1 /* Code sinking for trees
2 Copyright (C) 2001, 2002, 2003, 2004, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Daniel Berlin <dan@dberlin.org>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
24 #include "coretypes.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-inline.h"
31 #include "tree-flow.h"
33 #include "tree-dump.h"
37 #include "tree-iterator.h"
39 #include "alloc-pool.h"
40 #include "tree-pass.h"
43 #include "langhooks.h"
47 1. Sinking store only using scalar promotion (IE without moving the RHS):
67 Store copy propagation will take care of the store elimination above.
70 2. Sinking using Partial Dead Code Elimination. */
75 /* The number of statements sunk down the flowgraph by code sinking. */
81 /* Given a PHI, and one of its arguments (DEF), find the edge for
82 that argument and return it. If the argument occurs twice in the PHI node,
86 find_bb_for_arg (gimple phi
, tree def
)
89 bool foundone
= false;
90 basic_block result
= NULL
;
91 for (i
= 0; i
< gimple_phi_num_args (phi
); i
++)
92 if (PHI_ARG_DEF (phi
, i
) == def
)
97 result
= gimple_phi_arg_edge (phi
, i
)->src
;
102 /* When the first immediate use is in a statement, then return true if all
103 immediate uses in IMM are in the same statement.
104 We could also do the case where the first immediate use is in a phi node,
105 and all the other uses are in phis in the same basic block, but this
106 requires some expensive checking later (you have to make sure no def/vdef
107 in the statement occurs for multiple edges in the various phi nodes it's
108 used in, so that you only have one place you can sink it to. */
111 all_immediate_uses_same_place (gimple stmt
)
113 gimple firstuse
= NULL
;
115 imm_use_iterator imm_iter
;
119 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, op_iter
, SSA_OP_ALL_DEFS
)
121 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, var
)
123 if (firstuse
== NULL
)
124 firstuse
= USE_STMT (use_p
);
126 if (firstuse
!= USE_STMT (use_p
))
134 /* Some global stores don't necessarily have VDEF's of global variables,
135 but we still must avoid moving them around. */
138 is_hidden_global_store (gimple stmt
)
140 /* Check virtual definitions. If we get here, the only virtual
141 definitions we should see are those generated by assignment or call
143 if (gimple_vdef (stmt
))
147 gcc_assert (is_gimple_assign (stmt
) || is_gimple_call (stmt
));
149 /* Note that we must not check the individual virtual operands
150 here. In particular, if this is an aliased store, we could
151 end up with something like the following (SSA notation
152 redacted for brevity):
157 p_1 = (i_2 > 3) ? &x : p;
165 Notice that the store to '*p_1' should be preserved, if we
166 were to check the virtual definitions in that store, we would
167 not mark it needed. This is because 'x' is not a global
170 Therefore, we check the base address of the LHS. If the
171 address is a pointer, we check if its name tag or symbol tag is
172 a global variable. Otherwise, we check if the base variable
174 lhs
= gimple_get_lhs (stmt
);
176 if (REFERENCE_CLASS_P (lhs
))
177 lhs
= get_base_address (lhs
);
179 if (lhs
== NULL_TREE
)
181 /* If LHS is NULL, it means that we couldn't get the base
182 address of the reference. In which case, we should not
186 else if (DECL_P (lhs
))
188 /* If the store is to a global symbol, we need to keep it. */
189 if (is_global_var (lhs
))
193 else if (INDIRECT_REF_P (lhs
))
194 return ptr_deref_may_alias_global_p (TREE_OPERAND (lhs
, 0));
202 /* Find the nearest common dominator of all of the immediate uses in IMM. */
205 nearest_common_dominator_of_uses (gimple stmt
)
207 bitmap blocks
= BITMAP_ALLOC (NULL
);
208 basic_block commondom
;
212 imm_use_iterator imm_iter
;
216 bitmap_clear (blocks
);
217 FOR_EACH_SSA_TREE_OPERAND (var
, stmt
, op_iter
, SSA_OP_ALL_DEFS
)
219 FOR_EACH_IMM_USE_FAST (use_p
, imm_iter
, var
)
221 gimple usestmt
= USE_STMT (use_p
);
222 basic_block useblock
;
224 if (gimple_code (usestmt
) == GIMPLE_PHI
)
226 int idx
= PHI_ARG_INDEX_FROM_USE (use_p
);
228 useblock
= gimple_phi_arg_edge (usestmt
, idx
)->src
;
232 useblock
= gimple_bb (usestmt
);
235 /* Short circuit. Nothing dominates the entry block. */
236 if (useblock
== ENTRY_BLOCK_PTR
)
238 BITMAP_FREE (blocks
);
241 bitmap_set_bit (blocks
, useblock
->index
);
244 commondom
= BASIC_BLOCK (bitmap_first_set_bit (blocks
));
245 EXECUTE_IF_SET_IN_BITMAP (blocks
, 0, j
, bi
)
246 commondom
= nearest_common_dominator (CDI_DOMINATORS
, commondom
,
248 BITMAP_FREE (blocks
);
252 /* Given a statement (STMT) and the basic block it is currently in (FROMBB),
253 determine the location to sink the statement to, if any.
254 Returns true if there is such location; in that case, TOGSI points to the
255 statement before that STMT should be moved. */
258 statement_sink_location (gimple stmt
, basic_block frombb
,
259 gimple_stmt_iterator
*togsi
)
263 use_operand_p one_use
= NULL_USE_OPERAND_P
;
268 imm_use_iterator imm_iter
;
271 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
273 FOR_EACH_IMM_USE_FAST (one_use
, imm_iter
, def
)
277 if (one_use
!= NULL_USE_OPERAND_P
)
281 /* Return if there are no immediate uses of this stmt. */
282 if (one_use
== NULL_USE_OPERAND_P
)
285 if (gimple_code (stmt
) != GIMPLE_ASSIGN
)
288 /* There are a few classes of things we can't or don't move, some because we
289 don't have code to handle it, some because it's not profitable and some
290 because it's not legal.
292 We can't sink things that may be global stores, at least not without
293 calculating a lot more information, because we may cause it to no longer
294 be seen by an external routine that needs it depending on where it gets
297 We don't want to sink loads from memory.
299 We can't sink statements that end basic blocks without splitting the
300 incoming edge for the sink location to place it there.
302 We can't sink statements that have volatile operands.
304 We don't want to sink dead code, so anything with 0 immediate uses is not
307 Don't sink BLKmode assignments if current function has any local explicit
308 register variables, as BLKmode assignments may involve memcpy or memset
309 calls or, on some targets, inline expansion thereof that sometimes need
310 to use specific hard registers.
313 code
= gimple_assign_rhs_code (stmt
);
314 if (stmt_ends_bb_p (stmt
)
315 || gimple_has_side_effects (stmt
)
316 || code
== EXC_PTR_EXPR
317 || code
== FILTER_EXPR
318 || is_hidden_global_store (stmt
)
319 || gimple_has_volatile_ops (stmt
)
320 || gimple_vuse (stmt
)
321 || (cfun
->has_local_explicit_reg_vars
322 && TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt
))) == BLKmode
))
325 FOR_EACH_SSA_DEF_OPERAND (def_p
, stmt
, iter
, SSA_OP_ALL_DEFS
)
327 tree def
= DEF_FROM_PTR (def_p
);
328 if (is_global_var (SSA_NAME_VAR (def
))
329 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def
))
333 FOR_EACH_SSA_USE_OPERAND (use_p
, stmt
, iter
, SSA_OP_ALL_USES
)
335 tree use
= USE_FROM_PTR (use_p
);
336 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use
))
340 /* If all the immediate uses are not in the same place, find the nearest
341 common dominator of all the immediate uses. For PHI nodes, we have to
342 find the nearest common dominator of all of the predecessor blocks, since
343 that is where insertion would have to take place. */
344 if (!all_immediate_uses_same_place (stmt
))
346 basic_block commondom
= nearest_common_dominator_of_uses (stmt
);
348 if (commondom
== frombb
)
351 /* Our common dominator has to be dominated by frombb in order to be a
352 trivially safe place to put this statement, since it has multiple
354 if (!dominated_by_p (CDI_DOMINATORS
, commondom
, frombb
))
357 /* It doesn't make sense to move to a dominator that post-dominates
358 frombb, because it means we've just moved it into a path that always
359 executes if frombb executes, instead of reducing the number of
361 if (dominated_by_p (CDI_POST_DOMINATORS
, frombb
, commondom
))
363 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
364 fprintf (dump_file
, "Not moving store, common dominator post-dominates from block.\n");
368 if (commondom
== frombb
|| commondom
->loop_depth
> frombb
->loop_depth
)
370 if (dump_file
&& (dump_flags
& TDF_DETAILS
))
372 fprintf (dump_file
, "Common dominator of all uses is %d\n",
375 *togsi
= gsi_after_labels (commondom
);
379 use
= USE_STMT (one_use
);
380 if (gimple_code (use
) != GIMPLE_PHI
)
382 sinkbb
= gimple_bb (use
);
383 if (sinkbb
== frombb
|| sinkbb
->loop_depth
> frombb
->loop_depth
384 || sinkbb
->loop_father
!= frombb
->loop_father
)
387 *togsi
= gsi_for_stmt (use
);
391 /* Note that at this point, all uses must be in the same statement, so it
392 doesn't matter which def op we choose, pick the first one. */
393 FOR_EACH_SSA_TREE_OPERAND (def
, stmt
, iter
, SSA_OP_ALL_DEFS
)
396 sinkbb
= find_bb_for_arg (use
, def
);
400 /* This will happen when you have
401 a_3 = PHI <a_13, a_26>
405 If the use is a phi, and is in the same bb as the def,
408 if (gimple_bb (use
) == frombb
)
410 if (sinkbb
== frombb
|| sinkbb
->loop_depth
> frombb
->loop_depth
411 || sinkbb
->loop_father
!= frombb
->loop_father
)
414 *togsi
= gsi_after_labels (sinkbb
);
419 /* Perform code sinking on BB */
422 sink_code_in_bb (basic_block bb
)
425 gimple_stmt_iterator gsi
;
430 /* If this block doesn't dominate anything, there can't be any place to sink
431 the statements to. */
432 if (first_dom_son (CDI_DOMINATORS
, bb
) == NULL
)
435 /* We can't move things across abnormal edges, so don't try. */
436 FOR_EACH_EDGE (e
, ei
, bb
->succs
)
437 if (e
->flags
& EDGE_ABNORMAL
)
440 for (gsi
= gsi_last_bb (bb
); !gsi_end_p (gsi
);)
442 gimple stmt
= gsi_stmt (gsi
);
443 gimple_stmt_iterator togsi
;
445 if (!statement_sink_location (stmt
, bb
, &togsi
))
447 if (!gsi_end_p (gsi
))
454 fprintf (dump_file
, "Sinking ");
455 print_gimple_stmt (dump_file
, stmt
, 0, TDF_VOPS
);
456 fprintf (dump_file
, " from bb %d to bb %d\n",
457 bb
->index
, (gsi_bb (togsi
))->index
);
460 /* If this is the end of the basic block, we need to insert at the end
461 of the basic block. */
462 if (gsi_end_p (togsi
))
463 gsi_move_to_bb_end (&gsi
, gsi_bb (togsi
));
465 gsi_move_before (&gsi
, &togsi
);
469 /* If we've just removed the last statement of the BB, the
470 gsi_end_p() test below would fail, but gsi_prev() would have
471 succeeded, and we want it to succeed. So we keep track of
472 whether we're at the last statement and pick up the new last
476 gsi
= gsi_last_bb (bb
);
481 if (!gsi_end_p (gsi
))
486 for (son
= first_dom_son (CDI_POST_DOMINATORS
, bb
);
488 son
= next_dom_son (CDI_POST_DOMINATORS
, son
))
490 sink_code_in_bb (son
);
494 /* Perform code sinking.
495 This moves code down the flowgraph when we know it would be
496 profitable to do so, or it wouldn't increase the number of
497 executions of the statement.
510 a_6 = PHI (a_5, a_1);
513 we'll transform this into:
524 a_6 = PHI (a_5, a_1);
527 Note that this reduces the number of computations of a = b + c to 1
528 when we take the else edge, instead of 2.
531 execute_sink_code (void)
533 loop_optimizer_init (LOOPS_NORMAL
);
535 connect_infinite_loops_to_exit ();
536 memset (&sink_stats
, 0, sizeof (sink_stats
));
537 calculate_dominance_info (CDI_DOMINATORS
);
538 calculate_dominance_info (CDI_POST_DOMINATORS
);
539 sink_code_in_bb (EXIT_BLOCK_PTR
);
540 statistics_counter_event (cfun
, "Sunk statements", sink_stats
.sunk
);
541 free_dominance_info (CDI_POST_DOMINATORS
);
542 remove_fake_exit_edges ();
543 loop_optimizer_finalize ();
546 /* Gate and execute functions for PRE. */
551 execute_sink_code ();
558 return flag_tree_sink
!= 0;
561 struct gimple_opt_pass pass_sink_code
=
566 gate_sink
, /* gate */
567 do_sink
, /* execute */
570 0, /* static_pass_number */
571 TV_TREE_SINK
, /* tv_id */
572 PROP_no_crit_edges
| PROP_cfg
573 | PROP_ssa
, /* properties_required */
574 0, /* properties_provided */
575 0, /* properties_destroyed */
576 0, /* todo_flags_start */
580 | TODO_verify_ssa
/* todo_flags_finish */