_iter_init (ssa_op_iter
*ptr
, gimple stmt
, int flags
)
740 /* We do not support iterating over virtual defs or uses without
741 iterating over defs or uses at the same time. */
742 gcc_checking_assert ((!(flags
& SSA_OP_VDEF
) || (flags
& SSA_OP_DEF
))
743 && (!(flags
& SSA_OP_VUSE
) || (flags
& SSA_OP_USE
)));
744 ptr
->defs
= (flags
& (SSA_OP_DEF
|SSA_OP_VDEF
)) ? gimple_def_ops (stmt
) : NULL
;
745 if (!(flags
& SSA_OP_VDEF
)
747 && gimple_vdef (stmt
) != NULL_TREE
)
748 ptr
->defs
= ptr
->defs
->next
;
749 ptr
->uses
= (flags
& (SSA_OP_USE
|SSA_OP_VUSE
)) ? gimple_use_ops (stmt
) : NULL
;
750 if (!(flags
& SSA_OP_VUSE
)
752 && gimple_vuse (stmt
) != NULL_TREE
)
753 ptr
->uses
= ptr
->uses
->next
;
758 ptr
->phi_stmt
= NULL
;
761 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
763 static inline use_operand_p
764 op_iter_init_use (ssa_op_iter
*ptr
, gimple stmt
, int flags
)
766 gcc_checking_assert ((flags
& SSA_OP_ALL_DEFS
) == 0
767 && (flags
& SSA_OP_USE
));
768 op_iter_init (ptr
, stmt
, flags
);
769 ptr
->iter_type
= ssa_op_iter_use
;
770 return op_iter_next_use (ptr
);
773 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
775 static inline def_operand_p
776 op_iter_init_def (ssa_op_iter
*ptr
, gimple stmt
, int flags
)
778 gcc_checking_assert ((flags
& SSA_OP_ALL_USES
) == 0
779 && (flags
& SSA_OP_DEF
));
780 op_iter_init (ptr
, stmt
, flags
);
781 ptr
->iter_type
= ssa_op_iter_def
;
782 return op_iter_next_def (ptr
);
785 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
786 the first operand as a tree. */
788 op_iter_init_tree (ssa_op_iter
*ptr
, gimple stmt
, int flags
)
790 op_iter_init (ptr
, stmt
, flags
);
791 ptr
->iter_type
= ssa_op_iter_tree
;
792 return op_iter_next_tree (ptr
);
796 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
799 single_ssa_tree_operand (gimple stmt
, int flags
)
804 var
= op_iter_init_tree (&iter
, stmt
, flags
);
805 if (op_iter_done (&iter
))
807 op_iter_next_tree (&iter
);
808 if (op_iter_done (&iter
))
814 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
816 static inline use_operand_p
817 single_ssa_use_operand (gimple stmt
, int flags
)
822 var
= op_iter_init_use (&iter
, stmt
, flags
);
823 if (op_iter_done (&iter
))
824 return NULL_USE_OPERAND_P
;
825 op_iter_next_use (&iter
);
826 if (op_iter_done (&iter
))
828 return NULL_USE_OPERAND_P
;
833 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
835 static inline def_operand_p
836 single_ssa_def_operand (gimple stmt
, int flags
)
841 var
= op_iter_init_def (&iter
, stmt
, flags
);
842 if (op_iter_done (&iter
))
843 return NULL_DEF_OPERAND_P
;
844 op_iter_next_def (&iter
);
845 if (op_iter_done (&iter
))
847 return NULL_DEF_OPERAND_P
;
851 /* Return true if there are zero operands in STMT matching the type
854 zero_ssa_operands (gimple stmt
, int flags
)
858 op_iter_init_tree (&iter
, stmt
, flags
);
859 return op_iter_done (&iter
);
863 /* Return the number of operands matching FLAGS in STMT. */
865 num_ssa_operands (gimple stmt
, int flags
)
871 FOR_EACH_SSA_TREE_OPERAND (t
, stmt
, iter
, flags
)
877 /* Delink all immediate_use information for STMT. */
879 delink_stmt_imm_use (gimple stmt
)
884 if (ssa_operands_active ())
885 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_ALL_USES
)
886 delink_imm_use (use_p
);
890 /* If there is a single DEF in the PHI node which matches FLAG, return it.
891 Otherwise return NULL_DEF_OPERAND_P. */
893 single_phi_def (gimple stmt
, int flags
)
895 tree def
= PHI_RESULT (stmt
);
896 if ((flags
& SSA_OP_DEF
) && is_gimple_reg (def
))
898 if ((flags
& SSA_OP_VIRTUAL_DEFS
) && !is_gimple_reg (def
))
903 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
904 be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
905 static inline use_operand_p
906 op_iter_init_phiuse (ssa_op_iter
*ptr
, gimple phi
, int flags
)
908 tree phi_def
= gimple_phi_result (phi
);
911 clear_and_done_ssa_iter (ptr
);
914 gcc_checking_assert ((flags
& (SSA_OP_USE
| SSA_OP_VIRTUAL_USES
)) != 0);
916 comp
= (is_gimple_reg (phi_def
) ? SSA_OP_USE
: SSA_OP_VIRTUAL_USES
);
918 /* If the PHI node doesn't the operand type we care about, we're done. */
919 if ((flags
& comp
) == 0)
922 return NULL_USE_OPERAND_P
;
926 ptr
->num_phi
= gimple_phi_num_args (phi
);
927 ptr
->iter_type
= ssa_op_iter_use
;
928 return op_iter_next_use (ptr
);
932 /* Start an iterator for a PHI definition. */
934 static inline def_operand_p
935 op_iter_init_phidef (ssa_op_iter
*ptr
, gimple phi
, int flags
)
937 tree phi_def
= PHI_RESULT (phi
);
940 clear_and_done_ssa_iter (ptr
);
943 gcc_checking_assert ((flags
& (SSA_OP_DEF
| SSA_OP_VIRTUAL_DEFS
)) != 0);
945 comp
= (is_gimple_reg (phi_def
) ? SSA_OP_DEF
: SSA_OP_VIRTUAL_DEFS
);
947 /* If the PHI node doesn't have the operand type we care about,
949 if ((flags
& comp
) == 0)
952 return NULL_DEF_OPERAND_P
;
955 ptr
->iter_type
= ssa_op_iter_def
;
956 /* The first call to op_iter_next_def will terminate the iterator since
957 all the fields are NULL. Simply return the result here as the first and
958 therefore only result. */
959 return PHI_RESULT_PTR (phi
);
962 /* Return true is IMM has reached the end of the immediate use stmt list. */
965 end_imm_use_stmt_p (const imm_use_iterator
*imm
)
967 return (imm
->imm_use
== imm
->end_p
);
970 /* Finished the traverse of an immediate use stmt list IMM by removing the
971 placeholder node from the list. */
974 end_imm_use_stmt_traverse (imm_use_iterator
*imm
)
976 delink_imm_use (&(imm
->iter_node
));
979 /* Immediate use traversal of uses within a stmt require that all the
980 uses on a stmt be sequentially listed. This routine is used to build up
981 this sequential list by adding USE_P to the end of the current list
982 currently delimited by HEAD and LAST_P. The new LAST_P value is
985 static inline use_operand_p
986 move_use_after_head (use_operand_p use_p
, use_operand_p head
,
987 use_operand_p last_p
)
989 gcc_checking_assert (USE_FROM_PTR (use_p
) == USE_FROM_PTR (head
));
990 /* Skip head when we find it. */
993 /* If use_p is already linked in after last_p, continue. */
994 if (last_p
->next
== use_p
)
998 /* Delink from current location, and link in at last_p. */
999 delink_imm_use (use_p
);
1000 link_imm_use_to_list (use_p
, last_p
);
1008 /* This routine will relink all uses with the same stmt as HEAD into the list
1009 immediately following HEAD for iterator IMM. */
1012 link_use_stmts_after (use_operand_p head
, imm_use_iterator
*imm
)
1014 use_operand_p use_p
;
1015 use_operand_p last_p
= head
;
1016 gimple head_stmt
= USE_STMT (head
);
1017 tree use
= USE_FROM_PTR (head
);
1018 ssa_op_iter op_iter
;
1021 /* Only look at virtual or real uses, depending on the type of HEAD. */
1022 flag
= (is_gimple_reg (use
) ? SSA_OP_USE
: SSA_OP_VIRTUAL_USES
);
1024 if (gimple_code (head_stmt
) == GIMPLE_PHI
)
1026 FOR_EACH_PHI_ARG (use_p
, head_stmt
, op_iter
, flag
)
1027 if (USE_FROM_PTR (use_p
) == use
)
1028 last_p
= move_use_after_head (use_p
, head
, last_p
);
1032 if (flag
== SSA_OP_USE
)
1034 FOR_EACH_SSA_USE_OPERAND (use_p
, head_stmt
, op_iter
, flag
)
1035 if (USE_FROM_PTR (use_p
) == use
)
1036 last_p
= move_use_after_head (use_p
, head
, last_p
);
1038 else if ((use_p
= gimple_vuse_op (head_stmt
)) != NULL_USE_OPERAND_P
)
1040 if (USE_FROM_PTR (use_p
) == use
)
1041 last_p
= move_use_after_head (use_p
, head
, last_p
);
1044 /* Link iter node in after last_p. */
1045 if (imm
->iter_node
.prev
!= NULL
)
1046 delink_imm_use (&imm
->iter_node
);
1047 link_imm_use_to_list (&(imm
->iter_node
), last_p
);
1050 /* Initialize IMM to traverse over uses of VAR. Return the first statement. */
1051 static inline gimple
1052 first_imm_use_stmt (imm_use_iterator
*imm
, tree var
)
1054 imm
->end_p
= &(SSA_NAME_IMM_USE_NODE (var
));
1055 imm
->imm_use
= imm
->end_p
->next
;
1056 imm
->next_imm_name
= NULL_USE_OPERAND_P
;
1058 /* iter_node is used as a marker within the immediate use list to indicate
1059 where the end of the current stmt's uses are. Initialize it to NULL
1060 stmt and use, which indicates a marker node. */
1061 imm
->iter_node
.prev
= NULL_USE_OPERAND_P
;
1062 imm
->iter_node
.next
= NULL_USE_OPERAND_P
;
1063 imm
->iter_node
.loc
.stmt
= NULL
;
1064 imm
->iter_node
.use
= NULL
;
1066 if (end_imm_use_stmt_p (imm
))
1069 link_use_stmts_after (imm
->imm_use
, imm
);
1071 return USE_STMT (imm
->imm_use
);
1074 /* Bump IMM to the next stmt which has a use of var. */
1076 static inline gimple
1077 next_imm_use_stmt (imm_use_iterator
*imm
)
1079 imm
->imm_use
= imm
->iter_node
.next
;
1080 if (end_imm_use_stmt_p (imm
))
1082 if (imm
->iter_node
.prev
!= NULL
)
1083 delink_imm_use (&imm
->iter_node
);
1087 link_use_stmts_after (imm
->imm_use
, imm
);
1088 return USE_STMT (imm
->imm_use
);
1091 /* This routine will return the first use on the stmt IMM currently refers
1094 static inline use_operand_p
1095 first_imm_use_on_stmt (imm_use_iterator
*imm
)
1097 imm
->next_imm_name
= imm
->imm_use
->next
;
1098 return imm
->imm_use
;
1101 /* Return TRUE if the last use on the stmt IMM refers to has been visited. */
1104 end_imm_use_on_stmt_p (const imm_use_iterator
*imm
)
1106 return (imm
->imm_use
== &(imm
->iter_node
));
1109 /* Bump to the next use on the stmt IMM refers to, return NULL if done. */
1111 static inline use_operand_p
1112 next_imm_use_on_stmt (imm_use_iterator
*imm
)
1114 imm
->imm_use
= imm
->next_imm_name
;
1115 if (end_imm_use_on_stmt_p (imm
))
1116 return NULL_USE_OPERAND_P
;
1119 imm
->next_imm_name
= imm
->imm_use
->next
;
1120 return imm
->imm_use
;
1124 /* Return true if VAR cannot be modified by the program. */
1127 unmodifiable_var_p (const_tree var
)
1129 if (TREE_CODE (var
) == SSA_NAME
)
1130 var
= SSA_NAME_VAR (var
);
1132 return TREE_READONLY (var
) && (TREE_STATIC (var
) || DECL_EXTERNAL (var
));
1135 /* Return true if REF, a handled component reference, has an ARRAY_REF
1139 ref_contains_array_ref (const_tree ref
)
1141 gcc_checking_assert (handled_component_p (ref
));
1144 if (TREE_CODE (ref
) == ARRAY_REF
)
1146 ref
= TREE_OPERAND (ref
, 0);
1147 } while (handled_component_p (ref
));
1152 /* Return true if REF has an VIEW_CONVERT_EXPR somewhere in it. */
1155 contains_view_convert_expr_p (const_tree ref
)
1157 while (handled_component_p (ref
))
1159 if (TREE_CODE (ref
) == VIEW_CONVERT_EXPR
)
1161 ref
= TREE_OPERAND (ref
, 0);
1167 /* Return true, if the two ranges [POS1, SIZE1] and [POS2, SIZE2]
1168 overlap. SIZE1 and/or SIZE2 can be (unsigned)-1 in which case the
1169 range is open-ended. Otherwise return false. */
1172 ranges_overlap_p (unsigned HOST_WIDE_INT pos1
,
1173 unsigned HOST_WIDE_INT size1
,
1174 unsigned HOST_WIDE_INT pos2
,
1175 unsigned HOST_WIDE_INT size2
)
1178 && (size2
== (unsigned HOST_WIDE_INT
)-1
1179 || pos1
< (pos2
+ size2
)))
1182 && (size1
== (unsigned HOST_WIDE_INT
)-1
1183 || pos2
< (pos1
+ size1
)))
1189 /* Accessor to tree-ssa-operands.c caches. */
1190 static inline struct ssa_operands
*
1191 gimple_ssa_operands (const struct function
*fun
)
1193 return &fun
->gimple_df
->ssa_operands
;
1196 /* Given an edge_var_map V, return the PHI arg definition. */
1199 redirect_edge_var_map_def (edge_var_map
*v
)
1204 /* Given an edge_var_map V, return the PHI result. */
1207 redirect_edge_var_map_result (edge_var_map
*v
)
1212 /* Given an edge_var_map V, return the PHI arg location. */
1214 static inline source_location
1215 redirect_edge_var_map_location (edge_var_map
*v
)
1221 /* Return an SSA_NAME node for variable VAR defined in statement STMT
1222 in function cfun. */
1225 make_ssa_name (tree var
, gimple stmt
)
1227 return make_ssa_name_fn (cfun
, var
, stmt
);
1230 /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
1231 denotes the starting address of the memory access EXP.
1232 Returns NULL_TREE if the offset is not constant or any component
1233 is not BITS_PER_UNIT-aligned.
1234 VALUEIZE if non-NULL is used to valueize SSA names. It should return
1235 its argument or a constant if the argument is known to be constant. */
1238 get_addr_base_and_unit_offset_1 (tree exp
, HOST_WIDE_INT
*poffset
,
1239 tree (*valueize
) (tree
))
1241 HOST_WIDE_INT byte_offset
= 0;
1243 /* Compute cumulative byte-offset for nested component-refs and array-refs,
1244 and find the ultimate containing object. */
1247 switch (TREE_CODE (exp
))
1254 tree field
= TREE_OPERAND (exp
, 1);
1255 tree this_offset
= component_ref_field_offset (exp
);
1256 HOST_WIDE_INT hthis_offset
;
1259 || TREE_CODE (this_offset
) != INTEGER_CST
1260 || (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field
))
1264 hthis_offset
= TREE_INT_CST_LOW (this_offset
);
1265 hthis_offset
+= (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field
))
1267 byte_offset
+= hthis_offset
;
1272 case ARRAY_RANGE_REF
:
1274 tree index
= TREE_OPERAND (exp
, 1);
1275 tree low_bound
, unit_size
;
1278 && TREE_CODE (index
) == SSA_NAME
)
1279 index
= (*valueize
) (index
);
1281 /* If the resulting bit-offset is constant, track it. */
1282 if (TREE_CODE (index
) == INTEGER_CST
1283 && (low_bound
= array_ref_low_bound (exp
),
1284 TREE_CODE (low_bound
) == INTEGER_CST
)
1285 && (unit_size
= array_ref_element_size (exp
),
1286 TREE_CODE (unit_size
) == INTEGER_CST
))
1288 HOST_WIDE_INT hindex
= TREE_INT_CST_LOW (index
);
1290 hindex
-= TREE_INT_CST_LOW (low_bound
);
1291 hindex
*= TREE_INT_CST_LOW (unit_size
);
1292 byte_offset
+= hindex
;
1303 byte_offset
+= TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (exp
)));
1306 case VIEW_CONVERT_EXPR
:
1311 tree base
= TREE_OPERAND (exp
, 0);
1313 && TREE_CODE (base
) == SSA_NAME
)
1314 base
= (*valueize
) (base
);
1316 /* Hand back the decl for MEM[&decl, off]. */
1317 if (TREE_CODE (base
) == ADDR_EXPR
)
1319 if (!integer_zerop (TREE_OPERAND (exp
, 1)))
1321 double_int off
= mem_ref_offset (exp
);
1322 gcc_assert (off
.high
== -1 || off
.high
== 0);
1323 byte_offset
+= double_int_to_shwi (off
);
1325 exp
= TREE_OPERAND (base
, 0);
1330 case TARGET_MEM_REF
:
1332 tree base
= TREE_OPERAND (exp
, 0);
1334 && TREE_CODE (base
) == SSA_NAME
)
1335 base
= (*valueize
) (base
);
1337 /* Hand back the decl for MEM[&decl, off]. */
1338 if (TREE_CODE (base
) == ADDR_EXPR
)
1340 if (TMR_INDEX (exp
) || TMR_INDEX2 (exp
))
1342 if (!integer_zerop (TMR_OFFSET (exp
)))
1344 double_int off
= mem_ref_offset (exp
);
1345 gcc_assert (off
.high
== -1 || off
.high
== 0);
1346 byte_offset
+= double_int_to_shwi (off
);
1348 exp
= TREE_OPERAND (base
, 0);
1357 exp
= TREE_OPERAND (exp
, 0);
1361 *poffset
= byte_offset
;
1365 #endif /* _TREE_FLOW_INLINE_H */